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Poincaré Inequalities and Moment Maps

Bo’az Klartag(1)

ABSTRACT. — We discuss a method for obtaining Poincaré-type inequal-
ities on arbitrary convex bodies in Rn. Our technique involves a dual
version of Bochner’s formula and a certain moment map, and it also ap-
plies to some non-convex sets. In particular, we generalize the central limit
theorem for convex bodies to a class of non-convex domains, including the
unit balls of �p-spaces in Rn for 0 < p < 1.

RÉSUMÉ. — Nous explorons un procédé de preuve d’inégalités de type
Poincaré sur les corps convexes de Rn. Notre technique utilise une version
duale de la formule de Bochner et une application moment. Elle s’applique
également à certains corps non-convexes. En particulier, nous généralisons
le théorème central limite pour les ensembles convexes à une classe de
domaines non-convexes, qui comprend les boules unités de Rn munies de
la norme �p pour 0 < p < 1.

1. Introduction

An important observation that goes back to Sudakov [28] and to Diaconis
and Freedman [13] is that approximately gaussian marginals are intimately
related to thin shell inequalities. That is, let X be a random vector in Rn
with mean zero and identity covariance, where the dimension n is assumed
very high. Suppose that X satisfies a thin shell inequality, of the form

E
( |X|2
n
− 1

)2

� 1, (1.1)
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Bo’az Klartag

where |·| is the standard Euclidean norm in Rn. It then follows that there are
plenty of vectors θ ∈ Rn for which the scalar product 〈X, θ〉 is approximately
a gaussian random variable. See von Weizsäcker [31], Bobkov [7], Anttila,
Ball and Perissinaki [3] or [22, 24] for further explanations, and Eldan and
Klartag [15] for connections to the hyperplane conjecture.

In this paper, Poincaré-type inequalities refer to inequalities in which
the variance of a function is bounded in terms of an integral of a quadratic
form involving the gradient of the function. One of the methods used to
prove a thin shell bound such as (1.1) goes through Poincaré-type inequal-
ities in high-dimensional spaces. This approach was pursued in [23], where
the Bochner formula was applied to study optimal thin shell bounds and
Poincaré-type inequalities for the uniform measure on high-dimensional con-
vex bodies. The technique in [23] and in the related work by Barthe and
Cordero-Erausquin [6] relied very much on symmetries of the probability
distribution under consideration. The method seemed quite irrelevant for
arbitrary convex bodies, possessing no symmetries. The following twist is
proposed here: Introduce additional symmetries by considering a certain
transportation of measure from a space of twice or thrice the dimension.
The plan is to apply Bochner’s formula in this higher dimensional space,
and deduce a Poincaré-type inequality for the original measure.

We proceed by demonstrating the Poincaré-type inequalities that are
obtained in the simplest case, perhaps, in which the convex set we investigate
is Rn+, the orthant of all x ∈ Rn with positive coordinates. A function
ϕ : Rn+ → R ∪ {∞} is called coordinate p-convex, for 0 < p � 1, if the
function

(x1, . . . , xn) → ϕ
(
x

1/p
1 , . . . , x1/p

n

)

is convex on Rn+. For instance ϕ(x) =
∑n
i=1

√
xi is coordinate p-convex for

any p � 1/2. A convex function is obviously coordinate 1-convex.

Theorem 1.1. — Let n � 1, k > 1 be integers. Suppose that µ is a
Borel measure on Rn+ with density exp(−ϕ), where ϕ : Rn+ → R ∪ {∞}
is coordinate p-convex for p = 1/k. Assume that f : Rn+ → R is a locally
Lipschitz, µ-integrable function with

∫
fdµ = 0. Then,

∫

Rn
+

f2dµ � k2

k − 1

n∑

i=1

∫

Rn
+

x2
i

∣∣∂if(x)
∣∣2 dµ(x). (1.2)

Here, ∂if = ∂f/∂xi stands for the derivative of f with respect to the ith

variable.

We emphasize that the function f in Theorem 1.1 is not assumed to
satisfy any boundary conditions. Compare, for example, to the Hardy-type
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inequalities in Brezis and Marcus [10] and Avkhadiev and Wirths [4]. We
say that a subset K ⊂ Rn+ is coordinate p-convex for 0 < p � 1 when

{(xp1, . . . , xpn) ; (x1, . . . , xn) ∈ K}
is a convex set. In other words, K is coordinate p-convex when the func-
tion that equals 0 on K and equals +∞ outside K is coordinate p-convex.
Observe that the intersection of coordinate p-convex sets is again a coor-
dinate p-convex set. Dilations centered at the origin preserve coordinate
p-convexity. For p �= 1, translations do not necessarily preserve coordinate
p-convexity, but coordinate p-convexity is preserved by translations conju-
gated with the map x → (xp1, . . . , x

p
n). From Theorem 1.1 we immediately

deduce:

Corollary 1.2. — Let n � 1, � > 1 be integers, and assume that K ⊂
Rn+ is a coordinate (1/�)-convex set with a non-empty interior. Then, for
any locally Lipschitz, integrable function f : K → R with

∫
K
f = 0,

∫

K

f2dx � �2

�− 1

n∑

i=1

∫

K

x2
i

∣∣∂if(x)
∣∣2 dx.

For x, y ∈ Rn+ we write x � y when xi � yi for i = 1, . . . , n. A function
ϕ : Rn+ → R ∪ {∞} is increasing when

x � y =⇒ ϕ(x) � ϕ(y) (for x, y ∈ Rn+).

It is simple to see that when f is increasing and coordinate p-convex, it is
also coordinate q-convex for any 0 < q < p. A function ϕ : Rn → R ∪ {∞}
is said to be unconditional when

ϕ(x1, . . . , xn) = ϕ(|x1|, . . . , |xn|) (x ∈ Rn).
Observe that when ϕ is an unconditional, convex function on Rn, the re-
striction ϕ|Rn

+
is necessarily increasing and hence coordinate p-convex for

any 0 < p � 1. Thus Corollary 1.2 recovers the Poincaré-type inequalities
from [23]: Quite unexpectedly, the unconditionality is used only to infer
that when ϕ|Rn

+
is coordinate 1-convex, it is also coordinate (1/2)-convex.

Theorem 1.1 may be generalized to measures on Rn whose density is un-
conditional, as follows:

Theorem 1.3. — Let µ be a probability measure on Rn with density
exp(−ϕ), where ϕ : Rn → R∪{∞} is unconditional, and ϕ|Rn

+
is increasing

and coordinate 1/k-convex for an integer k > 1. Denote

Vi =

∫

Rn
x2
i dµ(x) (i = 1, . . . , n).

– 3 –



Bo’az Klartag

Then, for any µ-integrable, locally Lipschitz function f : Rn → R with∫
fdµ = 0,

∫

Rn
f2dµ �

∫

Rn

n∑

i=1

(
k2

k − 1
x2
i + Vi

) ∣∣∂if(x)
∣∣2 dµ(x). (1.3)

Furthermore, when the function f is unconditional, we may eliminate the
Vi’s on the right-hand side of (1.3).

For 0 < p < 1, denote by µp the uniform probability measure on the
non-convex set

Bnp =

{
x ∈ Rn ;

n∑

i=1

|xi|p � 1

}
.

Theorem 1.3 applies for the measure µp, with any k � �1/p�. Substituting
f(x) = |x|2 −

∫
|y|2dµ(y) into Theorem 1.3 yields thin shell bounds, which

may be used to infer the existence of approximately gaussian marginals.
Once Theorem 1.1 and Corollary 1.2 are formulated, one is tempted to try
and find a more direct proof of these inequalities. In Section 6 we discuss
such a direct argument, based on the Brascamp-Lieb inequality [8], and
obtain generalizations of Theorem 1.1 and Theorem 1.3 in which k > 1 is
not necessarily an integer. Similarly, � > 1 does not have to be an integer
in Corollary 1.2.

Next, supposeK ⊂ Rn is a convex body, i.e., a bounded, open convex set.
We turn to the details of the Poincaré-type inequalities that are obtained
for K. Recall that a function on Rn is log-concave if it takes the form
exp(−H) for a convex function H : Rn → R∪{∞}. A Borel measure on Rn
is log-concave if its density is log-concave, and in particular, the uniform
probability measure on an open, convex set is log-concave. We say that a C3-
smooth, convex function ψ : Rn → R induces a “log-concave transportation
to K” if the following two conditions hold:

(a) The function ρψ(x) = det∇2ψ(x) is positive and log-concave on Rn,
where ∇2ψ is the Hessian of ψ.

(b) We have ∇ψ(Rn) = K, where ∇ψ(Rn) = {∇ψ(x);x ∈ Rn}.

Observe that the map x → ∇ψ(x) pushes forward the measure whose
density is ρψ, to the uniform measure on the convex body K. For a given
convex body K ⊂ Rn, there are plenty of convex functions ψ that induce a
log-concave transportation to K. In fact, for any log-concave function ρ on
Rn whose integral equals the volume of K, there exists a convex function
ψ which satisfies (a) and (b) with ρψ = ρ. This follows from the standard
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Poincaré Inequalities and Moment Maps

theory of optimal transportation of measure (e.g., Villani [30]). For indices
i, j, k = 1, . . . , n we abbreviate

ψi =
∂ψ

∂xi
, ψij =

∂2ψ

∂xi∂xj
, ψijk =

∂3ψ

∂xi∂xj∂xk
.

We also write
(
ψij

)
i,j=1,...,n

for the inverse matrix to the Hessian matrix

∇2ψ = (ψij)i,j=1,...,n. The Legendre transform of ψ is the function ψ∗ :
K → R defined via

ψ∗(x) = sup
y∈Rn

[〈x, y〉 − ψ(y)] .

Then ∇ψ∗ is the inverse map to ∇ψ. With any x ∈ K we associate the
quadratic form Q∗ψ,x on Rn defined by

Q∗ψ,x(V ) =

n∑

i,j,k,�,m,p=1

V iV jψ�mψjkmψ
kpψi�p

where V = (V 1, . . . , V n) ∈ Rn and where the functions ψij , ψ
�m, ψjkm etc.

are evaluated at the point ∇ψ∗(x). For x ∈ K and U ∈ Rn, set

Qψ,x(U) = sup





4




n∑

i,j=1

ψijU
iV j




2

; V ∈ Rn, Q∗ψ,x(V ) � 1




,

where ψij is evaluated at the point ∇ψ∗(x). It could occur that Qψ,x(U) is
finite only for U in a certain subspace E ⊂ Rn. Note that Qψ,x is a quadratic
form on that subspace E.

There is one technical assumption that we must make. In Section 3 we
define the notion of regularity at infinity of the function ψ, and throughout
the analysis below we conveniently assume the ψ is indeed regular at infinity.
This assumption seems to hold in the examples that we consider. In the
case where K ⊂ Rn is a simple rational polytope, regularity at infinity was
investigated in the works of Abreu [2], Donaldson [14] and Guillemin [21],
who explained that it holds under fairly mild assumptions.

