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BOUNDED DOUBLE SQUARE FUNCTIONS

by Jill PIPHER (*)

1. Introduction.

Suppose/(x), xeR^ , is integrable with respect to (l+lxl2)"^^2,
and let f(t,y) be its Poisson integral in the half space
R^-1 = {t€Rd,y>0}. For 0 < y < oo, the area function of f(t,y) is
defined as

A,/(x) = ( [ W^yW-'dtdy]112

VJr^ /

where r.y(x) is the cone {(t,y): \t—x\ <yy}. The following is proved
in [4].

THEOREM 1. — If A^/eL°°, then for all cubes Q,

H^)—-
where c^ > 0 and c^ < oo are constants depending only on the dimension d
and the aperture y and where (/)o is the average of f{x) over Q.

Because/eBMO if A,y/eL°°, exponential integrability of \f—(f)q\
over the cube Q follows from the John-Nirenberg Theorem and it is the
exponential square integrability, which is sharp, that is the assertion of
Theorem 1. In this note we extend Theorem 1 to the bidisc case of two
parameter kernels.

Just as averages over Q of functions of \f—(f)q\ occur in the classical
definition of BMO, the extension of Theorem 1 to the two parameter case

(*) This work was partially supported by NSF Grant # DMS 80-02955.
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will involve the expressions used by Chang and Fefferman[3] in their
characterization of BMO in the bidisc. Fix a smooth even function \|/(z)

supported on [-1,1] and satisfying \ | / (x )dx=0 and

|\Jir0012/^^ = 1. Write (t,y) for the point (t^y^t^y^) of

Ri x R^., so that ( = (t^t^eR2 and y = (yi,y2)^R+ x R + , and
define

(i.D ^)=l^^l^^V
yi \ y i ) y i V2/

When I is a dyadic interval, let P denote {(t,y) e R^. : t e I and
|I|/2<^<|!|} and when R = I x J is a dyadic rectangle, set
R+ = I+ x J-^ . Then for 0 < a < oo and for /eL^(R2), we define

A,aM= ft /*^(0^(t-x)A^
jjp' y

where \|/y, means replacing y by a}/ in (1.1) and

dtdy
y

abbreviates

A,A,^^.
yi yi

Also for ft <= R2 open, we define

Fn,«0c)= E A..(x).
R !=Q

R dyadic

Then Chang and Fefierman [3] have characterized the bidisc space BMO
(dual to the space H1 of functions whose square functions are integrable)
by the condition

(1.2) IIF^JIj ^ CJQI

for all 0 and for any a. Moreover, if /eBMO, then

fexptcJF^n^Cini,
Jn

which is the appropriate analog of the John-Nirenberg Theorem.
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For 0 < Y < oo, the square function of fe L^(R2) is defined as

S,/(x,.̂ ) - f f f I/* Wl2 ̂ T2

LJryxpjryxz) Y J

where

Ay
abbreviates

dt.dt/^ dy2

^^WW
Then Sy is a two parameter form of Ay and we have

THEOREM 2. - Suppose fe L^(R2) and Sy/e L°°. 77u?n (h^ exist
constants c^ and a, depending only on y, and €3, independent of y , such
that for all open ft c R2 ,

L""^]*^11"'-
We wish to make a few remarks about the dependence on y of the

expression FQ „ in Theorem 2, which is in contrast with the situation in
Theorem 1. Let us set, for xeR 4 ,

(1.3) F,(x) = ff / ̂  ^(()^(^-x) dt ̂
JJ((.y)eR^ ^

an idea which originates with Calderon. Taking the Fourier transform of

both sides and invoking the normalization \^f(x)\2 dx/x = 1, we find

that Fa(x) = Cyf(x), where |cJ < 1. Consequently, for any cube Q,

|F«-(FJQ|=CJ/-C/)Q|,

and in Rd we may just as well use F,, rather than /.

