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HOLONOMIC D-MODULES WITH
BETTI STRUCTURE

Takuro Mochizuki

Abstract. — We define the notion of Betti structure for holonomic D-modules
which are not necessarily regular singular. We establish the fundamental func-
torial properties. We also give auxiliary analysis of holomorphic functions of
various types on the real blow up.

Résumé (D-modules holonomes munis d’une structure de Betti)

Nous définissons la notion de structure Betti pour les D-modules holonomes
qui ne sont pas nécessairement singuliers réguliers. Nous établissons leurs pro-
priétés fonctorielles principales. Nous donnons également une analyse supplé-
mentaire des fonctions holomorphes de divers types sur I’éclatement réel.
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CHAPTER 1

INTRODUCTION

In this paper, we introduce the notion of Betti structure for holonomic D-
modules, motivated by a question in [13]. For regular holonomic D-modules,
it is clearly defined by the Riemann-Hilbert correspondence, which is a basis of
the theory of mixed Hodge modules (see [55]-[58]). Namely, a Betti structure
of a regular holonomic Dx-module M is defined to be a Q-perverse sheaf F
with an isomorphism a : F ® C ~ DRx M. It has a nice functorial property
for some of standard functors such as pull back, push-forward, dual, etc., in
the algebraic situation.

As for the non-regular case, there has been a significant progress toward
a generalized Riemann-Hilbert correspondence between holonomic D-modules
and some topological objects, a kind of perverse sheaves equipped with “Stokes
structure” in some sense. The asymptotic analysis for good meromorphic flat
bundles (see [33], [52] and [47]) and the existence of resolution of turning
points (see [26], [27], [47]) lead us a rather satisfactory understanding of
the structure of meromorphic flat bundles. Moreover, the recent work of
A. D’Agnolo and M. Kashiwara [10], [11] based on the theory of Ind-sheaves
[24] gives us a description of holonomic D-modules in terms of some topolog-
ical objects. It should also lead us to a thorough theory of Betti structure of
holonomic D-modules.

However, except in the one dimensional case, it turned out that a rather
complicated machinery is necessary for the complete description of generalized
Riemann-Hilbert correspondence. (See [11] and [24]; see also [54].) In this
study, we shall directly define the notion of “Betti structure” for holonomic
D-modules with functorial property by using only the classical machinery of
holonomic D-modules and perverse sheaves. It still requires non-trivial tasks,
and provides us with non-trivial consequences on the compatibility of the
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Stokes structure and the Q-structure. We hope that it would be useful for
direct understanding of Betti structures and for a further study toward the
generalized Riemann-Hilbert correspondence, at least temporarily.

1.1. Pre-Betti structure

To define the notion of Betti structure of a holonomic Dx-module M, it is a
most naive idea to consider a pair of Q-perverse sheaf F and an isomorphism

a: F®C~DRx(M)

as above, which is called a pre-Betti structure of M in this paper.A holonomic
D x-module with a pre-Betti structure is called a pre-Q-holonomic D x-module.
We should say that pre-Betti structure is too naive for the following reasons:

> It is not so intimately related with Stokes structure.

> Although pre-Betti structures have nice functoriality with respect to dual
and proper push-forward, they are not functorial with respect to the
push-forward for open immersion, the pull back, the nearby cycle and
vanishing cycle functors. Recall that the de Rham functor is not com-
patible with the latter class of functors, when irregular singularities are
present.

It is the main goal in this paper to introduce a condition for a pre-Betti
structure to be a “Betti structure”. We use an inductive way on the dimension
of the support, which was a strategy of M. Saito to define his mixed and pure
Hodge modules [55] and [57].

In the following, a Q-structure of a C-perverse sheaf Fc is a Q-perverse
sheaf Fg with an isomorphism Fg ®qg C ~ Fc.

1.2. Betti structure in the one dimensional case

We explain our condition for Betti structure in the one dimensional case.

1.2.1. The generalized Riemann-Hilbert correspondence in the one
dimensional case. — We know the well established theory on the general
structure of holonomic D-modules on curves (the generalized Riemann-Hilbert
correspondence). Namely, in the one dimensional case, we have a natural
bijective correspondence between meromorphic flat bundles and local systems
with Stokes structure, and any holonomic D-modules are described as the
gluing of meromorphic flat bundles and skyscraper D-modules. We shall review
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1.2. BETTI STRUCTURE IN THE ONE DIMENSIONAL CASE 3

it very briefly. For simplicity, we consider holonomic D-modules on X = A =
{|]#] < 1} which may have a singularity at the origin D = {O}.

1.2.1.1. The Stokes structure of meromorphic flat bundles. — Let V be a
meromorphic flat bundle on (X, D). Let 7 : X(D) — X be the real blow up
along D. Let £ be the local system on X (D) associated to the flat bundle
Vix—p- Let P be any point of 71(D). According to the classical asymptotic
analysis, we have the Stokes filtration F¥ of the stalk £p given by the growth
order of flat sections with respect to any meromorphic frame of V. The mero-
morphic flat bundle V' can be reconstructed from the flat bundle V|x_p and
the system of filtrations {F¥ ‘ P € n~1(D)}, which is the Riemann-Hilbert-
Birkhoff correspondence for meromorphic flat bundles on curves.

Let V'V be the dual of V as a meromorphic flat bundle, and let V; := Dx V"V
be the dual of Vv as a Dx-module. Let us recall that the de Rham complexes
DRx (V) and DRy (V}) can be described in terms of Stokes filtrations. Let £
and L=P be the constructible subsheaves of £ such that EI%D = FL,(Lp) and

L3P = FE)(Lp). Then, we have natural isomorphisms:
(1) DR(V) ~ Rr,.L=P[1], DR(W) ~ Rm,L=P[1].

1.2.1.2. Gluing of holonomic D-modules. — Let us very briefly recall a key
construction due to A. Beilinson [4] on the gluing of holonomic D-modules,
which we will review in §2.2 in more details. (See also [32] and [59] for the
other formalisms for gluing.) Let M be any holonomic Dx-module such that
V := M(xD) is a meromorphic flat bundle on (X, D). We have the natural

morphisms Vi —2» M o,y According to [4], we have the D-modules
=.(V) and ¢, (V) associated to V, with morphisms

2) (V) S E (V) B (V),  Vi—2sE5(V) 25V

It can be shown that byoag = by oas. We also have byoa; = 0 and b oag = 0.
We obtain the D-module ¢, (M) as the cohomology of the naturally associated
complex:

(3) Vi—EV)eaM—V

We have the naturally induced morphisms 1, (V) —2 ¢, (M) —2 4, (V).
Then, M is reconstructed as the cohomology of the complex:

(4) (V) — B (V) © (M) — (V)

Recall that =,(V), ¢.(V), and ¢,(M) are called the maximal extension, the
nearby cycle sheaf, and the vanishing cycle sheaf of M.

SOCIETE MATHEMATIQUE DE FRANCE 2014



4 CHAPTER 1. INTRODUCTION

1.2.2. Betti structure of holonomic D-modules on curves. — We ex-
plain when a pre-Betti structure of holonomic D-modules seems eligible to be
called a Betti structure in the one dimensional case. Essentially, the condition
describes a compatibility with the Stokes structure.

1.2.2.1. Good Q-structure of meromorphic flat bundles. — Let V be a mero-
morphic flat bundle on (X, D), and let £ denote the associated local system
on X (D) with the Stokes structure. A Q-structure of V is a Q-structure of the
associated local system on X \ D, which is equivalent to a Q-structure of L.
It is called a good Q-structure of V if the Stokes filtrations F¥' (P € 7=1(D))
are defined over Q, with respect to the induced Q-structure of £. By the iso-
morphisms (1), we obtain the pre-Betti structures of V' and V;. Moreover, it is
easy to observe that v¢,(V') and Z,(V) are also naturally equipped with pre-
Betti structures such that the morphisms a; and b; (i = 1,2) are compatible
with pre-Betti structures.

1.2.2.2. Betti structure of holonomic D-modules on curves. — Let M be a
holonomic D-module on (X, D) such that V := M(*D) is a meromorphic flat
bundle. Let (F,«) be a pre-Betti structure of M. We call it a Betti structure
if the following holds:

> The induced Q-structure on DR(WX_ p) induces a good Q-structure
of V. As remarked above, we have the induced pre-Betti structures
on V and V.

> The natural morphisms ag and by are compatible with the pre-Betti
structures.

Note that we obtain a pre-Betti structure on ¢,(M) from the expression as
the cohomology of the complex (3), and the morphisms var and can are com-
patible with the pre-Betti structures. The pre-Betti structure of M can be
reconstructed from the pre-Betti structure of ¢, (M) and the good Q-structure
of V.

1.3. Betti structure in the higher dimensional case

We would like to generalize the notion of Betti structure in the higher
dimensional case.

1.3.1. Good meromorphic flat bundle and good Q-structure. — Let
X be any complex manifold with a simple normal crossing hypersurface D.

MEMOIRES DE LA SMF 138/139



1.3. BETTI STRUCTURE IN THE HIGHER DIMENSIONAL CASE 5

It is fundamental to understand the structure of good meromorphic flat bun-
dles on (X, D), which is now well established after the work of H. Majima,
C.Sabbah and the author. (See [33], [47], [48], [52] and [54]; see [49] for a
survey.) Very briefly, the asymptotic analysis for meromorphic flat bundles on
curves can be naturally generalized for good meromorphic flat bundles in the
higher dimensional case, and we obtain the Riemann-Hilbert-Birkhoff corre-
spondence, which is a natural correspondence between good meromorphic flat
bundles and local systems with Stokes structure.

Let us recall it very briefly. Let (V, V) be a good meromorphic flat bundle.
Let 7 : )?(D) — X be the real blow up along D, which means in this paper
the fiber product of the real blow up along the irreducible components of D
taken over X. Let £ be the local system on )~((D) associated to V|x_p. For
any point P € 7~ (D), we have the Stokes filtration F¥ of the stalk Lp. It
satisfies a compatibility condition with the Stokes filtrations F< for Q which
are close to P. We can reconstruct V from V| x_p and the system of filtrations
{FF| P € 7=1(D)}. Moreover, if we are given a local system with the family of
Stokes filtrations {FF | P € 7=1(D)} satisfying the compatibility condition,
we have the corresponding good meromorphic flat bundle V. This is the
Riemann-Hilbert-Birkhoff correspondence for good meromorphic flat bundles.

As in the one dimensional case, the de Rham complexes of V' and V; are
described in terms of the local system £ with the Stokes structure. We obtain
the constructible subsheaf LS of £ which consists of flat sections with the
moderate growth. It is described as EI%D = FE,(Lp) (P € n~1(D)) in terms of
the Stokes filtrations. Let £<2 be the constructible subsheaf of L, which con-
sists of flat sections with rapid decay along D. It is also described in terms of
the Stokes filtration (see §5.1.2). Then, we have DRx (V) ~ Rm,LP[dim X]
and DRx (W) ~ Rm,L<P[dim X] as in (1).

For any holomorphic function g on X such that ¢g=1(0) = D, we obtain Dx-
modules 14(V') and Z,4 (V') with morphisms as in (2) by using the formalism of
Beilinson. Their de Rham complexes are also described in terms of the local
system £ with the Stokes filtrations.

As in the one dimensional case, a Q-structure of V is a Q-structure of the
associated local system on X\ D, which is equivalent to a Q-structure of £. It is
called a good Q-structure of V' if the Stokes filtrations are defined over Q. If V'
is equipped with a good Q-structure, the Dx-modules V', Vi, Z4(V') and 14 (V)
are naturally equipped with pre-Betti structures, and the natural morphisms
as in (2) are compatible with the pre-Betti structures.

SOCIETE MATHEMATIQUE DE FRANCE 2014



6 CHAPTER 1. INTRODUCTION

1.3.2. Good Q-structure of meromorphic flat connections. — In the
higher dimensional case, not all meromorphic flat bundles are good, which is
one of the main difficulties. Let us recall local resolutions of turning points
due to K. Kedlaya [26], [27]. (See [52] for the original conjecture; see also [44]
and [47] for the algebraic case.)

Let X be a complex manifold with a hypersurface D. Let V' be a reflexive
Ox (xD)-module with a flat connection, which is called a meromorphic flat
connection [38]. For any P € X, there exist a neighbourhood Xp of P in X
and a projective birational morphism Ap : Xp — Xp such that

(i) Xp is smooth and Dp := A\p' (D) is normal crossing,

(ii) Xp\ Dp~ Xp\ D,

(iii) Vp := A%V is a good meromorphic flat bundle on (Xp,Dp). (See
Theorem 8.2.2 of [27].)

Such (Xp, Ap) is called a local resolution of V' in this paper. If X and V are
algebraic, we have a global resolution. (See Theorem 8.1.3 of [27] or Theorem
16.2.1 of [47].)

Then, the notion of good Q-structure is generalized for meromorphic flat
connections which are not necessarily good. Namely, a Q-structure of V is
called good if the induced Q-structure of good meromorphic flat bundles Vp
are good for any local resolutions (Xp,Ap). Even in this case, the de Rham
complexes DR x (V') and DR x (W) have naturally induced Q-structures. More-
over, if we are given a holomorphic function g on X such that ¢=1(0) = D,
the holonomic Dx-modules ¥4 (V) and Z4(V) are naturally equipped with
pre-Betti structures, with which the morphisms in (2) are compatible.

1.3.3. Cells and gluing. — Let us recall that any holonomic D-module
M can be described as the gluing of a “cell” and a holonomic D-module M’
whose support Supp M’ is strictly smaller than Supp M. Namely, for any
P € Supp M, there exists a tuple C = (Z,U, ¢, V) as follows:

(Cell 1) ¢ : Z — X is a morphism of complex manifolds such that P € ¢(Z)
and that dim Z is equal to the dimension of Supp M at P. We impose
that there exists a neighbourhood Xp of Pin X suchthat ¢ : Z — Xp
is projective.

(Cell 2) U C Z is the complement of a hypersurface Dz. We impose that the
restriction )y is an immersion, and that there exists a hypersurface H
of Xp such that ¢~ 1(H) = Dy.

MEMOIRES DE LA SMF 138/139



1.3. BETTI STRUCTURE IN THE HIGHER DIMENSIONAL CASE 7

(Cell 3) V' is a good meromorphic flat bundle on (Z,Dz). We impose
M(xH) = ¢V for a hypersurface H as in (Cell 2). Note that we
obtain the natural morphisms oV — M — @i V.

Such C is called a cell of M at P. A holomorphic function g on X is called
a cell function for C if p(U) = Supp M \ g~1(0). We set gz := go . We have
natural isomorphisms 1=, (V) ~ Z40+(V) and 11y, (V') ~ gpi(V). By the
formalism of Beilinson, the Dx-module ¢4(M) is obtained as the cohomology
of the complex

(5) otV — EgcpT(V) eM— o1 V.
We have the description of M around P as the cohomology of the complex

Vg(p1V) — Eg(p1V) @ og(M) — Yy V).
In other words, M is described as the gluing of the cell C and ¢4(M).

1.3.4. Betti structure

1.8.4.1. Compatibility of cell and pre-Betti structure. — We introduce the
compatibility condition of a cell C and a pre-Betti structure F of M. We say
that F and C are compatible if the following holds:

> Note that the flat bundle Vj;; has an induced Q-structure. We suppose
that it is a good Q-structure in the sense of §1.3.2.

> By the first condition, ¢V, o1Vi, Eg1V and 44V are equipped with
the induced pre-Betti structures. Then, we impose that the morphisms
o1V = M — @iV are compatible with pre-Betti structures.

Such a cell C is called a Q-cell of M at P. Since ¢4(M) is the cohomology of
the complex (5), it is equipped with the induced pre-Betti structure.

1.3.4.2. Inductive definition of Betti structure. — Let us define the notion
of Betti structure of M at P, inductively on the dimension of Supp M. If
dimp Supp M = 0, a Betti structure is defined to be a pre-Betti structure.
Let us consider the case dimp Supp M < n. We say that a pre-Betti structure
of M is a Betti structure at P if there exists an n-dimensional Q-cell C =
(Z,0,U, V) at P with the following properties:
> dimp((SuppM N Xp) \ ¢(Z)) < n for some neighbourhood Xp of P
in X.
> For a cell function g for C, the induced pre-Betti structure of ¢q(M)
is a Betti structure at P. Note that dim Supp ¢4(M) < n by the first
condition.

SOCIETE MATHEMATIQUE DE FRANCE 2014



8 CHAPTER 1. INTRODUCTION

A holonomic D-module with Betti structure is called a @Q-holonomic D-module.
Morphisms of Q-holonomic Dx-modules are defined to be morphisms of pre-
Q-holonomic Dx-modules.

REMARK 1.3.1. — The above is not exactly the same as the definition in §7.2,
but they give equivalent objects. U

1.4. Main goal

1.4.1. The category of Q-holonomic D-modules. — Besides giving the
details on the above arguments, it is our main purpose to show that our notion
of Betti structure is nice. The category of Q-holonomic D-modules should
contain the holonomic D-modules naturally induced from any meromorphic
flat connections with a good Q-structure, for which we have the following
theorem.

THEOREM 1.4.1. — Let X be any complex manifold with a hypersurface D.
Let V' be any meromorphic flat connection on (X, D) with a good Q-structure.
Then, the natural pre-Betti structures of V and Vi are Betti structures.

See Theorem 8.1.3 for a refined result. Some of the functors for holonomic D-
modules should be enriched with Betti structures, as in the following theorems.

THEOREM 1.4.2 (Theorem 8.1.1). — Let F': X — Y be any projective mor-
phism of complex manifolds. For any Q-holonomic Dx-module M, the push-
forward FTZM are also naturally Q-holonomic for any 1.

THEOREM 1.4.3 (Theorem 8.1.4). — Let X be any complex manifold with a
hypersurface D. Let M be any Q-holonomic Dx-module. Then, M & Ox (xD)
has a unique Betti structure, for which M — M ® Ox(xD) is compatible with
the Belti structures.

THEOREM 1.4.4 (Proposition 8.3.7). — Let X be any complex manifold with
a hypersurface D. Let M be any Q-holonomic Dx-module. Let V be any
meromorphic connection on (X, D) with a good Q-structure. Then, MV is
naturally a Q-holonomic Dx-module.

The following is an easier result.

THEOREM 1.4.5
> The category of Q-holonomic Dx-modules is abelian.

> The dual of Q-holonomic Dx-modules are naturally Q-holonomic.

MEMOIRES DE LA SMF 138/139



1.4. MAIN GOAL 9

> Let M be a Q-holonomic Dx-module. Let M’ C M be a subobject in
the category of pre-Q-holonomic Dx-modules. Then, M’ is also Q-holonomic.
We have a similar claim for quotients.

By using the theorems, we obtain that the category of Q-holonomic D-
modules contains expected objects. For example, it contains the holonomic
D-modules obtained from the structure sheaf of any algebraic variety by suc-
cessive use of the pull back and the push-forward by algebraic morphisms,
and the exponential twist by algebraic functions. (This type of holonomic
D-modules are closely related with extended exponential-motivic D-modules
in [28].) It implies the compatibility of the Q-structure and the Stokes struc-
ture for some naturally obtained meromorphic flat bundles. Such phenomena
are expected in the non-commutative Hodge theory [25].

In the algebraic case, the derived category of Q-holonomic D-modules is
equipped with standard functoriality.

THEOREM 1.4.6. — The category of Q-holonomic algebraic D-modules is
equipped with the standard functors such as dual, push-forward, pull-back,
tensor product, inner homomorphism, the nearby and vanishing cycle functors,
compatible with those for the category of holonomic algebraic D-modules with
respect to the forgetful functor.

1.4.2. Analysis on real blow up. — We also give some analysis on the real
blow up, which is a complement to [54]. Very briefly, we can capture the Stokes
structure by considering the de Rham complex on the real blow up, at least
in the case of good meromorphic flat bundles. We have several useful classes
of functions on the real blow up, the moderate growth, the rapid decay, and
the Nilsson type. We study or review the fundamental property of the sheaves
of such functions and the corresponding de Rham complexes. We will not
restrict ourselves to our main purpose, i.e., the study on Betti structure. For
example, we shall prove that the sheaf of holomorphic functions of moderate
growth is flat over the sheaf of holomorphic functions on the underlying space
(Theorem 4.1.1). Although we will not use it in this paper, it is quite basic,
and the author expects that it would be useful for a further study.

REMARK 1.4.7. — G. Morando informed the author that the theory of ind-
sheaves [24] provides us with a powerful method to study analysis on the real
blow up. (See also the recent work by A. D’Agnolo and M. Kashiwara [10].)
While the author hopes that it would make the subject more transparent,
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10 CHAPTER 1. INTRODUCTION

he also hopes that his direct way would also be significant for our understand-
ing at this moment. O
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CHAPTER 2

PRELIMINARY

2.1. Notation and words

2.1.1. Dual, push-forward and de Rham functor. — We prepare some
notation. See very useful text books [17] and [22] for more details and preci-
sions on D-modules. Let X be a complex manifold with dim X = dx. Let Dx
denote the sheaf of holomorphic differential operators on X. In this paper,
Dx-module means left Dx-module. Let Hol(X) be the category of holonomic
Dx-modules, and let Dﬁol(DX) be the derived category of cohomologically
bounded holonomic Dx-complexes.Let QJX denote the sheaf of holomorphic
j-forms. The invertible sheaf le(x is denoted by x. The sheaves of C>°-
(p, q)-forms are denoted by Q9. The dual functor on the derived category of
Dx-modules is denoted by Dy, i.e.,

DxM®* := RHomp, (M*,Dx @ Q% 1) [dx].

Recall that if M is a holonomic Dyx-module, then D x M is a holonomic Dx-
module. For Dy-modules M; (i = 1,2), the tensor product M; ®p, Ma is
naturally a Dx-module. For any tangent vector field v, we have

v(my @ mg) = (vmy) ® ma + my ® (vma).

The Dx-module is denoted by M; ®P Ms. It is also denoted by M; ® My if
there is no risk of confusion.

LEMMA 2.1.1. — Let M be any holonomic Dx-module. Let V be any Dx-
module, which is coherent and locally free as an Ox -module. Its dual is denoted
by VV. Then, we have a natural isomorphism

Dx (M P V)~ (DxM) 2P vV
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Proof. — We recall Remark 3.4 in [22]. For any left Dx-module N, we have
the left Dy-action on Dx ®P N. It is also equipped with a right Dx-action
given by the multiplication (f @ m)-g = fg ® m for ¢ € Dx. The two-sided
(Dx,Dx)-module is denoted by Nj. Similarly, we have a left action of Dy
on Dx ®o, N (the tensor product ®p, is taken for the O x-module structure
of Dx given by the right multiplication) given by the multiplication g-(f®m) =
gf®@m for g € Dx, and a right Dx-action given by (f®m)-v = fv@m—f®@vm
for a tangent vector v. The two-sided (Dx, Dx )-module is denoted by No. We
have a naturally defined Ox-morphism A" — Aj given by m — 1 ® m. It is
naturally extended to a morphism of left Dx-modules N5 — A7. Actually, it
is an isomorphism and compatible with the right Dx-action, as remarked in
[22].

We have two left Dx-actions on Dx ® Q}e}*l. The first one is the natural
one, and the second one is induced by the right Dx-action. They induce
two Ox-actions. Let (Dxy ® Q?}_l) ®§9X N denote the tensor product with
respect to the i-th one. Each is equipped with two left Dx-actions. From the
consideration in the previous paragraph, we obtain a natural isomorphism

L :N@}QX (Dx ® Q?é_l) —)N@?QX (Dx ® Q?é_l)a

compatible with the Dx-actions.
Let us return to Lemma 2.1.1. We have the following natural isomorphisms
of Dx-modules:

(6) Dx(M@P V)= RHomp, (M @PV, Dx @ Q%)
~ RHomp, (M, V¥ @p, (Dx ® Q3™"))
~ RHomp, (M, VY @4, (Dx @ Q%)) = (DxM) P VY.

Here, the first one is obtained by using Godement type injective resolution,
and the second one is induced by ¢ above. U

For any field R, let Rx denote the sheaf on X associated to the constant
presheaf valued in R. Let D®(Rx) (resp. DY(Rx)) denote the derived category
of cohomologically bounded (resp. bounded constructible) R x-complexes, and
let Per(X, R) denote the category of R-perverse sheaves. Let wx r denote the
dualizing complex of Rx-modules. It will be denoted by wx if there is no risk
of confusion.

The dual functor on the derived category of Rx-modules is also denoted
by Dx, i.e., for an Rx-complex F*, let

D)(.F° = RHOTRRX (F‘,wxﬁ).
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The de Rham functor is denoted by DRy, i.e.,
DRx M = Qx ®%, M = Q% ®o, M[dx].
According to [19], it gives a functor of triangulated categories
DRy : Dy (DPx) — D2(Cx)

compatible with the ¢-structures, where the ¢-structure of Df’lol(DX) is the
natural one, and the t-structure of D(Cx) is given by the middle perversity.
In particular, it induces an exact functor DRx : Hol(X) — Per(X,C). We
can identify

wx = DRx OX[CZX].
It is easy to observe that DRx M = 0 implies M = 0 for M € Hol(X).
The functor DRx : Hol(X) — Per(X, C) is faithful, although it is not full in
general.

Let F': X — Y be a morphism of complex manifolds. The push-forward for
Cx-complexes in the derived category is denoted by RF. (It is also denoted
by F, if there is no risk of confusion.) Its i-th perverse cohomology is denoted
by FTZ . Put

DX—)Y = OX ®F—1OY F_IDYy
Dy x = Qx Qp-10, F Dy @0, Q5 ).
The push-forward for D y-complexes is denoted by F%, i.e.,
FiM = RF,(Dyx ®5 _M).

Its i-th cohomology is denoted by FTZ

Recall that these functors are compatible on the derived categories. Let
F : X — Y be a proper morphism of complex manifolds. We have natural
transformations

DRyOFTERF*ODRx, DXoDRxﬁDR)(ODX, DYOFTZFTODX-

In [58], the following diagram is constructed and it is proved to be commutative
(see Theorem 3.3 of [58]):

RE,DxDRy —— RF,DRy Dx —— DRy F;Dy

o |

DyRF.DRy —— DyDRy F; —— DRy DyF;.

SOCIETE MATHEMATIQUE DE FRANCE 2014
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2.1.2. Hypersurfaces. — For any hypersurface D C X, let Ox (xD) denote
the sheaf of meromorphic functions whose poles are contained in D. For
M € Hol(X), we have M(xD), M(!D) € Hol(X) given as follows:

M(xD) == M ®oy Ox(xD), M(ID):= Dx((DxM)(xD)).

We have naturally defined morphism M — M(*D). The morphism
Dx (M) = Dx(M)(xD) and the natural transformation Dx o Dy ~ idx
induce M(!D) — M. (See §3.3 and §A3.3 of [22] for Dx o Dx ~ id.) They
are uniquely characterized that the restrictions to X \ D are the identities.
If D is given as the zero set of a holomorphic function f, they are denoted
by M(xf) and M(!f), respectively. If we are given two hypersurfaces D;
(1=1,2), we set

M(x1D1)(x2D2) := (M(%1D1)) (x2D2),

where x; € {x,!}.

We put Dx(.p) := Dx @ Ox (xD).

A Dx(+p)-module M is called holonomic, if it is holonomic as a D x-module.
Let Hol(X, *D) be the category of holonomic Dy, py-modules, which is natu-
rally a full subcategory of Hol(X'). The dual functor on Hol(X, *D) is denoted

by DX(*D)7 Le.,
D x(«p)(M) = Dx (M) (xD).
Let j : X\ D — X be the inclusion. We define a functor
7t Hol(X) — Hol(X,+D), j*(M) = M(+D).

The natural inclusion Hol(X,*D) — Hol(X) is denoted by j.. Another
functor 7 : Hol(X,*D) — Hol(X) is defined by ji(M) := (jzM)(!D). The
functors j*, j. and j, are exact. In this notation, we have M(xD) = j,j*M
and M(!D) = jij*M for M € Hol(X).

It is generalized as follows.

Let H be a hypersurface of X and k: X \ H — X denote the inclusion.
For M € Hol(X, D), we define k*M := M(xH). We can naturally regard
Hol(X,*(D U H)) as a full subcategory of Hol(X, D). The natural inclusion
is denoted by k.. We define another functor

ki : Hol (X, (D UH)) — Hol(X,*D), kM =j*(((jok)M)((DUH))).

Later (§6.4), we shall consider a successive composition of the operations.
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2.1.3. Pre-K-holonomic D-modules. — Let M be any holonomic Dx-
module. Let K be any subfield of C. A pre-K-Betti structure of M is defined
to be a K-perverse sheaf F with an isomorphism A : F ® g C ~ DR x M. Such
a tuple (M, F,\) is called a pre-K-holonomic Dx-module. We will often
omit to denote A. A morphism of K-holonomic Dyx-modules (My, F;) —
(Ma, Fs) is defined to be a pair of a morphism of Dx-modules M; — My
and a morphism of perverse sheaves F; — JF» such that the following induced
diagram is commutative:

F1 g C =, DRx (M)

! !

Fo®r C é DRX(MQ) .
The category of pre-K-holonomic Dx-modules is denoted by Hol?™(X, K).

The following lemma is clear.

LEMMA 2.1.2. — Hol?**(X, K) is abelian. O

Let F be a pre-K-Betti structure of M. We have induced pre-K-Betti
structures DF and FTi]: of DM and FTiM, where F' : X — Y be a proper
morphism. We put

D(M,F) := (DM,DF) and F{(M,F):=(F{M,FF).

LEMMA 2.1.3. — The isomorphism DFyM ~ F; DM is compatible with the
induced pre-K -Betti structures.

Proof. — Because (7) is commutative, we have the commutativity of the fol-
lowing naturally induced diagram:

DRDFM —— DF;DRM —— DFF®C
DR F;DM —— F;DDRM —— FDF®C .

It means the claim of the lemma. O

2.1.4. Formal completion. — Let Y be a real analytic manifold. Let C§°
denote the sheaf of C°°-functions on Y. For any real analytic subset Z, let
C§°<Z denote the subsheaf of C9® which consists of the sections f such that
the Taylor series of f at each point P € Z is 0. We set C%o = C?/C;‘KZ.
We have other descriptions:
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(i) It is the sheaf of Whitney functions of class C*° on Z, i.e., sections of
oo-jets along Z satisfying the conditions in Theorem 1.2.2 of [34].

(ii) Let Zz o be the ideal sheaf of C3° corresponding to Z. Then, CZ is also
isomorphic to lim Cy® /I7 - (See the proof of Theorem L.4.1 of [34].)

For any Cy?-module F, let F 5 denote F ®@cge CZ. Let Z; (i = 1,2) be
real analytic subsets in Y. According to Corollary IV.4.4 with Definition 1.5.4

of [34], the following natural sequence is exact:

o o oo o
0—>Cm —>C eBC —>CZmZ — 0.

Let Z; (i € A) be real analytic subsets of Y. For any subset I C A, we put
Zy:=(1% and Z(I):=|]Z.
icl iel
We fix a total order on A. For J C K C A, we have the restriction r;x :
cx —=C2. If K=JU{i}, we put
J K

R(LK)={keJ|k<i} and djr:=(—1)""r; k.

We set
K™ () = @D Z
|J|=m+1
Jcl

The above morphisms dj i induce d,, Km(CZI)) — Km+1(C21)) Thus, we
obtain a complex K* (C;I)) By using the exactness in the previous paragraph,
it can be proved that the natural inclusion C* = — KO (C%? I)) induces a quasi-
isomorphism C%i n= Kce (C;I)) (See [52], for example.)

Let X be a complex manifold. For a complex analytic subset Z, we set

0 = lim Ox /T3,
where Z; denote the ideal sheaf of Z.We set

Qu =Q%
Z X|Z
which is equipped with the differential operators @ and 0. If Z is smooth, it
is easy to see that the natural inclusion O — Q%’ is a quasi-isomorphism.
Let D be a simple normal crossing hypersurface with the irreducible de-
composition D = |J;c, D;. By the above procedures, we obtain the complexes
° . . . 0 .
K (Of)([)) It is known that the natural inclusion Oﬁ(l) — K (Oﬁ(l)) induces
a quasi-isomorphism Op ) =~ IC'(OB(I)). (See [14] and [52].) We also have

O 1o 0,0 0,
Qﬁ(f) ~ K (Qf)( )) Then, we obtain Op, ;) ~ QD(I)
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We recall a useful isomorphism due to Z.Mebkhout (Lemma 2.2.1.3
of [43]).(1

PROPOSITION 2.1.4 (Z.Mebkhout). — Let M be any coherent Dx-module.
Let Z be any hypersurface of X. Then,

RHomp, (M(x2),05) =0 and M(1Z) ®1L)X 05 =0. n

See (3.10) of [22] to deduce the second vanishing from the first.

2.2. Beilinson’s construction

Let us recall Beilinson’s beautiful construction of the nearby cycle functor,
the vanishing cycle functor and the maximal functor, which is essential for our
purpose. It is particularly convenient for the study of functoriality. See [4] for
more details and precisions (see also [32] and [59]).

2.2.1. Preliminary. — Let k be any field of characteristic 0. Let

A:=k(s) and A’ :=s'k[s].

For a < b, we put A%® := A%/A’. The multiplication of s induces a nilpotent
endomorphism N4 of A%?. We put

G = Spec k[t, t71].

We define
39 = Oq, ® A%,

It is equipped with the connection given by Va = Na(a)(dt/t) for a € A%
We have natural morphisms 340 5 3% for ¢ > ¢ and b > d, which are
compatible with the connections. We have a natural isomorphism

Jeatl o 30l — 0 st 1.

This construction makes sense also in the analytic situation. The multi-
valued flat sections are formally given by « - exp(—slogt) for a € A%

M The author thanks the referee who informed this result to him.
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2.2.2. Nearby cycle functor and maximal functor. — Let X be any
complex manifold with a hypersurface D. Let f be a meromorphic function
n (X, D), i.e., the poles of f are contained in D. We set

34" = b (+D),
which are meromorphic flat bundles on (X, f~1(0) U D). Let
j: X —f10) — X.
For a holonomic D, p)-module M, we obtain the holonomic Dx (. p)-modules
MG =M@Y = (M @I

We obtain D, p)-modules Ha b./\/l = jl]*./\/lf and Ha b./\/l = j*j*./\/l
define

Hab

N—o0
The following lemma is easy to see.

LEMMA 2.2.1. — For any point P € X, there exists a neighbourhood Xp and
a large integer Ny such that the following natural morphisms are isomorphisms
on Xp for any N > Ny:

Cok (I M — TIENH M) — Cok (I M — TIEN M).

Proof. — See the proof of Lemma 4.1.1 of [50], for example. O

Beilinson defined the functors w(a) = 1195 i and E}a) = Hjﬁﬁ“. In the case
a = 0, they are denoted by wf./\/l and EyM, respectively. The multiplica-

tion of s naturally induces isomorphisms w(a)./\/l w(aH M and E}a)./\/l ~
:;QH)M. Note that we have natural isomorphisms H?f”q(./\/l) ~ Jj*M

for x = *,! induced by the multiplication of a power of s. They will be implic-

itly identified. We have the exact sequences of holonomic D, p)-modules:
RO o

0I5 M L =M 2 M 0,

(a) (a)
0 — (™ M N =M N I M 5 0.

(a)

The multiplication of s and the endomorphism ¢, o dg 9 induce an endomor-
phism N+ of DA,

Recall the important observation due to Beilinson (see [4] for lim):
—

hme, M ~ hmH ./\/l
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In particular, it implies that N+ is locally nilpotent. We also obtain the
isomorphism

Hab

Fr(M) ~ lim Ker(H;!N’b./\/l — H]va’a./\/l).

N—oo

As in Lemma 2.2.1, Ker(H;!N’b./\/l — H;*N " M) is locally independent of the
choice of a large N. See §4.1 of [50] for an elementary argument. In particular,
we have the identifications

(8) w;a)./\/l ~ lim Ker(II}, N Hf* M),
N—o0
(9) =M~ lim Ker(IL;" "M M — 11, M),
N—o00
REMARK 2.2.2. — When we distinguish that we work on the category of

Dx (+py-modules, we will use the symbols w}a) (M, %D), Egca) (M, *D), etc. O

2.2.3. Vanishing cycle functor and gluing. — Let f be as above. Let
M x be any holonomic DX(*D) -module. We set M := Mx (xf). We have the

natural identifications Hf* ./\/lX = Ha b./\/l for x = *,!. We also have Ha Mx =
Hab./\/l In particular, w = ¢ ) M and "(a)./\/lx = :;a)./\/l. We set

M(a) = Mx ® A%,

We have the naturally defined morphisms:

(a) (a)
1 €1, x dy 1
Iy M —= M =5 it

Beilinson defined the vanishing cycle functor qbgca)/\/l x as the H'-cohomology
of the following sequence of holonomic Dy ,p)-modules:

9 @el?), dl — ()

et S 0 ) EE ey
a) (a)

The morphisms d( and ¢y’ induce can and var:

77D(CLJrl can qbgca)/\/l 77D(a)/\/l
(@) o gl

By construction, we have var ocan = ¢,
Conversely, let My be a holonomic Dx(,p)-module whose support is con-

tained in Y = f~1(0), with morphisms
¢§v1)/\/l “ My

v

1/}500)./\/17 vou= cgo) o dgo).
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Then, we obtain a holonomic D, p)-module Glue(My,u,v) as the cohomol-
ogy of the complex:

W), &su _ 5"~ (0)
M 2 =My e My 25 M

Beilinson made an excellent observation that the above two operations are
mutually inverse. See [4] for more details.

2.2.4. Comparison with ordinary definitions. — Let Jf _1 and q;f be
the nearby cycle functor and the vamshlng cycle functor defined in terms of
V-filtrations, i.e., ¢f’_1( ) := GrY (54 M) and qbf(MX) = Gry (ty4Mx),
where 1y : X — X x C denotes the graph, and V denotes a V-filtration
of 1yt Mx along t.

