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On Fatou-Julia decompositions

Taro Asuke(1)

ABSTRACT. — We propose a Fatou-Julia decomposition for holomorphic
pseudosemigroups. It will be shown that the limit sets of finitely generated
Kleinian groups, the Julia sets of mapping iterations and Julia sets of
complex codimension-one regular foliations can be seen as particular cases
of the decomposition. The decomposition is applied in order to introduce
a Fatou-Julia decomposition for singular holomorphic foliations. In the
well-studied cases, the decomposition behaves as expected.

RÉSUMÉ. — Nous proposons une décomposition de Fatou-Julia pour
pseudosemigroupes holomorphes. On montre que les ensembres limites des
groupes kleiniens de génération finis, les ensembres de Julia d’itérations
d’applications et ceux pour des feuilletages réguliers, transversalement
holomorphes de codimension complexe un sont des cas particulier de
la décomposition. La décomposition est appliquée pour introduire une
décomposition de Fatou-Julia pour des feuilletages holomorphes singuliers.
Dans les cas bien étudiés, le comportement de la décomposition est comme
attendu.

Introduction

Iterations of rational mappings and actions of finitely generated Kleinian
groups are typical holomorphic dynamical systems on CP 1. The notion of
the Julia sets [15], [16] and the limit sets [14] are significant in their study.
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Sullivan’s dictionary [18] says that they are in a close correspondence (see
also [12] pp. 98–99). More generally, the Julia sets are defined also for ac-
tions of semigroups generated by rational maps on CP 1 (cf. [9], [19]). These
holomorphic dynamical systems are one-dimensional and on closed mani-
folds. Holomorphic dynamical systems on one-dimensional manifolds also
appear if transversely holomorphic foliations of complex codimension one
are given. Indeed, the holonomy pseudogroups of such foliations act on one-
dimensional complex manifolds. If foliations are given on closed manifolds,
then the holonomy pseudogroups have certain compactness called ‘com-
pact generation’. The notion of the Julia sets is also known for complex
codimension-one transversely holomorphic foliations of closed manifolds [6],
[8], [1]. One of the aims of this article is to give a unified definition of these
Julia sets and limit sets. For this purpose, we will introduce a notion of
compactly generated pseudosemigroups and a Fatou-Julia decomposition
for them.

The Julia sets are also defined for entire maps on C. In addition, if we
consider transversely holomorphic foliations of open manifolds, or the regu-
lar parts of singular holomorphic foliations, then their holonomy pseudo-
groups are no longer compactly generated in general. We will introduce a
Fatou-Julia decomposition also for non-compactly generated pseudosemi-
groups, which coincides with the classical one if iterations of entire maps on
C are considered.

In the first section, we will introduce (holomorphic) pseudosemigroups
(psg for short), which have appeared in a slightly different way, e.g. in [11],
[13], [22]. In the second section, a Fatou-Julia decomposition of psg’s and
pseudogroups are defined and some fundamental properties are shown. Al-
though pseudogroups generate psg’s, decompositions for psg’s and pseudo-
groups do not coincide in general. In the third section, compactly generated
psg’s are introduced. They are a version of compactly generated pseudo-
groups [8]. In the fourth section, Fatou-Julia decompositions of compactly
generated psg’s are discussed. It will be shown that if Γ is a compactly gen-
erated pseudogroup, then the Julia set of the psg generated by Γ and the one
as a pseudogroup coincide. It will be also shown that we can find Hermitian
metrics or volume forms adapted to actions of psg’s on Fatou sets. In the
last section, we will study Fatou-Julia decompositions for one-dimensional
singular foliations.

The author expresses gratitude to members of Dosemi, Saturday seminar
held at Tokyo Institute of Technology, for helpful comments.
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On Fatou-Julia decompositions

1. Pseudosemigroups

In order to compare Julia sets for pseudogroups with the Julia sets for
mapping iterations, it is convenient to introduce a generalization of pseudo-
groups.

Definition 1.1. — Let T and S be topological spaces. A local continu-
ous map from T to S is a continuous map from an open set of T into S.
A local continuous map from T to T is also called a local continuous map
on T . If f is a local continuous map from T to S, then the domain and the
range of f are denoted by dom f and range f , respectively. Note that we do
not assume that range f is open but we always assume that dom f is open.
If V is an open subset of dom f , then the restriction of f to V is denoted
by f |V . Let f be a local continuous map from T to S.

1) If f is a homeomorphism (resp. diffeomorphism) from dom f to range f ,
then f is called a local homeomorphism (resp. local diffeomorphism).

2) If T and S are equipped with complex structures and if f is holo-
morphic, then f is called a local holomorphic map. If moreover f is
a diffeomorphism, then f is called a local biholomorphic diffeomor-
phism.

3) Suppose that if x ∈ dom f , then there is a neighborhood U of x such
that f |U is a homeomorphism to the image. Then, f is said to be étale.

4) Suppose that T and S are one-dimensional complex manifolds. A local
holomorphic map f is said to be a ramified covering if there are bi-
holomorphic diffeomorphisms ϕ from dom f to a domain in C and ψ
from range f to a domain in C such that ψ◦f ◦ϕ−1(z) = zn holds for
some positive integer n, where z ∈ rangeϕ. A local holomorphic map
f is said to be a local ramified covering if for each x ∈ dom f , there
is an open neighborhood U of x such that f |U is a ramified covering.

5) Assume that f is a local holomorphic map on C. The set of singular-
ities of f is denoted by Singf , namely, Singf = {z ∈ U | f ′(z) = 0}.

6) The germ of a local mapping f at a point x ∈ dom f is denoted by
fx.

Definition 1.2. — Let T be a topological space and Γ be a family of
local continuous mappings on T . Then, Γ is a pseudosemigroup (psg for
short) if the following conditions are satisfied.

1) idT ∈ Γ , where idT denotes the identity map of T .

2) If γ ∈ Γ , then γ|U ∈ Γ for any open subset U of dom γ.
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3) If γ1, γ2 ∈ Γ and range γ1 ⊂ dom γ2, then γ2 ◦ γ1 ∈ Γ .

4) Let U be an open subset of T and γ a local continuous mapping defined
on U . If for each x ∈ U , there is an open neighborhood, say Ux, of x
such that γ|Ux belongs to Γ , then γ ∈ Γ .

If in addition Γ consists of local homeomorphisms, then Γ is a pseudogroup
if Γ satisfies 1), 2), 3) and the following conditions.

4’) Let U be an open subset of T and γ a homeomorphism from U to
γ(U). If for each x ∈ U , there is an open neighborhood, say Ux, of x
such that γ|Ux belongs to Γ , then γ ∈ Γ .

5) If γ ∈ Γ , then γ−1 ∈ Γ .

If Γ is either a psg or a pseudogroup, then we set for x ∈ T

Γ x = {γx |x ∈ dom γ}.
By abuse of notation, an element of Γ x is considered as an element of Γ
defined on a neighborhood of x.

The terminology ‘pseudosemigroup’ has appeared in a slightly different
way, e.g. in [13], [22], [11].

Definition 1.3. — Let T be a topological space and G a set which con-
sists of local continuous mappings on T . The psg generated by G is the
smallest psg which contains G, and is denoted by 〈G〉. If Γ is a pseudo-
group, then we denote by Γ psg the psg generated by Γ . If there is a finite
number of elements, say f1, . . . , fr, of Γ such that Γ = 〈f1, . . . , fr〉, then Γ
is said to be finitely generated.

In what follows, the n-th iteration of a mapping f , if defined, is denoted
by fn, where n ∈ Z. If n = 0, then f0 is considered as the identity map.

Remark 1.4. — One of differences between pseudo(semi)groups and
(semi)groups is illustrated as follows. Let f be a rational mapping on CP 1

and Γ the semigroup generated by f . Let U = V = {z ∈ C | |z| < 1+ε} and
ϕ(z) = 1/z. If we set U0 = V0 = {z ∈ C | 1/(1+ε) < |z| < 1+ε} and identify
U0 and V0 by ϕ, then the resulting space is CP 1. Let T be the disjoint union
of U and V . Then, Γ , ϕ and ϕ−1 generate a psg Γ̃ which acts on T . Let
W be a small open subset of U0 such that f(W ) ⊂ T and f2(ϕ(W )) ⊂ T .
By the condition 4), the mapping g on W ∪ ϕ(W ) such that g|W = f and

g|ϕ(W ) = f2 belongs to Γ̃ . The psg Γ̃ is obtained from Γ , indeed, (Γ̃ , T ) is
equivalent to (Γ ,CP 1) (see Definition 1.22). However, g cannot be realized
as a single element of Γ although W and ϕ(W ) correspond to the same
region on CP 1,
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Remark 1.5. — Let (Γ , T ) be a pseudogroup. Suppose that U is an open
subset of T and that γ is a mapping defined on U . If the restriction of
γ to a neighborhood of x belongs to Γ for each x ∈ U , then it is always
true that γ ∈ Γ psg but γ ∈ Γ if and only if γ is a homeomorphism. Let

θ ∈ R \ Q and define γ:CP 1 → CP 1 by setting γ(z) = e2π
√−1θz, where

we regard CP 1 = C ∪ {∞}. Let Γ be the pseudogroup generated by γ,
namely, the smallest pseudogroup which contains γ. If we set U = {z ∈
C | |z − 1| < ε}, where ε is a small positive number, then γ|U ∈ Γ . We set
V = {z ∈ C |

∣∣z −
√
−1

∣∣ < ε}. We may assume that U ∩ V = ∅, however,
for a suitable choice of n, we have γn(V ) ∩ U �= ∅. Let γ′ be the mapping
from U � V to CP 1 such that γ′|U = γ and γ′|V = γn+1. Then γ′ �∈ Γ
because γ′ is not a homeomorphism but γ′ ∈ Γ psg.

Definition 1.6. — Let (Γ , T ) be a psg. If T is a q-dimensional, possibly
non-connected manifold and if Γ consists of holomorphic mappings, then
(Γ , T ) is called a holomorphic pseudosemigroup on a q-dimensional complex
manifold.

Definition 1.7. — A pseudosemigroup Γ is said to be étale if Γ con-
sists of étale mappings. A holomorphic pseudosemigroup Γ on a one-dimen-
sional complex manifold is said to be ramified if Γ is generated by local
ramified coverings and holomorphic étale mappings.

We will assume that (Γ , T ) is holomorphic étale if q > 1, and ramified
if q = 1 when defining the Fatou-Julia decomposition (see Assumption 2.1).
Note that such a Γ consists of open mappings.

Although we are interested in holomorphic pseudosemigroups on com-
plex manifolds, we will discuss some more fundamental definitions and prop-
erties of psg’s. Many of them are borrowed from those of pseudogroups which
can be found in [7] §§ 1–2.

Definition 1.8. — We denote by Γ×0 the subset of Γ which consists of
invertible elements, namely,

Γ×0 = {γ ∈ Γ | γ−1 ∈ Γ }.

We denote by Γ× the subset of Γ which consists of locally invertible elem-
ents, namely,

Γ×={γ∈Γ | ∃ an open covering {Uλ}λ∈Λ of dom γ such that (γ|Uλ)−1∈Γ }.

Note that Γ×0 is a pseudogroup, and Γ× is an étale pseudosemigroup.
Indeed, Γ× is the pseudosemigroup generated by Γ×0 .
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Definition 1.9. — Let (Γ , T ) be a psg. If X ⊂ T , then we set

Γ (X) = {y ∈ T | ∃x ∈ X, ∃ γ ∈ Γ s.t. y = γ(x)},
Γ−1(X) =

⋃

γ∈Γ

γ−1(X).

A subset X of T is said to be forward invariant if Γ (X) = X, backward
invariant if Γ−1(X) = X. If X is forward and backward invariant, then X
is said to be completely invariant or Γ -invariant.

Definition 1.10. — A subset X of T is said to be Γ -connected if X

satisfies the following condition: if X =
∐

λ∈ΛXλ is the decomposition of

X into its connected components, then for any λ, λ′ ∈ Λ, there exists a
sequence λ0 = λ, λ1, . . . , λr = λ′ such that Γ (Xλi) ∩ Xλi+1 �= ∅ holds for
i = 0, . . . , r − 1.

Remark 1.11. — T is Γ -connected if and only if Γ \T is connected with
the quotient topology. If X ⊂ T , then Γ \X ⊂ Γ \T is connected if X is
Γ -connected. The converse also holds if X is Γ -invariant, and is not always
true even if Γ is a pseudogroup. Indeed, let T = T1�T2, where T1 = T2 = R,
and equip T with the natural topology. Let Γ be the pseudogroup generated
by γ:T1 → T2 given by γ(x) = x, X1 = (−∞, 0] ⊂ T1, X2 = (0,∞) ⊂ T2

and X = X1 ∪X2. Then X is not Γ -connected but Γ \X = Γ \T = R.

If (Γ , T ) is the holonomy pseudogroup of a foliation, then Γ -connected
components of Γ -invariant sets correspond to connected components of sat-
urated sets.

The notions of morphisms and equivalences are given as follows.

Definition 1.12. — Let (Γ , T ) and (∆,S) be psg’s. A morphism Φ:Γ →
∆ is a collection Φ of local continuous mappings from T to S with the fol-
lowing properties.

i) {domφ |φ ∈ Φ} is an open covering of T .

ii) If φ ∈ Φ, then any restriction of φ to an open set of domφ also
belongs to Φ.

iii) Let U be an open subset of T and φ a continuous map from U to S.
If for any x ∈ U , there exists an open neighborhood Ux of x such that
φ|Ux ∈ Φ, then φ ∈ Φ.

iv) If φ ∈ Φ, γ ∈ Γ× and δ ∈ ∆×, then δ ◦ φ ◦ γ ∈ Φ,
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v) Suppose that γ ∈ Γ and x ∈ dom γ. If x ∈ domφ and γ(x) ∈ domφ′,
where φ, φ′ ∈ Φ, then there is an element δ ∈ ∆ such that φ(x) ∈
dom δ, and δ ◦ φ = φ′ ◦ γ on a neighborhood of x.

A morphism from (Γ , T ) to itself is called an endomorphism of (Γ , T ).

