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Extending piecewise polynomial functions
in two variables

Andreas Fischer(1), Murray Marshall(2)

ABSTRACT. — We study the extensibility of piecewise polynomial func-
tions defined on closed subsets of R2 to all of R2. The compact subsets
of R2 on which every piecewise polynomial function is extensible to R2

can be characterized in terms of local quasi-convexity if they are definable
in an o-minimal expansion of R. Even the noncompact closed definable
subsets can be characterized if semialgebraic function germs at infinity
are dense in the Hardy field of definable germs. We also present a piece-
wise polynomial function defined on a compact, convex, but undefinable
subset of R2 which is not extensible to R2.

RÉSUMÉ. — Nous étudions le prolongement des fonctions polynômes par
morceaux définies sur des sous-ensembles fermés de R2 à tout R2. Les
sous-ensembles compacts de R2 sur lesquels chaque fonction polynôme
par morceaux est prolongeable à R2 peuvent être caractérisés en ter-
mes de quasi-convexité locale si ils sont définissables dans une expan-
sion o-minimale de R. Même les sous-ensembles non compacts fermés
définissables peuvent être caractérisés si les germes de fonctions semi-
algébriques à l’infini sont denses dans le corps de Hardy des germes
définissables. Nous présentons également une fonction polynôme par mor-
ceaux définie sur un sous-ensemble compact, convexe, mais indéfinissable
de R2, et qui n’est pas prolongeable à R2.
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1. Introduction

Let A ⊂ Rn. A piecewise polynomial function is a continuous function
f : A→ R for which there exist finitely many polynomials p1, . . . , pk in the
polynomial ring R[X1, . . . , Xn] such that for every a ∈ A, f(a) = pi(a) for
some i. In short, we say that f is a pwp function. We assume the reader is
familiar with basic semialgebraic geometry, as covered in [1, Chapitre 2] for
example. For clarity we note the following:

Lemma 1.1. — Let A ⊂ Rn be a semialgebraic set. Then every pwp
function f : A→ R is semialgebraic.

Proof. — Let p1, . . . , pk ∈ R[X1, . . . , Xn] be the polynomials appearing
in the description of f : A → R. If k = 1 the result is trivial, so we
assume k � 2. By induction on k the restriction of f to {pi = pj} ∩ A is
semialgebraic, for each 1 � i < j � k, so f restricted to the set

X = ∪1�i<j�k{pi = pj} ∩A

is semialgebraic. The semialgebraic set A \ X has just finitely many con-
nected components U1, . . . , Um and, for each 1 � � � m, U� is semialgebraic
[1, Théorème 2.4.5]. Also U� is the disjoint union of the relatively closed
sets {f = pi} ∩ U�, i = 1, . . . , k. Thus f = pi on U� for some unique i, so f
restricted to U� is semialgebraic. Since U1 ∪ . . .∪Um ∪X = A, we are done.
�

It follows from Lemma 1.1 that if A is semialgebraic then the definition
of pwp function f : A→ R coincides with the standard definition [2, 10, 11]
which a priori requires each set {f = pi} to be semialgebraic. The defini-
tion we have adopted, however, allows us to study pwp functions not just
on semialgebraic sets but also on larger classes of subsets of Rn. Here, we
are mainly interested in subsets of R2 that are definable in an o-minimal
expansionM of the real field, as in this case we always obtain extensibility
for compact convex definable sets, while this is not true anymore with-
out the definability assumption. Here and in the following, definable always
means definable in M with parameters of R. See [5] for an introduction to
o-minimal structures.

Our studies are closely related to the Pierce-Birkhoff conjecture, which
asserts that every pwp function on Rn is sup / inf definable from polynomi-
als. Actually, if f is sup / inf definable on A, then the extensibility of f as
pwp function is trivial.

A proof of the Pierce-Birkhoff conjecture for functions in two variables
was sketched by Mahé in [11]; see [12] for a more detailed demonstration.
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The Pierce-Birkhoff conjecture is still an open question for pwp functions of
three and more variables. Note that pwp functions can be studied over real
closed fields and ordered fields; see, for example, [2, 8, 10, 13, 15]. However,
our discussions require at least an Archimedean real closed field, which can
always be imbedded into R. Here we only treat the field of real numbers.

