Mathématiques

Gilcione Nonato Costa
Integrable Osculating Plane Distributions

Tome XXII, n ${ }^{\circ} 1$ (2013), p. 197-218.
http://afst.cedram.org/item?id=AFST_2013_6_22_1_197_0
© Université Paul Sabatier, Toulouse, 2013, tous droits réservés.
L'accès aux articles de la revue «Annales de la faculté des sciences de Toulouse Mathématiques» (http://afst.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

Integrable Osculating Plane Distributions

Gilcione Nonato Costa ${ }^{(1)}$

Abstract

We give a necessary condition for a holomorphic vector field to induce an integrable osculating plane distribution and, using this condition, we give a characterization of such fields. We also give a generic classification for vector fields which have two invariant coordinate planes.

RÉSumé. - Nous donnons une condition nécessaire sur les champs de vecteurs holomorphes qui induit une distributuon de plans osculateurs et, en l'utitilisant, nous donnons une caracterisation de ces champs. Cela nous permettra aussi d'obtenir une classification générique des champs de vecteurs ayant deux plans coordonnés invariants.

1. Introduction

In the second half of the $19^{\text {th }}$ century, Arthur Cayley observed that the a linear vector field defined in \mathbb{R}^{3} or \mathbb{C}^{3} has an integrable osculating plane distribution (opd for short). To be precise, let us consider the orbit $\phi(t)$ of the vector field X such that $\phi^{\prime}(t)=X(\phi(t))$ with $t \in \mathbb{C}$. The osculating plane associated to X is spanned by the vectors $\phi^{\prime}(t)$ and

$$
\phi^{\prime \prime}(t)=D X(\phi(t)) \cdot \phi^{\prime}(t)=D X(\phi(t)) \cdot X(\phi(t))
$$

In other words, the osculating plane is generated by the vector fields X and $Y=D X \cdot X$. Therefore, the osculating plane of a trajectory at a given point is determined by its initial direction and by the direction of the force acting at the given point.

[^0]Now let $X=A x+B$ be an affine linear vector field with $A \in M(3, \mathbb{C})$, the set of complex matrices $3 \times 3, B \in \mathbb{C}^{3}$. Then $Y(x)=A \cdot X=A^{2} x+A B$. Taking the Lie bracket, we get

$$
[X, Y]=D X \cdot Y-D Y \cdot X=A \cdot\left[A^{2} x+A B\right]-A^{2} \cdot[A x+B]=0
$$

Since the Lie bracket vanishes, X and Y span an involutive distribution. This shows that all affine linear vector fields in \mathbb{C}^{3} have an integrable opd . It can be shown that for fields of degree greater than 1 this is not a generic fact. Furthermore, except when X is an affine linear vector field in \mathbb{C}^{3}, it is not easy to find a vector field such that its opd is integrable.

In [2], one of the 14 problems proposed by Dominique Cerveau was the description and classification of all the real or complex polynomial vector fields that have this beautiful property. In this article, we will give a partial answer to Cerveau's question, as follows: we will first give a necessary condition for a holomorphic vector field in \mathbb{C}^{3} to have an integrable opd. Then we characterize and classify the polynomial vector fields in \mathbb{C}^{3} which have two invariant coordinate planes and an integrable opd.

Let X be a holomorphic vector field in \mathbb{C}^{3} and ω_{X} be the 1-form given by wedge product between X and $Y=D X \cdot X$. If ω_{X} is integrable then the singular set $\operatorname{Sing}\left(\omega_{X}\right)$ will have at least one component of dimension one, i.e., an analytic curve \mathcal{C}. Furthermore, by construction, ω_{X} is also invariant by X and Y, which shows that \mathcal{C} is invariant by X and Y simultaneously. There are three situations to be considered, depending on the curve \mathcal{C} being contained or not in the singular sets of X or Y. As we will see, if \mathcal{C} is not contained in the singular set $\operatorname{Sing}(X)$ then \mathcal{C} is a straight line. Unless the change of coordinates is linear, the integrability of opd is non-invariant by diffeomorphism of \mathbb{C}^{3}. See the example (2.4).

In this article, we will treat in the polynomial vector fields X in \mathbb{C}^{3} such that the invariant straight line \mathcal{C} is not contained in the singular sets of X and Y. By a linear change of variables, this curve \mathcal{C} may be given as $x_{1}=x_{2}=0$ in some coordinate system of \mathbb{C}^{3}. Furthermore, we will impose the two coordinate planes that define the curve invariant \mathcal{C} also be invariant by X and Y. More precisely, we will prove the following theorem:

Theorem 1.1. - Consider the space of polynomial vector fields

$$
X(x)=x_{1} F_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} G_{0}(x) \frac{\partial}{\partial x_{2}}+H_{0}(x) \frac{\partial}{\partial x_{3}},
$$

such that F_{0}, G_{0}, H_{0} and $\left(H_{0}\right)_{x_{3}}$ are non-zero on the x_{3}-axis. If the opd induced by X is integrable then one of following condition is generically satisfied

1. $F_{0}(x)=b P_{0}(x), G_{0}(x)=b Q_{0}(x)$ and $H_{0}(x)=P_{0}(x)\left[a+x_{3} b\right]$ for some $a, b \in \mathbb{C}\left[x_{1}, x_{2}\right]$;
2. $F_{0}(x)=b P_{0}(x), G_{0}(x)=b Q_{0}(x)$ and $H_{0}(x)=Q_{0}(x)\left[a+x_{3} b\right]$ for some $a, b \in \mathbb{C}\left[x_{1}, x_{2}\right]$;
3. $F_{0}(x)=G_{0}(x)$ for all $x \in \mathbb{C}^{3}$;
4. $F_{0}(x)=a P_{0}(x), G_{0}(x)=1+b P_{0}(x)$
and $H_{0}(x)=r_{0}+\int_{0}^{x_{3}}\left[1+2 b P_{0}(\xi)+b(b-a) P_{0}^{2}(\xi)\right] d \xi_{3}$
with $a, b, r_{0} \in \mathbb{C}\left[x_{1}, x_{2}\right]$ and $\xi=\left(x_{1}, x_{2}, \xi_{3}\right) \in \mathbb{C}^{3}$.
Conversely, in the section 4, we will then examine the four conditions given on the theorem 1.1. With the exception of condition (3), in which case the opd is always integrable, we must impose additional conditions on F_{0}, G_{0} and H_{0} to guarantee the integrability of ω_{X}.

2. Preliminary

Throughout this paper X will denote a holomorphic vector field and its $o p d$ will be described by the 1 -form ω_{X}, both defined in a three-dimensional complex manifold M.

Definition 2.1. - A pair of holomorphic vector fields $\{X, Y\}$ will be called an osculating pair if $Y(x)=D X(x) \cdot X(x)$ in some coordinate system $x \in \mathbb{C}^{3}$.

Definition 2.2. - The osculating pairs $\left\{X_{i}, Y_{i}\right\}$, for $i=1,2$, will be called strongly conjugate if there is a unique biholomorphism f which conjugates X_{1}, X_{2} and Y_{1}, Y_{2}, simultaneously.

Proposition 2.3. - The osculating pairs $\left\{X_{i}, Y_{i}\right\}$, for $i=1,2$, are strongly conjugate via the biholomorphism f if

$$
\left[D^{2} f(x) \cdot(D f(x))^{-1} X_{1}(x)\right] \cdot D f(x) \cdot X_{1}(x)=0, \forall x \in \mathbb{C}^{3}
$$

Proof. - By hypothesis, the osculating pairs $\left\{X_{i}, Y_{i}\right\}$, for $i=1,2$, are strongly conjugate. It follows that

$$
\begin{aligned}
X_{2}(x) & =f_{*} X_{1}=D f\left(f^{-1}(x)\right) \cdot X_{1}\left(f^{-1}(x)\right) \\
Y_{2}(x) & =f_{*} Y_{1}=D f\left(f^{-1}(x)\right) \cdot Y_{1}\left(f^{-1}(x)\right)
\end{aligned}
$$

the push-forward of X_{1} and Y_{1} by f, respectively. Since $Y_{1}(x)=D X_{1}(x)$. $X_{1}(x)$, we have

$$
Y_{2}(x)=D f\left(f^{-1}(x)\right) \cdot D X_{1}\left(f^{-1}(x)\right) \cdot X_{1}\left(f^{-1}(x)\right) .
$$

On the other hand, $Y_{2}(x)=D X_{2}(x) \cdot X_{2}(x)$ where

$$
\begin{aligned}
& D X_{2}(x)=D^{2} f\left(f^{-1}(x)\right) \cdot D f^{-1}(x) \cdot X_{1}\left(f^{-1}(x)\right) \\
&+D f\left(f^{-1}(x)\right) \cdot D X_{1}\left(f^{-1}(x)\right) \cdot D f^{-1}(x) .
\end{aligned}
$$

Since $D f\left(f^{-1}(x)\right) D f^{-1}(x)=I_{d}$, our result follows.
At this point, we have the first technical difficulty. The property of a vector field to have an integrable opd is not in general invariant by a change of coordinates, as we see in this next example.