For simplicity, zZ t,—1 is denoted by sz in the following.
LEMMA 2.2.3. — We have natural isomorphisms ¢y ~ sz, and ¢y =~ $f~

Proof. — Recall that (Ef(./\/lx) and sz (Mx) are naturally equipped with the
nilpotent endomorphisms /N, which are the nilpotent part of the multiplication
of —dit. We have natural identifications

e 7b e 7b e b}
O (M) = ¢ (LI M) = oy M @ A,
The natural nilpotent endomorphisms are given by
N ®id —id ®(s.),

which is denoted by N — s. Here, s. denotes the multiplication of s on A®?.
In the following, we argue on any compact subset of X.
Let us look at the natural morphism G®? : H;ﬁ’,b/\/l — H;ﬁ’*b./\/l. The supports

of the kernel and the cokernel are contained in f~1(0). The morphism
6(G™?) 1 G5 (NP M) — G5 (LI M)
is naturally identified with
N—s5: ;M@ A — ;M@ A%,
Hence, if b is sufficiently larger than a, Cok(G%?) is isomorphic to 1’/JVfM ®
A%+ independently of b. Therefore, we obtain w;a)./\/l ~ IZfM ® A% In
particular, we naturally have 1/1;0)./\/1 = {Ef/\/l.
It follows that Cok(H;,Jrl’M./\/l — H;;MM) are independent of any suffi-
ciently large M, which should be isomorphic to Egca)./\/l. We obtain

67(EFIM) = Cok (N — s - ppM @ ATTEM 5 oM @ A%M)
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for any sufficiently large M. Because d>§c0) (Mx) is naturally isomorphic to the
cohomology of the complex

orMH M) — 65 (EV M) ® b (Mx) — dp(I}I M),

it is easy to obtain ¢(0)( M) ~ ¢ #(M) by a direct calculation. O

2.2.5. Compatibility with dual. — In [4], the pairing A x A — k =
A~1/A% is given by
(f(s),9(s)) = Ress=o (f(s) g(—s)ds).
It induces pairings A%* ® A=~ — A=1/A° Then, we obtain flat pairings
ja,b ® j—b,—a — j—l,O.

We can identify J%° with the dual of 37%~% by the pairing.

Let D denote the dual functor on the category of holonomic Dy (,p)-
modules. By using the D, p)-version of Lemma 2.1.1, we obtain identifica-
tions:

D(IM) ~ 11, (DM), DI M) ~11,7~*(DM).
By (8) and (9), we obtain the identifications
Dyl (M) = 5 (DxM) and Dy (M) ~ 20D (Dym).
We have Dx (c{”) = dy ", Dx(cy”) = di™*" and Dx(c") = d§ ¢ V.
Hence, we obtain DX¢§¢G) (Mx) =~ ¢( “ 1)(DX./\/IX). The morphisms

D var D can

DXwgca) Dean w(a 1

are identified with

quf

7Z}gjcwrl) can ¢f MX —>7/}f

The multiplication of s induces an isomorphism @ : 1(®) (M) ~ e+ (M),
etc. Under the above identifications, we have D®, = —®,.

REMARK 2.2.4. — In [50], we use the pairing A x A — k given by
(f(s),g(s)) = Ress=o(f(s)g(—s)ds/s). It makes an inessential shift of
the indexes in the formulas. U
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2.2.6. Compatibility with push-forward. — Let ' : X — Y be any
proper morphism. Assume that D = F~!(Dy), for simplicity. Let g be any
holomorphic function on Y. Let M be any holonomic Dy ,p)-module. We
set §:= F*g. Let jy : Y — g~ 1(0) = Y and jx : X — g '(0) — X. We have
natural isomorphisms

F{(M®32°) ~ F/(M) @ 35"

of Dy (+py)-modules. We naturally have (jy*j;‘,)FTi ~ FTZ o (Jx«J%) for x = x, 1.
Hence, it is easy to obtain the identifications

Fipf M=y FM, FE0M=2"FM, FoIM=¢0FiM.

2.2.7. Choice of a function. — Let f and A be meromorphic functions
on (X,D). We suppose that h is nowhere vanishing on X \ D. We have
natural isomorphisms of Ox-modules

~ ,b ~ ,b
357 = O3 =~ A% @ Ox(upy (+1).
For their flat connections Vy and V},; and for a € A%b we have the formulas:

d dh
) Vhfoz—oz-s(Tf—i-?).
If we have logh on X, we have a flat isomorphism @ : TJ;’b ~ jz’}) given by
®(a) = exp(—slogh) a. It induces isomorphisms:
(10) =0~ 2, P~y o ~ el
They depend on the choice of a branch of log h.

df
Via=«-s
d f

2.2.8. Q-structure of J%*. — 1In the analytic case, the Q-structure of A%?
is given as follows:

C-s’>Q (2rv/-1)"s .
It gives a Q-structure of the fiber of 3%* over 1 € C*. We extend it to a flat

Q-structure of the flat bundle J|c«. Let u := 2my/—1 s. The connection of J*°
is expressed as

bfl)N 1 ﬁ

2my/—1 t

Here, N denotes the constant matrix such that N;;11 = 1 and N;; = 0
otherwise. Since the monodromy is expressed by exp(—N), the Q-structure is
well defined. More generally, for any subfield K C C, we obtain a K-structure
of 3% in this way. The pairing (.,.) : 3% @3 7>~% — 3710 is defined over Q.
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Under the identification 371Y ~ 3% by the multiplication of s, the pairing
takes values in (2my/—1)71Q.

2.2.9. Comparison with the functors for perverse sheaves. — Let
Loc(3%%)g denote the Q-local system associated to J%°. The fiber over 1
is uQ[[u])/u’Q[u]], and the monodromy along the loop with the clockwise
direction is given by the multiplication of exp(u). Taking the limit, we have
a Q-local system Loc(J)qg, whose fiber over 1 is Q((u)), and the monodromy
is given by the multiplication of exp(u). We have subsystems Loc(J%)g C
Loc(J)g whose fiber over 1 is u®Q[u]]. We have

Loc(3%%)g =~ Loc(3%)g/ Loc(3%)g.

Recall another expression of these local systems as in [4].
Let Ap := Q((v)). We set t := v + 1. The pairing Ap x Ap — Q(—1) is
given as follows:
() 9(0)) = Res( (1) g(™) )5~
’ t=1 t " 2my/—1

We have a Q-local system Jp on C* such that the fiber over 1 is Ap, and

the monodromy along the loop with the clockwise direction is given by the
multiplication of ¢ =1+ v. Let us compare Jp and Loc(J)g. We take an
algebra homomorphism ® : Q((u)) — Q((v)) determined by ®(exp(u)) = 1+wv.
We identify the fibers of Loc(J)p and Jp by ®. Because it is compatible
with the monodromy, it induces the identification Loc(J)g ~ Jp. Note that
O(f(—u)) = ®(f)(t"') and ®(du) = dt/t. Hence the pairing is preserved.

REMARK 2.2.5. — Recall that the functors 1, = and ¢ for perverse sheaves
are given in terms of Jp, according to [4]. The above comparison gives the
compatibility of the de Rham functor DR with ¢, ¢ and Z in the regular
singular case. U
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CHAPTER 3

GOOD HOLONOMIC D-MODULES AND
THEIR DE RHAM COMPLEXES

3.1. Good holonomic D-modules

We shall introduce the notion of good holonomic D-modules on any complex
manifold X with a normal crossing hypersurface D = J;cy, D;. They are
D-modules locally described as the gluing of meromorphic flat bundles on
NjesDj (J C A). In §83.1.1-3.1.3, we study the local case. We explain
the global case in §3.1.4. We explain a kind of quiver description of good
holonomic D-modules in the local case in §3.1.5.

In the local case, for any good holonomic D-modules, we have various com-
mutativity of functors such as qbga) ¢§-b) (M) ~ ¢§b) qbga) (M), for which goodness
seems truly used.

3.1.1. Z-good meromorphic flat bundles. — Let A™ denote a multi-disc
in C", ie., A" :={(21,...,2,) € C"; |z;] < 1}. We consider the case

L
X:=A", D;:={z=0} and D := U D;.

i=1

We set £ :={1,...,¢}. For I C ¢, we set
D(I):=|JD; and D;:=()Dx
i€l i€l
We put
0D;:=DrnND(I°), where I°:=(—1.

Let M (X, D) be the set of meromorphic functions on X whose poles are con-
tained in D. Let H(X) be the set of holomorphic functions on X. We give
a review on good meromorphic flat bundles. See [45], [48] and [49] for more
detailed reviews.
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3.1.1.1. Good set of irreqular values. — Let f € M(X,D). Suppose that
there exists m = (m;) € Z%, such that

(i) 2™ f =[1z f is holomorphic,

(ii) if m # (0,...,0), we have (2™ f)(O) # 0.
Then, we set ord(f) := —m. In general, such m does not exist. For any
holomorphic function f, we have ord(f) = (0,...,0). If ord(g) exists for
g € Ox(xD), then ord(g + f) = ord(g) for any holomorphic function f. So,
the notion ord is considered for elements in M (X, D)/H(X).

We use the order < on Z‘ given by m < m if m; < n; for any i. A finite
subset Z C M(X,D)/H(X) is called good if the following holds:

> For any f € Z, there exists ord(f).

> For any f, g € Z, there exists ord(f—g), and the set {ord(f—g) ‘ f,geT}

is totally ordered.

For any good set of irregular values Z C M (X, D)/H(X) and for any subset
I C ¢, let Z'(I) be the set of the elements a € Z which are regular along z;
(i € I), and we put Z(I) := {ayp, la € Z'(I)}. It is a good set of irregular
values on (Dy,0Dy).

8.1.1.2. Unramifiedly T-good meromorphic flat bundle. — Let

T c M(X,D)/H(X)
be a good set of irregular values. Recall that a meromorphic flat bundle (€, V)
on (X, D) is called unramifiedly Z-good if the following holds:

> Let Z; denote the image of Z to M(X,D)/M(X,D(I¢)). For any
P € Dy \ 0Dy, the formal completion (S,V)|ﬁ

Doz, (g%, @p,b) such that ﬁP,b — dbid g, are regular singular, where b
are any lifts of b to M (X, D). ’

is decomposed into

In this paper, we say that a meromorphic flat bundle (£,V) on (Dy,0Dy) is
unramifiedly Z-good if it is unramifiedly Z(I)-good.

8.1.1.3. Ramified case. — For a positive integer m, let

J4
X0 = Ar={|g| <1}, D™ :={¢G=0} and D =| D"

i=1
We have a natural ramified covering ¢, : X (m) _y X along D given by

(Pm(Clw"aCn):(C{nw"acgna45+17"'7<n>7
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3.1. GOOD HOLONOMIC D-MODULES 27

and the induced ramified coverings ng) — Dy. Let
Zc MX0 D)y H (XM

be any good set of irregular values which is preserved by the action of the Galois
group of the ramified covering X (™) /X. In this paper, a meromorphic flat
bundle £ on (Dy,0Dy) is called Z-good if it is the descent of an unramifiedly

Z-good meromorphic flat bundle &£ (m) on ( D§m)76 ng))_

3.1.1.4. Some functors along the divisors. — In this subsection, we use the
following notation for simplicity of the description.

NoTATION 3.1.1. — The vanishing cycle functors qﬁ,(;;) are denoted by (bga).
For any I = (i1,...,im) € {1,...,£}"™ and any a = (a1,...,a,) € Z™, we set

(@) _ ,(a1) 0---0 ¢(‘1m)_

1= P

Ifa=(0,...,0), it is often denoted just by ¢;. We use the symbols wyl), Ega)

and H?*’b with a similar meaning. For any holonomic Dx-module M, we set
M(xi) := M(xD;) and M(li) := M(!D;).

If we are given a subset I C ¢, we put

M) :=M(ID(I)) and M(xI) := M(xD(I)). O

LEMMA 3.1.2. — Let (£,V) be any Z-good meromorphic flat bundle on
(X,D). For 1 < i,j5 < { with i # j, the natural morphism d)Z(a)(E) —
qﬁga) (E)(x7) is an isomorphism.

Proof. — Because the support of qbga) (€) and qbga) (€)(xj) are contained in D,
it is enough to prove that the induced morphism for the formal completions

89(E) 5 — o))

is an isomorphism for each P € D;. We have only to consider the case
P = (0,...,0). We use the notation introduced in §3.1.1.3. Take lifts a
of a € Z. We have regular singular meromorphic flat bundles (Rq, V) on
(X D) for a € Z, and an action of the Galois group G of ¢, on
(&, V") = Buer(Ra, Va + da), such that the formal completions of (£',V’)
and ¥ (£, V) at (0,...,0) are isomorphic in a G-equivariant way. Let (£”,V")
be the meromorphic flat bundle on (X, D) obtained as the descent of (€7, V).
The formal completions of (£”,V”) and (£, V) at P are isomorphic. Then, by
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using the standard argument to prove the uniqueness of V-filtrations, the iso-
morphism 5(;3 ~ 5| p is compatible with the V-filtrations along z;. Therefore,
it is enough to prove the claim for £”.

Let (R, V) be a regular singular meromorphic flat bundle on (X, D). Let b €
M (X D)) such that ord(b) exists. We set L(b) := O (+D™) e with
the connection Ve = edb. We obtain a meromorphic flat bundle ;. (L(b))
on (X, D). By the previous consideration, it is enough to prove the claim for
any direct summand of the meromorphic flat bundle £ = R® ¢y, L(b), which
follows from the claim for £&. We may assume that b = H§:1 C;-)j for some
b; <0.

Let V(R) denote the V-filtration along z;. For m € S := {0,1,...,m—1},
let ¢™ := Hi;:1 ¢,'". We have

o L(b) = @ Ox (xD)¢™e.
meS
If b; < 0, the V-filtration V(&) of & is given by V(&) = & for any a € C.
If b; = 0, we have Vo (€1) = @D Vagm,/m(R) ® Ox{™e. Hence, the natural
morphism ¢;(E1) = ¢;(E1)(xD;) (j # i) is an isomorphism in the both cases.
]

LEMMA 3.1.3. — If i # j, the natural morphism E(1i) — E(1i)(xj) is an
isomorphism.

Proof. — Let N denote the nilpotent part of the action of —d;z; on ¢;(£). We
have the following commutative diagram:

0 — KeeN — €&(li) — & — CokN — 0

N
0 — Ker N(xj) — &£(li)(xj) — & — Cok N(xj) — 0.

By Lemma 3.1.2, we obtain that a and ¢ are isomorphisms. Hence, b is also
an isomorphism. O

3.1.2. 7-good holonomic D-modules. — We continue to use the notation
introduced in §3.1.1.

DEFINITION 3.1.4. — A holonomic Dx-module M is called Z-good on (X, D)
if the following holds:

> M(xD) is an Z-good meromorphic flat bundle on (X, D).
> For any I = (i1,...,0m,) € {1,...,0}"™, ¢pr(M)(*I€) is the push-forward
of an Z-good meromorphic flat bundle on (Dy,0Dy) by Dr — X. O
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The full subcategory of Z-good holonomic D-modules is abelian, and it
is closed under extensions. If V is a good meromorphic flat bundle, it is a
good holonomic Dx-module in the above sense. When we do not have to
distinguish Z, we will omit to denote it. We will implicitly use the following
obvious lemma.

LEMMA 3.1.5. — Let M be a holonomic Dx -module. Suppose that (i) M(xD)
is an Z-good meromorphic flat bundle, (ii) ¢;(M) are Z-good for any i =
1,...,0. Then, M is Z-good. O

LEMMA 3.1.6. — Let M be an Z-good holonomic D-module on (X, D). Then
Dx M is —I-good, where =7 = {—a | a € L}.

Proof. — We use an induction on the dimension of the support of M. It is
easy to check that Dx M (xD) is a good meromorphic flat bundle. By the
inductive assumption, (bga)(DX./\/l) ~ DXqﬁg_a_l)(M) are also good. Hence,
we obtain that M is good. O

For any good holonomic D-module M, let p(M) € Z>o x Zso denote the
pair of dim Supp M and the number of the irreducible components of Supp M
with the maximal dimension. We use the lexicographic order on Zx> g X Z.
For any good holonomic D-module M, there exists J C ¢ with dim Supp M =
n — |J| such that M(xJ¢) # 0. The kernel A7 and the cokernel Ny of the
natural morphism M — M(xJ¢) satisfy p(N;) < p(M) (i = 1,2).

LEMMA 3.1.7. — Let M be I-good on (X, D). Then, %@ (M) are also Z-good
foranyi=1,... 0.

Proof. — We use an induction on p(M). Let J and Nj (j = 1,2) be as
above. By the assumption of the induction, wga) (Nj) (j = 1,2) are good.
The Dx-module M(*J) is the push-forward of an Z-good meromorphic flat
bundle £; on (Dj,0Dy) by the inclusion ¢y : Dy — X. If i € J, we have
wZ@ (M(xJ)) =0. If ¢ & J, wZ@ (M(%J€)) is isomorphic to LJT%@ (€5). By

computing the formal completion wga) (& J)| p of P € 0D as in the proof of

p is Z-good on (Djy,0Dy). Hence,

we obtain that %@ (M) is also Z-good. O

Lemma 3.1.2, we can prove that wga) (&)

3.1.3. Commutativity of the functors along the coordinate functions.
— Let M be good on (X, D).
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LEMMA 3.1.8. — For any i # j, we have natural isomorphisms
$i(M(7)) = i(M)(xj)  and ¢ (M(15)) = ¢i(M)(7).

Proof. — The second isomorphism is obtained as the dual of the first one.
Let us consider the first isomorphism. We have the following naturally defined
morphisms:

31 (M) =2 i (M) (£]) = ds (M) (%))

Because the restriction of b to X — D; is an isomorphism, it is easy to see
that b is an isomorphism. Let us prove that a is an isomorphism by using an
induction on p(M). As in the proof of Lemma 3.1.7, the issue can be reduced
to the case where M is a good meromorphic flat bundle, which is given in
Lemma 3.1.2. U

LEMMA 3.1.9. — M(xj) and M(!j) are also good.

Proof. — Because ¢j(M(xj)) ~ 1;(M), we obtain that M(xj) is good from
Lemmas 3.1.5, 3.1.7 and 3.1.8. By using Lemma 3.1.6, we obtain that M(!j)
is also good. U

We have the following corollary of Lemma 3.1.9.

COROLLARY 3.1.10. — Let f be a meromorphic function on (X, D) whose
zeros and poles are contained in D. Take DY) C D such that the poles of f
are contained in DY) . The holonomic Dx-module H‘}f(./\/l,*D(l)) s good

on (X,D). Hence, w;a)(M,*D(l)), E}a)(./\/l,*D(l)) and (b}a)(M,*D(l)) are
also good on (X, D). O

We have the following naturally defined morphisms:
M) (1) =2 M (x0) (1) (%) 2= M (1) (i)
It is easy to prove that b is an isomorphism for 7 # j.

LEMMA 3.1.11. — The morphism a s also an isomorphism, by which we can

identify M(xi)(15) and M(15)(xi).

Proof. — By using an induction on p(M), we can reduce the issue to the case
where M is a good meromorphic flat bundle, which is given in Lemma 3.1.3.
O
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In the following, we will not distinguish M (xi)(!7) and M(lj)(*3) for i # j,
which will be denoted by M (xi!j). For I U J C ¢, we have the natural identi-
fication

M IxJ) >~ M(xJI),
which will be used implicitly.

LEMMA 3.1.12. — We have the commutativity

—(a) —(b —(b) —(a a b b a a b b a
:g)o:E)::§)o:§), ¢§)O¢§):¢§)O¢§) and ¢§)o¢§.):¢§.)o¢§).

Moreover, the functors Ega), wj(b) and (b,(:) are mutually commutative, where i,

j, k are mutually distinct. In the following, we will not care about the order
of these functors for good holonomic D-modules on (X, D).
Proof. — We obtain the natural identification H?;b o T19% Hij o H?;b from

T
Lemma 3.1.11. Then, the claim of the lemma is clear. O

3.1.4. Globalization. — Let X be a complex manifold with a normal cross-
ing hypersurface D.

DEFINITION 3.1.13. — A holonomic Dx-module M is called good on (X, D)
if the following holds:

> Let P be any point of D. Let (U, z1,...,2,) be a coordinate neighbour-
hood around P such that DNU = Ule{zi = 0}. Then, M|y is good in the
sense of Definition 3.1.4. O

We obtain the following from the results in §3.1.2-§3.1.3.

LEMMA 3.1.14. — Let M be good on (X, D).

> The dual Dx M is also good on (X, D).

> Let DY) C D be the union of some irreducible components. Then,
M(DW) and M(!DW) are also good on (X, D).

> Let DO ¢ D (1 = 1,2) be the unions of some irreducible components
such that dim DM N D@ < dim X — 1. We have a natural isomorphism
M(xDW)(IDP)Y) ~ M(IDP)(xDM)),

> Let f be a meromorphic function on (X,D) which is invertible on
X\ D. Take DW < D such that the poles of f are contained in D).
Then, w;a) (M, xDWM), Egca) (M, «DWM)Y and qﬁgca) (M, *DW) are also good
on (X, D). O
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3.1.5. A quiver description in the local case. — We set
l
X:=A", Di={z=0} and D=|JD;
i=1

We use the notation introduced in §3.1.1. Let Z ¢ M(X ™) D))/ H(X ™)
be a good set of irregular values which is preserved by the action of the Galois
group of the ramified covering X (™ — X.

We consider tuples of Z-good meromorphic flat bundles Vi on (Dy,dDy)
(I C ¢), with a tuple of morphisms

, fz
s vy 2 vy s O

for I C £and i € £\ 1. Here Ii := IU{i}. We impose the following conditions:
> friogr; is equal to varocan : %O)(VI) — wgo)(V[);
> for any I U {i} U {j} C £, we have the commutativity

VO 1) 0 frig = 07 (f1) © fria
grij o %m (91.4) = grj.i 0" (91,7):
frigogri; =¥ (gr ) o 7/}](1) (fr,i)-
For such C(® = ((V(a) (f” 7g”)) (a = 1,2), morphisms CV — C® are

defined to be a tuple of morphisms ¢; : VI(U — VI(Q) of meromorphic flat
bundles such that the following diagram is commutative:

i
o v) Vi s o)

w§“(w)l soul »{° (w)l

sy v T o),
Let C(X, D) denote the category of such objects and morphisms (we do not
fix 7).
Let M be a good holonomic D-module on (X,D). Set V(M) :=
(IO) (M)(x0Dy) and Vyz(M) := M(xD), which are naturally equipped with
morphisms

a3

gr1,i(M) fr,i(M)

o (Vim) Vi(M) v (Viim)).
Thus, we obtain an object in C(X, D) denoted by ®(M). The construction
gives a functor M : Hol®*°4(X, D) — C(X, D).

PRrROPOSITION 3.1.15. — & is an equivalence of categories.
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Proof. — Let us construct a quasi-inverse functor Y : C'(X, D) — Hol#*°d(X, D).

Let ¢; : Dy — X denote the inclusion. For any I C ¢, we set ./\/lgo) = V.

For I C £ with 1 &€ I, we define ./\/l(ll) as the gluing of V7 and Vi; by fr1 and
gr1, ie., Mgl) is the cohomology of the complex

dD ’ c(o)ff ’
L11T¢§1)(VI) SR LN LITu(l )(VI) @tV S RELLLN L11T¢§O)(V1)-

For I U {i} C £\ {1}, we have naturally induced morphisms

g(l)

PO MDYy T B I 0y

Then,
(i) I(lz) o g§z) is equal to the canonical morphism;
(ii) for any I U{i} U {j} C £\ {1}, we have the commutativity

¢(°< > fm w@)(f“) fm,
1 1 0 1 1), .0
f}ji g;)] w< ><g§ 3) w§ < 1)
Inductively on m, we can introduce good holonomic D-modules ./\/lgm) on
, or I C £\ m, and morphisms for I LI{i} C £\ m
X,D)for I C/ d h for I 14
(m) (m)
m 91 m) i m
- UM s M s gD )
such that
w“”( Ty £ = @) o 177,
a5 ozp(“)(g}T’) g o (g,
Fi5) o gy = v (gf) 0 P (£17).

Indeed, suppose we are given such holonomic D-modules for m — 1, we define
M for I € £\m as the gluing of M and M by g™ and £,

Im
By the construction, we have the induced morphisms as in (11) with the desired

property. After the procedure, we obtain a good holonomic D-module
Y((Vi IO, (fragri | TU{i} C ) =M".

Clearly, T and ® are mutually quasi-inverse. O

We can describe some functors on Hol°°d (X, D) in terms of C'(X, D). Let
C=((V1),(gr,is f1.5))-
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> For i, we define C(xD;) = ((V}), (97 ;, f1.;)) as follows.

We set Vi == Vy (i ¢ I) or Vi =" (Vpgey) (i ¢ I). I j # i, g} ; and
f1; are the naturally induced morphisms, and g;; and f;; are given by the
canonical morphisms

V) < 90 (V) =5 0 (V).
> We define C(!D;) as follows.
We set V/ i= Vi (i & I) or V} == oV (Vpy) (i € I). Tfj#1i, g} ; and
f1; are the naturally induced morphisms, and g;; and f;; are given by the
canonical morphisms wgl)(V[) _d, wgl)(V[) SALLEN wgo)(VI). We have natu-

rally defined morphisms C(!D;) — C — C(xD;). It is easy to observe
O (M(xD;)) = ®(M)(*D;).

> We define %@ (€) = ((V}), (g7 f1,)) as follows.
Ifig I, weset V) =0.1fi €I, weset V] := w§a)(VI\i). The morphisms g7,
and f}l are the naturally induced ones. Then, we have a natural isomorphism

By (M) = ¢ D(M).

> We define (bga) (€) = ((V}), (g7 [1,)) as follows.

Ifi¢ I, weset V] =0.Ifi € I, weset V] := Vj(a). The morphisms g7 ; and
f}z are the naturally induced ones. Then, we have a natural isomorphism

B\ (M) =~ ¢\ D(M).

> We define D(C) = ((V), (97, f7.;)) as follows.

We set V] = D(Vl(fl))(*(?DI). The morphisms g7 ; and f7; are the natu-
rally induced ones. Then, we have a natural isomorphism

dD(M) ~ DB(M).

3.1.6. Appendix. — The category Hol®°°4(X, D) of good holonomic D-
modules on (X, D) is not abelian. Indeed, a direct sum of good holonomic
D-modules is not necessarily good. If we would like to work on an abelian
category, it would be convenient to restrict ourselves to a smaller category.

We generalize the notion of good system of irregular values in §2.4.1 of [47].
For any point P € D, we introduce some rings. To define them, we introduce
a category Cp.
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> Objects in Cp are holomorphic maps ¢ : (Z,Q) — (X, P) of smooth
complex manifolds which are coverings with ramification along D on a neigh-
bourhood of P. We set Dy := ¢~ (D).

> Morphisms F : ((Z,Q),¢) — ((Z',Q"),¢’) are holomorphic maps
F:(Z,Q) — (Z',Q") such that ¢/ o F = .

Such morphisms induce the morphisms O 72(x*Dz)qg — Oz(xDz)g over
Ox (xD)q. Let OX(*D)p denote a colimit of Oz(*Dz)g. Similarly, let OXp
denote the colimit of Oz .

We have another more direct description. Let C{zi,...,z,} denote the
ring of convergent power series. Let C{z1, ... ,zn}zl___zZ denote its localization
with respect to zj ---z. For a coordinate system (z1,...,2,) such that D =
Ule{zi = 0}, we have natural isomorphisms

~ . 1/e 1/e
0X7p:h_n>1(C{z1/ ,...,z/ 2041y s 20t
e
e JORT 1/6 1/e
Ox(*D)p =~ h_n>1(C{z1 2y 24, - - ,zn}zi/e___zl}/e.

A finite subset Z C 6)((*D)P/6X’P can beregardedasZ C Oz(xDz)q/Ozq
for some ((Z,Q), ) € Cp. It is called a good set of ramified irregular values if:

(i) it is a good set of irregular values on (Z, Dyz),

(ii) it is stable under the action of the Galois group of (.

Note that if P; is close to P, we choose Q1 € ¢~ (Pl) and we obtain a
natural map Zp — Oz(xDz)g,/O0z0, — (’)X(>|<D)pl/(’)Xp1 The image is
well defined.

DEFINITION 3.1.16. — A good system of ramified irregular values on (X, D)
is a family of good sets of ramified irregular values Z = {Zp ‘ P € D} satisfying
the following condition.

> If P; is sufficiently close to P, we impose that the image of Zp in the
image of Zp in Ox (*D)p, /Ox,p, is equal to Zp,. O

Let T = (Zp | P € D) be a good system of ramified irregular values

n (X,D). A holonomic Dx-module M is called Z-good if for any P € D

there exists a neighborhood Xp such that M,x, is Zp-good. Then, the cate-

gory of Z-good holonomic D-modules on (X, D) is an abelian full subcategory
of Hol(X).

SOCIETE MATHEMATIQUE DE FRANCE 2014



36 CHAPTER 3. GOOD HOLONOMIC D-MODULES

3.2. De Rham complexes

3.2.1. De Rham complex with infinite decay. — For any complex man-
ifold X, let Q%7 denote the sheaf of C*°-(p, g)-forms on X.We set

dx = dim X.
For any analytic subset Z C X, we set
Q%q = Q1 Rcg C?.
For any hypersurface D C X, we set
ng(*D) = ng R0, Ox(xD).

We say that D; U Dy = D is a decomposition of D if D; C X (i = 1,2) are
hypersurfaces such that codimx(D; N Dy) > 1.

In that situation, we say that Dy is the complement of Dy in D. In other
words, the complement of D; in D is the union of the irreducible components
of D which are not contained in D;.

When we are given a hypersurface D C X with a decomposition D =
D1 U Dy, we denote the kernel of Q5(+Da) — Q%(xDs) by
1

Q&q(*D2)<D1 .

Let Dy be a normal crossing hypersurface of X with a decomposition Dy =
D1 U Ds. For any coherent Dx-module M, we define DR;DlSD2 M as

Cone (DRx (M(*D3)) — DRp, (M(xD2)))[—1]

in the derived category D?(Cy). We have the following natural quasi-
isomorphisms:

DRE” P2 M~ Q3 <P (xD3) @, M = Tot 5 =7 (+D2) @05 Mldx]

Here, Tot means the total complex associated to the double complex. In the
following, we shall often omit to denote Tot. It is easy to observe that the
natural morphism DR}DlSD2 M — DR}DlSD2 (M (xDyg)) is an isomorphism.

We also have the following natural isomorphisms in D°(Cx):
DR3P (DxM(xDg)) =~ QR0 (xD2) <Pt @k Dx M(xDy)
~ RHomp, (M, QY (xD2)~"")[dx].

The following proposition is an immediate consequence of the isomorphism
of Mebkhout recalled in Proposition 2.1.4.
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PROPOSITION 3.2.1. — If (M(*xD3))(!D1) ~ M(xD3), the natural morphism
DR =P* (M) — DR (M)

is an isomorphism in D%(Cx). O

3.2.2. The identification in the case of good holonomic D-modules

Let X be a complex manifold with a normal crossing hypersurface D. Let
Doy C D be the union of some irreducible components with a decomposition
Do = Dy U Ds. Let M be a good holonomic D-module on (X, D).

The following proposition is a special case of Proposition 3.2.1.(1
PROPOSITION 3.2.2. — If M(!Dy) = M, the natural morphism
DR P2 M — DR M
1S a quasi-isomorphism. ]
We obtain the following isomorphisms in D%(Cy):
(12) DRF'="*(M) «= DRF”'="2 (M('Dy)) — DRE”? (M(!Dy)).

We have already seen the right isomorphism. For the left isomorphism, we
may use
a<Di _ opa<D
QRSP o~ QRISTN(wDy).

We will identify DRY”'="2(M) and DRS”?(M(!Dy)) by (12).

LEMMA 3.2.3. — If Dy C D} C D, then the following diagram of the natural
morphisms is commutative:

DR M —= DRy M(1D})

l !

DR M —=— DRx M(!Dy).
It is also factorized as follows:

DR M «=— DR<Pr M(ID}) —=— DRy M(ID})

| | |

DRy M +~— DRP'M == DRx M(IDy).

() The author thanks the referee for the simplified proof of the proposition.
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Proof. — We have the following commutative diagram:

DRV M «=— DR<Pi M(ID}) —=— DRy M(ID})

! ! !

DR;”' M +—=— DR M(ID;) —=— DRx M(!Dy).

Then, the claim of the lemma is clear. O

3.2.3. Duality. — We continue to use the notation in §3.2.2. For simplicity,
we assume D = Dy. We have a morphism of complexes

(13) Tot ( Tot Q**<P2(xDy)[dx] ® Tot Q% <P1(xDy)[dx]) — Tot Q**[2dx]
by & ® n—s (—1)PIx ¢ A, where € and 7 are local sections of
(TOt 0°° <D3 (*Dl))p-f—dx and (TOt QO,. <D1 (*Dz))q-i—dx

respectively. Let Z7 be a Dx-injective resolution of Tot Q% <P1(xDy)[dx], and
let Z5 be a Cx-injective resolution of Tot 2**[2dx|. Then, the morphism is
extended to a Cy-homomorphism DR)S(DKD2 (I3) — Is.

For any coherent Dx-module M, we have the following natural morphism:

(14) DR”' =P (Dx M) — Dx DRF”>=P1(Mm).

Indeed, DR}DlSD2 Dx M is represented by Homp, (M, Z}). Hence, we have
the desired morphism given as follows:

Hompy (M, I7) — Homc,, (DR)<(D2§D1 M, DR§D2§D1 )

— Home,, (DRFP?SPY M, T3).

THEOREM 3.2.4. — Let V be a good meromorphic flat bundle on (X, D). The
following diagram is commutative:

DR<P1=P2 (V) “Ly Dy DR<P2<P1(V)

1) . al

DRVY(IDy) —%5 Dx DRy (V(IDy)).

~

Here, G is induced by (14) and DR}DlSD2 (DxV) ~ DR}DISD2 (VV). The
vertical isomorphisms are given by (12), and Go is induced by the natural iso-
morphism of D-modules VV(!Dy1) ~ Dx(V(!D3)). (See §3.1.3.) In particular,
G1 1s also an isomorphism.
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Proof. — We have the commutativity of the natural morphisms

DR =P (vv)y = DRYPSP2(DxV) —  DxDRY”*EPH(V)
DR =P (VV(ID1)) — DRY”*=P? (Dx(V(ID2))) — Dx DRY”*="" (V(IDy))
DRy (VV(!D1)) =+ DRy (Dx(V(!D2))) — DxDRx (V(IDy)).

Then, the claim of the theorem is clear. ]

3.2.4. Functoriality for birational morphisms. — Let X be a complex
manifold, and let D be a normal crossing hypersurface with a decomposition
D = D; U Ds. Let D3 be a hypersurface of X. Let ¢ : X’ — X be a proper
birational morphism such that

(i) D' = »~Y(D U D3) is normal crossing,

(i) X'\ D' ~ X\ (DU Ds).
We put D} := ¢~ 1(D;). Let D} be the complement of D in D’.

Let M’ be any coherent D x/-module having a good filtration in the neigh-
bourhood of fibers of ¢. We have the natural morphism

(16) DREPI<P2 oM — R, DRGSP2 AL
Indeed, we have
(17) DRY”'S2 oM ~ R, (Qxr @10, ¢ QY71 (xD2)) 5, M)
— R (0 @ Q%= (+DYy)) @k, M)
~ Ry, (DR 2 (M).
Let V be a good meromorphic flat bundle on (X, D), and we set
V="V @ Ox/ (xD').
We have a natural isomorphism

(V(xD3))(1D1) =~ ¢+(V'(1D1)).

Hence, we have a morphism of Dx-modules V (1D1) — ¢+(V'(1D])). We obtain
the following morphism from (16) and V' — ¢4 V":

(18) DRV =2 (V) — R, DRITP2 (1),
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It is equal to the one induced by ¢! (Q° <D1 (*D2)®V) — QY <P (xDy) V.

Note that we have natural isomorphisms
(19) (Qx @ V)@, (Ox @10, ¢ (Dx @ Qy'))
~ (Qx @ V) ®%X/(*D/) (OX/(*D/) Do-10x (Pil(DX ® Q)_(l))
~ (QXI X VI) ®%X/(*D/) (DX/(*D/) ®<P710X (,0719)() ~ VI.

By considering the dual with V'V (see Theorem 3.2.4), we also obtain the
following morphism:

(20) Re. DR 2=P1(V') — DREZ2<P (7).
THEOREM 3.2.5. — We have the commutative diagram

DREP=P2 Y Rp, DRYTP2 v

(21) zl zl

DRy V(ID;) —— Ry, DRx: V/(1D}).

Here, the vertical isomorphisms are given in (12), the upper horizontal arrow
is (18), and the lower horizontal arrow is induced by the morphism of Dx-
modules V (!1D1) — o+(V'(1D})). Similarly, we have the commutative diagram

R, DR =Py DRYP=Dry

(22) :l :l

Re, DRy V/(ID,) —— DRy V(IDy).

Here, the vertical isomorphisms are given in (12), the upper horizontal arrow
is (20), and the lower horizontal arrow is induced by the natural morphism of
Dx -modules ¢+ (V' (1D5)) — V(D).

Proof. — We have the commutative diagram

DRP=P2 (V) — DR (4V)  — Ry, DRSSPV

| T |

DR =P (V(1D1)) — DRF'SP2 (o,V/(1D})) — Ry DRY =" 17(1D))

! | !

DRxV(ID;) —  DRxeV/(ID})) —  Re.DRxV/(ID}).

Then, we obtain the commutativity of (21).
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Let us consider the commutativity of (22). Recall the commutativity of (7).
We have the commutative diagram for N — ¢y N7, where N (resp. N’) is a
coherent Dx-module (resp. Dx/-module):

Rp.DRx DN’ ~ DR@;DN’ ~ DRDpiN' — DRDN
Ro.DDRy N’ ~ DRp,DRA’ ~ DDRgiAN’ — DDRN.

The vertical arrows are also isomorphisms. Hence, the lower horizontal ar-
row in (22) is obtained as the dual of DRy VV(D1) — Ry« DRy V'V(ID})
in DY(Cx). Then, the commutativity of (22) follows from the commutativity
of (21). Thus, the proof of Theorem 3.2.5 is finished. O
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CHAPTER 4

SOME SHEAVES ON THE REAL BLOW UP

4.1. Holomorphic functions

We shall introduce the sheaves of holomorphic functions of various types.
We give some statements mainly on flatness. The proof will be given later.

4.1.1. Preliminary. — Let X be an n-dimensional complex manifold with
a simply normal crossing hypersurface D with the irreducible decomposition
Uica Di- In this paper, the real blow up 7 : X(D) — X means the fiber
product of X (D;) over X.For any subset I C A, we set

Dy = ﬂDi and D(I):= UDi.
iel iel
Formally, Dg := X. For J C I¢:= A\ I, we put
D[(J) =DrN D(J)
In particular, 0Dy := D (I°).

4.1.2. Holomorphic functions with moderate growth or rapid decay

Recall that holomorphic functions on an open subset U C X (D) are defined
to be C°°-functions on U whose restriction to U \ 7~ (D) are holomorphic.
A holomorphic function f on U is called of rapid decay if the following holds:

> Let P be any point of 771(D) N U. We take a holomorphic coordinate
system (z1, ..., z,) around 7(P) such that D = Ule{zi = 0}. Then, we
have f = O(]_[f:1 |z;|V) for any N around P.

The sheaf of holomorphic functions on X (D) is denoted O % (py and the sheaf

(D)
rapid

of holomorphic functions with rapid decay is denoted ‘Af( (D)’
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Let U be any open subset in X (D). A holomorphic function f on U\ (D)
is called of moderate growth if the following holds:

> Let P be any point of 771 (P)NU # @. We take a holomorphic coordinate
system (z1, ..., z,) around 7(P) such that D = Ule{zi = 0}. Then, we
have f = O(]_[f:1 |z;| ") for some N around P.