Theorem 1.4. — Let K ⊂ Rn be a convex body. Suppose that ψ : Rn →
R induces a log-concave transportation to K. Assume further that ψ is reg-
ular at infinity. Then, for any Lipschitz function f : K → R,

∫

K

f = 0 ⇒
∫

K

f2 �
∫

K

Qψ,x(∇f(x))dx.
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In order to apply Theorem 1.4 one needs to select a function ψ which
induces a log-concave transportation to K. Unfortunately, we are currently
unaware of a general method for constructing a “reasonable” function ψ
that satisfies (a) and (b), with good control over derivatives up to order
three. In simple cases, such as when K ⊂ Rn is the cube or the simplex,
Theorem 1.4 does yield meaningful inequalities as is explained below.

The rest of the paper is organized as follows: We present the proof of
Theorem 1.1 in Section 2. The argument relies on the analysis of a particular
moment map, from Rkn to Rn+. We then proceed in Section 3 and discuss
general moment maps from toric Kähler manifolds, and prove Theorem 1.4.
Next, in Section 4 we apply Theorem 1.4 for the case of the simplex. In
particular, Theorem 4.5 below provides certain Poincaré-type inequalities
for a class of distributions on the regular simplex. In Section 5 we deduce
Theorem 1.3 from Theorem 1.1 via a rather standard argument.

Acknowledgements. — Thanks to Semyon Alesker, Franck Barthe, Häım
Brezis, Dmitry Faifman, Uri Grupel, Greg Kuperberg, Emanuel Milman,
Yaron Ostrover, Leonid Polterovich, Yanir Rubinstein and Mikhail Sodin
for interesting related discussions. Thanks also to the anonymous referee
for encouraging me to learn about Kähler-Einstein metrics.

2. Non-Linear Measure Projection

In this section we prove Theorem 1.1. The analysis in this section is also
intended to serve as a preparation for Section 3. Let n, k � 1 be positive
integers, fixed throughout this section. Denote m = nk. We use

z = (z1, . . . , zn) ∈ (Rk)n = Rkn

as coordinates in Rkn, where z1, . . . , zn are k-dimensional vectors. Consider
the map π : Rm → Rn+ defined by

π(z) = (|z1|k, . . . , |zn|k) (z1, . . . , zn) ∈ (Rk)n.

Here, Rn+ is the closure of Rn+ in Rn, and |zi| stands for the standard
Euclidean norm of zi ∈ Rk. The continuous map π is proper, meaning
that π−1(K) is compact whenever K ⊂ Rn+ is compact. Let Sk−1 = {y ∈
Rk; |y| = 1} denote the unit sphere in Rk, and more generally, let Sk−1(R) =
{y ∈ Rk; |y| = R}. We write σR for the uniform probability measure on the
sphere Sk−1(R). With any x ∈ Rn+ we associate the Cartesian product of
spheres,

π−1(x) := Sk−1(x
1/k
1 )× Sk−1(x

1/k
2 )× . . .× Sk−1(x1/k

n ) ⊆ (Rk)n = Rm.

– 6 –
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We denote by σx the uniform probability measure on π−1(x), that is, the di-

rect product of the uniform probability measures on the spheres Sk−1(x
1/k
j )

for j = 1, . . . , n.

We view the map π as a kind of moment map. The case k = 2 fits
very well with the standard terminology, as in this case π is related to the
moment map associated with the symplectic action of the group (SO(2))

n

on (R2)n (see, e.g., Cannas da Silva [11]). In the following lemma we verify
that indeed the uniform measure on Rm is pushed forward to the uniform
measure on Rn+ via the map π, up to a normalizing coefficient. We write
V olk for the standard k-dimensional volume measure.

Lemma 2.1. — For any integrable function f : Rn+ → R,

∫

Rm
f(π(z))dV olm(z) = ωn,k

∫

Rn
+

f(x)dV oln(x) (2.1)

where ωn,k =
(
πk/2/Γ(k/2 + 1)

)n
is the nth power of the volume of the

k-dimensional unit ball. Furthermore, for any Borel set A ⊆ Rm,

V olm(A) = ωn,k

∫

Rn
+

σx(A)dV oln(x). (2.2)

Proof . — Integrating in polar coordinates for each zj ∈ Rk (j = 1, . . . , n),
we find that

∫

Rm
f(|z1|k, . . . , |zn|k)dz1 . . . dzn = ωnk

∫

Rn
+

f(xk1 , . . . , x
k
n)




n∏

j=1

xk−1
j


 dx1 . . . dxn,

where ωk = kπk/2/Γ(k/2 + 1) is the surface area of the unit sphere in Rk.
Applying the change of variables (t1, . . . , tn) = (xk1 , . . . , x

k
n) we obtain

∫

Rn
+

f(xk1 , . . . , x
k
n)




n∏

j=1

xk−1
j


 dx1 . . . dxn = k−n

∫

Rn
+

f(t1, . . . , tn)dt1 . . . dtn

and (2.1) follows. The relation (2.2) is proven in a similar fashion. �

Suppose ν is a Borel measure on Rm. For a function f ∈ L2(ν) we define

‖f‖H−1(ν) = sup

{∫

Rm
fgdν ;

∫

Rm
|∇g|2dν � 1

}
, (2.3)
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where the supremum runs over all C1-smooth functions g : Rm → R that
belong to L2(ν). Note that ‖f‖H−1(ν) = +∞ when

∫
fdν �= 0. The square

of the H−1(ν)-norm is sub-additive in ν, as will be proven next:

Lemma 2.2. — Suppose ν is a Borel measure on Rm that takes the form

ν =

∫

Ω

ναdλ(α) (2.4)

for Borel measures {να}α∈Ω on Rm and a measure λ on Ω. Then, for any
f ∈ L2(ν),

‖f‖2H−1(ν) �
∫

Ω

‖f‖2H−1(να)dλ(α).

Proof . — We may assume that ‖f‖H−1(να) <∞ for λ-almost any α ∈ Ω,
as otherwise there is nothing to prove. Let g be a smooth function on Rm
which belongs to L2(ν). Since f, g ∈ L2(να) for λ-almost any α ∈ Ω, then

∣∣∣∣
∫

Rm
fgdνα

∣∣∣∣ � ‖f‖H−1(να)

√∫

Rm
|∇g|2 dνα

for λ-almost any α ∈ Ω. From (2.4) and the Cauchy-Schwartz inequality,

∣∣∣∣
∫

Rm
fgdν

∣∣∣∣ �
∫

Ω

‖f‖H−1(να)

(∫

Rm
|∇g|2 dνα

)1/2

dλ(α)

�
√∫

Rm
‖f‖2H−1(να)dλ(α) ·

√∫

Rm
|∇g|2dν.

�

Recall that we use (z1, . . . , zn) ∈ (Rk)n as coordinates in Rm = Rkn. Let
us furthermore denote z� = (z�,1, . . . , z�,k) ∈ Rk, for any � = 1, . . . , n.

Lemma 2.3. — Assume k � 2. Let x ∈ Rn+. Let 1 � � � n, 1 � j � k,
and denote f(z) = z�,j for z ∈ Rm. Then,

‖f‖H−1(σx)
� x

2/k
�√

k(k − 1)
.
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Proof . — We claim that for any smooth function h : Rk → R and θ ∈
Sk−1,

∫

Sk−1

〈y, θ〉h(y)dσ1(y) �
√

1

k(k − 1)
·
√∫

Sk−1

|∇h|2dσ1. (2.5)

Indeed, (2.5) simply expresses the standard fact that y →
√
k(y · θ) is a

normalized eigenfunction of the Laplace-Beltrami operator on Sk−1, corre-
sponding to the eigenvalue k − 1 (see, e.g., Müller [26]). By scaling, we see
that for any R > 0 and θ ∈ Sk−1,

∫

Sk−1(R)

〈y, θ〉h(y)dσR(y) � R2

√
k(k − 1)

·
√∫

Sk−1(R)

|∇h|2dσR. (2.6)

According to (2.6), for any fixed z1, . . . , z�−1, z�+1, . . . , zn ∈ Rk and a smooth
function g : Rm → R,

∫

Sk−1(R�)

z�,jg(z1, . . . , zn)dσR�(z�) �
x

2/k
�√

k(k − 1)

√∫

Sk−1(R�)

|∇g(z)|2dσR�(z�),

where R� = x
1/k
� . Recall that the probability measure σx is a product mea-

sure, and that σR� is the �th factor in this product. Integrating with respect
to the remaining variables z1, . . . , z�−1, z�+1, . . . , zn, and using the Cauchy-
Schwartz inequality, we obtain

∫

π−1(x)

z�,jg(z)dσx(z) �
x

2/k
�√

k(k − 1)

√∫

π−1(x)

|∇g(z)|2dσx(z).

The lemma follows from the definition of the H−1(σx)-norm. �

The following lemma is one of the reasons for considering the higher-
dimensional space Rm, rather than working in the original space Rn+. The
extra dimensions translate to “extra symmetries”, which substitute for the
explicit symmetries assumed in [23, Corollary 5] and in Barthe and Cordero-
Erausquin [6, Section 3].

Lemma 2.4. — Assume k � 2, let 1 � � � n, 1 � j � k and let x ∈ Rn+.
Suppose that f : Rn+ → R is differentiable at x. Denote g(z) = f(π(z)) for
z ∈ Rm. Then,

∥∥∥∥
∂g

∂z�,j

∥∥∥∥
H−1(σx)

�
√

k

k − 1
· x�

∣∣∂�f(x)
∣∣ .

– 9 –
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Proof . — Note that for z ∈ π−1(x),

∂g

∂z�,j
(z1, . . . , zn) = k|z�|k−2z�,j · ∂�f(|z1|k, . . . , |zn|k)

=
(
kx

(k−2)/k
� ∂�f(x1, . . . , xn)

)
z�,j .

That is, the function ∂g/ ∂z�,j is proportional to the linear function
z → z�,j on the support of σx, and the proportion coefficient is exactly

kx
(k−2)/k
� ∂�f(x1, . . . , xn). According to Lemma 2.3,

∥∥∥∥
∂g

∂z�,j

∥∥∥∥
H−1(σx)

= kx
(k−2)/k
�

∣∣∂�f(x1, . . . , xn)
∣∣ · ‖z�,j‖H−1(σx)

� kx(k−2)/k
�

∣∣∂�f(x1, . . . , xn)
∣∣ · x

2/k
�√

k(k − 1)
.