Example 2.4.- Let $X(x)=\sum_{i=1}^{3} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}$ be a linear vector field defined in \mathbb{C}^{3} with $\lambda_{i} \neq 0$ for all i. Consider the polynomial diffeomorphism $f(x)=$ $\left(x_{1}, x_{2}-x_{1}^{2}, x_{3}\right)$ of \mathbb{C}^{3} and the vector field $X_{2}=f_{*} X_{1}$ given by

$$
X_{2}(x)=\lambda_{1} x_{1} \frac{\partial}{\partial x_{1}}+\left(\lambda_{2} x_{2}+\mu x_{1}^{2}\right) \frac{\partial}{\partial x_{2}}+\lambda_{3} x_{3} \frac{\partial}{\partial x_{3}}
$$

where $\mu=\lambda_{2}-2 \lambda_{1}$. After computations, we get

$$
\begin{aligned}
& \omega_{X_{2}}=\left[\frac{\lambda_{3}-\lambda_{2}}{\lambda_{1} x_{1}}+\frac{\mu\left(\lambda_{3}-\lambda_{2}-2 \lambda_{1}\right) x_{1}}{\lambda_{1} \lambda_{2} x_{2}}\right] d x_{1} \\
&+\frac{\lambda_{1}-\lambda_{3}}{\lambda_{2} x_{2}} d x_{2}+\left[\frac{\lambda_{2}-\lambda_{1}}{\lambda_{3} x_{3}}+\frac{\mu\left(\lambda_{1}+\lambda_{2}\right) x_{1}^{2}}{\lambda_{2} \lambda_{3} x_{2} x_{3}}\right] d x_{3}
\end{aligned}
$$

The integrability condition for $\omega_{X_{2}}$ is

$$
\omega_{X_{2}} \wedge d \omega_{X_{2}}=\frac{2 \mu \lambda_{1}\left(\lambda_{3}-\lambda_{1}\right) x_{1}}{\lambda_{2}^{2} \lambda_{3} x_{2}^{2} x_{3}} d x_{1} \wedge d x_{2} \wedge d x_{3} .
$$

Henceforward, $\omega_{X_{2}}$ is integrable if only if $\mu=0$ or $\lambda_{1}=\lambda_{3}$. Therefore, given that $\omega_{X_{1}}$ is always integrable, this property is not invariant by change of coordinates unless this change to be linear. In fact, if f is linear then $X_{2}=f_{*} X_{1}$ and $Y_{2}=f_{*} Y_{1}$ and $\left[X_{2}, Y_{2}\right]=\left[f_{*} X_{1}, f_{*} Y_{1}\right]=f_{*}\left[X_{1}, Y_{1}\right]$.

Corollary 2.5. - If X_{1} and X_{2} are holomorphic conjugate via a linear application then the osculating pairs $\left\{X_{i}, Y_{i}\right\}$, for $i=1,2$, are strongly conjugate.

Proposition 2.6. - Let X be a holomorphic vector field in \mathbb{C}^{3}. Assume that exists a vector $v \in \mathbb{C}^{3}$ such that $\langle X, v\rangle=0$ in some coordinate system $x \in \mathbb{C}^{3}$. Then the opd induced by X is integrable.

Proof. - Let

$$
X(x)=A_{1}(x) \frac{\partial}{\partial x_{1}}+A_{2}(x) \frac{\partial}{\partial x_{2}}+A_{3}(x) \frac{\partial}{\partial x_{3}}
$$

By a linear change of variables, if necessary, we can assume that $v=(0,0,1)$. Since $\langle X, v\rangle=0$ we have $A_{3}(x) \equiv 0$. Then $\omega_{X}=g(x) d x_{3}$ for some holomorphic function g. It is now easy to show that ω_{X} is integrable.

Lemma 2.7. - Let X_{1} be a holomorphic vector field in \mathbb{C}^{3} such that there exists a holomorphic function f and a field X_{2} such that $X_{1}(x)=$ $f(x) \cdot X_{2}(x)$. Then $\omega_{X_{1}}$ is integrable if only if $\omega_{X_{2}}$ is integrable.

Proof. - Since $X_{1}=f \cdot X_{2}$ then $\omega_{X_{1}}=f^{3} \cdot \omega_{X_{2}}$. Thus, if $\omega_{X_{2}}$ is integrable it follows that $\omega_{X_{1}} \wedge d \omega_{X_{1}}=0$ except on divisor of poles of X_{2} of codimension one. Using the Riemann extension theorem, $\omega_{X_{1}} \wedge d \omega_{X_{1}}$ extends for all \mathbb{C}^{3} as a null function. It follows that $\omega_{X_{1}}$ is integrable. On the other hand, it is clear that $\omega_{X_{2}}$ is integrable if $\omega_{X_{1}}$ is integrable.

From now on, let \mathcal{F}_{i} be a i-dimensional holomorphic foliation defined on a 3 -dimensional manifold $M . \mathcal{F}_{2}$ will be called invariant by \mathcal{F}_{1} if $T_{p} \mathcal{F}_{1} \subset$ $T_{p} \mathcal{F}_{2}$, for all $p \in M$; in other words, the leaves of \mathcal{F}_{1} are contained in the leaves of \mathcal{F}_{2}. Locally, \mathcal{F}_{1} is described by a holomorphic vector field X while \mathcal{F}_{2} is described by a holomorphic 1-form ω. The condition of invariance of \mathcal{F}_{2} by \mathcal{F}_{1} can be written as

$$
\omega \cdot X=\sum_{i=1}^{3} A_{i}(x) B_{i}(x)=0
$$

where $X=\sum_{i=1}^{3} A_{i}(x) \frac{\partial}{\partial x_{i}}$ and $\omega=\sum_{i=1}^{3} B_{i}(x) d x_{i}$. See [3] for details.
Proposition 2.8. - Let \mathcal{F}_{i}, for $i=1,2$, be i-dimensional holomorphic foliations defined on a three-dimensional manifold M. Assume the \mathcal{F}_{2} is invariant by \mathcal{F}_{1}. Then $\operatorname{Sing}\left(\mathcal{F}_{2}\right)$ is invariant by \mathcal{F}_{1}.

Proof. - As before, let \mathcal{F}_{1} and \mathcal{F}_{2} be described by the holomorphic vector field X and the 1 -form ω, respectively. Since \mathcal{F}_{2} is a foliation it follows that ω is integrable. Let $p \in \operatorname{Sing}\left(\mathcal{F}_{2}\right)-\operatorname{Sing}\left(\mathcal{F}_{1}\right)$. By a change of
variables, we can locally assume that $p=(0,0,0)$ and $X=\frac{\partial}{\partial x_{3}}$. In this situation, the orbits of X are given by $\left(x_{0}, y_{0}, z_{0}+t\right)$ for adequate values of $t \in \mathbb{C}$. In this coordinate system, we have

$$
\omega=\sum_{i=1}^{3} B_{i}(x) d x_{i}
$$

By hypothesis $\omega \cdot X=B_{3}(x) \equiv 0$. Since ω is integrable it follows that

$$
\omega \wedge d \omega=\left[B_{2} \frac{\partial B_{1}}{\partial x_{3}}-B_{1} \frac{\partial B_{2}}{\partial x_{3}}\right] d x_{1} \wedge d x_{2} \wedge d x_{3}=0
$$

Given that the set $\operatorname{Sing}\left(\mathcal{F}_{2}\right)$ has codimension 2 , the germs B_{1} and B_{2} do not have irreducible factors in common. The Weierstrass preparation theorem shows that there exists an irreducible factor $\phi(x) \in \mathcal{O}_{2}\left[x_{3}\right]$ of B_{1} with multiplicity m. Let $B_{1}(x)=\phi^{m}(x) C_{1}(x)$; then

$$
\phi^{m}(x) C_{1}(x) \frac{\partial B_{2}}{\partial x_{3}}=\left[m \phi^{m-1}(x) \frac{\partial \phi}{\partial x_{3}} C_{1}(x)+\phi^{m}(x) \frac{\partial C_{1}}{\partial x_{3}}\right] B_{2}(x)
$$

Since ϕ is not a factor of B_{2}, it must be a factor of $m \frac{\partial \phi}{\partial x_{3}} C_{1}(x)+\phi \frac{\partial C_{1}}{\partial x_{3}}$. But ϕ is not a factor of $C_{1}(x)$ either and therefore ϕ divides $\frac{\partial \phi}{\partial x_{3}}$. Since $\phi(x) \in \mathcal{O}_{2}\left[x_{3}\right]$, we have $\frac{\partial \phi(x)}{\partial x_{3}} \equiv 0$. Consequently, all irreducible factors of B_{1} are constant with respect to x_{3} and the same is true for B_{2}. Therefore

$$
\omega=B_{1}\left(x_{1}, x_{2}\right) d x_{1}+B_{2}\left(x_{1}, x_{2}\right) d x_{2} .
$$

Since $p \in \operatorname{Sing}\left(\mathcal{F}_{2}\right)$ we have $B_{1}(0,0)=B_{2}(0,0)=0$. Thus, for adequate values of $t \in \mathbb{C}$, the line $(0,0, t)$ is contained in $\operatorname{Sing}\left(\mathcal{F}_{2}\right)$ and is a leaf of \mathcal{F}_{1}.

Theorem 2.9. - Let X be a holomorphic vector field defined on a threedimensional manifold M with an integrable opd. Then there exists an analytical curve $\mathcal{C} \subset M$ invariant by the osculating pair $\{X, Y\}$.

Proof. - Let \mathcal{F}_{2} be the osculating foliation defined by ω_{X}. Since ω_{X} is integrable, $\operatorname{Sing}\left(\mathcal{F}_{2}\right)$ has codimension two; in other words, this set has at least a 1 -dimensional component \mathcal{C}. Furthermore, by construction, \mathcal{F}_{2} is invariant by the osculating pair $\{X, Y\}$. From proposition (2.8) it follows that \mathcal{C} is invariant by $\{X, Y\}$.

Theorem 2.9 gives us a necessary condition for the opd induced by a holomorphic vector field to be integrable. At this point, it is natural to ask about the type of invariance as well as the properties of this curve. Since $Y=D X \cdot X$, we have three distinct situations for the invariance of \mathcal{C} by $\{X, Y\}$:

1. $\mathcal{C} \not \subset \operatorname{Sing}(X) \subset \operatorname{Sing}(Y)$;
2. $\mathcal{C} \not \subset \operatorname{Sing}(X)$ but $\mathcal{C} \subset \operatorname{Sing}(Y)$;
3. $\mathcal{C} \subset \operatorname{Sing}(X) \subset \operatorname{Sing}(Y)$.