In this paper, the sheaf of holomorphic functions with moderate growth is

mod
denoted A% 20

We shall prove the following (Proposition 4.2.4, Theorem 4.6.1).

THEOREM 4.1.1. — The sheaves O ATEPIA g Amed  gpe flat over

X(D)” Y'X(D) X (D)
™ (Ox>
4.1.3. Partially rapid decay functions on completions. — Suppose
that Z is 71 (Dy(J)) for some I UJ C A. Let Ty C O%(p) be the ideal sheaf
of Z, and put

@ 7 = @1 O X / Ig.
For a given (’)X(D) -module F, we set .7-"|2 = F@@)?(D) O5. According to a gen-
eralized Borel-Ritt theorem due to Majima and Sabbah (see [33], Proposition

I1.1.1.16 of [52]), the natural morphism O_——

Dy Oﬂ_lTDT(J)) is surjective.

The kernel is denoted by 0<D(‘2 - I Dy = X and D(J) = D, it is equal
I
rapid
A)?(D)'

We shall prove the following theorem. (See Proposition 4.2.4 for a refined
claim.)

PROPOSITION 4.1.2. — The sheaves O~2Y)  and © _—— . are flat over
©=1(Dy) n=1Dy(J)
7T71(OX>.

4.1.4. Holomorphic functions of Nilsson type
4.1.4.1. Preliminary. — We set
Nil(z) = EB 2%Cllog z].
acC
For (o, k) € C X Zxg, we put o k(2) := 2%(log 2)¥ € Nil(z). Let T be any
finite subset contained in {a € C |0 < Re(a) < 1}. For simplicity, we assume
0 € T. Let N be a non-negative integer. We set

Nily v (2 {Zawwaﬂk 2) €Nil(2) | gk €C, j > =N, k < N, aeT}
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Note that Nily y(z) is a finitely generated free Clz]-module. For T C T" and
N < N’, we have a natural inclusion Nilp n(2) C Nilgr ny/(2). We have

Nil(z) = lim Nilz n(2).

Let @z be the real blow up of C, along 0. Let ¢ be the inclusion ¢ : C} — @z
We have the subsheaves of 1,Oc+ on C corresponding to Nil(z) and Nilp n(z).
The sheaves are also denoted by Nil(z) and Nilz ().

For ¢ > 1, put
Nil(z1,...,2¢) := Nil(21) ®c - - - ®c Nil(zy),
NilTJ\[(Zl, - ,Zg) = NﬂT,N(Zl) R - Qc NﬂTJ\[(Zg).
We naturally regard Nil(zy, ..., z¢) as a subsheaf of 1,Ocn_p on the real blow
up C(D), where D = |J'_ {2z = 0} and ¢ : C" — D — C*(D). For (e, k) €
Ct x ZéOv we put ¢
Spa,k(Zh cee 7Zn) = H(pahki (Zz)y
i=1

which are regarded as multi-valued flat sections of Nil(z1, ..., z¢).

4.1.4.2. Holomorphic functions of Nilsson type. — Let X be an n-dimensional
complex manifold with a simply normal crossing hypersurface D. Let D =
DM U D® be a decomposition.

We shall introduce a sheaf A;{ZS))SD(Q) on X(D).

First, let us consider the case X = A", D = Ule{zi =0} Let =10 Uy
be determined by DV) = Uidj {z; = 0} for j = 1,2. Let j denote the inclusion

X-D — )?(D) Let A}Z;?SD@) be the image of the naturally defined

morphisms

Of?fD(l)) @ Nil(z | i € ) — 7.0x_p.

We can observe that they are independent of the choice of a coordinate system

(21,...,2n). Hence, we obtain globally defined sheaf AE(D;I))SD(Z) on X (D).
: nil <D
It is also denoted by A)~( o)
We shall prove the following. (See Theorem 4.3.1 and Corollary 4.3.3 for
refined claims.)

1 2 .
THEOREM 4.1.3. — A<PW=D® 4 flat over T 1Ox. We also have

RW*AHXJI(D) ~ Ox (D).
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REMARK 4.1.4. — This type of sheaves are useful when we study the de
Rham complex of V (IDM«D®) for a good meromorphic flat bundle on (X, D).
Compared with functions with moderate growth, we may consider functions
with rapid decay along some direction and of Nilsson type along other direc-
tion. U

4.1.5. Real blow up along holomorphic functions
4.1.5.1. Category of complex manifolds over C*. — Tt is convenient to con-
sider the category Cat, of complex manifolds over C! given as follows.

> An object of Caty is a morphism f : X — C¢ of complex manifolds.

> Morphisms ¢ : (X1, f1) — (X, f2) in Caty; are morphisms of complex
manifolds ¢ : X1 — X such that fi = fo 0.

We say that ¢ has some property when the underlying ¢ has the property.
For example, we say that ¢ : (X1, f1) = (X2, f2) is a closed immersion when
¢ : X1 — Xo is a closed immersion. For a given object (X, f) in Caty, we set

Dx = [~}(Dy),
where Dy := Ule{zi = 0}.

Let C denote the real blow up of C along z = 0. We have @K(DO) = Ct.
For any object (X, f) in Caty, we have the naturally defined map

Tp: X — X xC' Ty(x)= (z, f(2)).
A morphism ¢ : (X1, f1) — (X2, fo) induces maps X; x C* = Xy x C* and

X1 x Cf = Xy x C!, which are denoted by ¢; and @, respectively.

4.1.5.2. Real blow up along functions. — Let (X, f) be an object in Cat,.
Let j : X x (C*)Y — X x C! denote the inclusion. Let X(f) denote the
topological space obtained as the closure of j(I't(X \ Dx)) in X x C’, which
is called the real blow up of X along f [54]. The projection X (f) = X is
denoted by m¢. The inclusion X (f) = X x C’ is denoted by ff. If there
is no risk of confusion, we shall omit to denote the subscript f to simplify
the notation. If f is submersive, X (f) is naturally diffeomorphic to X (Dy).
A morphism ¢ : ()(Ll, f1) — (X2, f2) in Caty naturally induces a continuous
map ¢ : X1(f1) = Xa(f2).

4.1.5.8. Moderate growth and rapid decay. — Let (X, f) € Caty. Let U be
any open subset of X (f). A holomorphic function s on U\ w;l(D x ) is called
of moderate growth if we have |s| = O([]|fi|~"V) for some N locally around
any point of UN7~1(Dx). A holomorphic function s on U\W;I(D x ) is called
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of rapid decay if we have |s| = O(] |fi|") for any N locally around any point

of U N7~ 1(Dx). The sheaf of holomorphic functions with moderate growth
rapld)

X(f)
We shall prove the following theorem. (See Theorems 4.5.1, 4.5.3, and
Theorems 4.4.3, 4.5.4 for refined claims.)

(resp. rapid decay) is denoted by AI)E(C(’J‘}) (resp. A

THEOREM 4.1.5

T mod rapid -1 )
> The sheaves A 20 and AX(f) are flat over 7, (Ox)

> Let Ff : X(f) — X x C! denote the inclusion. Then, we naturally have

rapid ~ 1 rapid
*AX(f) ™ OFf(X) ®7r710X><<CZ X xCL’

~ d o -1 d
Ff*A;(()f) ~ 7 Oryx) Or10, o Aage:

> Let po : X(Dx) — X(f) denote the naturally induced map. Then, we
naturally have

rapid __ srapid mod ~ mod
BooeAszo = Az BroeAxing = AXpy

> Let ¢ : (Y,g9) — (X, f) be a projective morphism in Caty. Let M be a
coherent Oy -module. Then, we have the following natural isomorphism:

d -1
.A?(()f 10 7T R(p*M — R(,D*(.Ag?g) ®ﬂ_g—10Y U M).

4.2. C*°-functions

4.2.1. Preliminary. — Let X be any n-dimensional complex manifold with
a simply normal crossing hypersurface D with the irreducible decomposition
Uica Di. We use the notation in §4.1.1. Let D° be a (possibly empty) hyper-
surface of X such that
(i) DU D° is simply normal crossing,
(ii) dimD N D° <n — 1.
For J C A, we set
D(J) :=D(J)uD°.
For I'UJ C A, we put
D](j) =DrnN D(j)

Let Qi{zD) denote the sheaf of C*°-logarithmic (0, ¢)-forms on )?(D), ie., a

section of O%¢ s locally described as a linear combination of

X(D)

f-dzi [z, - dZ, ) Zi, - dZg, - dZg, (1 <ip <0, 0+1<j,<n, feCX(D))
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in terms of a local holomorphic coordinate system (z1, ..., z,) such that D is
locally described as Ule{zi = 0}. We have the naturally defined operator

§:0% 5 lit!
CX(D) X(D)

The complex Qg{(D) is called the Dolbeault complex of X (D). We put

Qq\" = QOL' _
7 X(D)|Z

for any real analytic subset Z C X (D).
For a given C*°-manifold Y and a real analytic subset W C X, let

o<W
7T_1(D])><Y
denote the sheaf Coo/f(%_ I)(M;)XY on X (D) x Y, for simplicity of the description.
™ 7)X
We also put on X (D) x Y
0,0<W L 0,e - ooﬁV[\/
Q7T‘/1(31)XY =25 O, 7 1(Dy)xY

Let g7 denote the projection 7(D;) — D7(8D;). If we are given a holo-
morphic coordinate system (z1,...,2,) as above, then

<D(J) __  —1,~<Di(J)

71_,/1(5[) v ﬁj(aD])[[Zi | (S IH

By a natural diffeomorphism 7~1(D;) ~ D;(0D;) x (S|, we can locally
identify
0o <D(J) _ Ho0<Dr(J)
7=X(D)  Dr@Dpx(sHlfl
For I C J and m > 0, put

[zi | i € 1.

T(m,I,J):={K CJ|ICK,|K|=|I|+m+1}.

We set
KO, o) = D 0w,y
KeT(m,I,J)
We obtain a complex IC'((’)W_ITDT( J))) as in §2.1.4. Similarly, we obtain a com-
. 0,0 <D° .
plex K (Qw*l(l/f(‘]))xx)' See §1.5 of [34] and §II.1.1 of [52] for the following.
LEMMA 4.2.1. — Let B be O — or Q¥ <P . The natural inclu-
7= 1(Dr(J)) =D (J))xY

sion B — KY(B) induces a quasi-isomorphism B — K*(B). O
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4.2.2. Dolbeault resolution. — In this subsection, we suppose D° = &.
PROPOSITION 4.2.2 (See [33], [52]). — Q™ Q" =P e cosoft
) 7= 1(Dr(J)) 7=1(Dy)
. o < . ¢
resolutions of Oﬂ_ i) and On—/l(B,) respectively, where J C I€.
Proof. — We give only an outline. In each case, it is easy to compute the 0-th

cohomology of the Dolbeault complexes. It is enough to prove the vanishing

of the higher cohomology. We may assume X = A" D, = {z; = 0} and
¢

D = U=y Di-

First, let us look at Q%’(D). For 1 < j < n, let P%j be the sheaf of C°°-

functions on X (D) which are 8;-holomorphic for i > j. We set
X = Aj:{(zl,...,zj)} and Dj,:= U {z; = 0}.

i<min{j,¢}

Let g<; be the projection )?(D) — )?j (Djye). Let P%j be the sheaf of C°-
sections of qzjl-QOil , which are d;-holomorphic for i > j. We set
=1 X;(Djie)
P = [\PL;
over 73% ;- We have the naturally defined operator

9:PL; — Pl

Because P, = O;(( D) and PL, = Q%'(D), it is enough to prove that the

natural inclusions Pz, = Py, are quasi-isomorphisms for the vanishing of

the higher cohomology of Q%'(D). Let Q%j = P%j 41- Let ngj be the sheaf

of qgjl.Q%l (Dse) which are 9;-holomorphic for i > j + 1. We take the exterior
= i (Dje

product Q.S ;= N° ng ; over Q% i We have the naturally defined operator

5j+1 : Q.SJ — Q.Sj/\dzj+1/2j+1 (]—1 Sf),

5j+1 : Q.SJ — Q.S] A d2j+1 (] > 6)
We clearly have Ker 5j+1 = Pz, Let us prove Cok 5j+1 = 0. In the case j > ¢,
it can be proved by the argument for the standard Dolbeault’s lemma. Let us
consider the case j < /.

LEMMA 4.2.3. — 941 : Q° _— — .
g+l <jlmr=H(Dj41) <jlm=1(Djy1)

epimorphism.

VAN d2j+1/2j+1 5 an
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Proof. — We use the polar coordinate system zj11 = rj41 V=10t The
action of 5j+1 is expressed as follows:

5j+1 ( Z fn(9j+1) Z?+1> = Z (%V -1 86j+1)fn(9j+1) Z;l+1 ’ deH/ZJ'H

n

Then, it is easy to prove the claim of Lemma 4.2.3. U

Put D’ := Uf:l,i;éjﬂ{zi = 0}, and consider the real blow up
7' )A(:(D/) — X.
We have a naturally induced morphism
iy X(D)) — X4(Dj0).
Let Séj,X be the sheaf of sections of (q'Sj)*lQ%(DM) on X (D'), which are 8;-
holomorphic for ¢ > j + 1. Let S%LX be the sheaf of C*°-functions on X (D’),
which are 0;-holomorphic for i > j + 1. We set

Sz = NS
It is easy to prove the vanishing of the cokernel of 5j+1 : S%j — S;j NdZj
by using the argument for standard Dolbeault’s lemma.
Let P € 771(D). Let U be a small neighbourhood around P. We will shrink
it in the following argument. According to Lemma 4.2.3, for any section ¢
of Q.Sj A d5j+1/5j+1 on U, we can take a local section v of Q.Sj such that

We put A\ := <P—5j¢- We take a cut function p around P, i.e., p is constantly 1
around P and constantly 0 near the boundary of U. We can regard p \ as a
section of 82 ;AdZz;41. Then, we can find a section « of 82 ; around m;(P) such

that ;415 = pA, where m; denotes the natural projection X(D) - X (D).
We obtain ¢ = 9;(¢) + k) around P. Thus, we obtain the vanishing of the
cokernel of 0j41 : Qy; = QLA dZj41/Z;+1, and hence the vanishing of the
0,0
X(D)
Because 7 1(D;) = Dy(dD;) x (SH)1l, we can reduce the vanishing of
. 0,0 1 0,0
the higher cohomology of QW@I) to the vanishing of Qf)z (oD1)
calculation as in Lemma 4.2.3. By using the resolution in Lemma 4.2.1, we

higher cohomology of €2

by a formal
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obtain the vanishing of the higher cohomology of QO"@I)). We have the
-

diagram of exact sequences

<D(I)

0 — O)?(D) — O;((D) — OW—TD\(I)) — 0

| ! l

0 —s Q<P 0 0

X(D) X(D) 7=1(D(I))
0,0 <D(I)
X (D)
formal calculation as in Lemma 4.2.3, we obtain the vanishing of the higher

cohomology of O"* __and Qe =P, O
*=1(D(J)) 7~1(Dr)

Then, we obtain the vanishing of the higher cohomology of €2 . By a

4.2.3. Flatness. — In this subsection, D° is not necessarily empty.

PROPOSITION 4.2.4. — Let IUJ C A. The sheaves
o> <D(J) o0 <D° <D(J)

o

=D D) a D) UDr())

1 . _ rapid —1
are flat over m=*Ox. In particular, (’)X(D) and A)?(D) are flat over m~*Ox.

Proof. — Let us recall a general result. For a real analytic manifold Y, let
(’)5 denote the sheaf of real analytic functions on Y. If Y is the product of a
complex manifold Y7 and a real analytic manifold Y5, let O}Xl*hd denote the

sheaf of real analytic functions which are holomorphic in the Y;i-direction. The
extension Oglfh(’l C O is faithfully flat.

LEMMA 4.2.5. — Let Wi C Ws C Y be real analytic subsets. Then, C;o <Wi
and Cy° <M /e <2 are flat over OF.

Proof. — The sheaf C3° is faithfully flat over O5 (Corollary 1.12 of [34]).

Theorem VI.1.2 of [34] implies aCy” <" N C* <" = a <" for any real

analytic subsets Wi C Wy C Y and for any ideal sheaf a of OF. By using the

argument in the proof of Proposition II1.4.7 in [34], we can prove the following:

> Let A be aring. Let M be an A-flat module. Let N be an A-submodule

of M. If aM N N = aN for any ideal a of A, then N and M /N are also
A-flat.

We immediately obtain the claim of Lemma 4.2.5 from these results. U

Let Zy be a complex manifold with a normal crossing hypersurface Dy.
Let Z; be a real analytic manifold. We put Z := Zy x Z1 and D := Dy x Z.
Let G denote the composite of the maps Z — Zy — Zy x C", where the latter
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is induced by the inclusion {(0,...,0)} C C". Let (¢y,...,t,) be the standard
holomorphic coordinate system of C".

LEMMA 4.2.6. — C7 <D[[7517 oy ty]) s flat over GOz, «cn.

Proof. — Let 11 : Z — Zy := Z x R the inclusion induced by
{(0,...,0)} — R™

We put Dy := D x R™. We regard that (¢1,...,t,) is a real coordinate system
of R™ ¢ C". We have the natural identification

C%o <D[[t1, o H CZ <Do /Coo <D2UZ

According to Lemma 4.2.5, it is flat over L1_10§2. Let G1 be the composite of
Z — Zy — Zy x R™. We have a natural isomorphism

—1,mZp—hol -1
G OZSXR" ~G OZQX(C"-

Since the extension G| 1O§gx]§il C O%Q is faithfully flat, we obtain the claim

of Lemma 4.2.6. O

Let us return to the proof of Proposition 4.2.4. We may assume that
X=A",D;={z =0}, D=, D;and D° = U, D;. For I C (,
let 77 : X ( ( )) — X be the real blow up. We have the natural identification

7Y (Dr) = Dy x (SHYM and 7N (Di(T)) = Dr(T%) x (SHUL.
From Lemma 4.2.6, we obtain that

oo <D(T°) oo <D (T°) .
= i 1
=1 (Dr) Cﬂfl(DI) [[ZZ | re H

is flat over 71'1_10)(.

LEMMA 4.2.7. — Coo/f(%(f) ) is fat over 7 'Ox. (Note that 7 : X (D) — X.)
T 1

Proof. — The claim is clear outside of 7=!(0D;). Let P be any point of 9D;.

Let a be any finitely generated ideal of Ox p. We take a free resolution Q,

of a ie., - — Q1 — 9y — a. We obtain a 7 ~1Ox-free resolution 719, of

7 la. We set Q] Qj for j > 0 and Q 1 := a for simplicity of the description.

It is enough to prove that = -19, @ <! <D .

7= YDy

Let p: X(D) — X (D(I)) be the naturally induced map. Note

—1 oo<D(I) _ 15 Coo/<£(fc) _ 1) Coo/<2(jc)‘
( Q we ==1(Dy) ) i (Q.)@p*( n~1(Dr) ) i (Q.)e@ w7 ' (Dy)

1s exact.
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The first equality is the projection formula. As for the second one, it is enough
co<D(T%) co<D(I?)
7N (Dy) 7= 1(Dy)
phism. It is clearly injective. Let f be a section of p*C:f?(DD(II))

g = f|7rI—I(DI\D(TC)) gives a O-function on 7;*(D; \ dD;). For any differ-

to observe that the natural morphism C — p«C is an isomor-

. The restriction

ential operator R on ;' (Ds), R(g)(P) goes to 0 when P goes to a point
co<D(T7)
©; ' (Dr)

Let Q € 7~ 1(P). Take any cycle ¢ of 19, ® C

in 771_1(8D1). Hence, g gives a section of C which is mapped to f.
oo <D(I)

“1(Dy)

cut function around @, we can regard it as a global cycle of 7! Q, 0C =L

at . By using a

oo <D(I°)
n=1(Dy)
whose support is a small nelghbourhood of (). Then, it can be regarded as

a cycle of 7, Q) ® CoO <D around p(Q). Because C™° =" <DI) i flat over

7 (D) w7 1(Dr) B

77O, we obtain that ¢ is a boundary in the complex 7, * Q.) ® ¢ =PI,
I I D))
m; (Dr

Then, it is easy to deduce that ¢ is a boundary in ﬂfl(é.) ® Oo;(%(l)‘). Thus,
T 1
the proof of Lemma 4.2.7 is finished.

Let us prove that Coo/fg( 7) 5 is flat over 77 1Ox, where I LIJ C £. We put

(Dr)
S, Jom):={Kct{—J|ICK,|K|=m}.

oo <D(T)

Put Gr 41 :=C = , and descending inductively we set
I
L 0o <D(K*®)
ng := Ker (g]’m_H — @ CW—T(BK) )
KeS(I,Jm)
We have Gr 7141 = Coo/f(%(l)j, which is flat over 7~'Ox. By an induction, we
T 1
obtain that Gy, are flat over 7 10x.
Hence, we obtain that COO%(‘;) is flat over 77 'Ox. By using the resolution
m T
C°°</D\ in Lemma 4.2.1, we obtain that C*<2° is flat over 7 1Ox.
71 (D1(J)) 71 (D1(J))
As a result, we obtain that Q °<D(J) and Q" =27 are flat over 10y,
“1(D; 7= 1(Dr(J))
where J C I¢. In particular, QO *<DU) and Q% are flat over 7 10x.
7=1(Dy) 71 (D1(J))
Then, we obtain the 7~ !Ox-flatness of (’):Dl((‘gl) and Orl(/DT(J)) by using
Proposition 4.2.2. Thus, the proof of Proposition 4.2.4 is finished. U
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4.3. Nilsson type functions

4.3.1. C*°-functions of Nilsson type. — Let X, D and D° be as in §4.2.1.
We put
DB .= pWype,

3 2 i
Coo<D@<D® ) X(D). First, let us consider the

We shall introduce a sheaf (D)

case

l m
X=A", D= LJ{ZZ =0} and D°= U {zi = 0}.
=1 i=0+1
Let £ = I; U I be determined by DU) = Uicr, {zi = 0} for j = 1,2. Let J

denote the inclusion X — D — X (D). Let C}O(E)D(S)SD(Q) be the image of the

naturally defined morphisms:
D®) . . ~ De
C%O(E) @Nil(z; | i € Ir) — J.CF T -
We can observe that they are independent of the choice of a coordinate system

(21,...,2n). Hence, we obtain a globally defined sheaf C}o(;?(S)SD(Z) on X(D).

¢ nil<D® p

(D) ut

It is also denoted by

. 3 <p® . (3) (2)
Q% <D\ <D — QQL Rcee C?«O<D <D

(D) X(D) “"xm) X(D)
We will prove the following theorem in §4.3.6. (More refined claims will be
proved.)

THEOREM 4.3.1

0,6 <DW<D® . . <DM<p®) . o
> Q)?(D) 18 naturally a c-soft resolution of ‘A)?(D) if D° = 0.

1) (2) . B3)<p(2)
> The sheaves ASY 'SP and Qg% <D¥=D

<D( —1
(D) D) are flat over " Ox.

Let DO = Ujena, D](-i) (1t = 1,2) be the irreducible decomposition. Fix
k € A1 UAs. We put
ED = |J DY (i=12)
JeAN{k}

We put £ := EM U E® and EG) := DG We have the naturally defined
projection p : X(D) — X (FE). We will prove the following theorem in §4.3.7.

THEOREM 4.3.2. — Ifk € Ay, the following naturally defined morphism is an

1somorphism:
0,6 <E®)I<E®) 0,0 <D®< D@
% - g -
(E) X(D)
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If k € Ao, the following naturally defined morphism is a quasi-isomorphism:
0,0 <EGI<E(®) (2) 0,0 <D< D@
Q)?(E) (xD;7) — *Q)?(D)
COROLLARY 4.3.3. — The natural morphism

0,6 <D (2) 0,0 <DW<DA)
ay (D) — QX(D)

is a quasi-isomorphism. In particular, Rm, A%~ Ox(xD).

X(D)
For the proof of the theorems, we may assume
l m
X=A", D=|J{z=0} and D°= |J {z =0},
i=1 i=(+1

where 1 < ¢ <m <n. Weset D; :={z =0} fori=1,...,m. We use the
notation in §4.1.1. For a subset J C £, we set J := J U (m \ £).

4.3.2. Refinements. — For any locally closed real analytic subset
Z C X(D), we implicitly regard Oz as a sheaf on X(D) in a natural

way.
For any I' U J C ¢, let Amld;(‘]) denote the image of the naturally defined
I
morphism
<D g Nil(21,...,20) — O _ —  ®cpsien Nil(z; | i € T)
7 1(Dy) Gzl Lyeeey 2t 7=1(D\oD;) < Clzilicl] i :
nil<D(J)
In the case I = @, it is AX(D)
For TUJ C £, let AM! __ denote the image of the naturally defined
=1 (D1(J))

morphism
®(C[21,...,zg] Nll(zh SRR 725)

— @Oﬂ'l(D/IjTaDlj) ®C[zi\ielﬂ Nil(Zl' ‘ 1 € I])
J

7= 1(D7(J))

Here, Ij := I U {j}. In particular, A™! ) is the image of the morphism
-

Oﬂij\(J)) OC21,...y2e] Nil(21, -+ -, 20) — @ wal(ﬁaDj) Q] Nil(z;).

jeJ
Let Anil/<2(‘]) and A™M___ be the sheaves obtained from
~1(D;),T,N *=1(D;(])),T,N
Nily n(21,...,2¢) instead of Nil(z1,...,2).
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For T'C T' and N < N’, we have natural inclusions

il <D(J) - ynil<D() and A™M ___ L — .
=1(D;),T,N ©1(D;),T’,N' 1D (J)), TN ==1(D;(J)),T",N'

We have the natural isomorphisms

nil<D(J) _ 1. nil <D(J) nil ~ nil
(23) Ar/@n _h—n>1“4wf(51>,T,N A D)~ Iy ()TN

Let g7 : #*(Dy) — D(0D;) denote the projection. Let
Ty - 5[(81)]) — Dy
be the real blow up. Then, we have

nil <D(.J)
(24) Anj(BI),T7N

nil<D;(J . . .
=4qr 51;[,11()’;7N[[Zz‘ | i € I]| ®clzjien Nilr,n (2 | i € 1),
nil
(25) A 7= 1(D;(J)),T.N
—1 1'111 . . .
G A gl € T St N (e i € D)
4.3.3. Specialization. — Let us construct for any I U J C £ a morphism
nil nil
— — .

ATF Y(Dy) AW*I(DI(J))
First, let us construct A4 —— AML_ in the case D = D;. Let ® denote

X(D) ©—1(D)

the natural morphism
P O)?(D) & Nil(zl) — 7.0x_p,
where 7: X — D — X(D).

LEMMA 4.3.4. — Assume that D = Dy. Let S C C be a finite subset such
that the induced map S — C/Z is injective. Assume that we are given

M
[ = Z Zfoc,j ® (Pa,j(zl> € OX(D) ® Nil(zl>

a€eS j=0
such that ®(f) € (’);(DD). Then, we have fq; € (’)X(D) In particular, we have
nil nil —
the well defined map .AX(D Aﬂ_/l(\D) in the case D = {z = 0}.

Proof. — Let us consider the growth order of f, ; 2f(logz1)’. For the polar
coordinate system z; = re\/jw, we have

zf = exp (Blogr — 40 + v —1 (ylogr + 30)),

where § = Rea and v = Im «.
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Let V be the set of («, j) € S xZx( such that f, ; is not contained in O;?D).
We will derive a contradiction by assuming V' # &.

For each («,j) € V, there exists a unique integer m(«, j) such that
3 — 7’)’71(&,])
(i) hayj =2 fo.i € O%(pys
(ii) P, jjx-1(p) is not constantly 0.
We set

K= (m?XV{Rea+m(a,j)}7 S = {(a,j) €V|Rea+m(a,j) = ’i}'
a,])€e

For (aq,j1), (a2,j2) € S, we have Rea; = Reag and m(ay,j1) = m(az, j2).
We also have Im oy # Im g if a1 # o We obtain the following estimate for
some € > 0:

(26) D hageipy AT (log 21)7
(a,j)EV
_ ,,,x( Z ha,j\wfl(D) e~ Im af++/—1 (Im alog r+Re ab) (log Zl)j) _ O(TH+6).
(a)€V
Let us deduce that g, jj-—1(py are constantly 0 from (26). Assume the contrary.

Let Q € 7~ 1(D) at which hq j(Q) # 0 for one of (a, j) € V. We may assume
0(Q) = 0. We obtain the following from (26):

(27) 7 ha(@Q)eYTHImAlE (log 1)l = O(rF).

(a, 7)€V
But, for any 4 > 0, we can take 0 < r < ¢ such that the amplitudes of the
complex numbers

(_1)jha,j(Q)e\/__1 Imalogr} (Oé,j) ev,

are sufficiently close, which contradicts with (27). Hence, ho j (a,j) € V are
constantly 0. Thus, we obtain Lemma 4.3.4. O

Let us return to the general case. We take & C C such that the induced
map S — C/Z is bijective. Let ¢; : (SxZ)* — S x Z be the projection onto the
i-th component, and 7; : (S x Z)! — (S x Z)*~! be the projection forgetting
the ¢-th component. For a given

Y Aak @ ¢ak € Ogp @Nil(z1, ..., 20),
(e k)eSEXZE
we set
Foj= Y Aak Priam(z| 70
ql(avk):(ﬁy‘j)
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Put ¢ := £ — {i}. If Y  Aak - Yok belongs to O;{?D)\n-—l(D( oy e obtain
! B.iln—1{DOD;) — 0 by applying Lemma 4.3.4 to Y. "Fs; - ps,;(2i). It implies
that the morphism

O nil

®Ni1(21,..., g)—)@ ®Ni1(2’1,...,2@)—>./4/\

X(D) “1(Dy) 7 1(D;)
factors through Agl( D)’ Hence, we have a well defined morphism
nil nil
'AX (D) 'A 1( D; )

By construction, it is an epimorphism. We also obtain that the following

morphism factors through A;l(D)

O)?(D) ® Nﬂ(zl, . ,Zg)

- nil nil
— Ow—l(D(I)) ® Nil(z1,...,20) — Afr—l/(D\(I)) C EBA L

el
Hence, we obtain the well defined morphism A%~ — A" We also
X(D) ©=1(D(I))
nil nil . . .
obtain AX (D). TN — AW*ﬁIT(I))yT,N' They are surjective by construction. By
using (23), (24) and (25), we also obtain epimorphisms
nil nil nil nil
Ao w9 ASmy ey T Aoy
LEMMA 4.3.5. — We have :
nil<D(J) nil nil
A S Ko (W) = Al )
n11<D(J) nil nil

(DN e (A55 DN IN w—@J)),T,N)'

Proof. — The implication C is clear. Let us prove the converse. First, we

consider the case I = @. Let f =) Aq k Yok be any section of

nil nil
Ker (AX(D — AW*WJ))) .

Let us prove the following equality on W*l(D?jaD k) for any subset K C ¢
such that K NJ # @:

(28) Z ak:|7r H Pavi ki (zi) =

9k (a,k)=(8,5)
We use an induction on |K|. In the case |K | =1, it follows from the assump-
tion. Let K = K’ U {j}. Assume that we have already known (28) for K.
Using Lemma 4.3.4, we obtain the claim for K. As a special case of (28), we

have Aak\ﬂ'_/l@g) =
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Note that the expression of f is not unique. We would like to replace Aq g
such that the following holds:

P(m): A 0 if |K| >mand KNJ # @.

aklr~(Dx)
We use a descending induction on m. In the case m = ¢, it holds as was
already proved. Assume that P(m + 1) holds. Take K C £ such that |[K| =m
and K NJ # @. We have

, <D(K®)
A i) 1 ai ) € © By
iZK

By a generalized Borel-Ritt theorem due to Majima and Sabbah, we can take
Gak € (’);Zg{ ) satisfying
Caette D) = Aabta T0r0) L] P20
iZK
By (28), the following holds:

G 0.

okl (Dx)

We have the equality

_ N Gak
f= ; (A = 7

igK Paiki (2i)

—_—

Note that }-, (o k)=(8.4) Gak 18 0 on 71 (Dg ) Un~1(D(K)). In particular,
-1

S

it is 0 on U |=pn ™ (DK, ). By construction, Aa k — Gak [Ligr o ki (2i)

vanishes on 7=1(Dg). Moreover, if A = 0 for some |L| = m with

Oé,k:‘ﬂ_/l(BL) -
LNJ #@, Aok — Gak HigK ©ai k; (7)1 also vanishes on 7=1(Dy). Hence,
by applying the above procedure to each K satisfying |K| = m and KNJ # &,
we can arrive at P(m). The status P(0) means

f = Z Aa,k Pa,k
with Agx € oj?f’D(‘)’ ). which implies that f € A“Xil(;f(‘”.

Thus, we are done in the case I = @.
We can reduce the general case to the case I = @ by using (23), (24)
and (25). Thus, the proof of Lemma 4.3.5 is finished. O
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4.3.4. A resolution. — For [ C J and m > 0, put

T(m,I,J):={KCJ|ICK,|K|=|I|+m+1}.

We set
o nil . — nil/\ )
(Awl(D,(J))) @ AW*I(DK)
KeT(m,I,J)
We obtain a complex K*(A™ ) asin §2.1.4.

== 1(D((J))

LEMMA 4.3.6. — The 0-th cohomology of /C'(Aml and

) is nil - )
[(D1() n—1(Dr(J))

the higher cohomology sheaves are 0. A similar claim holds for Amll/\
~H(Dy (), TN

Proof. — It is enough to consider the issue for KC*(AM!
7=1(Dy(J))),T,N

us consider the case I = @. We use an induction on |J| and the dimension
of X. The cases |J| =1 or dim X = 1 are clear. Let J = Jy U {j}. Assume
that the claim holds for Jy. We set

mo._ Anil/\
fv= D 7 1(Dk),T,N

|K|=m-+1
JeKCJ

). First, let

We have the exact sequence

. nil . nil
0— Ly — K (A B, T’N) — K ( rlﬁYJo)),T,N) — 0.
Let g; : 7 Y(Dj) — ﬁj(aDj) and 7; : ﬁj(aDj) — D; be the projections. We
have a natural isomorphism

LN

~ Cone (AML— = g7l (AM )[2] ®cz;) Nilr,v (7)) [-1]-

—1(D; )TN 7 1 (D;ND(Jo)),T,N
By the inductive assumption, we obtain the vanishing of the higher cohomology
sheaves of L7 v and K* (L — ). Hence, we obtain the vanishing of

m=H(D(Jo)),T.N
the higher cohomology of IC‘(.A“‘1 ). The calculation of the 0-th

cohomology is easy.
The general case can be easily reduced to the case I = @ by (23), (24)
and (25). O

H(D(J)),T,N
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4.3.5. The C*°-version. — Let Y be a C'*°-manifold.

For I UJ C £, let C*7 25 111(11<D(J) denote the image of the morphism
©=1(Dr
oo <D(J) . .
ij(BI)XY ®C[zi\i6JC] Nll(ZZ' ‘ 1€ Jc)

co<D(J) . .
wal(EITBDI)XY ®(C[zi|iel} Nll(zi ‘ 1€ I).

Let ¢ nl<D® be the image of the morphism

=D (J)))xY

oo <D° :
Cﬂ_l(/l)T(J))XY ®C[21,---,Ze] Nll(Zl, ... ,Zg)
<DO N | s .
— @ ocil (D= BDIJ) Ly ®C[zi|ielj] Nll(zz ‘ 1€ I]).
jed
In particular, C*° ML<P® g the image of the morphism
=1(D(J))xY
oo <D° oo <D° : )
Cw—@J))xY OC[21,..yze] Nil(21, - -+, 20) — D Cw—l(ﬁ;aDj)xY QClz;] Nil(z;).
J
Similarly, Coo/nid)(j) and o ml<D® denote the sheaves obtained
T=1(D)XY,T,N =D (J))xY,T,N
from Nilp n(21,...,2¢) instead of Nil(zy,...,2¢). We have
(20) ¢>nil<P()
©=1(D;)xY,T,N
oo nil <Dy (J)

Brennyx (st sy oz 11 € Il Ocpzjien Nilrn (i | i € 1),
(30) € ri=h*
T (DI(J))XY,T,N
— oo nl<DnDy zi | i € I ®clyien Nily v (z: | 3 € I).
w;l(mu»x(sl)mXY,T,N[[ il I ®eatien Nilrn (2 | )

By the argument in §4.3.3, we obtain the well defined surjective morphisms:

(31) C>® nil <D° C>® nil <D° C>® nil <D° C>® nil <D°
=Y (Dr)xY TI'_I(D](J))XY’ =Y Dr)xY,T,N =YDy (J))xY,T,N

By the argument in the proof of Lemma 4.3.5, we can prove that the kernels

of the morphisms in (31) are 7= nil <D(J) nd ¢ nil<D(J) , respectively.
7=1(Dy)xY ©=1(D;)xY,T,N
We set
m (oo nil <D° o oo nil <D°
(Cﬂ—@J))XY) T EB Cﬂ—T(BK)xY'
KeT(m,I,J)
We obtain a complex K*(C* ™ML<P® ) Tt is easy to see that the 0-th coho-
7LD (J)xY
mology is C> ML<DP® By using an argument in the proof of Lemma 4.3.6,

=D (J)xY
we can prove the vanishing of the higher cohomology.
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Similar claims hold for K° (Coo 1n(llD<(DJo)) Y, T N)'
-1(D; xY,T,

4.3.6. Proof of Theorem 4.3.1. — We do not consider D° in this subsec-
tion. We put

QO,:li<D(J) — 0,0 - ooEl\<D(J)
©=1(Dy) X(D) ®C}"¢<D> (D)
QO’. n/ll\ - 0,e Rcoo 00 ILI\ )

7=1(D;(J)) X(D) "Xy - 1(Dr(J))

02 D) g 0 ML
~1(D;),T,N *=1(D;(J)),T,N
The following proposmon implies the first claim of Theorem 4.3.1.

We use the symbols Q with a similar meaning.