The properties ii) and iii) are sometimes referred as the ‘maximality’.

Definition 1.13. — Let (Γ , T ) and (∆,S) be psg’s and Φ a morphism
from Γ to ∆.

1) Φ is called an étale morphism if Φ consists of étale mappings.

2) If Γ and ∆ are holomorphic psg’s, and if Φ consists of holomorphic
mappings, then Φ is said to be holomorphic.

3) Suppose that Γ and ∆ are psg’s on complex one-dimensional mani-
folds. A holomorphic morphism is said to be ramified if φ ∈ Φ and
x ∈ domφ, then there exists an open neighborhood Ux of x such
that φ|Ux is the restriction of the composite of ramified coverings and
holomorphic étale mappings.

Definition 1.14. — Let (Γ , T ) and (∆,S) be pseudogroups. A collec-
tion Φ of local homeomorphisms from T to S is an étale morphism of
pseudogroups if Φ satisfies the conditions in Definition 1.12 but ‘a continu-
ous map from U to S’ in iii) is replaced by ‘a local homeomorphism from T
to S’.

Definition 1.14 is equivalent to the usual definition of morphisms of
pseudogroups [7] 1.4.

Definition 1.15 (cf. Definition 1.9). — Let Φ: (Γ , T ) → (∆,S) be a
morphism. If X ⊂ T and Y ⊂ S, then we set

Φ(X) = {s ∈ S | ∃x ∈ X, ∃φ ∈ Φ s.t. s = φ(x)},
Φ−1(Y ) =

⋃

φ∈Φ

φ−1(Y ).

Lemma 1.16. — Let Φ:Γ → ∆ be a morphism which consists of open
mappings. Let γ ∈ Γ× and x ∈ dom γ. If x ∈ domφ and γ(x) ∈ domφ′,
where φ, φ′ ∈ Φ, then the restriction of the element δ in v) of Definition 1.12
to a sufficiently small neighborhood of x belongs to ∆×.

Proof. — By restricting γ to a small neighborhood of x, we may assume
that γ ∈ Γ×0 . Then, there exists δ′ ∈ ∆ such that δ′ ◦ φ′ = φ ◦ γ−1 on a
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neighborhood of γ(x). If δ is an element of ∆ in v) of Definition 1.12, then
δ′ ◦δ ◦φ = δ′ ◦φ′ ◦γ = φ◦γ−1 ◦γ = φ holds on a neighborhood of x. Since Φ
consists of open mappings, δ′ ◦ δ = id on a neighborhood of φ(x). Similarly
δ ◦ δ′ = id on a neighborhood of φ′(γ(x)). �

Example 1.17. — Lemma 1.16 does not hold if the assumption is dropped.
Let T = R2, and denote by pr1 the projection to the first factor. Let f = idT ,
g = pr1, Γ = 〈f〉 and ∆ = 〈g〉. If we set Φ to be the collection of restrictions
of pr1, then Φ is a morphism from Γ to ∆. It is apparent that restrictions
of f belong to Γ× and that restrictions of g do not belong to ∆×. On the
other hand, pr1 ◦ f = g ◦ pr1.

In what follows, we will consider only holomorphic morphisms if holo-
morphic psg’s are considered.

Definition 1.18. — Let {fλ}λ∈Λ be a family of local continuous map-
pings from T to S. Suppose that {dom fλ}λ∈Λ is an open covering of T and
that if γ ∈ Γ , x ∈ dom γ, x ∈ dom fλ and γ(x) ∈ dom fµ, where λ, µ ∈ Λ,
then there is a δ ∈ ∆ such that fµ ◦γ = δ ◦fλ on a neighborhood of x. Then,
the morphism generated by {fλ}λ∈Λ is by definition the smallest morphism
which contains {fλ}λ∈Λ and denoted by 〈fλ〉λ∈Λ. If every fλ is étale (resp.
holomorphic, ramified), then the étale (resp. holomorphic, ramified) mor-
phism generated by {fλ}λ∈Λ is defined in the same way.

Definition 1.19. — Let Γ and ∆ be pseudogroups and let Φ be a mor-
phism (resp. étale morphism) of pseudogroups from Γ to ∆. We denote
by Φpsg the morphism (resp. étale morphism) of psg’s from Γ psg to ∆psg

generated by Φ.

If Φ is an étale morphism of pseudogroups, then Φ consists of local
homeomorphisms but Φpsg needs not so.

Definition 1.20. — Let (Γ , T ) be a pseudosemigroup. Assume that there

is a covering map p: T̂ → T which satisfies the following covering property:

1) For each γ ∈ � , there is a unique mapping γ̂ such that dom γ̂ =
p−1(dom γ) and that p ◦ γ̂ = γ ◦ p holds on p−1(dom γ).

2) If γ1, γ2 ∈� , then γ̂2 ◦ γ1 = γ̂2 ◦ γ̂1.

3) If U is an open subset of T , then îdU = idp−1(U).

The psg �̂ generated by {γ̂}
γ∈� together with the morphism generated by

p is called the covering of � associated with p. If p is a Galois covering with
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Galois group G and the action commutes with �̂ , then (�̂ , T̂ ) and p are

called a Galois covering with Galois groupG. If (� , T ) is a holomorphic psg,

then we always assume that (�̂ , T̂ ) and p are holomorphic. If in addition

(� , T ) is a holomorphic psg on a one-dimensional complex manifold, then
we allow p to be a ramified covering, namely, a covering map with rami-

fication (branching) points. In this case we call (�̂ , T̂ ) with the morphism
generated by p a ramified covering.

Note that the morphism generated by p is an étale or a ramified mor-
phism.

Definition 1.21. — If Φ1:Γ 1 → Γ 2 and Φ2:Γ 2 → Γ 3 are morphisms
of pseudosemigroups, then the composite Φ2 ◦ Φ1 is defined by

Φ2 ◦ Φ1 = 〈φ2 ◦ φ1 |φ1 ∈ Φ1, φ2 ∈ Φ2, rangeφ1 ⊂ domφ2〉.

Definition 1.22. — An étale morphism Φ:Γ → ∆ is an equivalence if
there is an étale morphism Ψ:∆→ Γ such that Ψ◦Φ = Γ× and Φ◦Ψ = ∆×.
Such a Ψ is unique so that it is denoted by Φ−1. We call Φ−1 the inverse
morphism of Φ. An equivalence from (Γ , T ) to itself is called automorphism.

If Φ1 and Φ2 are equivalences, then Φ2 ◦ Φ1 is also an equivalence.

Example 1.23. — Let f be an endomorphism of CP 1 and φ an auto-
morphism of CP 1. Then φ naturally induces an equivalence from 〈f〉 to 〈φ◦
f ◦ φ−1〉.

Remark 1.24. — If (Γ , T ) is a psg, then the identity map on T generates
a morphism which is equal to Γ×. In fact, Γ× is an automorphism of (Γ , T ).
On the other hand, Γ is an endomorphism of (Γ , T ) if and only if Γ = Γ×.
Indeed, if ζ ∈ Γ , then applying the condition v) of Definition 1.12 to φ =
ζ, φ′ = γ = idT , we see that for any x ∈ dom ζ, there exists an open
neighborhood U of x and δ ∈ Γ such that δ ◦ ζ = idU holds. If we set φ = δ,
φ′ = γ = idT , then there exists an open neighborhood V of ζ(x) and δ′ ∈ Γ
such that δ′ ◦ δ = idV . It follows that δ′ = δ′ ◦ idU = δ′ ◦ (δ ◦ ζ) = ζ holds
on a neighborhood of x. Therefore ζ ∈ Γ×.

Lemma 1.25. — An étale morphism Φ is an equivalence if and only if

Ψ′={étale maps from S to T which are locally of the form φ−1 for some φ∈Φ}

is a morphism. Indeed, Ψ′ = Φ−1.
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Proof. — Suppose that Φ is an equivalence and let Ψ be as in Defin-
ition 1.22. If ψ ∈ Ψ and x ∈ domψ, then there is an element φ ∈ Φ such
that ψ(x) ∈ domφ. Since Φ ◦ Ψ = ∆×, there is an element δ ∈ ∆× such
that φ ◦ ψ = δ on a neighborhood of x. We may assume that φ and δ are
local homeomorphisms by restriction. Since Φ is a morphism, δ−1 ◦ φ ∈ Φ.
Therefore, ψ ∈ Ψ′. Conversely, if ψ′ ∈ Ψ′ and y ∈ domψ′, then ψ′ = φ−1

holds on a neighborhood of y, where φ ∈ Φ. Let ψ ∈ Ψ such that y ∈ domψ.
Since Ψ ◦ Φ = Γ×, we may assume that ψ ◦ φ = γ for some γ ∈ Γ×. Hence
ψ′ = φ−1 = γ−1 ◦ ψ holds on a neighborhood of y. Since Ψ is a morphism,
this implies that ψ′ ∈ Ψ. It is easy to see that Ψ′ = Φ−1 holds if Ψ′ is a
morphism. �

If we work on pseudogroups, we have Φ−1 = {φ−1 |φ ∈ Φ}. Indeed, an
étale morphism Φ of pseudogroups is said to be an equivalence if {φ−1 |φ ∈
Φ} is an étale morphism of pseudogroups [7].

2. Fatou-Julia decomposition of pseudosemigroups

We pose the following assumption in this section.

Assumption 2.1. — We assume that (Γ , T ) is a holomorphic étale psg
on a q-dimensional complex manifold. If q = 1, then we allow Γ to be
ramified.

Note that Γ consists of open mappings under the above assumption.

Definition 2.2. — Let (Γ , T ) be a psg. If T ′ ⊂ T is a relatively compact
open subset, then we denote by Γ T ′ the restriction of Γ to T ′, that is

Γ T ′ = {γ ∈ Γ |dom γ ⊂ T ′ and range γ ⊂ T ′}.

We say that an open connected subset U of T contained in T ′ has the pro-
perty (wF), or U is a wF-open set for short if the following conditions are
satisfied:

wF1) If x ∈ U and ηx ∈ (Γ T ′)x, then there exists an element γ of Γ such
that dom γ = U and γx = ηx. We call γ an extension of ηx to U .

wF2) If we set

Γ U =
{
γ ∈ Γ

dom γ = U , and γ is an extension of the germ of
an element of Γ T ′ as above

}

= {γ ∈ Γ |dom γ = U and γ(U) ∩ T ′ �= ∅},

then Γ U is a normal family.
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We say that an open connected subset V of T contained in T ′ has the
property (F), or V is an F-open set for short if the following conditions are
satisfied:

F1) V has the property (wF).

F2) If γ ∈ Γ T ′ and dom γ ⊂ V , then range γ is the union of wF-open
sets.

Let F ∗(Γ T ′) be the union of F-open subsets of T ′, and J∗(Γ T ′) the comple-
ment of F ∗(Γ T ′) in T ′. We set

J0(Γ ) =
⋃

T ′∈T
J∗(Γ T ′),

J(Γ ) = J0(Γ ),

where T = {T ′ ⊂ T |T ′ is open and relatively compact}. We call J(Γ ) the
Julia set of Γ . The Fatou set of Γ is by definition the complement of J(Γ ) in
T . We call Γ -connected components of F (Γ ) and J(Γ ) Fatou components
and Julia components, respectively. Fatou sets and Julia sets obtained by
using the property (wF) instead of (F) are denoted by adding ‘w’, e.g. Fatou
sets in this sense are denoted by wF (Γ ).

Needless to say that the ‘property (F)’ stands for the ‘property Fatou’.
By ‘(wF)’ we mean ‘weak-F’. Note that if U is an F-open set for (Γ T ′ , T

′)
and if γ ∈ Γ T ′ is such that dom γ ⊂ U , then range γ is the union of F-
open sets. To see this, let ζ ∈ Γ T ′ such that dom ζ ⊂ range γ. If we set
V = γ−1(dom ζ), then ζ ◦ γ|V ∈ Γ T ′ and range ζ = ζ(γ(V )) so that range ζ
is the union of wF-open sets.

Example 2.3 (see also Example 3.6). — Let f :CP 1 → CP 1 be a rational
map. If we denote by 〈f〉 the psg generated by f , then J(〈f〉) = J(f), where
J(f) denotes the Julia set of f in the usual sense. If g:C → C is an entire
map, then we can regard g as a local holomorphic map defined on CP 1

with dom g = C, and 〈g〉 as a psg which acts on CP 1. If we denote by J(g)
the Julia set of g in the usual sense, which is a subset of C, then we have
J(〈g〉) = J(g) ∪ {∞}.

Let T ′ ∈ T . If U is an F-open set in T ′, then U is a wF-open set by
definition. If γ ∈ Γ T ′ then γ(U) is the union of wF-open sets but γ(U) itself
is not necessarily a wF-open set.

Example 2.4. — Let T = CP 1 and we define γ, ζ:CP 1 → CP 1 by γ(z) =
z2, and ζ(z) = zα, where α > 1 and α �∈ Z. The mapping ζ is not well-
defined on CP 1 so that we regard ζ as local mappings defined on suitable
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open subsets of CP 1 \ {0,∞} and take all branches. Let Γ be the psg
generated by γ and ζ. Then, F (Γ ) = CP 1 \ ({0,∞} ∪ {|z| = 1}). Let U
be a small open disc in CP 1 \ ({0,∞} ∪ {|z| = 1}). If n is large enough,
then γn(U) contains a circle around 0 or ∞. Hence no germ of ζ at a point
in γn(U) is the germ of any element of Γ defined on γn(U) so that γn(U)
does not have the property (wF). However, if x ∈ γn(U), then by choosing
a neighborhood of x small enough, we see that the germ of any element of
Γ can be extended to an element of Γ .

Some remarks are in order.

Remark 2.5. — Let F̃ ∗(Γ T ′) be the complement of J∗(Γ T ′) in T . If we
denote by F0(Γ ) the complement of J0(Γ ) in T , then we have

F0(Γ ) =
⋂

T ′∈T
F̃ ∗(Γ T ′)

and F (Γ ) is the interior of F0(Γ ) (see also Lemma 2.16).

Remark 2.6. — A related construction for holomorphic correspondences
is given in [3].