For cases 1 and 2, we have the following proposition
Proposition 2.10. - Let X be a holomorphic vector field in \mathbb{C}^{3} such that the 1 -form ω_{X} is integrable. Consider the analytical curve $\mathcal{C} \subset \mathbb{C}^{3}$ invariant by $\{X, Y\}$. If $\mathcal{C} \not \subset \operatorname{Sing}(X)$ then \mathcal{C} is a straight line.

Proof. - Let $t \rightarrow \phi(t)=\left(\phi_{1}(t), \phi_{2}(t), \phi_{3}(t)\right)$ be the parametrization of \mathcal{C} such that $\phi^{\prime}(t)=X(\phi(t))$ with $t \in \mathbb{C}$. By hypothesis, we have two possible situations: $\mathcal{C} \subset \operatorname{Sing}(Y)$ or $\mathcal{C} \not \subset \operatorname{Sing}(Y)$.

If $\mathcal{C} \not \subset \operatorname{Sing}(Y)$ then there exists a complex function $\lambda(t)$ such that $\phi^{\prime \prime}(t)=\lambda(t) \phi^{\prime}(t)$. By integration, we obtain $\phi(t)=\mathbf{a} h(t)+\mathbf{b}$, for a certain complex function $h(t)$ and constants $\mathbf{a}, \mathbf{b} \in \mathbb{C}^{3}$.

If $\mathcal{C} \subset \operatorname{Sing}(Y)$ then $Y\left((\phi(t))=D X(\phi(t)) \cdot X(\phi(t))=0\right.$. Since $\phi^{\prime}(t)=$ $X(\phi(t))$, we have that

$$
Y\left((\phi(t))=D X(\phi(t)) \cdot X(\phi(t))=D X(\phi(t)) \cdot \phi^{\prime}(t)=\frac{d}{d t} X(\phi(t))=0\right.
$$

Consequently, $X(\phi(t))=\mathbf{a}$ where $\mathbf{a} \in \mathbb{C}^{3}$ is a constant. So $\phi^{\prime}(t)=\mathbf{a}$ and therefore $\phi(t)=\mathbf{a} t+\mathbf{b}$, with $\mathbf{b} \in \mathbb{C}^{3}$.

Example 2.11. - Consider $X(x)=\sum_{i=1}^{3} \lambda_{i} x_{i} \frac{\partial}{\partial x_{i}}$ defined in \mathbb{C}^{3} with $\lambda_{i} \neq$ 0 for $i=1,2,3$. Then $Y(x)=D X(x) \cdot X(x)=\sum_{i=1}^{3} \lambda_{i}^{2} x_{i} \frac{\partial}{\partial x_{i}}$ and

$$
\omega_{X}=\frac{\lambda_{3}-\lambda_{2}}{\lambda_{1}} \frac{d x_{1}}{x_{1}}+\frac{\lambda_{1}-\lambda_{3}}{\lambda_{2}} \frac{d x_{2}}{x_{2}}+\frac{\lambda_{2}-\lambda_{1}}{\lambda_{3}} \frac{d x_{3}}{x_{3}} .
$$

It is not hard to show the integrability of ω_{X}. In this situation, the three coordinate axes' are invariant by the osculating pair $\{X, Y\}$.

As we will see, many holomorphic vector fields with an integrable opd can be reduced to a vector field of the type given in the next example.

Example 2.12. - Consider

$$
X(x)=\lambda_{1} x_{1} \frac{\partial}{\partial x_{1}}+\lambda_{2} x_{2} \frac{\partial}{\partial x_{2}}+f(x) \frac{\partial}{\partial x_{3}}
$$

where f is holomorphic and λ_{1}, λ_{2} are non-zero constants. Then $Y=D X \cdot X$ is given by

$$
Y(x)=\lambda_{1}^{2} x_{1} \frac{\partial}{\partial x_{1}}+\lambda_{2}^{2} x_{2} \frac{\partial}{\partial x_{2}}+g(x) \frac{\partial}{\partial x_{3}}
$$

where $g(x)=\lambda_{1} x_{1} f_{x_{1}}+\lambda_{2} x_{2} f_{x_{2}}+f f_{x_{3}}$, while the opd induced by X is described by the 1 -form

$$
\omega_{X}=\frac{g-\lambda_{2} f}{\lambda_{1} x_{1}} d x_{1}+\frac{\lambda_{1} f-g}{\lambda_{2} x_{2}} d x_{2}+\left(\lambda_{2}-\lambda_{1}\right) d x_{3} .
$$

For ω_{X} to be integrable we must have
$\omega_{X} \wedge d \omega_{X}=\left[h_{2} \frac{\partial h_{1}}{\partial x_{3}}-h_{1} \frac{\partial h_{2}}{\partial x_{3}}+\left(\lambda_{2}-\lambda_{1}\right)\left(\frac{\partial h_{2}}{\partial x_{1}}-\frac{\partial h_{1}}{\partial x_{2}}\right)\right] d x_{1} \wedge d x_{2} \wedge d x_{3} \equiv 0$
where $h_{1}=\frac{g-\lambda_{2} f}{\lambda_{1} x_{1}}$ and $h_{2}=\frac{\lambda_{1} f-g}{\lambda_{2} x_{2}}$. Since

$$
h_{2} \frac{\partial h_{1}}{\partial x_{3}}-h_{1} \frac{\partial h_{2}}{\partial x_{3}}=\left(\lambda_{2}-\lambda_{1}\right) \frac{g f_{x_{3}}-f g_{x_{3}}}{\lambda_{1} \lambda_{2} x_{1} x_{2}}
$$

it follows from (2.1) that $\omega_{X} \wedge d \omega_{X}=\left(\lambda_{2}-\lambda_{1}\right) h(x) d x_{1} \wedge d x_{2} \wedge d x_{3}$ for some rational function h. In particular, if $\lambda_{1}=\lambda_{2}$ then ω_{X} is integrable regardless of f, which determines the type of invariance of the x_{3}-axis by $\{X, Y\}$. More precisely, if $f\left(0,0, x_{3}\right) \equiv 0$ then situation 3 occurs while if $f\left(0,0, x_{3}\right) \not \equiv 0$ and $f_{x_{3}}\left(0,0, x_{3}\right) \equiv 0$ then situation 2 occurs. Finally, the condition for the situation 1 to occur is $f\left(0,0, x_{3}\right) f_{x_{3}}\left(0,0, x_{3}\right) \not \equiv 0$.

3. Proof of Theorem 1.1

From now on, we will concentrate on a polynomial vector field X in \mathbb{C}^{3} that contains a straight line \mathcal{C} invariant by the osculating pair $\{X, Y\}$ and such that $\mathcal{C} \not \subset \operatorname{Sing}(X)$. By a linear change of variables, we can suppose that \mathcal{C} is the x_{3}-axis in some coordinate system $x \in \mathbb{C}^{3}$.

Let $f: \mathbb{C}^{3} \rightarrow \mathbb{C}$ be a holomorphic complex non-null function vanishing along \mathcal{C}; f can then be written as:

$$
\begin{equation*}
f(x)=x_{1} f_{1}\left(x_{1}, x_{2}, x_{3}\right)+x_{2} f_{2}\left(x_{1}, x_{2}, x_{3}\right) \tag{3.1}
\end{equation*}
$$

If f_{1} and f_{2} also vanish on the $x_{3}-a x i s$, they can also be written as in (3.1). Thus f can be rewritten as

$$
f(x)=x_{1}^{2} f_{2,0}\left(x_{1}, x_{2}, x_{3}\right)+x_{1} x_{2} f_{1,1}\left(x_{1}, x_{2}, x_{3}\right)+x_{2}^{2} f_{0,2}\left(x_{1}, x_{2}, x_{3}\right)
$$

We repeat this process until we find some function $f_{i, j}$ which does not vanish on the x_{3}-axis. Then f will be of the form

$$
\begin{equation*}
f(x)=\sum_{i+j=m} x_{1}^{i} x_{2}^{j} f_{i, j}(x) \tag{3.2}
\end{equation*}
$$

where, for some $i, j \in \mathbb{N}$, we have that $f_{i, j}\left(0,0, x_{3}\right) \not \equiv 0$ and $x_{1}^{i} x_{2}^{j} f_{i, j}$ are linearly independent. See [4] for details.

Definition 3.1. - The number m in (3.2) will be called the multiplicity of f along \mathcal{C} and will be denoted by mult $_{\mathcal{C}}(f)$.

Henceforth, we will denote functions that vanish on the x_{3}-axis with multiplicity i by capital letters indexed by i, i.e., A_{i}, B_{i} and so on.

The conditions for \mathcal{C} to be non-trivially invariant by the vector field

$$
X(x)=P(x) \frac{\partial}{\partial x_{1}}+Q(x) \frac{\partial}{\partial x_{2}}+R(x) \frac{\partial}{\partial x_{3}}
$$

are $\left.P\right|_{\mathcal{C}} \equiv 0,\left.Q\right|_{\mathcal{C}} \equiv 0$ and $\left.R\right|_{\mathcal{C}} \not \equiv 0$, in the other words, $P(x)=\sum_{i=0}^{m} x_{1}^{i} x_{2}^{m-i} p_{i}(x)$, $Q(x)=\sum_{i=0}^{n} x_{1}^{i} x_{2}^{n-i} q_{i}(x)$ and $R(x)=\sum_{i=0}^{r} r_{i}\left(x_{1}, x_{2}\right) \cdot x_{3}^{i}$, with some $r_{i}(0,0) \not \equiv 0$ and integers m, n and r. Furthermore, if $\left.R_{x_{3}}\right|_{\mathcal{C}} \not \equiv 0, \mathcal{C}$ will be also nontrivially invariant by the vector field $Y=D X \cdot X$.