Mahé presented a semialgebraic pwp function of two variables that can-
not be extended to R2 as pwp function, in [11, Remarks]. This example
motivates the following question:

What are the subsets of R2 for which every pwp function is extensible?

We give an answer to this question for sets that are definable in an o-
minimal expansion of the real field. The definable compact sets of R2 for
which the answer to the above question is affirmative are precisely those
that are locally quasi-convex. Let us make this notion precise.

We denote by ‖ · ‖ the Euclidean norm on Rn, for n > 0. For a ∈ Rn
and r > 0 we denote by Br(a) the open ball with radius r and center a.

Definition 1.2. — A set A is said to be locally quasi-convex at a point
a ∈ A if there exists an ε > 0 and an L > 0 such that all points ξ, η ∈
Bε(a) ∩ A can be joined by a rectifiable path γ in Bε(a) ∩ A of length less
than or equal to L‖ξ − η‖. We will say A is locally quasi-convex if A is
locally quasi-convex at each a ∈ A.

For L = 1 we obtain the locally convex sets, so every locally convex set
is locally quasi-convex. The first main result of the present paper gives a
complete characterization of the compact definable subsets on which every
pwp functions is extensible. We shall prove the following theorem.

Theorem 1.3. — Let A ⊂ R2 be a compact definable set. Then every
pwp function on A can be extended to a pwp function on R2 if and only if
A is locally quasi-convex.

We do not know whether there exists any undefinable, compact, locally
quasi-convex set A for which every pwp function on A can still be extended
to R2. However, we will present a pwp function defined on an undefinable
compact, convex subset of R2 that is not extensible; see Example 3.9.

To obtain extensibility for non-compact definable closed sets we have to
restrict ourselves to a small class of polynomially bounded o-minimal struc-
tures, that is, every unary definable germ at infinity is ultimately bounded
by some polynomial. Let H(R) and H(M) denote the Hardy field of semial-
gebraic and definable unary function germs at +∞, respectively. Let H(M)
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be endowed with the topology induced by its ordering. Then the character-
ization of o-minimal structures for which every pwp function on a locally
quasi-convex closed definable subset of R2 is extensible reads as follows.

Theorem 1.4. — Let H(R) be dense in H(M). Let A ⊂ R2 be closed
and definable. Then every pwp function on A can be extended to a pwp
function on R2 if and only if A is locally quasi-convex.

Examples of such o-minimal structures are the structure Ran of restricted
analytic functions, cf. [4], and the structures generated in [14]; see [7, Propo-
sition 2.3]. Theorem 1.4 is sharp in the sense that if H(R) is not dense in
H(M), there exists always a pwp function defined on a locally quasi-convex
closed definable subset of R2 which is not extensible; see section 4.3.

In section 2 we note that pwp functions on R2 are locally Lipschitz con-
tinuous. In section 3 we study properties of definable, locally quasi-convex
sets, and we prove the “only if” direction of Theorem 1.3 and 1.4. In section
4 we prove the “if” direction of Theorem 1.3 and Theorem 1.4.

2. Local Lipschitz continuity

Before we give some examples of pwp functions, we note that sums,
products and compositions of pwp functions are again pwp functions. Of
course, polynomials are pwp functions, but also the absolute value function
is pwp. Moreover, the infimum and the supremum of two pwp functions are
also pwp.

We recall the definition of a locally Lipschitz continuous function.

Definition 2.1 Let A ⊂ Rn. A function f : A → R is called locally
Lipschitz continuous if for every a ∈ A there exists an ε > 0 and an L > 0
such that

‖f(x)− f(y)‖ � L‖x− y‖
for all x, y ∈ Bε(a) ∩A.

An analytic property of pwp functions is the fact that they are locally
Lipschitz continuous. We state this in the following proposition, which is a
version of [3, Theorem 0.1(c)]. Let ∇ denote the gradient operator.