Remark 2.7. — Although the difference between the conditions (F) and
(wF) seems quite large, there are several cases where they are equivalent.
If Γ is generated by a pseudogroup, then these conditions are equivalent.
They are also equivalent if Γ = 〈f〉, where f is an endomorphism of CP 1

or an entire map on C. We will show that if Γ is compactly generated, then
the conditions (F) and (wF) are equivalent (Proposition 4.5).

Remark 2.8. — As holomorphic mappings are considered, extensions in
wF1) of the property (wF) are unique. The extension of γx is usually denoted
by γ.

Example 2.9. — Let T1, T2 and T3 be open unit discs in C and T = T1�
T2�T3. We denote by zk the standard coordinates on Tk. We define γi:T1 →
T3 by γi(z1) = zi1 and ζi:T2 → T3 by ζi(z2) = zi2 but dom ζi = {|z2| <
1/i}, where i is a positive integer. Let η:T1 → T2 be the identity map,
and Γ the psg generated by {γi, ζj , η}i,j>0. Then, F (Γ ) = T \ ({01, 02} ∪⋃∞
i=2{|z1| = 1/i}∪⋃∞

i=2{|z2| = 1/i}) and wF (Γ ) = T \ ({02}∪
⋃∞
i=2{|z2| =

1/i}), where 0i denotes the origin in Ti. Indeed, ζi is not well-defined on
a fixed neighborhood of 02 if i is large. Note that Γ (F (Γ )) = F (Γ ) but
Γ (wF (Γ )) � wF (Γ ).

Definition 2.10. — If (Γ , T ) is a pseudogroup, then F0(Γ ), J0(Γ ),
F (Γ ) and J(Γ ) are defined formally in the same way as in Definition 2.2.
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Thus obtained Fatou and Julia sets are denoted by Fpg,0(Γ ), Jpg,0(Γ ), Fpg(Γ )
and Jpg(Γ ), respectively.

Recall that if Γ is a pseudogroup, then the conditions (wF) and (F)
are equivalent. If (Γ , T ) is a pseudogroup, then Fpg(Γ ) ⊂ F (Γ psg). The
difference between Fpg(Γ ) and F (Γ psg) occurs in wF1) of Definition 2.2.

Example 2.11 (see also Example 4.21). — Let T = {0 < |z| < 1} ⊂ C
and set γ(z) = z2. Let Γ be the pseudogroup generated by γ and its local in-
verses, namely, let U = {U ⊂ T |U is an open subset such that γ:U → γ(U)
is a homeomorphism}, and let Γ = 〈γ|U , γ−1|γ(U)〉U∈U . Then F (Γ psg) =

Fpg(Γ ) = T . On the other hand, let T̂ be the open unit disc and we re-

gard γ as a local mapping defined on T̂ with dom γ = T , and let Γ̂ be the
pseudogroup generated by γ and its local inverses. Then F (Γ̂ psg) = T̂ \{0}.
On the other hand, Fpg(Γ̂ ) = ∅. Indeed, once an open subset U of T̂ is
fixed, γn is not injective on U for large n.

The equality Fpg(Γ ) = F (Γ psg) holds if Γ is a compactly generated
pseudogroup. See Proposition 4.11.

Remark 2.12. — If q > 1, then the Julia sets in Definitions 2.2 and 2.10
are tentative. We will need the notion of Green functions for a right defin-
ition of them, which we do not discuss in this paper. On the other hand,
we can apply Definition 2.2 to rational mappings from CPn to CPn, and
obtain the Fatou set in the usual sense. We refer to [4] and [21] for dynamics
on CPn.

In general, F0(Γ ) = F (Γ ) does not hold even if Γ is finitely generated.

Example 2.13. — Let A = {z ∈ C | 1 < |z| < 2} and define a local
mapping α on A by

α(z) =

{
z2, if 1 < |z| <

√
2,

z2/2, if
√

2 < |z| < 2.

If we set Γ 0 = 〈α〉, then J(Γ 0) = A. We regard α as a local mapping on
C. For a positive integer i, we set Ti = C, and T =

∐∞
i=1 Ti. We define

γi, ζi:Ti → Ti+1 by γi(z) = α(z) and ζi(z) = 4z. Let γ and ζ be local
mappings on T such that γ|Ti = γi and ζ|Ti = ζi, respectively. If we set
Γ = 〈γ, ζ〉, then we have

J0(Γ ) ∩ Ti =

∞⋃

k=0

{z ∈ C | 4−k < |z| < 2 · 4−k},

J(Γ ) ∩ Ti = {0} ∪ J0(Γ ).

for any i.
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Example 2.14 (cf. [1] Example 2.15, see also Theorem 2.19). — Let

Ti = C, i = 1, 2, . . ., and T =
∐∞

i=1Ti. We define γi:Ti → Ti+1 to be

the restriction of the identity map to {z ∈ C | |z| < 1/i}. Let γ be the local
diffeomorphism from T to T such that γ|Ti = γi. If we denote by Γ the
pseudogroup generated by γ, then Jpg,0(Γ ) ∩ Ti =

⋃∞
k=i{|z| = 1/k} but

Jpg(Γ ) ∩ Ti = (Jpg,0(Γ ) ∩ Ti) ∪ {0}. Note that (Γ , T ) is not equivalent to
the holonomy pseudogroup of the trivial foliation on a foliation chart. On
the other hand, if we set S1 = C, Si = {z ∈ C | |z| < 1/i− 1} for i > 1 and

S =
∐∞

i=1Si, then γ is a local diffeomorphism on S. If we denote by Γ̃ the

pseudogroup generated by γ, then Fpg(Γ̃ ) = S. Indeed, (Γ̃ , S) is equivalent
to the holonomy pseudogroup of the trivial foliation on a foliation chart.

The equality F0(Γ ) = F (Γ ) holds in some important cases. See The-
orems 4.1, 5.9 and Proposition 5.8.

Remark 2.15. — In what follows, we will discuss Fatou and Julia sets of
psg’s. However, the results apply to Fatou and Julia sets of pseudogroups
without changes.

The following property is frequently used.

Lemma 2.16. — Let (Γ , T ) be a psg, and let T1, T2 ∈ T . If T1 ⊂ T2,
then F ∗(Γ T1) ⊃ F ∗(Γ T2).

The proof is easy and omitted. Lemma 2.16 implies that it suffices to
consider a sequence {Ti} in T such that Ti ⊂ Ti+1 and that

⋃∞
i=1 Ti = T

when defining J0(Γ ) and F0(Γ ).

Unlike the classical cases, F (Γ ) and J(Γ ) need not be completely inva-
riant.

Example 2.17. — Let T1 = T2 = CP 1 = C ∪ {∞} and T = T1 � T2. Let
f :T1 → T1 be such that f(z) =

√
−1z on C ⊂ CP 1, and let ϕ:T2 → T1 be

the identity map. Let g:T2 → T2 be a rational map such that the classical
Julia set J(g) is the whole CP 1, for example, a Lattès map. If we set Γ =
〈f, g, ϕ〉, then F (Γ ) = T1 and J(Γ ) = T2. We have Γ−1(F (Γ )) = T and
Γ−1(J(Γ )) = J(Γ ). On the other hand, Γ (F (Γ )) = F (Γ ) and Γ (J(Γ )) =
T .

Example 2.17 is an example of compactly generated psg’s. See Sections 3
and 4.

In general, we have the following.
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Lemma 2.18. —

1) F0(Γ ) and F (Γ ) are forward Γ -invariant, and we have
F (Γ ) =

⋂
γ∈Γ (γ−1(F (Γ )) ∪ (T \ (dom γ))).

2) J0(Γ ) and J(Γ ) are backward Γ -invariant.

3) F0(Γ ), J0(Γ ), F (Γ ) and J(Γ ) are Γ×-invariant.

Proof. — If U is an F-open set for (Γ T ′ , T
′) and if γ ∈ Γ T ′ such

that dom γ ⊂ U , then γ(U) is the union of F-open sets. Hence we have
Γ T ′(F

∗(Γ T ′)) ⊂ F ∗(Γ T ′) for any T ′ ∈ T . Therefore Γ (F0(Γ )) ⊂ F0(Γ ).
On the other hand, since the local identity maps belong to Γ , the inclu-
sions are in fact equalities. Since Γ consists of open mappings, we also
have Γ (F (Γ )) = F (Γ ). If γ ∈ Γ , then γ(F (Γ ) ∩ (dom γ)) ⊂ F (Γ ). Hence
F (Γ ) ∩ (dom γ) ⊂ γ−1(F (Γ )). Therefore

F (Γ ) =
⋂

γ∈Γ

((F (Γ ) ∩ (dom γ)) ∪ (T \ (dom γ)))

⊂
⋂

γ∈Γ

(γ−1(F (Γ )) ∪ (T \ (dom γ))).

If we set γ = idT , then γ−1(F (Γ ))∪(T \(dom γ)) = F (Γ ) so that the above
inclusion is in fact the equality. The part 2) follows from 1). The part 3) is
easy. �

We have the following.

Theorem 2.19 (see also Proposition 4.10). — Let (Γ , T ) and (∆,S) be
psg’s.

1) If Φ:Γ → ∆ is either a covering or ramified covering, then Φ−1(F (∆))
⊂ F (Γ ). If Φ is a Galois covering with a finite Galois group, then
Φ−1(F (∆)) = F (Γ ).

2) If Φ:Γ → ∆ is an equivalence, then Φ(F (Γ )) = F (∆).

Proof. — We will show 1), because 2) can be shown by similar argu-
ments. Let W be an open subset of S. Then, W is contained in F (∆) if and

only if W ⊂ F̃ ∗(∆S′) for any S′ ∈ S, where S denotes the set of relatively
compact open subsets of S. Note that the latter condition is equivalent to
W ∩ S′ ⊂ F ∗(∆S′) for any S′ ∈ S.

Let U be an open subset of Φ−1(F (∆)). Assume that φ1 ∈ Φ is defined on
U and that φ1(U) ⊂ F (∆). If φ2 ∈ Φ and U ⊂ domφ2, then φ2(U) ⊂ F (∆).
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Indeed, if x ∈ U , then φ2 = δ ◦ φ1 holds for some δ ∈ ∆ on a neighborhood
of x by v) of Definition 1.12. Hence φ2(x) ∈ F (∆) by Lemma 2.18.

Let x ∈ Φ−1(F (∆))∩T ′ and let T ′1, . . . , T
′
r be the connected components

of T ′, where T ′ ∈ T . Since T ′ is relatively compact, we can find a finite
number of elements φ1, . . . , φs of Φ such that {domφk} is an open covering

of T ′ and that each φk is the restriction of an element φ̃k of Φ such that
dom φ̃k ⊃ domφk. Moreover, we may assume that each φ̃k is a local ramified
covering with a single singularity, (namely, a branching point), or a local
biholomorphic diffeomorphism. If we set S′ =

⋃r
i=1

⋃s
j=1 φj(T

′
i ∩ (domφj)),

then S′ ∈ S. We may assume that x ∈ domφ1. Then φ1(x) ∈ F (∆) ∩ S′ by
the above arguments.

Let U be an open connected neighborhood of x which is contained in
(domφ1)∩Φ−1(F (∆))∩T ′. We may assume that if we set V = φ1(U) then
V is an F-open set in F ∗(∆S′). We may further assume that if δ ∈ ∆V and

δ(V ) ∩ rangeφk �= ∅, then δ(V ) ⊂ range φ̃k. Let z ∈ U and γz ∈ (Γ T ′)z. If
γ(z) ∈ domφi, then there is an element δ ∈ ∆ such that δ ◦ φ1 = φi ◦ γ on
a neighborhood of z. Since V is an F-open set, δ extends to an element of
∆ defined on V . Hence (δ ◦ φ1)z = (φ̃i ◦ γ)z. As Φ is a covering or ramified

covering, there exists an element ζ of Γ such that φ̃i ◦ ζ = δ ◦ φ1 and
dom ζ = U . If γ(z) is not a branching point of φi, then ζz = γz. If γ(z) is a
branching point of φi, then we can find a point w which is close enough to
z and is not a branching point. We still have (φ̃i ◦ γ)w = (φi ◦ ζ)w so that
ζw = γw. By analyticity, we have ζz = γz. If φ1 is a local biholomorphic
diffeomorphism, then for each γ ∈ Γ U , φ̃i(γ) ◦ γ ◦ φ−1

1 ∈ ∆V , where i(γ) is
determined by γ as above. Since the number of φi’s is finite, this implies
that Γ U is a normal family. If q = 1 and φ1 is ramified at p ∈ U , then
Γ U |U\{p} is a normal family. Since elements of Γ U are obtained via ∆V ,
elements of Γ U is bounded on a neighborhood of p. Hence Γ U is a normal
family also in this case. Therefore U is a wF-open set. Let γ ∈ Γ T ′ such
that dom γ ⊂ U . If γ(x) ∈ domφi, then there is an open connected set U ′ of
dom γ such that x ∈ U ′, γ(U ′) ⊂ domφi, and that there is an element δ of
∆ such that δ ◦ φ1 = φi ◦ γ holds on U ′. Since δ(φ1(U

′)) = φi(γ(U ′)) ⊂ S′,
δ ∈ ∆S′ and φi(γ(U ′)) is the union of F-open sets. Let z ∈ γ(U ′) and
ηz ∈ (Γ T ′)z. If η(z) ∈ domφk, then there is an element µ ∈ ∆S′ such that
(µ ◦ φi)z = (φk ◦ η)z. Since φi(γ(U ′)) is the union of F-open sets, we may
assume by shrinking U ′ that µ is well-defined on φi(γ(U ′)) as an element

of ∆. Moreover µ(φi(γ(U ′))) ⊂ range φ̃k by the choice of V , because we
have µ(φi(γ(U ′))) = µ(δ(φ1(U

′))) ⊂ µ ◦ δ(V ). Now since Φ is a (ramified)

covering, there is an element ζ of Γ such that µ ◦ φi = φ̃k ◦ ζ with dom ζ =
γ(U ′). We have (φ̃k ◦ ζ)z = (φk ◦ η)z. By similar arguments as above, we
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can verify that ζz = ηz and that Γ γ(U
′) is a normal family. Hence γ(U ′)

is a wF-open set so that U is an F-open set. Suppose that Φ is a Galois
covering with a finite Galois group. Let Ũ ⊂ F0(Γ ) and assume that p|