Initially we will consider $\operatorname{mult}_{\mathcal{C}}(P)=\operatorname{mult}_{\mathcal{C}}(Q)=1$ and the coordinate planes $x_{1}=0$ and $x_{2}=0$ invariant by X. As a consequence, X assumes the following form

$$
X(x)=x_{1} P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} Q_{0}(x) \frac{\partial}{\partial x_{2}}+R_{0}(x) \frac{\partial}{\partial x_{3}}
$$

with the additional condition $\left(R_{0}\right)_{x_{3}} \mid \mathcal{C} \not \equiv 0$. Then, generically, we have

$$
Y(x)=A(x) \frac{\partial}{\partial x_{1}}+B(x) \frac{\partial}{\partial x_{2}}+C(x) \frac{\partial}{\partial x_{3}}
$$

where

$$
\begin{aligned}
& A=A_{1}+A_{2}=x_{1}\left[P_{0}^{2}+R_{0}\left(P_{0}\right)_{x_{3}}\right]+x_{1}^{2} P_{0}\left(P_{0}\right)_{x_{1}}+x_{1} x_{2} Q_{0}\left(P_{0}\right)_{x_{2}} \\
& B=B_{1}+B_{2}=x_{2}\left[Q_{0}^{2}+R_{0}\left(Q_{0}\right)_{x_{3}}\right]+x_{1} x_{2} P_{0}\left(Q_{0}\right)_{x_{1}}+x_{2}^{2} Q_{0}\left(Q_{0}\right)_{x_{2}} \\
& C=C_{0}+C_{1}=R_{0}\left(R_{0}\right)_{x_{3}}+x_{1} P_{0}\left(R_{0}\right)_{x_{1}}+x_{2} Q_{0}\left(R_{0}\right)_{x_{2}} .
\end{aligned}
$$

Taking the wedge product between X and Y we get

$$
\omega_{X}=E(x) d x_{1}+F(x) d x_{2}+G(x) d x_{3}
$$

where

$$
\begin{aligned}
E=E_{1}+E_{2}= & x_{2} R_{0}\left[Q_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(Q_{0}\right)_{x_{3}}-Q_{0}^{2}\right]+x_{2} Q_{0} C_{1}-R_{0} B_{2} \\
F=F_{1}+F_{2}= & x_{1} R_{0}\left[P_{0}^{2}+R_{0}\left(P_{0}\right)_{x_{3}}-P_{0}\left(R_{0}\right)_{x_{3}}\right]+R_{0} A_{2}-x_{1} P_{0} C_{1} \\
G=G_{2}+G_{3}= & x_{1} x_{2}\left[P_{0} Q_{0}\left(Q_{0}-P_{0}\right)+R_{0}\left(P_{0}\left(Q_{0}\right)_{x_{3}}-Q_{0}\left(P_{0}\right)_{x_{3}}\right)\right]+ \\
& +x_{1}^{2} x_{2} P_{0} \cdot\left[P_{0}\left(Q_{0}\right)_{x_{1}}-Q_{0}\left(P_{0}\right)_{x_{1}}\right] \\
& +x_{1} x_{2}^{2} Q_{0} \cdot\left[P_{0}\left(Q_{0}\right)_{x_{2}}-Q_{0}\left(P_{0}\right)_{x_{2}}\right] .
\end{aligned}
$$

For ω_{X} to be integrable we must have

$$
\begin{equation*}
\omega_{X} \wedge d \omega_{X}=\left[W_{2}+W_{3}+\cdots\right] d x_{1} \wedge d x_{2} \wedge d x_{3} \equiv 0 \tag{3.3}
\end{equation*}
$$

with

$$
\begin{equation*}
W_{2}=x_{1} x_{2}\left[M \cdot N_{x_{3}}-N \cdot M_{x_{3}}\right] \tag{3.4}
\end{equation*}
$$

where $M=R_{0}\left(P_{0}^{2}+R_{0}\left(P_{0}\right)_{x_{3}}-P_{0}\left(R_{0}\right)_{x_{3}}\right)$
and $N=R_{0}\left(Q_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(Q_{0}\right)_{x_{3}}-Q_{0}^{2}\right)$.
Since $W_{2} \equiv 0$ is a generic condition, it is enough to discuss (3.3) under this assumption. We will now solve $W_{2} \equiv 0$ considering the following cases:

Case 1. $M=\left[R_{0}\left(P_{0}^{2}+R_{0}\left(P_{0}\right)_{x_{3}}-P_{0}\left(R_{0}\right)_{x_{3}}\right)\right] \equiv 0$.
Since $R_{0} \not \equiv 0$, we have

$$
\frac{P_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(P_{0}\right)_{x_{3}}}{P_{0}^{2}}=\frac{\partial}{\partial x_{3}}\left(\frac{R_{0}}{P_{0}}\right)=1
$$

and consequently

$$
R_{0}(x)=P_{0}(x)\left[x_{3}+k\left(x_{1}, x_{2}\right)\right]
$$

for some rational function $k \in \mathbb{C}\left(x_{1}, x_{2}\right)$. Let $k\left(x_{1}, x_{2}\right)=\frac{a\left(x_{1}, x_{2}\right)}{b\left(x_{1}, x_{2}\right)}$ with $a, b \in \mathbb{C}\left[x_{1}, x_{2}\right]$ without a factor in common. Multiplying all the components of X by b, we obtain case 1 of theorem 1.1.

Case 2. $N=\left[R_{0}\left(Q_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(Q_{0}\right)_{x_{3}}-Q_{0}^{2}\right)\right] \equiv 0$.
This case is similar to the previous one.

Case 3.

$$
\left[R_{0}\left(P_{0}^{2}+R_{0}\left(P_{0}\right)_{x_{3}}-P_{0}\left(R_{0}\right)_{x_{3}}\right)\right] \cdot\left[R_{0}\left(Q_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(Q_{0}\right)_{x_{3}}-Q_{0}^{2}\right)\right] \not \equiv 0
$$

Given that $W_{2} \equiv 0$, it is not hard to see that

$$
\frac{\partial}{\partial x_{3}}\left[\frac{M}{N}\right] \equiv 0
$$

and therefore

$$
\frac{M}{N}=\frac{R_{0}\left[P_{0}^{2}+R_{0}\left(P_{0}\right)_{x_{3}}-P_{0}\left(R_{0}\right)_{x_{3}}\right]}{R_{0}\left[Q_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(Q_{0}\right)_{x_{3}}-Q_{0}^{2}\right]}=-\frac{a\left(x_{1}, x_{2}\right)}{b\left(x_{1}, x_{2}\right)}
$$

for some polynomials a and b without a factor in common.
Therefore, we have

$$
\begin{equation*}
\left(a Q_{0}-b P_{0}\right) \cdot\left(R_{0}\right)_{x_{3}}-R_{0} \cdot\left(a Q_{0}-b P_{0}\right)_{x_{3}}=a Q_{0}^{2}-b P_{0}^{2} \tag{3.5}
\end{equation*}
$$

To solve the partial differential equation (3.5) for R_{0}, we must consider two distinct situations:

$$
\left(a Q_{0}-b P_{0}\right) \equiv 0 \quad \text { or } \quad\left(a Q_{0}-b P_{0}\right) \not \equiv 0
$$

Suppose first $\left(a Q_{0}-b P_{0}\right) \equiv 0$ then we also have $\left(a Q_{0}-b P_{0}\right)_{x_{3}} \equiv 0$. Thus, from (3.5), we get

$$
\left(a Q_{0}-b P_{0}\right) \equiv\left(a Q_{0}^{2}-b P_{0}^{2}\right) \equiv 0 \Leftrightarrow \frac{P_{0}}{Q_{0}}=\frac{P_{0}^{2}}{Q_{0}^{2}}
$$

Since P_{0} and Q_{0} are not identically zero it is follows that $P_{0}=Q_{0}$ for all $x \in \mathbb{C}^{3}$. We therefore get the third case of theorem 1.1. Furthermore, if this condition is satisfied then ω_{X} is always integrable.

Now we consider $\left(a Q_{0}-b P_{0}\right) \not \equiv 0$. Dividing (3.5) by $\left(a Q_{0}-b P_{0}\right)^{2}$, the integrating factor, we get

$$
\frac{\partial}{\partial x_{3}}\left[\frac{R_{0}}{a Q_{0}-b P_{0}}\right]=\frac{a Q_{0}^{2}-b P_{0}^{2}}{\left(a Q_{0}-b P_{0}\right)^{2}}
$$

and therefore

$$
R_{0}(x)=\left(a Q_{0}-b P_{0}\right)\left[\int_{0}^{x_{3}} \frac{a Q_{0}^{2}-b P_{0}^{2}}{\left(a Q_{0}-b P_{0}\right)^{2}} d \xi_{3}+r_{0}\left(x_{1}, x_{2}\right)\right]
$$

where $r_{0} \in \mathbb{C}\left[x_{1}, x_{2}\right]$.
Therefore $\left(a Q_{0}-b P_{0}\right)=\Lambda$ is a factor of R_{0}. Multiplying all components of X by a, we obtain

$$
\begin{aligned}
\frac{a^{2} Q_{0}^{2}-a b P_{0}^{2}}{\left(a Q_{0}-b P_{0}\right)^{2}} & =\frac{\Lambda^{2}+2 b \Lambda P_{0}+\left(b^{2}-a b\right) P_{0}^{2}}{\Lambda^{2}} \\
& =1+2 b\left(\frac{P_{0}}{\Lambda}\right)+b(b-a)\left(\frac{P_{0}}{\Lambda}\right)^{2}
\end{aligned}
$$

Here it is important to emphasize that our aim is to find a polynomial solution for (3.5). For such a solution to exist, Λ must generically, divide P_{0}. Therefore, $P_{0}=\Lambda F_{0}$ and it follows that $a Q_{0}=\Lambda+b P_{0}=\Lambda\left(1+b F_{0}\right)$. Thus X assumes the following form:

$$
\begin{aligned}
a X(x) & =a x_{1} P_{0} \frac{\partial}{\partial x_{1}}+a x_{2} Q_{0} \frac{\partial}{\partial x_{2}}+a R_{0} \frac{\partial}{\partial x_{3}} \\
& =\Lambda\left[a x_{1} F_{0} \frac{\partial}{\partial x_{1}}+x_{2}\left(1+b F_{0}\right) \frac{\partial}{\partial x_{2}}+H_{0}(x) \frac{\partial}{\partial x_{3}}\right]
\end{aligned}
$$

where $H_{0}(x)=r_{0}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{3}}\left[1+2 b F_{0}(\xi)+b(b-a) F_{0}^{2}(\xi)\right] d \xi_{3}$ with $\xi=\left(x_{1}, x_{2}, \xi_{3}\right)$ and r_{0} is a polynomial. This finishes the proof of Theorem 1.1.