�

Suppose Ω ⊂ Rm is a bounded, open set. We say that a Ck-smooth
function u : Ω→ R is Ck-smooth up to the boundary if all of its derivatives
of order up to k may be continuously extended to the boundary of Ω. In
other words, the boundary values of u and its derivatives are well-defined
on ∂Ω, by continuity. For R > 1 denote

ΩR =
{
(z1, . . . , zn) ∈ (Rk)n ; R−1 < |zi| < R for i = 1, . . . , n

}
.

We denote by ∂regΩR the regular part of the boundary ∂ΩR. That is,

∂regΩR =

(
n⋃

i=1

A−i

)
∪

(
n⋃

i=1

A+
i

)

where

A±i =
{
z ∈ (Rk)n ; log |zi| = ± logR, R−1 < |zj | < R for all j �= i

}
.

(2.7)
We write DR for the collection of all functions u : ΩR → R, that are C2-
smooth up to the boundary, and that satisfy Neumann’s condition:

〈(∇u)i, zi〉 = 0 for any i = 1, . . . , n, z ∈ A±i . (2.8)

Here, ∇u = ((∇u)1, . . . , (∇u)n) ∈ (Rk)n. Let G = (O(k))n, where O(k) is
the group of all orthogonal transformations in Rk. The group G acts on
Rm = (Rk)n, via

g.(z1, . . . , zn) = (g1(z1), . . . , gn(zn))

– 10 –
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for g = (g1, . . . , gn) ∈ G = O(k)n and z = (z1, . . . , zn) ∈ (Rk)n. A subset
U ⊆ Rm is G-invariant if g.z ∈ U for any z ∈ U, g ∈ G. Suppose U ⊆ Rm is
G-invariant and f : U → R. We say that f is G-invariant if

f(g.z) = f(z) for g ∈ G, z ∈ U.

We write π−1(Rn+) for the collection of all z ∈ (Rk)n with zi �= 0 for all
i. Assume that ψ : π−1(Rn+) → R is a C2-smooth function, and denote
by ν the measure on π−1(Rn+) whose density is exp(−ψ). For a C2-smooth
function u : π−1(Rn+)→ R write

�νu = eψdiv(e−ψ∇u) = �u− 〈∇ψ,∇u〉,

where div stands for the usual divergence operator in Rm. Integrating by
parts, we see that for any u, f : ΩR → R that are C2-smooth up to the
boundary,

∫

ΩR

〈∇u,∇f〉dν = −
∫

ΩR

f (�νu) dν +

∫

∂regΩR

f〈∇u,N〉e−ψ,

where N is the outer unit normal. It follows that when f : ΩR → R is
C1-smooth up to the boundary and u ∈ DR,

∫

ΩR

〈∇u,∇f〉dν = −
∫

ΩR

f (�νu) dν. (2.9)

The well-known Bochner identity states that for any C3-smooth function
u : ΩR → R,

1

2
�ν |∇u|2 = 〈∇u,∇(�νu)〉+

m∑

i=1

|∇∂iu|2 +
〈
(∇2ψ)∇u,∇u

〉
, (2.10)

as may be verified directly. In the following lemma we integrate Bochner’s
formula (2.10), and use the G-invariance in order to eliminate a term.

Lemma 2.5. — Let R > 1 and let u ∈ DR be a G-invariant function.
Then,

∫

ΩR

|�νu|2 dν =

∫

ΩR

m∑

i=1

|∇∂iu|2dν +

∫

ΩR

〈
(∇2ψ)∇u,∇u

〉
dν.

Proof . — It suffices to prove the lemma under the additional assumption
that u is C3-smooth up to the boundary in ΩR, as such functions are dense
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in DR in the C2-topology. We integrate the identity (2.10) over ΩR. From
(2.9),

1

2

∫

ΩR

�ν |∇u|2 dν+
∫

ΩR

|�νu|2 dν =

∫

ΩR

m∑

i=1

|∇∂iu|2dν+
∫

ΩR

〈
(∇2ψ)∇u,∇u

〉
dν,

since u ∈ DR. To conclude the lemma, it suffices to show that

∫

ΩR

�ν |∇u|2 dν = 0.

This would follow from (2.9) once we show that |∇u|2 ∈ DR. Hence, in order
to conclude the lemma, we need to prove that

〈(
∇ |∇u|2

)
i
, zi

〉
= 0 for any i = 1, . . . , n, z ∈ A±i . (2.11)

So far we did not apply the G-invariance of u. It will play a role in the
proof of (2.11). Fix i = 1, . . . , n. Since u ∈ DR, then according to (2.8), for
z ∈ A±i ,

〈(∇u)i, zi〉 = 0.

However, since u is G-invariant, then (∇u)i is always a vector proportional
to zi. We conclude that

(∇u)i = 0 on A±i . (2.12)

We may differentiate (2.12) in the direction of ∇u, since ∇u is tangential
to ∂regΩR, and obtain

(
(∇2u)∇u

)
i
= 0 on A±i . (2.13)

Observe that
∇ |∇u|2 = 2(∇2u)∇u. (2.14)

From (2.13) and (2.14) we deduce (2.11). �

Lemma 2.6. — Suppose that ϕ : Rn+ → R is C2-smooth, and that the
function

(x1, . . . , xn) → ϕ(xk1 , . . . , x
k
n)

is convex in Rn+. For z ∈ π−1(Rn+) denote ψ(z) = ϕ(π(z)). Then, for any
G-invariant function u : Rm → R,

〈
(∇2ψ)∇u,∇u

〉
� 0 (2.15)

at any point z ∈ π−1(Rn+) in which u is differentiable.
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Proof . — Fix a point z = (z1, . . . , zn) ∈ (Rk)n with zi �= 0 for all i. Then
the function

Rn+ � (a1, . . . , an) → ψ(a1z1, . . . , anzn) ∈ R

is convex on Rn+, by our assumption. In particular, ∇2ψ(z)|E is positive
semi-definite, where

E = {(a1z1, . . . , anzn) ; a1, . . . , an ∈ R} ⊂ Rm

is an n-dimensional subspace. Since u is G-invariant and differentiable at z,
then ∇u(z) ∈ E, and (2.15) follows. �

Write νR for the restriction of the measure ν to ΩR. We will use the
following standard fact from the theory of strongly elliptic partial differential
equations:

Lemma 2.7. — Suppose R > 1. Let f : ΩR → R be a G-invariant Lip-
schitz function with

∫
fdνR = 0. Then, there exists a G-invariant function

u ∈ DR with
∫
udνR = 0 such that

�νu = f in ΩR. (2.16)

Proof sketch. — Denote QR = [−1/R,R]n ⊂ Rn and g(|z1|, . . . , |zn|) =
f(z1, . . . , zn) for z ∈ ΩR. Then g is Lipschitz in QR. Denote by η the finite
Borel measure on QR which is the push-forward of the measure νR under
the map (z1, . . . , zn) → (|z1|, . . . , |zn|). Then η has a density of the form
exp(−θ) on QR, where θ is Lipschitz . Furthermore,

∫
gdη = 0. The task of

solving (2.16) is reduced to the task of finding u : QR → R, C2-smooth up
to the boundary with

∫
udη = 0, such that

�u = g + 〈∇u,∇θ〉 , (2.17)

and such that u satisfies Neumann’s boundary condition on ∂QR. Trans-
lating and rescaling, we may replace the cube QR and work in the cube
Q = [0, 1/2]n ⊂ Rn. Let g̃ : Rn → R be the Zn-periodic function which
satisfies

g̃(x1, . . . , xn) = g(|x1|, . . . , |xn|) for all x ∈ [−1/2, 1/2]n.

Then g̃ is a Lipshitz function on Rn, that is even in all of the coordinates. We
similarly construct the function θ̃ which is the unique Zn-periodic extension
of θ that is even in all of the coordinates. We seek for a C2-smooth function
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ũ : Rn → R, that is Zn-periodic and even in all of the coordinates, which
satisfies

�ũ = g̃ +
〈
∇ũ,∇θ̃

〉
. (2.18)

Note that the restriction of ũ to [0, 1/2]n will solve (2.17) and will automat-
ically satisfy Neumann’s boundary condition. Our task is thus reduced to
solving a strongly elliptic partial differential equation on the torus, with Lip-
schitz coefficients. The usual interior regularity estimates (see, e.g., Gilbarg
and Trudinger [19, Chapter 4]) show that there exists a unique Zn-periodic
solution of integral zero which is C2-smooth. Moreover, this unique solution
inherits of all the symmetries of the problem, and is therefore even in all of
the coordinates, as required. �

I am grateful to Häım Brezis for explaining to me that even in the case
where the function f in Lemma 2.7 is C∞-smooth up to the boundary, the
solution u is not necessarily C4-smooth up to the boundary.

Lemma 2.8. — Let ϕ be as in Lemma 2.6. Suppose that µ is a Borel
measure on Rn+ with density exp(−ϕ). Then, for any locally Lipschitz func-
tion f ∈ L2(µ) ∩ L1(µ),

V arµ(f) �
k2

k − 1

n∑

i=1

∫

Rn
+

x2
i

∣∣∂if(x)
∣∣2 dµ(x). (2.19)

Here, V arµ(f) =
∫

(f −E)2dµ, where E ∈ R is such that
∫

(f −E)dµ = 0.

Proof . — Denote ψ(z) = ϕ(π(z)) for z ∈ π−1(Rn+). Let ν be the measure
on Rm whose density is

z → ω−1
n,k exp(−ψ(z)) (z ∈ π−1(Rn+))

where ωn,k is as in Lemma 2.1. Then π pushes the measure ν forward to
the measure µ, as we learn from Lemma 2.1, and in fact,

ν =

∫

Rn
+

σxdµ(x). (2.20)

Fix R > 1 and denote g(z) = f(π(z)). The function g is Lipschitz on ΩR.
Let ER ∈ R be such that

∫
(g − ER)dνR = 0. According to Lemma 2.7,

there exists a G-invariant function u ∈ DR with
∫
udνR = 0 such that

�νu = −(g − ER). Lemma 2.5 and Lemma 2.6 imply that

∫

ΩR

|�νu|2dν �
∫

ΩR

m∑

i=1

|∇∂iu|2dν. (2.21)
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We repeat the duality argument from [23, Section 2]:

∫
(g − ER)2dνR (2.22)

= −
∫
g�νudνR =

m∑

i=1

∫
∂ig∂iudνR �

m∑

i=1

‖∂ig‖H−1(νR)

√∫
|∇∂iu|2dνR

�

√√√√
m∑

i=1

‖∂ig‖2H−1(νR)

√√√√
∫ m∑

i=1

|∇∂iu|2dνR

�

√√√√
m∑

i=1

‖∂ig‖2H−1(νR)

√∫
|�νu|2dνR,

where we used (2.21) in the last inequality. Therefore,

∫

ΩR

(g − ER)2dνR �
m∑

i=1

‖∂ig‖2H−1(νR) =

n∑

�=1

k∑

j=1

∥∥∥∥
∂g

∂z�,j

∥∥∥∥
2

H−1(νR)

. (2.23)

According to Lemma 2.2 and to (2.20), for any � = 1, . . . , n and j = 1, . . . , k,

∥∥∥∥
∂g

∂z�,j

∥∥∥∥
2

H−1(νR)

�
∫

Rn
+

∥∥∥∥
∂g

∂z�,j

∥∥∥∥
2

H−1(σx)

dµ(x) � k

k − 1

∫

Rn
+

x2
�

∣∣∂�f(x)
∣∣2 dµ(x),

(2.24)
where the last inequality is the content of Lemma 2.4. By combining (2.23)
and (2.24), and letting R tend to infinity, we obtain

V arµ(f) = V arν(g) �
k2

k − 1

n∑

i=1

∫

Rn
+

x2
i

∣∣∂if(x)
∣∣2 dµ(x).