PROPOSITION 4.3.7. — The complezes Q2P gng qOeml e ¢
m=H(Dr) 7= 1(D1(J)
soft resolutions of the sheaves .Aml/<2(‘]) and AM' __ respectively. Similar
—1(Dr) m=H(D1(J))
claims hold for A AMLEDU) g nit :
ﬂ-_l(Dl)7T7N 71-_I(DI(J))7I’7]V

Proof. — We use an induction on dim X. In the case dim X = 0, the
claim is trivial. Let us prove the claim for 7~ (D[) For I # o, let
ar : ¥ Y(D1) — Dr(0Dy) denote the naturally induced morphism. We put
Nilp ny(I) = Nilpn(2; | @ € I). By using the inductive assumption and
a formal calculation as in Lemma 4.2.3, we can prove that the following
morphisms are quasi-isomorphisms:

32 a7 AR [ € 1] @ Nilr (D

0,e nil <D](J
D[(@DI) TN

0,0 nil <D(.J)

— g% ) .
U »=1(Dy),T,N

[[Zz ’ 1€ IH ®N11TN(I) — 0

nil <D(J) We obtain the claim for Aml <D(7)
T 1(D1)TN 7~1(Dr)

from (23). For any subset I C ¢ (I can be @), by using the resolutions
KA yand £(Q™* ™ ) we can reduce the claim for A" __
71 (Dr(J)) 7=1(D1(J)) = 1(Dr(J))

to the claims for AM.__ (I € K). The claim for AM ____ can be
1 (Dk) 7 (D1(J)),T.N

It implies the claim for A~

obtained in a similar way. By using the exact sequences
QO~,- <D QO~,I nil Q0,0/]’I\I]
X (D) X(D) ©=1(D)

<D nil nil
0— OX(D) —>AX(D) —>A D) — 0,

0— — 0,
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we obtain the claim for .A;l( Dy’ By using the exact sequences
0 QO <D(J) QO~,- nil O,QEI\ 0
X X(D) 10y
nil<D(J nil nil
O—>A)~((D) AX(D A ) — 0,
we obtain the claim for .Aml(;?(‘]). The claims for .Aml( R (D)TN and A}ﬂ(;?;‘]])v
can be obtained similarly. O

The following proposition implies the second claim of Theorem 4.3.1.

PROPOSITION 4.3.8. — ¢ ML<P() poonil<p® — qnil <D(I) (g pnil
©~1(Dr) 7= 1(Dr(J)) 7 (Dr) 7= Y(Dr(J))

oo nil<D(J) (oo nil<D°

are flat over 7= Ox. Similar claims hold for C D) TN D ()TN
T 1), 1, ™ I st

il<D(J i _
nil <D(J) nil are also flat over n~'O0x.
©~1(Dr),T,N =Dy (J)),T,N

conil<D(I®)  Hoo<D(I€) . .
Proof. — We have Cn—/l(fl) =C = D)) ®c|zier) Nil(zi] i € I), which is

flat over 71Oy, according to Lemma 4.2.7. Then, we can prove Proposition
4.3.8 by the arguments in the last part of the proof of Proposition 4.2.4. [J

4.3.7. Proof of Theorem 4.3.2. — The first claim of Theorem 4.3.2 is
obvious. We give a preliminary for the second claim. Put

X':=Cx X, X}:={0}xX, D :=(CxD)u({0}xX).

Let J C £. Put D'(J) := C x D(J). Let my : X'(D') - X’ and m :
C x X(D) — C x X be the real blow up. We have a natural diffeomorphism

Ty L (Xh) ~ St x X (D). Let po : X'(D') = C x X(D) be the naturally induced
map. We use the coordinate system z = reV=1 of C. We have a natural
inclusion:

33 Coo/ni<D/(j) X)) — pos Coo nil<D’(J)
) D)) — o (D),

oo nil< D’ (J)(*X(’)) and po. (C”—

T (X’) 7r0_1(X(’]
which are denoted by F) and Fb, respectively.

The operator Z 0, induces endomorphisms of C* 2=

LEMMA 4.3.9. — The cokernel of F; (i = 1,2) are 0, and (33) induces an
isomorphism Ker F} ~ Ker F5.

SOCIETE MATHEMATIQUE DE FRANCE 2014



64 CHAPTER 4. SOME SHEAVES ON THE REAL BLOW UP

Proof. — 1t is easy to obtain the vanishing of Cok F} by a formal calculation.
Let us prove the other claims. We take S C C such that

(i) the induced map & — C/Z is bijective,

(ii) 0 € S.
According to the decomposition Nil(z) = @,cg2*Clz, 27 '] [log 2], we have
the decomposition

> nil<D'(J) _ > nil <D’(J)
5 (XP) mes o (X)a
Let U C X(D) be an open subset. Let f be a section of Coo/ln(ﬂ\<f/(‘]) on
o (X)),

St x U < my H(X}) expressed as follows:

—vV-lbo atn ‘ oo <D(J
F= 2.0 Jowngvone VI (log 112) (fakng € C IR ).
b n7]

We have the equality

(84) 20.f =Y (3V=T 0p+ 30) fakn,ppre ™ 1722 (log|2?)’

Bk n,j
Z Z /= . j—1
Bk n,j

For any section g of Cgfi ilg(‘])

1 .
(D) on S+ x U, we can solve the equation

200G —V—-1aG =g (a #0)

n Cgfi :i)-l;g)(‘]). We remark fo% e VTa0g()dh = 0. It is easy to obtain
Cok(Z0z) =0 and Ker(zZ0z) = 0 in the part o # 0 by using (34). Let us
consider the part « = 0. We use the filtration with respect to the order of
log |2|?. If we take Gr with respect to this filtration, the second term in (34)
with a = 0 disappears. We obtain H° Grj = H! Gr; for each j, and they are
represented by constants with respect to 6. Then, the second term in (34)
induces H° Gr; ~ H!'Gr;_y for j > 1. Hence, we obtain the vanishing of
the cokernel of Z0z, and the kernel is H° Grg. Then, the remaining claims of
Lemma 4.3.9 are clear. U
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We have the morphism of exact sequences

0,0 <D'(J)UX] 0,6<D’(J) ’ 0,0 <D'(J)
0 — Qfo((D) QCX;{(D) (xX)) — Qn;/l(}é) — 0
0,0 <D'(J)UX] o <D'(J ,o<D'(J
0 — po*Qi,(;,)( WX po*ng(;f 7 po*QO_/f(g,()J) — 0.
o 0

The left vertical arrow is an isomorphism. According to Lemma 4.3.9, the
right vertical arrow is a quasi-isomorphism. Thus, the central vertical arrow
is also a quasi-isomorphism, which is the second claim of Theorem 4.3.2. [

4.4. Push-forward

4.4.1. Preliminary. — We shall freely use the notation in §4.1.5.2. Let
(t1,...,t;) denote the standard coordinate system of C*. We set

14
DO = U{tl = 0}

i=1
We have C/(Dy) = C!. Let X be any complex manifold. The projection
X x C! - X x C’ is denoted by m. We put Hx := X x Dy.

For any closed complex submanifold ¥ C X, we have naturally defined

morphisms:
-1 L mod ~ qmod
(35) ™ OYX(CZ ®”710X><C£ AXX@E — Z*AYX@“
_ id ~ rapid
36 T 10 L7 rapid J d
( ) Y xC* ®7r 10x><c€ ‘AXXC‘Z >W4Y><C‘Z

Here, 7: Y X C! — X x C’ denotes the map induced by the inclusion Y C X.
LEMMA 4.4.1. — The morphisms (35) and (36) are isomorphisms.

Proof. — Let us prove the claim for (35). The other case can be proved sim-
ilarly. It is enough to argue it locally around each point of Hx. It is easy
to reduce the case X = A" = {(z1,...,2,); |z:| < 1} and Y = {z; = 0}.
Let F' be the endomorphism of A‘)n((’d given by F(z) = zjz. The complex

xCt
mod F, mod -1 L mod s
AXX(;@ - AXX@ expresses 7~ Oy, ce ®”_loxxcf AXX@. Clearly, F' is in-
jective. It is enough to prove that the induced map p : Cok(F) — .Aglc;‘(ice is

mod_
X xCt

U C X x C’ such that p(f) = 0. Then, 27 ' f naturally gives a holomorphic

an isomorphism. It is clearly surjective. Let f be any section of A on

SOCIETE MATHEMATIQUE DE FRANCE 2014



66 CHAPTER 4. SOME SHEAVES ON THE REAL BLOW UP

function on U \ 7' (Hx). Let us prove that z; ' f is of moderate growth. We
may assume that U is the product of a multi-sector

Sy = {(tl,... ,tg); \arg(ti) —(901" < (5()Z', 0< ‘tz‘ < To; (2 = 1,...,@}

(0oi € R, 6o; > 0, 79; > 0) in (C*)*, and multi-discs U; = {|z1] < 1} and
U={(22,..-,2n); |zi| <re}. WeputUj := {%rl <|z1| <7} On U xU xSy,
we have |z} lf1<c Hle |t;|~". By using the maximum principle, we obtain
the estimate of zl_lf on U; x U x S;. O

4.4.2. The push-forward of coherent Ox-modules. — For any
710y ce-module M, we canonically have a standard 71Oy, ce-flat
resolution N, (M) of M given as follows. For any open subset U C X x CY,
let Ny be the free 771 (Oyce)p-module generated by M(U), and let N
denote its O-extension on X x Cf. It is naturally equipped with a morphism
ay : N = M. We put No(M) = @, N, and then a := P av gives a
surjection Ny(M) — M. By applying the same procedure to Ker a, we obtain
a flat 71O ce-module N7 (M) with a surjection Nj(M) — Ker a. By the
standard inductive procedure, we obtain the flat resolution. In particular, we
obtain a canonical flat resolution N/, (A;I‘(Od(cg)

Let ¢ : (Y,9) — (X, f) be a morphism in Cat,. We have a canonical
morphism @ 'A, (.A;Od(cz) — N, (AI}I}O‘&) Hence, for any Oy-sheaf M, we
obtain the morphism

GrIN (AL ) ® o, 7Ty M)

X xC*t ™
 N(ASL ) @ (T, M),

It induces the morphism
(37) AL, ok 0, , T (TR M)

— ROW(AYSE @rmip, T TguM).
Similarly, we have the natural morphism:

(38) A4 oL a 7Y Rp M)

X xC* X xCt

~ rapid L -1
— R(PU(.A;?—EZ ®7r710y><c€ ™ (Fg*M))

apé is flat over 71Oy, ¢ (Proposition 4.2.4),

we may replace @ in (38) with ®. Later, we shall prove that Al;(c;d@ is also

flat over 71Oy, ¢ (Theorem 4.6.1). O

REMARK 4.4.2. — Because A
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THEOREM 4.4.3. — Suppose that M is Oy -coherent and that o is projective.
Then, the morphisms (37) and (38) are isomorphisms.

Proof. — We shall give details for (37). Because the other case can be argued
in a similar way, we give only an indication in the last. It is enough to consider
the cases

(i) ¢ is a closed immersion,

(ii) ¢ is the projection Y =P" x X — X.

4.4.2.1. The case (i). — The following natural morphisms are isomorphisms:
(39)
7T71 (Ff*SD*M) ®£_10X><Ce A?idﬁz

1 L 1 L mod
=7 (‘PI*FQ*M) ®7r—1s01*oyxcf (ﬂ— (PI*OYXCZ ®7"_10thcf AXX(EE)

~ -1 L d
~ Pra (7 (TgeM) @710, AYSee)-

Here, we have used Lemma 4.4.1. Thus, we are done in the case (i).

4.4.2.2. The case (ii). — Let us consider the case where p : Y =P"x X — X
is the projection. Let L be a line bundle on P™. Its pull back to Y x Cf =
P" x X x C!is denoted by Ly.

LEMMA 4.4.4. — Let ¢ > 0. If H4(P", L) = 0, we have

RIG1 (7 ' Tguly @rro, _, ATOL,) = 0.

Proof. — We have the natural decomposition dy ¢ = Opn + Ox + e into
the differentials of the P"-direction, the X -direction and the C!-direction. Let
B, & be the sheaf of C*°-functions x on Y x C* satisfying (Ox + 9¢e)k =0
and the following condition locally:

(Moderate) For any differential operator R on P", there exists N > 0 such
that R(x) = O[T, [t ).

We naturally have A?Z%Z C By, z- We set

By e = By ® Wﬁl(Q%;X)'

Y xC¢

: mod 0,
The naturally defined morphism AYX@ — BYX@
which can be proved by a standard argument for Dolbeault’s lemma. Hence,

is a quasi isomorphism,

mod .

yxcl T Y xCt
0,0
yxct Y xCt

We take a hermitian metric hy, of L. We fix a Kdhler metric gpn of P™.

we obtain the following @1-soft resolution of 7~ (Ly) ®,-1p

7 Ly) @10, , AYek — 1 (Ly) @r10
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Let 8% denote the formal adjoint of 8 : (L ® Q%r) — C®(L @ Q™).
Let AOL" denote the Laplacian on T'(P™, L ® Q%) associated to bz, and gpn.
Let G%* be the Green operator.

By the assumption H?(P", L) = 0 for ¢ > 0, we have A% 0 G4 = G%% o
A% = id if ¢ > 0. We have [G®*,0.] = [G"*,0%] = 0. In particular, if
o =0 for 7 € T(P", L ® Q%9) (¢ > 0), we have .93 G(7) = 7. Recall the
following standard results for elliptic operators:

> GO are integral operators.

> For any non-negative integer m, there exists C,, > 0 such that
IGo()lg2 ., < Con 7l for any = € D(B", L ® 009), where ||z
denotes the Sobolev norm.

Let P € m ' (Hy). Let Up be an open neighbourhood of P in X x Cf. Put

Up :==Up \ 7 '(Hx).
We have @7 (Up) = P" x Up. Let 7 € T(P" x Up,m 'Ly @r10_, B).
We obtain a C*°-function G(7) on P" x U2, and we have 0,,G(1) = 0
and 0,,G(t) = G(0,7) for any local coordinate system (z1,...,2,) on
X x C!. Then, by the estimate of the Green operator, we obtain that
G(r) e D(P" x Up,m 'Ly ®,-10, B*). Moreover, if O =0and ¢ > 0, we
have 91,(0%5G()) = 7. Thus, we obtain Lemma 4.4.4. O

LEMMA 4.4.5. — We have cﬁl*A?(;%é ~ Agn(‘;d@, i.e., the morphism (37) is

an isomorphism for Oy .
Proof. — Let P € n1(Hy). Let Up be a small neighbourhood of P in X x C*.
Let k € T'(P" xUp, A?i‘% ,)- Take any point @ of P". We consider the inclusion

1 :Up = Up x {Q} = P x Up. We have j:= 15" (x) € T(Up, AT°L,). Tt is

easy to deduce that K = ¢(u). Then, we obtain Lemma 4.4.5. O

LEMMA 4.4.6. — Let L be a line bundle on P". Then (37) is an isomorphism
for Ly .

Proof. — We use an induction on n. In the case n = 0, the claim is trivial.
Assume that we have already obtained the claim in the case n — 1. Let L =
Opn(m). If m = 0, the claim follows from Lemma 4.4.5. We fix a hyperplane
Pt P*. If m > 0, we can reduce the claim to the case m — 1, by using
the exact sequence 0 = Opn(m — 1) = Opn(m) = Opn—1(m) — 0. If m <0,
we can reduce the claim to the case m + 1, by using the exact sequence 0 —
O[pm(m) — Opn(m + 1) — Opggl(m +1) —=0. |
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Let us finish the proof in the case (ii). It is enough to prove that (37) is an
isomorphism around any point of X x C!, which we shall implicitly use. We
may assume to have a resolution

(- Qy—Qp 1 — - — Q] — Qo) 2 M,

such that Q,, are of the form @ivz"l (Lp.,i)y, where Ly, ; are line bundles on P™.
By Lemma 4.4.6, the morphisms (37) for Q,, are isomorphisms. Hence, (37)
for M is also an isomorphism. Thus, the proof for (37) is finished.

Let us give an indication to prove that (38) is an isomorphism. We can
argue the case (i) in the same way. In the case (ii), we replace the condition
(Moderate) in the proof of Lemma 4.4.4 with the following:

(Rapid) Let R be any differential operators on P". Then, R(x) = O(I] |t:|Y)
for any N.

Then, we can prove that (38) is an isomorphism in the case (ii). Thus, the
proof of Theorem 4.4.3 is finished. U

4.5. Characterization by growth order

4.5.1. Statements
THEOREM 4.5.1. — Let (X, f) be an object in Caty.

-10
> Tor‘ xxet (Ar)n(‘;dce, T (’)pf(X)) =0 for i # 0. Namely,

Amo Ot ®7r 10, 0T Orf(X = Amxce Qr-10, 7r_IOFf(X)-
> Let p: (Y,g) — (X f) be a projective birational morphz’sm such that (i)

Dy is normal crossing, (it) Y \ Dy ~ X \ Dx. For the naturally induced
map p: Y (Dy) = X x C!, we have

(40) R,O*A$?g ) ~ Amo <Gt Q- 1OX ot ﬂ'ilopf(x),
rapid ~ rapid —1
(41) *AY(D 'AXXU ®”_10Xx<cf T OFf(X)'
m _ rapid
> The support 0f~AX°Xd@ Or-10, 4 T IOpf(X) and A;p(cé Rr-10, e
w_lopf(X) are X(f).

REMARK 4.5.2. — Note that Araplge is flat over 7 'Oy, ¢, according to
Proposition 4.2.4. The first claim of the theorem is a special case of the
flatness of Amo e over T 'Oyt (Theorem 4.6.1). O
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Let us state some consequences. We have the sheaves of algebras AmOd and
AE‘?I;d on X (f) determined by the conditions

mod

Ff* f =7 (OFf(X)) ®7T_1OX><(CZ AXX(E£7

id — id
Ff*Arapl =T (OFf(X)) ®7T_10Xx<cf A;?I:@e.

THEOREM 4.5.3. — Let (X, f) € Caty.
> For the inclusion j : X \ Dx — X(f), the natural morphism .A%Of —

7xOx\Dy 18 a monomorphism. The image is A?c(’?
> The natural morphism AE?I;d — J*OX\DX is a monomorphism. The
image 1is Arapid

> In particular, if f is submersive, then we naturally have A§°ﬁ ~ Amed
id rapid ’ X(Dx)
and Arapl ~ AT
X(Dx)

Proof. — 1t follows from the descriptions (40) and (41). O

Theorem 4.4.3 can be reformulated in terms of .A;C(’]‘f) and A;?E);(;.
THEOREM 4.5.4. — Let ¢ : (Y,g9) — (X, f) be a projective morphism in Caty.
Let M be any coherent Oy -module. Then, the following natural morphisms
are isomorphisms:

(42) AR ©r0, T R M = RE(AR @ro, m M),
rapid rapid -1
(43) AX(f) ®7r 10 T 'Ro M ~ R@*(A?(g) ®r10y m M). -

After the flatness results in Proposition 4.2.4 and Theorem 4.6.1 below, we
may replace ® with ® in (42) and (43).

4.5.2. Proof of Theorem 4.5.1. — Let us begin with the simplest case.

LEMMA 4.5.5. — Suppose that f is submersive. For the naturally induced
closed immersion p : X(Dx) — X x C', the following natural morphisms are
1somorphisms:

_ m mod

(44) ™0y (%) Br-10,, 0 Axnee — AR Dy
1 L rapid rapid

(45) d OFf(X) ®”_10ch€ ‘AXX@Z P 'AX(DX)
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Proof. — It is enough to argue it locally around any point of Hx. We may
assume X = {(21,...,2,)} and f = (21,...,27). Let G: X x C! — C" x C*
be given by

G(Zl,...,Zn,tl,...,tg) = (2’1 —tl,ZQ—t27...,2’g—tg,Zg_H?...,Zn,tl,...,tg).

Then, Gol'y(z1,...,2,) = (0,...,0,2¢41,. .., 2n, 21, .., 2). By using G, it is
easy to prove that the morphisms (44) and (45) are isomorphisms. O

Let us consider the case where Dy is normal crossing. We have a naturally
defined map X \ Dx — X x (C*) as the graph. Let us observe that it is
extended to p; : X(Dx) — X x C’. Let f; be the composite of f : X —
C* and the projection C* — C onto the i-th component. It induces a map
gi - X\ Dx — C*. It is enough to observe that it is extended to a map
X(Dx) — C. Let P be any point of Dy. Because £71(0) is contained in
the normal crossing hypersurface Dy, we can take a holomorphic coordinate
neighbourhood (Xp;z1,...,2,) around P such that Dx = [Jj_,{z; = 0}
and f; = ;’:1 z;nj, where m; > 0. Let z; = rieﬁej. Because the map
X(Dx) — C* is described as

v—1601

V=100 m; 1m0
(rl,e yeeeyTp€ y Zptls -5 Zn |—>H ¢

we obtain that g; x,\p, is extended to )ZP(DX NXp)— C. Then, the claim
follows.
We have the naturally defined morphism:

(46) AL, @10 ~Or, (x) — pLeAL

xxct T X(DX)

PROPOSITION 4.5.6. — Suppose that Dx := f~Y(Dg) is normal crossing.
The morphism (46) is an isomorphism. Moreover, we have the following iso-
morphisms:

o mod
Rpl*‘AX(D - pl*‘AX(DX
d - -1
ARoL, @k 10, T Orx) = AR @r10 T Ory(x)-
Proof. — In the proof, we omit to denote 7~!. We have the maps

IV X(Dx) — X(Dx) x €' and TV : X(Dx) — X(Dx) x C’
induced by f. We have the projections:

1 X(Dx) xCl — X x C* and 1p: X(Dx) x C' — X(Dx) x C.
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We set Dy := Dy xC*. According to §11.1.1 of [52], we have the isomorphisms

RVl*AmOd it A;odcz ( D,/X')v RVQ*.A§(()?) = Amod et (*HX)

Hence, we have the natural isomorphisms

(47)  Rui(ART) | 2 6, . Orp(x0) = AR (D) ©6

X(Dx) X xCt Ory (x)

X xct
Amo el ®0X o Oryx)(+Dx7)

~ A;n((;dce ®0xXce Or, (x)(*Hx)

= AI)H(OdCe (+Hx) ®é

~ mod
A <Gt ®(’)

X xct

OFf (X)

X xCt

xxct OFf(X)

We also have

(48) RVQ*(A?(% )<t ®6. ., Oryx)) =~ A??% o (¥Hx) @5
~ AT d L
AX(()DX)x(c@ ©o

OFf (X)

X xct X xct

x xct OFf(X)

LEMMA 4.5.7. — fgf) s a closed embedding, and that we have

(49) AR | @6, Oryx) X AR | 0 ®0

mod
X(Dx)xCt “Ox e X(Dx)x Ory (x) A

X xct X(DX

Proof. — For the expression f = (f1,..., f¢), we define G’ : X x C* — X x C*
by G/(P,tl,...,tg) = (P,tl - fl(P), ,tg - fg(P)) We have G’ o Ff(P) =

(P,0,...,0). Then, we can prove (49) by an induction on /. O
“1Ox et mod -1 :

LEMMA 4521)8 — The support of Tor, * (AX‘(’D e Or,(x)) is con-

tained in I'; " (X (Dx)).

Proof. — Let U denote an ¢-dimensional vector space with a basis eq, ..., ey.

We set i
Ck_g = /\U® OXX(Ce.
Let 0 : C™ — C™*! be given by

Jda = Z(tl — fz)ez N Q.

Then, we obtain a complex of Oy, ce-modules C°, and it gives a free resolution
of Oxyce-module Or,(x). If Q € X(Dyx) x C* is not contained in f;l)(X),

then one of t; — f; are invertible in .A;C(’g) e around ). Hence, the complex
A;((’g e ® C* is acyclic around Q). It implies the claim of Lemma 4.5.8. [J
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Note that v, induces a homeomorphism fgcl)(X = f?) (X). By
Lemma 4.5.8, we obtain that for p # 0

7 Ox et ymod -1
RPvy, Tor; —* © (AXC()D)X(C“ 7 Or;(x)) = 0.
By applying the argument of the spectral sequence with (49) to (48), we obtain

that

o xCt mod —1
Tor; —**¢ (AXC()D)W’ Ory(x)) =0

for j # 0, i.e.,
mod L ~ —1
A)?L()D)X@f ®”_lox T Orf(X 'AX(D xCt B WOxet T Orf(X)

on X(Dx) x C!. We also obtain an isomorphism of sheaves on X (Dx) ~

r(x):

mod ~
“4 D)xCt B0 e Ory (x) “4~ X(Dx)

From (47), we obtain

(50) Rp1 AT |~ va*(fl;% (50 ©0y 0 Orpx))

~ mod
ALE ®6 L, Oy

X(D

Note Rle*(AmOd D) ®0, . Ory(x)) = 0 unless p > 0, and the p-th coho-

d L . . .
mology sheaf of .AI)T‘(C; e Oxch Or,(x) is 0 unless p < 0. Hence, (50) implies
the claims of Proposition 4.5.6. O
PROPOSITION 4.5.9. — Suppose that Dx is normal crossing. Then, the nat-
ural map

rapid -1 ~ rapid
‘AX ce ®7r*1(’)x ce ™ OFf(X _pl*A~ (Dx)
is an isomorphism. Moreover, we have Rpl*Arapld p1*Arapld

X(Dx) (Dx)’

Proof. — 1t is proved by the arguments in the proof of Proposition 4.5.6. We
omit to denote 77!, We have the isomorphisms

<Hx<D <D

<H <D H
R AG g = A& (6Dx) and - Rup AG 00, = AQ B

)><(C£ X xC*t (+Hx).

Hence, we have the natural isomorphisms

<Hx<D!
(51) Rl/l*(AX(g )Xf& RO o Orf(X)) ~ AX Cg( DY) ® O et Orf(X)

~ A<Hx
AL Ee ©0y o Oy (x)s
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<Hx<D

(52) RVQ*(AX(D N ze ®O4 o Orf(X))
AX(D e FHX) @00 OFf(X)
= ;)L,)X)xcf B0y ee Orp(x) = Aj{?gx)'
Let us consider the morphisms
(53) A5 ier B0y, On «— Ay X g0, O
— Aj?l()D/X)igf B0y ce Ory-

!

. . H <D
Because t; — f; are invertible on AS72X_  and A" | we have
m= (D) ! (Hx)
<Hx

7ﬁ@@%m@m>0wdA/\®%WQMFQ

'(Hx)

Hence, the morphisms in (53) are isomorphisms. By the argument in the proof
of Lemma 4.5.8, we obtain that the support of the sheaves in (53) are contained
in I‘(l)( X). Because v, gives a homeomorphism I‘gcl)(X(D)) o~ I‘;Q) (X (D)), we

Hx<D), ) 2
identify A;(;;) UX ®0, 0 Ory(x) With .A;((Dgx) as sheaves on X (Dx). Then,
the claim of Proposition 4.5.9 follows from (51). O

Let us finish the proof of Theorem 4.5.1. Let (X, f) be any object in Caty.
We take any projective birational morphism ¢ : (Y, g) — (X, f) such that

(i) Dy is normal crossing,
(i) Y\ Dy ~ X\ Dy.
We set D}, := Dy x C! and D' := Dx x Ct. We have

Rp, Oy (xDy) ~ Ox (xDx).
By using Theorem 4.4.3, we obtain
Ry (Amx(ce Rk 10, , ™ T (Oy (+Dy)))
~ AmO e L 0, w—lrf*(ox(*DX)).
By using Proposition 4.5.6, we obtain
(54)  REu(AYSE @rio, T T Oy (+Dy)))
~ Ry (AL, ©F 0, L7 O, )
~ R@l*(AYX@e ®7T_IOYXCg 7' Op, (v))-
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We also have
.Amo <Gt ®7r 10, 71—_IFJ"* (OX(*DX)) Amo <t ®7r e 7T_l(,)l—‘f(x)'
We obtain
RE1 (A%, @rr0, , ™ Or,(v) = A%, @F 1 77Oy (x)-

It implies that the claims for A™°d in Theorem 4.5.1. The claims for APid
can be proved similarly. O

4.5.3. Complement for the sheaf of Nilsson type functions (Ap-
pendix). — Let us consider an analogue for the sheaves of Nilsson type
functions. We restrict ourselves to the case £ = 1. Let .Aml denote the sheaf

of holomorphic functions of Nilsson type on X x C.

LEMMA 4.5.10. — For any complex manifold i : (Y,g) C (X, f) in Caty, the
naturally defined morphism

Anll ~ ®

-1 ~ nil
XxC Em10xxc T Oy xc WAV &

Y xC
s an isomorphism.

Proof. — As in Lemma 4.4.1, we have an isomorphism
rapld rapid
‘A ®0ch Oy xc = 'AYXC
We can check An‘l/(ﬁ ) ®OA E; ~ Aml ) directly. Then, the claim of
n—1(Hy
the lemma follows. O

Let ¢ : (Y,9) — (X, f) be a morphism in Cat;. For any Oy-coherent
sheaf M, we have the following naturally defined morphism

(55) AnL 7 YT fRpa M) — RP1(AM ~®

71
XxC - 1(’)ch Y xC Q- 1(’)y cT FQ*M)'

ProOPOSITION 4.5.11. — Suppose that M is Ox-coherent, and that ¢ is pro-
jective. Then, the morphism (55) is an isomorphism.

Proof. — By Theorem 4.4.3, we have an isomorphism

Arapig ®L Wﬁl(Ff*ch*M) ~ R@l*(.Arapig ®L

—1
XxC ﬂ-_lOXXC Y xC 71'_10Y><C m FQ*M)

We also have the formal isomorphism
AR ©r oy 7 (CpReM) = RGL(AR @710, 7 Tg).

Then, the claim of the proposition follows. ]
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THEOREM 4.5.12. — Let (X, f) be an object in Caty. Let ¢ : (Y,g9) — (X, f)
be a projective birational morphism such that

(i) Dy is normal crossing,
For the naturally induced map p: Y (Dy) — X x C, we have

R,O*Aml NAml R 1Oy pe ﬂ—iloFf(X)'

Y(Dy) — T XxC
Proof. — As in the proof of Theorem 4.5.1, it is enough to consider the case
where ¢ = id. We use the notation in the proof of Proposition 4.5.6. We have
the isomorphism Rul*Aml(D " ~ Aml (*D’X) Hence, we have the following

natural isomorphism
L
Ryl*(A;l(l(D & @0y e Ory(x)) = Af;x(ﬁ ®0x xc Ory(x)-
We have the naturally defined morphism

nil (1) gnil
'AX(D )x& D0xxc Oryx) — I AX(DX

It is enough to prove that the induced morphism is an 1somorphisrn:
(56) RVl*(.Am ><(C ®OX><(C Opf(X)) — Rl/l*( fx Aml X))

We have already known that the following is an isomorphism, by Proposi-
tion 4.5.9:

rapid 1) srapid
R (ARTD, ) ©0sce Ory0) — B (TR AR )

Let Dx = [J;cp Di be the irreducible decomposition. For any I C A, we set
D[O = ﬂ (Dz X {0})
el
To prove that (56) is an isomorphism, it is enough to prove that the following

natural morphisms are isomorphisms:

<dDjo <0Djp
(57) RVl*AW*T(Eo) RPOx xc Orf(X) — Ryl* ‘A fl(Dz)

It is enough to consider the issue locally around any point of D X x {0}. We
may assume that X = A" Dx = U _{#z =0} and f = HZ 1 %

LEMMA 4.5.13. — We may assume that g.c.d.(m; | i € I) = 1.
Proof. — Let p:=g.c.d.(m; |i € I). We set ,
"= A" and D' = U{ZZ = 0}.

=1
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We define D := (;c/{zi = 0}. On X', we set g := [[;07 2" ¥ [[;¢; z;ni/p. We
define ¢ : X — X' by z; — 2l (i € I) and z; — 2; (i € I). We have f = go ).
The map v gives
Dy~ Dy and Dy(dD;) ~ D'(0D}).
Let T\ : X'(D') = X'(D') x C and ¢/, : X'(D') x C — X’ x C be given
) and v1. We have the following natural commutative diagram
of the sheaves on Dy (0D;):

similarly to I‘gc

Rup AXP0 90 Opx) — R IY)A=220
Y1 7~1(Dro) Oxxe M (X) Y = (D)

T 1

dDIO ®OX’><(C OFg(X’) —_— RVI*F(I)A /\ .

Ry *A
1 1( D7) LDy

It is easy to check that the vertical arrows are isomorphisms. Then, we obtain
the claim of Lemma 4.5.13. O

Let 7y : X(Dx) — X, my: X(f) = X and 7 : X(Dx) x C — X x C be the
projections. We have
71 (Dy) ~ Dr(dD;) x (SYI!, 771 (Dyo) ~ Dr(dDy) x (M),
ng(D[) ~ Dr x St
We decompose the map vyj—1(p,y : 7 ' (Do) — 7, (Dr) into
Dy(0Dy) x (SHTHY 2y Dr(oDy) x §* 25 Dy x S'.
To prove that (57) are isomorphisms, it is enough to prove that

58 R *A<‘9Df° ® Or, — Ry, D g<0br.
(58) H1 (Do) Ox xc pr1+l" f* (D)

is an isomorphism. We have the expression

oD oD . . .
A:if(%om) ~ TlgN (Af),(IaDI),T,N[[t’ zi | i € I ®ct z,jieq Nil(t, zi | @ € I)).

By the argument in Lemma 4.3.9, or by a direct computation of the cohomol-
ogy of the sheaves on the fiber of 1y, we obtain

<0Dg ~ i <0Djy o .
R AP0 g_r]%(A Dl 1€ T @y Nil(D).

Hence, we obtain the natural isomorphism

(59) Rpn. A<dD10 B0y Ory = _n; (A0 ol 11 € 1] @ Nil(e)).
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Here, t acts as f on AEOSID )TN[[Zi | i € I]]. We have the expression
I
AP i (AP [2i | i € I]) ®cpasjien Nil(z | i € 1)).

ﬂ_l—l(DI) ﬁ\[ DI(8D1),T,N
We take Ty C C such that Ty — C/Z is bijective. We have the decomposition

Nil(z; |i e I) = EBz [2i,log z; | i € I].
acTd

We have the corresponding decomposition:

oD . . .
(60)  AF b, rxlzi 17 € I @cpzyien Nil(zi | i € 1)
- @I AE?(DaB,),T,N[[Zi |ieIz%®Cllogz | i € 1.
acTy

Recall f = HZ 1 Zm’ with g.c.d.(m; | i € I) = 1. Under the assumption, the
map C/Z — (C/Z)! given by B+ (Bm; | i € I) is injective. We have the
subsheaf
oD . ’ .
(61) @ AEI(;DI%T’N[[% | i eI Hzlﬂm ® Cllog z; | i € .
BET, iel

Let Q be the quotient of (60) by (61). Note that the fibers of ;o f}l) are

connected. By a direct computation of the sheaves on the fibers of py o f(l),
we obtain the push-forward of Q by p; o fgcl) is 0. Moreover, we obtain that

the push-forward of (61) is naturally isomorphic to
l

(62) D A5yl 1 € T (os([] ).

BETyH el i=1

Hence, the push-forward of A<a/’i : by pq o F}) is isomorphic to the limit
"(Dy

of (62). Together with (59) we obtaln Theorem 4.5.12. O

For any object (X, f) in Caty, we have the sheaves A% s on X (f) determined

by the condition ff*AI)l(i}f = W_IOFf(X) r—10x AI;(HX(E‘

v : (X1, f1) = (X2, f2) in Cat;, we naturally have (ﬁ*lA“Xi;fQ — Af)l(ilhfl.

For a morphism

We obtain the following propositions as in the case of A™Pid and A™°d,

PROPOSITION 4.5.14. — For the inclusion j : X \ Dx — X (Dx), the natural

nil

morphism AXf — J«Ox\py 18 a monomorphism. [
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PROPOSITION 4.5.15. — Let ¢ : (Y,g9) — (X, f) be a projective morphism
in Caty. Let M be any coherent Oy-module. Then, the following natural
morphism is an isomorphism:

AXf ®ﬂ. 1OX ﬂ'ileD*M ~ RQE*( %ljg ®7r710y ﬂ'ilM).

4.6. Flatness of the sheaf of holomorphic functions with moderate
growth

4.6.1. Statement. — Let (X, f) be any object in Cat,. Let
j: X\ Dx — X(f)
denote the natural inclusion. For any Ox-module M, we set
T oaM = AX(f 10y T M.

It is also denoted by 7r}2 mod M ; when we would like to emphasize the dependence
on f. We shall prove the following theorem.

THEOREM 4.6.1. — AI)E(C(’?) is flat over 1~ 10x, i.e., T oM ~ A??? ®L—1(’)X

7 M for any coherent Ox-module M. Moreover, the natural morphism

Thod(M) = j«(Mix\py ) is injective.

COROLLARY 4.6.2. — AI)B(C(’?) is faithfully flat over 7 1Ox (xDx). O
We define 77, M Ag??}()i 10y 7T]71M . We can prove the following by

a similar argument.

PROPOSITION 4.6.3. — The natural morphism 7}, (M) — j.(Mx\py) is

imjective. [

By Theorem 4.3.1, Ara?}()i is flat over 77 !Ox. So, we have the following.

PROPOSITION 4.6.4. — Ag?l(o;(; is faithfully flat over 7 1Ox (*Dx). O
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4.6.2. Induction. — We consider the following conditions for any coherent
Ox-module M:
o1 L mod ~, ——1 mod

(P2): mroq(M) = j(Mix\p, ) is injective.

Let P(X) denote the class of coherent Ox-modules satisfying the conditions
(P1) and (P2). It is our purpose to prove that any coherent Ox-modules are
members of P(X). We shall implicitly use that the conditions are local.

We shall prove the following claim by using an induction on k:

(Qr): Let (X, f) be any object in Caty. Let M be any coherent O x-module
such that dim Supp M < k. Then, M is a member of P(X).

4.6.3. Preliminary. — The following lemma is easy to prove.

LEMMA 4.6.5. — Let 0 — M; — Ms — M3 — 0 be an exact sequence of
coherent Ox-modules.
> If My and Ms are members of P(X), then My is also a member of P(X).

> If My and Ms are members of P(X), then My is also a member of
P(X). O

The following direct corollary will be used implicitly.

COROLLARY 4.6.6. — Let p : M1 — Ms be any morphism of coherent Ox -
modules such that Cok(p),Ker(p) € P(X). If My is contained in P(X), then
M, is also contained in P(X). O

LEMMA 4.6.7. — Let Z be any complex submanifold of X with the inclusion
iz Z — X. Let Mz be any locally free Oz-module. Then, we have iz, My €
P(X).

Proof. — It follows from Theorem 4.5.1 and Theorem 4.5.4. O

4.6.4. Functoriality for the push-forward. — Let ¢ : (X', f) = (X, f)
be a morphism in Cat, such that ¢ : X’ — X is projective and birational. We
do not assume that X’\ D is isomorphic to X\ Dx. Let D” be the exceptional
divisor of ¢. Let M be a coherent Ox/-module such that M € P(X’). Assume
that dim Supp M = k and dim ¢(Supp M N D") < k.

LEMMA 4.6.8. — Assume that Q_1 holds. Then, we obtain p.(M') € P(X).
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Proof. — According to Theorem 4.5.4, we have the isomorphism:
mod L —1 mod L —1
(63) (AX?(f, 104 T M) ~ AX(()f) 10, T RoeM

If i > 0, we have R'p,M € P(X), because dim Supp Rip,M < k. By using
the degeneration of the spectral sequence, we obtain

A Tor™ . “lox Amod 1o M i < 0),
Hi(AR @L o 7 Rp, M)~ { P Ay ™ e M) (0 <0)
T oqlt o« M (1> 0).

