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THE TRACE INEQUALITY AND EIGENVALUE
ESTIMATES FOR SCHRODINGER OPERATORS

by R. KERMAN (1) and E. SAWYER (2)

1. Introduction.

This paper deals with potential operators T^ given at Lebesgue
measurable / on R" by a convolution integral

(TV)(x)= f <!>(x-y)f(y)dy,
JR"

provided this integral exists for almost all x e R". The kernels <5>(y) are
radially decreasing (r.d.) functions; that is, they are nonnegative, locally
integrable radial functions on R" which are nonincreasing in \y\. These
T<i> include the Riesz potential operator !„ whose kernel K^ is defined
directly as

^y)=\y^n, 0 < a < n

and the Bessel potential operator J, with kernel G, defined in terms of its
Fourier transform Ga by

G^) = f G^e-^dx = (l+IO2)"5 0 < a < n.
JR"

Given an r.d. kernel 0 and 1 < p < oo , we wish to characterize the
(possibly singular) positive Borel measures \x on R" for which there exists
C > 0 such that

(1.1) f (T^)(x)^H(x) < C f fWdx
JR" JR"
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for all nonnegative measurable /. Clearly this will be true if and only if
T<i> is a bounded linear operator between the Lebesgue spaces L^R")
and L^R",^). An important special case, with p=2 and 0=Gi, arises
in estimating the spectrum of Schrodinger operators and will be considered
in detail below. Another special case is treated in Stein [19], where it is

n — k
shown that (1.1) holds for J^ when ^ = ^, a > ———» where

P

H^^m^EnR^),

Wfc being fc-dimensional Lebesgue measure on Rk considered as a subset of
R". The inequality of [19] can be stated in the equivalent form

f (Ja/)Oci,-..^A...,0)^, . . . ,dx,
JR"

^ c f(x^..^x,ydx^ ...,^.
JR"

It is thus a statement about the restriction, or trace, of J^f. For this reason
we follow other authors in referring to (1.1) as «the trace inequality ».

Generalizing results of Adams [1] and Maz'ya [14], K. Hansson in [12]
has characterized the ^ satisfying (1.1) in terms of capacities (see also
B. Dahlberg [8]). He shows the trace inequality holds if and only if K > 0
exists for which

(1.2) ^(E)^Kcap(E)

whenever E is a compact subset of R". Here cap (E) denotes the U
capacity associated with the kernel 0,

f r }cap (E) = inf \ fW dx :/>0 and T<J> 1 on E \.
UR" )

A criterion such as (1.2) can be difficult to verify for all compact sets E .
On the other hand if one only requires (1.2) to hold for a class of simple
sets such as all cubes Q with sides parallel to the coordinate axes, the
resulting condition is no longer sufficient (D. Adams [2]). For example,
when n = p = 2, h doesn't satisfy (1.1) with ^, yet inequality (1.2) for

cubes, which amounts to Hi(Q) ^ K|Q|2, holds. In fact, with

f(x) = ̂ l ln^r^yx^]^!^)^ / ^ infinite on
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^(x i ,0 ) :0^ ; )Ci<^ and thus the left side of (1.1) is infinite while the

right side is finite. Examples of this nature were first pointed out in [2].

Theorem 2.3 below gives a necessary and sufficient condition for (1.1)
that involves testing an inequality over dyadic cubes Q, namely

(1.3) f (M^XQ^W dx ^ K f d\i < oo
JQ JQ

n
where p ' = ——— •> the constant K > 0 is independent of Q, and

P - L

(M^)(x) = sup I"—— f <S>(y) dy\ f f(y) d^(y).
x e o L l Q I J 1 -UQ

lyKIQI"

Alternatively, (1.1) is equivalent to

(1.4) (T^QHXx)^ dx ^ K d\ji < oo for all dyadic cubes Q.
JR" JQ

To compare (1.2) and (1.4), we note that (1.2) is equivalent by an
elementary argument (see Theorem 4 in [2]) to testing the inequality in (1.4)
over all compact sets Q. The reduction in (1.4) to testing over dyadic
cubes Q is essential in obtaining sharp estimates for the higher eigenvalues
of Schrodinger operators in § 3. For a different characterization involving
test functions see Stromberg and Wheeden [21].

In the special case where T^ = la, the equivalence of (1.1) and (1.3)
can be established by dualizing inequality (1.1), using the «good X
inequality » ofB. Muckenhoupt and R. L. Wheeden [15] in order to replace
I, by its associated maximal operator M,, and then using the
characterization of the weighted inequality for M,, in [18]. The general case
of the theorem is proved along similar lines, the crucial new estimate being
an extension (Theorem 2.2) of the « good 'k inequality » in [15].