�

Proof of Theorem 1.1. — Assume first that ϕ is finite and C2-smooth.
All we need in order to deduce (1.2) from (2.19) is to remove the assumption
that f ∈ L2(µ). To that end, given a locally Lipschitz f ∈ L1(µ) andM > 0,
we consider the truncation

fM = max{min{f,M},−M}.

Then fM ∈ L2(µ) is locally Lipschitz. We apply (2.19) for fM and let M
tend to infinity, and obtain (1.2) from the monotone convergence theorem.
This completes the proof in the case where ϕ is finite and smooth. For the
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general case, a standard approximation argument is needed. One possibility
is to observe that it is enough to prove the theorem where the integrals over
Rn+ are replaced by integrals over the cube

[
R−1, R

]n ⊂ Rn+,

for any R > 1. On the bounded cube, it is straightforward to approximate
exp(−ϕ) by a finite, smooth density, such that both the left-hand side and
the right-hand side of (1.2) are well-approximated, for a given locally Lips-
chitz function f . �

Remark 2.9. — Suppose k1, . . . , kn � 2 are integers, and that the func-
tion ϕ : Rn+ → R ∪ {∞} is such that

(x1, . . . , xn) → ϕ(xk11 , . . . , x
kn
n )

is convex on Rn+. It is straightforward to adapt the proof of Theorem 1.1 to
this case. We obtain a variant of Theorem 1.1, in which the inequality (1.2)
is modified as follows: The factor k2/(k − 1) is inserted into the sum, and
replaced by k2i /(ki − 1). See Theorem 6.1 below.

3. Toric Kähler Manifolds

This section provides a proof of Theorem 1.4. Throughout this section,
we assume that we are given a convex body K ⊂ Rn, and a sufficiently
smooth convex function ψ : Rn → R with ∇ψ(Rn) = K. (Say, ψ is C∞-
smooth. In the formulation of Theorem 1.4, it is assumed that ψ is C3,
yet the approximation argument is straightforward). Most of the argument
generalizes to any open, convex set K ⊂ Rn. In particular, the analysis
in Section 2 for k = 2 is parallel to the case where K equals Rn+ and
ψ(x) =

∑n
i=1 exp(xi).

The proof of Theorem 1.4 is essentially an interpretation of the dual
Bochner inequality in a certain toric Kähler manifold. We begin with a quick
review of the the basic definitions, see e.g. Tian [29, Chapter 1] for more
information. Suppose X is a complex manifold of complex dimension n. The
induced almost complex structure is a certain smooth map J : TX → TX,
such that for any p ∈ X the restriction J |TpX is a linear operator onto TpX
with

J2|TpX = −I.
In fact, in an open set U ⊂ Cn containing the origin, consider the map
f(z) =

√
−1 z defined in a neighborhood of zero. Its derivative at zero is
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J |T0U . One verifies that this construction of J does not depend on the choice
of the chart, as the transition functions are holomorphic. A closed 2-form ω
on X is Kähler if the bilinear form

gω(u, v) = ω(u, Jv) (p ∈ X, u, v ∈ TpX)

is a Riemannian metric, which is also J-invariant (i.e., gω(u, v) = gω(Ju, Jv)
for any p ∈ X and u, v ∈ TpX). Next, we specialize to the case of toric
Kähler manifolds, see also Abreu [1] and Gromov [20]. We consider the
complex torus

TnC = Cn/(
√
−1Zn) =

{
x+

√
−1y ; x ∈ Rn, y ∈ Rn/Zn

}
.

(Perhaps it is more common to say that (C∗)n is the complex torus, where
C∗ = C\{0}. Note that exp(2πz) is a biholomorphism between T1

C and C∗).
The real torus Tn = Rn/Zn acts on the complex manifold TnC via

t.(x+
√
−1y) = x+

√
−1(y + t)

(
t ∈ Tn, x+

√
−1y ∈ TnC

)
.

Functions, vector fields and differential forms on Rn have toric-invariant
extensions to TnC. For instance, we extend the convex function ψ to TnC by

ψ(x+
√
−1y) = ψ(x) for x+

√
−1y ∈ TnC.

Then ψ is a Tn-invariant function on the complex manifold TnC. With a
slight abuse of notation, we use the same letter to denote a function on Rn,
and its toric-invariant extension to TnC. Consider the Kähler form on TnC
defined by

ωψ = 2
√
−1∂∂̄ψ =

√
−1

2

n∑

i,j=1

ψijdzi ∧ dz̄j ,

where we use the notation ψij = ∂2ψ/(∂xi∂xj) explained in the Introduc-
tion. Abbreviating gψ = gωψ , we have

gψ

(
∂

∂xi
,
∂

∂xj

)
= gψ

(
∂

∂yi
,
∂

∂yj

)
= ψij (i, j = 1, . . . , n)

while gψ

(
∂
∂xi
, ∂∂yj

)
= 0 for any i, j. Furthermore, observe that

ωnψ = ρψV ol2n

where V ol2n is the standard volume form on TnC and ρψ(x) = det∇2ψ(x) for

x ∈ Rn. It is customary to call the map x+
√
−1y → ∇ψ(x) the associated

moment map, see Abreu [1] and Gromov [20].
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Below we review in great detail some of the standard formulae of Rie-
mannian geometry in the case of a toric Kähler manifold. As much as pos-
sible, we prefer real formulae in real variables. One reason for this is that
the complex notation fits well only with the case k = 2 in Section 2. For a
smooth function u : Rn → R we write

∇ψu =

n∑

i,j=1

ψijui
∂

∂xj
=

n∑

j=1

uj
∂

∂xj

for the Riemannian gradient of u, where we abbreviate uj =
∑n
i=1 ψ

ijui.
Next, we describe the connection ∇ψ that corresponds to the Riemannian
metric gψ. As is computed, e.g., in Tian [29],

∇ψ∂
∂yj

∂

∂xk
=

1

2

n∑

�=1

ψ�jk
∂

∂y�
, ∇ψ∂

∂xj

∂

∂xk
=

1

2

n∑

�=1

ψ�jk
∂

∂x�

where ψ�jk =
∑n
m=1 ψ

�mψjkm. We view the Hessian ∇ψ,2h of a smooth
function h : Rn → R as a linear operator on TpX, specifically,

TpX � U → ∇ψU∇ψh ∈ TpX.

In coordinates, for a smooth function h : Rn → R,

∇ψ,2h
(
∂

∂xi

)
=

n∑

j,k=1

(
ψjkhik −

1

2
ψjki hk

)
∂

∂xj
,

∇ψ,2h
(
∂

∂yi

)
=

1

2

n∑

j,k=1

ψjki hk
∂

∂yj
, (3.1)

where ψjki =
∑n
�,m=1 ψ

�jψmkψi�m. It is unfortunate that we have to work
with the real Hessian, and not with the simpler complex Hessian. We denote
by�ψ the Riemmanian Laplacian on TnC, corresponding to the Riemmanian
metric gψ. Then �ψh is the trace of ∇ψ,2h, and for a smooth function
h : Rn → R,

�ψh =

n∑

i,j=1

ψijhij .

The Bochner-Weitzenböck formula from Riemannian geometry (e.g. Pe-
tersen [27, Section 7.3.1]) states that for any smooth function u : Rn → R,

1

2
�ψ|∇ψu|2 = 〈∇ψu,∇ψ(�ψu)〉+ |∇ψ,2u|2HS +Ricψ(∇ψu,∇ψu) (3.2)
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where |∇ψ,2u|2HS is the Hilbert-Schmidt norm of the Hessian, and where
Ricψ is the Ricci form, which is the bilinear form given by

Ricψ

(
∂

∂xj
,
∂

∂xk

)
= −1

2

∂2 log ρψ
∂xj∂xk

for j, k = 1, . . . , n. Note that Ricψ(∇ψu,∇ψu) � 0 when ρψ is log-concave.

Definition 3.1. — Suppose (M, g) is a Riemannian manifold, ∇ is the
standard Levi-Civita connection, and ν a Borel measure on M . Let V be a
vector field on M , which is locally ν-integrable. We set

‖V ‖H−1(ν) = sup

{∫

M

〈V,∇h〉dν ;

∫

M

|∇2h|2HSdν � 1

}
(3.3)

where the supremum runs over all smooth functions h : M → R such that
〈V,∇h〉 is ν-integrable.

The proof of Lemma 2.2 immediately generalizes to

ν =

∫

Ω

ναdλ(α) ⇒ ‖V ‖2H−1(ν) �
∫

Ω

‖V ‖2H−1(να)dλ(α). (3.4)

Next, we use the Tn-invariance and obtain a lower bound for |∇ψ,2u|2HS
in terms of the first derivatives of u. Suppose that u : Rn → R is a smooth
function. Denote by Ep ⊂ TpX the subspace spanned by ∂

∂yj
(j = 1, . . . , n).

As in any Riemannian manifold, the operator ∇ψ,2u is symmetric with
respect to the Riemmannian metric gψ. Furthermore, from (3.1) we learn
that Ep is an invariant subspace of the operator ∇ψ,2u, and the matrix
representing the operator ∇ψ,2u|Ep in the basis ∂

∂yk
(k = 1, . . . , n) is


1

2

n∑

j=1

ujψ�jk



k,�=1,...,n

.

Consequently,

∣∣∇ψ,2u
∣∣2
HS

�
∣∣∣
(
∇ψ,2u

∣∣
Ep

)∣∣∣
2

HS
= Trace

[(
∇ψ,2u

∣∣
Ep

)2
]

=
1

4

n∑

i,j,m,p=1

uiujψpjmψ
m
ip . (3.5)

For x ∈ Rn we denote by σx the uniform probability measure on the real
torus {x+

√
−1y ; y ∈ Tn}. These measures are “the same up to translation”.
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For a vector field U =
∑n
i=1 U

i ∂
∂xi

set

Q̃ψ,x(U) = sup








n∑

j=1

ψijU
jV j




2

;
1

4

n∑

i,j,k,�,m,p=1

V iV jψ�mψjkmψ
kpψi�p � 1




,

where the supremum runs over all V 1, . . . , V n ∈ Rn. Here, ψ�m, ψjkm etc.

are evaluated at x. Observe that Q̃ψ,x is essentially the same quadratic form
as Qψ,∇ψ(x) mentioned in the Introduction. That is, if h = f(∇ψ(x)), then

Q̃ψ,x
(
∇ψh

)
= Qψ,∇ψ(x)(∇f).

