Tome XXXI, no 4 (2022), p. 1213-1221.
https://doi.org/10.5802/afst. 1716
© les auteurs, 2022.
Les articles des Annales de la Faculté des Sciences de Toulouse sont mis à disposition sous la license Creative Commons Attribution (CC-BY) 4.0 http://creativecommons.org/licenses/by/4.0/

Publication membre du centre
Mersenne pour l'édition scientifique ouverte

Asymptotic of the largest Floquet multiplier for cooperative matrices ${ }^{(*)}$

Philippe Carmona ${ }^{(1)}$

Abstract

The aim of this note is to give a link between the spectral radius of the monodromy matrix of a linear differential equation with periodic coefficients $\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=A(t) x(t)$, with $A(t)$ a cooperative irreducible matrix, and the mean spectral abscissa $\int_{0}^{1} s(A(u)) \mathrm{d} u$.

Résumé. - Le but de cet article est d'établir un lien entre le rayon spectral de la matrice de monodromie d'une équation différentielle linéaire à coefficients périodiques $\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=A(t) x(t)$, avec $A(t)$ une matrice coopérative irréductible, avec la moyenne de l'abcisse spectrale $\int_{0}^{1} s(A(u)) \mathrm{d} u$.

1. Introduction

The motivation of our main result, Theorem 2.1 comes from the study of the spread of infectious diseases for periodic systems in populations whose individuals can be divided into a finite number of distinct groups.

The most famous threshold quantity used is the basic reproduction number R_{0} which has the following property: if $R_{0}>1$, then the introduction of one infectious individual (of any type) has a positive probability of inducing a major epidemic; if $R_{0}<1$, then the introduction of one infectious

[^0]
Philippe Carmona

individual (of any type) has a null probability of inducing a major epidemic (see $[1,5,11]$).

The value of R_{0} is determined by the study of a linear system

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=A(t) x(t) \tag{1.1}
\end{equation*}
$$

where $A(t)$ is a $d \times d$ continuous matrix function.
Let us consider an example in a periodic case: a vector host model of the African Horse Sickness (see [7, Section 3]). There, $x_{1}(t)$ (resp. $x_{2}(t)$) denotes the population of infected hosts (resp. vectors) at time t, and

$$
A(t)=\left(\begin{array}{cc}
-r & b / s(t) \tag{1.2}\\
\beta s(t) & -\mu
\end{array}\right)
$$

with r the removal rate of hosts, μ the death rate of vectors, b (resp. β) the rate constant for infection of hosts by vectors (resp. vectors by hosts), and $s(t)$ the population of susceptible vectors taken to be

$$
\begin{equation*}
s(t)=s_{0} e^{\mu \delta \sin (2 \pi t)} \tag{1.3}
\end{equation*}
$$

By construction,, the matrices involved in these compartmental models are cooperative: $A_{i j}(t) \geqslant 0$ if $i \neq j$.

Then R_{0} is defined to be the spectral radius of the next generation operator named \mathcal{K} in [6, Equation (4.6)] and L in [13, Equation (2.6)]. In the periodic case, not only do the authors of $[6,13]$ establish the stability properties of R_{0}, but they also link it to another threshold quantity λ_{d}, whose precise definition we give now.

Assume $A(t)$ continuous periodic with period T, and let ϕ_{A} be the fundamental matrix, that is the solution of

$$
\begin{equation*}
\frac{\mathrm{d} \phi_{A}}{\mathrm{~d} t}=A(t) \phi_{A}(t), \quad \phi_{A}(0)=I_{d} \tag{1.4}
\end{equation*}
$$

Let $\lambda_{d}=\rho\left(\phi_{A}(T)\right)$ be the spectral radius of the monodromy matrix $\phi_{A}(T)$. We have

$$
\begin{equation*}
R_{0}>1 \Longleftrightarrow \lambda_{d}>1, \quad R_{0}<1 \Longleftrightarrow \lambda_{d}<1 \tag{1.5}
\end{equation*}
$$

(see [6, Theorem 1] or [13, Theorem 2]).
The easiest quantity to compute numerically is λ_{d} by simulating the ODE system on one period, even if efficient computation methods of R_{0} have been devised (see e.g. [3]).

However estimating the influence of a small periodic perturbation on a constant system may prove very difficult even when using the threshold λ_{d} (see [4]).

We introduce in this paper a new quantity, the mean spectral abscissa, that is also a threshold quantity for large periods: this is our main theorem. Perturbation theory is much easier to apply to the mean spectral abscissa (see [4]).

