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Integrable Osculating Plane Distributions

GiLcioNE NonaTo Costa(®)

ABSTRACT. — We give a necessary condition for a holomorphic vector
field to induce an integrable osculating plane distribution and, using this
condition, we give a characterization of such fields. We also give a generic
classification for vector fields which have two invariant coordinate planes.

RESUME. — Nous donnons une condition nécessaire sur les champs de
vecteurs holomorphes qui induit une distributuon de plans osculateurs
et, en 'utitilisant, nous donnons une caracterisation de ces champs. Cela
nous permettra aussi d’obtenir une classification générique des champs de
vecteurs ayant deux plans coordonnés invariants.

1. Introduction

In the second half of the 19" century, Arthur Cayley observed that the
a linear vector field defined in R3 or C® has an integrable osculating plane
distribution (opd for short). To be precise, let us consider the orbit ¢(t) of
the vector field X such that ¢'(t) = X(¢(t)) with ¢ € C. The osculating
plane associated to X is spanned by the vectors ¢'(t) and

¢"(t) = DX(4(t)) - ¢'(t) = DX(4(t)) - X (¢(t))-
In other words, the osculating plane is generated by the vector fields X and
Y = DX - X. Therefore, the osculating plane of a trajectory at a given point
is determined by its initial direction and by the direction of the force acting
at the given point.

(1) Departamento de Matematica — ICEX — UFMG, Cep 31270-901 — Belo Horizonte,
Brazil
gilcione@mat.ufmg.br
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Now let X = Az + B be an affine linear vector field with A € M(3,C),
the set of complex matrices 3x 3, B € C3. Then Y (z) = A-X = A%z + AB.
Taking the Lie bracket, we get

[X,Y]=DX-Y -DY - -X =A-[A%x + AB] — A . [Az + B] = 0.

Since the Lie bracket vanishes, X and Y span an involutive distribution.
This shows that all affine linear vector fields in C3 have an integrable opd .
It can be shown that for fields of degree greater than 1 this is not a generic
fact. Furthermore, except when X is an affine linear vector field in C3, it is
not easy to find a vector field such that its opd is integrable.

In [2], one of the 14 problems proposed by Dominique Cerveau was the
description and classification of all the real or complex polynomial vector
fields that have this beautiful property. In this article, we will give a partial
answer to Cerveau’s question, as follows: we will first give a necessary con-
dition for a holomorphic vector field in C? to have an integrable opd. Then
we characterize and classify the polynomial vector fields in C? which have
two invariant coordinate planes and an integrable opd.

Let X be a holomorphic vector field in C? and wx be the 1-form given
by wedge product between X and Y = DX - X. If wx is integrable then the
singular set Sing(wx) will have at least one component of dimension one,
i.e., an analytic curve C. Furthermore, by construction, wx is also invariant
by X and Y, which shows that C is invariant by X and Y simultaneously.
There are three situations to be considered, depending on the curve C being
contained or not in the singular sets of X or Y. As we will see, if C is not
contained in the singular set Sing(X) then C is a straight line. Unless the
change of coordinates is linear, the integrability of opd is non-invariant by
diffeomorphism of C3. See the example (2.4).

In this article, we will treat in the polynomial vector fields X in C3 such
that the invariant straight line C is not contained in the singular sets of
X and Y. By a linear change of variables, this curve C may be given as
x1 = 23 = 0 in some coordinate system of C3. Furthermore, we will impose
the two coordinate planes that define the curve invariant C also be invariant
by X and Y. More precisely, we will prove the following theorem:

THEOREM 1.1. — Consider the space of polynomial vector fields
0 0 0
X = x1 F{ — — 4+ H —
(z) =1 o(ﬂf)ax1 +9€2Go($)ax2 + O(x)axg’

such that Fy, Go, Hy and (Hy)y, are non-zero on the xs—awxis. If the opd
induced by X is integrable then one of following condition is generically
satisfied
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1. Fy(z) = bPy(z), Go(z) = bQo(z) and Ho(x) = Po(z)|a + x3b] for

some a,b € Clxy,x2);

2. Fo(x) = bPy(x), Go(z) = bQo(x) and Ho(z) = Qo(x)[a + x3b] for

some a,b € Clxy, x2);
3. Fy(x) = Go(x) for all x € C3;
4. Fo(z) = aPy(x), Go(iﬁ) =1+bPy(z)
3
and Ho(x) =719 + / [1+2bPy (&) +b(b— a)P5(£)]dés
0
with a,b,ro € Clz1,x2] and & = (z1,22,&3) € C3.
Conversely, in the section 4, we will then examine the four conditions
given on the theorem 1.1. With the exception of condition (3), in which case

the opd is always integrable, we must impose additional conditions on Fy,
Gy and Hj to guarantee the integrability of wx.

2. Preliminary

Throughout this paper X will denote a holomorphic vector field and its
opd will be described by the 1-form wx, both defined in a three-dimensional
complex manifold M.

DEFINITION 2.1. — A pair of holomorphic vector fields {X,Y} will be

called an osculating pair if Y (x) = DX (x)- X () in some coordinate system
z e C3.

DEFINITION 2.2. — The osculating pairs {X;,Y;}, for i = 1,2, will be
called strongly conjugate if there is a unique biholomorphism f which con-
jugates X1, Xo and Y7, Ys, simultaneously.