Lemma 3.2. — Let u : Rn → R. Then, for any point x ∈ Rn in which u
is differentiable,

‖∇ψu‖2H−1(σx)
� Q̃ψ,x(∇ψu).

Proof . — The vector field∇ψu on TnC is Tn-invariant. It therefore suffices
to restrict our attention to Tn-invariant functions h in the definition (3.3)
of ‖∇ψu‖H−1(σx) (i.e., if h is not Tn-invariant, then average it with respect
to the Tn-action). Suppose that h : Rn → R is a smooth function. From
(3.5),

∫

TnC
|∇ψ,2h|2HSdσx �

1

4

n∑

i,j,k,�,m,p=1

hihjψ�mψjkmψ
kpψi�p

where the functions on the right-hand side are evaluated at the point x.
Since ∫

TCn
〈∇ψu,∇ψh〉dσx =

n∑

i,j=1

ψiju
ihj ,

the lemma follows from the definition of the H−1 norm. �

Suppose ϕ : Rn → R is a smooth function on Rn, with inf ϕ > −∞.
Consider the finite Borel measure µ on TnC that is induced by the volume
form exp(−ϕ)ωnψ. That is, µ is the measure on TnC whose density with respect
to the standard Lebesgue measure on TnC is

exp(−ϕ(x))ρψ(x).

Observe that for any µ-integrable function u : Rn → R,
∫

TnC
udµ =

∫

Rn
u(x)e−ϕ(x) det∇2ψ(x)dx.
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More generally, we can say that

µ =

∫

Rn
σxe
−ϕ(x)ρψ(x)dx. (3.6)

For a smooth function u : Rn → R denote

�µu = �ψu−
n∑

i,j=1

ψijuiϕj . (3.7)

Integrating by parts, we see that when u, h : Rn → R are smooth functions,
with at least one of them compactly-supported,

∫

TnC
h(�µu)dµ = −

∫

TnC
〈∇ψu,∇ψh〉dµ. (3.8)

We assume that the following Bakry-Émery-Ricci condition holds true:

(?) For any x ∈ Rn, the matrix

(
ϕi� −

1

2

n∑

k=1

ψki�ϕk −
1

2

∂2 log ρψ
∂xi∂x�

)

i,�=1,...,n

is positive semi-definite.

Condition (?) is equivalent to the pointwise inequality,

〈
(∇ψ,2ϕ)U,U

〉
+Ricψ(U,U) � 0 (3.9)

for any vector field of the form U =
∑n
i=1 U

i ∂
∂xi

. In the terminology of Bakry

and Émery [5], condition (?) means that the Bakry-Émery-Ricci tensor (also
known as Γ2 or the “second carré du champ”) is positive semi-definite, when
restricted to the subspace spanned by ∂

∂x1
, . . . , ∂∂xn . The only case that is

relevant for Theorem 1.4, is when ρψ is log-concave and ϕ ≡ 1. Condition
(?) clearly holds true in this case. Theorem 1.1 is related to the case where
ψ(x) =

∑n
i=1 e

xi , and condition (?) amounts to the convexity of the function
ϕ(2 log x1, . . . , 2 log xn) in the interior of Rn+.

As explained in the Introduction, we have to impose certain restrictions
on the behavior of ψ and ϕ at infinity. We say that the pair of functions
(ψ,ϕ) is regular at infinity if there exists a linear space X of C∞-smooth
functions u : Rn → R which has the following properties:
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(a) For any u, h ∈ X we have that h�µu,
〈
∇ψu,∇ψh

〉
∈ L1(µ), and the

the identity (3.8) holds true. The same holds also when u ∈ X, and
h : Rn → R is such that h(∇ψ∗(x)) is a Lipschitz function on K.

(b) The constant functions belong toX. If u ∈ X, then also�µu, |∇ψu|2 ∈
X.

(c) Denote by H ⊂ L2(µ) the subspace of all functions f : Rn → R with∫
fdµ = 0. Then the space

{�µu ; u ∈ X}

is dense in H in the topology of L2(µ).

We say that ψ is regular at infinity if (ψ, 1) is regular at infinity. Observe that
the space of compactly-supported, smooth functions might not satisfy (c), as
there might exist non-constant, smooth functions f ∈ L2(µ) with �µf ≡ 0.
The space X is supposed to capture a sort of “Neumann’s condition at
infinity”. A thorough investigation of regularity at infinity is beyond the
scope of the present paper, which focuses on the Bochner method combined
with additional symmetries in higher dimension.

Remark 3.3. — Suppose that the Riemannian manifold (TnC, gψ) admits
a smooth compactification. That is, assume that (TnC, gψ) embeds in a com-
pact, smooth Riemannian manifold (M, g) as a dense subset of full measure,
that the moment map ∇ψ extends to a smooth function on the entire M ,
and that the Tn-action on (TnC, gψ) extends to a Tn-action on (M, g). In this
case, ψ is regular at infinity: We may define X to be the restriction to TnC
of all Tn-invariant, smooth functions on the compact Riemannian manifold
M . Indeed, condition (b) then holds trivially. As for condition (a), observe
that h extends to a Lipschitz function on M as it is the composition of the
Lipschitz maps h(∇ψ∗) and ∇ψ, hence integrations by parts of h against
�ψu may be carried out in M . We conclude that condition (a) holds true
since TnC is of full measure in M , and the integrals in (3.8) are equivalent to
integrals over the entire M . Condition (c) follows from the standard theory
of elliptic partial differential equations on a compact, connected, smooth
Riemannian manifold.

Remark 3.4. — Another relevant type of compactification is related to
the so-called orbifolds or V -manifolds, which are smooth manifolds except
for some rather tame singularities. We refer the reader, e.g., to Chiang [12]
for Harmonic analysis on Riemannian orbifolds. In particular, there is a
notion of a C∞-smooth function on the entire orbifold, and the Laplace
equation may be solved with smooth functions on compact orbifolds. We
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conclude that the function ψ is regular at infinity whenever (TnC, gψ) embeds
in a compact Riemannian orbifold as a dense subset of full measure, such
that ∇ψ and the toric action extend smoothly to the entire Riemannian
orbifold. In the case of K being a rational, simple polytope, the functions
ψ admitting such embedding were characterized in the works of Abreu [2],
Donaldson [14] and Guillemin [21]. The simple criterion obtained is formu-
lated in terms of ψ∗, and it is sometimes referred to as “Guillemin boundary
conditions”. Since rational, simple polytopes are dense among convex bod-
ies, one is tempted to conjecture that this sufficient condition for regularity
at infinity may be generalized to the class of all convex bodies.

The following lemma is a well-known Bochner-type integration by parts
formula. For completeness, we include its proof.

Lemma 3.5. — Assume that (?) holds true, and that (ψ,ϕ) is regular at
infinity. Then for any u ∈ X,

∫

TnC
|�µu|2dµ �

∫

TnC
|∇ψ,2u|2HSdµ.

Proof . — From (3.2) and (3.7) we obtain the identity

1

2
�µ|∇ψu|2 (3.10)

= 〈∇ψu,∇ψ(�µu)〉+ |∇ψ,2u|2HS +Ricψ(∇ψu,∇ψu)
+

〈(
∇ψ,2ϕ

)
∇ψu,∇ψu

〉
.

From our assumption (?),

1

2
�µ|∇ψu|2 � 〈∇ψu,∇ψ(�µu)〉+ |∇ψ,2u|2HS . (3.11)

Integrating the above inequality over TnC, we obtain

0 � −
∫

TnC
|�ψu|2dµ+

∫

TnC
|∇ψ,2u|2HSdµ,

since
∫
TnC

(�ψh)dµ = 0 for any h ∈ X. �

Theorem 1.4 is the case ϕ ≡ 1 of the next proposition.

Proposition 3.6. — Let K ⊂ Rn be a convex body. Suppose that ψ,ϕ :
Rn → R are sufficiently smooth functions, such that ψ is convex with
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det∇2ψ(x) > 0 for any x ∈ Rn, and such that inf ϕ > −∞. Assume that
∇ψ(Rn) = K, that condition (?) above holds true, and that (ψ,ϕ) is regu-
lar at infinity. Let µ be the measure (3.6) and denote by ν the finite Borel
measure on K which is the push-forward of µ under ∇ψ. Then, for any
Lipschitz function f : K → R,

∫

K

fdν = 0 ⇒
∫

K

f2dν �
∫

K

Qψ,x(∇f)dν. (3.12)

Proof . — We denote h(x) = f(∇ψ(x)). Let u ∈ X. With the help of
Lemma 3.5, the duality argument (2.22) is replaced by

−
∫

TnC
h (�µu) dµ =

∫

TnC
〈∇ψh,∇ψu〉dµ (3.13)

� ‖∇ψh‖H−1(µ)

√∫

TnC
|∇ψ,2u|2HS dµ � ‖∇ψh‖H−1(µ)

√∫

TnC
|�µu|2dµ.

Since f is bounded, then also h is bounded, hence h ∈ L2(µ) with
∫

TnC
hdµ =

∫

K

fdν = 0.

Consequently, there exists uk ∈ X for k = 1, 2, . . . such that �µuk → −h
when k →∞, in the topology of L2(µ). From (3.13),

∫

K

f2dν =

∫

TnC
h2dµ � ‖∇ψh‖2H−1(µ).

Combine the latter inequality with (3.4), (3.6) and Lemma 3.2, and obtain
∫

K

f2dν � ‖∇ψh‖2H−1(µ) �
∫

Rn
‖∇ψh‖2H−1(σx)

e−ϕ(x)ρψ(x)dx

�
∫

Rn
Q̃ψ,x

(
∇ψh

)
e−ϕ(x)ρψ(x)dx =

∫

K

Qψ,x (∇f) dν(x).