As an application of Theorem 2.3 we obtain a sharpened form of recent
results of C. L. Fefiferman and D. H. Phong on the distribution of
eigenvalues of Schrodinger operators, H == — A — u , v ^ 0 ([10];
Theorem 5, 6 and 6' in Chapter II). Roughly speaking, their results show
that for many v ^ 0, the negative eigenvalues of H = — A — v are
approximately given by — |Q| n as Q varies over the minimal dyadic
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cubes satisfying [Ql" | v ^ C. Theorem 3.3 below shows, as suggested
JQ

by condition (1.3), that this picture extends to arbitrary v ^ 0 if the

fractional average, IQI" u , is replaced by
JQ

—— [[^W(x)]2dx=—— f ^W(x)v(x)dx,
My J IVly JQ

the u-average over Q of the Newtonian potential of ^QV . Certain of the
results in [10] have been generalized by S. Y. A. Chang, J. M. Wilson and
T.H.Wolff([5]) and by S. Chanillo and R. L. Wheeden ([6]). This is
discussed in more detail in § 3. Further applications of Theorem 2.3 have
been announced in [13].

2. The trace inequality.

We begin by deriving the basic properties of r.d. kernels <D and Borel
measures ^ for which the trace inequality holds. For the sake of
completeness, we consider here and in § 3 the more general trace inequality

(2.1) I" f ^ (W)(^ ̂ (x)^ ^ c[ f ^f(xY dx^

for all nonnegative measurable /, where 1 < p < q < oo. For p < q
and many r.d. kernels 0, the trace inequality (2.1) can be characterized in
terms of very simple conditions — see e.g. [12]. However, many
applications, such as that in the next section, require the case p = q.

PROPOSITION 2.1. — If^(2.1) holds for a non-trivial r.d. kernel 0 and a

non-trivial Borel measure [i, then (f) [i is locally finite, that is, \ d\ji < oo
JQ

for all cubes Q, and (ii) <!> satisfies

(2.2) [ OW dy < oo for all r > 0.
]\y\^r

Proof. - Choose s > 0 so that 0(2s) > 0. If B is any ball of
radius e, and if y^ denotes the measure of the surface of the unit ball in
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R", then

y.e^^f f d^J ^ I" f (T^y d^

^ [Yn^llT^llop < GO .

Hence \ d[i < oo and this proves that u, is locally finite.
JB

To obtain (2.2), fix R > 0 so that \ d[t > 0 where B is the ball of
JB

radius R centred at the origin. Momentarily fix S > 2R and
let/(x) = ^Oc)p '~1^2R^|^s}00• For |x| ^ R , we have

WQc) = | (S>(x-y)(S>(yY'~1 dy ^ C dW dy . Indeed,
j2R<£M^S j2R^|y|^S

<S>(x—y) ^ ^>(y) for all y satisfying |x—^| ^ \y\ and this in turn holds
x y

provided |x| ^ R, \y\ > 2R and the distance between — and — is

sufficiently small. With this estimate, (2.1) yields

C f <D(^r dy ( f d^f ^ f f(W)^ d^
j2R^|<S \JB / LJ J

^c f f ^(yY'dyV.
\_j2R^\y\^S J

Letting S -> oo yields ^(^^ ̂  < oo and this proves (2.2).
J|y|$?2R

To obtain a criterion for (2.1) to hold, we look at the inequality dual to
it. A standard argument shows this dual is, with the same C > 0,

(2.3) I" f ^ (WH)(X)^ dx\ ^ C\ f JW d^(x)\ ,

n q
where p ' = ——-' q' = ——-' and

P - 1 ^ - 1

CWn)(x)= f a>(x-)0/(^(y).
JR"
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The behaviour of T<D in (2.3) is determined by that of the maximal
operator M^ given at a positive Borel measure v by

(M^v)(x) = sup —— f (S>(y) dy} [ dv.
x e Q L l Y l J 1 _UQ1

M^IQI"

Note that the first factor on the right side is the average of 0 over the ball
of radius |Q|71" centred at the origin. In the case when 0 is the kernel K,
for the Riesz potential operator, then M^ is the usual fractional maximal
operator M, (see e.g. [3] or [15]).

THEOREM 2.2. — Let <I> be an r.d. kernel and v a positive locally finite
Borel measure on R". Then

(a) (M<,v)(x) ^ C^M(To>v)(x), x e R"

where M denotes the usual Hardy-Littlewood maximal operator and the
constant C^ > 0 depends only on the dimension n.

(b) There exists y > 1 and a positive constant €„ depending only on n
so that for all K > 0 and all Pe(0,l],

|{T<,v>y?i and M<,v^py}| ^ C^ |{M(T<,v)>X}|.

Proof. - To a given cube Q in R" associate the cube Q* having the
same centre as Q but edges 7 ̂ /n times as long as those of Q.