Ũ

is a homeomorphism. We set U = p(Ũ), where p is the projection which
generates Φ. Let x ∈ U and S′ ∈ S such that x ∈ S′. If we set T ′ = p−1(S′),
then T ′ ∈ T because p is a finite covering. Let x̃ ∈ Ũ such that p(x̃) = x and

Ũ ′ an F-open set for Γ T ′ which contains x̃. We set U ′ = p(Ũ ′). If y ∈ U ′ and
δy ∈ (∆S′)y, then there is a γ

ỹ
∈ (Γ T ′)ỹ such that (p ◦ γ)

ỹ
= (δ ◦ p)

ỹ
, where

ỹ ∈ T ′ such that p(ỹ) = y. Then, γ
ỹ

extends to an element of Γ defined

on Ũ ′. If z ∈ U ′, then (p ◦ γ)
z̃

= (δ′ ◦ p)z holds for some δ′ ∈ ∆, where z̃

the unique element of Ũ ′ such that p(z̃) = z. Since p is a homeomorphism,
we have δ′ = p ◦ γ ◦ p−1 on a neighborhood of z. Hence p ◦ γ ◦ p−1 belongs

to ∆, and its domain is U ′. As Γ Ũ
′

is a normal family, ∆U
′

is also. Hence
U ′ is a wF-open set for ∆S′ . Let δ ∈ ∆S′ such that dom δ ⊂ U ′. We set
V = dom δ and Ṽ = p−1(V )∩Ũ ′. Then, there is an element γ ∈ Γ such that
p ◦ γ = δ ◦ p because Φ is a covering. Moreover, γ ∈ Γ T ′ by the definition of
T ′. As γ(Ṽ ) is the union of wF-open sets, δ(V ) is also the union of wF-open
sets. Hence U ′ is an F-open set for ∆S′ . Therefore U is the union of F-open
sets for ∆S′ , and U ⊂ F0(∆). �

Example 2.20. — We define f :CP 1 → CP 1 by f(z) = z2. Let Γ be the
psg generated by f and its local inverses on CP 1 \ {0,∞}, then F (Γ ) =

CP 1 \ ({0,∞} ∪ {|z| = 1}). We define f̃ :C → C by f̃(z) = 2z, and let

Γ̃ be the psg on C generated by f̃ and f̃−1. Then F (Γ̃ ) = C \ {0}. Let

p:C→ C \ {0} be the exponential map. Then p is a morphism from (Γ̃ ,C)

to (Γ ,CP 1), and a covering morphism from (Γ̃ ,C) to (Γ ′,C \ {0}), where
Γ ′ denotes the restriction of Γ to C \ {0}. We have F (Γ ′) = F (Γ ) and

p−1(F (Γ ′)) = C \
√
−1R 	 F (Γ̃ ).

Example 2.21. — 1) of Theorem 2.19 does not always hold if we simply
assume that Φ is a morphism. Let T1 = T2 = C and T = T1�T2. We define
γ1:T1 → T2 by γ1(z) = z. Let γ2 be the restriction of γ1 to the unit disc
in T1. Then, we have F (〈γ1〉) = T and F (〈γ2〉) = T \ {z ∈ T1 | |z| = 1}.
The identity map of T induces a morphism Φ: (〈γ2〉, T ) → (〈γ1〉, T ) but
Φ−1(F (〈γ1〉) � F (〈γ2〉).

In the next section, we will introduce the notion of compactly generated
psg’s. Here we present two examples of non-compactly generated psg’s in
advance. Fatou-Julia decompositions of these psg’s are examined under a
tentative definition in [1]. The decompositions are as follows under Defin-
ition 2.2. Note that these psg’s are generated by pseudogroups so that the
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conditions (wF) and (F) are equivalent. Results are the same as in [1] but
we proceed by correcting typographic errors.

Example 2.22 ([1] Examples 8.8 and 8.9). — Let γ:C→ C be the map-
ping given by γ(z) = 2z, and 〈γ〉 the group generated by γ. Let T =
(C \ {0})/〈γ〉 and S = {z ∈ C | |z| < 1 + ε}, where ε is a small positive real
number. Let O′ be a subset of S defined by O′ = {z ∈ C | 1 < |z| < 1 + ε},
and let η:O′ → T be the mapping induced by the inclusion of O′ into
C. We define ξ:T → T by ξ(z) = z2, and let Γ be the pseudogroup
generated by (restrictions of) ξ and η which acts on T1 = T � S. Then
J(Γ psg) = T �O′, where O′ denotes the closure of O′ in S (J(Γ psg) is writ-
ten in [1] as T1 in error). Although Γ and Γ psg are not compactly generated,
we have Jpg(Γ ) = J(Γ psg).

Example 2.23 ([1] Example 8.10). — Let D5+ε(0) be the open disc of ra-
dius 5 + ε centered at 0 and let T = T1 � T2, where T1 = T2 = D5+ε(0). We
denote the natural coordinates of T1 and T2 by z and w, respectively. Let
Γ be the pseudogroup generated by γ0, γ1 and γ2 defined as follows. First
set

Si = {z ∈ Ti | 25/(5 + ε) < |z| < 5 + ε}, i = 1, 2,

and define γ0:S1 → S2 by γ0(z) = 25/z. Second, let

U1 = {re
√−1t ∈ T1 | 1 < r < 2, |t| < δ},

where δ is chosen so small that γ1:U1 → T1 defined by γ1(z) = z2 is a
diffeomorphism onto its image. Finally set

V1 = {re
√−1t ∈ T1 | 2 < r < 4, |t| < δ},

and define γ2:U1 → V1 by γ2(z) = 2z. The action of Γ is essentially on T1,
but we add T2 and γ0 in order to consider Γ as a pseudogroup acting on
CP 1.

The pseudogroup Γ is not compactly generated. If we set

Ik = {e±2−k+1√−1δ t | 1 � t � 4}, for k = 0, 1, . . .,

Al = {2i/2l−1

e
√−1s | i = 0, . . . , 2l, |s| � 2−l+1δ}, for l = 0, 1, . . .,

(the definitions of Ik and Al are incorrect in [1]) then

J(Γ psg) = Jpg(Γ ) = [1, 4] ∪
∞⋃

k=0

Ik ∪
∞⋃

l=1

Al.

Adding an irrational rotation to Γ as a generator, one can obtain a pseudo-
group Γ 1 such that J((Γ 1)psg) = Jpg(Γ 1) = {z ∈ T1 | 1 � |z| � 4}. The
pseudogroup Γ 1 is not compactly generated, either.
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In general, it is almost impossible to tell if a given point of T belongs to
F (Γ ) or not. However, there are some cases where x ∈ T belongs to J(Γ )
as in classical cases as follows (cf. [16] Theorem 2.1.9).

1) If there exists γ ∈ Γ such that γ(x) = x and |γ′|x > 1 (repelling fixed
point), then x ∈ J(Γ ).

2) Let γ ∈ Γ such that γ is a restriction of a rational or entire mapping
on C of degree greater than or equal to 2 and that γ(x) = x. Either
if (γ′x)

m = 1 for some m � 1 or if (γ′x)
m �= 1 for any m � 1 and

the Schröder equation does not have any solutions, then x ∈ J(Γ )
(parabolic or irrationally indifferent fixed point).

Suppose that deg γ = 1 in the second case. If γ is a rotation on CP 1, then

F (〈γ〉) = CP 1. On the other hand, if γ(z) =
z

1 + z
, then J(〈γ〉) = {0}.

The dynamics on F (Γ ) is expected to be tame. We will later show that
if Γ = Γ×, then F (Γ ) admits a Γ -invariant Hermitian metric or a volume
form which is locally Lipschitz continuous (Theorem 4.20). If Γ is compactly
generated, then F (Γ ) admits a semi-invariant metric or a volume form which
is locally Lipschitz continuous (Proposition 4.19 and Theorem 4.17).

3. Compactly generated pseudosemigroups

The notion of compactly generated pseudogroups [8] is also valid for
pseudosemigroups.

Definition 3.1. — A pseudosemigroup (Γ , T ) is compactly generated
if there is a relatively compact open set T ′ in T , and a finite collection of
elements {γ1, . . . , γr} of Γ of which the domains and the ranges are con-
tained in T ′ such that

1) {γ1, . . . , γr} generates Γ T ′ , where Γ T ′ is the restriction of Γ to T ′,

2) for each γi, there exists an element γ̃i of Γ such that dom γ̃i con-
tains the closure of dom γi, γ̃i|dom γi = γi and that γ̃i is étale on a
neighborhood of dom γ̃i \ dom γi,

3) the inclusion of T ′ into T induces an equivalence from Γ T ′ to Γ .

(Γ T ′ , T
′) is called a reduction of (Γ , T ).

A reduction of (Γ , T ) is also denoted by (Γ ′, T ′).
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Remark 3.2. — If Γ is a compactly generated psg on a one-dimensional
complex manifold, then Γ is étale or ramified. In addition, the last condition
in 2) is equivalent to Singγ̃i = Singγi.

Lemma 3.3. — If (Γ ′, T ′) is a reduction of (Γ , T ), then Γ×x meets T ′

for any x ∈ T .

Proof. — Let Φ be the morphism from (Γ ′, T ′) to (Γ , T ) generated by
the inclusion, which is an equivalence. Then Ψ = Φ−1 is an equivalence from
(Γ , T ) to (Γ ′, T ′). If x ∈ T , then there is an element ψ ∈ Ψ defined on a
neighborhood of x and ψ(x) ∈ T ′. We may assume that ψ is a diffeomor-
phism and ψ−1 ∈ Φ. Since Φ is a morphism, there are elements γ, ζ ∈ Γ
such that (γ ◦ ψ−1)x = idx and (ζ ◦ id)x = (ψ−1)x. Therefore ζx = (γ−1)x
and γψ−1(x) = ψψ−1(x) so that the restriction of ψ to a neighborhood of x
belongs to Γ×. �

Remark 3.4. — It is easy to see that the converse of Lemma 3.3 does not
hold. However, if pseudogroups are considered, then the condition 3) can be
replaced with a much weaker condition that T ′ meets every orbit of Γ .

Lemma 3.5. — If Γ is a compactly generated pseudogroup, then Γ psg is
a compactly generated psg.

Proof. — Let (Γ ′, T ′) be a reduction of (Γ , T ) and suppose that Γ ′ =
〈γ1, . . . , γr〉. If γ ∈ Γ and if x ∈ dom γ, then there are elements γ′ ∈ Γ ′ and
α, β ∈ Γ such that γ = β ◦ γ′ ◦ α holds on a neighborhood of x. If ζ ∈ Γ psg

and y ∈ dom ζ, then the restriction of ζ to a neighborhood of y belongs to
Γ . Hence ζ = β ◦ ζ ′ ◦ α holds for some ζ ′ ∈ Γ ′ and α, β ∈ Γ . This implies
that (Γ ′psg, T

′) is equivalent to (Γ psg, T ) because Γ ⊂ Γ×psg. Since Γ ′psg is
generated by γ1, . . . , γr, γ1

−1, . . . , γr
−1, Γ psg is compactly generated. �

Example 3.6. — Let f be an endomorphism of CP 1, where CP 1 = C ∪
{∞}. If we set Γ = 〈f〉, then (Γ ,CP 1) is a compactly generated psg. Indeed,
(Γ ,CP 1) itself is a reduction. Another reduction can be chosen as follows.
Let U = {z ∈ C | |z| < 1 + ε} and V = {z ∈ C | |z| > 1 − ε} ∪ {∞}, where
ε > 0 is a fixed small number. Let Γ = 〈f, idU∩V 〉 and T = U � V . Then
(Γ , T ) is equivalent to the psg on CP 1 generated by f . Note that we can
embed T into C. Let now U ′ = {z ∈ C | |z| < 1+ε′} and V ′ = {z ∈ C | |z| >
1− ε′}∪ {∞}, where ε > ε′ > 0. If we set T ′ = U ′�V ′ and Γ ′ = Γ |T ′ , then
(Γ ′, T ′) is a reduction of (Γ , T ). On the other hand, if f is an entire map
on C and if we regard f as a local mapping on CP 1 with dom f = C, then
〈f〉 is not compactly generated.

Example 3.7. — Let Γ be the holonomy pseudogroup of a complex
codimension-one transversely holomorphic foliation of a closed manifold.
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Then Γ is a compactly generated pseudogroup, and Γ psg is a compactly
generated pseudosemigroup.

Example 3.8. — Even if Γ is a compactly generated psg, Γ× needs not
be a compactly generated pseudogroup. Indeed, let Γ be the psg generated
by f : z �→ z2. Then (Γ ,CP 1) is compactly generated but (Γ×,CP 1) is not.

The following properties are fundamental.

Lemma 3.9. — Let Φ:Γ → ∆ be a morphism which consists of open
mappings. If (Γ , T ) is compactly generated, then Φ is also compactly gener-
ated. That is, there is a finite subset {φi} of Φ with the following properties:

1) For any φ ∈ Φ and x ∈ domφ, there are φi, γ ∈ Γ× and δ ∈ ∆×

such that φ = δ ◦ φi ◦ γ on a neighborhood of x.

2) For each i, domφi is relatively compact, and there is an element

φ̃i ∈ Φ such that domφi ⊂ dom φ̃i and φi = φ̃i|domφi .

Proof. — Let (Γ ′, T ′) be a reduction of (Γ , T ). Since T ′ is compact, we

can find finite subsets {φi} and {φ̃i} of Φ such that domφi is relatively

compact, T ′ ⊂ ⋃
domφi, domφi ⊂ dom φ̃i and φ̃i|domφi = φi. Let x ∈ T

and suppose that φ ∈ Φ is defined on a neighborhood of x. Then, there
is an element γ ∈ Γ× such that γ(x) ∈ T ′, and some φi is defined on a
neighborhood of γ(x). Let δ′ ∈ ∆ such that δ′◦φ = φi◦γ. By Lemma 1.16, we
may assume that δ′ ∈ ∆× so that there exists δ ∈ ∆× such that φ = δ◦φi◦γ
on a neighborhood of x. �

Lemma 3.10. — Let (Γ , T ), (∆,S) be psg’s and suppose that (Γ , T ) is
compactly generated.