By (63) and the isomorphism A;n(?df/ ®7Lr_10 M ~ A;n(?df,) Qp-10,, M, we

have H' = 0 for i < 0. Hence, we obtain that ¢, M satisfies (P1). Because

TiodPs M = Gu(mhoa M),
(P2) for p. M follows from (P2) for M. O

We have a direct consequence. Let (X', f) — (X, f) be a morphism in Cat,
such that ¢ : X’ — X is a projective birational morphism. We do not assume
that X’ \ Dx/ is isomorphic to X \ Dx. Let Z' € X’ be a k-dimensional
irreducible complex submanifold. We assume that Z’ is not contained in the
exceptional divisor of ¢, in particular, Z’ is birational to ¢(Z’). We obtain
the following lemma from Lemma 4.6.7 and Lemma 4.6.8.

COROLLARY 4.6.9. — Let My be any locally free Oz -module. Suppose Qx_1.
Then, we have g, (igzMz) € P(X). O

4.6.5. Coherent sheaves on submanifolds. — Let Z be any k-dimen-
sional irreducible submanifold of X with the inclusion iz : Z7 — X.

LEMMA 4.6.10. — Let M be any coherent O x-module such that Supp(M)CZ.
Assume that Qi—1 holds. Then, we have M € P(X).

Proof. — 1t is enough to consider locally around each point P of X. We shall
shrink X around P without mention.

First, let us consider the case where M = iz, My. We may assume that My
is a torsion-free Oz-module. We can find a projective birational morphism
e (X', f) = (X, f) in Caty such that

(i) the strict transform Z’ of Z is a complex submanifold of X',

(i) there exists a locally free Oz-module M’ with a morphism v : *M — M’
such that ¢ xn pr is an isomorphism.
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We obtain a morphism vy : M — .M’ which is an isomorphism on Z \
©(D"). By Qk—1, Ker 11 and Cok 91 are contained in P(X). Then, we obtain
Lz« M € P(X)

In the general case, we have a finite increasing filtration

F={F(M)|i=0,....,N}

of M by Ox-modules such that each F;(M)/F;_1(M) comes from an Oz-
module. Then, the claim of the lemma is reduced to the result in the previous
paragraph. ]

4.6.6. End of the proof of Theorem 4.6.1. — Let Z be any k-
dimensional irreducible reduced analytic subset of X such that Z ¢ Dyx.

LEMMA 4.6.11. — Let M be any coherent Ox-module such that Supp(M)CZ.
Assume that Qi—1 holds. Then, we have M € P(X).

Proof. — It is enough to consider the issue locally around any point P of X.
Hence, we shall shrink X around P without mention. Let Z; denote the union
of the singular points of Z and Dx N Z. There exists a projective birational
morphism pp : (X', f') = (X, f) in Caty with the following properties:

> The induced morphism X \ D” — X \ (Z; U D) is an isomorphism.

> The strict transform Z’ of Z is a complex submanifold of X".

We have M — @.@*M, which is an isomorphism outside the singular locus
of Z. Hence, we obtain M € P(X) by Lemma 4.6.8 and Lemma 4.6.10. [

Let M be any coherent Ox-module such that dim Supp(M) < k. If we
have a decomposition Supp(M) = Z; U Zy such that Z; N Zy € Z;, then
we have an exact sequence 0 — M; — M — My — 0 of coherent Ox-
modules, such that Supp(M;) C Z;. Hence, by an easy induction, we obtain
M € P(X) from Lemma 4.6.11. Thus, our induction can proceed, and the

proof of Theorem 4.6.1 is finished. U

4.7. Push-forward of good D-modules and real blow up

4.7.1. Rapid decay and moderate growth. — Let (X, f) be any object
in Caty. We put

mod .__ __—1 mod
D)?(f) =7 (Dx) @r-10, A)?(f)'

For any Dx-module M, we set
_ _ rapid
Thmod(M) =T "M & 10, Ar)n{()?)a T papid (M) =T "M @10, ‘A)i(i?f)'
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They are naturally D2°4 -modules.

X(f)
Let ¢ : (X,f) — (Y,g9) be any morphism in Caty. For any D?{l‘(’;)
module M , we put
(64) GH(M) = R@i(n ! (Dyx) @fap, M).

Let M be any Dx-module. We have the naturally defined morphism
FARS @p-tni0y T HM) = Thnaa (M),
It induces the following morphism in the derived category of Dy, s-modules:
R (n (D x @5, M) 851510, FLAZ) — G moa(M),
We also have the isomorphisms:
R (17! (Dyx @, M) @p-15-10, & AFL)

~ Rpy(r ! (Dyx @ M)) @r-10, Ay?;)
~ 1 'R (Dy x ®1L>X M) @r-10, A$?9) > T g mod P1M.

Hence, we obtain the following morphism in the derived category of Dy,4-

modules:

(65) ﬂ—; modngM — (ZTW; mod(M)'

Similarly, we obtain the morphism

(66) 7T;rapid(PT'/\/l — GTW} rapid(M)'

PROPOSITION 4.7.1. — Assume that ¢ is projective, and that M has a good

filtration in the neighbourhood of fibers of w. Then, the morphisms (65)
and (66) are isomorphisms.

Proof. — By considering a resolution, it is enough to consider the case
M=M®o, Dx ® Q;(l, and M is an Ox-coherent sheaf. Then, the claim is
reduced to Theorem 4.5.4. O

Let (X, f) be an object in Cat, such that Dx is normal crossing. We set

Dy()g A;((’g ) ®r-10x 7 1Dy,

Let m : )Z(DX) — X be the projection. For any Dx-module M, we define
id
7TTmod'/\/l ‘AmOd On- 10x Ma T I‘a.pldM Arapl On— 10y M.

X(Dx) X(Dx)

We have the naturally defined proper map p : X(DX) — X(f)
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We obtain the following proposition from Theorem 4.5.1.

PROPOSITION 4.7.2. — We have the following natural isomorphisms for any
coherent Dx -module M :
RP*WTmOdM . 7I-;k”mod-/\/l’ Rp*ﬂ-irapidM = 7732 rapidM'
O

4.7.2. Compatibility with the de Rham functor. — For any Dx-
module M, we put

DR (M) = 77 (DRx M) @r-10, AR = 7 (Ux) @1, TFmoa (M),

DRYT!(M) i= 7 (DRx M) @710, A0 = 77 (0x) ©5- 1 hragia(M).

COROLLARY 4.7.3. — Suppose that M has a good filtration in the neighbour-
hood of fibers of ¢. Assume that ¢ is projective. Then, we have natural
isomorphisms:

R DRY (M) ~ DRES 4 (M), RE DRY(M) ~ DRI o (M),
Proof. — From gy} (M >~k 0iM, we obtain the isomorphisms
(67) RG DRY M ~ RG (7' Qx @ p, TFmoaM)
~ 7' Qy ®7Lr—lpy P47 moaM
~ 7 Qy ®7Lr—12>y (TgmoatM) =D Rypod g PtM.

Thus, we obtain the first isomorphism. We obtain the second one 51m11ar1y. U

Let (X, f) be an object in Caty such that Dx is normal crossing. We
consider the real blow up 7 : X(Dx) — X. We define DRZ°¢ (M) and

DR (A1) as follows: H )
)Z(Dx) as I0lIOwWS:

DR??%X)(M) =10 ®£*1DX T mod (M),

rapid — *
DR)?I()DX)(M) =@ T rapia(M).

We have the naturally defined proper map p : X (Dx) — X (f)-

PRrROPOSITION 4.7.4. — The following natural morphisms are isomorphisms:
id id
Rp. Rf;;()g | (M) ~ DRY% (M), Rp. DRf;f‘DX)(M) ~ DR%(M).
Proof. — It immediately follows from Proposition 4.7.2. U

We obtain the following corollary from Corollary 4.7.3 and Proposition 4.7.4.
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COROLLARY 4.7.5. — Let ¢ : X — Y be any projective morphism of com-
plex manifolds. Let Dy be a normal crossing hypersurface of Y such that
Dx := ¢ Y(Dy) is normal crossing. Let ¢ : X(Dx) — Y (Dy) be the in-
duced map. Then, for any coherent Dx-module having a good filtration in the
neighbourhood of fibers of @, we have the following natural isomorphisms:

mod mod
(68) R DRX(D )(./\/l) DR Y(Dy )cpT./\/l
69 Rp DRMp‘d ~ DR™&P .
(69) % (o) M) = PRy, 21 M O
REMARK 4.7.6. — G. Morando informed the author that the isomor-

phism (68) and its generalizations can be deduced from some results in [24].
While the author hopes that the generalization would make the subject more
transparent, he also hopes that our direct method would be also significant
for our understanding. O

4.7.3. Nilsson type (Appendix). — We have variants in the case of Nils-
son type. Let (X, f) be an object in Cat;. We set

il il -1
Dnl( A;(f —10x ™ DX
For any Dx-module M, we set 7/ (M) = 7 M ®,-10, AU . They are

X
naturally D! -modules.

X
Let ¢ : (X, f) — (Y, g) be a morphism in Cat;. For any D;l( )—module M,
we define ¢y (M) by the formula (64). We also define
DRY (M) = 7' 0x &5 1, 77 M.
We obtain the following from Proposition 4.5.15.

PROPOSITION 4.7.7. — Suppose that o is projective and that M has a good

filtration in the neighbourhood of fibers of ¢. Then, the natural morphism

(70) TaiptM — Gy (M)

is an isomorphism. In particular, a natural morphism R Dle (./\/l) ~
le g P1+M is an isomorphism. O

Let (X, f) be an object in Cat; such that Dx is normal crossing. We
consider the real blow up m : X(Dx) — X. We define

R;l(D )(./\/l) =10 1oy T pitM

for any Dx-module M. We obtain the following proposition from Theo-
rem 4.5.12.
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PROPOSITION 4.7.8. — Let p: X(Dx) — X(f) be the natural map. We have
a natural isomorphism

Rp,mi pit (M) = (M),

In particular, we obtain an isomorphism Rp, DR“XJI(D) (M) ~ DRI)I(i}f(./\/l). O

COROLLARY 4.7.9. — Let p: X — Y be any projective morphism of complex
manifolds. Let Dy be a smooth hypersurface of Y such that o~'(Dy) is normal
crossing. Let @ : )Z(DX) — ?(Dy) be the induced map. Then, for any
coherent Dx-module M having a good filtration in the neighbourhood of fibers
of p, we have the natural isomorphism

~ nil ~ nil
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CHAPTER 5

COMPLEXES ON THE REAL BLOW UP
ASSOCIATED TO GOOD MEROMORPHIC
FLAT BUNDLES

5.1. De Rham complexes

5.1.1. De Rham complex and a description by dual. — Let X be a
complex manifold and D be a normal crossing hypersurface with a decompo-
sition D = D1 U Ds. (Note that D; are not necessarily irreducible; see §3.2.1.)
We set

dx = dim X.

Let 7: X (D) — X be the real blow up. Let Q% denote the sheaf of holomor-
phic 1-forms on X. We put

D1<D <D1<D>
Q'~< 1=P2 . <1s
X(D) AX(D)
00 <D1<D> Qow <D1<Ds
X(D) TUX(D)

®7T_10X W_IQB(’

®7|'_10X 71'_193(.
For any holonomic D-module M on X, we define

DR<~D1§D2 (M) — A§D1§D2 ®7T_10X 7_‘_71 DRX(M)

X(D) X(D)
«<D1<D -
~ Q)?<(D)1_ 2[dx] ®7r—10x ™ 1M
~ Tot (Q;{(;?SDQ Rp-10, T M) [dx].
Note DR}I()DI)SD"’(M) ~ DR;((DI;)SDQ(M(*D)) because Q;;(g)lgD?(*D) =
e <D1< D2

X (D)
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We have a natural isomorphism R, DR;{I()Dl)SD2 (M) ~ DR)<(D1SD2 M in-

duced as follows, by Theorem 4.3.1:
(71)  Rm.Tot (=520 1 ntM)[dx]

X (D)
~ Tot (Rm.Q7 =7 =" @0, M)[dx]

<
(D)

~ Tot (0% " (+D2) @0y M)[dx].
LEMMA 5.1.1. — We have a natural isomorphism

RHom,-1p, (7'M, A}?DI)SDQ)[dX] ~ DRE(DI;)SDQ(DM).

Proof. — Since M is Dx-coherent, we have the isomorphisms

(72)  RMom, ip, (7'M, A}Z;)SD?)[dx]

~ RHom, -1p, (m M, 7 'Dx) ®7Lr—1px A}?E))Sm [dx]

=71 1(Qx @0y, DM) ®7§71DX A;{(D;))gpz

<D1<D L -1
1= 2) ®7T71DX 7T DM

~ (ﬁ—lQX Qr-104 A)?(D)

<D1<D2

Because A is flat over 77 1Ox (Theorem 4.3.1), 7 'Dx @ -10,

X(D)
.A;Z;)SM is flat over 7~ 'Dx. Therefore,
D1<D 1 e D1<D
A}f{(é)— >~ (Dx ®oy Oy ) Qr-10x A)<~((Dl)_ 2

is a 7! Dx-flat resolution. Hence, (72) is quasi-isomorphic to the following:

(73) (71'_1(93( ® DX) ®7r—10x A}?DI)SD2) ®7|-—1DX 7T_1DM [ClX]

~ Q};(g)@? Dr10, T ' DM[dx].

Thus, we obtain the desired isomorphism. O

According to Lemma 5.1.1, we have a natural isomorphism

(74) DR}Z;)SDZ (M) ~ RHom, 1p, (1 DM, A}?E))SDQ)[CZX]

~ RHom-1py (77 D(M(xD)), AL ") ldx].

We will implicitly identify them in the following argument.
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5.1.2. A combinatorial description in the case of good meromorphic
flat bundles. — Let X be a complex manifold with a normal crossing hy-
persurface D. Let 7 : )?(D) — X be the real blow up. Let V' be a good mero-
morphic flat bundle on (X, D). We have the local system on X — D associated
to Vix_p. Its prolongment over X(D) is denoted by £. If V is unramifiedly
good, for any P € 7~1(D), we have the Stokes filtration F* of the stalk £p
indexed by the set of the irregular values Irr(V, 7(P)) C Ox (xD)(p)/Ox x(p)
with the order <p. The system of filtrations {77 | P € 771(D)} satisfies some
compatibility condition. See [47], [48] or §3 of [49] for more details.

Let D = Dy U D5y be a decomposition. Let us describe DR;{Z;)SDZ (V) in
terms of the Stokes filtrations. If V is unramifiedly good, for P € X (D),
let E;DlSDZ be the union of the subspaces FI'(Lp) C Lp such that

(i) a<p 0,

(ii) the poles of a contain the germ of D; at 7(P).

If V' is not unramifiedly good, we take a ramified covering ¢ : (X', D") —
(X, D) such that V/ = ¢*V is unramifiedly good. We obtain the local system
£’ and a sheaf £/<P1<P2 on X'(D') associated to V' with the Stokes structure.
By taking the descent, we obtain a subsheaf £L<P1=P2 .

LEMMA 5.1.2. — The family {E;DlSDQ} gives a constructible sheaf L<P1=D2
on X(D).

Proof. — Tt is enough to consider the case X = A™ and D = Ule{zi = 0}.
We may also assume that V' is unramifiedly good. By using a decomposition
around P as in Theorem 4.1 of [49], it is easy to observe that it is enough
to consider the case V' = Ox(xD) with a flat connection Ve = eda, where

a=J[" 2™ (m; > 0) for some 1 < m < ¢. We have a decomposition

¢ = I, U Iy such that D; = Uielj{zl- = 0}. For P € X(D), we set I;(P) =
{i € Ij | zi(m(P)) = 0}. We set

Fy := —|a| ' Rea.

We put

m l
RO = U{ZZZO} and R1 = U {ZZ:O}\RO

i=1 i=m+1
> For P € X — D, we have E;DISDQ £ 0.
> For P € 7= (R;), we have E;DlSDQ # 0 if and only if I;(P) = @.
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> For P € 7~ 1(Ry), we have £57'="2 = 0 if and only if (i) Fy(P) < 0, (ii)
Il(P) cm.

Then, the claim of the lemma is clear. O

We recall the following proposition. (See [33] and [52]; see also [16].)

PROPOSITION 5.1.3. — The natural inclusion L<P1<P2[dx] — DR}?E))SDZ(V)
1S a quasi-isomorphism.
Proof. — We give a preparation from elementary analysis on multi-sectors.

We set
V4

Y:=A,x A} and Dy:{z:O}UU{wi:O}.
i=1
Let 7 : Y (Dy) — Y be the real blow up. For m > 0 and m = (mq,...,m;) €
7k, (0 <k <?), we put

k
a=z" H (P
i=1
We put F, = —|a~!|Re(a), which naturally gives a C*-function on Y (Dy).

Take a point P € 7~ 1(0) C Y(Dy). Let § = S, x Sy be a small multi-sector
in Y — Dy such that P is contained in the interior part of the closure of S in

Y (Dy).
> If Fy(P) < 0 (resp. Fu(P) > 0), we assume that Fy < 0 (resp. F, > 0)
on S.
> If Fy(P) = 0, we assume that Fy is monotonous with respect to 8, where
z = reV 1% is the polar coordinate system. Let 6; (i = 1,2) be the
arguments of the edges of S, i.e., S, = {(r,0) | 61 <0 <6, 0 <r <rp}.
Let 0 be one of §; such that F > 0 on {reV =10t} x G,

Let f be a holomorphic function on S of moderate growth with respect to z
and w. We set

) e [ e (o) +alCw) fG W
¥(z,w

Here, v(z,w) is a path contained in S, x {w} taken as follows.

Case Fy(P) < 0. We fix a point 2y € S,, and y(z,w) is a path from zj to z.

Case Fy(P) > 0. Let v(z,w) be the segment from 0 to z.
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Case Fy(P) = 0. Let 64 be as above. For the polar coordinate system z =
reV=10 let 4(z,w) be the union of the ray {peV =10+ |0 <
p < r} and the arc connecting reV=10+ and 2.

LEMMA 5.1.4. — For each N > 0, there exists Cn > 0 such that

14
2()(2,w)]| < C - = Tl
i=1
17w < O T il

Proof. — We give only an outline. Consider the case Fy(P) < 0. Let 2y =
0 eV=100 and z = revV=1% We may assume that the path v is the union of

(i) the arc 3 connecting zp and 21 = 79 eV-10,
(ii) the segment -y, connecting z; and z.

The segment 79 is divided into

o1 =mn0{l¢| >3]z} and 29 =m0 {I¢] < 5lz]}.
The contributions of v; and 72,1 are dominated by

14

[exp(=a(z,w))| T luwil™.

i=k+1

The function Re a is monotone on 77 2. We also have

J4
£(¢w)| < [N T ™

i=1

on v22. Hence, the contribution of 72 9 is dominated by |z|V Hle lw; |V, Let
us consider the case Fy(P) > 0. On 7, we have |f({,w)| < C" [V Hle |w; | N,
and Re(a) is monotone. Hence, it is easy to obtain the desired estimate. [

Let us return to the proof of Proposition 5.1.3. It is enough to consider the
case X = A" and D = Ule{zi = 0}. We may assume that V' is unramifiedly
good. Let P € 7=%(0,...,0). By using the local decomposition around P as in
Theorem 4.1 of [49], we can reduce the issue to the case V = @, Ox (xD) ¢
with a flat connection

Ve=e(d o Tar + Ny
e-e( a+Z(ai M+ N;) ~ ),

i=1 v
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where I; denotes the identity matrix, N; (i = 1,...,¢) are mutually commut-
ing nilpotent matrices, «; are complex numbers, and we put

m
e:=(e1,...,e,) and a:= Hz;ml
=1

Then, it is easy to observe that £<P1<P2 i naturally isomorphic to the 0-th

cohomology of DRE(DI;)SDQ (V)[—dx]. Hence, it is enough to show the vanishing
of the higher cohomology of DRTP'SP2(V)[—dx]. It is enough to consider the

X(D)
case rank V =1, and we put v = e;.

First, let us consider the case D; = D. For a subset J C {1,...,n}, we set

dzy =dzj N--- Ndzj,.

For a section w of Q}:(g), we have the unique decomposition w = » wydzy,
where wy € A}?D). Let S; (i = 1,...,¢) be a small sector in A}, and let U

be a small neighbourhood of (0,...,0) in [[;",,; A.,, such that the closure S
of §:=[]S; x U in X(D) is a neighbourhood of P. In the following, we will
shrink S without mention. It is easy to observe that it is enough to consider
the case a; =0 (1 =1,...,0).

Take h = 1,...,n. Assume V(wwv) = 0 for some section w of Q}f(g) on S
such that wy = 0 unless J C {1,...,h}. We have d(exp(a)w) = 0. For the
expression

exp(a)w = ZdeZhdZJ + ZdeZJ,
heJ heJ
we set
7(z) = Zexp(—a)(/ frdzp)dzy,
heJ v(=)
where v(z) is a path taken as follows:

> If h < m, the condition is similar to that for the path in (75).
> If m < h, v is a path connecting (z1,...,21-1,0,2p41,...,2,) and
(21,5 2n)-
By using Lemma 5.1.4, we obtain that 7 € Q};(g) ® V. By a formal computa-
tion, we can show that wv — V(7 v) does not contain dz; for j > h. Hence, we
can show the vanishing of the higher cohomology of Q};(g) ®V by an induction.
We have the decomposition I Ll I3 = £ such that D; = UieIJ- {#zi = 0}. Let

us consider Q'</f)((\l;]C;SD(J) ® V for any subset J C I, where J¢:= £\ J.
™ J
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«<D(J?)<D(J)

“1(Dy)
computation. Assume mN.J = &. Let VJ = Op,(*0D ) vy be equipped with

the flat connection

IfmnNJ # @, it is easy to show that Q ®V is acyclic by a formal

VUJ:UJ-CZO‘DJ

on Dy. Let q; be the projection 7~ 1(Dy) — D;(dDy). Then, it is casy to
obtain by a formal computation a natural quasi-isomorphism

«<8D; ~ O <D(J)<D(J)

qa5 (QD (0D )®VJ)_Q7T_/I(B‘]) V.

«<D(I*)D()
“1(Dy)

We put h :=|I|. Let G; denote the kernel of the surJectlon

0 <D1<Ds 174 Q- <D1<Ds V.
o) OV T VAm,) ©

Hence, we obtain the vanishing of the higher cohomology of Q V.

Inductively, let G}, be the kernel of the surjection

G — P Q'le TIDU) o v,
JCIa (D)

|J|=k

Because G} = Q<? D) ® V', we obtain the vanishing of the higher cohomology
by an induction on k. Thus, the proof of Proposition 5.1.3 is finished. U

Similarly, we also obtain the following (see also [54]).

PROPOSITION 5.1.5. — The natural inclusion L5P[dx] — DR?C(’%)(V) is an
isomorphism in DC(C;((D)). O
5.1.3. Isomorphisms. — Let X and D be as in the beginning of §5.1.1.

Let H be hypersurfaces of X contained in D;. We have the naturally defined
projection p : X(D) — X (H).

LEMMA 5.1.6. — For any good meromorphic flat bundle V' on (X, D), the
following natural morphisms are isomorphisms:
(76) Rp DR}Z;)SDQ(V) & DR<1()1)(V) &2 DR<1()1) (V(!Dy))

— DRE Y, (V(1D1)).

Proof. — The claim for a; follows from Theorem 4.3.2. The claim for as is
clear. Let us look at az. We use an induction on dim X and the number
of the irreducible components of D; \ H. We may assume X = A" and
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D = Ule{zi = 0}. We set L; := {z; = 0}. We may assume D; = Uflzl L;,

H = U™, L and Dy = 5™, L. We set

D3 = U{ZZ == O}
=2

We set X’ := L; and D) := Dy N X'. We set .
1
Dy:=X'NDs and H':=Xn|]JL.
i=2

Let ¢ : X’ — X denote the inclusion. There exist good meromorphic flat
bundles V3 and V3" with the exact sequence

0 — t;V4(ID%) — V(ID1) 5 V(!D3) — V4 (ID§) — 0.
Let I denote the image of c¢. We have the following:

0— DR;((D;) (4V4(ID})) — DR)E(I();I) (V(IDy)) — DR}((DI;)(IC) -0

| I !

0— DRg 4 (,iV4(1D})) — DR 1) (V(IDy)) — DRX(H)(IC) — 0,

0 — DRI (K) — DR}D;I (V(ID3)) — DR}?;) (4V{'(ID%)) — 0

! ! |

(H)(/C) — DR)?(H)(V(!D3)) — DR)?(H) (LTV3”(!D§)) — 0.
By using the inductive assumption, we obtain that

DR}Z;}) (V(ID1)) — DRy, (V(1D1))

O—>DR)~(

is a quasi-isomorphism. Because we have DR SP (V(!Dy)) ~ DRSPS (V(ILy))

X(H) X(H)
and DR;{Z;)(V(!Dl)) ~ DR;{I(DI;)(V(!Ll)), it is enough to prove the natural
morphism
D D
(77) DRjz(I;) (V(ILy)) — DR}(;) (V(ILy))

is a quasi-isomorphism.
Let I C {1,...,¢} =: £ be any subset with 1 € I. Let 7 : X(H) —» X
denote the projection. We set

Ly=()Li and OL;:=L;n ] L;
iel JeNT

LEMMA 5.1.7. — DR<%EL (V(I1L;)) = 0.
77 (Lp)
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Proof. — By using the pull back and the push-forward with respect to a
ramified covering, we may assume that V' is unramifiedly good. Let Z C
M(X,D)/H(X) denote the set of irregular values of V. We set

1= J Ly

Jed
Let Z; denote the image of Z in M(X,D)/M (X, L(I¢)). For each [a] € Z;,
we fix a representative a in M (X, D). There exist meromorphic 0z, (x0D)-

subbundles V[a] of V| 7 stable by the connection and a decomposition

= P vy
[a]eZ;
compatible with the connection, such that Vi = V, — daid‘A/[a] are regular
along L; (i € I), where V. denotes the induced connection on ‘A/[a].
Let j € I. Suppose ord,; a < 0. We consider the Deligne-Malgrange filtra-
tion P, on ‘A/[a]. (See [45] for a survey.) We have

(Oja)~ ! %fgj Py ‘//\Y[a] C Pb‘/}a}

for any b € RY. Hence we obtain that Vaa is invertible on COOT?LI) ® V[a]
my (L1

Suppose moreover that j # 1 and that ord,, (a) = 0. Let < denote the total

order on C defined by the lexicographic order on (Re(«),Im(«)) € R x R. We

have the V-filtration P of ‘/}[a] along z; indexed by (C, <) such that

(i) zlﬁa,al preserves the filtration P

(ii) the endomorphisms of Gr?(f/[a]) induced by _§a,81 z1 — [ are nilpotent
for any S.

The induced morphisms V, o ¢ Grﬁ (V[a]) — Grp +1(Va}) are isomorphisms
unless § = —1. We can observe that the filtration P is preserved by V[a] 8;
and the multiplication of d;a. Hence, Vaﬂj is invertible on

COO<6L[ ® 7) Va} and COO<6L[ ® GI' [a}
ﬂ';ll(LI) TFH (LI)

Suppose ord,; a = 0 for any j € I, i.e., [a] = [0]. For the Deligne-Malgrange
filtration P, of ‘7[0}, we have

Vo0, (Pb‘A/[o](*aLI)) C 7’1;+(1,o7...,0)‘7[0](*3131)-
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For the V-filtration P along z;, we obtain that if 8 < —1, the following
morphism is an isomorphism:

Voo : Coo_%l ® 736(‘7[0}) COO<BLI) ® Ppa( [0])
T

I) H(I

We have the decomposition
V(L) ; @v ("L1) g,

compatible with the decomposition of V|E If ord,, a < 0, we have

The action of V, 5, on C°°<8LI ® V('Ll)[ | is invertible. If ord;, a = 0, for the

T (LI)
V-filtration P along z;, we have ﬁg(V(!Ll)[a}) = 75/3(‘7@) for § < 0, and that

Vaor : Gl (V(IL1)1q) — Grlyy (V(IL1) )

are isomorphisms for 5 > —1. If [a] # [0], takej € I such that ord.; a < 0,
and then the action of Vad on C°°<6L’ ® V('Ll)[ | Is invertible. If [a] = [0],

i (L1)
the action of VO 5, on CoofaLI ® V('Ll)[a} is invertible. Then, the claim of
Lemma 5.1.7 follows. " (F1) O

Then, by an easy inductive argument, we obtain that (77) is a quasi-
isomorphism, and the proof of Lemma 5.1.6 is finished. ]

Suppose that we are given a holomorphic function G : X — C¢ such that
G~ (Do) = H, where Dy = |J'_,{z = 0}.

LEMMA 5.1.8. — For the naturally defined map p, : X (D) — X(G), we ob-
tain the natural isomorphism

Di<D rapid
(78) Rp1s DR;([I))< (V) ~ DRI (V(1Dy)).
Proof. — 1t follows from Lemma 5.1.6 and Proposition 4.7.4. U

Let ¢ : X’ — X be a projective birational morphism such that:
(i) D' := ¢~ 1(D) is normal crossing,
(i) X'\ D'~ X\ D.
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We put D} := ¢~ 1(D;y) and H} := ¢~ '(H;). Let D} be the complement of
D} in D'. We set G' :== Gop. We put V' := ¢*V. We have the natural
commutative diagram:

X'(D') —2 X(D)
p'll
X(G) —2 X(G).

We set po := @ o p}. Correspondingly, we have the commutative diagram of
isomorphisms by the construction:

<D! <l)2 / <D1<D>
Rpp. DRESPH (V') —— R DREDSP2(V)

(79) zl Zl
R, DRYPE, (V/(ID})) —— DR (V(IDy)).

The lower horizontal arrow is an isomorphism according to Corollary 4.7.5.

5.2. Duality

5.2.1. Duality morphisms. — Let X, D and M be as in §5.1.1. We have
the following natural morphism given in a way parallel to that of (14):

(80) DR<1()1)<D2 (DM) — DDR<’(3;)<D1 (M).

Namely, we take a 7 (Dx)-injective resolution Zp of Qg{'(;?l<D2[dX],
and a (CX(D) -injective resolution fQ' of Tot Q'i'(zl;[QdX] with a morphism
DR§D1<D2

2(D) 1 — IQ extending a natural morphism

<D1<D2 ((70,0<D1<D2 e e<D
DR ) (QX(D) [dx]) — Tot QX(D) [2dx].

Then, (80) is given as the composite of the morphisms
(81) ’Homﬂ_l(px)(wfl./\/l?fl')

— Home, (D DRIP2SP pf DREP2SP1 )

X(D) X(D)
— ’Hom(cf((D) (DR;(D;;Dl M, Ty).
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ProproOSITION 5.2.1. — The following diagram is commutative:

R, DR}Z;)SDZ(DM) — Rm.D DR<’(D2)<D1 (M)

e | |
DR =P (DM) —— DDR7”*=P'(Mm).

The upper horizontal arrow is induced by (80), the lower horizontal arrow is
given as in (14), the left vertical arrow is given in (71), and the right vertical
arrow is given by

Rm.D DR<1()5<D1 M ~ DR, R<(D2)<D1 M ~ DDR<D2<D1 (M)

Proof. — We have a morphism R, R;(DI;TDQ(DM) — DRY”'=P2(DM)

given as follows, by Lemma 5.1.1:
(83)

Rr.RHom,p, (17 M, Qﬂ((gf"?z)[ x| zRHomDX(M,RW*QS((;)DI<D2)[dX]

~ RHomp, (M, Q%" (xD2)<P")[dx].

It is equal to the morphism obtained as in (71). Then, the claim of the
proposition can be checked easily. ]

5.2.2. The case of good meromorphic flat bundles. — Let us consider
the case where M is a good meromorphic flat bundle V' on (X, D).

THEOREM 5.2.2. — The duality morphism
DR =" DV — DDRL2=71V
X(D) X(D)

18 an isomorphism.

Proof. — We begin with elementary preparations. Let R? = Sy U Sy U So be
a decomposition given as follows:

So = {(z,y)|y 2 0}, S1:={(x,9)[y <0,z <0},
Sy == {(z,y) |y <0, z > 0}.
We put
X1:= R xS51)U(R>p x Sp), Xo:=(RxS5)U(R<x Sp).
The following lemma is easy to see.

LEMMA 5.2.3. — X; C R3 (i = 1,2) are closed C°-submanifolds with bound-
aries. We have X1 U X9 =R3 and X1 N Xy = 0X;. [l
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Weput J :=]-1,1[, J4 :=[0,1], J- :=]—1,0], and Z; := [0, 1[ ( = 1,2, 3).
We have a homeomorphism 9(Z; x To x Z3) ~ R?, and we can identify the
decomposition

8(11 X Iy X Ig) = (81—1 X Iy X Zg) U (Zl x 0Ly X Zg) U (Zl X Ty X 81—3)
with R? = SoU ST USy. We put
X{ = (j x 11 X 01y XZg) U (jJr X 011 X Iy XZg),
Xé = (j X 11 X Iy X 823) U (j, X 011 X Iy XZg).

They are closed subsets of J x 9(Zy x Zy x Z3). We obtain the following lemma
from Lemma 5.2.3.

LEMMA 5.2.4. — X! C J x 0(Ty x Iy x I3) are C°-submanifolds with bound-
aries. We have X1 U X, =T x (Zy x Iy X I) and X N X, = 0X]. O

We recall some elementary facts on constructible sheaves. Let Y be an
oriented /-dimensional CY-manifold with the boundary dY. For a closed
CO-submanifold W C 0Y with boundary such that dimW = ¢ — 1, let
Jw Y — W — Y denote the inclusion. We have the natural isomorphisms
RHome, (jwCy-w, K) =~ Rjw.RHome, _, (Cy—w, Rji K) =~ Rjw.jiy K.
The dualizing complex wy of Y is given by joy1Cy _gy [].
LEMMA 5.2.5. — Let Y; C 0Y be closed C°-submanifolds with boundaries
such that Y1 UYs =Y and Y1 NYy = 9Y;. Then, we have

Djy 1 Cy_y; = jyy1Cyy,.
Proof. — The left hand side is naturally isomorphic to
Jyixdyv,wy = Jyi«JoiCy —ay [€],

where jg denotes the inclusion Y — 9Y — Y — Yj. Then, we can check the
claim directly. O

Let us return to the proof of Theorem 5.2.2. It is enough to consider the
case X = A" and D = Ule{zi = 0}. As in the proof of Proposition 5.1.3,
we can reduce the issue to the case where V = Ox (xD) v with a meromorphic
flat connection Vv = vda, where a = [[["; 2z, ™ (m; > 0). We put

F,:= —|a ' Rea.

We have the decomposition I1 LIy = £ such that D; = Uidj {zi =0} (j =1,2).
We set
Ii(>m):={i€Ij|i>m}
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and Y
U (=0}, D(cm):= U{zl—()}
i=m-+1
We consider the closed subsets W; C 7= (D) (i = 1, 2) given as follows:
Wy i=a"Y(D1ND(>m)) U [r H(D(< m))N{F, >0},
Wy :=n"1 (DN D(>m)) U [r H(D(< m)) N {F, <0}].

LEMMA 5.2.6. — W; C 7~ Y(D) are closed C°-submanifolds with boundaries,
and we have W1 U Wy = 771(D) and W1 N Wo = OW;.

Proof. — 1t is easy to observe that it is enough to consider the case n = ¢. We
have the natural identification X (D) ~ (S)¢ x RZZO. By the decomposition

= leIl(> m) |_|IQ(> m),

we identify RS Lo =R, x Rfl(>m) % szz(g>m)‘
We argue the case ¥y (> m) # @ (j = 1,2). The other cases are easier. We
fix homeomorphisms

Rgb() ~ Il % Rm_l, R§é>m) NI % R|Il(>m)‘ 17 RI>2(§>m) ~ I % R‘Iz(>m)| 1

We put N :=m + |I;(> m)| + |Io(> m)| — 3. Let Hi be the subsets of (S1)*

= {cos (Zmﬁi) > O} and H_ := {cos (Zmﬁi) < O}.

Then, 71 (D) is identified with (S)¢ x 9(Z1 x Ty x T3) x RN, under which we
have

Wi~ ((SY x Ty x 0Ty x T3) U (H- x 9Ty x I x I3)) x RV,

Wa = ((SY) x Ty x Ty x 9Z3) U (Hy x 9Ty x I x I3)) x RV,

For Q € Hy N H_, we can take a neighbourhood Ug such that U ~ J x R¢-1
under which Hy NUg = J+ % R, Then, we obtain Lemma 5.2.6 from
Lemma 5.2.4. O

Let jw, : X(D)\ W; — X (D) be the inclusion. Let £ and £Y be the local
systems on X (D) associated to V' and V'V, respectively. According to the
description of £L<P1P2 and £Y<P2<DP1 we have the natural isomorphisms:

£<D1 <Ds3 . ;

~ le!(E)?(D)\WJ’ £V<D2§D1 —~ s

Vv
= Jws! (E)?(D)\Wz)
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Lemma 5.2.5 gives an isomorphism D(L<P1=P2[dy]) ~ £V <P2<Pi[dy]. Tt is
uniquely determined by its restriction to X — D. Then, we can deduce that

DRIVISP2 DV — DDRY2 1y
X(D) X(D)

is an isomorphism. Thus, the proof of Theorem 5.2.2 is finished. U

COROLLARY 5.2.7. — For any good meromorphic flat bundle V on (X, D),
we have the commutative diagram of the isomorphisms:

Rr.,DREP:SP2 py = o pr DDRIP:SPry
X(D) X(D)

DRx VY(ID;) —=—= DDRxV(!Dy).
Proof. — It follows from Theorem 3.2.4, Proposition 5.2.1 and Theorem 5.2.2.
O

5.3. Functoriality

Let X be a complex manifold, and let D be a normal crossing hypersurface
with a decomposition D = D; U Dy. Let D3 be a hypersurface of X. Let
¢ : X' = X be a proper birational morphism such that

(i) D' := ¢ (DU Dj3) is normal crossing,

(i) X'\ D'~ X\ (DU Ds).

Let X(D) — X and X'(D') — X’ be the real blow up. Both the projections
are denoted by 7. Let ¢ : X'(D') — X (D) be the induced map. We put D/} :=
¢ 1(D1). We have D} C D’ such that D' = D} U D} is a decomposition. Let
V' be a meromorphic flat bundle on (X, D). We set V' := ¢*(V) @ Ox/(xD").

THEOREM 5.3.1. — We have in D(C ) a morphism

X(D)
<D1<Ds = <Dy <Dy v
DR)?(D) (V) — Ro. DR)?/(D') (V"

such that the following diagram of perverse sheaves is commutative:

<D1<Dy ~ <D1<Dy vy
Rm,DRG =" (V) —— Rm.R@.DRE |72 (V)

o4 -| -
DRx (V(!D1)) —— Re.DRx/ (V/(1D})).