4. Classification

In this section, we will analyze the four conditions of theorem 1.1. Except in the case 3 , new conditions must be imposed in order to guarantee the integrability of ω_{X}.

Since cases 1 and 2 are similar, we will consider only the vector fields given in the case 1 . Let us begin by considering polynomial vector fields of
the following form

$$
\begin{aligned}
X=x_{1} b\left(x_{1}, x_{2}\right) P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} b(& \left.x_{1}, x_{2}\right) Q_{0}(x) \frac{\partial}{\partial x_{2}} \\
& +P_{0}(x)\left[b\left(x_{1}, x_{2}\right) x_{3}+a\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}} .
\end{aligned}
$$

In order to simplify our computations, we consider the vector field X_{1} given by $X=b P_{0} X_{1}$, i.e.,

$$
X_{1}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} Q(x) \frac{\partial}{\partial x_{2}}+\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}
$$

where $Q=Q_{0} / P_{0}$ and $k=a / b$. The opd induced by X_{1} is described by the 1-form

$$
\omega_{X_{1}}=E d x_{1}+F d x_{2}+G d x_{3}
$$

where

$$
\left\{\begin{align*}
E & =E_{1}+E_{2}=-x_{2}\left[x_{3}+k\right] H(x)+x_{1} x_{2} A(x)+x_{2}^{2} B(x) \tag{4.1}\\
F & =F_{2}=-x_{1}^{2} k_{x_{1}}-x_{1} x_{2} Q k_{x_{2}} \\
G & =G_{2}+G_{3}=x_{1} x_{2} H(x)+x_{1}^{2} x_{2} Q_{x_{1}}+x_{1} x_{2}^{2} Q Q_{x_{2}}
\end{align*}\right.
$$

with $A(x)=\left[Q k_{x_{1}}-\left(x_{3}+k\right) Q_{x_{1}}\right], B(x)=Q\left[Q k_{x_{2}}-\left(x_{3}+k\right) Q_{x_{2}}\right]$ and $H=Q^{2}-Q+\left(x_{3}+k\right) Q_{x_{3}}$. The condition of integrability of $\omega_{X_{1}}$ is written

$$
\omega_{X_{1}} \wedge d \omega_{X_{1}}=\left[W_{2}+W_{3}+\ldots\right] d x_{1} \wedge d x_{2} \wedge d x_{3}
$$

Since X_{1} is obtained from the case 1 of theorem 1.1 we have $W_{2} \equiv 0$. After an exhaustive computations, we get

$$
\begin{equation*}
W_{3}=\left[x_{3}+k\right] H_{x_{3}}\left[x_{1}^{2} x_{2} k_{x_{1}}+x_{1} x_{2}^{2} Q k_{x_{2}}\right] . \tag{4.2}
\end{equation*}
$$

We will impose the condition $W_{3} \equiv 0$ for $\omega_{X_{1}}$ to be integrable. Then $W_{3} \equiv 0$ if $k_{x_{1}} \equiv k_{x_{2}} \equiv 0$ or $H_{x_{3}} \equiv 0$. For the case where k is a constant, we have the following result:

Proposition 4.1. - Let X be a polynomial vector field in \mathbb{C}^{3} such that

$$
\begin{aligned}
X=x_{1} b\left(x_{1}, x_{2}\right) P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} b & \left(x_{1}, x_{2}\right) Q_{0}(x) \frac{\partial}{\partial x_{2}} \\
& +P_{0}(x)\left[b\left(x_{1}, x_{2}\right) x_{3}+a\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}
\end{aligned}
$$

with $b\left(x_{1}, x_{2}\right)=k \cdot a\left(x_{1}, x_{2}\right)$, where k is a constant. Then the opd induced by X is integrable.

Proof. - As before, let us consider X_{1} given that $X=b P_{0} \cdot X_{1}$, i.e.,

$$
X_{1}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} Q(x) \frac{\partial}{\partial x_{2}}+\left(x_{3}+k\right) \frac{\partial}{\partial x_{3}}
$$

where $Q=Q_{0} / P_{0}$ and k is a constant. By a linear change of variables, X_{1} is of the same type as given in example (2.12) and therefore $\omega_{X_{1}}$ is integrable for all functions Q.

Now we will examine the condition $H_{x_{3}} \equiv 0$ given in (4.1). In order to solve this equation we will write $Q(x)=\sum_{i=0}^{\infty} q_{i}\left(x_{3}+k\right)^{i}$ where $q_{i} \in \mathbb{C}\left(x_{1}, x_{2}\right)$ are rational functions. It follows that,

$$
H=Q^{2}+\left[x_{3}+k\right] \cdot(Q)_{x_{3}}-Q=\sum_{i=0}^{\infty}\left[\beta_{i}+(i-1) q_{i}\right]\left(x_{3}+k\right)^{i}
$$

with $\beta_{i}=\sum_{j=0}^{i} q_{i-j} q_{j}$. Since $H_{x_{3}} \equiv 0$ we have $\beta_{i}+(i-1) q_{i}=0$ for $i \in \mathbb{N}$. Therefore, for $i=1$, we have $\beta_{1}=2 q_{0} q_{1}=0$. At this point, there are two distinct possibilities: either $q_{0}=0$ or $q_{1}=0$. We observe that we cannot have $q_{0}=0$ and $q_{1}=0$; in fact, $q_{0}=q_{1}=\cdots=q_{m-1}=0$, with $m \geqslant 2$ implies $\beta_{m}=0$. Since $\beta_{m}+(m-1) q_{m}=0$ we would also have $q_{m}=0$. But, given that Q is not identically zero, we obtain a contradiction.

Let us assume that $q_{0} \neq 0$. Again there are two distinct possibilities: $q_{i}=0$ for all $i \in \mathbb{N}$ or there exists $m \in \mathbb{N}$ such that $q_{m} \neq 0$. In the former situation we get $Q=Q\left(x_{1}, x_{2}\right)$ while in the latter we get $\beta_{m}-(m-1) q_{m}=$ $\left(2 q_{0}+m-1\right) q_{m}=0$, which gives $q_{0}=-(m-1) / 2$.

By induction we can show $q_{j}=0$ if $j \neq 0 \bmod m$ and $q_{j m}=(-1)^{j+1} \frac{q_{m}}{m^{j-1}}$. Then,

$$
Q=q_{0}+\sum_{j=1}^{\infty}(-1)^{j+1} \frac{q_{m}}{m^{j-1}}\left(x_{3}+k\right)^{j m}=-\frac{m-1}{2}+\frac{m q_{m}(z+k)^{m}}{m+q_{m}\left(x_{3}+k\right)^{m}}
$$

Since $q_{m} \neq 0$ is a rational function, we can rewrite Q as

$$
\begin{equation*}
Q(x)=-\frac{m-1}{2}+\frac{m\left(x_{3}+k\right)^{m}}{m \beta+\left(x_{3}+k\right)^{m}} \tag{4.3}
\end{equation*}
$$

for some rational function β. Similarly, we obtain the same relation when $q_{0}=0$ and $q_{1} \neq 0$. Therefore, equation (4.3) is valid for all $m \in \mathbb{N}$.

For the case where Q is a constant, we obtain the following result:
Theorem 4.2. - Let X be a holomorphic vector field in \mathbb{C}^{3} such that

$$
X(x)=x_{1} P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} Q_{0}(x) \frac{\partial}{\partial x_{2}}+P_{0}(x)\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}} .
$$

Assume that $Q_{0}=\lambda \cdot P_{0}$ where λ is a constant. Then the opd induced by X is integrable if

1. $\lambda \in\{0,1\}$ or k is an affine linear function;
2. $\lambda=\frac{-i j \pm \sqrt{i j(i+j-1)}}{j(j-1)}, i, j \geqslant 2, i, j \in \mathbb{N}$ and $k\left(x_{1}, x_{2}\right)=\alpha x_{1}^{i} x_{2}^{j}$ with $\alpha \in \mathbb{C}$.

Proof. - Let us consider the following vector field

$$
X_{1}=x_{1} \frac{\partial}{\partial x_{1}}+\lambda x_{2} \frac{\partial}{\partial x_{2}}+\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}
$$

If $\lambda=0$ or $\lambda=1$ the 1 -form $\omega_{X_{1}}$ is integrable by proposition (2.6) and the example (2.12), respectively. Furthermore, if k is an affine linear function, $\omega_{X_{1}}$ is integrable by Cayley's observation.