PROPOSITION 2.3. — The osculating pairs {X;,Y;}, for i = 1,2, are
strongly conjugate via the biholomorphism f if

D2f(x) - (Df(x)) ' X1 (x)| - Df(x) - X1(x) = 0,Vx € C>.

Proof.— By hypothesis, the osculating pairs {X;,Y;}, for ¢« = 1,2, are
strongly conjugate. It follows that

Xo(x) = fuX1 = Df(f 7 (2)) - X1 (f7 (@),
Ya(w) = f.Y1 = Df(f7(2)) - Yi(f 7' (2)),
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the push-forward of X; and Y7 by f, respectively. Since Y1 (z) = DX (x) -
X1(x), we have

Ya(z) = Df(f7(2)) - DX1(f 71 (2)) - X1 (f 7 (2)).

On the other hand, Y3(z) = DX5(x) - Xo(z) where

DXy(x) = D*f(f~H(x)) - Df~H(z) - Xa(f ()
+Df(f~H (@) DX1(f~H(2)) - Df ).

Since Df(f~1(x))Df~1(x) = I4, our result follows. O

At this point, we have the first technical difficulty. The property of a
vector field to have an integrable opd is not in general invariant by a change
of coordinates, as we see in this next example.

3
Ezample 2.4. — Let X(z) = Z Ai; be a linear vector field defined
i=1

9
8.Ti
in C3 with \; # 0 for all 7. Consider the polynomial diffeomorphism f(z) =
(11,29 — 22, 23) of C? and the vector field Xo = f, X given by

0 0 0
X = — 2y~ —
2($) /\1.1E1 (933‘1 + ()\256‘2 + ,LL$1)6$2 + )\31‘3 61‘3

where u = Ay — 2)1. After computations, we get

A3 — A A3 — Ay — 2)
_ |23 2+,U( 3 2 l)ml}dxl

WXZ )\11‘1 >\1A2Z2 )
Al — )\3 AQ — )\1 ,LL()\l + /\2)$1
d d
N A2T2 2 { A3T3 A2A3T273 e

The integrability condition for wx, is

2uA1 (A3 — A
wy, A dwy, = 1AL (A3 1)21

dxy A\ dzo A dzs.
)\%A:}Z‘%l‘g ! 2 3
Henceforward, wy, is integrable if only if ¢ = 0 or A\; = A3. Therefore,
given that wx, is always integrable, this property is not invariant by change

of coordinates unless this change to be linear. In fact, if f is linear then
X2 = f*Xl and Y2 = f*Yl and [XQ,YQ] = [f*lef*}/i] = f*[Xla}/l]

COROLLARY 2.5. — If X7 and X5 are holomorphic conjugate via a linear
application then the osculating pairs {X;,Y;}, for i = 1,2, are strongly
conjugate.
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PROPOSITION 2.6. — Let X be a holomorphic vector field in C3. Assume
that exists a vector v € C* such that (X,v) = 0 in some coordinate system
x € C3. Then the opd induced by X is integrable.

Proof.— Let

0 0 0
X(x)=A — 4+ A — 4+ A —
(@) = A1(@) 5+ Aa(@) 5 + Aala) 5
By a linear change of variables, if necessary, we can assume that v = (0,0, 1).
Since (X, v) = 0 we have Az(x) = 0. Then wx = g(x)dxs for some holomor-
phic function g. It is now easy to show that wy is integrable. 0

LEMMA 2.7. — Let X1 be a holomorphic vector field in C3 such that
there exists a holomorphic function f and a field Xo such that Xy(z) =
f(x) - Xo(x). Then wx, is integrable if only if wx, is integrable.

Proof.— Since X1 = f-Xs thenwy, = f>-wx,. Thus, if wy, is integrable
it follows that wx, Adwx, = 0 except on divisor of poles of X of codimension
one. Using the Riemann extension theorem, wx, A dwy, extends for all C?
as a null function. It follows that wx, is integrable. On the other hand, it
is clear that wy, is integrable if wx, is integrable. ]

From now on, let F; be a i-dimensional holomorphic foliation defined on
a 3-dimensional manifold M. F, will be called invariant by F; if T,/ C
Ty, F2, for all p € M; in other words, the leaves of F; are contained in the
leaves of F3. Locally, F; is described by a holomorphic vector field X while
F3 is described by a holomorphic 1-form w. The condition of invariance of
F2 by Fi can be written as

=1
3 P 3
where X = Z Ai(x)aT and w = Z Bi(z)dz;. See [3] for details.
i=1 ‘ i=1

PROPOSITION 2.8. — Let F;, fori = 1,2, be i-dimensional holomorphic
foliations defined on a three-dimensional manifold M. Assume the Fo is
invariant by Fy. Then Sing(Fz) is invariant by Fi.