To prove (a) fix xeR" and a cube Q containing x. Then

(T^v)GOd^ | dy \ <^(y-z)dv(z)
. JQ* JQ* JQ

^ f dv(z) f <S>(y-z)dy
JQ JQ*

^ f ^(y) dy \ dv (y)
J 1 JQ

M^IQI"

since {y, \y-z\^\Q\" c= Q*, whenever z e Q . Hence,

M(T<,v)(x) ^ 7 n 2 | (DQO dy ! dv (y)
Iv l J i JQ

lyl^lQI"
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and so

M<,v)(x) > Tn- M(T^v)(x), x e R " .

We now show (b). Given \ > 0, let

Q^ = {M(T<,v)>?i}.

Decompose Q^ into disjoint Whitney cubes Q with Q* n 0^ ^ 0. See
De Guzman [11]. Let {Qjj be those Whitney cubes for which there is an
x^eQfc satisfying (M<i>v)(Xfc) ^ (M.. Fixing attention on such a Q^,
which we'll denote simply by Q, we define v^ and V2 to be restrictions
of the measure v; the first to Q*, the second to R" - Q*. We claim it is
enough to obtain a dimensional constant €„ > 0 such that

(2.4) ' T^ ^ CU

on Q. Suppose for the moment that (2.4) has been proved and take
y > 2C^. Then

{x e Q; (T^v)(x) > y^} c L e Q; (T<,v,)(x) > ̂ l.

Now,

(2.5) [ ^(x-z)dx^ \ Wdy.
JQ J i

This means 1 ^ 1 2 1 Q l n

f (rT^)(x)dx= | dx f O(x-^)rfv^)
JQ JQ JQ*

dv(y) | <S>(x-y)dx ^ \ <S>(y) dy \ dv(y)
JQ* JQ J i JQ*

MO^IQI"

^ (Pv^riQKM^)^) < (7^/nyWQ|.

Thus with C = 2(7^1)",

jY(=o- rT^v .VY^ ^x e Q;(T^vO(x) > ̂ l ̂  2 f (T^v,)(x) rfx > C p |Q|.
2 J Y^ JQ Y

Therefore,

|{T<,v>y)i and M<,v^P?i}| = E |{x G Q,;(T^v)(x)>y)i}|

^ ^ Z I Q J ^ C ^ |{M(T<,v)>^}|.
y 7 r
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To prove (2.4) we'll require the fact that €„ > 0 exists with

(2.6) (DGO ^ ̂  f (D(z) d z , 0 < r ^ \y\.
r J\y-z\^r

As O is nonincreasing, this would be true if it were known to hold
whenever 0 is the characteristic function of a ball centred at the origin.
For this it suffices to know that the set of z in the ball \y—z\ ^ r
satisfying |z| ^ \y\ occupies at least a fixed fraction of the ball. The

change of variable z = \y\v, followed by the rotation that sends -y- to
\y\

e^ = (1,0,.. .0), reduces the problem to the relative size of the
intersection of the balls \v\ ^ 1 and \v-e^\ ^ 5, 0 < 5 < 1, to the size of
the ball \v—e^\ ^ 5 itself. But for these sets the result in clear.

If x e Q (where Q denotes some fixed Q^) and y e R" — Q*, then
\x-y\ ̂  IQI^ . Thus taking r = |Q|^ in (2.6), we get

(Tv^)(x)= f ^x-y)dv(y)
JR"-Q*
c r r

^-^ ^00 <!>(x-y-z)dz.
r JR"-Q* J|z|^r

Making the substitution v = x — z, the last expression becomes

c- \ (T<^)(y) dv ^ ̂  f (T<,v)(x) dx ^ ̂  )i|Q*| = C^
r J|x-u|^r f JQ* ^

with C^ = (7^)^, since Q* intersects R" - Q^ = {M(T<i>v)^} by
the Whitney condition. This completes the proof.

THEOREM 2.3. — Suppose 0 is a nonnegative, locally integrable
radially decreasing function satisfying (2.2). Then for 1 < p ^ q < ao and
H a positive locally finite Borel measure on R", the following statements are
equivalent :

1. There exists C > 0 so that whenever f is a nonnegative measurable
function on R"

[ f ^ CWW d^x)^ ^ cl~ f JW dxf.
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2. There exists C > 0 so that for all dyadic cubes Q
i

[ fT^OW'rfxT < C'[H(Q)f < oo

w/i^r^ p ' = ———? ^' = —"—•
P - 1 <7 - 1

3. There exists K > 0 so that for all dyadic cubes Q
i

I' f (M^Q^)W dx\ ^ K[H(Q)f < ao .

Moreover, the least possible C, C' and K m t/i^ above are all mthin
constant multiples of one another, the constants being independent of <S>
and u.