1) If Φ:Γ → ∆ is a covering or ramified covering, then (∆,S) is com-
pactly generated.

2) If (∆,S) is equivalent to (Γ , T ), then (∆,S) is compactly generated.

Proof. — First we show 1). Let (Γ ′, T ′) be a reduction of (Γ , T ). Then,
Φ is compactly generated with a set of generators {φi}i∈I as in Lemma 3.9.
We may assume that each φi is a homeomorphism or a ramified covering
with a single singularity. Suppose that Γ ′ = 〈γ1, . . . , γr〉. We may assume
that domains and ranges of γi’s are contained in domains of φk’s. Then, for
each i, φj ◦ γi = δ ◦ φk holds for some j, k and δ ∈ ∆. If we denote by ∆′

the collection of elements of ∆ obtained in this way, then ∆′ is a finite set.
We now set S′ =

⋃
i∈I φi(T

′ ∩ (domφi)). Then S′ is relatively compact and
(∆′, S′) is a reduction of (∆,S).
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The proof of 2) is almost parallel. Let (Γ ′, T ′) be a reduction of (Γ , T )
and suppose that Γ ′ = 〈γ1, . . . , γr〉. Let Φ be an equivalence from Γ to
∆. Then, Φ is compactly generated with a set of generators {φi} as in
Lemma 3.9. Let D = {φi ◦ γj ◦ φ−1

k }, where the composition in the right
hand side is taken after restrictions if necessary. ThenD is a finite set. We set
S′ =

⋃r
i=1 φi(T

′∩(domφi)). Then S′ is relatively compact. If δ ∈ ∆, then we
may assume that there are elements φ1, φ2 ∈ Φ such that φ−1

2 ◦δ◦φ1 ∈ Γ by
taking restrictions. Hence Φ|T ′ is an equivalence from (Γ ′, T ′) to (〈D〉, S′).
Let Ψ be the equivalence from (Γ ′, T ′) to (Γ , T ) induced by the inclusion.
Then, Φ ◦ Ψ ◦ (Φ|T ′)−1 is equal to the morphism from (〈D〉, S′) to (∆,S)
induced by the inclusion. �

The next lemma is easy.

Lemma 3.11. — Assume that (Γ , T ) is compactly generated and let
(Γ ′, T ′) be a reduction. If T ′ ⊂ V ⊂ T and V is relatively compact, then
(Γ V , V ) is also a reduction of (Γ , T ).

4. Fatou sets of compactly generated pseudosemigroups

We pose the same assumption as Assumption 2.1 in this section.

Let (Γ , T ) be a compactly generated pseudosemigroup. Let (Γ T ′ , T
′) be

a reduction and Φ:Γ T ′ → Γ the equivalence induced by the inclusion.

Theorem 4.1. — Let (Γ , T ) a compactly generated psg and (Γ T ′ , T
′) a

reduction. Then F (Γ ) = Φ(F ∗(Γ T ′)) and J(Γ ) = Φ(J∗(Γ T ′)). In addition,
we have F0(Γ ) = F (Γ ) and J0(Γ ) = J(Γ ).

Proof. — Let T ′′ ∈ T . If T ′′ ⊂ T ′, then F ∗(Γ T ′) ∩ T ′′ ⊂ F ∗(Γ T ′′) by
Lemma 2.16. If T ′′ ⊃ T ′, then Φ induces an equivalence from T ′ to T ′′,
which we denote by Φ′. We can show that Φ′(F ∗(Γ T ′)) = F ∗(Γ T ′′) by
almost the same arguments as in the proof of Lemma 2.19. Moreover, since
Φ is induced by the inclusions, F ∗(Γ T ′) = F ∗(Γ T ′′) ∩ T ′. It follows that
F0(Γ ) ∩ T ′ = F ∗(Γ T ′) if (Γ T ′ , T

′) is a reduction. Therefore, if T ′′ ⊃ T ′,
then we have F0(Γ ) ∩ T ′′ = F ∗(Γ T ′′) = Φ′(F ∗(Γ T ′)). On the other hand,
Φ′(F ∗(Γ T ′)) = Φ(F ∗(Γ T ′)) ∩ T ′′ by the definition of Φ′. Since we can find
an increasing sequence Ti in T such that T =

⋃∞
i=1 Ti, we have F0(Γ ) =

Φ(F ∗(Γ T ′)). By taking the complement, we have J0(Γ ) = Φ(J∗(Γ T ′)). The
above arguments show that F0(Γ ) is an open subset of T . Hence F (Γ ) =
F0(Γ ) and J(Γ ) = J0(Γ ). �

Remark 4.2. — Theorem 4.1 also holds for compactly generated pseudo-
groups (cf. [1]). The proof is essentially the same and omitted.
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Remark 4.3. — If (Γ , T ) is compactly generated and if (Γ ′, T ′) be a re-
duction, then F (Γ ′) = F ∗(Γ T ′) and J(Γ ′) = J∗(Γ T ′).

Remark 4.4. — Let (Γ , T ) be a psg. Let {Dλ}λ∈Λ be an open covering

of T by balls in Cq. If we set D =
∐

λ∈ΛDλ, then elements of Γ can

be naturally regarded as local mappings on D if their domains and ranges
are contained in D. The psg (ΓD, D) is equivalent to (Γ , T ), indeed, the
inclusions of Dλ to T induce an equivalence. Hence, if we discuss Fatou-
Julia decompositions, we may assume that T is the disjoint union of open
balls in Cq, and that the closure of these balls are also disjoint. Suppose
now that (Γ , T ) is compactly generated and let (Γ ′, T ′) be a reduction of
(Γ , T ). Then, we can find a finite covering of T ′ by open balls {D′i}ri=1 such

that for any i, there exists a λ such that D′i ⊂ Dλ. If we set D′ =
∐

r
i=1D

′
i,

then (ΓD′ , D
′) is equivalent to (Γ ′, T ′). Hence we may assume that each

connected component of T ′ is an open ball and its closure is contained in a
connected component of T . In what follows, we assume (Γ , T ) and (Γ , T ′)
are as above unless otherwise mentioned. Finally note that if q = 1 and if U
is a wF-open set for (Γ ′, T ′), then the family Γ U as in wF2) of Definition 2.2
is always normal by virtue of Montel’s theorem.

Proposition 4.5. — If Γ is compactly generated, then wF-open sets are
F-open sets. Therefore wF (Γ ) = F (Γ ) holds and so on.

Proof. — Let (Γ ′, T ′) be a reduction of (Γ , T ), {γ1, . . . , γr} a set of
generators of Γ ′, and Φ:Γ → Γ ′ the equivalence which is the inverse of the
inclusion. Let d be a positive real number such that any germ of γi at a point
z ∈ T ′ extends to an element of Γ defined on Dz(d). Let V be a wF-open
set in T ′ and let γ ∈ Γ ′ such that dom γ ⊂ V . We set U = dom γ. If x ∈ U ,
then we can find an open subset U ′ of U such that x ∈ U ′ and that the
radius of γ(U ′) is less than d/2 for any γ ∈ Γ V . Let y ∈ γ(U ′) and assume
that an element ηy ∈ Γ ′y is given. We denote by Γ ′(k)y the set of the germs
of elements of Γ ′y which can be represented as the composite of at most
k generators. Then Γ ′y =

⋃
Γ ′(k)y. If ηy ∈ Γ ′(1)y, namely, ηy = (γi)y for

some i, then γi is well-defined on γ(U ′) by the choice of d. Moreover, since
γi ◦ γ ∈ Γ V , the radius of γi(γ(U ′)) is less than d/2. Suppose inductively
that if ηy ∈ Γ ′(k)y, then ηy extends to an element of Γ and η(γ(U ′)) is of
radius less than d/2. If ηy ∈ Γ ′(k+1)y, then we have ηy = (γi ◦ζ)y for some
i and ζy ∈ Γ ′(k)y. By the assumption, we may assume that ζ is well-defined
on γ(U ′), and the radius of ζ(γ(U ′)) is less than d/2. Again by the choice of
d, γi ◦ ζ extends to an element, say θ, which is well-defined on γ(U ′). Since
θ ◦ γ ∈ Γ V , the radius of θ(γ(U ′)) is less than d/2. By the construction,
θy = (γi ◦ ζ)y = ηy. Since Γ V is a normal family and γ is an open mapping,
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Γ γ(U
′) is also a normal family. Therefore γ(U ′) is a wF-open set. Since y is

arbitrary, γ(U) is the union of wF-open sets. �

Theorem 4.1 and Proposition 4.5 imply that the definition of Fatou and
Julia sets of compactly generated psg’s (and pseudogroups) can be quite re-
duced compared with those of general psg’s. Indeed they are defined without
taking infinite number of intersections and unions, nor taking interiors and
closures. Moreover, it suffices to deal with wF-open sets instead of F-open
sets.

Remark 4.6. — The technique using Γ ′(k)y in the proof of Proposition 4.5
is from [5] Lemme 2.2. It is frequently used in what follows.

Fatou sets of compactly generated semigroups have a property similar
to those of finitely generated semigroups acting on CP 1 [9], [19].

Lemma 4.7. — Suppose that (Γ , T ) is compactly generated. Let (Γ ′, T ′)
be a reduction of (Γ , T ) and {γ1, . . . , γr} a set of generators of Γ ′. Then

F (Γ ′) =

r⋂

i=1

(γ−1
i (F (Γ ′)) ∪ (T ′ \ (dom γi))).

Proof. — It suffices to show that F (Γ ′) ⊃ ⋂r
i=1(γ

−1
i (F (Γ ′)) ∪ (T ′ \

(dom γi))) by Lemma 2.18. Suppose that x ∈ ⋂r
i=1(γ

−1
i (F (Γ ′)) ∪ (T ′ \

(dom γi))). If x ∈ dom γi, then there is an open neighborhood Ui of x such
that γi(Ui) is an F-open set. We set U =

⋂
x∈dom γi

Ui. If γy ∈ Γ ′y, where
y ∈ U , then γy = (ζ ◦ γi)y holds for some i and ζγi(y) ∈ Γ ′γi(y) unless

γy = (idT )y. Since ζγi(y) extends to an element of Γ defined on γi(U),
γy extends to U . Therefore U is an F-open set which contains x. Hence
F (Γ ′) ⊃ ⋂r

i=1(γ
−1
i (F (Γ ′)) ∪ (T ′ \ (dom γi))). �

Remark 4.8. — If Γ = 〈f〉, where f is an endomorphism of CP 1, then
Lemmata 2.18 and 4.7 are reduced to the usual equalities F (〈f〉) = f(F (〈f〉))
= f−1(F (〈f〉)) and J(〈f〉) = f(J(〈f〉)) = f−1(J(〈f〉)). Similarly, if f1, . . . , fr
are endomorphisms of CP 1, then dom fi = CP 1 for any i so that we have
F (Γ ′) =

⋂r
i=1 f

−1
i (F (Γ ′)), where Γ ′ = 〈f1, . . . , fr〉. This is the case studied

in [9] and [19].

Example 4.9. — Lemma 4.7 fails if Γ is not compactly generated and if
we do not include idT in the set of generators. Let T1 = T2 = CP 1 and
define γi:T1 → T2 by γi(z) = iz, and ζ:T2 → T2 by ζ(z) = z2. If we set
Γ n = 〈ζ, γ1, . . . , γn〉 and Γ = 〈ζ, γ1, . . .〉, then Γ n is compactly generated
and Γ is not. We have J(Γ n) = (

⋃n
i=1{z ∈ T1 | |z| = 1/i})∪S1 and J(Γ ) =
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(
⋃∞
i=1{z ∈ T1 | |z| = 1/i} ∪ {01}) ∪ S1, where 01 is the origin in T1 and S1

is the unit circle in T2. It is easy to see that F (Γ n) = (ζ−1(F (Γ n)) ∪ T1) ∩⋂n
i=1(γ

−1
i (F (Γ n)) ∪ T2) and (ζ−1(F (Γ )) ∪ T1) ∩

⋂∞
i=1(γ

−1
i (F (Γ )) ∪ T2) =

(T1 \ (
⋃∞
i=1{z ∈ T1 | |z| = 1/i})) ∪ (T2 \ S1) � F (Γ ).

1) of Theorem 2.19 holds in a strong form for compactly generated psg’s.

Proposition 4.10. — Let (Γ , T ) and (∆,S) be psg’s and assume that
(Γ , T ) is compactly generated. If Φ:Γ → ∆ is either an étale morphism or
a ramified morphism if q = 1, then Φ−1(F (∆)) ⊂ F (Γ ).

Proof. — We proceed as in the proof of Theorem 2.19 but it suffices
to deal with wF-open sets instead of F-open sets by Proposition 4.5. Let
(Γ ′, T ′) be a reduction of (Γ , T ) with Γ ′ = 〈γ1, . . . , γr〉. Let d0 > 0 such
that the germ of any γi at a point p in T ′ extends to an element of Γ defined
on Dp(d0). We retain other notations in the proof of Theorem 2.19. Let U be
an open subset of Φ−1(F (∆)) and W an open subset of F (∆)∩rangeφ1. We
assume that W is a wF-open set in F ∗(∆S′). By shrinking W if necessary,
we may assume that if δ ∈ ∆W and if δ(W ) ∩ rangeφk �= ∅, then δ(W ) ⊂
range φ̃k and the radius of φ̃−1

k (δ(W )) is less than d0/2. Finally, let V be a
connected open subset of φ−1

1 (W ) such that the radius of V is less than d0.