There are two reasons we must use FQ ̂  in the setting of product
domains. First, Carleson [2] has shown that the dual of H^R x R) cannot
be defined in terms of mean oscillations over rectangles, and thus there is
no simple analog of the clean geometric definition of BMC^R^) for
product domains. The second reason is technical: a must be so large that
certain rectangles fit into certain cones (see the proof of Theorem 2 at the
end of Section 3).
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We also note that one usually sees a = 1 in definition (1.2). The proof
of Theorem 2 will show that one can take a = 1 when S.y/€ L°° for a
cone Fy which is sufficiently wide.

The crux of the argument for Theorem 2 is a corresponding result for
double dyadic martingales. In section 2 we prove a vector-valued form of
Theorem 1 which, by an iteration, yields the double martingale result. In
section 3 we derive Theorem 2 from its martingale analog using a technique
from [4].

This work appears in my doctoral thesis and I would like to thank my
advisor. Professor J. B. Garnett, for his tremendous support and
encouragement while I was completing this work. I would also like to
thank Professor S.-Y. A. Chang for bringing this problem to my attention
and for many helpful conversations.

2. Double dyadic martingales.

Let 3F^ be the o-field generated by the dyadic intervals of length 2~"
in [0,1]. The expectation of/on 3F^ is

E(/W= S (AXi(x).
111=2-"

A dyadic martingale is a sequence </oJij2»—) suc^ fhat /„ is measurable
to ̂  and E(^+J^) =/„ for all n. Set ^ =/„ -/n-i and define the

/ \1/2
square function of / by S/(x) = (^d^(x)) . We assume that

f^ = do = 0. A double dyadic martingale can be written as a doubly
indexed sequence {/„,„} where {/n,m} ls a dyadic marginale relative to n
for each fixed m, and also a dyadic martingale in m for each fixed n. In
particular, /^o = /o.m = 0 ^OT eac!1 n an(! m. If
<m = /n.m - fn- i.m - /n.m-1 + fn- i,m-1, then the square function of / is
defined to be

( \1/2

s/(x)= EZ^ .
n m /

In this section we determine the sharp order of integrability of a double
dyadic martingale whose square function is uniformly bounded. The
strategy is to find the precise dependence on p of the constant Cp in the
inequality ||/||p ^ Cp||S/||p. The following lemma appears in [4].
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N

LEMMA 2.1 (H. Rubin). - Let /N = S ^n be a dyadic martingale and
n=0

let a be any positive number. Then

H^-^i^'-
COROLLARY 2.1(a). — There exists a constant c, independent of N,

such that

H r̂)-
COROLLARY 2.1(b). - For p ^ 2, and /ilt = sup|/J,

n

11/X^c^lls/llp.

For the proofs of these corollaries, see the arguments given later in
connection with Lemma 2.2.

If f^m is a double dyadic martingale. Lemma 2.1 immediately yields

f / a2 N / N \2\
exp a/N,N --. E S d^ \dx^l.

J \ L n=0 \m=0 / /

Set
N / N \ 2

§^N,N^1^2)= £ Z <m (^l,^),
n=0 \m=0 /

the square function taken with respect to the single index n. Then we have

11/N.Nllp < C ÎISJ ,̂ p^l

with, of course, C independent of N and p . We need, then, an L^ norm
inequality between S^f and S/. This can be given in a more general
framework.

LEMMA 2.2. — Suppose X{ = ^ d^, j = 1, 2, . . . , m, is a sequence
q=o

/ n \1/2
of dyadic martingales and set SX^ = ( ^ (dy ] , the square functions of

\9=0 )

the Xi. Then

fexpf /I + E (Xi)2 - f; S^dx ^ e.
J \V j=i j= i /
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Proof. - Set

= Zcxi)^ z f z ^ Y , D,= i(dy,
J-l j = l \ < ? = 0 / J=l

A. = £ (X^ = Z ( Z ^;
J-l j=l\<?=0 / j = l

and i

r ,=2f Xi|-,^.
j=i

Consider

= E^14-^-^0^'"!^-!)