Proof. — As before, let F; and F3 be described by the holomorphic
vector field X and the 1-form w, respectively. Since F» is a foliation it
follows that w is integrable. Let p € Sing(F3) — Sing(F7). By a change of
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variables, we can locally assume that p = (0,0,0) and X = ——. In this

8173
situation, the orbits of X are given by (x0, yo, 20 +t) for adequate values of
t € C. In this coordinate system, we have

3

w= Z B;(z)dz;.

i=1
By hypothesis w - X = Bs(x) = 0. Since w is integrable it follows that

OB OB
WAdw= |Bo2 — By 222 day A dao A dxs = 0.
8563 82133

Given that the set Sing(F2) has codimension 2, the germs By and By do not
have irreducible factors in common. The Weierstrass preparation theorem
shows that there exists an irreducible factor ¢(x) € Os[zs] of By with
multiplicity m. Let By(z) = ¢™(x)C1(x); then

m 0By me1, \ O ms ~0C1
S @O a) 2 = [mo™ (@) 22 Crla) + 67 (@) 5 | Balo)
Since ¢ is not a factor of By, it must be a factor of m%Cl(x) + (;5@.
81’3 6:03

But ¢ is not a factor of Cj(x) either and therefore ¢ divides % Since

8$3
O¢(x)
0

d(x) € Ozlzs], we have = 0. Consequently, all irreducible factors of

B, are constant with respect to z3 and the same is true for Bs. Therefore
w=DB (xl, l‘g)dl‘l + Bg(xl, xg)dl‘g.

Since p € Sing(F») we have B1(0,0) = B2(0,0) = 0. Thus, for adequate
values of ¢ € C, the line (0,0,¢) is contained in Sing(F3) and is a leaf of Fj.
(]

THEOREM 2.9. — Let X be a holomorphic vector field defined on a three-
dimensional manifold M with an integrable opd. Then there exists an ana-
lytical curve C C M invariant by the osculating pair {X,Y}.

Proof.— Let F2 be the osculating foliation defined by wx. Since wx
is integrable, Sing(F2) has codimension two; in other words, this set has
at least a 1-dimensional component C. Furthermore, by construction, F is
invariant by the osculating pair {X,Y}. From proposition (2.8) it follows
that C is invariant by {X,Y}. O
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Theorem 2.9 gives us a necessary condition for the opd induced by a
holomorphic vector field to be integrable. At this point, it is natural to ask
about the type of invariance as well as the properties of this curve. Since
Y = DX - X, we have three distinct situations for the invariance of C by
{X,Y}

1. C ¢ Sing(X) C Sing(Y);

2. C ¢ Sing(X) but C C Sing(Y);

3. C C Sing(X) C Sing(Y).

For cases 1 and 2, we have the following proposition

PROPOSITION 2.10. — Let X be a holomorphic vector field in C? such
that the 1—form wx is integrable. Consider the analytical curve C C C3
invariant by {X,Y'}. If C ¢ Sing(X) then C is a straight line.

Proof.— Let t — ¢(t) = (¢1(t), p2(t), #3(t)) be the parametrization of C
such that ¢'(t) = X (¢(t)) with ¢ € C. By hypothesis, we have two possible
situations: C C Sing(Y’) or C ¢ Sing(Y').

If C ¢ Sing(Y) then there exists a complex function A(t) such that
" (t) = A(t)¢'(t). By integration, we obtain ¢(t) = ah(t) + b, for a certain
complex function h(t) and constants a,b € C3.

If C C Sing(Y) then Y ((¢(t)) = DX (¢(t)) - X(&(t)) = 0. Since ¢'(t) =
X(o(t)), we have that

d

Y((@(1)) = DX((t)) - X (6(1) = DX(6(1)) - ¢'(t) = - X(9(t)) = 0.

Consequently, X (¢(t)) = a where a € C? is a constant. So ¢/(t) = a and
therefore ¢(t) = at + b, with b € C3. O

Ezample 2.11. — Consider X (x Z Ai iTig - deﬁned in C3 with \; #

0 for i =1,2,3. Then Y (z) = DX (x ZA%

L

Lol N dsde | e dag
X Al T A2 @ A3 w3

It is not hard to show the integrability of wx. In this situation, the three
coordinate axes’ are invariant by the osculating pair {X,Y}.
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As we will see, many holomorphic vector fields with an integrable opd
can be reduced to a vector field of the type given in the next example.

FEzxample 2.12. — Consider

0 0] 0
X A A —
(@) = A g+ hamag e+ H @50
where f is holomorphic and A1, Ao are non-zero constants. Then Y = DX - X
is given by
0 0 0
Y( )_Alzla +)\2x28 +g( )6$
where g(x) = M1 fe, + Aoxafu, + ffz,, while the opd induced by X is
described by the 1-form

g Qfdxl + 1f gdl‘g + (/\2 — )\1)d1‘3.
)\1551 AQ.’EQ

wx =

For wx to be integrable we must have

oh Ohs Ohy  Oh

wx Ndwx = hga ;—hla o ()\2—)\1)<a—xj—a—x:>:|d$1/\d.%‘2/\dxgEO
(2.1)
where h; = w and hg = m Since
121 242
Ohy Ohs 9fes — f9s
h —h Ag — Ap) =22 27%8
28 T3 18%3 ( 2 1) /\1)\21‘1]}2

it follows from (2.1) that wx A dwx = (A2 — A1)h(z)dxy A dxs A daxg for
some rational function h. In particular, if A\; = Ay then wyx is integrable
regardless of f, which determines the type of invariance of the x3—axis by
{X,Y}. More precisely, if f(0,0,25) = 0 then situation 3 occurs while if
£(0,0,z23) # 0 and f,,(0,0,z3) = 0 then situation 2 occurs. Finally, the
condition for the situation 1 to occur is (0,0, z3) fz;(0,0,23) Z 0.

3. Proof of Theorem 1.1

From now on, we will concentrate on a polynomial vector field X in C?
that contains a straight line C invariant by the osculating pair {X,Y} and
such that C ¢ Sing(X). By a linear change of variables, we can suppose that
C is the x3—axis in some coordinate system x € C3.