Let y ∈ V and ζy ∈ Γ ′y. Then, ζy ∈ Γ ′(m)y for some m. If m = 1, then
ζ is well-defined on V by the choice of d0. If ζ(y) ∈ domφk, then there is
an element δ ∈ ∆ such that (φk ◦ ζ)y = (δ ◦ φ1)y. Note that δ is defined on

W as an element of ∆. Since ζ(V ) ⊂ φ̃−1
k (δ ◦ φ1(V )), the radius of ζ(V ) is

less than d0/2. Assume that the same holds for m, and let ζy ∈ Γ ′(m+1)y.
We have ζy = (γi ◦ η)y for some i and η ∈ Γ ′(m). By the assumption, η is
well-defined on V and the radius of η(V ) is less than d0/2. Suppose that
η(y) ∈ domφj and γi(η(y)) ∈ domφl. Then there is an element δ1 ∈ ∆W

such that φj ◦ η = δ1 ◦ φ1. Note that range φ̃j ⊃ δ1(φ1(V )). On the other
hand, there is an element δ′ ∈ ∆S′ such that (φl◦γi)η(y) = (δ′◦φj)η(y). Then,
γi◦η is well-defined on V , and (φl◦(γi◦η))y = (δ′◦φj ◦η)y = ((δ′◦δ1)◦φ1)y.

Since δ′◦δ1 is well-defined on W , we have φ̃l◦(γi◦η) = (δ′◦δ1)◦φ1. Therefore,
the radius of (γi ◦ η)(V ) is less than d0/2, and if we set δ2 = δ′ ◦ δ1, then

δ2 ∈ ∆W and φ̃l ◦ (γi ◦ η) = δ2 ◦ φ1. Finally since ∆W is a normal family,
Γ V is also a normal family. Hence V is a wF-open set for Γ ′ = Γ T ′ . �

Proposition 4.11. — If Γ is a compactly generated pseudogroup, then
Fpg(Γ ) = F (Γ psg) and Jpg(Γ ) = J(Γ psg).

Proof. — Let (Γ ′, T ′) be a reduction of (Γ , T ) in the sense of pseudo-
groups. Then, (Γ ′psg, T

′) is a reduction of (Γ psg, T ). By Theorem 4.1, it
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suffices to show that J∗pg(Γ
′) = J∗(Γ ′psg). Let U be a wF-open subset of

F ∗pg(Γ
′) and x ∈ U . If γ is the germ of an element of Γ ′psg at x, then γ is

the germ of an element of Γ ′. Hence γ extends to an element of Γ defined
on U , and (Γ psg)

U = Γ U . Therefore U is a wF-open set for Γ ′psg.

Conversely let U ⊂ F ∗(Γ ′psg) be a wF-open set in the sense of psg’s.
Then U ⊂ Fpg(Γ

′). Indeed, let {γ1, . . . , γr} be a set of generators of Γ ′.
There is a d1 > 0 such that if γ is the germ of one of the γi’s at a point, say
x, in T ′, then γ is extends to an element of Γ defined on Dx(2d1). Let x ∈ U
and V = Dx(d1). By shrinking V if necessary, we may assume that V ⊂ U
and that γ(V ) is contained in ball of radius d1 for any γ ∈ Γ Upsg. Let y ∈ V
and Γ ′(k)y the set of germs of elements of Γ ′ which can be represented
as the composite of at most k generators. Then Γ ′y =

⋃∞
k=0 Γ

′(k)y. Let
γy ∈ Γ ′(k)y. If k = 1, then γy extends to an element of Γ defined on V .
Suppose that germs of elements of Γ ′(k)y extends to an element of Γ defined
on V , and let γy an element of Γ ′(k + 1)y. If we decompose γy = (γi ◦ ζ)y,
where ζy ∈ Γ ′(k)y, then ζy extends to an element of Γ defined on V . Since
ζ(V ) is contained in a disc of radius d1 and ζ(y) ∈ T ′, γi ◦ ζ is well-defined
on V . As being the composite of diffeomorphisms, γi ◦ ζ belongs to Γ . Since
Γ V ⊂ (Γ psg)

U , Γ V is a normal family. �

Proposition 4.12. — Let (Γ , T ) be a compactly generated pseudogroup,
and denote by F ′(Γ ) and J ′(Γ ) its Fatou and Julia sets in the sense of [1],
respectively. Then F ′(Γ ) = Fpg(Γ ) = F (Γ psg) and J ′(Γ ) = Jpg(Γ ) =
J(Γ psg).

Proof. — Let (Γ ′, T ′) be a reduction of (Γ , T ) and Φ be the equivalence
from (Γ ′, T ′) to (Γ , T ) induced by the inclusion. Then F ′(Γ ) = Φ(F ∗pg(Γ T ′))
and J ′(Γ ) = Φ(J∗pg(Γ T ′)) by definition. Hence the claim follows from The-
orem 4.1 and Proposition 4.11. �

Example 2.3, Proposition 4.11 and [1] Example 8.3 are summarized as
follows.

Theorem 4.13. — The Julia sets of rational mappings on CP 1, the
limit sets of finitely generated Kleinian groups acting on CP 1 and the Julia
set of compactly generated pseudogroups in the sense of [1] can be regarded
as Julia sets of compactly generated pseudosemigroups. If we regard entire
mappings on C as local mapping on CP 1, then their Julia sets can be re-
garded as Julia sets of non-compactly generated pseudosemigroups.

Proof. — If Γ is a finitely generated Kleinian group, then Γ generates a
compactly generated pseudogroup on CP 1. If we denote this pseudogroup
by Γpg, then Jpg(Γpg) coincides with the limit set of Γ ([1] Example 8.3).
�
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We refer to [15] and [16] for properties of the Julia sets of mapping
iterations, to [14] for properties of the limit sets of Kleinian groups.

Remark 4.14. — Even if Γ is a Kleinian group but not finitely generated,
we can regard (Γ,CP 1) as a pseudogroup or a pseudosemigroup, which are
not compactly generated.

Remark 4.15. — Let (Γ , T ) be a compactly generated pseudosemigroup.
If T = CP 1, then it is natural to assume that Γ is generated by rational
mappings and biholomorphic diffeomorphisms defined on CP 1. It is well-
known that the Julia sets are infinite set (in fact, perfect) and the limit
sets are also infinite unless they consist of at most 2 points. In view of
Theorem 4.13, such a property can be seen as one of common properties of
Julia sets of groups and semigroups acting on CP 1. On the other hand, if
T �= CP 1, then there are examples of compactly generated pseudogroups of
which Julia sets are finite but consist of more than 2 points [1] Examples 8.1
and 8.2.

Dynamics on F (Γ ) is expected to be tame. For example, on the Julia
sets of rational mappings and on the limit sets of finitely generated Kleinian
groups, the Γ -action is contracting or isometric with respect to the hyper-
bolic metric except elementary cases. We can find a volume form which has
a similar property. If q = 1, then we can find a metric.

Let (Γ ′, T ′) be a reduction of (Γ , T ). We may assume that T ′ =
∐

r
i=1T

′
i ,

where each T ′i is the unit open ball in Cq (see Remark 4.4). Let ηε, 0 < ε < 1,
be a smooth non-negative function on R such that

1) ηε(t) = 1 on (−∞, 1− ε],

2) ηε is strictly decreasing on [1− ε, 1],

3) ηε(t) = 0 on [1,+∞).

Definition 4.16. — Let zi = (z1
i , . . . , z

q
i ) be the standard coordinates

on T ′i and set hi(zi) = ηε(‖zi‖), where ‖ · ‖ denotes the standard norm on
Cq. The set of functions {hi} is denoted by h and considered as a function
on T ′. We will represent functions and differential forms on T ′ in the same
way. We define a function f on T ′ by

f(x) = sup
γ∈(Γ ′)x

|Jγx|h(γ(x)),

where |Jγx| denotes the absolute value of the Jacobian of γ at x. We set
g = f2g0 if q = 1, ω = f2µ0 if q � 1, where g0 and µ0 denote the standard

– 181 –



Taro Asuke

Hermitian metric and volume form on Cq, respectively. We denote g0 also
by dz ⊗ dz̄.

A metric or a volume form as above is said to be lower semicontinuous
(resp. locally Lipschitz continuous) if f is lower semicontinuous (resp. locally
Lipschitz continuous).

Theorem 4.17 (cf. [1] Lemmata 3.8 and 3.9). — The metric g and vol-
ume form ω in Definition 4.16 are lower semicontinuous on T ′. Moreover,
g and ω are finite and locally Lipschitz continuous on F (Γ ′).

Proof. — The first part is easy. We will show the second part. Let x ∈
F (Γ ′) and U a wF-open set which contains x. Then Γ U is a normal family
so that supγ∈ΓU |Jγx| and f(x) are finite. By slightly shrinking U , we may

assume that there exists an m > 0 such that |Jγy| � m holds for any y ∈ U
and γy ∈ Γ ′y because Γ U is a normal family. We may also assume that
U = Dx(d). We will show the following

Claim. — There are ε1 > 0, d1 and c > 0 such that if y ∈ Dx(d1) and
h(γ(y)) |Jγy| > f(y)− ε1, then γ ∈ Γ ′y induces an element of Γ ′ defined on
Dx(d1), and |Jγw| � c for any w ∈ Dx(d1).

Let ε1 be a positive real number less than f(x)/3. Then there is a positive
real number d2 such that f(y) + ε1 > f(x) for y ∈ Dx(d2) by the lower

semicontinuity of f . It follows that f(y)−ε1 > f(x)−2ε1 >
f(x)

3 > 0 because
f(x) > 0. Hence, if |x− y| < min{d, d2} and h(γ(y)) |Jγy| > f(y) − ε1,

then h(γ(y)) � f(x)
3m > 0. It follows that there is a compact subset K ′ of T ′

independent of y such that h(γ(y)) |Jγy| > f(y)−ε1 holds only if γ(y) ∈ K ′.

Note that under the same assumptions, we have |Jγy| > f(y) − ε1 >
f(x)

3 .

Since Γ U is a normal family, there is a d3 > 0 such that |Jγw| � f(x)
4 holds if

|w − y| < d3. Let ε2 be a positive real number such that DK′(ε2) ⊂ T ′, and
d4 a positive real number such that the radius of γ(Dx(d4)) is less than ε2/2
if γ ∈ Γ U . We set d1 = min{d, d2, d3/2, d4} and c = f(x)/4. If y ∈ Dx(d1)
and h(γ(y)) |Jγy| > f(y) − ε1, then γ(y) ∈ K ′. If we denote again by γ
the extension of γy to an element of Γ U , then γ(Dx(d1)) ⊂ Dγ(y)(ε2) ⊂ T ′.
Hence γ ∈ Γ ′. If w ∈ Dx(d1), then |y − w| < d3 so that |Jγw| � c. This
completes the proof of Claim. Note that such a γ belongs to Γ U .

Let ε3 be any positive real number less than ε1 and assume that y, z ∈
Dx(d1). Let γ ∈ Γ ′y such that h(γ(y)) |Jγy| > f(y) − ε3. Then γz ∈
Γ ′z so that h(γ(z)) |Jγz| � f(z). Hence f(y) − f(z) < h(γ(y)) |Jγy| −
h(γ(z)) |Jγz|+ ε3. Since Γ U is a normal family and each hi is Lipschitz con-
tinuous, there is a Lipschitz constant L for h ◦ γ independent of γ, namely,
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|h(γ(y))− h(γ(z))| � L |y − z| holds independent of γ (note that it suffices
to assume that each hi is locally Lipschitz continuous if we reduce d1 if
necessary). On the other hand, for each γ, we have

|Jγy|−|Jγz| =
|Jγy|2 − |Jγz|2
|Jγy|+ |Jγz|

� 1

2c
sup

w∈Dx(d1)
2 |Jγw| q!L1(γ)q−1L2(γ) |y − z| ,

on U , where

L1(γ) = sup
1�i,j�q
w∈Dx(d1)

∣∣∣∣
∂γi

∂zj
(w)

∣∣∣∣ , L2(γ) = sup
1�i,j,k�q
w∈Dx(d1)

∣∣∣∣
∂2γi

∂zj∂zk

∣∣∣∣ .

Again since Γ U is a normal family, the above inequality implies that there
is a constant L′ independent of γ such that |Jγy| − |Jγz| � L′ |y − z|.
Therefore,

f(y)− f(z)− ε3 < h(γ(y))(|Jγy| − |Jγz|) + (h(γ(y))− h(γ(z))) |Jγz|
� L′ |y − z|+ L |y − z|m
= (L′ + Lm) |y − z| .

Since this estimate is independent of the choice of γ, ε3 can be arbitrarily
small. Hence f(y)− f(z) � (L′ + Lm) |y − z|.

By exchanging the role of y and z, we have f(z)−f(y) � (L′+Lm) |y − z|
if y, z ∈ Dx(d1). This completes the proof. �

Note that we need only the compactness of T ′ in the construction. The
fact that Γ is compactly generated is used only to regard the metric on
F (Γ ′) as a metric on F (Γ ).

Definition 4.18. — Let g1 and g2 be Hermitian metrics on F (Γ ). If
z ∈ F (Γ ), then we denote by (g1)z the metric on TzF (Γ ). Suppose that
we have g1 = f2

1 dz ⊗ dz̄ and g2 = f2
2 dz ⊗ dz̄ on a neighborhood of z. If

f1(z) � f2(z), then we write (g1)z � (g2)z. Note that this condition is
independent of the choice of charts about z. If (g1)z � (g2)z holds on F (Γ ),
then we write g1 � g2. If ω1 and ω2 are volume forms on F (Γ ), then we
say ω1 � ω2 in the same way.

The action of Γ on F (Γ ) has the following property which we call semi-
invariance.

Proposition 4.19. — If x ∈ F (Γ ′) and if γ ∈ Γ ′ is defined on a neigh-
borhood of x, then γ∗g � g and γ∗ω � ω. If γ ∈ (Γ ′)×, then γ∗g = g and
γ∗ω = ω.
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Note that if x ∈ F (Γ ′), γ ∈ Γ ′ and Jγx = 0, then (γ∗g)x = 0 so that
there is no Γ ′-invariant metric (nor volume form) on F (Γ ′).