= -^^/l+An-l+Dn+lrnl + ^^/l+An-l+Dn-lr^l} .

This last equality follows from the fact that both A,,_i and D^ are
measurable with respect to ^n-i ^d rn merely changes sign on either
half of the intervals of length l""^. Using the estimates
^/l + x < 1 + x/2 and cosh x ^ ^ a, we have

E^/^l^-i)

<...P[̂ (̂..̂ )̂]
l̂/2.,p[̂ 7(..̂ )̂]

._____ ,—————/^nl^^/l+An-l J- e-l'•nl̂ ^/l+An-l
= ^l+An-l^n^/^An-lt e ' e

——/^nl^+An-l + ̂ -•'•nl̂ /^An-l \

" " ' I 2 )

^ e^^n-^na cosh ( . lrwl -}
__ \2^/1+A^,7

^ ^1 +An- l̂ n^nl2^1 +An-1) .

Since, by Schwarz, r^ ^ 4A„-lD„, the last expression is at most

/ l +AH- l^V^An-1^/2(1 +A^_ i) ^ ̂ 1+A^_ 1^2 /̂2 ^ ^1+A^+D^)^

Therefore,

H^^- l̂̂ n-i) < exp Dl4-A^_, - ̂  D,].
L fc=o J
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Consequently, the sequence {gn]^o, where

8m = exp(^/l +A^ - f; D,)
\ *=o /

is a supermartingale, and E(g^) ^ E(go) = e. D

We adapt Lemma 2.2 to double dyadic martingales by regarding
N / N \ 2

S?/N.N = Z ( E <m)(^i^2) as a sum of squares of dyadic
n=0 \m=0 /

martingales with respect to m in the variable x^ with jq fixed. Each X^
in Lemma 2.2 can be replaced by aXi and we obtain the following
corollary.

COROLLARY 2.2(a). - ||Si/||Lp(̂  < C^PIIS/ULP^).

Proof. - We first want to estimate |{Si/>2^,S/<e^}|. The proof
uses some standard arguments.

Let
/ N / r—————\2

^JE Z <-
V"=0\m=0 /

and set S?/= sup S;/. For fixed Xi , {x^f>^} determines maximal
0<r^N

dyadic intervals {Jjj such that
N / ^ \2

(0 £ E <m >^2 on J,,
n=0 \m=0 /

N /rk-l \2

(n) Z E ^n <^ on J,,
n=0 \m=0 /

(iii) {S?/>^} = UJjk, a disjoint union.

Fix such a J^. Then Lemma 2.2 yields

r r / N / l \2\l/2 N { ~i
(2.3) exp a 2: ^ <J ^a2 E ^ ^ ^.|JJ.

JJfc L \w=0 \^=r^^^ / / n=0 m=r^^ J

Decompose {S?/>2X}nJfc into intervals {J^} such that

^ = i n f L : f; (f <„Y>(2^)2l.
I n=0 \m=0 / J
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By the definitions of (, and r^ we have ^ ^ r^. If ^ = r^, it follows that
][ n {S/^eX,} =0, so we consider only those J[ for which ^ ^ r^ + 1.
Since ^ is arbitrary in (2.3) we have

r r / - N — / ^ v N (' ~i
exphx/Z 1: d,, -oc2^ 5: «.J^^.|JJ.

JJ^n{S/<eX} L V'»=0\m=rfc^. i / n=0w=rfc^.i J

But
N / t. \ 2

Z E <m >2^- ) l -£?L,
n=0 \w=r^^( /

so that
|Jin{S/<£^}|ea<l-£)^-a2£2x2 < e\^\.

Summing over the J[ in each J^ and then summing on the J^ yields

|{ST/>2?i,S/W}| ^ e-^^^^IST^^I.

This good-X inequality is used in the usual way to estimate lllSi/liLp^)-
Take a = (l-e)/262^. Then

f(S?/)^X2 = 2^fooV-l|{S?/>2?l}|^

^ 1^ {(sf)pdx2 + 2^-l/4(l-£/e)2/4 [(Sf^dx^.