2. Statement of the main result

Let us consider the linear system of differential equations

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}(t)=A(t) x(t) \tag{2.1}
\end{equation*}
$$

where $A: \mathbb{R} \rightarrow \mathcal{M}_{d x d}$ is a continuous matrix function. The fundamental matrix is the matrix $\phi=\phi_{A}(t)$ solution of

$$
\begin{equation*}
\frac{\mathrm{d} \phi}{\mathrm{~d} t}=A(t) \phi(t), \quad \phi(0)=I_{d} \tag{2.2}
\end{equation*}
$$

Assume that A is T periodic, that is

$$
\begin{equation*}
A(T+t)=A(t) \tag{2.3}
\end{equation*}
$$

Floquet's theorem, see e.g. [12, Theorem 3.15, Chapter 3.6], establishes the existence of a possibly complex matrix B and a continuous T-periodic matrix function P such that $P(0)=I_{d}$ and

$$
\begin{equation*}
\phi(t)=P(t) e^{t B} \tag{2.4}
\end{equation*}
$$

For a matrix M with spectrum $\sigma(M)$ we let $s(M)$ and $\rho(M)$ be its spectral abscissa and its spectral radius:

$$
\begin{equation*}
s(M)=\sup \{\Re(z), z \in \sigma(M)\}, \quad \rho(M)=\sup \{|z|, z \in \sigma(M)\} \tag{2.5}
\end{equation*}
$$

The characteristic multipliers are the eigenvalues of the monodromy ma$\operatorname{trix} \phi(T)=e^{T B}$. The eigenvalues of B are called the characteristic exponents.

If the spectral radius of $\phi(T)=e^{T B}$ is also an eigenvalue, then the largest (in modulus) characteristic exponent is the spectral abscissa of B, also an eigenvalue of B, and we have the relation:

$$
\begin{equation*}
\frac{1}{T} \ln \rho(\phi(T))=s(B) \tag{2.6}
\end{equation*}
$$

Therefore when A is constant, and $\rho\left(e^{t A}\right)$ is an eigenvalue of $e^{t A}$, we have $\frac{1}{T} \ln \rho(\phi(T))=s(A)$ and our goal is to find a similar equation valid for periodic matrices A, in the limit $T \rightarrow+\infty$.

Philippe Carmona

We say that a matrix M is non negative, $M \geqslant 0$, if for all $i, j, M_{i j} \geqslant 0$ and we say that M is positive, $M>0$ if for all $i, j, M_{i j}>0$.

A matrix M is irreducible if for any $i \neq j$ there exists an integer $k \geqslant 1$ and $i_{0}=i, i_{1}, \ldots, i_{k}=j$ such that $M_{i_{p}, i_{p+1}} \neq 0$ for $0 \leqslant p \leqslant k-1$. ${ }^{(1)}$

We say that a matrix M is cooperative if $M_{i j} \geqslant 0$ for $i \neq j$.
Let $A: \mathbb{R} \rightarrow \mathcal{M}_{d \times d}$ be a continuous 1-periodic matrix function, with fundamental matrix $\phi(t)$. We let $\phi^{(T)}(t)$ be the fundamental matrix of the T periodic matrix $t \rightarrow A(t / T)$.

Theorem 2.1. - Assume that the matrix function $t \rightarrow A(t)$ is Lipschitz and 1 periodic. Assume that for every $t \geqslant 0$ the matrix $A(t)$ is cooperative and irreducible. Then

$$
\begin{equation*}
\lim _{T \rightarrow+\infty} \frac{1}{T} \ln \rho\left(\phi^{(T)}(T)\right)=\int_{0}^{1} s(A(u)) \mathrm{d} u \tag{2.7}
\end{equation*}
$$

Remark 2.2. - The assumption that $A(t)$ is irreducible is important. One easily sees, by taking a diagonal 2×2 matrix

$$
A(t)=\left(\begin{array}{cc}
u(t) & 0 \tag{2.8}\\
0 & v(t)
\end{array}\right)
$$

that the quantities

$$
\begin{gathered}
\frac{1}{T} \ln \rho\left(\phi^{(T)}(T)\right)=\max \left(\int_{0}^{1} u(s) \mathrm{d} s, \int_{0}^{1} v(s) \mathrm{d} s\right) \\
\int_{0}^{1} s(A(r)) \mathrm{d} r=\int_{0}^{1} \max (u(s), v(s)) \mathrm{d} s
\end{gathered}
$$

are in general different.