Proposition 2.2. — Let A ⊂ Rn be convex. Then every pwp function
f : A→ R is locally Lipschitz continuous.
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Proof. — Let x ∈ A, ε > 0, and let f be defined by the polynomials
p1, . . . , pr. Then,

M := sup{‖∇pi(y)‖ : y ∈ Bε(x), i = 1, . . . , r}

is a real number. Moreover, for every y, z ∈ Bε(x) ∩ A, the function f is
piecewise differentiable along the segment connecting y and z. Hence, by
the Mean Value Theorem,

‖f(z)− f(y)‖ �M‖y − z‖.

�

3. Locally quasi-convex sets

We fix an o-minimal expansion M of the real field. Definable always
means definable in M with parameters from R.

For a set A ⊂ Rn we denote by A, Ao, and ∂A, the closure, interior and
boundary of A, respectively.

3.1. Stratification

Definable sets can be partitioned into finitely many sets of a suitable
form. One says that such partition is a stratification, and calls the sets
strata, if for any two sets C and D of the partition, we have that C ⊂ D
or D ⊂ C or C ∩ D = ∅ or C ∩ D = ∅. Here we are only interested in
stratification of boundaries of definable subsets of R2. Lipschitz cells; these
are sets, that are either a single point or, after some suitable rotation, the
graph Γ(h) of a definable Lipschitz continuous C1 function h : I → R where
I is an open interval; see [6] or [9].

If, furthermore, for given definable sets A1, . . . , Ak ⊂ R2, we have that
for each Lipschitz cell C and each 1 � i � k either C ⊂ Ai or C∩Ai = ∅, we
say that the stratification is compatible with the sets A1, . . . , Ak. Altogether
we have the following proposition.

Proposition 3.1 ([6] Theorem 1.4 or [9]). — Let A,A1, . . . , Ak ⊂ R2

be definable sets, and let f : ∂A → R be a definable function. Then there
is a stratification of ∂A into Lipschitz cells S1, . . . , Sm which is compatible
with the sets A1, . . . , Ak such that f restricted to Sj is a C1 function for
j = 1, . . . ,m.
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3.2. Angles

Let a be a boundary point of a definable set A ⊆ R2. If a is an isolated
point of A there is, by definition, just one outside angle at a (which is equal
to 2π) and no inside angle. If a is not an isolated point of A then the germ of
the boundary of A at a is a union of finitely many definable half-branches at
a, say Γ1, . . . ,Γm, m � 1 listed in counterclockwise order. Set Γm+1 = Γ1.
For 1 � i � m the angle between Γi and Γi+1 is defined to be the angle
between the corresponding half-tangents at a, measured counterclockwise.
The germ at a of the open region between Γi and Γi+1 is either entirely
outside of A or entirely inside of A. In the former case the angle is called
an outside angle at a; in the latter case it is called an inside angle at a.

3.3. Locally quasi-convex definable sets

The local quasi-convexity of a definable subset of R2 can be graphically
described as follows.

At each boundary point of a closed definable subset of R2 there are
finitely many well defined outside angles. For example, the set A = {(x, y) :
x � 0, |y| = x2} has two outside angles at (0, 0), one is equal to 0 the other
is 2π. But this set is not locally quasi-convex at the origin. This is easily
seen by the following lemma.

Lemma 3.2. — A closed definable set A ⊂ R2 is locally quasi-convex at
a ∈ ∂A if and only if each outside angle at a is strictly positive.

Proof. — (⇒) Let a ∈ ∂A and assume that there is a vanishing outside
angle at a. The dimension of ∂A is at most 1 so that the boundary at a
is locally given by the union of the graphs of continuous function germs
of one independent variable. After some rotation and translation, we may
describe the part of the boundary at a = (0, 0) which causes the vanishing
angle by two continuous definable function germs f, g : [0, δ)→ R such that
f(0) = g(0). The half-tangents of f and g at 0 have the same slope, so

f(x)− g(x) is o(x) as x↘ 0. (3.1)

By choosing δ small enough, we may assume that f(x) > g(x) for 0 < x < δ,
that both functions f and g are continuously differentiable in (0, δ), and that

A ∩ {(x, y) : 0 < x < δ, g(x) < y < f(x)} = ∅.