Proof. — If |Jγx| = 0, then (γ∗g)x = 0. Suppose that |Jγx| �= 0. If we
set Γ ′γ(x) ◦ γ = {ζ ◦ γ | ζ ∈ Γ ′γ(x)}, then Γ ′γ(x) ◦ γ ⊂ Γ ′x. It follows that

f(γ(x)) = sup
ζ∈Γ ′

γ(x)

|Jζγ(x)|h(ζ(γ(x)))

=
1

|Jγx|
sup

η∈Γ ′
γ(x)
◦γ
|Jηx|h(η(x))

� 1

|Jγx|
sup
η∈Γ ′x

|Jηx|h(η(x))

=
1

|Jγx|
f(x).

Hence (γ∗g)x � gx and (γ∗ω)x � ωx. �

Theorem 4.20. — Let (Γ , T ) be a psg which is not necessarily com-
pactly generated. Suppose that Γ = Γ×. If q = 1, then there is an invariant
Hermitian metric on F (Γ ) which is locally Lipschitz continuous. In gen-
eral, there is an invariant volume form on F (Γ ) which is locally Lipschitz
continuous.

Note that Γ = Γ× holds if and only if Γ is generated by a pseudogroup.
Indeed, Γ× = 〈Γ×0 〉. See Definition 1.8.

Proof. — We show the theorem for g because the proof for ω is com-
pletely parallel. By replacing (Γ , T ) by equivalence we may assume that
T ⊂ C. We will construct a metric on F (Γ ). Let {Ti}∞i=1 ⊂ T such that
Ti ⊂ Ti+1 and T =

⋃∞
i=1 Ti. We have F (Γ ) = int

(⋂∞
i=1 F

∗(Γ Ti)
)

by
Lemma 2.16, where int denotes the interior. Let hi, where i > 1, be a
smooth function on T such that

1) hi is positive on Ti.

2) hi = 1 on Ti−1.

3) If x, y ∈ Ti \ Ti−1 and if d(x, Ti−1) < d(y, Ti−1) then hi(x) > hi(y).

4) hi = 0 on T \ Ti,

where d denotes the distance with respect to the standard Hermitian metric
on C. We set Fi = F (Γ )∩Ti. Let g2 be the metric on F ∗(Γ T2) obtained from
h2

2dz⊗dz̄ as in Definition 4.16, namely, we set f(z) = supγ∈Γ T2
|Jγx|h2(γ(x))

and g2 = f2dz ⊗ dz̄. Then, g2 is invariant under the Γ T2-action. We have a
metric ĝ1 on F1 with the following properties with k = 1:
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1) ĝk is invariant under the Γ -action.

2) There are a neighborhood F ′k of Fk ∩ F (Γ ) in F (Γ ) and a locally
Lipschitz continuous, Γ -invariant metric ĝ′k on F ′k such that the re-
striction of ĝ′k to Fk is equal to ĝk (indeed it suffices to define ĝ′k =
gk+1|F ′

k
).

We call this condition the condition (Mk). We extend ĝ′1 to a metric g′3 on
Γ T3

(F ′1) by the Γ T3
-action. This is indeed possible. Let x ∈ Γ T3

(F ′1) and let
γ1, γ2 ∈ Γ T3

such that γ1(x), γ2(x) ∈ F ′1. If |(Jγ1)x| �= |(Jγ2)x|, then we set
η = γ2◦(γ1)

−1. The family {ηn}n∈Z cannot be normal on any neighborhood
of x. Hence |(Jγ1)x| = |(Jγ2)x| so that the extension exists.

If we denote by G1 the closure of Γ T3(F1) in F3, then G1 ⊂ Γ T3(F
′
1).

Indeed, let x ∈ G1 and U an F-open set for Γ T3
which contains x. We

can find a sequence {xi} in F1 and a sequence {γi} in Γ T3
such that

{γi(xi)} converges to x. We may assume that γi(xi) ∈ U . Let d > 0 such
that Dz(d) ⊂ F ′1 if z ∈ F1. Such a d exists because F1 ⊂ T1 is rela-
tively compact. We may also assume that if γ ∈ Γ U , then the radius of
γ(U) < d/8. We regard γ−1

1 as an element of Γ U and set yi = γ−1
1 γi(xi).

As {γi(xi)} converges to x, {yi} converges to y = γ−1
1 (x). On the other

hand, if we denote by d(p, q) the Euclidean distance between p and q, then
d(yi, y) � d(yi, y1) + d(y, y1) � d/4 + d/4 < d. Therefore y ∈ F ′1 and we
have x = γ1(y) ∈ Γ T3(F

′
1).

Let f̂1 be the function on G1 such that g′3 = f̂2
1 dz ⊗ dz̄, and let f̃1 =

f̂1/(1+ f̂1). Then, we can find an extension ϕ3 of f̃1 to F3 such that ϕ3 is lo-
cally Lipschitz continuous and 0 < ϕ3 < 1 holds. We set ψ3 = h3ϕ3/(1−ϕ3)
and g̃′3 = ψ2

3dz ⊗ dz̄. Let ĝ3 be the metric on F3 constructed from g′3 as
in Definition 4.16, namely, we set f(z) = supγ∈Γ T3

|Jγx|h3(γ(x))Ψ3(γ(x))

and ĝ3 = f2dz ⊗ dz̄. Since g′3|F1 = ĝ1, g̃
′
3|Γ T3

(F1)
� ĝ1 and since g′3 is

Γ T3
-invariant, we have ĝ3|F1

= ĝ1. If we set ĝ2 = ĝ3|F2
, then ĝ2 satisfies the

condition (M2). By repeating this procedure inductively, we obtain a Hermi-
tian metric on F (Γ ) which is Γ -invariant and locally Lipschitz continuous.
�
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Example 4.21 (see also Example 2.11). — We define γ:CP 1 → CP 1 by
γ(z) = z2. Then, J(γ) = {|z| = 1}. If we set

f(z) =





1 if |z| � 1
2 ,

2k |z|2
k−1

if 2−
1

2k−1 � |z| � 2−
1

2k ,

2k |z|−2k−1
if 2

1

2k � |z| � 2
1

2k−1 ,
1
|z|2 if |z| � 2,

then g = f2dz ⊗ dz̄ gives a Hermitian metric on CP 1 \ {|z| = 1} which is
locally Lipschitz continuous and semi-invariant under the action of Γ , where
Γ = 〈γ〉. On the other hand, if we consider the Poincaré metric on the
unit disc, then γ is contracting by the Schwarz lemma. Hence the Poincaré
metrics on the unit disc and CP 1 \ {|z| � 1} give rise to a Hermitian metric
on CP 1 \ {|z| = 1} which is of class Cω and semi-invariant under the action
of Γ . On the other hand, there is no Γ -invariant metric on F (Γ ). Indeed,
0 ∈ F (Γ ) but (γ∗g)0 = 0 for any metric g on F (Γ ).

Let Γ̂ be the psg generated by γ|CP 1\{0,∞} and its local inverses. Then

F (Γ̂ ) = C \ (S1 ∪ {0}). An invariant metric on F (Γ̂ ) is given by dz ⊗
dz̄/(|z| log |z|)2 on {0 < |z| < 1}. We can find on {1 < |z|} a metric of the
same kind.

Remark 4.22. — If Γ is a compactly generated pseudogroup, then we can
classify Fatou components. By using the classification, we can always find
a Γ -invariant metric of class Cω [1] Theorem 4.21. See also Theorem 5.9.

Remark 4.23. — Let S1 = S2 = C and we denote by Di(r) the open disc
in Si of radius r and centered at the origin. Let γ:S1 → S2 be the identity
map. We set T = S1 � S2 and Γ = 〈γ〉. Then F (Γ ) = T . We define Ti ∈ T
by setting Ti = D1(i)�D2(i). Then the metric obtained from {Ti} is equal
to the one induced from the standard Hermitian metric on C.

A kind of the converse of Theorem 4.17 holds for compactly generated
psg’s. A metric g on an open subset U of T is said to be bounded from below
if there exists c > 0 such that cg0 � g holds on U , where g0 is the standard
metric on Cq.

Proposition 4.24 (cf. [1] Lemma 2.6). — Let (Γ , T ) be a compactly
generated psg. If U is forward Γ -invariant and if U admits a continuous
Hermitian metric which is semi-invariant and bounded from below, then
U ⊂ F (Γ ).

Proof. — By Proposition 4.5, it suffices to show that U is contained
in wF (Γ ). Let (Γ ′, T ′) be a reduction of (Γ , T ) and suppose that Γ ′ =
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〈γ1, . . . , γr〉. Then, there exists d > 0 such that the germ of γi at x ∈ T ′

extends to an element of Γ defined on Dx(d), where Dx(d) denotes the d-
ball centered at x with respect to the standard metric. We denote by g the
semi-invariant metric on U and assume that cg0 � g. If y ∈ U , then let
V = Dgy(cd/4), where Dgy(cd/4) denotes the (cd/4)-ball centered at y with
respect to g. Since Dgy(cd/4) ⊂ Dy(d/2), we may assume that V ⊂ U . Let
z ∈ V and γz ∈ Γ ′(k)z, where Γ ′(k)z denotes the set of germs of elements
of Γ ′ which can be represented at most the composition of k generators. If
k = 1, then γz extends to an element, say γ, of Γ defined on V . Moreover,
since g is semi-invariant, we have γ(V ) = γ(Dgy(cd/4)) ⊂ Dgγ(y)(cd/4) ⊂
Dγ(y)(d/2) ⊂ Dγ(z)(d). Assume that γz ∈ Γ ′(k)z extends to an element,
say γ, of Γ defined on V , and γ(V ) ⊂ Dγ(z)(d). If γz ∈ Γ ′(k + 1)z, then
we have γz = (γi ◦ ζ)z for some ζz ∈ Γ ′(k)z and γi. By the assumption,
ζz extends to an element, say ζ, of Γ defined on V , and ζ(V ) ⊂ Dζ(z)(d).
As γi also extends to Dζ(z)(d) because ζ(z) ∈ T ′, (γi ◦ ζ)z extends to an
element, say η, of Γ defined on V , and we have η(V ) ⊂ Dη(z)(d) by the
same argument as above. �

If g is not bounded from below, then the conclusion fails. See Ex-
ample 5.13. If (Γ , T ) is not compactly generated, then there is also a coun-
terexample.

Example 4.25. — Let T1 = T2 = C and let f :T1 → T2 be the inclusion
of the open unit disc viewed as a local mapping. Then, the metric on T1�T2

induced from the standard metric on C is invariant under 〈f〉 but J(〈f〉) =
{z ∈ T1 | |z| = 1}.

5. Fatou-Julia decomposition for singular holomorphic foliations

For generalities on singular holomorphic foliations we refer to [2] and
[20]. Here we follow the latter. Let M be a connected complex manifold and
TM the holomorphic tangent bundle of M . We denote by OM the tangent
sheaf of M . If S is a coherent sheaf on M , then we set

Sing(S) = {x ∈M | Sx is not OM,x-free},
where Sx and OM,x denote the stalks at x of S and OM , respectively. The
rank of S is defined to be the rank of the locally free sheaf S|M\Sing(S), and
denoted by rankS.

Definition 5.1. — The tangent sheaf F of a singular foliation of M is
an integrable coherent subsheaf of OM , that is, F is a coherent subsheaf of
OM such that

[Fx,Fx] ⊂ Fx for x ∈M \ S(F),
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where
S(F) = Sing(OW /F).

The set S(F) is called the singular set of F . The dimension of F is defined
to be rankF and denoted by dimF . The codimension of F is defined to be
dimM − rankF and denoted by codimF .

We call F a singular foliation by abuse of notation.

Remark 5.2. — S(F) is an analytic set which contains Sing(F).

Let M be a complex manifold and F a singular foliation of M . Then, F
defines a non-singular foliation of codimension codimF on M \S(F), which
we denote by F reg.

Let M be a complex manifold and F a singular foliation of M . We choose
a complete transversal T for F reg, and let Γ be the holonomy pseudogroup
of F reg with respect to T . Note that Fpg(Γ ) and Jpg(Γ ) are Γ -invariant.

Definition 5.3. — We set

F0(F) = the saturation of Fpg,0(Γ ) by leaves of F reg,

J0(F) = M \ F0(F),

F (F) = the saturation of Fpg(Γ ) by leaves of F reg,

J(F) = M \ F (F).

If we replace T by another complete transversal T ′, then the holonomy
pseudogroup with respect to T ′ is equivalent to Γ . Hence F0(F), J0(F),
F (F) and J(F) are well-defined.

Remark 5.4. — Note that F (F) is the interior of F0(F) and J(F) =
J0(F). Note also that S(F) ⊂ J0(F) ⊂ J(F) by the definition. Actually,
J(F) \ S(F) is the saturation of Jpg(Γ ), where Γ is the holonomy pseudo-
group of F .

We can find F (F) and J(F) as follows. We denote by p and q the real
dimension and complex codimension of F reg, respectively. Let U = {Uλ}λ∈Λ

be a foliation atlas for F reg, namely,

1) each Uλ is homeomorphic to Vλ ×Dλ, where Vλ is an open subset of
Rp and Dλ is an open subset of Cq, and

2) the connected components of the intersection of leaves of F reg with
Uλ is given by Vλ × {p}, p ∈ Dλ.
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We may assume {Uλ}λ∈Λ is a refinement of a foliation atlas, and each Uλ is
relatively compact. In addition, we assume without loss of generality that

each Dλ is an open ball. We set T =
∐

λ∈ΛDλ and let Γ be the holonomy

pseudogroup with respect to T . We assume without loss of generality that

Λ is countable, and denote the indices by i. If we set Tk =
∐

k
i=1Di, then

Fpg,0(Γ ) =
⋂∞
k=1 F̃

∗
pg(Γ Tk) (see also Lemma 2.16).

The following is a direct consequence of Theorem 4.20.

Theorem 5.5. — If q = 1, then F (F) admits a transverse invariant
Hermitian metric which is transversely Lipschitz continuous. In general
F (F) admits a transverse invariant volume form which is transversely Lip-
schitz continuous.

Indeed, if Γ is the holonomy pseudogroup of F reg with respect to a com-
plete transversal T , then T admits a Γ -invariant Hermitian metric which is
Lipschitz continuous. A transverse invariant volume form can be constructed
in the same way.