3. Proof of the main theorem

We shall need the following Lemmas, whose proof is postponed.
Lemma 3.1. - Assume that A and B are continuous matrix functions on $I=[0, a]$ such that:
(1) $B(0)$ is irreducible and for all $t, B(t)$ is cooperative.
(2) For any $t \geqslant 0, B(t) \geqslant A(t) \geqslant 0$ and for $t>0, B(t)-A(t) \neq 0$.

[^1]Let ϕ_{A} and ϕ_{B} be the fundamental matrices associated with A and B. Then, for any $t \in I$,

$$
\begin{equation*}
\phi_{A}(t) \leqslant \phi_{B}(t) \tag{3.1}
\end{equation*}
$$

The following Lemma results from an application of Perron Frobenius Theorem to e^{A}.

Lemma 3.2. - Let A be a cooperative irreducible matrix. Then the spectral abscissa $s(A)$ is an isolated eigenvalue of A with a positive eigenvector. Consequently, $s(A)=\rho(A)$ is also A 's spectral radius.

If $x, y>0$ are positive vectors then we consider the vector $\left(\frac{x}{y}\right)_{i}=\frac{x_{i}}{y_{i}}$ and we have obviously $x \leqslant\left\|\frac{x}{y}\right\|_{\infty} y$. A non negative matrix is primitive if there exists an integer $k \geqslant 1$ such that $M^{k}>0$.

Observe that if a matrix is primitive, then it is irreducible and cooperative.

Let us state a simple, but useful, bound on the spectral radius of the product of primitive matrices that has been established by [8]. For sake of completeness we supply a proof later.

Lemma 3.3. - Let $A_{1}, A_{2}, \ldots, A_{n}$ be primitive non negative matrices with associated eigenvectors $u_{i}>0: A_{i} u_{i}=\rho\left(A_{i}\right) u_{i}$. Then

$$
\begin{equation*}
\rho\left(A_{1} A_{2} \ldots A_{n}\right) \leqslant \rho\left(A_{1}\right) \cdots \rho\left(A_{n}\right) \alpha\left(u_{1}, u_{2}\right) \ldots \alpha\left(u_{n-1}, u_{n}\right) \tag{3.2}
\end{equation*}
$$

with $\alpha(x, y)=\left\|\frac{x}{y}\right\|_{\infty}\left\|\frac{y}{x}\right\|_{\infty} \geqslant 1$. Similarly we have the lower bound

$$
\begin{equation*}
\rho\left(A_{1} A_{2} \ldots A_{n}\right) \geqslant \rho\left(A_{1}\right) \cdots \rho\left(A_{n}\right)\left(\alpha\left(u_{1}, u_{2}\right) \ldots \alpha\left(u_{n-1}, u_{n}\right)\right)^{-1} \tag{3.3}
\end{equation*}
$$

Proof of the upper bound of the main theorem. - Since $t \rightarrow A(t)$ is continuous, and $A(t)$ is cooperative irreducible, by Lemma 3.2, for every t, $s(A(t))$ is an isolated eigenvalue associated to a positive eigenvector. By the continuity of the isolated eigenvalue and the corresponding eigenvector (see e.g. $[9,10])$ there exists a continuous function $t \rightarrow u(t)$ such that $u(t)>0$ satisfies

$$
\begin{equation*}
A(t) u(t)=s(A(t)) u(t) \tag{3.4}
\end{equation*}
$$

Let us fix $\gamma>0$. Let J be the matrix with all coefficients equal to 1 . Again, by continuity of both the isolated eigenvalue and the corresponding eigenvector there exists $\eta_{0}=\eta_{0}(\gamma)$ such that for $\eta \in\left[0, \eta_{0}\right)$ there exists a positive vector $u_{\eta}^{+}(t)$ such that

$$
\begin{gather*}
(A(t)+\eta J) u_{\eta}^{+}(t)=s(A(t)+\eta J) u_{\eta}^{+}(t), \quad|s(A(t)+\eta J)-s(A(t))| \leqslant \gamma \tag{3.5}\\
\left\|u_{\eta}^{+}(t)-u(t)\right\| \leqslant \gamma \tag{3.6}
\end{gather*}
$$

Let C be a Lipschitz constant such that

$$
\begin{equation*}
\left|A_{i j}(s)-A_{i j}(t)\right| \leqslant C|s-t| \quad(\forall s, t, i, j) \tag{3.7}
\end{equation*}
$$