Let f : C3 — C be a holomorphic complex non-null function vanishing
along C; f can then be written as:

f(@) = 21 fi(z1, 22, 73) + 2 fo (21, T2, 73). (3.1)
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If f1 and f5 also vanish on the z3 — axis, they can also be written as in
(3.1). Thus f can be rewritten as

f(x) = 23 fa.0(21, T2, 73) + 172 f1 1 (21, T2, T3) + 75 fo 2 (21, T2, T3).

We repeat this process until we find some function f; ; which does not
vanish on the xz—axis. Then f will be of the form

fl@)= Y wieyfis(e). (3-2)

itj=m

where, for some ¢,j € N, we have that f; ;(0,0,z3) # 0 and xllxéf” are
linearly independent. See [4] for details.

DEFINITION 3.1. — The number m in (3.2) will be called the multiplicity
of [ along C and will be denoted by multc(f).

Henceforth, we will denote functions that vanish on the zz-axis with
multiplicity ¢ by capital letters indexed by i, i.e., A;, B; and so on.

The conditions for C to be non-trivially invariant by the vector field

X(a) = P(a) 5 + Qo) 5 R(x)a%

are Plc =0, Q|c = 0 and R|¢ # 0, in the other words, P(z lexQ pil

lemQ qi(z) and R(x ZTZ Z1,T2)- m3, with some 7;(0,0) # 0

=0
and mtegers m,n and r. Furthermore, if R,,|¢c # 0, C will be also non-

trivially invariant by the vector field Y = DX - X.

Initially we will consider multe(P) = multe(Q) = 1 and the coordinate
planes ;1 = 0 and x5 = 0 invariant by X. As a consequence, X assumes the
following form

0

X(l‘) = $1P0($)aix1 +$2Qo( )i —|—R0( )8x3

0z
with the additional condition (Rp)s,|c #Z 0. Then, generically, we have

V(@) = A(w) 5 + Bla) g+ Cla) -
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where
A = A+A = 21[P8+ Ro(Po)us| + 23Po(Po)ay, + 2122Q0(FP0)
B = Bi+B = 23|Q%+ Ro(Q0)as] + 11225 (Q0)z, + 23Q0(Q0)1,
C = Cy+Ci = Ro(Ro)zs +21Po(Ro)z, + 22Q0(R0)z,-

Taking the wedge product between X and Y we get

wx = E(x)dxy + F(x)dze + G(z)dzs

where
E = Ei+E;, = 22Ry[Qo(Ro)e; — Ro(Qo)es — Q] + 22Q0C1 — RoBo
F = Fi+F = 1R PO2 + R()(P())gc3 — Po(Ro)a;S] + RoAs — 21 PyC1
G = Ga+Gs = 2122[PoQo(Qo — Po) + Ro(Po(Q0)xs — Qo(Po)zs)]+

+239 Py - [Po(Qo)ey, — Qo(Fo)ey]
+2123Q0 - [Po(Q0)z; — Qo(Po)as)-

For wx to be integrable we must have
wx Ndwx = [Wa + W3+ -+ ]dey Adxa Adzs =0 (3.3)

with
W2 = 331.732[M . ng — N - ng] (34)

where M = Ry (PO2 + Ro(FPo)ay — R)(Ro)z.a)
and N = Ry (QO(RO)H — Ro(Qo)zs — Q%>~

Since Wa = 0 is a generic condition, it is enough to discuss (3.3) under
this assumption. We will now solve Wy = 0 considering the following cases:

Case 1. M = |:R0 (]302 + RO(PU)zg - PQ(Ro)m3):| =0.

Since Ry # 0, we have

PO(RO)xs - RO(PO)IS _ i @ =1
P2 Oxs \ Py

and consequently

Ro(x) = Po(w) [w3 + k(21,72)]
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a(xy,x2)
b(xl ) .%'2)
a,b € Clzy,x2] without a factor in common. Multiplying all the compo-
nents of X by b, we obtain case 1 of theorem 1.1.

for some rational function k € C(z1,x2). Let k(z1,22) = with

0.

Case 2. N = {RO <QO(RO)m3 — Ro(Qo)zs — Q%)}
This case is similar to the previous one.

Case 3.

[RO (P02 + Ro(Fo) s _PO(RO)I3>:| ' {Ro <Q0(R0)w3 — Ro(Qo)as —Q%)} # 0.

Given that Wy = 0, it is not hard to see that

61‘3 N o
and therefore
M Ro[P§ + Ro(Po)x; — Po(Ro)zs]  alw1,22)

N Ro[Qo(Ro)zy — Ro(Qo)as — QF] b(w1,x2)
for some polynomials a and b without a factor in common.

Therefore, we have
(CLQO - bpo) : (RO)I3 - Ro : ((IQO - blj())zg = QQ% - bP02 (35)

To solve the partial differential equation (3.5) for Ry, we must consider two
distinct situations:

(QQO — bPo) =0 or (GQO — bpo) 7_é 0.

Suppose first (aQo — bPy) = 0 then we also have (aQo — bPy),; = 0. Thus,
from (3.5), we get

P P
o= =9
Qo Q3
Since Py and )y are not identically zero it is follows that Py = Qg for all

x € C3. We therefore get the third case of theorem 1.1. Furthermore, if this
condition is satisfied then wy is always integrable.