�

Remark 3.7. — In principle, one may formulate and prove Theorem 1.4
in terms of ψ∗, rather than going back and forth between ψ and ψ∗, or
between Rn and K. The reason for preferring ψ, is that for n > 1, the
condition that ψ induces a log-concave transportation to K appears simpler
than the corresponding condition for ψ∗. On the other hand, for a convex
function ψ in one variable, log (ψ′′) is concave if and only if 1/(ψ∗)′′ is
concave.
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Remark 3.8. — When (X,µ, d) is a metric measure space and T : X →
Y is a locally Lipschitz map, we may trivially transfer any Poincaré type
inequality on X to a Poincaré type inequality on Y . An example is given
in Corollary 4.4 below, where a Poincaré type inequality for the simplex
is deduced from the standard Poincaré inequality on CPn. Similarly, when
ρψ = exp(−|x|2/2), we may, in principle, transfer the standard Poincaré
inequality of the gaussian measure to an inequality on K. The approach
that we suggest in this paper, of using “dual Bochner in a higher dimension
with extra symmetries”, is a bit different. Note that we do not assume any
Poincaré-type inequality for the log-concave density ρψ.

Remark 3.9. — Theorem 1.4 is concerned with the uniform measure on a
convex body K ⊂ Rn. It is possible to generalize the theorem, so that it will
apply to any probability measure µ on Rn with a log-concave density. We
say that a C3-smooth, convex function ψ : Rn → R induces a log-concave
transportation to µ if it transports some log-concave measure on Rn to the
measure µ. It is explained in the work of Kolesnikov [25] that the Ricci
tensor of the Riemannian manifold (TnC, gψ) is positive semi-definite in this
case, hence the argument described in this section applies and yields the
aforementioned generalization of Theorem 1.4.

4. An Example: The Simplex

In order to demonstrate the potential of our paradigm, we present in
this section the Poincaré-type inequalities that follow from Theorem 1.4
in the particular case of the simplex. We also discuss the inequalities that
follow via the direct method outlined in Remark 3.8. Our first goal is to
apply Theorem 1.4 in the setting where K ⊂ Rn is the open simplex whose
vertices are 0, e1, . . . , en ∈ Rn. Here, e1, . . . , en are the standard unit vectors
in Rn. Note that this simplex is not regular. Later, we will translate the
results to the regular simplex. Consider the smooth, convex function,

ψ(x1, . . . , xn) = log (1 + ex1 + . . .+ exn) (x ∈ Rn).

Note that

∇ψ(x) =
(ex1 , . . . , exn)

1 + ex1 + . . .+ exn
. (4.1)

It is straightforward to verify from (4.1) that

∇ψ(Rn) = K.

Our choice of ψ is motivated by the fact that the Kähler manifold (TnC, ωψ)
is isometric, up to a normalization, to a dense open subset of full measure
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of the complex projective space CPn with the Fubini-Study metric, see e.g.,
the first pages of Tian [29] or Cannes da Silva [11] for more information. For
instance, the Riemannian manifold (T1

C, gψ) is precisely the two-dimensional
sphere of radius one, without the north and the south poles. The moment
map ∇ψ and the toric action may be extended smoothly to CPn, and in
view of Remark 3.3, we deduce that the function ψ is regular at infinity. We
continue by computing the second derivatives,

∇2ψ(x) =

(
exiδij

1 + ex1 + . . .+ exn
− exi+xj

(1 + ex1 + . . .+ exn)
2

)

i,j=1,...,n

.

Here, δij is Kronecker’s delta. The first part of the following lemma expresses
the well-known fact that the Ricci tensor of the Fubini-Study metric on CPn
is positive definite.

Lemma 4.1. —

(a) The function
x → det∇2ψ(x)

is log-concave in Rn.

(b) The inverse hessian matrix is

ψij(x) =


1 +

n∑

j=1

exj


 [

1 + δije
−xi] .

Proof: Denote

v =
(ex1 , . . . , exn)

1 + ex1 + . . .+ exn
∈ Rn.

We write
∇2ψ(x) = A−B,

where A is a diagonal matrix with vi at the ith diagonal entry, and B =
(vivj)i,j=1,...,n. The determinant of a rank-one perturbation has a simple
formula:

det∇2ψ(x) = det(A−B) = det(A)
[
1− 〈A−1v, v〉

]
.

This boils down to

det∇2ψ(x) = exp


−(n+ 1)ψ(x) +

n∑

j=1

xj


 , (4.2)
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which is log-concave as ψ is convex. It remains to prove (b). According to
the Sherman-Morisson formula for the inverse of a rank-one perturbation,

(
∇2ψ(x)

)−1
= (A−B)−1 = A−1 +

A−1BA−1

1− 〈A−1v, v〉 ,

as may be verified directly. Equivalently,

ψij =


1 +

n∑

j=1

exj


 [

1 + δije
−xi] .

�

Thus ψ induces a log-concave transportation to K. Note that 2Ricψ =
(n+ 1)gψ, as follows from (4.2). In particular, we have a very good uniform
lower bound for the Ricci curvature, which implies a rather strong Poincaré
inequality on CPn – even a log-Sobolev inequality – according to Bakry and
Émery [5]. Consequently, the simple, direct method of Remark 3.8 has the
potential to produce interesting inequalities in the case of the simplex. Still,
first we would like to test the applicability of Theorem 1.4 here, and to that
end, we will write down explicit expressions for the formidable quadratic
form Qψ,x. We compute that

ψijk = 2exi+xj+xk−3ψ + exi−ψδijδjk
−

[
exj+xk−2ψδij + exi+xj−2ψδik + exi+xk−2ψδjk

]
.

Therefore,

ψ�jk =

n∑

i=1

ψi�ψijk = δjkδj� − δj�exk−ψ − δk�exj−ψ

and, for any fixed i, j = 1, . . . , n,

n∑

k,�=1

ψ�jkψ
k
i� = (n+ 3)exi+xj−2ψ − exi−ψ − exj−ψ + δij(1− 2exi−ψ).

Consequently,

Q∗ψ,∇ψ(x)(V )=

n∑

i,j=1

V iV j
[
(n+ 3)exi+xj−2ψ − exi−ψ − exj−ψ + δij(1− 2exi−ψ)

]

=

n∑

i,j,k=1

ψija
i
kV
kV j ,
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where, for i, k = 1, . . . , n,

aik = exk
(
1− e−xi

)
+ δik

(
eψ−xi − 2

)
.

We are not confused by the minus signs, and we remember that Q∗ψ,∇ψ(x)

must be a positive semi-definite quadratic form on Rn. Consider for a mo-
ment the scalar product

(U, V ) =

n∑

i,j=1

ψijU
iV j (U, V ∈ Rn)

and the linear operator

A(U) =

(
n∑

k=1

aikU
k

)

i=1,...,n

∈ Rn for U = (U1, . . . , Un) ∈ Rn.

ThenA is symmetric with respect to the scalar product (·, ·), andQ∗ψ,∇ψ(x)(V )

= (A(V ), V ) for V ∈ Rn. Observe that

Qψ,∇ψ(x)(U) = sup
{

4(U, V )2;V ∈ Rn, Q∗ψ,∇ψ(x)(V ) � 1
}

= 4
(
A−1(U), U

)
.

Denote B = A−1 =
(
bij

)
i,j=1,...,n

. In order to compute the bij ’s, we apply

the Sherman-Morisson formula again, and obtain the expression

bij =
δij

ψ−1
j − 2

− ψj

ψ−1
j − 2

· e
ψ − ψ−1

i

ψ−1
i − 2

(
1 +

n∑

k=1

eψψk − 1

ψ−1
k − 2

)−1

.

Therefore,

n∑

�=1

ψi�b
�
j =

ψ2
i

1− 2ψi
δij+

ψ2
i

1− 2ψi
·
ψ2
j

1− 2ψj
· 2− eψ
1 +

∑n
k=1

[
(eψψk − 1)/(ψ−1

k − 2)
] .

Finally, recalling that ψi, exp(ψ) are to be evaluated at the point ∇ψ∗(x) =
(∇ψ)−1x, we obtain the positive semi-definite quadratic form

1

4
Qψ,x(U) =

n∑

i=1

x2
i |U i|2

1− 2xi
−

(
n∑

i=1

x2
iU
i

1− 2xi

)2 (
n∑

k=0

x2
k

1− 2xk

)−1

(4.3)

where we define x0 = 1 −∑n
j=1 xj . In conclusion, so far we have obtained

the following:
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Corollary 4.2. — Let K ⊂ Rn be the simplex which is the convex hull
of 0, e1, . . . , en, where e1, . . . , en are the standard unit vectors in Rn. Then
for any Lipschitz function f : K → R with

∫
K
f = 0,

∫

K

f2(x)dx � 4

∫

K



n∑

i=1

x2
i

∣∣∂if
∣∣2

1− 2xi
−

(
n∑

k=0

x2
k

1− 2xk

)−1 (
n∑

i=1

x2
i ∂
if

1− 2xi

)2

 dx

where x0 = 1−∑n
k=1 xk.

Next, observe that Corollary 1.2 applies for the uniform measure on
the simplex K, with � = 2. We are unaware of any advantage of Corollary
4.2 over the inequality that follows from Corollary 1.2 in this case. Yet,
the importance of Corollary 4.2 to us is that it perhaps demonstrates that
the very general Theorem 1.4 is not entirely inapplicable. We continue by
translating our results to the regular simplex.

Recall that Rn+1
+ is the orthant of all x ∈ Rn+1 with positive coordinates.

Consider the n-dimensional regular simplex

�n =



(x0, . . . , xn) ∈ Rn+1

+ ;

n∑

j=0

xj = 1



 . (4.4)

Observe that the projection

(x0, . . . , xn) → (x1, . . . , xn)

is a measure preserving one-to-one correspondence between �n and K. Let
p ∈ �n, and suppose that f : �n → R is differentiable at p. For indices
i, j = 0, . . . , n we set

Eijf(p) =

(
∂

∂xi
− ∂

∂xj

)
f(p).

Observe that Eijf(p) is well-defined, since the vector field ∂/∂xi − ∂/∂xj
belongs to the tangent space Tp�n for any p ∈ �n.

Theorem 4.3. — Let �n be the simplex (4.4). Then for any Lipschitz
function f : �n → R with

∫
�n f = 0,

∫

�n
f2(x)dx � 4

∫

�n

(
n∑

k=0

x2
k

1− 2xk

)−1 ∑

i 	=j

x2
ix

2
j

(1− 2xi)(1− 2xj)

∣∣Eijf
∣∣2 dx.

Here, the sum runs over the n(n + 1)/2 distinct pairs of indices i, j ∈
{0, . . . , n}.
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Proof . — For (x0, . . . , xn) ∈ �n denote

g(x1, . . . , xn) = f(x0, . . . , xn).