Proof. — Let M^ denote the dyadic analogue of M^ given by

M^v(x) = sup I — — f 0(^)^1 f dv
xeQdyadic LI ̂  I J 1 J JQ

M^IQI"
for x e R" and v a locally finite positive measure. We claim that for all
such v,

(2.7) f |NW^f |M^v|^cJ |T<,vr',
JR" JR" JR"

(2.8) f \W' ^ C^ f \M^' ^ C, f |NW,
JR" JR" JR"

where the constants Ci , C^, €3 depend only on n and p( l<p<oo) .
The first inequality in (2.7) is trivial and the second inequality follows from
part (a) of Theorem 2.2 and the classical L^ inequality for M ([18]). The
first inequality in (2.8) follows from part (fc) of Theorem 2.2 as in [6].
Finally, to prove the second inequality in (2.8), we apply a standard
covering argument to {M<i»v>^} (where ^>0) to obtain the existence of
cubes (Qfc)fc with disjoint triples satisfying

(i) f-L f 0(}0 dy\ \ dv > ̂  for all k
v LlOfclJ l -1^

M^IQfel"

(ii) |{M^v>)i}| ^ C ^ I Q J .

Now each Q^ is covered by at most 2" dyadic cubes (I]0i^2" wltn
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2~"IQJ ^ I H I ^ |Qfc|. There is at least one of these dyadic cubes, say

^ == IL with dv ^ 2~" rfv. Then, since 0 is r.d. and
Jife JQ^

I I J ^ I Q J ,

[-L f CO;) ̂  dv > 2-U for all k
L I ^ I J i J J i f e

I^IIfel"

and so (J 1̂  c {M^v>2-")l}. Since the 1̂  's are pairwise disjoint, we

have
|{M<,v>^CE|QJ^CEH.I

k k

^ C\{M^v>2-n^\

and (2.8) follows upon multiplying this inequality by ^'-1 and then
integrating over (0,oo).

From (2.3), (2.7) and (2.8) we obtain that the trace inequality in 1. holds
if and only if there is C > 0, comparable to the one in (2.1), for which

(2.9) [ j ^ (M^i)(x)^ dx\ ^ C\[ /W^(x)T, for all /.

Theorem A of [16] (with M^ in place of M^,, the proof is unchanged)
shows that (2.9) holds if and only if there is C > 0, comparable to that in
(2.9), for which

(2.10) ^ f [M^OCQ W'T ^ CH(Q)^ < oo

for all dyadic cubes Q. Theorem 2.3 now follows easily. The trace
inequality 1. implies its dual (2.3) which in turn implies 2. upon taking
/ = XQ • Inequality 2. implies 3. by (2.7) and finally,
3.=>(2.10)=>(2.9)=>1.

3. Schrodinger operators.

In this section. Theorem 2.3 is used to refine the estimates for
eigenvalues of a Schrodinger operator H = — A — v given in Theorem 5,
Chapter II, of [10]. By eigenvalues, we mean the numbers
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^-i ^ ^2 ^ • • • ^ ^N • • • where ^N ls the maximum over all N — 1

tuples <I>i , . . . ON-I of the quantity inf——!—. the infimum being over
<M,M>

all u e Q(H), <u,0),> = 0 , 7 = 1 , . . . N - 1 . Here Q(H) denotes the

form domain of H (see [16]) and <HM,M> = (IVMl2-^!2) for
. JR"

ueQ(H). Recall that V(x) = Ix-^l2-"/^) ̂  denotes the
Newtonian potential of /. VRn

THEOREM 3.1. — Let H = — A — v , where u(x) ^ 0 is locally

integrable on R" and n ^ 3. Denote the v measure of Q, u(x) rfx, by
JQ

|Q|y. There are positive constants C, c depending only on the dimension n
such that the least eigenvalue ^ o/ H satisfies E^ ^ — ^ ^ E^g w/i^r^

E,.=sup{|Q|-2/n;|QL- l f I^XQ^^cl
I JQ J

Eb.g = supJiQI-^IQL-1 f \AW)^C\.
I JQ J

Example 3.2. — Consider Example V in [10]: a particle in a
rectangular box B = B^ x B^ x • • • B^ with side lengths
81 ^ §2 ^ • - • §„. Let v = ^B and let XB denote the centre of B. Since

sup |QJ -1 | \z(w)v % I^(XB) % 82 + §1 82 + 8i 82 log (83/82)
Q JQ

^8182^(1+83/82),

Theorem 3.1 yields the correct order of magnitude for the energy, Epical,
needed to trap a p j rndc in B, namely

Ecm.cal = sup \\ '0: -A-Ey^O} = l/8i 82 log (1 +83/82).