(aQo — bPy) = (aQ% — bPOQ) =0
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Now we consider (aQq — bPy) # 0. Dividing (3.5) by (aQo — bPy)?, the
integrating factor, we get
0 Ry | aQi-bPg
dxs |aQo —bPy|  (aQo — bFy)?’

and therefore

x3 a 2 2
Ro(:zr)—(aQobPo)UO ( @ — b Sdés + ro(x1, 72)

(IQO - bP )
where ry € Clz1, 2.

Therefore (aQo —bPy) = A is a factor of Ry. Multiplying all components
of X by a, we obtain
a’Q3 — abP? A? + 2bA Py + (V% — ab) P2

(aQo —bPy)? A? )
P, P,
1+2b<KO> +b(b_“)<fo> .

Here it is important to emphasize that our aim is to find a polynomial
solution for (3.5). For such a solution to exist, A must generically, divide
Py. Therefore, Py = AFy and it follows that aQo = A + bPy = A(1 + bFy).
Thus X assumes the following form:

aX(x) = ariPy— 9 +ax2Q0 9 4+ aRy— 9

o 5 )
= A[axlFOa—xl"i‘m(l'FbFo)a—wQ+Ho(x)a—scg}

T3
where Ho(z) = ro(z1,72) + / [1 + 2bFy(€) + b(b — a)Fg(g)] dés with
0
& = (z1,22,&3) and 7¢ is a polynomial. This finishes the proof of Theorem
1.1. [l

4. Classification

In this section, we will analyze the four conditions of theorem 1.1. Except
in the case 3, new conditions must be imposed in order to guarantee the
integrability of wx.

Since cases 1 and 2 are similar, we will consider only the vector fields
given in the case 1. Let us begin by considering polynomial vector fields of
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the following form

0 0
X = mlb($1,l‘2)P0($)a—$1 + xgb(xl,xg)Qo(x)a—@
0
+Py(x)[b(x1, 2)xs + a(xy, x2)] =—.

(9:63

In order to simplify our computations, we consider the vector field X; given
by X = bP()Xl, i.e.,

0 0 0
X = L - sz(iﬁ)a—xQ + [z3 + k(21, xz)]a—m

where Q@ = Qo/FPy and k = a/b. The opd induced by X is described by the

1-form
wx, = Edri + Fdro + Gdxs

where
E = B+ Ey=—xsfxs +k|H(x) + 1122 A7) + 22 B(2)
F = F2 = —1’%kml — £C1£E2ka2 (41)
G = G2 + G3 = ‘Tlx?H(x) + x%x2QII + $1$§QQ12

with A(z) = [Qks, — (23 + k)Qu,], Blz) = Q[Qks, — (23 + k)Qu,] and
H =Q*—Q+ (z3+k)Qu,. The condition of integrability of wy, is written

wx, Ndwx, = [Wa + W3 +...Jdxy Adze A dxs.

Since X is obtained from the case 1 of theorem 1.1 we have Wy = 0. After
an exhaustive computations, we get

W3 = 23 + k|Hy, [2720ks, + 2125Qks,]. (4.2)

We will impose the condition W3 = 0 for wx, to be integrable. Then
Wi =0if ky, = kg, =0 or H,, = 0. For the case where k is a constant, we
have the following result:

PROPOSITION 4.1. — Let X be a polynomial vector field in C? such that

0 0
X = 131[)(171, JZQ)P()(I)TZEI + IQb(Il,Ig)Qo(l‘)iaxz
0
+Po(z)[b(z1, x2)23 + a1, 22)] 5

6333

with b(x1,22) = k- a(x1,x2), where k is a constant. Then the opd induced
by X 1is integrable.
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Proof. — As before, let us consider X; given that X = bF, - Xy, i.e.,

0 0 0]
X; = k
1 1‘18 +22Q(z ) O + (w3 + )8 s
where Q = Qo/ Py and k is a constant. By a linear change of variables, X7 is
of the same type as given in example (2.12) and therefore wx, is integrable
for all functions Q. (I

Now we will examine the condition HI3 = 0 given in (4.1). In order to

solve this equation we will write Q(x Z qi(x3+ k) where ¢; € C(z1,z2)

=0
are rational functions. It follows that,

H=Q" +[r3+ k- (Qay — Q= Zﬁz (i = Dail(ws + k)’

K3
with 8; = Z%‘—j%ﬂ Since H,, = 0 we have 3; + (i — 1)¢; = 0 for i € N.
j=0
Therefore, for ¢ = 1, we have 51 = 2ggq; = 0. At this point, there are two
distinct possibilities: either ¢o = 0 or g; = 0. We observe that we cannot
have ¢ = 0 and ¢; = 0; in fact, g = q1 = -+ = ¢m-1 = 0, with m > 2
implies 3, = 0. Since 5, + (m — 1)¢,, = 0 we would also have ¢,,, = 0. But,
given that @ is not identically zero, we obtain a contradiction.

Let us assume that gg # 0. Again there are two distinct possibilities:
q; = 0 for all i € N or there exists m € N such that g,, # 0. In the former
situation we get Q = Q(x1, z2) while in the latter we get 5, — (m —1)g, =
(2g0 + m — 1)@y, = 0, which gives go = —(m — 1)/2.