Solving for e to insure that V e-1740"87102/^ w 1/2 gives 1/e2 » Cp, with
C an absolute constant, and so

fs^/^^c^rfsy^. D

We can now integrate in each variable separately, obtaining

(2.4) ||/N,N!ILP(^) ^ C^/pllS^/ll^^ < Cp\\Sf\\^^.

And, if ||S/1|,< 1,

[^^N,N1 dx, dx^ ^ cp ll/^Nll? < ^ ,

J p = o P -

when c is sufficiently small. This proves the double dyadic form of
Theorem 2.
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Remarks. — There are several. First, Lemmas 2.1 and 2.2 hold for
continuous local martingales, with the Ito calculus replacing the
computations for conditional expectation. R. Banuelos (personal
communication) has proved, by probabilistic means, results like
Theorem 1, and we would expect that similar results could be obtained for
the square functions generated by Brownian motion in two independent
variables.

Second, although the iteration method does not give the sharp constant

c for which ^N,Ni/nyiioo < oo , the following example shows that there

exists a c such that lim ^wi = oo, Let {r^} be the sequence of
N-»oo J

Rademacher functions on [0,1] and set

1 N N

fw(^y) = ̂  Z E r^(x)r^(y).
FN n=0 m=0

Then S2^^,^) = 1. However,

rp/N,N(̂ ) dx dy = (Tcosh (- f r^(y)\f dy

i N /N\ r ( c N \
=^Z H exp ^(N-2<»E r^y) \dy

^ /=o V ^ / J V1" w=o /

--^m>[^-2^
e^

which tends to oo with N if c is large enough.

Finally, suppose {£„,„} is any sequence such that £„_„ = ± 1.
Inequality (2.4), together with the fact that \\Sf\\^^ < Cp\\f\\^^
for p ^ 2, yields

|ZE£n,m^,m ^ BpS ̂  ̂
|| n m p n m

where Bp is asymptotic to (p)2. For single index dyadic martingales,
Burkholder has given the sharp result, namely that Bp is p — 1.
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3. Proof of Theorem 2.

We reduce to the double dyadic case, using a method from [4], where
the following lemma appears.

LEMMA 3.1. — Let ^ be the family of all dyadic intervals of length at
most 2A. Then ^ = ^i u ^2» ^here :

(1) There exists an Xj such that I e ̂  => T c r + Xj for some dyadic
interval I' of length at most 8|I|. (Here T is a 3-fold enlargement of I.)

(2) // I i , l2€^,I i + 12, ^n Ii ^ I'2.

We are assuming Sy/< 1. Fix 0 c [0,1] x [0,1], fix an a to be
determined later, and set

FO,^)= Z ff /*^,(0^-x)A^= E F^(x).
R < = n J J R + y Rsn

R: dyadic

Each Fn(x) has mean value zero in each variable separately and has
support in ft. Using Lemma 3.1, we split the family of dyadic rectangles
into four distinct families ^ with the properties:

(1)' If ReJ^, then there exists a dyadic R' such that

ft £ r -h x, x r + YJ and |R'| < 64|R|.

(2)' If Ri, RaeJ^, and R, ̂  R^, then R\ + R^.

Then Fn(x) = E E ^M- We claim
j RcQ

ReJS^.

(3.2) E Fj <Cp|n|^.
URS" lip

Theorem 2 follows immediately from (3.2).