Then g : K → R is a Lipschitz function. We compute that

Qψ,x(∇g(x1, . . . , xn)) = 4

(
n∑

k=0

x2
k

1− 2xk

)−1 ∑

i 	=j

x2
ix

2
j

(1− 2xi)(1− 2xj)

∣∣Eijf
∣∣2

where Qψ,x is given by (4.3). The theorem thus follows from Corollary 4.2.
�

We would like to compare Theorem 4.3 with the push-forward of the
usual Poincaré inequality on CPn via the moment map. Recall that S2n+1(R) =
{z ∈ Cn+1;

∑n
i=0 |zi|2 = R2} is the sphere of radius R in Cn+1, equipped

with the induced Riemannian metric. Recall that the Riemannian manifold
(TnC, gψ) is embedded in CPn equipped with the Fubini-Study metric, up
to some normalization. In fact, with respect to the normalization dictated
by ψ, we may view the complex projective space CPn as a quotient of the
sphere S2n+1(2) ⊂ Cn+1 by a circle action. If we extend the map ∇ψ from
TnC to CPn by continuity, and then lift it to a circle-invariant function on
S2n+1(2), then we obtain the function

S2n+1(2) � (z0, . . . , zn) →
( |z1|2

4
, . . . ,

|zn|2
4

)
∈ K.

The manifold CPn inherits the Poincaré inequality for even functions on
the sphere S2n+1(2) (see, e.g., Müller [26] for the inequality on the sphere).
Consequently, the standard Poincaré inequality on CPn is the bound
∫

Rn
u(x)ρψ(x)dx = 0⇒

∫

Rn
u2(x)ρψ(x)dx � 1

n+ 1

∫

Rn
|∇ψu(x)|2ρψ(x)dx,

(4.5)
valid for any function u : Rn → R for which x → u(∇ψ∗(x)) is Lipschitz.
(One way to make sure that indeed n + 1 is the first non-zero eigenvalue
of −�ψ, is to verify that equality in (4.5) is attained for the eigenfunction
u = ψ1 − 1/(n + 1).) Translating (4.5) to the simplex K ⊂ Rn via the
moment map ∇ψ, we obtain in a straightforward manner:

Corollary 4.4. — Let K ⊂ Rn be the simplex which is the convex hull
of 0, e1, . . . , en, where e1, . . . , en are the standard unit vectors in Rn. Then
for any Lipschitz function f : K → R with

∫
K
f = 0,

∫

K

f2(x)dx � 1

n+ 1

∫

K



n∑

i=1

xi
∣∣∂if

∣∣2 −
(
n∑

i=1

xi∂
if

)2

 dx.
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Poincaré Inequalities and Moment Maps

Equivalently, let �n be the simplex (4.4). Then for any Lipschitz function
f : �n → R,

∫

�n
f = 0 ⇒

∫

�n
f2(x)dx � 1

n+ 1

∫

�n

∑

i 	=j
xixj

∣∣Eijf
∣∣2 dx.

(4.6)
Here, the sum runs over the n(n + 1)/2 distinct pairs of indices i, j ∈
{0, . . . , n}.

In the particular case of the uniform measure on the simplex, the meth-
ods of Barthe and Cordero-Erausquin [6] lead to a variant of (4.6) in which
the factor xixj is essentially replaced by (xi + xj)

2. Note that when the
dimension n is high, for a random point x ∈ K we typically have xi ≈ 1

n .
Therefore Corollary 4.4 is not so different from Theorem 4.3, when the di-
mension is high, while the latter is less elegant. Since Corollary 4.4 has a
much shorter proof, then näively it seems that the general method sug-
gested in Theorem 1.4 is not entirely essential in the case of the simplex.
In a sense, when proving Theorem 4.3 we only used the fact that CPn has
a non-negative Ricci form, and we did not fully exploit the relatively high
curvature of CPn. The picture is different once we use the freedom to se-
lect a suitable weight function exp(−ϕ) in Proposition 3.6. The following
theorem provides a taste of the Poincaré-type inequalities on the simplex
that follow from Proposition 3.6. Recall the notion of a coordinate p-convex
function from the Introduction.

Theorem 4.5. — Let �n be the simplex (4.4), let q � 0 and let ϕ :
Rn+1

+ → R be a coordinate (1/2)-convex function, C2-smooth up to the
boundary in �n, homogenous of degree q. Denote M = supx∈�n ϕ(x), and
assume that

Mq � n. (4.7)

(Alternatively, we can assume condition (4.8) below in place of (4.7).) De-
note by ν the finite Borel measure on �n ⊂ Rn+1 whose density with respect
to the Lebesgue measure on �n is

(x0, . . . , xn) → exp (−ϕ (x0, . . . , xn)) (x ∈ �n).

Then for any Lipschitz function f : �n → R with
∫
�n fdν = 0,

∫

�n
f2(x)dν(x) � 4

∫

�n

(
n∑

k=0

x2
k

1− 2xk

)−1 ∑

i 	=j

x2
ix

2
j

(1− 2xi)(1− 2xj)

∣∣Eijf
∣∣2 dν(x).

Here, the sum runs over the n(n + 1)/2 distinct pairs of indices i, j ∈
{0, . . . , n}.
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Proof . — Note that ϕ extends by continuity to the closure Rn+1
+ \ {0}.

Define

f(z0, . . . , zn) = ϕ

( |z0|2
4
, . . . ,

|zn|2
4

)
(0 �= z ∈ Cn+1),

and observe that f is C2-smooth on S2n+1(2) as ϕ is C2-smooth up to the
boundary in �n. For a point p ∈ S2n+1(2) we write Ep ⊂ Tp(S2n+1(2)) for
the subspace spanned by the gradients of the functions |z0|2, . . . , |zn|2 on
S2n+1(2). Arguing as in Lemma 2.6, we see that

〈
(∇2f)U,U

〉
� 0 for any p ∈ S2n+1(2), U ∈ Ep.

From (4.7),

〈
(∇2f)U,U

〉
+
n− qM

2
|U |2 � 0 for any p ∈ S2n+1(2), U ∈ Ep.

Since f(p) �M for any p ∈ S2n+1(2), then f satisfies

〈
(∇2f)U,U

〉
+
n− qf(p)

2
|U |2 � 0 for any p ∈ S2n+1(2), U ∈ Ep. (4.8)

The remainder of the proof is devoted to showing that condition (4.8) suf-
fices for the application of Proposition 3.6. To that end, denote by π :
S2n+1(2)→ CPn the quotient map, which associates with any z ∈ S2n+1(2)
the complex line through the origin that passes through z. Note that when
p ∈ S2n+1(2) is such that π(p) ∈ TnC, the subspace π∗(Ep) is the linear span
of ∂/∂x1, . . . , ∂/∂xn. We need to check that condition (?) from Section 3
holds true, and that the pair

(
ψ(x), ϕ

(
(1, ex1 , . . . , exn)

1 + ex1 + . . .+ exn

))

is regular at infinity. The main observation here is that both requirements
are satisfied when〈(
∇2
S2n+1(2)f

)
U,U

〉
+RicS2n+1(2)(U,U) � 0 for any p ∈ S2n+1(2), U ∈ Ep.

(4.9)
Here, ∇2

S2n+1(2)f stands for the Hessian of f with respect to the Riemannian

metric on S2n+1(2). Indeed, it is straightforward to verify that the Bakry-
Émery-Ricci tensor of a function g : CPn → R is positive semi-definite on
π∗(Ep), if and only if the Bakry-Émery-Ricci tensor of g◦π : S2n+1(2)→ R is
positive semi-definite on Ep. Hence (4.9) implies condition (?) from Section
3. The regularity at infinity is not an issue, as f ◦ π−1 is well-defined and
C2-smooth on the entire CPn. Since RicS2n+1(2)(U,U) = n|U |2/2 and f is
homogenous of degree 2q, then (4.9) is equivalent to (4.8). The theorem is
thus proven. �
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Remark 4.6. — Observe that the Poincaré inequality on CPn, rendered
as (4.5) above, essentially remains true when we replace the integrals over
the entire CPn with integrals over a geodesically-convex subset of CPn. This
follows from the Bochner formula, with a slightly weaker constant 2/(n+1)
in place of the factor 1/(n + 1) from (4.5). See Escovar [16, Theorem 4.3]
for details and for a better constant. Consequently, (4.6) remains true, up
to a factor of two, when the integrals over �n are replaced by integrals
over a compact K ⊂ �n for which π−1(K) is geodesically-convex. Here,
π : CPn → �n is the moment map. In the case where n = 1, the condition
on K means that K is connected, contains one of the endpoints of the
interval �1, and is contained in one of the halves of the interval �1.

Remark 4.7. — Assumption (4.7) and even the more precise condition
(4.8) seem a bit strict. We suspect that this is the fault of the hasty transition
from (3.10) to (3.11) above. Perhaps a more subtle analysis, in the spirit of
Barthe and Cordero-Erausquin [6], may transform the strict condition (4.7)
into a parameter incorporated in the resulting Poincaré-type inequality.

Remark 4.8. — Theorem 4.3 and its generalization Theorem 4.5 essen-
tially follow by analyzing the Fubini-Study metric on CPn. Given a simple
rational polytope K ⊂ Rn, one might try to look at the Kähler-Einstein
metric associated with K, which is equivalent to a certain “canonical” log-
concave transportation to K. We plan to pursue this direction in a future
work.

5. From the Orthant to the Full Space

In this section we deduce Theorem 1.3 from Theorem 1.1 and from some
essentially known facts. We say that an unconditional function ρ : Rn →
R is increasing when the restriction ρ|Rn

+
is increasing. We say that it is

decreasing when x → −ρ(x) is increasing. The following lemma begins our
analysis of the finite-dimensional space of functions on Rn that are constant
on each orthant. Recall the definition (2.3) of the H−1 norm of a function.

Lemma 5.1. — Let R > 0, and let µ be the uniform probability measure
on the interval [−R,R]. Suppose f(x) = sgn(x) = x/|x| for x �= 0. Then,

‖f‖H−1(µ) �
R√
3

=

√∫

R
x2dµ(x). (5.1)
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Proof . — Integrating by parts, we see that for any C1-smooth function g,

1

2R

∫ R

−R
fg =

1

2R

∫ R

0

[g(x)− g(−x)] dx =
1

2R

∫ R

0

(R− x) (g′(x) + g′(−x)) dx

� 1

2R

√∫ R

0

(R− x)2dx
∫ R

0

|g′(x) + g′(−x)|2 dx � 1

2R

√
2R3

3

∫ R

−R
|g′(x)|2 dx,

where we used the Cauchy-Schwartz inequality. The bound (5.1) now follows
from the definition (2.3) of the H−1-norm. �

Suppose ρ : R → R is a probability density that is unconditional (i.e.,
even) and decreasing. It is elementary to verify that there exists a probability
measure λ on [0,∞), such that

ρ(x) =

∫ ∞

0

(
1[−R,R](x)

2R

)
dλ(R) (for almost every x ∈ R)

where 1[−R,R] is the characteristic function of the interval [−R,R]. From
Lemma 2.2 and Lemma 5.1 we conclude that for any probability measure µ
on R with an unconditional, decreasing density,

‖sgn(x)‖H−1(µ) �
√∫

R
x2dµ(x). (5.2)

Note that when ρ is an unconditional, decreasing function on Rn, the re-
striction of ρ to any line parallel to one of the axes, is a one-dimensional
unconditional, decreasing function. From (5.2) and Lemma 2.2 we therefore
obtain the following:

Corollary 5.2. — Suppose µ is a probability measure on Rn with an
unconditional, decreasing density. Let � = 1, . . . , n, and suppose that f :
Rn → R is a measurable function which does not depend on the �th coordi-
nate, and such that |f(x)| = 1 for any x. Set

g(x) = f(x)sgn(x�) for x = (x1, . . . , xn) ∈ Rn.