Assume now that A is locally quasi-convex at 0 with constant L > 0. Take
the points ξ := (x, f(x)) and η := (x, g(x)), where 0 < x < δ/2 is small
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enough. Then
‖ξ − η‖ = f(x)− g(x).

Any path γ of minimal length in A connecting ξ and η passes through a.
Hence

length(γ) � ‖ξ − a‖+ ‖a− η‖ � 2x.

Thus
2x � length(γ) � L‖ξ − η‖ = L(f(x)− g(x)),

which contradicts (3.1).

(⇐) Let a ∈ ∂A. Assume the outside angles at a are strictly positive.
Fix a constant L � 1 so large that L > csc( θ2 ) for each outside angle θ
satisfying θ � π. Then, for ε > 0 sufficiently close to zero, ξ, η ∈ Bε(a) ∩ A
can be joined by a rectifiable path γ in Bε(a)∩A with length(γ) � L‖ξ−η‖.
It is easy to construct γ: If the whole line segment joining ξ and η belongs
to A, take γ to be this line segment. Otherwise, take ξ′ (resp., η′) to be
the point on the line segment joining ξ and η intersected with ∂A closest
to ξ (resp., η) and take γ to be the line segment joining ξ and ξ′ followed
by the arc of ∂A joining ξ′ and a followed by the arc of ∂A joining a and
η′ followed by the line segment joining η′ and η. It remains to verify that
length(γ) � L‖ξ − η‖, for ε > 0 sufficiently small. It suffices to consider the
case where some part of the line segment joining ξ and η is not in A. One
may also reduce further to the case where ξ′ = ξ and η′ = η. In this case the
result follows by applying the following variant of the triangle inequality.
�

Proposition 3.3. — If a, b and c are sides of a triangle, then a+b
c �

csc( θ2 ), where θ denotes the angle opposite the side c.

Remark 3.4. — The standard triangle inequality asserts that 1 � a+b
c .

Proof. — We have

c2

(a+ b)2
=
a2 + b2 − 2ab cos θ

(a+ b)2
= 1− 2ab

(a+ b)2
(1 + cos θ)

� 1− 1 + cos θ

2
=

1− cos θ

2
= sin2

(
θ

2

)
.

Here we are using the law of cosines c2 = a2 + b2 − 2ab cos θ, the half-angle
formula 1−cos θ

2 = sin2( θ2 ), and the standard inequality
√
ab � a+b

2 relating
the geometric mean and the arithmetic mean. �

The union of locally quasi-convex sets is not necessarily quasi-convex.
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Example 3.5. — Both the graph of the standard parabola and the x-axis
in R2 are locally quasi-convex sets, but their union is not quasi-convex at
the origin, as one of the outside angles at the origin vanishes.

Lemma 3.2 implies that finite intersections of locally quasi-convex defin-
able subsets of R2 are again locally quasi-convex. This is false without the
sets being definable in some o-minimal structure expanding R.

Example 3.6. — Let A ⊂ R2 be the union of the sets [0, 1]× {0}, {0} ×
[0, 1] and the line segments connecting the points (2−n, 0) and (0, 2−n) for
n = 0, 1, . . . ,∞. So A is compact and connected. Moreover, this set is locally
quasi-convex. However, the intersection of A and the diagonal {x = y} is
the set {(2−n−1, 2−n−1);n ∈ N}∪{(0, 0)}, which is not locally quasi-convex
at (0, 0).

For n � 3, the intersection of locally quasi-convex definable subsets of
Rnis not necessarily again locally quasi-convex (though, this does hold, for
all n � 1, if locally quasi-convex is replaced by locally convex.)