Let N be a large integer. For any integer k, with $\eta=\frac{2 C}{N}$

$$
\begin{equation*}
A(t) \leqslant A(k / N)+\frac{C}{N} J<A(k / N)+\eta J \quad \text { for } t \in\left[\frac{k}{N}, \frac{k+1}{N}\right] \tag{3.8}
\end{equation*}
$$

Therefore if $\tau=\frac{T}{N}$, then

$$
\begin{equation*}
A(t / T)<A(k / N)+\eta J \quad \text { for } t \in[k \tau,(k+1) \tau] . \tag{3.9}
\end{equation*}
$$

Applying Lemma 3.1 to $t \rightarrow A\left(\frac{t}{T}+k / N\right)$ and to the constant irreducible cooperative matrix $A(k / N)+\eta J$ yields then

$$
\begin{equation*}
\phi^{(T)}((k+1) \tau) \phi^{(T)}(k \tau)^{-1} \leqslant e^{\tau(A(k / N)+\eta J)} \tag{3.10}
\end{equation*}
$$

Since all the matrices are non negative, we can combine the inequalities to infer

$$
\begin{equation*}
\phi^{(T)}(T) \leqslant e^{\tau(A((N-1) / N)+\eta J)} \cdots e^{\tau(A(1 / N)+\eta J)} e^{\tau(A(0 / N)+\eta J)} . \tag{3.11}
\end{equation*}
$$

We now apply Lemma 3.3 to obtain

$$
\begin{align*}
& \rho\left(\phi^{(T)}(T)\right) \leqslant \exp \left(\tau \sum_{k=0}^{N-1} s(A(k / N)+\eta J)\right) \\
& \times \prod_{k=0}^{N-2} \alpha\left(u_{\eta}^{+}(k / N), u_{\eta}^{+}((k+1) / N)\right) \tag{3.12}
\end{align*}
$$

By continuity of the functions α and u and the bounds (3.5) we have, for $N \geqslant N_{0}(\gamma)$ that ensures $\eta \leqslant \eta_{0}(\gamma)$,

$$
\begin{equation*}
C_{1}=C_{1}(\gamma)=\sup _{t} \alpha\left(u_{\eta}^{+}(t), u_{\eta}^{+}(t+1 / N)\right)<+\infty \tag{3.13}
\end{equation*}
$$

Combining with the bounds (3.5), we get

$$
\begin{equation*}
\frac{1}{T} \ln \left(\rho\left(\phi^{(T)}(T)\right)\right) \leqslant \gamma+\frac{1}{N} \sum_{k=0}^{N-1} s(A(k / N))+\frac{N-1}{T} \ln \left(C_{1}\right) \tag{3.14}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\limsup _{T \rightarrow+\infty} \frac{1}{T} \ln \left(\rho\left(\phi^{(T)}(T)\right)\right) \leqslant \gamma+\frac{1}{N} \sum_{k=0}^{N-1} s(A(k / N)) \tag{3.15}
\end{equation*}
$$

Hence, by the convergence of Riemann sums, letting $N \rightarrow+\infty$,

$$
\begin{equation*}
\limsup _{T \rightarrow+\infty} \frac{1}{T} \ln \left(\rho\left(\phi^{(T)}(T)\right)\right) \leqslant \gamma+\int_{0}^{1} s(A(u)) \mathrm{d} u \tag{3.16}
\end{equation*}
$$

We conclude by letting $\gamma \rightarrow 0$.
Proof of the lower bound. - The proof follows the same steps except that we need to be sure to have cooperative matrices. We define

$$
\begin{equation*}
\psi_{\eta}^{-}(M)_{i j}=\left(M_{i i}-\eta\right) \mathbb{1}_{(i=j)}+\left(M_{i j}-\eta\right)^{+} \mathbb{1}_{(i \neq j)} \tag{3.17}
\end{equation*}
$$

For $\tau=T / N$ we have

$$
\begin{equation*}
A(t / T) \geqslant \psi_{\eta}^{-}(A(k / N)) \quad \text { for } t \in[k \tau,(k+1) \tau] . \tag{3.18}
\end{equation*}
$$

We apply Lemma 3.1 and get

$$
\begin{equation*}
\phi^{(T)}((k+1) \tau) \phi^{(T)}(k \tau)^{-1} \geqslant e^{\tau \psi_{\eta}^{-}(A(k / N))} . \tag{3.19}
\end{equation*}
$$

We know that $e^{\tau \psi_{\eta}^{-}(A(k / N))} \geqslant 0$, since $\psi_{\eta}^{-}(A(t))$ is cooperative for all $t \in[0,1]$. Then we resume the proof as before, mutatis mutandis.