Here, the vertical isomorphisms are given by (71) and (12), and the lower hor-
izontal arrow is induced by the morphism of D-modules V (!D1) — ¢+ V'(1D}).
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Stmilarly, we have a morphism

R(P DR<D <Dj

X/(D") (V ) — DR<D2<D1 (V)

X(D)
such that the following diagram of perverse sheaves is commutative:

<DL<D} 115y <D2<D1
Rm.RE. DRL, > (V') —— Rm. DRLPP/(V)

(85) :l :l

Re.DRx (V/(ID}))  —— DRy (V(!D2)).

Proof. — We have a naturally induced morphism
—1 00<D1<D2 —1 00<D <D i
(86) (QX(D) V) — QX,(D,) @r V.
It induces a morphism of cohomologically constructible complexes
<D1<D> <D} <D},
(87) RX(D) (V) — o DRX,(D,) (V).

We can directly check the commutativity of the diagram:
o, 0 <D <D

PPy ey
00 <D1<D — ~ o0 <D'<D} _
(QX(;) 1502 g plyy W*((P*Q)?'(D/)l R 70}
It implies the commutativity of the diagram
<D1<Dg <D{<D} /<>y

R, DRX(D) (V) —— Rm.Ro. DRX,(D,) (V")

(88) zl zl
DRYPSP2(V)  —— Ry, DRSP2(v7).

Then, we obtain the commutativity of (84) from Theorem 3.2.5.
Considering the dual of (87) with V'V (see Theorem 5.2.2), we obtain the

morphism:

(89) R, DREP1=Ps

X’(D’) (V ) — DR§D1<D2 (V)

X(D)
Let us prove the commutativity of the diagram (85). From (88) for V'V, we
obtain the commutative diagram:

<D1<DY v rpy <D1<Ds (v ,v
DRn.Rp, DRX’(D’) 2(VV) —— DRm, DR)?(D) (VY)

| |

DRy, DRYSP2(vV)  ——  DDRY=P(vv).
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By Proposition 5.2.1 and Theorem 5.2.2, we have the following commutative
diagram:

DR, DRIEP2(VY) —— Rm, DRI P2(V)
X (D) X (D)

DDR<Di=P2(yvy = DRY7=PY(V).

We have a similar diagram for V’. Then, we obtain the commutativity of (85)
from the constructions of (89) and (20). O

5.4. A rigidity property (Appendix)

The author originally used Theorem 5.4.1 below for the functoriality of the
Betti structure by projective morphisms. After the improvement, it is now not
necessary. But, it seems interesting to the author, so we keep it. The reader
can skip this subsection.

5.4.1. Statement. — We set X := A" and D := Ule{zi =0}. Let V be a
good meromorphic flat bundle on (X, D). Let £ be the associated local system
on X (D). Let g be a holomorphic function on X such that ¢g=1(0) = D. We
have the naturally defined morphisms:
X(D) M X(g9) > X.

We put 7y := mgom. We set K := R, LSP. In this subsection, we will work
on the derived category of cohomologically constructible sheaves.
.TH.E.ORE.M 5.4.1. — The restriction Hom (K, ) — Hom(lChal(XiD), IC‘WDA(XfD))
18 1njective.

We will give a consequence in §5.4.6.
5.4.2. Reduction. — We put DI .= U rce Dr. It is easy to see that

|[I|=m
Hom (K51 (x—pety Kyt (x—prany) — Hom(Kyooa e pys Ky (x-py)

is injective. Hence, it is enough to show for m > 2 the injectivity of the
morphisms
Hom (K (x— pim1)s Kyt (x iy} = HOm (K o1 e pion)s Kot e pim))-
Then, it is easy to observe that it is enough to consider the case £ = n and
the morphism
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By the adjunction Hom (7}/C, L) ~ Hom (K, K), it is enough to show the
injectivity of the morphism

Hom (73K, £5P) — Hom (71K L=P )

75 (X =0)" Z |zl (x—0

We have Rim, LS = 0 unless 0 < i < n — 1, because the real dimension of
the fiber is less than n — 1. We set

K' =} Rim, LSP.

Let j:my (X —0) = X(D) and i : m;, 1 (O) — X(D).

LEMMA 5.4.2. — To prove Theorem 5.4.1, it is enough to prove
(90) Ext/ (1, KL LSPY=0 (4, <n-—1).
Proof. — From the distinguished triangle K![—i] — 757K — 7517 K H,

we obtain the long exact sequence
(91) BExt™ 1K' £5P) — Hom (1> 17K, £L5P)
— Hom (757 K, L5P) — BExt? (K, £=P)

and the corresponding long exact sequences for the restrictions to my ! (X-0).

The injectivity of Hom (7> 71K, L5P) — Hom(TZmTIC‘ﬂ;l(XfO),Eﬁfl(x O))
Sl X

can follow from the injectivity of

it p<D i1 <D
(92) Bxt!(K', £57) — Bxt' (K] oy L1010y
(93)  Hom(7s 17K, £57) — Hom (121171 1 (x o) ‘frD x-0))

and the surjectivity of

i—1 i <D i—1 7 <D
(94) Ext! ™ (K7, £57) — Bxt' UKL o) L300 o).

By an easy inductive argument, we can reduce Theorem 5.4.1 to the injectivity
of (92) and the surjectivity of (94) for any i < n — 1.
From the exact sequence 0 — jjj*K? — K — i,i*/C* — 0 and the adjunction
Ext?(jj*K?, L5P) ~ Ext?(5*K?, i*£=P), we obtain the exact sequence
(95) Ext™ (K £5P) — Ext K, 3 L£5P) = Exti(i, 4"k, £5P)
— Bxt'(K!, £57) — Ext'(i*K7, j*£=P).
Hence, the proof of Theorem 5.4.1 is reduced to the vanishing

Ext!(i,i*K%, £5P) =0
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for any 0 <4 < n — 1. For that purpose, it is enough to prove (90). Thus, the
proof of Lemma 5.4.2 is finished. U

In the following, we will prove Ext'(n; (1), L5P) =0 (i =0,...,n —1) for
any constructible sheaf I on 7, (0) ~ S*.

5.4.3. Local form of 7, '(I). — Let (z1,...,2,) be a coordinate system
with z;1(0) = D;. Tt induces a coordinate system (61,...,60,) of 7, '(0),
which is independent of the choice of (z1,...,2,) up to parallel transport.

We take a coordinate system t of C, which induces a coordinate system 6
of 751 (0). The induced map 7, *(O) — 7, *(O) is affine with respect to the
coordinate systems (61,...,60,) and 6.

Let us consider the behaviour of 7 (I) around P € m, '(O), where I is
a constructible sheaf on 7r0_1(0). We may assume P = (0,...,0). The map
75 1 (0) = 75 1(0) is of the form (61,...,6,) — 3 a; 0; + 3, where 3 = 71 (P).
The sheaf [ is the direct sum of sheaves of the following forms:

> the constant sheaf around g;

> 71 Cy or j,Cy, where J is an open interval such that one of the end points

is 3, and j denotes the inclusion J — 771(0O).

Hence, 71 *(I) around P is described as the direct sum of sheaves of the fol-
lowing forms:

> the constant sheaf Cﬂ51(0);

> j«Cp or 7iCpr, where H is an open half space such that O0H contains P,
and j : H — m; ' (0). They are denoted by Cpr, and Cp.

5.4.4. Local form of £5P and £/L=P. — Let P € n;'(0). We have a
decomposition around P:

L= P L., £7= PP
aclrr (V) aclrr(V)

Let us describe £, and E/E;D around P. For an appropriate coordinate
system, a = z; " -+ - 2™ for some m; > 0. Let

Ga : A" — A, (zl,,zn)MHzZm’

Let 7a : A(0) = A be the real blow up. We have the induced map

4ot X(D) — A(0), (12,05 — (T] ™, Yo miti).

i=1
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Let @ be the local system on K(O) with Stokes structure, corresponding to
the meromorphic flat bundle (Oa (x0),d 4+ d(1/2)). Note that Q/Q<C is the
constructible sheaf j,.C; on 7,*(0), where j : J = (=, 7) — 72"(0). Let r(a)
be the rank of £,. We have isomorphisms:

Lq~ q:QEBT(a), EGSD o~ qz(QSO)EBT(a)’ ['a/EaSD ~ q:(Q/QSO)GBr(a)'

Around P, we have an isomorphism ¢}(Q/Q=") ~ 1,C, where Z := q;(J)
and ¢ : Z — (S1)" x RZ,. Note that Z is of the form Zy x ORZ, where Zj is
the inverse image of .J via the induced map ()" x {0} — S' x {0}. Hence,
q:(Q/Q=Y) is isomorphic to one of the following, around P:
> the constant sheaf C(Sl)nXaR’gO;
> jK*(CKXaRgD, where K is an open half space such that 0K contains P,
and ji : K x OR%y — (S1)" x R . Tt is denoted by Cx xorn «-

5.4.5. Proof of Theorem 5.4.1. — We reduce the proof of the theorem
to the computation of Ext'(n; 1, ¢71(Q/Q=0)) for i < n — 2, where I is a
constructible sheaf on 75 1(0).

LEMMA 5.4.3. — We have Exti(wflf, q;1Q) =0 for any i. In particular, we
have isomorphisms
Exti(wflf, qa_lQSO) ~ Exti~! (Wfll, qgl(Q/QSO)).

Proof. — Let ¢ : (S1)™ x {0} — (S')" x ORZ, denote the inclusion. There
exists a constructible sheaf 7 on (S')" such that 7, 'T ~ ¢, F. We have the
adjunction

Eat' (LF, g3 ' Q) = n€at(F,i'q, ' Q).
Note ¢'q;1Q = Di™'D(q;'Q) = 0, because Dg;'Q is 0-extension of a con-
stant sheaf on (S1)” x RZ by (S1)" x RZ, — (S1)" x RZ,. Hence, we obtain
Ext' (1, F,q7 Q) = 0, and the proof of Lemma 5.4.3 is finished. O

Now, let us prove the following vanishing of the stalks at P:
(96) Ext! (771, 4,1 (2/Q%%)) =0, (j <n—2).

It can be computed on (S*)" x ORY,. We have the following cases, divided by
the local forms of 7, () and ¢;'(Q/Q=") around P:

(I): 7T1_II ~ C(Sl)n and q;l(Q/QSO) ~ C(Sl)"xaRgD;
(I): 7 "1 ~ C(g1yn and g5 1(Q/Q=0) ~ Crxomn,
(I): 7;'T = Cpry and ¢;1(Q/Q=0) ~ C(Sl)nxaR’ZLOv where x = %, ;
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(IV): 7' ~ Cpy and ¢; 1(Q/Q=0) ~ Ckxory jx, where x = x, 1.
Moreover, this last case is divided into three subcases:

(IV-1) 9H and OK are transversal,

(IV-2) H = K,

(IV-3) H = —K.
In the following, for a given i : Y] C Y5 and x = %, !, let Cy;4 := i,Cy, on Y.
It is also denoted just by Cy, if there is no risk of confusion.
5.4.5.1. The case (I). — Instead of (S1)" x {0} — (S1)" x ORZ,, it is enough
to consider the inclusion {0} — ORZ, ~ R"~!1. We obtain (96) from the
following standard result: -

C (j=n-1).
5.4.5.2. The case (II). — We have the exact sequence

Ext/ (Cy, Crn-1)g = {

0 — Csiymxr — Cg1yn — Crs — 0.
Let ¢ denote the inclusion ((S1)"\ K) x ORE § — (ShHm x ORY ;. Note v* = /),
and hence L!CKxaRgo* = 0. We have
Ext! (Cistymm)wgoy s Crxore o) p
~ 1,Ext! (C((51ym\ k)% {0} LICKxaRgo*)P =0.
Hence, we obtain

C (j=n-1).
5.4.5.3. The case (III). — Let us consider the case x = *. We have the exact
sequence:

Ext! ((C(Sl)n,CKxaRgD*)P . gxtj(CKWCKxaRgo*)P - {

0— C(Sl)"xaRgD\HX{O}! — C(Sl)"xaRgo — (CH* — 0.

Let k1 denote the inclusion H x {0} — (S1)" x ORZ, and let kg denote the
open embedding of the complement. Because kTC(Sl)"xaR’;O\Hx{O}! =0, we
have the isomorphisms -
(97)  RHom(C(srynxorn \mx{opts Cisynxorz )P

~ RHom(C(s1yn xora \x{oy» Cs1)nxoma \mxfop) P

~ kg« (Csrynxamn \1xqop) P = (Cisiynxorn ) P-
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We obtain RHom(Cprix, C(s1ynxprz )p = 0. In particular, Ext! (Ch, C(stynxorz )P
is null for any j. - -
Let us consider the case x = !. From the exact sequence

0 —Cyg — (C(Sl)n — C(Sl)n\H* — 0,
we obtain the isomorphisms

C (j=n-—-1).
5.4.5.4. The case (IV-1). — Let us consider the case x = *. Let N be the
kernel of CH* — CHQK*.

5xtj(CH!7C(SI)"><BR’ZLO)P = g[Etj(C(Sl)n, C(Sl)"XGRgo)P = {

LEMMA 5.4.4. — We have RHom(N, CKX&R%*)p =0.

Proof. — Let ¢ be the inclusion ((S')"\ K) x 9RZ ; — (S')" x 9RZ . Then,
N is of the form uy ;. Then, the claim follows from L’CKX&RQD* =0. d

We have the exact sequence:
0 — Crxorn\HnK)x {0yt — Crxorz, — Ciank)x oy« — 0.

Let k: K x ORZ )\ (HNK) x {0} — K x JRY, denote the inclusion. We have
the isomorphisms
(98)  RHom(Crexorn \(tnk)xfops Croxorz )P
~ RE.RHom(Ck womn \(Hn)x {0} Crxomrn \(HnK)x {0} )P
=~ Ckxorz P

Hence, we obtain RHom(Cgn)x{o} «; CKX&R;LO*)p = 0. In particular, we

have Ext/ (Cp, (CKXQR”;D*)P =0 for any j.
Let us consider the case x = !. We have an exact sequence

0—CHxg — (C(Sl)n - (C(Sl)n\H* —0
on (S1)". By using the previous results, we obtain

Eat! (Cpy, Ck xorn )P = { C (j=n-1)
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5.4.5.5. The case (IV-2). — Let us consider the case x = *. By considering
0 — JRY,, we obtain

; 0 (j<n-2)
Ext! (Chra, Criomng)p = { & 7> ’
X ( Hx* HXdRZD )P (C (j:n—l)
Let us consider the case x =!. We have an exact sequence

0— CH! — (CH* — CaH* — 0.
Let us look at Ext/ (Cop, (CHXQR”;D)P. For 0 — [0, 1[xR™"!, we have
ESUtj ((Co, C[OJ[XRnfl) =0
for any j. Hence, we obtain

C (j=n-1).
5.4.5.6. The case (IV-3). — Tt is easy to show giﬁtj(CH!,CKxaRgo) = 0 for

any j. By using the argument in (IV-2), we can show Ext/(Cpy, Crxorn) = 0
for any j. Thus, the proof of Theorem 5.4.1 is finished. U

Ext!(Cay, Crxory,)p = {

5.4.6. A uniqueness result on the K-structure. — We use the notation
in §5.4.1. Let V be a good meromorphic flat bundle on (X, D). Let g be a
holomorphic function on X such that ¢g=1(0) = D, and let i, be the graph
X — X x C. We regard DR?;IX@(igTV) as a cohomologically constructible
sheaf on X (g).

Let K be a subfield of C. A K-structure of DREI(HX(E(Z'!]TV) is defined to be
a K-cohomologically constructible complex F on X (g) with an isomorphism
a: FRC~ DRI;(HX(E(igTV) in the derived category. Two K-structures (F;, a;)
(1 = 1,2) are called equivalent if there exists an isomorphism [ : F; — Fo for
which the following diagram is commutative:

FieC BEEEN FoxC

.| y

nil . = nil .
DR _(igiV) —— DR2! _(igyV).

LEMMA 5.4.5. — Let (Fj, o) (i = 1,2) be K-structures of DRI)I(iIX@(igTV).
If their restriction to m 1(X — D) are equivalent, then they are equivalent
on X(g).
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Proof. — We put Fic = F; ® C. We have the commutative diagram

i t

C C C C
Hom (F7-, F57) / Hom(‘F1\7r1—1(X—D)"7:2|7r1‘1(X—D))'

According to Theorem 5.4.1, the horizontal arrows are injective. Hence, we
obtain the equality

Hom (Fy, F2) = Hom(]—'uﬂfl(X_D),FQ‘FI1(X_D)) N Hom (F,5, Fy)

in Hom(f1(|c7rl_l(X—D)’FQ(\Cﬂfl(X—D)?' Then, the element of Hom (F,C, F.¥) cor-
responding to the identity of DR;IX @(igTv) comes from Hom (Fi, F?). O

MEMOIRES DE LA SMF 138/139



CHAPTER 6

GOOD K-STRUCTURE

6.1. Good meromorphic flat bundles

6.1.1. Good K-structure of good meromorphic flat bundles. — Let
K C C be a subfield. Let X be a complex manifold with a normal crossing
hypersurface D.

DEFINITION 6.1.1. — Let V be a good meromorphic flat bundle on (X, D).
> A K-structure of V' is a pre-K-Betti structure of the flat bundle Vix_p.
> A K-structure of V' is good if the Stokes structures are defined over K.

Later (see §6.4), we shall extend the definition to the case where V is not
necessarily good.

Let D = D; U Dy be a decomposition. Let £ be the local system with
the Stokes structure on X (D) associated to V. Recall that the complex
DR;{I(DDl)SD2 (V) is quasi-isomorphic to £<P1<P2[dim X]. (See §5.1.2.)

If V has a good K-structure, it is naturally equipped with a K-structure
E;DlSDQ [dim X]. By the isomorphisms (12) and (71), we obtain a pre-K-Betti
structure

FoPr=P2 = R L3752 [dim X]

of the holonomic D-module V(ID;y). This pre-K-Betti structure is called
canonical. Let D] U D) = D be another decomposition such that D; C D].
The natural morphism V(!D}) — V(ID;) is compatible with the pre-K-Betti
structures. We use the symbols Fy . and Fy to denote .7:‘§D and .7-"§D , Te-
spectively. We also use the symbol Fy to denote Fy . for simplicity.

More generally, let ¢ : Z C X be a complex submanifold with a normal cross-
ing hypersurface Dz. Let Vz be a good meromorphic flat bundle on (Z, Dy).
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We say that 11Vz has a good K-structure if Vz has a good K-structure in the
above sense. The canonical pre-K-Betti structures for ¢1Vz(!Dz 1) are also
defined in a similar way for a decomposition Dz = Dz 1 U Dy .

6.1.2. Some basic property

6.1.2.1. Some functoriality. — Let X be any complex manifold with a normal
crossing hypersurface D. The following lemma is clear.

LEMMA 6.1.2. — LetV; (i = 1,2) be good meromorphic flat bundles on (X, D)
with a good K -structure. If Vi3 @& Vs is good, then the induced K -structure is
good. Similar claims hold for Vi @ Va and Hom(V7, Va). O

Let V be a good meromorphic flat bundle on (X, D). Let ¢ : X' — X be
a morphism of complex manifolds such that D’ := ¢~1(D) is normal crossing.
We obtain a good meromorphic flat bundle V' := ¢*V on (X', D"). Suppose
that V' is equipped with a K-structure, which induces a K-structure of V.

LEMMA 6.1.3. — If the K-structure of V is good, the K-structure of V' is
also good. Conversely, suppose that ¢ is surjective and that the K-structure
of V' is good. Then, the K-structure of V is good.

Proof. — Let P’ be any point of D'. Let P := ¢(P’'). We take a small
neighbourhood Xp with a coordinate (z1,...,z2,) around P in X such that
D = Ule{zl- = 0}, and a ramified covering

kp: (X5, DY) — (Xp, DN Xp)
such that Vlgl) := kp(V) is unramifiedly good. Let e; (i = 1,...,/) denote the
ramification index of kp along z; = 0. We take a small neighbourhood X,

of P'. Because (z; 0 ) 1(0) (i =1,...,¢) are contained in D’ N X}, we can
take a ramified covering

Kpr o (X5, DIV — (X, D' 01 X )
such that there exist functions (z; 0 p o #/,)/% (i =1,...,) on Xg,l). Then,
we have a morphism p : Xg,l) — XI(DI) such that kp o p = ¢ o kp,. Then,
VW = (k) V! = p* kb (V)
is unramifiedly good. Let £ be the local system on )?g)(Dg)) associated

to V(). Let £’ be the local system on )?g,l)(D}(,I)) associated to V'), The
map induced by p is denoted

7 XE(DEY) — XP (D).
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We have £ = ¢~ (L). Let
A0 XP0W)y — xP and A0 X (D) — x5
denote the projections. Let @} be any point of (ﬂ'(l))*l(Dgl)). We set

Q1 :=p(QY).

Let P/ := #/M(Q’) and P; := 7™M (Q). The set of the irregular values of V'(1)
at P/ is the pull back of the set of the irregular values of V(1) at P;. The
partial order <@, on the set is equal to <g,. The Stokes filtration F@ s
obtained as the pull back of F?'. Hence, F9! is defined over K if and only
if F9I is defined over K. O

6.1.2.2. Curve test. — Let us consider the case X = A", D; := {z; = 0}
and D = |J'_, D;. We set D9 := D; \ Ujz Dj- Let p; : X — D; denote the
projection.

PROPOSITION 6.1.4. — Let V' be a good meromorphic flat bundle on (X, D)
with o K-structure with the property:

(C1) Let P be any point of Dy for i = 1,...,¢. Then, the induced K-
structure of V‘pfl(P) 18 good.
Then, the K -structure of V is good.

Proof. — We may assume that V' is unramifiedly good. Let 7 : X (D) - X
denote the projection. Let £ be the local system on X (D) with the induced
K-structure. Let @ be any point of 771(D). It is enough to prove that the
Stokes filtration F@(Lq) is defined over K. It is enough to consider the case
m(Q) = (0,...,0). We set

S:={(a,b) €err(V)? | a#b}.
We have i such that ord,, (a — b) < 0 for any (a,b) € S. For any (a,b) € S,
let H(a,b) be denote the intersection of 7—1(D;) and the closure of

{Re X\ D|Re(a—b)(R)=0}

in X(D). Let U be a small neighbourhood of Q in 7(D;). Then, for any
(a,b) € S, we have a < b if and only if we have a <¢ b for any

Qeu =x(Dy)nu\ ) H(ab).
(a,b)esS
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We have natural identifications of Lg and L¢ for Q' € U. We have

Fe= () 7.
Q/GU/

Under the assumption (C1), F& are defined over K for any " € U'. Hence,
we obtain that .7-"5‘2 are defined over K. O

6.1.2.3. Sub-quotients. — Let X be any complex manifold with a normal
crossing hypersurface D. Let 0 - Vi - V — V5 — 0 be an exact sequence
of good meromorphic flat bundles on (X, D). Suppose that V and V; are
equipped with K-structures which are compatible with the morphisms.

LEMMA 6.1.5. — If the K-structure of V' is good, then the K -structures of V;
(1 =1,2) are good.

Proof. — We may assume that V' is unramifiedly good. We may assume that
X = A and D = {0}. Let £; and £ be the local systems on X (D) corre-
sponding to V; and V, respectively. For any point P € )Z(D)7 the stalks L£1p
and Lp are equipped with the Stokes filtrations F©. Note that the Stokes
filtrations are characterized by the growth order. Hence, £L1p — Lp is strict
with respect to the filtrations, i.e., F¥'(£1p) is equal to the filtration obtained
as the restriction of F¥(Lp). Then, if £1p and F¥(Lp) are defined over K,
the filtration ¥ (L1p) is also defined over K. O

LEMMA 6.1.6. — Let V; (i = 1,2) be good meromorphic flat bundles on
(X, D). Let f: Vi — Vy be a morphism of meromorphic flat bundles.

> Ker(f), Im(f) and Cok(f) are also good.

> Suppose that V; are equipped with good K -structures, and that f is compat-

ible with the K -structures. Then, the induced K -structures of Ker(f), Cok(f)
and Im(f) are good.

Proof. — It is enough to check the claims locally around any point of D. We
may assume that V; are unramifiedly good. Let P be any point of D. Let f‘ P
denote the induced morphism V1| P V2| p- Because the formal completion
is exact, we have Ker(f )‘ 5 =~ Ker( f‘ 5) and similar isomorphisms for Im and
Cok. We have the decompositions Vz‘|13 = ®aelrr(%,P) Vz‘,ﬁ,a' It is easy to check
that f‘ 5 is compatible with the decompositions. Then, the first claim follows.

The second claim follows from the first claim and Lemma 6.1.5. O
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If V; are unramifiedly good in Lemma 6.1.6, we have
Irr(Ker f, P) C Irr(V3, P), Irr(Cok f, P) C Irr(Va, P),
Irr(Im f, P) C Irr(V4, P) NIrr(Va, P).
6.1.3. Functoriality for projective birational morphisms. — Let D3

be a hypersurface of X. Let ¢ : X’ — X be a projective birational morphism
such that D’ := ¢~1(D U Dj3) is normal crossing, and that

X'\ D'~ X\ (DsUD).

Let V' be a good meromorphic flat bundle on (X, D). Suppose that V is
equipped with a good K-structure. We put

V= ¢*V @ Ox: (xD).

The induced K-structure of V' is good. Let D1 U Dy be a decomposition of D.

We set D} := ¢~ 1(D1). We take D} C D’ such that DjUD) is a decomposition
of D'.
PRrROPOSITION 6.1.7. — The natural morphisms

V(ID1) — @:V'(ID1),  @4V'(1D3) — V(IDy)
are compatible with the canonical pre-K -Betti structures.

Proof. — Let us prove the second claim. We use the notation introduced in
§5.3. Let ¢ : X'(D'") — X (D) be the induced map. By construction, it is easy
to see that the morphisms

DREPI<P2(V) — RG, DRL=D2 (V7).

(D) X'(D)
~ <D4LEDY (151 <Dy<Dy
R, DR)Z,(QD,) YV — DR)Z(D) (V)

are compatible with the induced K-structures. Then, the second claim follows
from Theorem 5.3.1. U

6.1.4. A characterization of compatibility with Stokes filtrations

Let X = A" and D = Ule{zi = 0}. Let V be an unramifiedly good
meromorphic flat bundle on (X, D). Its good set of irregular values is denoted
by Irr(V'). For each a € Irr(V), put

L(—Cl) = OX(*D> (&
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with the meromorphic flat connection Ve = ed(—a). We fix a K-structure of
L(—a) by the trivialization exp(a)e. We have on X (D) a constructible sheaf
rapid
DR)?E’D) (V& L(—a)).

The following lemma will be useful to check that a K-structure is good.

LEMMA 6.1.8. — Suppose that V' has a K -structure with the property:

> For each a € Trr(V), the induced K-structure of (V ® L(—a))x_p is
extended to a K-structure of DRPY (V @ L(—a)).

X(D)
Then, the K -structure of V is good.

Proof. — Let L be the local system with the Stokes structure on X (D) as-
sociated to Vix\p. It is equipped with the Stokes structure i.e., for each
P € 7~ Y(D), the stalk £Lp has the Stokes filtration 7. By the assumption,
the local system £ has a K-structure. Let O = (0,...,0) € X. Let 7 denote
the projection X (D) — X. It is enough to prove that the Stokes filtrations F*
of Lp are defined over K for P € 771(0).

Let S denote the set of pairs (a,b) in Irr(V') with a # b. For any (a,b) € S,
let H(a,b) denote the closure of the set {Re(a — b)} in X (D). Take a small
neighbourhood U; of P in w~!(0) such that for any (a,b) € S, we have
H(a,b)NU; # @ if and only if P € H(a,b). Let

Up:=0:\ |J Ha,b).
(a,b)eS
We have a <p b if and only if a <p/ b for any P’ € U{. We have natural
identifications Lp ~ Lp: for any P’ € U;. Under the identifications, we have
Fr= 7.
Preu]

So, if FI' are defined over K for any P’ € U}, FF is also defined over K. For
the points P’ € Uj, the order <ps is totally ordered. So, it is enough to prove
that FZ are defined over K for any a € Irr(V) and for any P’ € U{. But, it

follows from the assumption of the lemma. O

6.1.5. The behaviour of the pre-K-Betti structure by the nearby
cycle functor and the maximal functor. — We set

L
X :=A" and D:= U{ZZ = 0}.
i=1
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Let V be a good meromorphic flat bundle on (X, D) with a good K-structure.
For each I C ¢, we set I, := [ U {i} and I,; := I \ {i}. The D-module

g (v(D(1)) = (V @ 3% (1D (1))

has the canonical pre-K-Betti structure, where x = x,!. Hence, ¢§a) (V(ID(I)))
and Ega) (V(ID(I))) have the induced pre-K-Betti structures.

LEMMA 6.1.9. — The induced K structure of 1/}1@(‘/) is good, i.e., it is
compatible with the Stokes filtrations. The induced pre-K-Betti structure of
wga)(V(!D(I))) is canonical for each I C L.

Proof. — It is enough to consider the case a = 0and i = 1. We give a
preparation. We set H;* W= = lim 1T, N%(V). By Lemma 3.2.3, we have
the commutative diagram

DRy (I1;,°(V(ID(I)))) —— DRx(I1;,>*°(V(1D(1))))

| |

DRV @30 —— DR (V@ 3.20).

By the upper square, the induced K-structure of DR x w(o)( V(!D(I))) can be
identified with the K-structure of

(100) DRy (v)
~ Cone (DR5”")(I;*0V) — DR (I, V).

We set D' := Uf:g D;. Let m : X(D') — X be the real blow up. We obtain
(100) as the push-forward of the following on X (D’):

(101) DR,<(D(I;1 )<D({—11) wl ( )

~ Cone (DR<D(I*1)<D(€ In) <D(I.1)<D({—Iy)

X(D) X(D")
We prepare some commutative diagram in a general setting. For any holonomic
Dx-module M, we put

D <D(I1)<D({—1Iy) — To tQ-,o,<D(I|1)<D(f Ipy)
R X(D") M X(D)

(I,>V) = DR A1,0V)).
D10, 11 Mldim X,

<D(I41)<D(l—1, 0,0,<D(I,1)<D({—I, _ )
DRX(D(,)l) (£ 1) M = To tQX(D,)( 1) (£ 1)(*D1)®71-1*1(’)X7r1 IM[dlm X]

SOCIETE MATHEMATIQUE DE FRANCE 2014



118 CHAPTER 6. GOOD K-STRUCTURE

We have the commutative diagram

DRiD(I*l)SD(g_I!I)M(!Dl) DR<D(I*1)<D(€ I'I)M( )

X(D") X(D")
<D(I|1)<D é Ill <D(I*1)<D(Z I*l)
DR M —— DRy M.

If M is a good meromorphic flat bundle, the left vertical arrow is also a quasi-
isomorphism, which follows from Lemma 5.1.6.

Let p : X(D) — X(D') be the induced map. We have the natural com-
mutative diagram, where the vertical arrows are quasi-isomorphisms by The-
orem 4.3.2:

<D(I11)<D(t—1y) <D(I+1)<D(¢—1I.1)
= — D
(D) M R (0 M

<D(I1)<D(—1I);) <D(I.1)<D(f—1I.1)
DRX(D) M — DRX(D) M.

DR

Thus, we obtain the commutative diagram, in which the vertical arrows are
quasi-isomorphisms:

<D(I*1)<D(Z Ill) —00,0 <D(I*1)<D(Z Ill) —00,0
DRX(D/) (I, V) — DRX(D/) (IL,.7V)
(102) ZT ZT
<D(In)<D(¢~In) ~—00,0 <D(1:1)<D(€—1+1) ~—00,0
DRX(D) Vei ") — DRX(D) (Vo3 >").
Because DR SP =P I'l)(V ® 3.°°0) and DR<D(I*1)<D(Z I*l)(V ® 3.°°0)
zZ1

X (D) X(D)
are equipped with K-structures compatlble with the morphism, we obtain

a K-structure of DR ~](:)(I;1)<D(Z In) w ( ) from (101) and (102). The lower

square in (99) is obtained as the push-forward of (102). Hence, the K-structure

of DRx ¢§0)(V(!D(I))) is obtained as the push-forward of the K-structure of
«1)<D(f—1,
DR}(DD({)l)_ (€—In) ng)(V)_

Let us consider the case I = {1,...,¢}. By the above consideration, we
obtain that .7-"50 is compatible with the K-structure, where F¥ denotes the
Stokes filtration of w§0)(V) at each point P € w; *(8D;). By considering the
tensor product with meromorphic flat bundles with rank one, we can deduce
that F¥ is defined over K, as in Lemma 6.1.8. Since the pre-K-Betti structure
of w(o)( V(!D(I))) comes from the K-structure of DR;(D[(){TKD(Z Tn) §O)(V),
it is canonical. ]
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6.2. Good holonomic D-modules with good K-structure (Local case)
6.2.1. Definition. — Let X = A" and D = U_,{zi = 0}. Set £ :=
{1,...,¢}. Let M be a good holonomic D-module on (X, D).

DEFINITION 6.2.1. — We say that M has a good K-structure if

(i) for each I C £, ¢7(M)(xD(I€)) is equipped with a good K-structure
(put ¢pg(M) = M),
(ii) for i & I, the induced morphisms

(103) ) (Gr(M)(* D(I9))) — (ibr(M)) (* D(IE))

0
— 0" (¢1(M)(+ D))
are compatible with the K-structures, where I); :== I LI {i}. O

Morphisms of good holonomic D-modules with a good K-structure
f : Ml — Mz
are morphisms of D-modules such that ¢;(f) are compatible with K-structures
for any I C /.

Let Hol#*°d(X, D, K) denote the category of good holonomic Dx-modules
with a good K-structure on (X, D).

LEMMA 6.2.2. — Let f : My — My be a morphism in Hol®*°d(X, D, K).
Then, the D-modules Ker(f), Im(f) and Cok(f) are naturally objects in
Hol®**Y(X, D, K).

Proof. — Tt follows from Lemma 6.1.6. (See also the reconstruction of a good
holonomic D-module M from ¢§0) (M) in §6.3.) O

6.2.2. Cells. — Let V be any good meromorphic flat bundle on X
with a good K-structure. Let us observe that we have natural objects in
Hol#*°d(X, D, K) associated to V.

LEMMA 6.2.3. — Let D) be a hypersurface of X contained in D.
> We can naturally regard V(1D as an object in Hol®*°Y(X, D, K).
> Suppose that we are given an object M in Hol®°Y(X, D, K) such that
(i) the underlying Dx-module is isomorphic to V(!DW),
(i) the K-structure on X \ D is equal to that of V(!DW) under the
tsomorphism.
Then, M is isomorphic to V(IDWM) in Hol®*°Y(X, D, K).
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Proof. — We have I C £ such that D) = D(I). We have for any J C ¢
a natural isomorphism

07 (V(1D(1))) (+D(J%)) = w3 (),

where 607 = (1,...,1) € Z'" and 0n; = (0,...,0) € 7\ They are
equipped with good K-structures, satisfying the compatibility condition (103).
Via these K-structures, we regard V(!D(I)) € Hol®*°d(X, D, K). Thus, we
obtain the first claim.

Let us prove the second claim. We are given the isomorphism of Dx-modules
V(IDM) ~ M under which the K-structures on X \ D are equal. Suppose

that we have already known that qbgo (V(IDM)) ~ qS T ( ) preserves the K-
structures. Set Vi := V(!DW) and V5 := M. Because one of

vMeO ) — 660 W) or MO 1) — ¢Vl (1)

is an isomorphism compatible with K-structures. Hence, we obtain that
qb(o (V1) — qb(o $?(V3) is also compatible with the K-structures. O

More generally, take J U I C £. Let V; be a good meromorphic flat bundle
on D; with a good K-structure. Then, we can naturally regard ¢;V;(!D(1))
as an object in Hol®°4(X, D, K).

Let g be a meromorphic function on (X, D) such that g~1(0) C D. Let D =
D1 U Dy be a decomposition such that Dy D g~!(00) and Dy C gil(O) (Note
that D; are not necessarily irreducible.) Because Hg )(V « D7) and 1/)9 (V, xD1)
are the kernel of

(V® ooa('DQ))(*Dl) — V7 OOO(*D)

for a = 1,0, they are naturally objects in Hol2°*(X, D, K).

6.2.3. Some operations. — Let us observe that some operations on
Hol(X) are naturally lifted on Hol®°°4(X, D, K). Let Forget denote the
forgetful functor from Hol®°4(X, D, K) to Hol(X).

LEMMA 6.2.4. — We have a naturally defined dual functor D on Hol#*°Y (X, D, K)
such that

D o Forget = Forget oD.
Proof. — Let M € Hol®*°d(X, D, K). For each I C {1,...,/},
D (DM)(D(I%) ~ Dé\* (M) (% D(I%))
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has an induced K-structure. For [y := I L {i}, the morphisms
1) ,(0 ¢ 0) ,(0 c
H1 o (DM)(x D) — 66 (DM)(* D))
— 1”0 (DM)(+ D(I5))
are obtained as the dual of
0) (-6 ¢ 1 é c
$P0 M) (+ D) — 0" (M) (+ D))
1 o c
— Vo (M) (= D)),
they are compatible with the K-structure. Hence, they give a good K-
structure on DM. The construction gives a contravariant functor D on
Hol#*°d(X, D, K). O
LEMMA 6.2.5. — Let DY) C D be a hypersurface of X. We have a functor
®, H : Hol®*°d(X, D, K) — Holt*°d(X, D, K)
such that
Forget o®, ;1) (M) = Forget(M)(xD1)
for any M in Hol®°°Y(X, D, K). We also have a natural transformation

Such a functor is unique.

Proof. — First, let us observe the uniqueness. Let M € Hol2*°d(X, D, K). We
have I C £ such that DY) = D(I). For any J C ¢, the following isomorphism
is compatible with the K-structure:

O (M) (x D(IND))) —— 68 (@ pwy M) (+ D((J\ 1))

The following induced isomorphism is compatible with the K-structure:

C w ( (6]
¢J01¢J\1( )(D(J )) o 7/’JmI?bJ\I( D<1>M)(D(J ))-
Note that the following natural morphism is an isomorphism:
85 (@.p0 M) (= DY) —— 45060 (250 M) DY),

It is compatible with the K-structure by the condition for ®_ ;i) M. Hence,
the good K-structure of

o (M) (x D((T\T)9))

uniquely determines the K-structure of qﬁf,o) (@, oy M)(xD(J)). It means the
uniqueness of ¢, a).
As for the existence of @, ), it is enough to consider the case I = {1}.
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If i € J, we have
6 (M(=DW)) =~ V6N L (M),
Ifi € J, we have
05 (M(xDD)) = 67 (M)(=D).