Then,

‖g‖H−1(µ) �
√∫

Rn
x2
�dµ(x).

Let G = {−1, 1}n ∼= (Z/(2Z))n, a commutative group with 2n elements,
where

xy = (x1y1, . . . , xnyn) for x, y ∈ {−1, 1}n.
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Denote by H the space of functions f : G → R with
∑
x∈G f(x) = 0. For

x, y ∈ G and f ∈ H denote Txf(y) = f(xy). Suppose that we have two
Hilbertian norms ‖ · ‖1 and ‖ · ‖2 on the space H, with the property that

‖f‖j = ‖Txf‖j (5.3)

for any x ∈ G, f ∈ H and j = 1, 2. From elementary representation theory,
the supremum

sup
0 	=f∈H

‖f‖1/‖f‖2

must be attained for a non-constant character f : G → R. Indeed, both of
the Hilbertian norms are unconditional with respect to the basis of charac-
ters.

Lemma 5.3. — Suppose µ is a probability measure on Rn with an uncon-
ditional, decreasing density. Let S ⊂ L2(µ) be the finite-dimensional space
spanned by functions f that are constant on orthants. That is, functions f
such that

f(x1, . . . , xn)

depends only on sgn(x1), . . . , sgn(xn). Then, for any f ∈ S with
∫
f2dµ = 1

and
∫
fdµ = 0,

‖f‖2H−1(µ) � max
�=1,...,n

∫

Rn
x2
�dµ(x). (5.4)

Proof . — Denote by H ⊂ S the subspace of all functions f ∈ S with∫
fdµ = 0, and consider the group G = {−1, 1}n ∼= (Z/(2Z))n. The linear

space H is identified with the space of functions on G that sum to zero,
since each of the 2n orthants is identified with an element of G in an obvious
manner. Furthermore, the H−1(µ) norm and the L2(µ) norm are both G-
invariant Hilbertian norms onH in the sense of (5.3). It is therefore sufficient
to verify (5.4) for non-constant characters, that is, for functions f : Rn → R
of the form

f(x) =

n∏

j=1

sgn(xj)
δj (x ∈ Rn)

for some 0 �= (δ1, . . . , δn) ∈ {0, 1}n. Note that all of these characters are of
the form

f(x) = g(x)sgn(x�)

for some � = 1, . . . , n and for some measurable function g : Rn → {−1, 1}
which does not depend on x�. Corollary 5.2 therefore applies, and implies
(5.4). �
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Proof of Theorem 1.3. — By applying a linear transformation of the form

Rn � (x1, . . . , xn) → (
√
V1x1, . . . ,

√
Vnxn) ∈ Rn

we reduce matters to the case V1 = . . . = Vn = 1. We will consider the
norms corresponding to the expressions appearing on the right-hand side of
(1.2) and of (1.3). That is, for a locally Lipschitz function g ∈ L2(µ) set

‖g‖2P 1(µ) =

∫

Rn

n∑

i=1

k2

k − 1
x2
i

∣∣∂ig(x)
∣∣2 dµ(x),

‖g‖2Q1(µ) =

∫

Rn

n∑

i=1

(
k2

k − 1
x2
i + 1

) ∣∣∂ig(x)
∣∣2 dµ(x).

Then

‖g‖2Q1(µ) = ‖g‖2P 1(µ) + ‖g‖2H1(µ) (5.5)

where ‖g‖2H1(µ) =
∫
|∇g|2dµ. The dual norms are defined, for f ∈ L2(µ),

via

‖f‖P−1(µ) = sup
‖g‖P1(µ) 	=0

∫
fgdµ

‖g‖P 1(µ)
, ‖f‖Q−1(µ) = sup

‖g‖Q1(µ) 	=0

∫
fgdµ

‖g‖Q1(µ)
,

where the suprema run over all locally Lipschitz functions g ∈ L2(µ). Using a
standard duality argument we deduce from (5.5) that for any f1, f2 ∈ L2(µ),

‖f1 + f2‖2Q−1(µ) � ‖f1‖2P−1(µ) + ‖f2‖2H−1(µ) (5.6)

whenever the right-hand side is finite. In order to prove (1.3), it suffices to
show that for any f ∈ L2(µ) with

∫
fdµ = 0,

‖f‖Q−1(µ) � ‖f‖L2(µ). (5.7)

(Strictly speaking, this will imply (1.3) only for a locally Lipschitz f ∈
L2(µ), yet the generalization to a locally Lipschitz f ∈ L1(µ) is simple,
as is explained at the proof of Theorem 1.1 above). For f : Rn → R and
δ ∈ {−1, 1}n denote

fδ(x) = f(δ1x1, . . . , δnxn) for x ∈ Rn+.

We write G ⊆ L2(µ) for the subspace of all f ∈ L2(µ) which satisfy

∫

Rn
+

fδdµ = 0 for all δ ∈ {−1, 1}n.
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Suppose that g ∈ L2(µ) is a locally Lipschitz function with

‖g‖2P 1(µ) =

∫

Rn

n∑

i=1

k2

k − 1
x2
i

∣∣∂ig(x)
∣∣2 dµ(x) � 1. (5.8)

For δ ∈ {−1, 1}n let Eδ ∈ R be such that
∫
Rn(gδ − Eδ)dµ = 0. According

to (5.8) and to Theorem 1.1,

∑

δ∈{−1,1}n

∫

Rn
+

(gδ − Eδ)2dµ � 1.

Consequently, for any f ∈ G,

∫

Rn
fgdµ =

∑

δ∈{−1,1}n

∫

Rn
+

fδgδdµ =
∑

δ∈{−1,1}n

∫

Rn
+

fδ(gδ − Eδ)dµ

�
√√√√

∑

δ∈{−1,1}n

∫

Rn
+

f2
δ dµ ·

√√√√
∑

δ∈{−1,1}n

∫

Rn
+

(gδ − Eδ)2dµ

�
√∫

Rn
f2dµ.

We thus proved that

‖f‖P−1(µ) � ‖f‖L2(µ) for any f ∈ G. (5.9)

Next, observe that G is the orthogonal complement to the subspace S from
Lemma 5.3. Fix f ∈ L2(µ) with

∫
fdµ = 0. Then f may be represented as

f = g + s, where g ∈ G, s ∈ S and
∫
sdµ = 0. From (5.6), (5.9) and Lemma

5.3,

‖f‖2Q−1(µ) � ‖g‖2P−1(µ) + ‖s‖2H−1(µ) � ‖g‖2L2(µ) + ‖s‖2L2(µ) = ‖f‖2L2(µ),

and the desired (5.7) is proven. The “Furthermore” part of the theorem
follows immediately from Theorem 1.1. �

Remark 5.4. — Another approach for the results of this section is pro-
vided by Fleury [17] and by Barthe and Cordero-Erausquin [6, Section 5].
Their method is based on symmetrizing the given function, and applying the
Poincaré inequality for the relevant discrete group (which is G = (Z/(2Z))

n

in our case). Our argument is somewhat “dual”, as we analyze the H−1-
norm of functions that are constant on orthants.
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6. A direct approach for the orthant

In this section we provide another proof of Theorem 1.1, which does
not involve spaces of twice the dimension. We prove the following slight
generalization of Theorem 1.1, see also Remark 2.9.

Theorem 6.1. — Let n � 1. Let k1, . . . , kn > 1 be real numbers, not
necessarily integers. Suppose that µ is a Borel measure on Rn+ with density
exp(−ϕ), where ϕ : Rn+ → R is a C2-smooth function such that

Rn+ � (x1, . . . , xn) → ϕ
(
xk11 , . . . , x

kn
n

)

is a convex function on Rn. Assume that f : Rn+ → R is a µ-integrable,
locally Lipschitz function with

∫
fdµ = 0. Then,

∫

Rn
+

f2dµ �
∫

Rn
+

n∑

i=1

k2i
ki − 1

x2
i

∣∣∂if(x)
∣∣2 dµ(x). (6.10)

Proof . — For x ∈ Rn+ we denote here

π(x) = (π1(x), . . . , πn(x) = (xk11 , . . . , x
kn
n ).

Then ϕ(π(x)) is a convex function. Set

ψ(x) = ϕ(π(x))−
n∑

i=1

(ki − 1) log xi (x ∈ Rn+).

Since ϕ(π(x)) is convex, its Hessian is positive semi-definite. Therefore,

〈(
∇2ψ(x)

)−1
U,U

〉
�

n∑

i=1

x2
i

ki − 1
|U i|2

for any x ∈ Rn+ and U = (U1, . . . , Un). From the Brascamp-Lieb inequality
[8, Theorem 4.1], we conclude that for any locally Lipschitz function f :
Rn+ → R,

∫

Rn
+

fe−ψ = 0⇒
∫

Rn
+

f2e−ψ �
∫

Rn
+

n∑

i=1

x2
i

ki − 1
|∂if(x)|2e−ψ(x)dx. (6.11)

Equivalently, for any locally Lipschitz function f : Rn+ → R with

∫

Rn
+

f(x)

(
n∏

i=1

xki−1
i

)
e−ϕ(π(x))dx = 0,

– 38 –
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we have

∫

Rn
+

f2

(
n∏

i=1

xki−1
i

)
e−ϕ(π(x))dx �

∫

Rn
+

n∑

i=1

x2
i

ki − 1
|∂if |2

(
n∏

i=1

xki−1
i

)
e−ϕ(π(x))dx.

(6.12)
Observe that

∏n
i=1 kix

ki−1
i is precisely the Jacobian determinant of π. Fur-

thermore, if f(x) = g(π(x)), then

xi∂
if(x) = kiπi(x)∂

ig(π(x)).

From (6.12) we see that for any locally Lipschitz f : Rn+ → R with∫
fe−ϕ = 0,

∫

Rn
+

f2e−ϕ(x)dx �
∫

Rn
+

n∑

i=1

k2i
ki − 1

x2
i |∂if |2e−ϕ(x)dx.

�

Theorem 6.1 immediately implies the corresponding refinements of Corol-
lary 1.2 and Theorem 1.3, as described in the Introduction.

Remark 6.2. — We cannot escape the feeling that the symmetries we
produce by adding extra dimensions are somewhat artificial. Perhaps we
are overlooking a direct method, that could lead to generalizations of the
results in this manuscript.
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