(—1)i+t m_

By induction we can show ¢; = 0if j # 0 mod m and ¢;,,, = 1
m

Then,

m—1 mam(z + k)™
2 m+ Qm(xS + k)m

—qo+z 1yt (g + kY™ = -

Since ¢, # 0 is a rational function, we can rewrite () as

- om—1 m(xs + k)™
Q) = - 7 mpB+ ?.’Eg + k)m (43)

for some rational function . Similarly, we obtain the same relation when
qo = 0 and ¢; # 0. Therefore, equation (4.3) is valid for all m € N.
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For the case where @ is a constant, we obtain the following result:

THEOREM 4.2. — Let X be a holomorphic vector field in C3 such that

X(z) == P(l‘)i-i—ZE Qo(x )i—i-P( Vs + k(xy, 22)] =— 4

= Tbolw) 5 2ol 5 - 0 3 L22)l 5 25

Assume that Qo = X\ - Py where X is a constant. Then the opd induced by X
is integrable if

1. A€ {0,1} or k is an affine linear function;

- —ij £ /1j( Z-|—j—1

722,17 € Nand k(x1,22) = aziz?
(]71) ( ) 142

with o € C.

Proof.— Let us consider the following vector field

0 0 0
Xl = .’Ela + )\15283;2 + [.’Eg —+ k((El,.’EQ)}a—l‘?’.

If A\=0or A =1 the I-form wy, is integrable by proposition (2.6) and the
example (2.12), respectively. Furthermore, if k is an affine linear function,
wx, is integrable by Cayley’s observation.

Now, we can suppose that k(x1,za) = Z amnrltzy and A € {0, 1}.
n+m=0

Thus
wx, Adwx, = A1 = N)(2122) 27Kz, 2, + 2A0182k0, 0, + A0 k0sa, ]
and therefore,

T2ky, o, + 200120k, 2y + N2T3ki0 s,
o0
= Z Qo [m(m —1) 4+ 2mn\+n(n — 1)/\2} izl

m+n=2
Since A = il ,(Z_](Z;;j ) for some 4,7 > 2, then it follows that
AW
i(i — 1) + 2ijX + j(j — 1)A? = 0. Consequently, in order for wx, to be
integrable, we can take k(z1,72) = aziz), with a € C. O

COROLLARY 4.3. — Let X be a the polynomial vector field in C? given
by

+Py(x)[b(x1, x2)x3+a(z1, z2)] i

o 0
—+x2b(z1,22)Qo(z) 5— Oxs3

X = iElb(iUl,xg)R](if) 8,]31 8,232
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with Qo = X - Py where \ is a constant. Then wx is integrable if one of
following conditions is satisfied

1. X € {0,1} or b(z1,2z2) = k(x1,x2)a(x1,x2) with k an affine linear

function;
2 A= Y _(Z_](ZSJ ), i,j > 2,4,j € N and b(zy,22) = axizd -
AV

a(z1,x2) with a € C;
Setting m = 1 in the equation (4.3) we have the following result:

THEOREM 4.4. — Let X be a holomorphic vector field defined in C* such
that

X(a) = erPofa) 5 + a2Qo(e) 5 + Pl + Kor. )l

Assume that [x3 + h(z1,22)]Qo = [x3 + k(x1,22)] Py for some holomorphic
function h. Then wx 1is integrable if k or h is a constant function or if
k=h.

Proof. — As before, we will consider the vector field X; such that X =
Po . Xl, i.e.,

0 0 0
Xi(x) = 31018—x1 + x2Q($)a—$2 + [zs + k(xlvm)]a—xs

x3 + k(z1, x2)

h = .
where Q(x) P e

If k or h is a constant then wx, is integrable by proposition (2.6) while
if h = k, the integrability of wx, follows by example (2.12). In the general
case, we must have

wx Ndwx = [WQ + W3+ Wy + W5}d$1 ANdxo ANdxs = 0.

Given that X; has the form given in the case 1 of theorem 1.1 we have
Wy = 0 and W3 = 0 because H,, = 0. Therefore, we must have Wy = 0
where

2k —h)(xs + k) [ 4 5
@5 1 B)° xixa(xs + h) hy ke +

+a2x3 (w3 + k) (x3 + h) (he, key + hayke,) + 2103 (23 + k)2 hay ke, |-
(4.4)

Wy =
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We now observe that, for wx, to be integrable we must have, generically,
that

x:{)xQ(mff + h)zhzlkfbl + x%x%(xg + k)(.’[g + h)(hfﬂlkﬂm + hxzkm)
+x123 (w3 + k)?hay ke, = 0.

Dividing the last equation by x12(z3 + h)?, we obtain the quadratic equa-
tion
m§Q2h12kI2 + x1$2Q(hw1kzz + hmzkam) + x%haflkwl =0,

xlkwl
or Q = — .
kaibg thmg

and therefore QQ = — T1hg,

In the first case (x1ky, + xoky,)xs + (x1hky, + x2kk,,) = 0 for all x3
and so we must have (z1k;, + x2k,,) = 0. This is a contradiction unless k
is a constant function. The second case is identical. g

Now we will consider a polynomial vector field of the following form:

0 0 0
X(z) = :cla(xl,xg)Po(x)a—xl + zo1 + b(ar:l,3(;2)P0(36)]a—$2 + Ro(x)a—x?)

z3

where Ro(z) = ro(x1,z2) + / [1 + 2bP(€) + b(b — a)P(&))dés, with

0
£ = (z1,22,&) and a,b and rg € Clz1, x3).

We will restrict our analysis to the case where a and b are nonzero
constants and P, is a non-constant function. The situations P, constant
and b = 0 were discussed in theorem 4.2.