Example 3.7. — Let A be the solution of z4 = x2 + y2, z � 0, then A
is locally quasi-convex at every point, in particular at the origin. But the
intersection of A with the zx-plane is the graph of z =

√
|x| which is not

locally quasi-convex at the origin, because one outside angle vanishes.

For two continuous function f, g : U → R with f < g on U we set

(f, g)U := {(x, y) : x ∈ U, f(x) < y < g(x)}.

Local quasi-convexity is a necessary condition to obtain extensibility.

Proposition 3.8. — Let A ⊂ R2 be a closed definable set that is not
locally quasi-convex at some point a ∈ A. Then there exists a pwp function
F on A that is not extensible to R2 as a pwp function.

Proof. — We may assume that a = (0, 0). The point a is obviously a
non-isolated boundary point. Since A is not locally quasi-convex at a, there
is a vanishing outside angle at a. Therefore, we may assume that after some
rotation a part of ∂A is given by the graphs of two definable continuous
functions f, g : [0, δ)→ R such that

f(0) = g(0) = 0,

g(x)− f(x) is o(x) for x↘ 0,

f < g on (0, δ),

(f, g)(0,δ) ∩A = ∅.
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Define F : A → R as follows. For (x, y) ∈ A such that x � 0 or x � δ, or
0 < x < δ and y � f(x), let F (x, y) = 0. For 0 < x < δ and y � g(x), let
F (x, y) := min(x, δ − x). Then F is a pwp function on A. For 0 � x � δ/2,

|F (x, g(x))− F (x, f(x))| = x
while

‖(x, g(x))− (x, f(x))‖ is o(x) as x↘ 0.

Hence F is not locally Lipschitz continuous at a. Therefore Proposition 2.2
implies that F is not extensible to R2 as a pwp function. �

3.4. A counterexample

It is easy to construct a pwp function on a locally quasi-convex closed
set with infinitely many connected components that is not extensible. Such
a set is never definable in any o-minimal structure and is also not compact.
Take for example A = N× {0} and f : A→ R, with f(x, 0) = 1 if x is odd,
and f(x, 0) = 0 if x is even.

One can also define a pwp function on the compact set A of Example
3.6 which is not extensible. Let f : A→ R be defined as follows: f(x, y) = 0
if (x, y) belongs to [0, 1]× {0}, {0} × [0, 1] or the line segments connecting
the points (2−n, 0) and (0, 2−n) for odd n, and let f(x, y) = xy otherwise.
However, the set A has no well-defined outside angles at the origin.

The question arises whether the restriction to o-minimal sets in Theorem
1.3 is necessary or not.

It seems that the o-minimality is almost necessary to obtain extensibility
of pwp functions. Note that every convex set is locally quasi-convex with
constant L = 1. Next we present an example of a pwp function defined on
an undefinable, compact, convex set that is not extensible.

Example 3.9. — The function h : [0, 1]→ R,

h(x) =

{
x6 sin(x−1) + x6 + x5 + x4 if x > 0,
0 if x = 0

is strictly increasing and convex. Thus, the set

A = {(x, y); 0 � x � 1, h(x) � y � h(1)}
is a compact convex set, and even all outside angles are well defined. Define
the pwp function f on A as follows: For (x, y) ∈ A with

1

4kπ + 2π
� x � 1

4kπ + π
for some integer k � 0 and y � x6 + x5 + x4,
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let
f(x, y) = x6 + x5 + x4 − y.

Otherwise, let f(x, y) = 0. Hence f is a pwp function on A.

Let us assume now that there is a pwp function F : R2 → R with F = f
on A. Then F is semialgebraic. Consider the function g : R→ R defined by

g(x) := F
(
x, x5 + x4

)
.

Then g vanishes for

x =

(
4kπ +

7

2
π

)−1

, k ∈ N,

and g is positive for

x =

(
4kπ +

3

2
π

)−1

, k ∈ N.

So the function g cannot be semialgebraic, which contradicts the assump-
tion.