Now, we can suppose that $k\left(x_{1}, x_{2}\right)=\sum_{n+m=0}^{\infty} \alpha_{m, n} x_{1}^{m} x_{2}^{n}$ and $\lambda \notin\{0,1\}$. Thus

$$
\omega_{X_{1}} \wedge d \omega_{X_{1}}=\lambda(1-\lambda)\left(x_{1} x_{2}\right)\left[x_{1}^{2} k_{x_{1} x_{1}}+2 \lambda x_{1} x_{2} k_{x_{1} x_{2}}+\lambda^{2} x_{2}^{2} k_{x_{2} x_{2}}\right]
$$

and therefore,

$$
\begin{aligned}
& x_{1}^{2} k_{x_{1} x_{1}}+2 \lambda x_{1} x_{2} k_{x_{1} x_{2}}+\lambda^{2} x_{2}^{2} k_{x_{2} x_{2}} \\
& \quad=\sum_{m+n=2}^{\infty} \alpha_{m, n}\left[m(m-1)+2 m n \lambda+n(n-1) \lambda^{2}\right] x_{1}^{m} x_{2}^{n}
\end{aligned}
$$

Since $\lambda=\frac{-i j \pm \sqrt{i j(i+j-1)}}{j(j-1)}$ for some $i, j \geqslant 2$, then it follows that $i(i-1)+2 i j \lambda+j(j-1) \lambda^{2}=0$. Consequently, in order for $\omega_{X_{1}}$ to be integrable, we can take $k\left(x_{1}, x_{2}\right)=\alpha x_{1}^{i} x_{2}^{j}$, with $\alpha \in \mathbb{C}$.

Corollary 4.3. - Let X be a the polynomial vector field in \mathbb{C}^{3} given by
$X=x_{1} b\left(x_{1}, x_{2}\right) P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} b\left(x_{1}, x_{2}\right) Q_{0}(x) \frac{\partial}{\partial x_{2}}+P_{0}(x)\left[b\left(x_{1}, x_{2}\right) x_{3}+a\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}$
with $Q_{0}=\lambda \cdot P_{0}$ where λ is a constant. Then ω_{X} is integrable if one of following conditions is satisfied

1. $\lambda \in\{0,1\}$ or $b\left(x_{1}, x_{2}\right)=k\left(x_{1}, x_{2}\right) a\left(x_{1}, x_{2}\right)$ with k an affine linear function;
2. $\lambda=\frac{-i j \pm \sqrt{i j(i+j-1)}}{j(j-1)}, i, j \geqslant 2, i, j \in \mathbb{N}$ and $b\left(x_{1}, x_{2}\right)=\alpha x_{1}^{i} x_{2}^{j}$. $a\left(x_{1}, x_{2}\right)$ with $\alpha \in \mathbb{C}$;

Setting $m=1$ in the equation (4.3) we have the following result:
Theorem 4.4. - Let X be a holomorphic vector field defined in \mathbb{C}^{3} such that

$$
X(x)=x_{1} P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2} Q_{0}(x) \frac{\partial}{\partial x_{2}}+P_{0}(x)\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}
$$

Assume that $\left[x_{3}+h\left(x_{1}, x_{2}\right)\right] Q_{0}=\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] P_{0}$ for some holomorphic function h. Then ω_{X} is integrable if k or h is a constant function or if $k \equiv h$.

Proof. - As before, we will consider the vector field X_{1} such that $X=$ $P_{0} \cdot X_{1}$, i.e.,

$$
X_{1}(x)=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} Q(x) \frac{\partial}{\partial x_{2}}+\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}
$$

where $Q(x)=\frac{x_{3}+k\left(x_{1}, x_{2}\right)}{x_{3}+h\left(x_{1}, x_{2}\right)}$.
If k or h is a constant then $\omega_{X_{1}}$ is integrable by proposition (2.6) while if $h \equiv k$, the integrability of $\omega_{X_{1}}$ follows by example (2.12). In the general case, we must have

$$
\omega_{X} \wedge d \omega_{X}=\left[W_{2}+W_{3}+W_{4}+W_{5}\right] d x_{1} \wedge d x_{2} \wedge d x_{3} \equiv 0
$$

Given that X_{1} has the form given in the case 1 of theorem 1.1 we have $W_{2} \equiv 0$ and $W_{3} \equiv 0$ because $H_{x_{3}} \equiv 0$. Therefore, we must have $W_{4} \equiv 0$ where

$$
\begin{align*}
W_{4}= & \frac{2(k-h)\left(x_{3}+k\right)}{\left(x_{3}+h\right)^{5}}\left[x_{1}^{3} x_{2}\left(x_{3}+h\right)^{2} h_{x_{1}} k_{x_{1}}+\right. \\
& \left.+x_{1}^{2} x_{2}^{2}\left(x_{3}+k\right)\left(x_{3}+h\right)\left(h_{x_{1}} k_{x_{2}}+h_{x_{2}} k_{x_{1}}\right)+x_{1} x_{2}^{3}\left(x_{3}+k\right)^{2} h_{x_{2}} k_{x_{2}}\right] . \tag{4.4}
\end{align*}
$$

We now observe that, for $\omega_{X_{1}}$ to be integrable we must have, generically, that

$$
\begin{aligned}
x_{1}^{3} x_{2}\left(x_{3}+h\right)^{2} h_{x_{1}} k_{x_{1}}+x_{1}^{2} x_{2}^{2}\left(x_{3}+k\right)\left(x_{3}+h\right) & \left(h_{x_{1}} k_{x_{2}}+h_{x_{2}} k_{x_{1}}\right) \\
& +x_{1} x_{2}^{3}\left(x_{3}+k\right)^{2} h_{x_{2}} k_{x_{2}} \equiv 0 .
\end{aligned}
$$

Dividing the last equation by $x_{1} x_{2}\left(x_{3}+h\right)^{2}$, we obtain the quadratic equation

$$
x_{2}^{2} Q^{2} h_{x_{2}} k_{x_{2}}+x_{1} x_{2} Q\left(h_{x_{1}} k_{x_{2}}+h_{x_{2}} k_{x_{1}}\right)+x_{1}^{2} h_{x_{1}} k_{x_{1}}=0
$$

and therefore $Q=-\frac{x_{1} k_{x_{1}}}{x_{2} k_{x_{2}}}$ or $Q=-\frac{x_{1} h_{x_{1}}}{x_{2} h_{x_{2}}}$.
In the first case $\left(x_{1} k_{x_{1}}+x_{2} k_{x_{2}}\right) x_{3}+\left(x_{1} h k_{x_{1}}+x_{2} k k_{x_{2}}\right) \equiv 0$ for all x_{3} and so we must have $\left(x_{1} k_{x_{1}}+x_{2} k_{x_{2}}\right) \equiv 0$. This is a contradiction unless k is a constant function. The second case is identical.

Now we will consider a polynomial vector field of the following form:

$$
X(x)=x_{1} a\left(x_{1}, x_{2}\right) P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2}\left[1+b\left(x_{1}, x_{2}\right) P_{0}(x)\right] \frac{\partial}{\partial x_{2}}+R_{0}(x) \frac{\partial}{\partial x_{3}}
$$

where $R_{0}(x)=r_{0}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{3}}\left[1+2 b P_{0}(\xi)+b(b-a) P_{0}^{2}(\xi)\right] d \xi_{3}$, with $\xi=\left(x_{1}, x_{2}, \xi_{3}\right)$ and a, b and $r_{0} \in \mathbb{C}\left[x_{1}, x_{2}\right]$.

We will restrict our analysis to the case where a and b are nonzero constants and P_{0} is a non-constant function. The situations P_{0} constant and $b \equiv 0$ were discussed in theorem 4.2.

TheOrem 4.5. - Let X be a polynomial vector field in \mathbb{C}^{3} given by

$$
X(x)=x_{1} P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2}\left[1+\lambda P_{0}(x)\right] \frac{\partial}{\partial x_{2}}+R_{0}(x) \frac{\partial}{\partial x_{3}}
$$

where P_{0} is a non constant function, $R_{0}=r_{0}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{3}}\left[1+2 \lambda P_{0}(\xi)+\right.$ $\left.\lambda(\lambda-1) P_{0}^{2}(\xi)\right] d \xi_{3}$, with $\xi=\left(x_{1}, x_{2}, \xi_{3}\right)$ and $\lambda \neq 0$. Generically, the opd induced by X is integrable if one of the following conditions is satisfied

1. $\lambda=1, P_{0}(x)=p_{0}\left(x_{1}, x_{2}\right)+p_{1}\left(x_{1}, x_{2}\right) \cdot x_{3}$ with $r_{0}=p_{0}$ and $p_{1}=p_{0}+1$ or $r_{0}=p_{0}+1$ and $p_{0}=p_{1}$;
2. $\lambda \neq 1, P_{0}=P_{0}\left(x_{3}\right)$ and r_{0} a constant function;
3. $\lambda=1, P_{0}=P_{0}\left(x_{3}\right)$ and r_{0} are affine linear functions.

Proof. - As before, the condition of integrability of ω_{X} is given by

$$
\omega_{X_{1}} \wedge d \omega_{X_{1}}=\left[W_{2}+W_{3}+\cdots\right] d x_{1} \wedge d x_{2} \wedge d x_{3} \equiv 0
$$

where $W_{2} \equiv 0$ by theorem 1.1 and

$$
\begin{aligned}
W_{3}=x_{1}^{2} x_{2} P_{0} R_{0}[-M(& \left.\left.R_{0}\right)_{x_{1} x_{3}}+M_{x_{3}}\left(R_{0}\right)_{x_{1}}\right] \\
& +x_{1} x_{2}^{2}\left(1+\lambda P_{0}\right) R_{0}\left[-M\left(R_{0}\right)_{x_{2} x_{3}}+M_{x_{3}}\left(R_{0}\right)_{x_{2}}\right]
\end{aligned}
$$

where $M=P_{0}\left[1+\lambda P_{0}\right]\left[1+(\lambda-1) P_{0}\right]-R_{0} \cdot\left(P_{0}\right)_{x_{3}}=P_{0} \cdot\left(R_{0}\right)_{x_{3}}-R_{0}$. $\left(P_{0}\right)_{x_{3}}-P_{0}^{2}$.