A refinement of Theorems 6 and 6' in Chapter II of[10], similar to the
one above, is given in

THEOREM 3.3. — Let H = — A — v where u(x) ^ 0 is locally
integrable on R" and n ^ 3. There are positive constants C, c depending
only on the dimension n such that :

(A) Suppose ^ ^ 0 and let Qi , . . . , QN be a collection of cubes of side
length at most 'k 2 whose doubles are pairwise disjoint. Suppose further that
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r
\Qj\v1 \ l2(XQ.^ ^ C, 1 < 7 < N . 77k?n H has at least N

Jo, j

eigenvalues < — ^.

(B) Conversely, suppose X ^ 0 and t/iat H has at least CN
eigenvalues ^ — ' k . Then there is a collection ofpairmse disjoint (dyadic)
cubes Q I , . . . , Q N of side lengths at most X ~ 2 that satisfy

W [ l20CQ,^5^ 1 < J ^ N .
JQ;

Roughly speaking, Theorem 3.3 says that the negative eigenvalues of H
are approximately given by - IQI"2^ as Q ranges over the minimal

dyadic cubes satisfying |Q|j"1 I^ (XQ^ ^ C.
JQ

In [10], results corresponding to Theorems 3.1 and 3.3 were obtained

with the quantity |Q|^1 12 OCQ^ replaced by the simpler average

C|Q|^~1 v in part (A) of Theorem 3.3 and by CJQ^'if f v^ in
JQ \ JQ /

part (B). A comparison of these quantities is made in Remark 3.5 at the
end of this section. Chang, Wilson, and Wolff[5] show part (B) of

Theorem 3.3 holds for v if sup|Q|^~1 i;(x)0(|Q|^(x)) dx < oo,
Q JQr°° dxwhere 0 : [0,oo] -> [l,oo] is increasing and ——— < oo . See also

Ji ^00
Chanillo and Wheeden[6].

Proof of Theorem 3 A. — The Schwartz class S is dense in Q(H) and
thus we have

/TT \ fl^- flVM|2

- . . <HM,M> J J- ̂  = - mf ——— = sup^—————j-———
ueQ(H) <M,M> ^s , .2

J 1 "

= inf{a > 0; H^ < |VM|2 + a|u|2

= f(|^|2+a)|^)|2^,MeS}

=inf{a>0;f(Ioi/)2^(/V^O}
J J
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where I°[ is the operator with r.d. kernel K°; defined by
(K^^d^+oO^. Thus K}Oc)=G,(x) and

n-^- i
}^(x)=ai 2 G,(a2x).

If we let C, denote the least constant such that

((Wv^C^f2 for all / ^ O ,

then - ̂  = inf{a;C^l}. By Theorem 2.3,

(3-1) G^sup—— [[PiOcQtO]2

Q l^ly J

in the sense that the ratio of the left and right sides is bounded between two
constants independent of a and v . We now show that, in fact, the
supremum in (3.1) need only be taken over those cubes Q with

IQI^a"^- To this end, set M = sup _- [/°;OcQtO]2 and
Q IQLJ

IQI1/"^-1^

suppose Q is a cube with |Q|̂  > a ~ 2 . Express Q as a union of
congruent cubes, Q^, having pairwise disjoint interiors and common

i 1 -l l -lsidelengths, |Q^|", satisfying .a 2 ^ |Q^|" ^ a 2 . Then, we claim

(3.2) f[Pi(XQtO]2 = I fPiteQ^Pi^)
*/ iJ J

<C^f[I°i(xQ,y)]2

<SCM^|Q.|,,=CM|Q|.,.
l

The second inequality holds by definition of M and since IQJ^ ^ a 2 .
To prove the first inequality, we consider two cases. First, when Q, and
Qj are adjacent, we simply use

flKXQ^I0;^) ^ ^f[I^XQ,tO]2 + \ f[I°i(XQ^]2.

To treat the case when Q^ and Qj have a distance of roughly k
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sidelengths between them, k $? 1, we require the facts that
n-2

K^(x) % |x|2-" if |x| < a ~ ^ and K^(x) < Ca 2 e"7"" if |x| > a"^,
for which see [4]. We then have

r r nz2-
I°i(XQ,iOrE(XQ/0 = I^QV)(X)V(X) dx < Ca 2 e-'IQ.IJQ,!,.