Remark 3.10. — The function f in the previous example is actually Lip-
schitz continuous; however, the domain is not definable in any o-minimal
structure. We do not know whether Lipschitz continuity of a pwp function
on a compact definable set implies extensibility, and leave this question as
an open problem.

4. Proof of the Theorems

4.1. Preliminary Lemma

We agree to the following notation. For two continuous function f, g :
U → R with f < g on U we set

[f, g]U := {(x, y);x ∈ U, f(x) � y � g(x)}
(f)U := {(x, y);x ∈ U, y = f(x)}.

We prepare for the proof of Theorem 1.3 by proving the following technical
lemma.

Lemma 4.1. — Let a < b and let p ∈ R[x, y] be a polynomial such that

p(a, 0) = 0 and p(b, 0) = 0.

Then for every semi-linear open neighbourhood V of (a, b)× {0} there is a
pwp-function f : R2 → R such that
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1. f vanishes outside of V

2. f = p on [a, b]× {0}.

Proof. — Let q(x) = p(x, 0) ∈ R[x]. The set V is semi-linear. Hence
there is an ε > 0 such that

V ′ := {(x, y);x ∈ (a, b), |y| < εmin{x− a, b− x}}

is contained in V . We define f : R2 → R by

f(x, y) :=




q(x)

(
1− |y|

εmin{x− a, b− x}

)
if (x, y) ∈ V ′,

0 otherwise.

Step 1: The function f is continuous.
The factor

1− |y|
εmin{x− a, b− x}

is bounded on V ′ and vanishes if |y| = εmin {x− a, b− x} and x ∈ (a, b).
The polynomial q vanishes at a and b. Hence f is continuous.

Step 2: f is a pwp function.
Since q vanishes at a and b, x− a and x− b divide q in R[x]. The absolute
value function is pwp, so f is pwp. �

4.2. The compact case

Let A be a compact definable locally quasi-convex set. Let S be a one-
dimensional stratum of a stratification (compatible with Ao) of ∂A into
Lipschitz cells. As explained in Section 3.1, we can assume, after making
a suitable rotation, that S = (h)I , where h : I → R is definable Lipschitz
continuous function, and where I is an open interval. Then S can be a one-
sided or a two-sided boundary piece. Hence, there is a definable continuous
function ε : I → (0,∞) and, because of local quasi-convexity, a continuous
semilinear function δ : I → (0,∞) such that δ(x) → 0 as x ↘ a and as
x↗ b, where I = (a, b), such that exactly one of the following cases holds:

(i) (h, h+ ε)I ⊂ A and (h− δ, h)I ∩A = ∅,
(ii) (h− ε, h)I ⊂ A and (h, h+ δ)I ∩A = ∅,
(iii) (h− δ, h+ δ)I ∩A = S.
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Since δ is a continuous strictly positive semilinear function with bounded
domain, there are continuous semilinear functions h± : I → R such that

h− δ < h− < h < h+ < h+ δ

on I. This implies that (h+)I and (h−)I are semilinear sets, A∩U = S and
A ∪ U is a compact definable locally quasi-convex set, where U = [h−, h]I
in case (i), resp., U = [h, h+]I in case (ii), resp., U = [h−, h+]I in case (iii).
We refer to the set U obtained in this way as a semilinarization of A at S.

We complete the proof of Theorem 1.3 by proving the following propo-
sition.

Proposition 4.2. — Let A ⊂ R2 be a locally quasi-convex compact de-
finable set, and let f : A → R be a pwp function. Then there is a pwp
function F : R2 → R such that F = f on A.