4. Postponed proofs of Lemmas

Proof of Lemma 3.1. -
First Step. - Assume that x_{0} and y_{0} are vectors such that $x_{0} \geqslant 0$ and $y_{0}>x_{0}$. If $x(t)=\phi_{A}(t) x_{0}$ and $y(t)=\phi_{B}(t) y_{0}$ then these are continuous functions such that $y(0)=y_{0}>x(0)=x_{0}$. We let $z(t)=y(t)-x(t)$ and assume that there exists $t>0$ such that $z(t)>0$ is false. We let

$$
\begin{equation*}
\tau=\inf \{t>0: z(t)>0 \text { is false }\} \tag{4.1}
\end{equation*}
$$

be the first time this happens. We have $0<\tau<+\infty$.
Then on $[0, \tau)$ the function $z(t)>0$ and there exists an index i such that $z_{i}(\tau)=0$. Since z is C^{1}, we have $z_{i}^{\prime}(\tau) \leqslant 0$. Therefore, since $A(\tau) \geqslant 0$ and $z(\tau) \geqslant 0$,

$$
\begin{aligned}
0 & \geqslant z_{i}^{\prime}(\tau)=y_{i}^{\prime}(\tau)-x_{i}^{\prime}(\tau) \\
& =(B(\tau) y(\tau)-A(\tau) x(\tau))_{i}=((B-A)(\tau) y(\tau))_{i}+(A(\tau) z(\tau))_{i} \\
& \geqslant((B-A)(\tau) y(\tau))_{i} .
\end{aligned}
$$

Since $B(0)$ is irreducible and for all $t, B(t)$ cooperative, we know from [2, Lemma 2] that, since $\tau>0, y(\tau)>0$. Moreover, $(B-A)(\tau) \geqslant 0$ and $(B-A)(\tau) \neq 0$ therefore $(B-A)(\tau) y(\tau)>0$ and we obtain a contradiction. We have thus established that for all $t \geqslant 0, y(t)>x(t)$.

Second Step. - Consider a sequence $\left(y_{0}(n)\right)_{n \in \mathbb{N}}$ of vectors such $y_{0}(n)>$ x_{0} and $y_{0}(n) \rightarrow x_{0}$, then, by the first step, for all $t>0$,

$$
\phi_{B}(t) y_{0}(n)>\phi_{A}(t) x_{0} .
$$

By continuity of the flow, letting $n \rightarrow+\infty$ we get that for all t, for all $x_{0} \geqslant 0$,

$$
\phi_{B}(t) x_{0} \geqslant \phi_{A}(t) x_{0} .
$$

Proof of Lemma 3.2. - From [2, Lemma 2] we deduce that $e^{A}>0$. Therefore, by Perron Frobenius, its spectral radius $\rho>0$ is an isolated eigenvalue with a positive eigenvector $u: e^{A} u=\rho u$. Since

$$
\begin{equation*}
e^{A} A u=A e^{A} u=\rho A u \tag{4.2}
\end{equation*}
$$

and the eigenspace of ρ is of dimension 1 , we obtain that for a constant c, $A u=c u$. Thus, $e^{A} u=e^{c} u$, that is $e^{c}=\rho$. We conclude by observing the functional relation between the spectra

$$
\begin{equation*}
\sigma\left(e^{A}\right)=\left\{e^{z}: z \in \sigma(A)\right\} \tag{4.3}
\end{equation*}
$$

that entails that $c=s(A)$ and that $s(A)$ is an isolated eigenvalue of A.
Proof of Lemma 3.3. - The proof is quite elementary and relies on the fact that $A \geqslant 0$ and $x \leqslant y$ implies $A x \leqslant A y$. Indeed,