THEOREM 4.5. — Let X be a polynomial vector field in C* given by

0 0 o
X(x) = 21 Po(2) 5=+ o[l + AP (@) 5+ Ro(gc)a_gc3

z3
where Py is a non constant function, Ry = ro(x1,z2) + / [142XPy (&) +
0

AN — 1) PE(6)]des, with € = (z1,22,&3) and X # 0. Generically, the opd
induced by X s integrable if one of the following conditions is satisfied

1. X=1, Py(z) = po(z1,x2)+p1(x1, x2) 23 with ro = po and p; = po+1
or o =po + 1 and pg = p1;

2. X#£1, Py = Py(x3) and ro a constant function;

3. A=1, Py = Py(x3) and ro are affine linear functions.
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Proof. — As before, the condition of integrability of wx is given by
wx, N del = [W2 + W3 + -- ]dl‘l ANdxo Ndrs =0

where W5 = 0 by theorem 1.1 and

W3 = x%.rQPORO — M(RO) R + ng (Ro)m1:|

1T

+I1IE%(1 +AP0)R0|:M(R0) 5 +Mx3 (RO)

o )

where M = Py[l + AR][1 4+ (A = 1)Py] — Ro - (Po)ay = Fo - (Ro)ay — Ro -
(PO)TS_PO?'

In order to obtain the integrability of wyx we will impose the condition
W3 = 0, hence

7M(R0)w1w3 + Ma, (Ro)m =0 (4.5)
~M(Ro),,,. + M (Ro),, = 0
Solving (4.5) for M and M,, we must consider the determinant
D= (RO)IQIs : (RO)Il - (RO)Eles : (RO)I2‘ (46)
m .
Let Py(z) = Zpi(xl,mg)xg where p; € Clzy, 23], pm #Z 0 and m =

i=0
deg,.(P), the degree of Py in respect to x3.

Case 1. D # 0.

In this case, the homogeneous system (4.5) admits only the trivial solu-
tion M = 0. But, given that M = Py - (Ro)z, — Ro - (Po)s, — P2, we have
M = 0 if and only if

b(x1, z2)Ro(z) = Po(z)[b(z1,x2) - w3 + a1, T2)] (4.7)

for some polynomials a,b. We will consider the situations A =1 and A # 1
separately. First, let A # 1; then, since

Ro(z) = ro(z1,22) + /013[1 + 20P(€) + AMA — 1) Py (€)]dés

we obtain deg, (Ro) = 2m+1 while from (4.7) deg,, (Ro) = m~+1. Compar-
ing these degrees we get m = 0 and it follows that results Py = Py(x1, z2).
In this situation, we have M = Py[l + APp][1 + (A — 1) Py] = 0 since Py is
not a constant, we obtain a contradiction.

- 214 —



Integrable Osculating Plane Distributions

m—+1
Let us now consider A = 1. From (4.7) we get Ro(z) = Z ri(21, T2)Th

i=0
with brg = bpg +a and r;, = p;—1 for i = 1,...,m + 1. Given that

*3 2pi_
Ry = 1o +/ [1 4+ 2Py(§)]dés we obtain r1 = 1 4 2pg and r; = pi !
0

for i = 2,...,m + 1. Comparing these two expressions for Ry we conclude
m =1 and rop1 = po(po + 1).

Therefore, if rqg = pg then p; = pg + 1. In this situation, X assumes the
form:

0 0 0
X =x1Py(x)— 14+ P, — + P, 1 -
1 O(fv)axl + o[l + 0(90)]8952 + Po(x) - [ +9€3]ax3
which induces an integrable wx by proposition (4.1). By the same reason,
wx is integrable if rg = pg + 1 and p; = py.

Furthermore, if rg = «a(x1,z2) is a nontrivial factor of pg(z1,z2) =
a(z1,22)B(x1, x2), then p; = S(14+ap). In this way, X assumes the following
form:

(14-Bx3)[a+(1+af)xs] 9

X = xlﬁ[a+(1+aﬂ)x3]i+x2(1+a5)[1+5m3} 9 .

92, org |

Dividing X by S[a + (1 + af)z3] we obtain X; given by

0 0 0
X, = g +£U2Q($)a—332 + [r3 + k(xha:z)]a—m

1 x3 + k(x1,22)
where k = 5 Q= 25+ h(z1,72) and h = TTab
sition (4.4), wx, is not integrable because k and h are not constant and
h # k. The same is true if pg + 1 = af and rg = «. This finishes the first
case of the theorem.

Generically, by propo-

Case 2. D = (Ry)g, = (Ro)ay =0

Since
Ro() = ro(ar, 25) + /0 YL 20RO A — 1) P2(E)des,

we get

(oo = (o) + [ 214 (= DR (Ro)da =0
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for i = 1,2. For this to happen we must have (r¢),, = (Fy)s;, = 0fori=1,2
and consequently rg is a constant and Py = Py(x3). In this situation, the
opd induced by X is described by the 1-form

wx = maaM (@) Rola) AT = %+ 50

which is integrable since we also have Ry = Ro(z3).

Case 3. D = (Ry)z, =0 and (Rp),, Z0.