Proof. — Let S1, . . . , Sr be a stratification of ∂A into Lipschitz cells
such that f |Si is the restriction of some polynomial pi to Si for i = 1, . . . , r.
We may assume that dim(Si) = 1 if and only if i = 1, . . . , s (some s �
r). We extend f inductively to a pwp function on a compact semilinear
neighbourhood B of A as follows: Take B = A ∪ U1 ∪ . . . ∪ Us where Ui is
a semilinearization of A ∪ U1 ∪ . . . ∪ Ui−1 at Si, i = 1, . . . , s, and extend
f to B by setting f = pi on Ui \ A. Take a stratification T1, . . . , Tt of ∂B
into Lipschitz cells such that f |Ti is the restriction of some polynomial to
Ti for each i. The sets Ti are semilinear. Let C be the union of those Ti
with dim(Ti) = 0. Then C is a finite set. Let p be a polynomial that equals
f on C. Then g = f − p is a pwp function on B, and g restricted to each
1-dimensional Ti is the restriction of some polynomial qi that vanishes on
Ti \ Ti. By applying Lemma 4.1 to the function qi and the set Ti in place
of p and [a, b]× {0}, we obtain for every open semilinear neighbourhood Vi
of Ti a pwp function gi : R2 → R such that gi vanishes outside of Vi and
gi = qi on Ti for each 1-dimensional Ti. Choosing the Vi small enough we
can assume that Vi ∩ Vj \ B = ∅ for all 1-dimensional Ti and Tj , i �= j.
Define the compact semilinear neighbourhood D of B to be the union of B
and the sets V i \ B, Ti 1-dimensional, and define G : D → R by G = g on
B and G = gi on V i \ B. Thus G coincides with g on B and vanishes on
∂D. Thus G extends to a pwp function on R2 by setting G = 0 outside of
D. Finally, take F = G+ p. �

4.3. The non-compact case

If the Hardy field H(R) is not dense in H(M), then we cannot expect
extensibility of pwp functions defined on all closed, definable, locally quasi-
convex sets. Indeed, the extensibility would imply that disjoint definable
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function germs at +∞ can be separated by a semialgebraic function germ
at +∞; i.e., that H(R) is dense in H(M).

We now assume that the Hardy field of semialgebraic germs at +∞
lies dense in the Hardy field of definable germs at +∞. We establish some
preliminary lemmas.

Lemma 4.3. — Let Γ ⊂ R2 be an unbounded semialgebraic arc, and let p
be a polynomial in R[x, y]. Then, for every open semialgebraic neighbourhood
U of Γ, there exists an M > 0 and a pwp function f such that

f(x, y) = p(x, y) on Γ \BM (0, 0),

and f vanishes outside of U .

Proof. — After some rotation we may assume that Γ is the graph of a
continuous semialgebraic function h : [a,∞) → R. We may further assume
that p(x, h(x)) > 0 for sufficiently large x, as the case p(x, h(x)) = 0 is
trivial. Select a positive semialgebraic continuous function δ such that for
sufficiently large b,

[h− δ, h+ δ][b,∞) ⊂ U,
and p(x, y) > 0 for all (x, y) ∈ [h − δ, h + δ][b,∞). The graph of h + δ is
a semialgebraic set of dimension 1. By the definition of a semialgebraic
function, there exists a nonzero polynomial q in R[x, y] such that

q(x, h(x) + δ(x)) = 0;

and, restricting to x sufficiently large, we may even take q to be irreducible
in R[x, y]. After modifying δ suitably (e.g., replacing δ by δ/n for suitable
n � 1), we can assume that q(x, h(x)) �= 0 for sufficiently large x. Scaling q
by a suitable non-zero real, we can assume that

q(x, h(x)) > 0

for sufficiently large x. For n ∈ N let qn be the polynomial

qn(x, y) :=
(
x2 + y2

)n
q(x, y).

Then there is an N such that

qN (x, h(x)) > p(x, h(x)) (4.1)

for sufficiently large x, say x �M/2, for some M , which we may take to be
greater or equal to 2

√
3. Let ρM : R2 → R be the function defined by

ρM (x, y) := inf
(
1, sup

(
0, x2 + y2 −M2

))
. (4.2)
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Then ρM is a pwp function that vanishes on BM (0, 0) and that equals 1
outside of BM+1(0, 0). On the set [h, h+δ][M/2,∞) we define the pwp function
f as

f := ρM/2 inf(qN , p)

The function f vanishes on the graph of h + δ, and f coincides with p on
Γ \ BM (0, 0) because of inequality (4.1). Similarly we extend p to the set
[h− δ, h)[M/2,∞). Hence there is a pwp function f : R2 → R which coincides
with p on the arc Γ \BM (0, 0). �

The dimension of the boundary of a semialgebraic subset of R2 is at
most 1. So we obtain a stronger version of the previous lemma.