In order to obtain the integrability of ω_{X} we will impose the condition $W_{3} \equiv 0$, hence

$$
\left\{\begin{array}{lll}
-M\left(R_{0}\right)_{x_{1} x_{3}}+M_{x_{3}}\left(R_{0}\right)_{x_{1}} & \equiv & 0 \tag{4.5}\\
-M\left(R_{0}\right)_{x_{2} x_{3}}+M_{x_{3}}\left(R_{0}\right)_{x_{2}} & \equiv & 0
\end{array}\right.
$$

Solving (4.5) for M and $M_{x_{3}}$ we must consider the determinant

$$
\begin{equation*}
D=\left(R_{0}\right)_{x_{2} x_{3}} \cdot\left(R_{0}\right)_{x_{1}}-\left(R_{0}\right)_{x_{1} x_{3}} \cdot\left(R_{0}\right)_{x_{2}} \tag{4.6}
\end{equation*}
$$

Let $P_{0}(x)=\sum_{i=0}^{m} p_{i}\left(x_{1}, x_{2}\right) x_{3}^{i}$ where $p_{i} \in \mathbb{C}\left[x_{1}, x_{2}\right], p_{m} \not \equiv 0$ and $m=$ $\operatorname{deg}_{x_{3}}\left(P_{0}\right)$, the degree of P_{0} in respect to x_{3}.

Case 1. $D \not \equiv 0$.
In this case, the homogeneous system (4.5) admits only the trivial solution $M \equiv 0$. But, given that $M=P_{0} \cdot\left(R_{0}\right)_{x_{3}}-R_{0} \cdot\left(P_{0}\right)_{x_{3}}-P_{0}^{2}$, we have $M \equiv 0$ if and only if

$$
\begin{equation*}
b\left(x_{1}, x_{2}\right) R_{0}(x)=P_{0}(x)\left[b\left(x_{1}, x_{2}\right) \cdot x_{3}+a\left(x_{1}, x_{2}\right)\right] \tag{4.7}
\end{equation*}
$$

for some polynomials a, b. We will consider the situations $\lambda=1$ and $\lambda \neq 1$ separately. First, let $\lambda \neq 1$; then, since

$$
R_{0}(x)=r_{0}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{3}}\left[1+2 \lambda P_{0}(\xi)+\lambda(\lambda-1) P_{0}^{2}(\xi)\right] d \xi_{3}
$$

we obtain $\operatorname{deg}_{x_{3}}\left(R_{0}\right)=2 m+1$ while from (4.7) $\operatorname{deg}_{x_{3}}\left(R_{0}\right)=m+1$. Comparing these degrees we get $m=0$ and it follows that results $P_{0}=P_{0}\left(x_{1}, x_{2}\right)$. In this situation, we have $M=P_{0}\left[1+\lambda P_{0}\right]\left[1+(\lambda-1) P_{0}\right] \equiv 0$ since P_{0} is not a constant, we obtain a contradiction.

Let us now consider $\lambda=1$. From (4.7) we get $R_{0}(x)=\sum_{i=0}^{m+1} r_{i}\left(x_{1}, x_{2}\right) x_{3}^{i}$ with $b r_{0}=b p_{0}+a$ and $r_{i}=p_{i-1}$ for $i=1, \ldots, m+1$. Given that $R_{0}=r_{0}+\int_{0}^{x_{3}}\left[1+2 P_{0}(\xi)\right] d \xi_{3}$ we obtain $r_{1}=1+2 p_{0}$ and $r_{i}=\frac{2 p_{i-1}}{i}$ for $i=2, \ldots, m+1$. Comparing these two expressions for R_{0} we conclude $m=1$ and $r_{0} p_{1}=p_{0}\left(p_{0}+1\right)$.

Therefore, if $r_{0}=p_{0}$ then $p_{1}=p_{0}+1$. In this situation, X assumes the form:

$$
X=x_{1} P_{0}(x) \frac{\partial}{\partial x_{1}}+x_{2}\left[1+P_{0}(x)\right] \frac{\partial}{\partial x_{2}}+P_{0}(x) \cdot\left[1+x_{3}\right] \frac{\partial}{\partial x_{3}}
$$

which induces an integrable ω_{X} by proposition (4.1). By the same reason, ω_{X} is integrable if $r_{0}=p_{0}+1$ and $p_{1}=p_{0}$.

Furthermore, if $r_{0}=\alpha\left(x_{1}, x_{2}\right)$ is a nontrivial factor of $p_{0}\left(x_{1}, x_{2}\right)=$ $\alpha\left(x_{1}, x_{2}\right) \beta\left(x_{1}, x_{2}\right)$, then $p_{1}=\beta(1+\alpha \beta)$. In this way, X assumes the following form:

$$
X=x_{1} \beta\left[\alpha+(1+\alpha \beta) x_{3}\right] \frac{\partial}{\partial x_{1}}+x_{2}(1+\alpha \beta)\left[1+\beta x_{3}\right] \frac{\partial}{\partial x_{2}}+\left(1+\beta x_{3}\right)\left[\alpha+(1+\alpha \beta) x_{3}\right] \frac{\partial}{\partial x_{3}}
$$

Dividing X by $\beta\left[\alpha+(1+\alpha \beta) x_{3}\right]$ we obtain X_{1} given by

$$
X_{1}=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} Q(x) \frac{\partial}{\partial x_{2}}+\left[x_{3}+k\left(x_{1}, x_{2}\right)\right] \frac{\partial}{\partial x_{3}}
$$

where $k=\frac{1}{\beta}, Q=\frac{x_{3}+k\left(x_{1}, x_{2}\right)}{x_{3}+h\left(x_{1}, x_{2}\right)}$ and $h=\frac{\alpha}{1+\alpha \beta}$. Generically, by proposition (4.4), $\omega_{X_{1}}$ is not integrable because k and h are not constant and $h \not \equiv k$. The same is true if $p_{0}+1=\alpha \beta$ and $r_{0}=\alpha$. This finishes the first case of the theorem.

Case 2. $D \equiv\left(R_{0}\right)_{x_{1}} \equiv\left(R_{0}\right)_{x_{2}} \equiv 0$.
Since

$$
R_{0}(x)=r_{0}\left(x_{1}, x_{2}\right)+\int_{0}^{x_{3}}\left[1+2 \lambda P_{0}(\xi)+\lambda(\lambda-1) P_{0}^{2}(\xi)\right] d \xi_{3}
$$

we get

$$
\left(R_{0}\right)_{x_{i}}=\left(r_{0}\right)_{x_{i}}+\int_{0}^{x_{3}} 2 \lambda\left[1+(\lambda-1) P_{0}\right] \cdot\left(P_{0}\right)_{x_{i}} d \xi_{3} \equiv 0
$$

for $i=1,2$. For this to happen we must have $\left(r_{0}\right)_{x_{i}}=\left(P_{0}\right)_{x_{i}}=0$ for $i=1,2$ and consequently r_{0} is a constant and $P_{0}=P_{0}\left(x_{3}\right)$. In this situation, the opd induced by X is described by the 1-form

$$
\omega_{X}=x_{1} x_{2} M(x) \cdot R_{0}(x)\left[\lambda \frac{d x_{1}}{x_{1}}-\frac{d x_{2}}{x_{2}}+\frac{d x_{3}}{R_{0}}\right]
$$

which is integrable since we also have $R_{0}=R_{0}\left(x_{3}\right)$.
Case 3. $D \equiv\left(R_{0}\right)_{x_{2}} \equiv 0$ and $\left(R_{0}\right)_{x_{1}} \not \equiv 0$.
From now on, we will consider only $M \not \equiv 0$ since $M \equiv 0$ has been analyzed in the case 1 . As explained in the previous case, we have $r_{0}=$ $r_{0}\left(x_{1}\right)$ and $P_{0}=P_{0}\left(x_{1}, x_{3}\right)=\sum_{i=0}^{m} p_{i}\left(x_{1}\right) \cdot x_{3}^{i}$ since $\left(R_{0}\right)_{x_{2}} \equiv 0$.

From the first equation of (4.5) we obtain $b\left(x_{1}\right) M(x)=a\left(x_{1}\right)\left(R_{0}\right)_{x_{1}}$ for some polynomials $a, b \in \mathbb{C}\left[x_{1}\right]$. So again we must consider the situations $\lambda \neq 1$ and $\lambda=1$.

We will begin with $\lambda \neq 1$. By hypothesis, $R_{0}(x)=r_{0}\left(x_{1}\right)+\int_{0}^{x_{3}}[1+$ $\left.2 \lambda P_{0}(\xi)+\lambda(\lambda-1) P_{0}^{2}(\xi)\right] d \xi_{3}$. It follows that $\operatorname{deg}_{x_{3}}\left(R_{0}\right)=2 m+1$ and since $M=P_{0}\left(R_{0}\right)_{x_{3}}-R_{0}\left(P_{0}\right)_{x_{3}}-P_{0}^{2}$ we get $\operatorname{deg}_{x_{3}}(M)=3 m$. Given that

If $m=0$ then $M_{x_{3}}=P_{0} \cdot\left(R_{0}\right) x_{3} x_{3} \equiv 0$ and $\left(R_{0}\right)_{x_{1} x_{3}}=2 \lambda[1+(\lambda-$ 1) $\left.P_{0}\right] \cdot\left(P_{0}\right)_{x_{1}}$. From the first equation of (4.5) we get $M \cdot\left(R_{0}\right)_{x_{1} x_{3}} \equiv 0$; it follows that $\left(R_{0}\right)_{x_{1} x_{3}} \equiv 0$ since $M \not \equiv 0$. Consequently $\left(P_{0}\right)_{x_{1}} \equiv 0$, i.e., P_{0} is a constant. Therefore, we obtain $m=1$.