The induced K-structures on (bf]o) (M(xDW))(xD(J¢)) give a good K-
structure of M(xDM), for which the natural morphism M — M(xDM) is a
morphism in Hol2*°*d(X, D, K). O

LEMMA 6.2.6

> For any hypersurface DY) of X contained in D, we have a unique functor
®, ) : Hol®° (X, D, K) — Hol®*°Y(X, D, K)
such that, for any M in Hol2*°(X, D, K),
Forget o®, 1) (M) = Forget(M)(!DW)

with a natural transformation ®,5a) — id.
> We have (I)*D(1) o] (I)*D(z) = (b*(D(l)UD(2)).
> If dlm(D(l) N D(Q)) <n-— 1, then CI)!D(1> ©) CIJ*D<2) = CIJ*D<2) 9] CI)!D(1> .

Proof. — The first claim follows from Lemma 6.2.5 as the dual. The second
claim follows from the uniqueness. For M € Hol®*°4(X, D, K), the underlying
Dx-modules of @) 0 P, 2 (M) and @, 2) 0 Py (M) are

M(IDW 5« D@y = M(xDP1DW),
We have in Hol®°°d(X, D, K) the natural morphisms
P pay (M) — @pw) 0 @, pe) (M), Pipay (M) — @, pe) 0 Py pay (M).

Then, by the argument for the uniqueness in the proof of Lemma 6.2.5, we
obtain that the K-structures are the same. |

We denote @, 1) (M) by M(xDW) for = x, 1.

6.3. Good pre-K-holonomic D-modules

6.3.1. Statements. — Let X = A" and D = Ule{zl- = 0}. Let
HolP™(X, K) denote the category of pre-K-holonomic Dx-modules.
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PropPOSITION 6.3.1. — We have a naturally defined exact fully faithful func-
tor YT : Hol(X, D, K') — Hol”**(X, K) over Hol(X). We have Yo D =Do Y.
The essential image of Y is independent of the choice of a holomorphic coor-
dinate system.

DEFINITION 6.3.2. — Any object in the essential image of T is called a good
pre-K-holonomic D-module on (X, D). The pre-K-Betti structure is called a
good pre-K-Betti structure. (The definition will be globalized in Definition
6.3.4 below.) O

Let V be a good meromorphic flat bundle on (X, D) with a good K-
structure. Let D) € D be a hypersurface of X.

PROPOSITION 6.3.3. — The canonical pre-K-Betti structure of V(IDM) is
associated to the good K -structure of V(IDM) by T.

We shall construct the functor in §6.3.3-§6.3.5. We shall prove the full
faithfulness in §6.3.7. The independence from the coordinate system will be
proved in §6.3.8. Proposition 6.3.3 will be proved in §6.3.6.

6.3.2. Some consequences. — Before going to the proof of Proposition
6.3.1, we give some consequences. The full faithfulness and the independence
on the coordinate system in Proposition 6.3.1 ensure that we can globalize the
notion of good pre-K-holonomic D-modules in Definition 6.3.2.

DEFINITION 6.3.4. — Let Y be any complex manifold with a normal crossing
hypersurface Dy. Let M be a good holonomic D-module on (Y, Dy) with a
pre-K-Betti structure F. It is called a good pre-K-holonomic D-module if
its restriction to any holomorphic coordinate neighbourhood is a good pre-K-
holonomic D-module. In that case, F is called a good pre-K-Betti structure.

O

The category of good pre-K-holonomic D-modules on (Y, Dy) is not abelian
(see §3.1.6). If we would like to work on abelian categories, for example, the
full subcategory of Z-good pre-K-holonomic D-modules is abelian, where Z is
any good system of ramified irregular values on (Y, Dy ).

Let Y be any complex manifold with a normal crossing hypersurface D. Let
V be a good meromorphic flat bundle on (Y, D) with a good K-structure. Let
g be any meromorphic function on (Y, D) such that it is invertible on Y\ D.
We take a hypersurface D) ¢ D such that g=1(0) ¢ D). We obtain a good
meromorphic flat bundle V®3;’b with a good K-structure on (Y, D). It induces
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pre- K-holonomic D-modules H;;b(V)(*D(l)), Eéa) (V,*DM)) and wéa) (V,«DM)
with the canonical pre- K-Betti structures. We obtain the following proposition
from Proposition 6.3.3.

PROPOSITION 6.3.5. — The holonomic Dy -modules
Mg (V)(+DW), = (V.xDW), g (V.xDW), ol (v, «DW)
are naturally good pre-K -holonomic D-modules on (Y, D). U

The claims for ¢§1 )(V «DM) and qﬁ ( V,+*DW) will be particularly useful.

6.3.3. Induced pre-K-Betti structures of Ega)¢3(LT‘G). — In the fol-
lowing, we shall prove Proposition 6.3.1 and Proposition 6.3.3.
Let KUJUI =L C £ Let Vi be an Z-good meromorphic flat bundle
n (Dr,0Dr). Let ¢ : Df - X. Foramap f: KU J — {0,1}, we set
Ko(f) :== f~1(0) N K. We put
e K Vi) = (Ve @ 350 e @ 35,0) (D(f74(0)).
keKo(f) kKo (f)
Let O denote the constant map valued in {0}. Let d; denote the map such
that d;(j) = 0 (j # ¢) and 8;(¢) = 1. We can identify Eﬁ?)wg")(ww) as the
kernel of the following morphism:
(104) Co(J, K, 14Vi) — @B Cs,(J, K, 1:V7).
€KL
If Vi has a good K-structure, we obtain a pre-K-Betti structure of
”(O)zﬂ (¢4V7) by (104). By taking the tensor product with 3%**! appropri-
ately, we also obtain an induced pre-K-Betti structure of = =(@) 1/} ) (LT‘/]).

LEMMA 6.3.6. — The following morphisms are compatible with the pre-K -
Betti structures:

=20 (Vi) — ZP0TED (4Ve) — E0P 0O (4vi).

Proof. — It is clear by construction. U

Recall that we have the naturally induced good K-structure on %@) (LT‘/])
for i ¢ I (Lemma 6.1.9).

LEMMA 6.3.7. — For any i &€ L, the natural isomorphism

=00 (Vi) = =P (0 (1))

1s compatible with the induced K -structures.
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Proof. — Both the K-structures are obtained as the kernel of the mor-
phism (104) for (Ji, K). O
6.3.4. (-squares of complexes. — For small categories A; (i = 1,...,¢),

let Hle A; denote their product, i.e., the category whose objects and
morphisms are given by ob(]_[f:1 Ai> = Hle ob(4;) and Mor(a,b) =
[ Mor(a;, b;). Let I be a small category given by the following commutative
diagram:

(0,0) —%— (0,1)

bl cl coa=dob.

(1,00 —2— (1,1)

Let A be an abelian category. Let C'(A) be the category of complexes in A.

A square in C(A) is a functor F': I' — C(A). For a given square F, let H(F)
be the total complex of the following double complex:

F(a)+F(b) F(c)—F(d)

F(0,0)[1] F(0,1) & F(1,0) F(1,1)[-1].

An (-square in C(A) is a functor F : T* — C(A). Let m; : T'Y — T~ be the
projection forgetting the i-th component. For a given /-square F, we obtain
an (¢ — 1)-square m F' by mi. F(a) = H(F\nfl(a))'

LEMMA 6.3.8. — For i < j, we have an isomorphism Tl ~ m;_ 1, F.

Proof. — It is enough to consider the case ¢ = 2, (i,j) = (1,2). The i-th
terms of the both complexes are given by

@ F(al,CLQ,bl,bg).
a1+az+bi+by=i—2
The multiplication of —1 on F(0,0,0,0) & F(1,1,0,0) & F(0,0,1,1) @
F(1,1,1,1) interpolates the differentials for m;, 7 F" and mj_q. 7 F. O

More generally, for any subset I C ¢, I-square in C(A) is a functor I/ —
C(A). For the naturally defined projection 77 : T'Y — ', we take I = Iy C
I, C --- C I, = £, which induces the factorization m; = aWonr@o...0 7r(m),

(1)

where 7( : Dfi — li-1, Then, we obtain an I-square m, F := 7y 'o- - -owgm)F.
It is well defined up to isomorphisms as above.
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6.3.5. A construction of the functor Y. — Let m be any positive integer.
Let Z ¢ M(X(™ D) /H(X (™) be any good set of ramified irregular values
as in §3.1.1. Let M be any Z-good holonomic D-module on (X, D).

Let H C £. Let us construct an H-square in the category of Z-good holo-
nomic D-modules on (X, D). For (,5) = ((ix,ji) | k € H) € obI'*, we have
the following subsets of H:

I(ivj) = {k ’ (Zkvjk) = (O’ 1)}7 K(Zvj) = {k ‘ (Zka]k) = (170)}5

Jo(i,3) = {k | (ix, jx) = (0,0)},  Ji(2,5) = {k| (ir.jx) = (1,1)}.
Then, we put

H .. .—(0 61 i (0) (0)
Q (Ma%J) =I(i,5) QpJo(S,g % le (,9) (bK(m

For ky ¢ H, we have the following naturally induced diagram:
(6 —(0) — (6
wko “I w Jo) w ¢(0)M :I(c(;):(IO)w Jo ¢(0)¢§?)M

(105) l l
HOZ OB O 5O ng 0500, 80)(0) 4O g

For each decomposition H = {h} U (H — {h}), we have a similar dia-
gram. Thus, we obtain an H-square Q (M) of good holonomic D-modules.
The cohomology of the complex associated to (105) is naturally isomor-
phic to :(0 1/}(5‘70 () qSI?)M. Hence, we have a natural quasi-isomorphism

T QYM) ~ QH (M). In particular, we have a natural quasi-isomorphism

If M has a good K-structure, each Qg(./\/l, i,7) is equipped with the pre-
K-Betti structure .FIM(i,j) given as in §6.3.3.

LEMMA 6.3.9. — The morphisms in (105) are compatible with the induced
pre-K - Betti structures.

Proof. — The morphisms
w]it) (O)w(‘slo 'l/)(o)(lsg?)./\/l - :20)_50)’1/)(6‘]0 1/’5?)925&?)/\/1 - w]i?))Ego),l/)(‘sJo Z/J(O)QSE;?)M

are compatible with the pre-K-Betti structures by construction, as remarked
in Lemma 6.3.6. Let K" := ¢ — (K U k). By definition, the morphisms

U M(x DK')) = 600 M(* D(K')) — v ¢\ M( * D(K'))
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are compatible with the K-structures. We remark Lemma 6.3.7, and then it
follows that the morphisms

0) (o 0 0)=(0) (5 0) (6 0
wko _( )w Jo le ¢( )M — (bl(m)zg Jo wf]l M wko “I w Jo le ¢( )
are compatible with the pre- K-Betti structures. ]

Thus, we obtain a pre-K-Betti structure of mp, QM) ~ M, which is in-
dependent of the choice of a factorization of m,. It is called the pre-K-Betti
structure of M associated to the good K-structure, and denoted by Faq. We
obtain a pre-K-holonomic Dy-module T(M) := (M, Faq). Thus, we obtain
the desired exact functor T : Hol#*°d(X, D, K) — HolP*®(X, K). It is clearly
exact.

6.3.6. Proof of Proposition 6.3.3. — If M(*xD(H®) = M, any
Q" (M,i,5) are equipped with the pre-K-Betti structures, which induce
a pre-K-Betti structure of M.

LEMMA 6.3.10. — The associated pre-K -Betti structures of M are the same.

Proof. — The naturally defined morphisms

—_ [ [
2R Do (M) — 29T 6l (M)

induce the quasi-isomorphism 7, QM) — 7, Q¥ (M), which is compatible
with the pre-K-Betti structures. ]

Let us prove Proposition 6.3.3. By the above consideration, the following
isomorphisms are compatible with the pre- K-Betti structures:

V(ID(H)) — Q" (V(ID(H))) «— Q(V(ID(H))).

Thus, we obtain Proposition 6.3.3. ]

6.3.7. Full faithfulness. — Let us prove that the functor Y is fully faithful.
We denote T(M;) by M; to simplify the notation. Let M; € Hol2*°d(X, D, K)
(1 = 1,2). Suppose we are given a morphism ¢ : M; — My in Hol”*(X, K).
We would like to prove that ¢ gives a morphism in Hol#*°4(X, D, K).

We use an induction on p(M; @ Ms). (See §3.1.2 for p.) We take a subset
J C £ such that |J| = n— dim Supp(M; & M) and (M1 & Mas)(xD(J¢)) # 0.
Let g be a holomorphic function such that g=1(0) = D(J¢). Then, M;(*g) and
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M; ® jg’b come from good meromorphic flat bundles with good K-structures
on (Dy, Ds(J¢). We have the following morphisms in Hol®*°d(X, D, K):
M;(lg) — ED (Mi(xg)) — M(xg).
They are compatible with the associated pre-K-Betti structures. By the
localization in Lemma 6.2.5 and Lemma 6.2.6, we obtain the following in
Hol®*°d(X, D, K):
M;(lg) — M; — M;(*g).

Note the uniqueness of good K-structure on M;(*g) in Lemma 6.2.3. We
obtain the following diagram of the pre- K-holonomic D-modules:

Mi(lg) —— Z) (Mi(xg) ® My —— M(xg)

lw(!g) lsgm(@@w lw(*g)
Ma(lg) —— E(Ms(xg) & Mo —— Ma(xg).

We obtain a morphism qbéo)(go) : éo) (My) — ¢§0) (Ma3) in Hol”**(X, K). By
using the inductive assumption, qﬁ(go)(cp) is a morphism in Hol®°4(X, D, K).
Then, ¢ is obtained as the cohomology of the following:

(M (xg)) —— EP (M (x9)) @ ¢ (M) —— v (M (xg))
(106)  |ue [ERIEEEE [u0
W (Ma(xg)) —— E0 (Moa(xg)) @ 6 (Ma) —— ¢” (Ma(xg)).

The morphisms in (106) are morphisms in Hol2°*°d(X, D, K). Therefore, we
obtain that ¢ is also a morphism in Hol®*°4(X, D, K). O

6.3.8. Independence from the coordinate system. — Let us prove that
the essential image of T is independent of the choice of a coordinate sys-
tem. Let (wi,...,w,) be another holomorphic coordinate system such that

w; 1 (0) = 2;71(0). Tt is enough to prove the following lemma.

LEMMA 6.3.11. — If M has a good K -structure with respect to the coordi-
nate system (z1,...,2yn), it has an induced good K -structure with respect to
(w1, ...,wy) such that the associated pre-K -Betti structures are the same.

Proof. — We use symbols qSS? and ng;))[ to distinguish the dependence on the
coordinate systems. As remarked in §2.2.7, we have the natural isomorphisms
(10). They induce isomorphisms (bS?(M) ~ qﬁig)l(./\/l) and w(a)¢(0)( M) ~

¢§a)¢io}(M). Hence, we obtain good K-structure of M with respect to
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(wi,...,wy). Let Q5(M) and Q% (M) denote the {-square associated to
M with respect to the coordinate systems (z1,...,2,) and (w1,...,w,), re-
spectively. It is easy to observe that isomorphisms (10) induce 7, Qé(./\/l) ~

Tox Q%, (M) compatible with pre- K-Betti structures, and they induce the iden-
tity on M. Hence, the associated pre- K-Betti structures on M are the same.
Thus, the proof of Lemma 6.3.11 and Proposition 6.3.1 are finished. U

6.4. Meromorphic flat connections with good K-structure

6.4.1. Good K-structure of meromorphic flat connections. — Let X
be a complex manifold with a hypersurface D. Let V' be a meromorphic flat
connection on (X, D), i.e., V is a reflexive Ox (xD)-coherent sheaf with a flat
connection. We do not assume that V' is good.

DEFINITION 6.4.1. — As in the case of good meromorphic flat bundles, a
K-structure of V' means a pre-K-Betti structure of the flat bundle Vx\p.

Recall that, according to K. Kedlaya (see [26], Theorem 8.2.2 of [27]), for
any point P € X, there exist a neighbourhood Xp C X and a projective
birational morphism \p : Xp — Xp such that

(i) Ap: Xp\A\pH(D) ~ Xp\ D,
(i) Dp := Ap(D) is normal crossing,
(iii) ApV is a good meromorphic flat bundle.
(See also [44] and Theorem 16.2.1 of [47] for the algebraic case.)

Such (Xp, Ap) is called a local resolution of V' in this paper. In the situation,
we set Dp := DN Xp.

DEFINITION 6.4.2. — A K-structure of V is called good at P if the following
holds:

> For any local resolution (Xp,Ap) around P, the induced pre-K-Betti
structure of Ap(Vx,\p) is a good K-structure of A\pV.

A K-structure of V' is called good if it is good at any point of X. O

If a K-structure of V is good, the induced K-structure on the dual V'V is
also good. The following lemma is easy to see.

LEMMA 6.4.3. — Let V; (i = 1,2) be meromorphic flat bundles on (X, D)
with a good K -structure.
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> The naturally induced K -structures on Vi @ Vs, V1@ Vo and Hom(Vy, Va)
are good.

> Let f : Vi — Vo be a flat morphism which is compatible with the K-
structures. Then, the naturally induced K-structures of Ker f, Cok f
and Im(f) are good. O

Let ¢ : X’ — X be a morphism of complex manifolds such that D’ :=
¢~ (D) is normal crossing. We have the induced good meromorphic flat bundle
V' = ¢*V. A K-structure of V induces a K-structure of V.

LEMMA 6.4.4. — If the K-structure of V is good, the K-structure of V' is
also good. Conversely, suppose that the K -structure of V' is good and that
is surjective. Then, the K-structure of V' is also good.

Proof. — Let (Xp,Ap) be a local resolution for V' around P € X. We take a
projective birational morphism X : X} — Xp x x X’ such that:

(i) XY is smooth,

(ii) the induced morphism ¢p : X} — Xp gives X}, \ D)y =~ Xp\ Dp, where
D}D = Ail(Xp X x DI)

The induced map N : X} — X' gives a local resolution for V. Then, the
claim follows from Lemma 6.1.3. U

We obtain the following lemma from Proposition 6.1.4.

LEMMA 6.4.5. — Let V' be a meromorphic flat connection on (X, D) with a
K -structure. Suppose that, for any morphism A — X with o(A)ND = {p(0)},
the induced K-structure of ¢*(V') is good. Then, the K-structure of V is
also good. [

We obtain the following lemma from Lemma 6.1.5.

LEMMA 6.4.6. — Let V' be a meromorphic flat connection with a good K-
structure. Let Vi CV be a sub-connection such that Vix\p is compatible with
the K-structure. Then, the induced K -structure of Vi is good. A similar claim
holds for quotients of V. O

6.4.2. Canonical pre-K-Betti structures. — Let V' be a meromorphic
flat connection on (X, D) with a good K-structure. Let

D =Dy UDs
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be a decomposition, i.e., D; are unions of irreducible components of D such
that codimx (Dy N D) > 1. Let (Xp, A\p) be any local resolution of V' around
P e X. Put

Dpy=DiNXp and Dpl = )\El(Dl).
We have the decomposition Dp = Dpy U Dpsy. We set

Vp:=Vx, and Vp:=ApV.

The canonical pre-K-Betti structure V;DP 1=Dpz2 ¢ Vp(!Dpl) induces a pre-
P

K-Betti structure G of Vp(!Dp1). Let (XI(DI),)\SDI)) be another local resolution

of V around P € X. It induces a pre-K-Betti structure GV of V|X(1). We
P

have G = G on XpN XS). Indeed, we can find a local resolution (Xg), /\g))
with morphisms a : Xg) — Xg) and b : XI(JQ) — Xp such that

)\g)ZAg)OGZAPOb.

By using (Xl(f),)\(g)) with Proposition 6.1.7, we can prove that the pre-K-
Betti structures are equal. Therefore, by gluing the pre-K-Betti structures
around any P € X, we obtain a pre-K-Betti structure of V(1D;). (See Propo-
sition 10.2.9 of [23].)
We denote it by ]:;D t. It is called the canonical pre-K-Betti structure
By taking the dual of (VV)(!D;), we obtain a pre-K-Betti structure of
(V(!D))(xDy), denoted by Fy?=P1.

Let D3 be a hypersurface of X. Let ¢ : X’ — X be a projective birational
morphism such that:

(i) X'\ D'~ X\ (DU D3) where D' := ¢~1(D U D3),
(ii) D’ is normal crossing.
We set D := ¢~ 1(Dy). We have D} such that D’ = Dy U D} is a decomposi-
tion. We set V' = ¢*V (xD").
PROPOSITION 6.4.7. — The natural morphisms
V(ID1) — @V'(ID1), o (V'(ID')(xD7)) — V(ID)(+D1)
are compatible with the canonical pre-K -Betti structures.

Proof. — Let (Xp,A\p) be a local resolution for V' around P € X. We take a
projective birational morphism A : X b= Xp xx X’ such that:

(i) X/ is smooth,
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(ii) the induced morphism ¢p : X} — Xp gives X}, \ D ~ Xp\ Dp, where
D;; = )\_I(Xp X x D/).
The induced map N : X5 — X’ gives a local resolution for V’. By Propo-
sition 6.1.7, N (V)(!Dp1) — @pi(NsV'(ID,)) is compatible with the pre-K-
Betti structures. Then, we obtain that

V(ID1) — @3 V'(1D))

is compatible with the pre-K-Betti structures. We obtain the claim for the
other as the dual. O

6.4.3. Pre-K-Betti structure on the real blow up. — Let X, D and V
be as in the beginning of §6.4.2. Let G : X — C* be a holomorphic function
such that G=1(Dy) C D1, where Dy = Ule{zl- = 0}. We obtain an object
(X,G) in Caty. Let m: X(G) — X denote the real blow up.

LEMMA 6.4.8. — The natural morphism
Rm. DRY% (V(ID1)) — DRy (V(IDy))
is an isomorphism in D°(Cx).

Proof. — It is enough to check the claim locally around each P € X. Let
(Xp,Ap) be a local resolution of V around P. We set Gp := G|x, and
Gp := G o Ap. We obtain a morphism \p : (Xp,@p) — (Xp,Gp) in Caty.

We set Mp = Vp(!Dl). By Corollary 4.7.3, we have in Db(C;(P(GP)) the
isomorphism
~ id o id -~ id
RAp. DRE?}‘;"GP (Mp) =~ DR, (ApiMp) = DRYY (V(!Dl))|)~(P(GP).
By using Rrg,, DRE?}‘;%P (Mp) ~ DRy, (Mp), we obtain the claim. O

In the situation of the proof of Lemma 6.4.8, let Xp(Dp) be the real blow
up along Dp. We have the natural map p : Xp(Dp) — Xp(Gp). As in
Lemma 5.1.8, we have the following natural isomorphism:

Rp. DR)%?E;DPI (Vp) =~ DRE?S%P (Vp('Dp1)).

In particular, a good K-structure of Vp induces a K-structure of
rapid > =
DRXPGP (Vp(!Dpl)).

We would like to glue them.
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LEMMA 6.4.9. — Suppose that there exists a finite family
{W,N) |ie A} (JA] < o0)
of local resolutions of V' such that X = |JU;. Then, there exists an object K

in D"(K ¢ (G)) with isomorphisms

¢ : K@ C=DRY (V(ID1))  in DY(Cg ),
c2: Rm K ~ F;Dl in D*(Kx),
such that co ® C is equal to Rmycy.

Proof. — We shall construct a K-complex K on X (G) as follows. For I C A,
we set Uy = ﬂie[ U;. Let 17 : Uy — X denote the inclusion. We set

G =Gy,
Take local resolutions \; : Uy — Uy of V. We may assume to have
iy Uy — Up
such that ;o Ajo Ay =150 Ay for any I C J. We have
ALTy O Alpls = AL I
We put V; := A\}V.
We set Dy 1= A;l(D),jmd Dy = A;l(Dl). Let Dyo denote the complement

of Dy in Dy. Let 7 : L?I(DI) — U; denote the real blow up. We have the
induced morphisms

X[J : Z/V{J(DJ) —)Z;[[(DI)
and the induced morphisms
X[ ZZ/V[[(D[) — Z;[V[(G[)

Let 77 : U (Gr) — X (G) denote the inclusion.
Let Lx,r denote the K-local system on U 7(Dy) with the Stokes structure
associated to V; with good K-structure. We have the constructible sheaves

A W ‘

Ef(l;f 1=Drz on 1 1(Dr), and natural morphisms
Y-1,<Dn<Dp <Dj1<Dj>
AsLg g P L g :

For any sheaf F, let Gd(F) denote its Godement resolution. By the construc-
tion, we have natural morphisms

(107) A} (LR =Pr2) — Gd(A ) L=Pe) — qd(Lhn=Pe),
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We set V |

on X (@). The morphisms (107) induce Aj; : Gl 1 — Gk j- They satisty
ALl © ALls = AL Ty

We take a K-vector space Ux with a basis {e; | i € A}. Let Uk, denote
the subspace in A\* Uk generated by e;; A --- Ae;, where I = (i1,...,0n).
For m € Z>q, we set

K%’. = @ g}’K & UK’].
[I|=m+1

We have the morphism K}2* — ICEH" induced by the morphisms

Arugjy ® (ej Ae).
They give a double complex K3° of K X(G)—modules. The total complex is
denoted by K.

We have the C-local systems £; with the Stokes structure on U 1(Dy) asso-
ciated to V. Using L£; with the same construction, we obtain complexes g;a Iz
a double complex K:* and a complex K.

We have naturally defined isomorphisms

E;(D111SDI2 ®C — EI<D11SDI2.
The natural morphisms
Gd([,?(,DIHSDH) ®C —s Gd([’?DnSDm)

are quasi-isomorphisms. By the projection formula, we have the natural iso-
morphisms

T (GA(LEH=P12)[dy] © C) ~ G,y  C.
It also implies that the complex (o XI)*(Gd(Ef{g“SDIz) ® C) represents
R(To ). Gd(L=P=) ¢ C).

Hence, the natural morphism Gx 1 ® C — Gg 7 is a quasi-isomorphism. Then,
it is easy to deduce that the natural morphism Kj ®x C — K¢ is a quasi-
isomorphism.

We have the natural quasi-isomorphism

<D11§D12 <D11§D12 v
Ly [dx] — DRZ::{I(DI) (V1).
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We have morphisms

NI DRIP=Pr (1) pRIPASDr (17,
T Ur(Dr) (V1) Us(Dy) (Va)

By applying the above construction to DR;EESS)DI 2(V7) instead of E;DI 1<Dr2 [dx],
I I

we obtain double complexes G;'[,z on X(G), and a complex Ky on X(@Q).
The natural morphism Kg — K}y is a quasi-isomorphism.

Set H; := G;'(0). We have on U;(H ) the complexes
DR=P (V) and DR (V7(1Dp)).

UI(HI)( ) Ur(Hr) ( 1 H))
By applying the above construction to them, we obtain double complexes G7'>
(@ = 1,2), and complexes K, (a = 1,2) on X(G). We have the following
natural quasi-isomorphisms of complexes, as in Lemma 5.1.6:

Gipr < 911 — Gl
Hence, we have the natural quasi-isomorphisms of complexes
Kbr +— K7 — K3.

We set

Gt 5 =17 Gd (I ' DR (V(IDy))).

As before, by the Cech construction we obtain a complex K3. We have natural
quasi-isomorphism Gr 3 — Gr 2, which induce K3 — K3. By construction, we
have natural quasi-isomorphisms

GADRY (V(1Dy)) — K.

(See Proposition 2.8.4 of [23].) In all, we obtain the sequence of quasi-
isomorphisms

(108) Ki ®C — Kip «— K3 — K3 «— GdDRP% (V(1Dy)).

We define ¢; as the composite of the morphisms.

The projections @; : ICKM @) ng|ul @) are quasi-isomorphisms. It is

easy to see that

A and A

{i},ilthi; (Gig) © Pilthis (Giy) {is} ity (Giy) © Pl (Gig)
are chain homotopic. Hence, m,K* is a K-perverse sheaf obtained as the gluing

of .G We obtain an isomorphism of K-perverse sheaves

K,ilt;(Gy)

<D ~
Fuot = m K,
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which is cp. We can easily compare (c; ® C)y, and Rry(c1)py,, and we obtain
co ® C = Rm(c). O

6.4.4. Sequence of hypersurface pairs. — Let X be a complex manifold.
Let H = (Hy, H,) be an ordered pair of (possibly empty) hypersurfaces of X.
Such a pair is called a hypersurface pair in the following. For any coherent
Dx-module M, we define

Bua(M) = (M(xH,))('H) and Py(M) = (M(IH)))(xH,).
We set DH = (H,, Hy). Then, we have natural isomorphisms

D(Pu(M)) =~ Ppu(DM).
If we are given a sequence of hypersurface pairs $ = (Hy, Hs, ..., Hy), we
set

Py :=Pry o oPm, oPu, and Py =Py, o 0Py, o Py,
Clearly, By can be described as ‘13%1 for an appropriate 1. We shall use a
special case of this operation in §8.5.

6.4.5. Generalization. — Let X, D and V be as in the beginning of §6.4.2.
Suppose that we are given a sequence of hypersurface pairs ) = (H,..., Hy)
contained in D. Let us observe that B (V') and P (V') are naturally equipped
with pre-K-Betti structures.
Let P be any point of X. We take a local resolution (Xp, Ap) of V around P.
By taking the pull back, we obtain a sequence of hypersurface pairs
Hp = Ap($)

contained in Dp. For the irreducible decomposition Dp = U ieAp Dpj, there
uniquely exists a subset Ip C Ap such that

B, (Ve) ~ Vp(\Dp(Ip)),
where Dp(Ip) = | ierp Dp;. Hence, we have the canonical pre-K-Betti struc-
ture Vp(!Dp(Ip)) induced by the good K-structure of Vp. By the natural
isomorphism

ArBg, (VP) = Bs (V) xp,
we obtain a pre-K-Betti structure of P (V) |x,,-

Suppose that we are given other local resolutions (Xg),)\(;)) (1 =1,2) as
in §6.4.2. We put Vlgz) = Ag)*V. We have the expression

(2 (2 = (2 2
‘13553>(V;(>)) ~ Vi (1DE (1))
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)

For the morphism a : XI(DQ — Xp, we have

= =(2) (2
Dp(Ip) = a(DP(IR)).
We have the natural isomorphisms of holonomic D-modules
~. 2 ~. 2 o ~ ~.
aT‘Bﬁg (VF(> )) ~ ay (Vlg )(!a 1(Dp([p)))) ~ Pg ,(Vp)

which are compatible with the pre- K-Betti structures. Therefore, we obtain
the pre-K-Betti structures of Py (V') by gluing the locally given pre-K-Betti
structures. We obtain a pre-K-Betti structure of SB%(V) in the same way.

They are called the canonical pre-K-Betti structure of Bg(V) and Py (V),
denoted by Fg v and Fg .

LEMMA 6.4.10. — Let $° = (HS,...,HY) be a sequence of hypersurface
pairs such that Hi, C H; and H; D H; for any i. The natural morphisms
Poo (V) — PBs(V) and Py (V) — P, (V) are compatible with the K-Betti
structures.

Proof. — It is reduced to the easy case where V is good. U

Let G : X — C’ be a holomorphic function. The following lemma can
be shown by the same arguments as those in the proof of Lemma 6.4.8 and
Lemma 6.4.9.

PROPOSITION 6.4.11. — Suppose that G~1(Dg) C Hpyy for Hy = (Hyy, Hys)-
Then, the natural morphism

Rrr. DR (P (V) — DRx (P (V)

s an isomorphism. If we are given a finite family of local resolutions of V' as in
Lemma 6.4.9, then there exists an object K in Db(K;((G)) with isomorphisms

c1: K@ C~DRYE (Bg(V))  in DY(Cx ),
Ccy R, K ~ ./TyLV m Db(KX)a
such that co ® C is equal to Rmycy. [l

Let D3, ¢ : X’ — X and V' be as in Proposition 6.4.7. By the pull back,
we obtain a sequence of hypersurface pairs £’ := 1.

PROPOSITION 6.4.12. — The natural morphisms

1By (V'(ID")) — Bs(V(ID)) and Pg(V) — o1 PBe (V)
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are compatible with the canonical pre-K-Betti structures. The natural mor-
phisms

e By (V/(ID) — B (V(ID))  and  Pu(V) — 4P (V)

are also compatible with the canonical pre-K -Betti structures.

Proof. — 1t is reduced to the case where V' is good. We have
P (V) = V(DY) and e (V') = V(DY)
for some DU ¢ D and D' < D'. We have o(D'M) = DO, We set
LW .= =1(DM). Then, the natural morphisms
Bo(V) = @iV (ILY) — 1R (V')

are compatible with the pre- K-Betti structures. Similarly, we obtain that

P (V) — @B (V)

is compatible with the pre-K-Betti structure. We obtain the others by the
dual. O

6.5. Preliminary for push-forward

Let Y be a complex manifold with a hypersurface Dy . Let G : X — Y be
a projective morphism of complex manifolds. We set

Dxo = Gil(Dy>.

Let Dx be a hypersurface of X with a decomposition Dx = Dx1 U Dx9 such
that Dxo C Dxs.

Let V be a meromorphic flat connection on (X,Dx) with a good K-
structure. Put M := V(!Dx2). Let Fyq be the canonical pre-K-Betti
structure. Assume the following:

> G%M = 0 for any ¢ # 0, and V; := G?(M)(*Dy) is a meromorphic flat
connection on (Y, Dy ).

We put
G = RG«(FM)y-Dy >
which gives a pre-K-Betti structure of G(T) (M)y—py-

The following theorem will be used in the proof of Theorem 8.1.1. (See
§8.5.1.)
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THEOREM 6.5.1. — The K-structure G of Vi is good, i.e., it is compatible
with the Stokes filtrations. Moreover, RG.Fa is the canonical pre-K-Betti
structure of G?(M).

Proof. — It is enough to consider the issues locally around any point P of Y.
Let (Yp, Ap) be a local resolution of V;. We take a projective birational mor-
phism A : X’ — Yp xy X such that:

(i) X' is smooth,

(ii) DYy := Xp xx Dy is normal crossing,
(iii) the induced morphism X'\ D — X \ Dx is an isomorphism.

Let 4 : X' = X and G’ : X’ — Yp be the induced maps. We obtain

a meromorphic flat connection V/ = p*V with a good K-structure. We set
D'y := u~1(Dx2). We have

11 (V/(1DX)) = V(1Dx2), G4(V/(IDK))(+Dp) = \pVi,
ApiGL(V(IDY)) ~ My,

It is enough to prove the claims on Yp. Hence, we may and will assume
that Dy is normal crossing, and that V; is a good meromorphic flat bundle.

It is enough to consider the case where Y := A™ and Dy := Ule{zl- = 0}.
We have

G(M) = Vi(1Dy).
Let F: Y — C’ be given by (21,...,2). We set Fy := F o G. We obtain
in Caty a projective morphism
G:(X,Fx) — (Y, F).

We have Y (F) = Y (Dy). According to Corollary 4.7.5, we have the following
isomorphism in D%(Y (Dy)):

RG,. DR (M) ~ DREP(GIM).

X(Fx) Y(D)
The good K-structure of V induces a K-structure of DRE??E )(./\/l)
X2
on X(Dyx,) (Lemma 6.4.9). It induces a K-structure of RG, DRZP (M),

X(Fx)
which is compatible with the natural K-structure of GY(M)jy\p,.-

Let us prove that the K-structure of V; is good. First, we consider the case
where V) is unramifiedly good. Take a € Irr(V}). Let L(—a) be a meromorphic
flat bundle with a K-structure as in §6.1.4. Then,

V ®G*L(—a)
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has a good K-structure. By applying the previous argument, we obtain that

DREPS ) (Vi@ L(~a)

has a K-structure, whose restriction to Y\ Dy is the same as one induced by
the K-structure of V; and L(—a). Hence, by Lemma 6.1.8, we obtain that the
K-structure of V; is good if V; is unramifiedly good.

Let us consider the case where V; is not necessarily unramified. Let
k:Y — Y
be a ramified covering such that £*V; is unramifiedly good. We put
DYy = k1 (Dy).
We take a projective birational map p: X’ — X Xy Y’ such that:
(i) X’ is smooth,
(i) X' —p (X xy D)~ X — (X xy D).

We set DY == u~1(Dx xy Y’). Let g : X’ = X and G’ : X’ — Y be the
induced morphisms. We have the decomposition D’ = D', U D', such that
Diyy = HII(DX2)-

Let M’ := pi(V)(!D,). Applying the previous argument to G’TO(M'), we
obtain that the K-structure of V; is good even in the ramified case.

Because the pre-K-Betti structure G of G?./\/l is induced by the K-structure
of DR;?pid (G?M), it is canonical. Thus, the proof of Theorem 6.5.1 is finished.

(D)
O
COROLLARY 6.5.2. — Under the assumption, the induced K-structure of
a meromorphic flat connection G?(D./\/l) is good, and RG.DFu, gives the
canonical pre-K -Betti structure of G?D./\/l. O

We have a variant of Theorem 6.5.1 and Corollary 6.5.2. Let
H=(Hy,...,Hy)

be a sequence of hypersurface pairs of X contained in Dx.

THEOREM 6.5.3. — Suppose either
(i) Dxo C Hpi; or
(ii) Hyy= @ and Dxog C Hy.
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We also assume that G%.[‘I}@(V) = 0 unless i = 0. Then, the induced K-
structure of G?‘Bg(V)(*Dy) is good, and the induced pre-K-Betti structure
RG.(Fg,v) is the canonical pre-K -Betti structure of G?‘Bﬁ(V).

Proof. — The case (i) can be proved by Proposition 6.4.11 and the argument
in the proof of Theorem 6.5.1. The case (ii) can be obtained as the dual. [
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CHAPTER 7

K-HOLONOMIC D-MODULES

7.1. Preliminary

7.1.1. Cells and cell functions. — Let X be a complex manifold or a

smooth complex algebraic variety. In the complex analytic case, we use or-
dinary topology. In the algebraic case, we consider Zariski topology. In the
algebraic setting, D-modules are assumed to be algebraic. An open subset U
is called principal if it is the complement of a hypersurface. Let P be a
point of X. For any closed subvariety W of X, let dimp W denote the di-
mension of the germ of W at P. Let M be a holonomic D-module on X with
dimp Supp M < n. An n-dimensional cell of M at PisatupleC = (Z,U, , V)
as follows:

(Cell 1)

(Cell 2)

(Cell 3)

@ : 4 — X is a morphism of complex manifolds or smooth com-
plex algebraic varieties, such that P € ¢(Z) and dimZ = n. We
assume that there exists a neighbourhood of Xp of P in X such
that ¢ : ¢ !(Xp) — Xp is projective. We permit that Z may be
non-connected or empty.

U C Z is a principal open subset with the complementary hyper-
surface denoted by Dz. We assume that the restriction ¢y is an
immersion, and that there exists a hypersurface H of Xp such that
¢~ (H) = Dz Ny H(Xp).