From now on, we will consider only M # 0 since M = 0 has been
analyzed in the case 1. As explained in the previous case, we have rg =
m

’I"o(xl) and PO = Po(,rl,xg) = sz(l‘l) . Ié since (Ro)x,z =0.
i=0
From the first equation of (4.5) we obtain b(z1)M (x) = a(x1)(Ro),, for

some polynomials a,b € C[x;]. So again we must consider the situations
A#land A =1.

x3
We will begin with A # 1. By hypothesis, Ro(z) = ro(z1) +/ 1+
0

2APy(€) + A(X — 1)P3(€)]dés. 1t follows that deg,,(Ro) = 2m + 1 and
since M = Py(Ro)zy — Ro(Po)a;, — P§ we get deg,, (M) = 3m. Given that
b(x1)M(x) = a(z1)(Ro)s, we have m < 1 because deg,.(Ro)z, < 2m + 1.

If m = 0 then My, = Py (Ro)zszs = 0 and (Ro)gyas = 2A[1 + (A —
1)Py] - (Po)x,- From the first equation of (4.5) we get M - (Ro)z,25 = 0; it
follows that (Ro)s,z; = 0 since M # 0. Consequently (Fp),, =0, i.e., Py is
a constant. Therefore, we obtain m = 1.

Now, we will compare the coefficients of bM and a(Rp),, for m = 1:

b[(1+ Apo) - (1 — po + Apo) - po — rop1| = ar

2bpop1(A — 1) - (1 4 Apg) = 2Xa[l + (A — 1)polp}
(4.8)
bpf (A — 1) - (1 +2X\po) = Aalpy + (A = 1) - (pop1 + pop1)]

AN = 1)bp? = A(A = 1)ap1p}
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From p; # 0 and the third equality of (4.8) we obtain bp? = ap} and
Py = A\ — 1)[pop} — pip1]- Multiplying the second equality of (4.8) by p1
we get

—popy + Apopy — pop1) + A(X = 1)(pop’ — pop1)po = 0.

Combining these two equations we obtain A(pop) — pip1) = 0. Therefore
py = 0, which gives p{, = 0; it follows that Py = Py(x3) = po + p1 - 3.
Furthermore, since p; is a constant then b = 0 and from (4.8) it follows that
ro is also constant and so we are in the previous case.

x3

Now, let us consider A = 1. Given that Ry(z) = ro +/ [14+2Py(&)]dés

0
and M = P§+Py—Ro(P)a, then deg,, (M) = 2mif m > 1 and deg,, (M) =
0, if m < 1. Since b(x1)M(x) = a(z1)(Ro)z, we get m < 1. As in the
situation where A # 1, it is not possible to have m = 0 so that m = 1,
which shows that pg and p; are both constant. Therefore, X assumes the
following form

0 o o
X(z) = xlpo(asg)a—xl + o[l + PO(:,;?))]@TC2 + RO(I)a73

where Py = Py(z3) is an affine linear and Ry(z) = ro(z1) + /ms[l +
2Py(§)]d€. The opd induced by X is described by the 1-form ’
wx = [waRoM +x129 Po(1+4 Po)rp)das — [x1 RoM + 23 Piry]des + 2120 Mdxs
where M = P¢ + Py — RoP}. The integrability condition of wx is

wx Adwx = =iz [M(z) - Pj(zs) - 7§ (21)]dey A dxy A dzs = 0.

Consequently, in this situation wx is integrable if rg is also an affine linear
function.

Case 4. D = (Ry)z, =0 and (Ry),, Z 0.

This case reduces to the previous one by a change of variables.

Case 5. D=0, (Ry)s, £ 0 and (Rp),, # 0.

Solving the first equation of (4.5) we obtain fa(x1,z2) M (z) = f1(21,22)
(Ro)x, (x) for some polynomials fi, fo € Clz1,z2]. Applying the same ideas
presented in case 3 of this theorem, we can show that deg,. (Fy) = 1 and
(P0)z;, = (P1)x, = 0, therefore Py = Py(xe,z3). Repeating this process
again but now for the zq-variable, we obtain Py = Py(x3) with pg and p;
constants.
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As in the case 3, if A # 1 then rq is a constant and consequently, wx is
integrable because Py = Py(x3) as proved. For A = 1 we will determine the
functions rg = ro(x1, z2) which ensure the integrability of wyx. Let

0 0 ]
X(z) = aclPo(m)a—x1 + 22[1 + P()((Eg,)]a—m + Ro(gc)a_xg,

where Py = Py(x3) is an affine linear function and Rg(z) = ro(x1,x2) +
3

/ [1+2Py(&)]d¢. The condition of integrability of wx is written as
0

wx Ndwx =

M |:xz{’x2P02~(7"0)$1$1 +2x%x%.P0(1+PO).(TO)I1$2 +x1x%(1+P0)2'(T0)1212:| av

n
where M = P2 + Py — Ry - P}. Writing ro = Z a; T4l we get

i+j=0

wx N de =

—M[ Z a; ity i(i—1)Pg+2ij Po(14 Po) +5(j — 1)<1+Po)2]}dv
i+j=2

For the existence of nontrivial solutions other than the linear one we must
have
i(i —1)P} +2ijPy(1+ Py) +j(j — 1)(1+ Py)* =0

for i +j =1 > 2. The coefficient of x3 in this last expression is

i(i = 1)pt + 2ijpt +j (G — )p?
since Py(x3) = po+p1-xs. Given that p; # 0, we have i(i—1)4+2ij+7(j—1) =
(i + 7)[(@E + j) — 1] = 0 which is possible only if (i +j) =0 or (i +j) = 1.

Therefore, in this situation, wy is integrable only when r( is also an affine
linear function.
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