Lemma 4.4. — Let A ⊂ R2 be a closed semialgebraic set, and let f :
A → R be a pwp function. Then there is an M > 0 and a pwp function
F : R2 → R such that F = f on A \BM (0, 0).

Proof. — We choose M � 2/
√

3 so big that ∂A \ BM (0, 0) consists
of a disjoint union of closed (semialgebraic) arcs at infinity. For each of
these arcs we find open pairwise disjoint semialgebraic neighbourhoods, so
that Lemma 4.3 implies the existence of a pwp function F̃ : R2 → R such
that F̃ = f on ∂A \ BM/2(0), after some further increasing of M . Define

g : R2 → R as g := f on A and g := F̃ outside of A, and let F := ρM/2g
where ρM is the function defined by (4.2). �

We also need a version of Lemma 4.4 for definable sets A.

Lemma 4.5. — Let H(R) ⊂ H(M) be dense. Let A ⊂ R2 be a closed
definable set, and let f : A→ R be a pwp function. Then there is an M > 0
and a pwp function g : R2 → R such that g = f on A \BM (0, 0).

Proof. — The dimension of the boundary of a definable subset of R2

is at most 1. Let A1, . . . , Ar denote the one-dimensional Lipschitz cells of
∂A \ BM (0, 0) for M > 0. Choose M so large that each Ai is unbounded,
and such that f = pi on Ai for some polynomial pi. We construct pairwise
disjoint closed semialgebraic neighbourhoods Vi of Ai. Fix 1 � i � r. In
some linear orthogonal coordinate system (depending on i), we may write

Ai = (hi)(ai,∞)

for some definable Lipschitz continuous function hi : (ai,∞) → R. Let
εi : (ai,∞)→ R be defined by

εi(x) =
1

3
dist


(x, hi(x)),

⋃

j �=i
Aj


 .
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(Here, for a point p and a set S in R2, dist(p, S) denotes the distance from p
to S, i.e., dist(p, S) := inf{‖p− q‖ : q ∈ S}.) Since H(R) ⊂ H(M) is dense,
there are continuous semialgebraic functions ϕi, ψi : (ci,∞) → R, ci > ai
with

hi − εi < ϕi < hi < ψi < hi + εi

on (ci,∞). Consider the closed semialgebraic set

Vi := (ϕi, ψi)(ci,∞).

The sets V1, . . . , Vr (in the original coordinate system) are closed, semialge-
braic and pairwise disjoint. Choose M so big that

∂A \BM (0, 0) ⊂
⋃

i

Vi.

Then the set
B := (

⋃

i

Vi ∪A) \BM (0, 0)

is a closed semialgebraic neighbourhood of A \BM (0, 0). Define g : B → R
as

g(x) :=

{
f(x), if x ∈ A
pi(x), if x ∈ Vi \A.

This function is a semialgebraic pwp function such that g = f on A \
BM (0, 0). The result follows now from Lemma 4.4. �

Theorem 1.4 is now implied by the following proposition.

Proposition 4.6. — Let H(R) ⊂ H(M) be dense. Let A ⊂ R2 be a
closed definable locally quasi-convex set. Then every pwp function f : A→ R
extends to a pwp function F : R2 → R.

Proof. — Let M be so big, that Lemma 4.5 provides us with a pwp
function g : R2 → R with g = f on A \ BM (0, 0). The set A ∩ B2M (0, 0)
is locally quasi-convex. Hence, by Proposition 4.2, there is a pwp function
G : R2 → R such that G = f on A ∩ B2M (0, 0). Take a pwp function
ρ : R2 → [0, 1] that equals 1 outside of B2M (0, 0) and vanishes in BM (0, 0).
Set

F := (1− ρ)G+ ρg.

�
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