•/ JQ;

However, I°;OCQ,)(^) ^ Ca~2 for xeQ, and so

o^ r a^ ra2 r o^ rIQJ. ^ p IKXQ,)^ = ^ IKXQ.^M dx.
^ JOi ^ JQ;

^ l^p lUXQ,)^.
^ JQ, (- JQ

Thus

2|QJJQ,L ^ IQJ? + |Q,L2

^ c a ( r f p , ( x Q . ) T + r f P,^)T)
\LJQ; J |_JQ; } \ J

^coc -2 [pi^)]2 + [p,aQ^)]
\JQ, j Q j j

Now, for a fixed cube Q,, there are at most Cfe""1 cubes Qj at a
distance of roughly k sidelengths from Q,. Combining all of the above,
we obtain

Z fi^Q^iUxQ/O ^ cf i+ i fe"-1.-^ f[p,(xQ.)]2
'J J L k=l J f J
;̂

which yields the first inequality in (3.2). From (3.1) and (3.2), we have

C, % M and since [PiOcQiQ]2 = I^OCo^ % IiOCQ^ when
i _i " J J

|Q|" ^ a 2 , we finally have

ca % sup InF ^(XQ^)^
Q l^lu JQ

|Q|1/^^-1/2

and Theorem 3.1 follows readily.

Proof of Theorem 3.3, part (A). — As in [10], it suffices by elementary
functional analysis to construct an N-dimensional subspace O c = Q ( H ) so
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that <HM,M> ^ — ^ \\u\2 for u in Q. Our hypothesis implies

i r
rnT ^(XQ,^ ^ C f o r j = l , . . . N .
l^./lijQ; '

r / r v 1
Since I^OCQ^ ^ [I^Q^ I Q I 2 by Holder's inequality, we

JQ \ J Q /
actually have

f [I^Q/O]2^ ^ C f l^v)v, 1 ^ j ^ N.
JQ^ JQ;

This suggests we let Q be the linear span of {/^jli where fj = ̂ ^(^Q.v)

and O, = 1 on ^ Qj with supp Oy contained in 2Q^. Here the Oj are

dilates and translates of a fixed 0 e Q° (R"). We have immediately that

(3.3) \f]v ^ C f I^v)v for 1 ̂  ̂  N.
J JQ;

By hypothesis, the supports of the fj are pairwise disjoint and so we need
only establish

(3.4) <( - A + X)/,,/,> ^ . f (f^v for 1 ̂  j ^ N

in order to conclude <HM,M> ^ — X- |M | 2 for u in 0, as required. To
3 J

prove (3.4), we let Gj = IQj — - Qj and compute that

(- A+^)/, == (- A+^)[(D^(XQ,^)]
== XQ,̂  + XG,(- A+?i)[a),^(xQ,^]
== A, + B,

since I ^ = ( - A + X ) ~ 1 . Now

<A,,/,> == f l^v)v ^ ̂  [f]v (by 4.3)) ^ ^ [f]v

provided C is chosen ^ 2 . It remains to verify

<B,J}> ^ C | I^OcQiOr for all 7 since then (3.4) will follow from (3.3)
JQ;
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and the previous estimate provided C ^ 2C. Now

(3.5) |B,| ^ XG,[^|AI^(XQ/OI + 2|V(D,||VI^(XQ^)|
+

= D , + E , + F , .
+(^+|AO,|)[I^Oc o.t0]

Using the estimates ID'K^x)! ^ C^l2-"-5, for s ^ 0 and |x| ^ Oi~^
(see [4]) we obtain that on Gj,

^(XQ/OM^CIQ.I^f v
JQ,

mKQv)(x)\^C\Q^-1! v
JQ,

IAI^XQ^MI ^CIQ.I-'f v .
JQ,Q;

These inequalities, together with |0,.| ^ 1, \V<S>j\ ^ C|Q | ~ ^ ,
|A^.| ^ CIQ^.I"" and the hypothesis ^ ^ |Q,|~^, yields

(3-6) D^E^F^CIQ,!-1!?^.

Since /,(x) ^ C|Q^~1 v on G,, (3.5) and (3.6) imply
JQ,

(3.7) (B^^CIQ.I^IQ,!,2.

Finally,

IQ.I^Yf rY<C(min^(5c o.i;))f f ^
VJQ; / ^Q; ; \JQ, )

< c f ^(XQ,^)^
JQ,

and this, combined with (3.7), shows that <B .̂J}> ^ C I^XQ^U and
completes the proof of part (A) of Theorem 3.3. J^

Proof'of'Theorem 3.3, pan (B). - We follow closely the argument of
C. L. Fefferman and D. H. Phong in ([10]; proof of Theorem 6 in
Chapter II), but with certain modifications designed to avoid the use of a
square function. As in [10], it suffices to suppose v bounded and to show
that if Q I , . . . , Q N are the minimal dyadic cubes satisfying
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i /*

FrTT l2(ZQ^)y ^ ^ and |Q^ ^ ̂ -I, then H = - A - v has at
l^jlyjo. ;

most CN eigenvalues ^ — ^ (where the constant C is of course
independent of the bound on v). As usual, this will be accomplished by
exhibiting a subspace Q c: L2 of codimension ^ CN such that

(3.8) <HM,M> ̂  -\ ] | M | 2 forall u in 0.