$$
\begin{aligned}
A_{1} A_{2} \ldots A_{n} u_{n} & =\rho\left(A_{n}\right) A_{1} A_{2} A_{n-1} u_{n} \\
& \leqslant \rho\left(A_{n}\right)\left\|\frac{u_{n}}{u_{n-1}}\right\|_{\infty} A_{1} A_{2} A_{n-1} u_{n-1} \\
& =\rho\left(A_{n}\right)\left\|\frac{u_{n}}{u_{n-1}}\right\|_{\infty} \rho\left(A_{n-1}\right) A_{1} \ldots A_{n-2} u_{n-1} \\
& \leqslant \cdots \leqslant \prod_{k=1}^{n} \rho\left(A_{k}\right) \prod_{k=0}^{n-2}\left\|\frac{u_{n-k}}{u_{n-k-1}}\right\|_{\infty} u_{1} \\
& \leqslant \prod_{k=1}^{n} \rho\left(A_{k}\right) \prod_{k=0}^{n-2}\left\|\frac{u_{n-k}}{u_{n-k-1}}\right\|_{\infty}\left\|\frac{u_{1}}{u_{2}}\right\|_{\infty} u_{2} \\
& \leqslant \cdots \leqslant \prod_{k=1}^{n} \rho\left(A_{k}\right) \prod_{k=0}^{n-2} \alpha\left(u_{n-k}, u_{n-k-1}\right) u_{n} .
\end{aligned}
$$

By Perron Frobenius theorem applied to the matrix $M=A_{1} \cdots A_{n}$, we have a vector $u_{n}>0$ and a constant $r \geqslant 0$ such that $M u_{n} \leqslant r u_{n}$, and therefore $\rho(M) \leqslant r$. The proof of the lower bound is similar.

Bibliography

[1] R. M. Anderson, B. Anderson \& R. M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, 1992.
[2] G. Aronsson \& R. B. Kellogg, "On a differential equation arising from compartmental analysis", Math. Biosci. 38 (1978), no. 1-2, p. 113-122.
[3] N. BACAËR, "Approximation of the basic reproduction number R_{0} for vector-borne diseases with a periodic vector population", Bull. Math. Biol. 69 (2007), no. 3, p. 1067-1091.
[4] P. Carmona \& S. Gandon, "Periodic perturbations of an epidemic model".
[5] O. Diekmann, H. Heesterbeek \& T. Britton, Mathematical tools for understanding infectious disease dynamics, Princeton Series in Theoretical and Computational Biology., Princeton University Press, 2013, xiv+502 pages.
[6] J. A. P. Heesterbeek \& M. G. Roberts, "Threshold quantities for helminth infections", J. Math. Biol. 33 (1995), no. 4, p. 415-434.
[7] -, "Threshold quantities for infectious diseases in periodic environments", J. Math. Biol. 3 (1995), no. 3, p. 779-787.
[8] C. R. Johnson \& R. Bru, "The spectral radius of a product of nonnegative matrices", Linear Algebra Appl. 141 (1990), p. 227-240.
[9] T. Kato, Perturbation theory for linear operators, Grundlehren der Mathematischen Wissenschaften, vol. 132, Springer, 1966, xix +592 pages.
[10] B. Kloeckner, "Effective perturbation theory for simple isolated eigenvalues of linear operators", J. Operator Theory 81 (2019), no. 1, p. 175-194.
[11] S. P. Отto \& T. Day, A Biologist's Guide to Mathematical Modeling in Ecology and Evolution, Princeton University Press, 2011, x +732 pages.
[12] G. Teschl, Ordinary differential equations and dynamical systems, Graduate Studies in Mathematics, vol. 140, American Mathematical Society, 2012, xii+356 pages.
[13] W. Wang \& X.-Q. Zhao, "Threshold dynamics for compartmental epidemic models in periodic environments", J. Dyn. Differ. Equations 20 (2008), no. 3, p. 699-717.

[^0]: ${ }^{(*)}$ Reçu le 14 mai 2020, accepté le 25 août 2020.
 Keywords: Floquet's theorem, spectral radius, spectral abscissa, ordinary differential equation, non negative matrices.

 2020 Mathematics Subject Classification: 15A18, 34D08, 15A42, 15B46, 60 J 80.
 (1) Université de Nantes, 2 Rue de la Houssinière, BP 92208, 44322 Nantes Cedex 03, France - philippe.carmona@univ-nantes.fr

 The author thanks the Centre Henri Lebesgue ANR-11-LABX-0020-01 for creating an attractive mathematical environment. This project has received financial support from the CNRS through the $80 \mid$ Prime program.

 Article proposé par Laurent Miclo.

[^1]: ${ }^{(1)}$ in other words the directed graph with vertices $1, \ldots, d$ and directed edges (i, j) for $M_{i j} \neq 0$ is connected by directed paths.