Now, we will compare the coefficients of $b M$ and $a\left(R_{0}\right)_{x_{1}}$ for $m=1$:

$$
\left\{\begin{array}{l}
b\left[\left(1+\lambda p_{0}\right) \cdot\left(1-p_{0}+\lambda p_{0}\right) \cdot p_{0}-r_{0} p_{1}\right]=a r_{0}^{\prime} \tag{4.8}\\
2 b p_{0} p_{1}(\lambda-1) \cdot\left(1+\lambda p_{0}\right)=2 \lambda a\left[1+(\lambda-1) p_{0}\right] p_{0}^{\prime} \\
b p_{1}^{2}(\lambda-1) \cdot\left(1+2 \lambda p_{0}\right)=\lambda a\left[p_{1}^{\prime}+(\lambda-1) \cdot\left(p_{0}^{\prime} p_{1}+p_{0} p_{1}^{\prime}\right)\right] \\
\lambda(\lambda-1) b p_{1}^{3}=\lambda(\lambda-1) a p_{1} p_{1}^{\prime}
\end{array}\right.
$$

From $p_{1} \neq 0$ and the third equality of (4.8) we obtain $b p_{1}^{2}=a p_{1}^{\prime}$ and $p_{1}^{\prime}=\lambda(\lambda-1)\left[p_{0} p_{1}^{\prime}-p_{0}^{\prime} p_{1}\right]$. Multiplying the second equality of (4.8) by p_{1} we get

$$
-p_{0} p_{1}^{\prime}+\lambda\left(p_{0} p_{1}^{\prime}-p_{0}^{\prime} p_{1}\right)+\lambda(\lambda-1)\left(p_{0} p_{1}^{\prime}-p_{0}^{\prime} p_{1}\right) p_{0}=0
$$

Combining these two equations we obtain $\lambda\left(p_{0} p_{1}^{\prime}-p_{0}^{\prime} p_{1}\right)=0$. Therefore $p_{1}^{\prime}=0$, which gives $p_{0}^{\prime}=0$; it follows that $P_{0}=P_{0}\left(x_{3}\right)=p_{0}+p_{1} \cdot x_{3}$. Furthermore, since p_{1} is a constant then $b=0$ and from (4.8) it follows that r_{0} is also constant and so we are in the previous case.

Now, let us consider $\lambda=1$. Given that $R_{0}(x)=r_{0}+\int_{0}^{x_{3}}\left[1+2 P_{0}(\xi)\right] d \xi_{3}$ and $M=P_{0}^{2}+P_{0}-R_{0}\left(P_{0}\right)_{x_{3}}$ then $\operatorname{deg}_{x_{3}}(M)=2 m$ if $m>1$ and $\operatorname{deg}_{x_{3}}(M)=$ 0 , if $m \leqslant 1$. Since $b\left(x_{1}\right) M(x)=a\left(x_{1}\right)\left(R_{0}\right)_{x_{1}}$ we get $m \leqslant 1$. As in the situation where $\lambda \neq 1$, it is not possible to have $m=0$ so that $m=1$, which shows that p_{0} and p_{1} are both constant. Therefore, X assumes the following form

$$
X(x)=x_{1} P_{0}\left(x_{3}\right) \frac{\partial}{\partial x_{1}}+x_{2}\left[1+P_{0}\left(x_{3}\right)\right] \frac{\partial}{\partial x_{2}}+R_{0}(x) \frac{\partial}{\partial x_{3}}
$$

where $P_{0}=P_{0}\left(x_{3}\right)$ is an affine linear and $R_{0}(x)=r_{0}\left(x_{1}\right)+\int_{0}^{x_{3}}[1+$ $\left.2 P_{0}(\xi)\right] d \xi$. The opd induced by X is described by the 1 -form $\omega_{X}=\left[x_{2} R_{0} M+x_{1} x_{2} P_{0}\left(1+P_{0}\right) r_{0}^{\prime}\right] d x_{1}-\left[x_{1} R_{0} M+x_{1}^{2} P_{0}^{2} r_{0}^{\prime}\right] d x_{2}+x_{1} x_{2} M d x_{3}$ where $M=P_{0}^{2}+P_{0}-R_{0} P_{0}^{\prime}$. The integrability condition of ω_{X} is

$$
\omega_{X} \wedge d \omega_{X}=-x_{1}^{3} x_{2}\left[M(x) \cdot P_{0}^{2}\left(x_{3}\right) \cdot r_{0}^{\prime \prime}\left(x_{1}\right)\right] d x_{1} \wedge d x_{2} \wedge d x_{3} \equiv 0
$$

Consequently, in this situation ω_{X} is integrable if r_{0} is also an affine linear function.

Case 4. $D \equiv\left(R_{0}\right)_{x_{1}} \equiv 0$ and $\left(R_{0}\right)_{x_{2}} \not \equiv 0$.
This case reduces to the previous one by a change of variables.
Case 5. $D \equiv 0,\left(R_{0}\right)_{x_{1}} \not \equiv 0$ and $\left(R_{0}\right)_{x_{2}} \not \equiv 0$.
Solving the first equation of (4.5) we obtain $f_{2}\left(x_{1}, x_{2}\right) M(x)=f_{1}\left(x_{1}, x_{2}\right)$ $\left(R_{0}\right)_{x_{1}}(x)$ for some polynomials $f_{1}, f_{2} \in \mathbb{C}\left[x_{1}, x_{2}\right]$. Applying the same ideas presented in case 3 of this theorem, we can show that $\operatorname{deg}_{x_{3}}\left(P_{0}\right)=1$ and $\left(p_{0}\right)_{x_{1}}=\left(p_{1}\right)_{x_{1}}=0$, therefore $P_{0}=P_{0}\left(x_{2}, x_{3}\right)$. Repeating this process again but now for the x_{2}-variable, we obtain $P_{0}=P_{0}\left(x_{3}\right)$ with p_{0} and p_{1} constants.

As in the case 3 , if $\lambda \neq 1$ then r_{0} is a constant and consequently, ω_{X} is integrable because $P_{0}=P_{0}\left(x_{3}\right)$ as proved. For $\lambda=1$ we will determine the functions $r_{0}=r_{0}\left(x_{1}, x_{2}\right)$ which ensure the integrability of ω_{X}. Let

$$
X(x)=x_{1} P_{0}\left(x_{3}\right) \frac{\partial}{\partial x_{1}}+x_{2}\left[1+P_{0}\left(x_{3}\right)\right] \frac{\partial}{\partial x_{2}}+R_{0}(x) \frac{\partial}{\partial x_{3}}
$$

where $P_{0}=P_{0}\left(x_{3}\right)$ is an affine linear function and $R_{0}(x)=r_{0}\left(x_{1}, x_{2}\right)+$ $\int_{0}^{x_{3}}\left[1+2 P_{0}(\xi)\right] d \xi$. The condition of integrability of ω_{X} is written as
$\omega_{X} \wedge d \omega_{X}=$
$-M\left[x_{1}^{3} x_{2} P_{0}^{2} \cdot\left(r_{0}\right)_{x_{1} x_{1}}+2 x_{1}^{2} x_{2}^{2} \cdot P_{0}\left(1+P_{0}\right) \cdot\left(r_{0}\right)_{x_{1} x_{2}}+x_{1} x_{2}^{3}\left(1+P_{0}\right)^{2} \cdot\left(r_{0}\right)_{x_{2} x_{2}}\right] d V$
where $M=P_{0}^{2}+P_{0}-R_{0} \cdot P_{0}^{\prime}$. Writing $r_{0}=\sum_{i+j=0}^{n} a_{i, j} x_{1}^{i} x_{2}^{j}$ we get

$$
\begin{aligned}
& \omega_{X} \wedge d \omega_{X}= \\
& -M\left[\sum_{i+j=2}^{n} a_{i, j} x_{1}^{i+1} x_{2}^{j+1}\left[i(i-1) P_{0}^{2}+2 i j P_{0}\left(1+P_{0}\right)+j(j-1)\left(1+P_{0}\right)^{2}\right]\right] d V
\end{aligned}
$$

For the existence of nontrivial solutions other than the linear one we must have

$$
i(i-1) P_{0}^{2}+2 i j P_{0}\left(1+P_{0}\right)+j(j-1)\left(1+P_{0}\right)^{2} \equiv 0
$$

for $i+j=l \geqslant 2$. The coefficient of x_{3}^{2} in this last expression is

$$
i(i-1) p_{1}^{2}+2 i j p_{1}^{2}+j(j-1) p_{1}^{2}
$$

since $P_{0}\left(x_{3}\right)=p_{0}+p_{1} \cdot x_{3}$. Given that $p_{1} \neq 0$, we have $i(i-1)+2 i j+j(j-1)=$ $(i+j)[(i+j)-1]=0$ which is possible only if $(i+j)=0$ or $(i+j)=1$. Therefore, in this situation, ω_{X} is integrable only when r_{0} is also an affine linear function.

Bibliography

[1] Botт (R.), Tu (L.W.). - Differential Forms in Algebraic Topology, Graduate Texts in Mathematics 82, Springer (1982).
[2] Cerveau (D.). - Une liste de problèmes, Ecuaciones Diferenciales Singularidades, Universidad de Valladolid, p. 455-460 (1997).
[3] Mol (R. S.). - Flags of holomorphic foliations, Annals of the Brazilian Academy of Science,83(3), p. 775-786 (2011).
[4] Nonato Costa (G.). - Holomorphic foliations by curves on P^{3} with non-isolated singularities, Annales de la Faculté des Sciences de Toulouse, S. 6, 15 no. 2, p. 297-321 (2006).

[^0]: (1) Departamento de Matemática - ICEX - UFMG, Cep 31270-901 - Belo Horizonte, Brazil
 gilcione@mat.ufmg.br
 Article proposé par Vincent Guedj.