The left side of (3.2) is the U norm of

gi(x^)= ^ FR(Xi-X.,X2-^).
RcQ
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If R' is the rectangle associated with R as in (1)', set

gy = FR^-X'I,^-^-)

and observe that gy has support in R'. Moreover, each R' in this sum is
contained in tl,, a translate of an enlargement of ft. We express gi as a
double dyadic martingale by expanding in Haar series:

(3-3) gi='L('L(S^h^\h^
RO \R' /

where h^ = h^x^hj^x^) and the Haar function h^ equals llol"172 on
the left half of I, (-l)!^!"172 on the right half of I, and zero elsewhere.
If a rectangle Ro appearing in the expansion (3.3) is not contained in R',
then (gy,h^ = 0, because either h^ or hj^ will be constant on the
support of gi. (Recall that g, has mean value zero.) Therefore

£ f £ tep^Ro))
RO \R'=2Ro /

8i %•
RO \R'=2Ro

The martingale square^ function of g^ is then

s^,(xo)= E —{z tep.̂ }2
Roax l^o l IR'^RO J

and we claim

(3.4) S^(xo)^C.,allxo

where C, depends only on a = a(y). It is easy to see that (3.2) follows
from (3.4). Indeed, by (2.4),

\\gi\\p ̂  Cp\\s,g,\\, ̂  cpm^
since S^g^ is bounded and has support in Q,.

To prove (3.4), we need an estimate for (gy,h»).

LEMMA 3.2. - ifo î ̂ C{J^ a 1/^^(012^^.
'"' JJR'*' y

Proof. - f^,(ti-xi)^i)<foci

j[^,(ti-^i) - ̂ ,(ti-Xi)]A^i)dxi

lli|i'll r |T 13/2

^^l'-"x'-w'!lfm'-^•
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lte,,^l<cj|j/.*,(,)|^^

^JL^"1^
because y ~ |R| and |R'| <$ C|Rol.

Proof of (3.4). - We have

s^.= Z i—{£ QrR->\)}2

Roaxol^ol (.R'aRo J

<cE- {£^ f f l/.W-^
Ro^xol^o l lR'3Ro 1^ I JJR+ y J

< c E { £ ^ f f f i/,^o^TW2,
RO^O iR'^Rol^ I LJJR 4 - ^ J J

by the Cauchy-Schwarz inequality. Hence for 0 < P < 1,

%,<cs s(^)"ff i/,̂ ,),̂ . s (^Y"-
R o a x o R ' a R o M ^ I / JJR + .V R^RoM^I /

Observe that

(ID |\2(1-P)

E -^ =Z Z Z (I-^-^-P)
R'aRo 1^1 / m.tiri^iioiiri^iJoi

and this is finite whenever 2 ( 1 — P ) > 0 since only one P and J' of each
possible size appears in the sum. Therefore

^'^^^rjL^^"'^-
< c z s (^iYff^.^i^,

R'axoRosR ' \ |K I / JJR+ ^

where this last inequality comes from the estimate

S ('il̂ )21^^ ^ ^ (2-2-Q2-.
R()£R' M^ I / n ^ Ho^-")!'! |Jol=2-^|J'|

which is finite if P > 1/2. From the definition of x|Xy,(x),

ff U-*^(01'^<.ff 1/**,(»1'^-
JJR'1' ^ JJ{(eR,a|R|/2<y<a|R|} J
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At this point, we choose a large enough so that Rg^ is contained in
I\(xo.i-hx,) x r\(xo.2-t->\-) (forxo[=\(Xo^,Xo^)) ̂  each rectangle R in
this sum. (See fig. 3.5.) This is possible since R' B XQ and
R £ R' -|- (x^y,), with |R'|^C|R|. Furthermore,! to [each R' there is
associated a unique R , and therefore

£ ff I/* W2^ ̂  S^o.i-^.xo.^) < 1.
R ' 3 X o J j R - { t € R , y ^ R \ } YR^»{(eR.y%a|R|}R'axo

DThis proves (3.4).

Observe that by introducing the kernel v|^ya, a = a(y), we have
obtained, in the estimate above, a sum over elongated tops of rectangles
which corresponds to Sy/. For a smaller a, one obtains a sum
corresponding to S^y, a square function with larger aperture. There is,
however, no guarantee that S^eL°°. Peter Jones (personal
communication) has constructed a function such that Syy-eL® but
S^L".

Fig. (3.5). -The one-variable representation of the situation in the proof of (3.3).
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