We consider only the case ^ = 0, the case ^ > 0 requiring easy
modifications. We begin by defining additional cubes Q N + I ? • • . , QM as

in [10]; i.e. let B be the collection of all dyadic cubes Q with
1 f

,7.1- ^OCQ^ ^ c 2Ln^ define the additional cubes QN+I , • • . , QM to
IQIy JQ

consist of (i) the maximal cubes in B, (ii) the branching cubes in B
and (iii) the descendents of branching cubes in B. The descendents of a
cube Q in B are those Q' e B which are maximal with respect to the
property of being properly contained in Q. A cube in B « branches » if it
has at least two descendents. As shown in [10], M ^ CN. Still

M

following [10] we define E() = R" — (J Qj and Ej = Qj minus its
j= i

descendents for j ^ 1. In analogy with estimates (i) and (ii) of [10], we
shall prove that the weights Vj = ^.v satisfy

(3.9) —— ^(Wj)Vj ^ Cc for all 0 ^7 ^ M, Q dyadic cube.
1^1^ JQ

In order to make use of (3.9) and the trace inequalities it implies we
shall have to define the subspace 0 so that

(3.10) |u(x)| ^ CIi(^.|Vu|)(x) for x e E,, 0 ^ j ^ M, u e0.

Indeed, if both (3.9) and (3.10) hold, then for u e Q ,

Ll2!; = ^ f ll̂ ,
J J=0 j E j

^ C ^ f [I^Wv, by (3.10)
J = O j E j j

M F
^ Cc ^ |Vu|2 by (3.9) and Theorem 2.3

J=0 JEj

^ |VM|2 if c small enough,
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and this is (3.8) for X, = 0. Thus it remains to construct fi, of
codimension ^ CN such that (3.10) holds. In the case 1 ^ j ^ N, Ej; is

a cube and (3.10) holds whenever u = 0 by the following inequality of
JE,

E. Fabes, C. Kenig and R. Serapiom ([9]; Lemma 1.4)

(3.11) u(x)~— \ u ^ CIiOcQ|Vu|)(x) for x e Q , Q a cube.
M JQ

For the case when Ej is not a cube we will need the following lemma.

LEMMA 3.4. — Suppose Q i , . . . , Q f c are pairmse disjoint dyadic
subcubes of a dyadic cube Q in R". Then there are (not necessarily dyadic

k m

or disjoint) cubes I ^ , . . . , 1̂  such that Q — (J Qj = (J 1^ anri m ̂  Ck
J=l 1=1

w/i^r^ C is a constant depending only on the dimension n. The above holds
also for Q = R" if \ve allow the cubes 1^ to be infinite, i.e. of the form
J^ x J^ x • ' ' Jn where each Jf is a semi-infinite interval.

This lemma has been obtained independently by S. Chanillo and R. L.
Wheeden [6], with a proof much simpler than that appearing in a previous
version of this paper. As a result, we refer the reader to [6] for a proof of the
lemma.

We can now define the subspace Q. For each j with 7 = 0 or
N + 1 ̂  7 ^ M, apply Lemma 3.4 with Q = Qj and Qi , . . . , Q^ the
descendents of Qj (for ;=0, take Q=R" and Qi , . . . , Q f c to be the

mj

maximal cubes in B), to obtain cubes I^, . . . , 1^ with Ej = (J I? and
mj i = 1

w, ^ C (# of descendents of Q^). Note that E .̂ = Q^ for 1 ^7 ^ N.
Now define

0 = {M; M=0for l</^Nand u=0
JQ, Ji0^j(/)

forN+l</ '^M, 7=0 and l^i.^m^}.

If x e Ej, N + 1 < j ^ M or j = 0, then x e some I^ and thus for
M 6 Q , |M(X)| ^ CIi(^)|Vu|)(x) ^ CI,(^.|VM|)(X) by (3.11). Thus (3.10)
holds. Finally, the codimension of Q is at most

N + ^ m ^ N + C ^ (# of descendents ofQ^.)
;=0 ;=0

N+1^;^M N+1</^M

^ N 4- C(M+1) ^ CM.
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It remains now to establish (3.9). We begin with the case j ^ 0 of (3.9),
and follow the corresponding argument in [10]. Since supp Vj c= Q^., we
need only check (3.9) for dyadic cubes Q e B with Q c= Q .̂ and in fact,

2"
only for proper dyadic subcubes of Q .̂ (since if Q = (J Q,, then

1=1

f l2(W»= [[IlOCQtO]2

= Z fli(XQ,^)liOcQ/0 ̂ Z [[ii(XQtO]2
l^ J z Ij J

< C , , Z f[I,(XQ,tO]2

i — i j
2" /-

E l2(XQ,^^.