If M is closed and S(F) = ∅, then Γ is compactly generated so that
we may assume (Γ , T ) is equivalent to (Γ Tk , Tk) for some k. If moreover
F is of codimension one, then we have a transversely holomorphic foliation
of complex codimension one, and a Fatou-Julia decomposition of such a
foliation is given in [6], [8] and [1]. We denote the Fatou and Julia sets
of F in the sense of [1] by Ffol(F) and Jfol(F), respectively. Then by the
definitions, we have the following

Proposition 5.6. — If M is closed and F is regular, then we have
Ffol(F) = F (F) = F0(F) and Jfol(F) = J(F) = J0(F).

In what follows, we will study holomorphic foliations by curves with iso-
lated singularities. Let F be such a foliation of a complex (n+1)-dimensional
manifold M and let S(F) = {p1, . . . , pr}. The following is well-known.

Lemma 5.7. — Let Ui be an open neighborhood of pi. Then, no leaf of
F reg is contained in Ui.

Proof. — We may assume that Ui is the unit open ball in Cn+1 and
pi is the origin. Then, it is well-known that there is a holomorphic vector
field X on Ui such that SingX = {x ∈ Ui |X(x) = 0} = {0} and that
X is tangent to F|Ui . Let Z(t) be an integral curve of X. If we denote

by ‖Z(t)‖2
the square of distance of Z(t) from the origin with respect to

the standard metric, then ‖Z(t)‖2
is a subharmonic function. If moreover
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{Z(t)} is entirely contained in Ui, then ‖Z(t)‖2
is defined on C and bounded.

Hence ‖Z(t)‖2
is constant ([17] Corollary 2.3.4). If we represent X as X =∑n+1

i=1 fi
∂
∂zi

, where (z1, . . . , zn+1) are the standard coordinates on Cn+1,

then we have
∑n+1
i=1 fi(Z(t))Zi(t) = 0, where Z(t) = (Z1(t), . . . , Zn+1(t)).

By differentiating with respect to t̄, we have
∑n+1
i=1 fi(Z(t))fi(Z(t)) = 0.

Hence Z(t) is identically zero by the choice of X. �

Let X be a holomorphic vector field on Cn+1 and F the singular foliation
associated with X. Suppose that SingX consists of Poincaré type singular-
ities, and let SingX = {p1, . . . , pr}. Let Ui be an small round ball at pi
so that F is transversal to ∂Ui. Then, a foliation is induced on each ∂Ui,
which we denote by Fi. Note that S(F) = SingX. By removing Ui’s from
Cn+1 and taking the double, we can obtain a non-singular transversely holo-
morphic foliation of a closed manifold. This kind of examples are studied in
[6] when n = 1.

Proposition 5.8. —

1) If M is closed, then the holonomy pseudogroup of F reg is finitely
generated.

2) If moreover for each i, there exists an open neighborhood Ui of pi
homeomorphic to a ball such that F is transversal to ∂Ui, then, the
holonomy pseudogroup of F reg is compactly generated and F (F) =
F0(F). We have J(F) = J(F reg) ∪ S(F) and

⋃r
i=1 J(Fi) ⊂ J(F) ∩⋃r

i=1 ∂Ui. If M̃ is the double of M and if F̃ is the foliation of M̃

obtained from F reg, then J(F̃) is the double of J(F reg) ∩M .

We do not know any example where the inclusion is strict. On the other
hand, if one of ∂Ui’s is not transversal to F , then there is an example where
J(Fj) 	 J(F) ∩ ∂Uj , where ∂Uj is transversal to F . See Example 5.11.

Proof. — Let Ui be an open neighborhood of pi, where i = 1, . . . , r. Let
V be an open neighborhood of M \⋃r

i=1 Ui such that V ∩S(F) = ∅. Since V
is compact, we can find an open covering, say V , of V by a finite number of
foliation charts for F reg. Suppose that V = {V1, . . . , Vs} and Vi ∼= Wi × Ti,
where the leaves of F reg|Vi are given by {Wi × {z}}, z ∈ Ti. If we set T =∐

s
i=1Ti, then T is a complete transversal for F reg by Lemma 5.7. Therefore

the holonomy pseudogroup of F reg is finitely generated. If F is transversal
to ∂Ui, then it is shown in [10] that F|∂Ui∪Ui\{pi} is biholomorphically
diffeomorphic to F|∂Ui × (0, 1]. Therefore the holonomy pseudogroup of
F reg is equivalent to that of F reg|M\Ui . The last part follows directly from
definitions. �
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Theorem 5.9. — Suppose that dimCM = 2 and S(F) = {p1, . . . , pr}. If
for each i, there exists an open neighborhood Ui of pi homeomorphic to a ball
such that F is transversal to ∂Ui, then the holonomy pseudogroup of F reg

is compactly generated and we have F (F) = F0(F). Moreover, F reg admits
an invariant transverse Hermitian metric on F (F) which is transversely of
class Cω.

Proof. — Let Γ be the holonomy pseudogroup of F reg. If F is transversal
to ∂Ui, then Γ is equivalent to the holonomy pseudogroup of F reg|M\Ui by
Proposition 5.8. Hence, by [1] Theorem 4.21, there exists a Hermitian metric
of class Cω on Fpg(Γ ) invariant under the action of Γ . �

Remark 5.10. — We made use of Fpg(Γ ) in defining F (F). The same
decomposition is obtained even if we replace Fpg(Γ ) by F (Γ ) under the
assumptions of Theorem 5.9 because Γ is compactly generated.

Example 5.11. — Let X be a holomorphic vector field on C2 defined by

X = λz
∂

∂z
+ µw

∂

∂w
,

where λ and µ are non-zero complex numbers and (z, w) are the standard
coordinates for C2. Let F be the singular foliation of CP 2 induced by the
integral curves of X. If λ = µ, then J(F) = S(F) = {[1 : 0 : 0]} and a
transverse invariant Hermitian metric on F (F) is given by

g =
|wdz − zdw|2

(|z|2 + |w|2)2
,

where for a 1-form ω, we denote ω ⊗ ω by |ω|2.

If λ �= µ, then the codimension of S(F) is greater than one. Let [z0 : z1 :
z2] be the homogeneous coordinates for CP 2 and consider C2 = {[1 : z : w]}.
We set

L0 = {[ 0 : z1 : z2] ∈ CP 2},
L1 = {[z0 : 0 : z2] ∈ CP 2},
L2 = {[z0 : z1 : 0 ] ∈ CP 2}.

Then S(F) = {[1 : 0 : 0], [0 : 1 : 0], [0 : 0 : 1]}, and J(F) is described as
follows.

1) If µ/λ ∈ C \ R, then J(F) = L0 ∪ L1 ∪ L2. An invariant metric on
F (F) is given by

|µwdz − λzdw|2
(|z| |w|)2 .
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2) If µ/λ > 1, then J(F) = L0 ∪ L2. An invariant metric on F (F) is
given by

|µwdz − λzdw|2

|w|2(1+λ/µ)
.

3) If 1 > µ/λ > 0, then J(F) = L0 ∪ L1. An invariant metric on F (F)
is given by

|µwdz − λzdw|2

|z|2(1+µ/λ)
.

4) If 0 > µ/λ, then J(F) = L1 ∪ L2. An invariant metric on F (F) is
given by

|µwdz − λzdw|2

(|z|α |w|β)2
,

where α = (λ − 2µ)/(λ − µ) and β = (2λ − µ)/(λ − µ). Note that
α > 1, β > 1, α+ β = 3 and αλ+ βµ = λ+ µ.

If µ/λ > 0, then F is transversal to the unit sphere S3 in C2. We de-
note by F ′ the induced foliation on S3. Then, F ′ is transversely Hermitian,
namely, it admits a smooth transverse invariant Hermitian metric. It follows
that J(F ′) = ∅. Hence, if we denote by ι the inclusion of S3 to CP 2 via
C2, then ι−1(J(F)) � J(F ′).

Example 5.12. — Let X be a holomorphic vector field on C2 defined by

X = (z + εw)
∂

∂z
+ w

∂

∂w
, where (z, w) are the standard coordinates. If

we set Y = z
∂

∂z
+ w

∂

∂w
, then [X,Y ] = 0, and X(z, w) and Y (z, w) are

linearly independent on C2 \ {w = 0}. If we denote by F the foliation of
CP 2 induced by X, then Y induces a holonomy invariant trivialization of
the normal bundle of F reg on F (F) = CP 2 \ (L0 ∪ L2), where L0 and L2

are as in Example 5.11. Hence we can find a transverse invariant Hermitian
metric on F (F). Since X is invariant under homothecies, F reg induces a
foliation of Hopf manifolds. For example, let M = (C2 \ {0})/α, where α is
a non-zero complex number and α(z) = αz. If we denote by G the induced
foliation of M , then F (G) = (C2 \ {w = 0})/α. Since Y is also invariant
under α, we can also find a transverse invariant Hermitian metric on the
normal bundle of G.

Example 5.13. — Let X be a holomorphic vector field on C3 defined by

X = λ1z1
∂

∂z1
+ λ2z2

∂

∂z2
+ λ3z3

∂

∂z3
,

– 192 –



On Fatou-Julia decompositions

where λ1, λ2 and λ3 are non-zero complex numbers. Then, X induces a
singular foliation of CP 3 which we denote by F . We set p0 = [1 : 0 : 0 : 0],
p1 = [0 : 1 : 0 : 0], p2 = [0 : 0 : 1 : 0] and p3 = [0 : 0 : 0 : 1]. If λ1 = λ2 = λ3,
then S(F) = J(F) = {p0}, where we consider C3 = {[1 : z1 : z2 : z3]}. If we

set ωij = zidzj − zjdzi, |ωij |2 = ωij ⊗ ωij and

g =
|ω12|2 + |ω13|2 + |ω23|2

(|z1|2 + |z2|2 + |z3|2)2
,

then g is a transverse invariant Hermitian metric on F (F). Note that g is
bounded from below, and induces an invariant volume form.

In what follows, we assume without loss of generality that λ1 = 1. Sup-
pose that λ2, λ3 and λ2/λ3 do not belong to R. Then S(F) = {p0, p1, p2, p3},
and there is a unique pair of real numbers α and β such that αλ2 +βλ3 = 1.
According to Theorem 5.5, there exist invariant volume forms on F (F). In
fact, if we set

g =
|λ2z2dz1 − z1dz2|2

(|z2|α+1 |z3|β)2
+
|λ3z3dz2 − λ2z2dz3|2

|z2z3|2
,

then g is a transverse invariant Hermitian metric on CP 3 \ (P0 ∪ P2 ∪ P3),
where P0 = {[0 : x1 : x2 : x3]| |x1, x2, x3 ∈ C}, P2 = {[x0 : x1 : 0 : x3]},
P3 = {[x0 : x1 : x2 : 0]}. Note that on the plane {[u0 : 1 : u2 : u3]}, we have

g=
|(λ2−1)u2du0+u0du2|2

(|u0|(2−α−β) |u2|α+1 |u3|β)2
+
|λ3u3(u0du2−u2du0)−λ2u2(u0du3−u3du0)|2

|u0u2u3|2
.

Let ∆ be the closed triangle formed by 0, λ2 and λ3. If 1 is contained in ∆,
then α � 0, β � 0 and 0 � α+β � 1. This condition is equivalent to that g
is bounded from below on CP 3 \ (P0 ∪P2 ∪P3). Indeed in this case we have
F (F) = CP 3 \ (P0∪P2∪P3). If λ2 and λ3 do not satisfy the condition, then
F (F) = CP 3 \ (P0 ∪ P1 ∪ P2 ∪ P3), where P1 = {[x0 : 0 : x2 : x3]}. Even in
this case, the above metric is an invariant metric on CP 3 \ (P0 ∪ P2 ∪ P3)
but not bounded from below. A bounded one on F (F) is given by

|λ2z2dz1 − z1dz2|2
(|z1| |z2|)2

+
|λ3z3dz1 − z1dz3|2

(|z1| |z3|)2
+
|λ3z3dz2 − λ2z2dz3|2

(|z2| |z3|)2
.

If in addition the convex hull of 1, λ2 and λ3 does not contain 0, then
F is transversal to the unit sphere S5. Hence F induces a transversely
holomorphic, non-singular foliation of S5. If we denote this foliation by F ′,
then F (F ′) = F (F) ∩ S5 and J(F ′) = J(F) ∩ S5. Since the holonomy
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pseudogroup of F ′ is compactly generated, we see that the conclusion of
Proposition 4.24 fails if the metric is not bounded from below.

Instead of exhausting all cases, we will examine the case where λ2 ∈ R
and λ3 �∈ R. If λ2 > 1, then S(F) = {p0, p1, p2, p3} and J(F) = P0∪P2∪P3.
An invariant metric on F (F) is given by

|λ2z2dz1 − z1dz2|2

(|z2|1+1/λ2)2
+
|λ3z3dz2 − λ2z2dz3|2

|z2z3|2
.

If λ2 = 1, then S(F) = {[0 : x1 : x2 : 0]} ∪ {p0, p3} and J(F) = {[x0 : 0 : 0 :
x3]} ∪ P0 ∪ P3. Note that {[0 : x1 : x2 : 0]} = P0 ∩ P3. An invariant metric
on F (F) is given by

|λ2z2dz1 − z1dz2|2

(|z1|1+λ2 + |z2|1+1/λ2)2
+
|λ3z3dz2 − λ2z2dz3|2

(|z1|2λ2 + |z2|2) |z3|2
.

If 0 < λ2 < 1, then S(F) = {p0, p1, p2, p3} and J(F) = P0 ∪ P1 ∪ P3. If
λ2 < 0, then S(F) = {p0, p1, p2, p3} and J(F) = P1 ∪ P2 ∪ P3. In these
cases, invariant metrics can be constructed as in the case where λ2 > 1.

Remark 5.14. — Note that L0, L1 and L2 are separatrices for X in Ex-
ample 5.11, and that L0 is also a separatrix for X in Example 5.12. Ex-
ample 5.13 also suggests that J(F) has something to do with separatrices.
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[6] Ghys (É.), Gómez-Mont (X.), and Saludes (J.). — Fatou and Julia Components
of Transversely Holomorphic Foliations, Essays on Geometry and Related Topics:
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