2"

= C B S ,»=lJQ,»=l jQi

As in [10], the only « non-trivial» case occurs when Q^ e B is neither
minimal nor branching and Q contains Q^, the unique maximal
Qf, 1 ̂  i ^ M, that is properly contained in Qj (see the argument on
p. 157-158 of [10]). To obtain (3.9) in this case we use a Whitney
decomposition in place of the Calderon-Zygmund decomposition used
in [10]. There is a dimensional constant C so large that we can choose
pairwise disjoint dyadic subcubes Q, of Q - Q^(=E^nQ) such that
each Q, satisfies

(3.12) either |QJ = \Qf | and dist (Q,,Q/) ^ C
^^dist(Q^^^

diam Qa
Then

^2<<Wj)Vj = Z ^W)V
JQ a,P JQ^ p

<C E fll(XQ^)Il(^)
{a,P;Q^ touches Qp} J

+ C Z f l 2 ( X Q ^ = D + E .
{a,p;|0pl^l0oj JOa

and Qa,Qp do not touch}

Now (3.12) shows that the number of Qp touching a given Q, doesn't
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exceed a dimensional constant and so

D ^ c S k(x<v0]2 = c S f i20c<v^ ^ cc E f ^ = cc f .,
a ^ " JOa a JOa JQa JOa a JOa JQ

<since the Q, are not in B. Condition (3.12) also shows that if |Qp| ^ |Q^
and Qp, Q, do not touch, then dist(Qp,Q,) ^ c|Q^. Thus

E ^ C E ( [ v\Q^-1 ^ [f A
a \ jQa / PilQpl^lOal LJQp J

But |Q^-1 ( ^,-^-,-1 l2(XQ^)^
JOp IVply jQp p

But |Qp|^~1 i; ^ ,.— l2(w)v ^ c since Qp t B and, by (3.12),
jQn IVp ly jQo p

the number of Qp of a given size does not exceed a dimensional constant.
Thus

E<Ccz(LW-1 y [ ^ io/-^
» \JO / {fc;2^^|Qj} LlQpl=2^ J

^ Cc^ u = Cc \ Vj (since n^3)
a JOa JQ

and this completes the verification of (3.9) for j ^ 0. For 7 = 0 , we again
suppose Q dyadic in B. If Q c= some Q I , . . . Q M , then
supp VQ n Q = 0 and (3.9) holds trivially. Otherwise, Q contains a
unique maximal Q,( l^f^M), say Q^, and we may argue as above to
obtain (3.9). This completes the proof of Theorem 3.3.

Remark 3.5. - In [10] it is shown that sup|Q|^~1 \ v ^ C is
, , . Q JQi_i/ r y/p

necessary and sup |Q|" P ^ ^ Cp, p > 1, sufficient for the L2

Q \ J Q /
trace inequality (1.1) with T^ = I ^ . We give here a direct proof that

(3.20) sup|Q|^-1 f i;^Csup|Q|;1 f l^v)t
Q JQ Q JQ

2_i/ r \i/p
^ C ^ S U p | Q | n - ^ ^ , P > 1.

0 \ JQ /

The first inequality in (3.20) follows from the observation that
2-1 rIiOCQiOM ^ C|Q|" y for x in a cube. Q.

JQ
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2_i/ r y i p
LetBp = sup|Q|" P ^ . Suppose first that v satisfies the A^,

Q \ J Q /
condition of B. Muckenhoupt. Choose p so close to 1 that the reverse

/ _ r \ i / p r
Holder condition |Q|~1 ^ ^ C^|Q|-1 v holds for all cubes

\ Jo / JQ/*
Q. LetNV(x) ==sup|Q|^-1 |/|. Since M^v) ̂  Bp on Q,

xeQ JQ

(3.21) f ^(W)V ^ ( f I^/
JQ \ J Q ^

« \i/p7 r \ i /p
^C^ M^vy] ^ (see [15])

3 / \ I^ 7

^ v^ r
^C,B,|Q|^ ^ ^ C , B l

5 / JQ
For the general case, we use the observations in [10] that

/ f \ i /p
i^(x) = sup I Q I - 1 ^ satisfies the A^ condition and

^6Q \ JQ /

^2^'' < CpBp([10];p. 153). The above argument then yields (3.21) with
v^ in place v . Since v ^ v ^ , (3.20) follows. This is of course obvious
from Theorem 2.3, but can also be proved directly. Finally, we point out
that the condition M^i^) ^ Cp is equivalent to the boundedness of Mp
from L2 to L2^) ([17]). Together with the inequality
IIi/MI ^ C^Mpl/Kx^M/Oc)1^ of D.R.Adams, this yields another
proof that M^p^) ^ Cp is sufficient for the L2 trace inequality (1.1) with
T<i> = I ^ . J. M. Wilson has recently communicated to us yet another
proof.
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