V' is a meromorphic flat connection on (Z, Dz) with morphisms
e1(V)p — Mp — o1(V)p

such that Mp(xH) ~ ¢+(V)p for the hypersurface H in (Cell 2),
where the subscript “P” means the restriction to Xp. Note that we
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have Mp(1H) ~ ¢:(Vi)p, where Vi := V(!Dz). The restriction of V'
to some connected components of Z may be 0.
The cell C is called good if
(i) Dz is normal crossing,
(ii) V is good on (Z, Dy).
For a given holonomic Dx-module M and P € Supp M, there always exists
a cell for M at P. If dimp M = 1, any cell is good. If dimp M = 2, there
always exists a good cell for M at P, due to Kedlaya [26]. (See also [44] for

the algebraic case.) In the algebraic case, there always exists a good cell for
M at P (see [27], [44] and [47]).

REMARK 7.1.1. — Let (Z,U,¢) be a tuple satisfying (Cell1) and (Cell 2).
If we are given a meromorphic flat connection V on (Z,Dy), the tuple
(Z,U,p,V) is called a cell at P. O

Let g be a holomorphic or algebraic function on Xp. It is called a cell
function for C if U = ¢(Supp Mp \ g~1(0)). For such g, we obtain a descrip-
tion of Mp as the cohomology of the complex in the category of analytic or
algebraic holonomic Dx,-modules:

U (01(V)p) — Z9 (01 (V)p) @ 00 (Mp) — v (01(V)p).

For a given cell, a cell function always exists after we shrink Xp and Z appro-
priately.

REMARK 7.1.2. — Let C be a cell of M at P. If we have a neighbourhood X p
of P for which (Cell 1-3) are satisfied, they are also satisfied for any neigh-
bourhood X% C Xp. Hence, we do not have to be careful with a choice
of X P. |

7.1.2. Refinement and enhancement. — Let C' = (Z/,¢/,U’, V') and
C = (Z,0,U, V) be n-—cells of M at P. We say that C’ is a refinement of C,
and denote C' < C if the following holds:

> ¢’ factors through ¢ in the sense that there exists 1 : Z/ — Z such that
(i) ¢ = oo,
(i) p1(U") C U.

> V' =iV ® 0Oy (xDy), where Dy := 7' —U'.

In that situation, there exist naturally induced morphisms

(109) ¢ (V)P — o1(V)p — Mp — o1(V)p — ¢ (V') p.
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We say that C’ is a dominant refinement of C if U’ is dense in U.

Let C = (Z,U,¢,V) be an n-cell of M at P. We take an n-dimensional
closed subvariety Z' C X such that dim(¢(Z)NZ") < n. We take a refinement
of C such that (U)NZ" = @. Let Z; be a complex manifold with a projective
birational morphism ¢; : Z; — Z’ and a smooth open subset U; C Z; such
that

(i) @1, is an immersion,

(ii) Z1 — Uy is normal crossing and the pull back of a hypersurface in X

around P.
We set Z = Z L 77 and U:=ULl U;. We have the induced map ¢ : 7 - X.
Let V be a meromorphic flat connection on Z such that ‘7‘ 7z =V and ‘7‘ z, = 0.
Then, it is easy to observe that C = (Z, ﬁ, P, ‘7) is an n-cell of M, which is
called an enhancement of C.

In the following, for a cell C = (Z,U,p,V), we implicitly assume
¢ Y(Xp) = Z by taking a refinement of C. So we omit the subscript ‘P’
in p3(Vi)p and o1 (V)p.

7.1.3. K-cells and the induced pre-K-Betti structure on the
nearby cycle sheaves. — Let F be a pre-K-Betti structure of M.
Let C = (Z,U,p,V) be an n-cell of M at P.

DEFINITION 7.1.3. — We say that F and C are compatible if the following
holds:

> The induced K-structure of Vj;; is good. (We do not assume that V' is a
good meromorphic flat bundle. See §6.4.)

> The induced morphisms (Vi) = Mp — (V) are compatible with
the pre-K-Betti structures. (See §6.4.2 for the canonical pre-K-Betti
structures of V; and V.)

Such a cell C is called a K-cell of (M, F). O

It is not difficult to construct an example of a pre-K-holonomic D-module,
for which there does not exist a K-cell at some point.

LEMMA 7.1.4. — Let C = (Z,U,,V) be a K-cell of (M, F) at P. Any
refinement C' = (Z',U’,¢", V') of C is also a K-cell. Moreover, the induced
morphisms in (109) are compatible with pre-K -Betti structures.

Proof. — It follows from Proposition 6.4.7. O
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Let g be any cell function for a K-cell C. We observe that ”(a)(goT(V))
ga)( +(V)) and qbg (Mp) are equipped with induced pre K-Betti structures.
We set Vou" = Ha’_l( ),V for x = x,1. Note that @1 (V&) have the canonical

pre-K-Betti structures. Since ufq )(cpTV) and wg (cpTV) are of the form

Ker (93 (V3") = @ (V)

they are equ1pped with induced pre- K -Betti structures, denoted by PZ (a )(go*]:v)
and Dwg (p«Fv). We will use the following obvious lemma implicitly.

LEMMA 7.1.5. — The natural isomorphisms

=0 (01(V) = et(Ee(V)), 942 (1V) = gy (V)
are compatible with the induced pre-K -Betti structures. [

Since ¢§0) (Mp) is the cohomology of the complex
Vi — EQ (V) & M — 1V,

we obtain a pre-K-Betti structure of ¢§0) (Mp), denoted by D¢§O) (F). The
tuples

(EW (1 V), P2 (0. Fv)), (B3 (04V), Pl (0, Fv)), (85 (M), Pol (F))

are also denoted by EE, )cpT(V, Fv), wéa)cpT(V, Fv) and ¢§a) (M, F). We will
often omit to denote the pre-K-Betti structures if there is no risk of confusion.

7.2. K-Betti structure

7.2.1. Definition of K-Betti structure. — Let X be any complex man-
ifold, and P be any point of X. Let (M, F) be a pre-K-holonomic D-module
on X. Let us define the notion of K-Betti structure of M at P, inductively
on the dimension of Supp M at P.

DEFINITION 7.2.1. — In the case dimp Supp M = 0, a K-Betti structure is
defined to be a pre-K-Betti structure.

Let us consider the case dimp SuppM < n. We say that F is a K-
Betti structure of M at P if there exists an n-dimensional K-cell Cy =
(Zo, po, Uy, Vi) of (M, F) at P with the properties:

> dimp((SuppM N Xp) \ ¢o(Zp)) < n for some neighbourhood Xp of P

in X;
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> for any dominant refinement C < Cy and any cell function g for C, the in-
duced pre- K-Betti structure D¢§O) (F) is a K-Betti structure of qﬁém (Mp)
at P. Note that dimp ¢§0) (M) < n.

Such an n-cell Cy is called a bounding n-cell of M at P. O

If Cy is a bounding n-cell of M, any dominant refinement and enhancement
are also bounding n-cells of M.

DEFINITION 7.2.2. — If F is a K-Betti structure of M at any point of X, it
is called a K-Betti structure of M. A holonomic D-module with a K-Betti
structure is called a K-holonomic D-module. O

Morphisms of K-holonomic D-modules (M, Fi) — (Ma, Fa) are defined to
be morphisms of pre-K-holonomic D-modules. The category of K-holonomic
Dx-modules is denoted by Hol(X, K). It is a full subcategory of the category
of pre-K-holonomic Dx-modules HolP™(X, K) by definition.

REMARK 7.2.3. — As we will see later in §8, for any K-cell C = (Z,U, ¢, V)
with a cell function g at P, the pre-K-holonomic D-modules i (V'), ¢+(W1),
cpTE(g%L(V), and ;¥ (V) on a neighbourhood of P are K-holonomic. We will
see that Hol(X, K) is an abelian category in Proposition 7.2.4 below. So, we
may replace the condition in the higher dimensional case in Definition 7.2.1
with the following, which is easier to check:
> We say that F is a K-Betti structure of M at P if there exists an n-
dimensional K-cell C = (Z,¢,V,U) with a cell function g at P such
that the induced pre-K-Betti structure D¢§O) (F) is a K-Betti structure
of qbéo) (M) at P.
It seems convenient for the author to begin with a stronger condition as in
Definition 7.2.1 for the development of the theory. O

7.2.2. Abelian category. — It is basic to obtain the following.
PROPOSITION 7.2.4. — Hol(X, K) is abelian.

Proof. — Let P be any point of X. We use an induction on the dimension
of Suppp M. Let (fp,fp) : (M1, F1) = (Ma, F2) be a morphism of K-
holonomic D-modules. Let us prove that Ker(fp) is a K-Betti structure of
Ker fp.

Let n > max{dim Suppp M;}. Let Cio = (Zio, Ui, vio0,Vio) (1 =1,2) be
bounding n-cells for M; at P. By considering refinement and enhancement,
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we may assume that (ZLO’ le,o7 ng,o) = (22,07 U270, (,0270), which is denoted by
(Zo,Up, o). We have an induced morphism fz, : V19 — Vao. We obtain a
cell Cop(Ker) = (Zy, Uy, po,Ker fz,) of Ker fp. The K-structure of Ker fp is
good by Lemma 6.4.3.

Let C(Ker) = (Z,U, ¢, Kz) be a dominant refinement of Co(Ker).

We have refinements C; = (Z,U, ¢, V;) of C; o with the induced morphism
fz: Vi — Vo, We have Ker f7 ~ K. We obtain the commutative diagram of
pre-K-holonomic D-modules:

otV —— Mip —— oW1

| ! !

(pTVQ! — Moyp —— (P-'-VQ.
Hence, the induced morphisms
¢1Kz1 — Ker(fp)p — ¢1Kz

are compatible with the pre-K-Betti structures. We have the commutative
diagram of pre-K-holonomic D-modules:

b b
(PT(‘/lc,Lg!) — (V)

! |

b b
et (Vo) —— 01(Varye)-

Hence, the morphisms
EOD (1) — E0(p3Va), i (@1 Vi) — B (o1 Va)

preserve the pre-K-Betti structures. Therefore, ¢§0) (fp) preserves the pre-K-
Betti structures, i.e.,

Dol (fp) : Lo (1) — PolD)(F)

is induced. By the assumption of the induction, Ker Dd)éo)( fr) is a K-Betti
structure. It is easy to obtain that

D¢§O) Ker f’P = Ker D¢§O) (fp)

Then, we can conclude that (Ker fp, Ker fp) is a K-holonomic D-module. The
claims for the cokernel and the image can be proved similarly. U
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7.2.3. Dual

PROPOSITION 7.2.5. — Let (M, F) be a K-holonomic Dx-module. Then, the
dual D(M, F) := (DM, DF) is also K-holonomic.

Proof. — Let P be any point of Supp M, and let Cy be a bounding n-cell
at P. Let C = (Z,U,,V) be any refinement of Cy. Let Fyy and Fy be the
canonical pre-K-Betti structures of V and Vj. Let CV := (Z,U,p, V). We
have the induced K-structure of VV.

By using Proposition 5.2.1 and Theorem 5.2.2, we obtain that DJFy, and
DJFy are the canonical pre-K-Betti structures of VV and V;Y. Hence, we

obtain that C¥ and DF are compatible. We also obtain that DDEga)cp*.FV

is equal to the canonical pre-K-Betti structure of Egﬁa*l)gp*vv. Moreover,

the induced K-structure of (béa) (DMp) is equal to DD(bé_a_l)}' under the
isomorphism qbga)DM p qug,*a*l)/\/l p. By the inductive assumption, it is

K-Betti structure. Thus, we obtain that D(M, F) is K-holonomic. O

7.2.4. Sub-objects and quotient objects. — Let (M,F) be a K-
holonomic D-module.

PROPOSITION 7.2.6. — If (M, F1) is a subobject of (M, F) in Hol?**(X, K),
it is also K-holonomic. A similar claim holds for quotients.

Proof. — Let P be any point of X. We use an induction on the dimension of
the support of M. Let n > dimp Supp M. Let C = (Z,U, p, V') be a bounding
n-cell of M at P. Let V; C V denote the sub-connection induced by M;.
Then, C; = (Z,U, ¢, V1) is an n-cell of My at P. Let us prove that C; and F;
are compatible. By Lemma 6.4.6, the K-structure of V; is good. Let F, and
Ji denote the canonical K-structures of ¢+V and ¢1V. Let Fy, and Fy; denote
the canonical K-structures of p;V7 and V7. We have the morphisms:

e+(V1) > M er(V) F — F — F
| | | [ [
o+(Var) > My i (V1), F1 F1 Flx.

Because the morphism ¢; (V1) — M/M; is 0, the morphism Fy, — F/F is
also 0, i.e., F11 — F factors through Fj. Similarly, we obtain that F; — Fi
factors through Fi.. Hence, C; is compatible with Fj.

Let f be a cell function for C. We have

Pl (F) 5 P=(F) and Pyl (F) o PplP A
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Hence, we obtain qu;a) (F) D qugca) (F1), which are pre-K-Betti structures
of qbgca)/\/l and qbgca)/\/ll. By the assumption of the induction, we obtain
that D(b}a) (F1) is a K-Betti structure of ¢y M. O

7.2.5. Twist. — Let (M, F) be a K-holonomic D-module on X. Let V be
a flat bundle on X with a K-structure, i.e., we have a K-local system JFy such
that Fy ® C[dim X] ~ DRx (V). Then, we obtain a pre-K-Betti structure
FRFyof M V.

LEMMA 7.2.7. — F ® Fy is a K-Betti structure of M ® V.

Proof. — Let P be any point of X. We use an induction on dimp Supp M.
Let C = (Z,U,p,V) be a K-cell of M at P. Then, C' = (Z,U,p,V ® *V) is
a K-cell of M ®V at P. Let g be a cell function of C. Then, we have natural
isomorphism of pre-K-holonomic D x-modules

U (o1 (V@ ™V) = 9 (1(V)) © V.,

E (pr(V @ ¢*V)) = EW (pp(V)) @ V.
Hence, we obtain an isomorphism of pre-K-holonomic D-modules

P (M@ V) = ¢l (M) @ V.

By using the inductive assumption, we obtain that d)é,a) MxV)is K-
holonomic. Hence, we obtain that M ® V is K-holonomic at P. ]

7.2.6. K-cells

PROPOSITION 7.2.8. — Let (M, F) be a K-holonomic D-module. Then, any
cell C = (Z,U,, V) of M is a K-cell.

Proof. — Let P be any point of Supp(M). Let Cp = (Zp,Up, ¢'p, V}) be a
bounding K-cell of M at P, which is a refinement of C. By Lemma 6.4.4,
we obtain that the induced K-structure of V is good around ¢~!(P). By
varying P, we obtain that the K-structure of V is good. Moreover, for P and
C’ as above, the induced morphisms

Mp — @piVp and  o1(V)p — ¢piVp

are compatible with pre- K-Betti structures, where ¢; (V') p denotes the restric-
tion to a small neighbourhood of P. Because ¢(V)p — ¢’p;Vp is a monomor-
phism, we obtain that Mp — ¢(V)p is also compatible with pre-K-Betti
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structures. By varying P in X, we obtain that Mp — (V) is also com-
patible with pre-K-Betti structures. We can prove that ¢,V — M is also
compatible with pre-K-Betti structures with a similar argument. ]

7.3. K(xD)-Betti structure

We introduce a variant notion of K(xD)-Betti structure of holonomic
Dx («py-modules, where D is a hypersurface. It is rather auxiliary. In-
deed, as proved in §8, it is equivalent to K-Betti structure for holonomic
Dx («py-modules, although it will be convenient in some arguments.

7.3.1. Cells and cell functions for holonomic Dx,p)-modules. —

Let X be any complex manifold or smooth complex algebraic variety, and D
be any hypersurface of X. Let M be any holonomic Dx,p)-module, i.e., M
is a holonomic Dx-module such that M(xD) = M. A cell of a holonomic
Dx («py-module M is defined to be a cell of a holonomic Dx-module M. The
notions of refinement and enhancement of a cell of a holonomic Dx (. py-module
are defined in the same way. However, we will be interested in the morphisms

e (V1) (xD) — Mp — ¢1V.

The notion of cell functions is modified. Let C = (Z,U, ¢, V') be a cell of a
holonomic D, p)-module M. A cell function g of C is a meromorphic function
on X whose poles are contained in D, such that U = Supp M \ (¢~*(0) U D).

7.3.2. K(xD)-cell. — Let M be a holonomic Dy ,py-module. Let F be a
pre-K-Betti structure of M. Let C = (Z,U,,V) be an n-cell of M at P.
We say that F and C are compatible if

(i) the induced K-structure of V' is good,

(ii) the induced morphisms ¢+(V))(xD) — Mp — (V) are compatible

with the pre- K-Betti structures.

Such a cell C is called a K(xD)-cell of (M,F). Note that condition (i)
implies that ¢;(V1)(xD) and ¢4(V) are equipped with the canonical pre-K-
Betti structure.

Let g be a cell function for a K (xD)-cell C. For x = «,!, we set

a ~a,b —
VAP (xD) = (V ® 30 ) (x D).
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Note that ‘PT(Vg* (*D)) have the canonical pre-K-Betti structures. Since
2 )(SOTV «D) and wg (cpTV, «D) are of the form

Ker (¢t (Vi (+D)) — o1 (Vi (D)),

they are equ1pped with the induced pre-K-Betti structures Dzl )(go*]-"v,*D)
and leg (@« Fy,xD). The tuples

(B 1V, D), P2y (0 Fv,xD)), (v (01 V,xD), Py (0. Fyy, +D))

are also denoted by E;c)cpT(V, Fv,*D) and wg goT(V, Fv,*D). We will often
omit to denote the pre-K-Betti structures. We will use the following obvious
lemma implicitly.

LEMMA 7.3.1. — The natural isomorphisms
2 91V, %D) = i ES (V507 D), i (04V,%D) ~ 1™ (V, %' D)
are compatible with the induced pre-K -Betti structures. ]

Since ¢§0) (Mp,*D) is the cohomology of the complex in the category of
pre- K-holonomic D x-modules

01 (V) (xD) — EP0 (04, %D) & Mp — 4(V)(+D),

we obtain a pre-K-Betti structure of ¢§a) (Mp,xD) denoted by quéa) (F, D).
Let (b(a) (Mp, F,+D) denote the tuple

(65" (Mp, D), "¢\ (F,+D)).
We will often omit to denote the pre-K-Betti structure.

7.3.3. Definition of K (xD)-Betti structure. — Let us define the notion
of K(xD)-Betti structure at any point of D, inductively on the dimension of
the support of Dy (,py-modules. Let (M, F) be a pre-K-holonomic Dx,p)-
module.

Note that we have M = 0 around P € D in the case dimp Supp M = 0.

DEFINITION 7.3.2. — Let P be any point of D. Suppose dimp Supp M < n.
We say that F is a K(xD)-Betti structure of M at P if there exists an n-
dimensional K (xD)-cell Cy = (Zo, o, Uy, Vo) at P with the following proper-
ties:
> dimp((SuppM N Xp) \ ¢o(Zp)) < n for some neighbourhood Xp of P
in X;
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> for any dominant refinement C < Cp and any cell function g for C as
a Dx(«p)-module, the induced pre-K-Betti structure D(béo) (F,*D) is a

K (xD)-Betti structure at P.
Such an n-cell Cy is called a bounding n-cell of M at P. O

If Cy is a bounding n-cell of M, its dominant refinements and enhancements
are also bounding n-cells of M.

DEFINITION 7.3.3. — A pre-K-Betti structure F of M is called a K (xD)-
Betti structure if it is K-Betti structure of M at any points of X \ D, and if
it is K(*D)-Betti structure of M at any points of D. A holonomic Dx(.p)-
module with a K (xD)-Betti structure is called a K (*D)-holonomic Dx(,p)-
module. O

Let Hol(X,*D,K) C HolP™(X, K) denote the full subcategory of K (xD)-
holonomic Dy ,p)-modules. The following lemma is similar to Proposi-
tion 7.2.4.

LEMMA 7.3.4. — The category Hol(X,*D, K) is abelian. O
The following lemma is similar to Proposition 7.2.6.

LEMMA 7.3.5. — Let (M, F) be any K (xD)-holonomic Dx -module. Any sub-
object of (M, F) in Hol?**(X, K) is also K(xD)-holonomic. A similar claim
holds for quotients. [

The following lemma is analogue of Proposition 7.2.8.

LEMMA 7.3.6. — Let (M, F) be a K(*D)-holonomic Dx .py-module. Then,
any cell C = (Z,U,, V) of M is a K(xD)-cell. O

7.3.4. Uniqueness. — We have the following uniqueness.

PROPOSITION 7.3.7. — Let M be a holonomic Dx(.p)-module with K(xD)-
Betti structures F; (1 =1,2). If Fix—p = Fox—p; then we have F1 = F.

Proof. — It is enough to consider the issue locally around any point P € D.
We use an induction on dimp Supp M. In the case dimp Supp M = 0, the
claim is clear. Suppose dimp Supp M < n. Let C be any bounding cell at P,
and let g be any cell function of C. Let D(béo) (Fi,*D) be the induced pre-
K (+D)-Betti structures of ¢§0) (M, xD). By the assumption of the induction,
we have

D (F,+D) = Lo\ (F5, xD).
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Because F; can be reconstructed from quéo) (Fi,*D) and the canonical
pre-K (xD)-Betti structures of wéa)(cp*V, D) and Eéa) (p«V,*D), we obtain
Fi=F O

7.3.5. Independence from a compactification. — Let F': X’ — X be
a projective birational morphism of complex manifolds such that

X' -D ~X—D,

where D’ := F~Y(D). Recall that F; denotes the push-forward of pre-K-
holonomic D-modules.

PROPOSITION 7.3.8. — The functor F: induces an equivalence of the cate-
gories Hol(X,*D, K) and Hol(X',«D', K).

Proof. — It is enough to check the claims locally around any P € D. We begin
with a remark. Let M’ be a holonomic Dy (,pr-module. We set M := Fy M.
Let C = (Z,U,,V) be a cell of M at P. By taking a refinement, we may
assume that ¢ factors through F', i.e., ¢ = F o ¢/, and that C' = (Z,U, ¢, V)
is a cell of M’. Let g be a cell function for C as a Dy (+p)-module. Note
that ¢’ = go F is a cell function for C’. We have a description of M’ as the
cohomology of the complex

1 =(0 0 0
(110) ¥ (4V,+D") — EV (V. xD") @ ¢ (M +D") — 4 (4 V, %D").
By the push-forward Fj}, it induces a description of M as the cohomology of
the complex
(111) YD (p3V,xD) — O (p1V,%D) @ ¢ (M, D) — {9 (1 V, +D).

Suppose that 7 is a K (xD)-Betti structure of M’. Let us prove that F}F” is

a K (xD)-Betti structure of M. By Lemma 7.3.6, C' is a K (xD)-cell of M’. We

obtain that C is a K (xD)-cell of M. Because the pre-K-holonomic D-module

éo) (M, xD) is obtained as FTqS;?) (M’ xD), we obtain that d)éo) (M, xD) is

K (xD)-holonomic by the inductive assumption. Hence, F is also a K (xD)-
Betti structure. Thus, F} induces a functor

Hol(X', D', K) — Hol(X, *D, K).

It is clearly faithful.

Let us prove that it is full. We use an induction on the dimensions of the
supports of the holonomic D-modules. Let (M., F/) (i = 1,2) be objects in
Hol(X',*D', K). Let
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be a morphism in Hol(X,*D,K). We have a morphism [ : M| — M,
of holonomic D/ (,pr-modules. It is enough to show that it is compatible
with the K (xD)-Betti structures. For the cohomological descriptions (110)
for M., ¢§?) (f") and E;ﬁl)( f') are compatible with the pre-K-Betti structures.
Because éa)( f) is compatible with the K (xD)-Betti structures, we obtain
that qﬁé‘f) (f') is compatible with the K (xD’)-Betti structures. Thus, we obtain
that f’ is compatible with the K (xD’)-Betti structures.

Let us prove the essential surjectivity. We use an induction on the dimen-
sion of the support. Let M and M’ be as above. Let F be a K(xD)-Betti
structure of M. By the inductive assumption, the K (*D)-Betti struc-

ture of wéa) (p1(V),*D) and (béa) (M, *D) induce K (xD)-Betti structures
of wg,l) (cpﬂr(V), xD') and qﬁé‘f) (M, xD"), which are compatible with the natural
morphisms. We also have the canonical K-Betti structures of 1/1;7) (p3(V), xD’)

and E(g‘,l)(goﬂrV, «D"). By Proposition 7.3.7, the induced K (xD)-Betti struc-
tures on wé‘,l)(cp’T(V),*D') are the same. Hence, (110) is a complex of
K (*D)-holonomic D(xD)-modules. Hence, we have an induced K (xD)-Betti

structure of M’. The functoriality is clear from the above construction. [
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CHAPTER 8

FUNCTORIALITY PROPERTIES

8.1. Statements

We give several statements.

THEOREM 8.1.1. — Let F' : X — Y be any projective morphism of com-
plex manifolds. For any K-holonomic Dx-module (M, F), the push-forward
FJ?(M,}") = (FT’M,FTZ]:) are also K -holonomic for any i.

Here, FTi}' denotes the i-th cohomology of RF,F with respect to the middle
perversity.

THEOREM 8.1.2. — Let X be any compler manifold with a normal cross-
ing hypersurface D. Any good pre-K -holonomic D-module on (X, D) is K-
holonomic.

See Definition 6.3.4 for good pre-K-holonomic D-modules.

THEOREM 8.1.3. — Let X be a complex manifold with a hypersurface D. Let
H be a sequence of hypersurface pairs contained in D. Let V be any mero-
morphic flat connection on (X, D) with a good K -structure. Then, the pre-K -
holonomic D-module Pg (V') is K-holonomic.

See §6.4 for hypersurface pairs and B (V).

THEOREM 8.1.4. — Let X be any complex manifold with a hypersurface D.
We have a unique functor Hol(X, K) — Hol(X,*D, K) with the following
properties:

> It is an enhancement of the functor

Hol(X) — Hol(X,*D), M +—— M(xD).
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> For any (M, F) € Hol(X, K), the natural morphism M — M(xD) is
compatible with the induced pre-K -Betti structures.

8.1.1. Auxiliary statements. — We will use an induction on the dimen-
sion of the supports of D-modules for the proof. Let SI(<n) denote the
statement of Theorem 8.1.1 in the case dim Supp M < n.

Let GOOD(< n) means the following:

> the claim of Theorem 8.1.2 holds if dim Supp M < n;
> the claim of Theorem 8.1.3 holds if dim X < n.

For any complex manifold X with a hypersurface D, let
Hol<, (X, K) C Hol(X, K)

denote the full subcategory of K-holonomic Dx-modules (M,F) with
dim Supp M < n.

We use the symbols Hol<, (X), Hol<, (X, *D) and Hol<, (X, *D, K) with a
similar meaning.

Let LOC(< n) means the following:

> The claim of Theorem 8.1.4 holds if we replace Hol(X, K'), Hol(X, *D, K),

etc., by Hol<,, (X, K), Hol<, (X, *D, K), etc.

Our induction will proceed as follows:

> SI(< n) + GOOD(< n) = GOOD(< n) (§8.2.3 and §8.2.4);

> SI(< n) + GOOD(< n) + LOC(< n) = LOC(< n) (§8.3.3);

> SI(< n) + GOOD(< n) + LOC(< n) = SI(< n) (§8.5).

REMARK 8.1.5. — In the proof, we will observe the equivalence of K (xD)-
Betti structure and K-Betti structure. (See Lemma 8.3.1.) O
8.2. Step 1

8.2.1. K-cell. — Let ¢ : Z — X be a projective morphism of complex

manifolds such that dim Z = n. Let Dy be a hypersurface of Z. Assume that
$|z—p, is an immersion. Let V' be a meromorphic flat connection on (Z, Dz)
with a good K-structure. We have the canonical pre-K-Betti structures Fy
and Fyy of V and V(1Dy), respectively. More generally, for any sequence of hy-
persurface pairs $) contained in Dy, we obtain the canonical pre- K-holonomic
Dz-modules Py (V). Note that the natural morphisms

V(IDz) — PBu(V) — V
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are compatible with the pre-K-Betti structures. Hence, we can regard
(Z,U,id, V') as a K-cell of B (V).

LEMMA 8.2.1. — Suppose SI(< n) and GOOD(< n). Let g be any cell func-
tion for Co = (Z,U,p, V). We set

9z ‘= goe.

The pre-K -holonomic qﬁ(gaz) (PBu(V)) and ¢(ga)(<pT‘,]3yJ(V)) are K-holonomic. In
particular, wéi)(V) and wéa)cpT(V) are K-holonomic.

Proof. — By SI(< n), it is enough to prove that qbg,oz) (B (V)) is K-holonomic.
It is enough to consider the issue locally around any point P € Dy. We take
a local resolution (Zp, Ap) of V. We put

gp:=gzoAp and $Hp:= A;l()’)), Vp == ApV.

We have the good pre-K-holonomic Dy -module qﬁ(g(}))) (SBBP(VP)) (Proposi-
tion 6.3.5). By GOOD(< ), it is K-holonomic. By SI(< n), Apioy (Bz . (Vp))
is K-holonomic, which means that (béoz) (By(V)) is K-holonomic at P. O

PROPOSITION 8.2.2. — Suppose that SI(< n) and GOOD(< n) hold. Then,
the pre-K-holonomic D-modules ¢i(V, Fy') and o1(Vi, Fy) are K-holonomic.

Proof. — Let us prove the claim for 1(V, Fy). The other can be proved as the
dual. Let us prove that Co = (Z,U, ¢, V) is a bounding n-cell for i (V, Fy).
Let P be any point of X. Let ' = (Z',U’, ¢/, V') be a dominant refinement
at P with a cell function g. We have a factorization ¢ = ¢ o 1, where
p1: 72 — Z. We put )
g ‘= gop.

We have V! = ¢ 'V ®@0Oz/(xg'). We have the canonical pre-K-Betti structures
Fyr and Fyn of V' and VY, respectively. According to Proposition 6.4.7, the
morphisms

P11V — o1V — o1V’
are compatible with pre-K-Betti structures. Hence, C’ is a K-cell. We obtain
a monomorphism

0 (V) — &) (V)
of pre-K-holonomic Dyx-modules. By Lemma 8.2.1, ;0) (¢3V') is K-holo-

nomic. Then, we obtain that qbgo)(goTV) is K-holonomic by Proposition 7.2.6.
]
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COROLLARY 8.2.3. — Assume that SI(< n) and GOOD(< n). Let f be a cell
function of C = (Z,U, ¢, V). Then, =) (p1 V) with the canonical pre-K -Betti
structures are K-holonomic.

Proof. — Applying the previous results to cpT(HjifV) (x =1, %), we obtain that
they are K-holonomic. Then, we obtain the corollary. O

8.2.2. Gluing. — By Lemma 8.2.1 and Corollary 8.2.3, we have a glu-
ing construction of K-holonomic D-modules. Let X be a complex manifold,
C=(Z,Up,V)bea K-cell as in §8.2.1. Let f be a cell function for C on X.
Let Q be a K-holonomic D-module whose support is contained in f~*(0).
Assume that we are given morphisms of K-holonomic D-modules

oW (V) — @ — vl (1),

such that the composite is equal to the canonical map w;l) (pV) — w}o) (p1V).
Then, we obtain a K-holonomic D-module as the cohomology of the following
complex:

(V) — =D (V) @ @ — i (1)

8.2.3. Good holonomic D-module with good K-structure

Suppose SI(< n) and GOOD(< n). Let X be a complex manifold with a
simply normal crossing hypersurface D. Let M be a good pre-K-holonomic
D-module on (X, D) such that dimSupp M = n. Let us prove that M is
K-holonomic. We may assume that X = AV and D = Ule{zi = 0}. Let
p(M) € Z>¢y X Z=o denote the pair of dim Supp M and the number of the
irreducible components of Supp M with the maximal dimension. We use the
lexicographic order on Z>g X Z~¢. For a good holonomic D-module M on
(X, D), there exists J C £ with n = N — |J| such that M(xg) # 0 comes from
a meromorphic flat bundle V' on Dy, where g := [[jzs2;. Let ¢ : Dy = X
denote the inclusion. We have a description of M aégtzhe cohomology of the
complex of pre-K-holonomic D-modules

D@V) — E00V) @ 60 (M) — e V),

They are good pre-K-holonomic D-modules. By Lemma 8.2.1 and Corol-
lary 8.2.3, w;a)(V) and E;a)(V) are K-holonomic. Because p(qﬁém (M)) < p(M),
we obtain that ¢§0) (M) is K-holonomic. Hence, we obtain that M is also
K-holonomic.
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8.2.4. Generalization. — We use the notation introduced in §8.2.1.

PROPOSITION 8.2.4. — Suppose that SI(< n) and GOOD(< n). Then, the
pre-K -holonomic Dx -module By (V') is K-holonomic.

Proof. — It is enough to consider the issue locally around any point P € X.
We will shrink X around P without mention. Let C' = (Z",U’,¢’, V') be a
dominant refinement of C with a cell function g for C’. We set £/ := (') ~1(9).

LEMMA 8.2.5. — Under the assumptions SI(< n) and GOOD(< n), the pre-
K -holonomic D-module ¢ (P (V")) is K -holonomic.

Proof. — We have the expression of ¢} (P (V') as the cohomology of the
following complex of pre-K-holonomic D-modules:

M (D1 (V) — 6764 (B (V1) @ ER (V) — 452 (V).

By Lemma 8.2.1 and Corollary 8.2.3, we obtain that the pre-K-holonomic
D-modules wéa) (¢1(V")) and Ega)go’T(V’ ) are K-holonomic. By Lemma 8.2.1,

qbéo)cp’T(iBﬁ/(V’)) is K-holonomic. Hence, we obtain that ¢} (Pg (V') is K-
holonomic. Thus, we obtain Lemma 8.2.5. U

We have a natural monomorphism of pre-K-holonomic D-modules

@1 (B (V) — ¢ (Ber (V)

as remarked in Proposition 6.4.12. Then, by Proposition 7.2.6, we obtain that
©(By(V)) is K-holonomic. 0O

8.2.5. K(xD)-cell. — We use the notation introduced in §8.2.1. Let D be
a hypersurface of X such that Dz := ¢ }(D) C Dz. We have the pre-
K-holonomic Dz-module V(!Dz1). We obtain the following proposition as a
special case of Proposition 8.2.4.

PROPOSITION 8.2.6. — ¢4(V(!1Dz1)) is K-holonomic. O

8.3. Step 2

8.3.1. Equivalence of K (xD)-Betti structure and K-Betti structure

Let X be any complex manifold with a hypersurface D. Let (M, F) be any
pre-K-holonomic D, py-module with dim Supp M < n.
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LEMMA 8.3.1

> Assume SI(< n) and GOOD(< n). If F is a K (xD)-Betti structure, then
it 15 a K -Betti structure.

> Assume LOC(< n). If F is a K-Betti structure, then it is a K (xD)-Betti
structure.

Proof. — Let us prove the first claim. We use an induction on the dimension
of the support. Let P be any point of D N Supp M. We take a bounding
cell C = (Z,U,p,V) of (M, F) at P, and a cell function g of C as Dx(.p)-
module. We have a description of M as the cohomology of the complex of
K (xD)-holonomic Dy, py-modules

(@1 (V), xD) — EV (01 V,xD) @ ¢{0 (M, xD) — {0 (o(V), xD).

By the inductive assumption, ¢§0) (M, xD) is K-holonomic. By Proposi-
tion 8.2.6, ;a)(cpT(V),*D) and E;a)(./\/l,*D) are K-holonomic. Hence, we
obtain that M is also K-holonomic.

Let us prove the second claim. By the assumption LOC(< n), we obtain a
K (*D)-holonomic Dx,p)-module (M(xD), F(*D)) with a morphism of pre-
K-holonomic D-modules

(M, F) — (M(xD), F(xD)).

Because M = M(xD), we obtain F = F(xD), and hence F is a K (xD)-Betti
structure. O

We reformulate the uniqueness (Proposition 7.3.7) as follows.

COROLLARY 8.3.2. — Let x be x or . Assume SI(<n), GOOD(< n) and
LOC(< n). Let M be a holonomic D-module on X such that M(xD) = M.
Let F; (i = 1,2) be K-Betti structures on M. If Fix_p = Fox—p;
then F1 = Fo.

Proof. — The claim for x = % follows from Lemma 8.3.1 and Proposition 7.3.7.
We obtain the claim for x = ! by using the dual with Proposition 7.2.5. U

COROLLARY 8.3.3. — Suppose SI(< n), GOOD(< n) and LOC(< n). Let M
be a holonomic Dx-module. Assume that one of the following holds;

(i) M(ID) — M is surjective,

(i) M — M(xD) is injective.
Let F; (i = 1,2) be K-Betti structures on M. If Fyx_p = Fax_p, then
F1 = Fo. O
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We reformulate the independence from a compactification (Proposi-
tion 7.3.8). Let F': X’ — X be a projective birational morphism of complex
manifolds. Let D be a hypersurface, and we put

D' := F7 (D).
Assume X' — D' ~ X — D.

PROPOSITION 8.3.4. — Assume that SI(< n), GOOD(< n) and LOC(< n)
hold. Let M' be a holonomic Dx:(,pry-module. We set M := FyM’.

> If F' is a K-Betti structure of M', then F.F' is a K-Betti structure

of M.

> If F is a K-Betti structure of M, then M’ is equipped with a K-
Betti structure F' such that f"X/_D/ = Fix—p under the isomorphism
M\,XLD/ ~ M|x_p. It is functorial. O

8.3.2. K(xD)-cell. — Let ¢ : Z — X be a projective morphism of complex
manifolds such that dim Z = n. Let Dy be a normal crossing hypersurface
of Z. Assume that p|z_p, is an immersion. We suppose

Dy = (p_l(D> C Dy.

Let V be a meromorphic flat connection on (Z, Dz) with a good K-structure.
We obtain the pre-K-holonomic Dz-modules V' and Vi(xDy).

PROPOSITION 8.3.5. — Assume that SI(< n), GOOD(< n) and LOC(< n)
hold. Then, piVi(*D1) and ¢V are K (xD)-holonomic.

Proof. — Let us prove that Co = (Z,U,,V) is a bounding n-cell at any
P e Dne(Z). It is enough to consider the issue locally. We shall shrink X
without mention.

Let C' = (Z',U’,¢', V') be a dominant refinement at P with a cell function g
as Dx (x*D)-modules. We have a factorization ¢’ = @ oy, where ¢ : 7/ — Z.
We put

g :=goy and D:=(¢)7'D.
We have V! = o'V ® Oz(xg'). According to Proposition 6.4.7, the mor-
phisms ¢} (V) (xD) — @1(VI)(xD) — ¢tV — ¢V’ are compatible with the
canonical pre-K-Betti structures. We obtain the induced pre-K-Betti struc-
tures of (;Sga)(goT(V), D) and qbéa) (p1(W),*D).

We obtain pre-K-holonomic D-modules qbgf)( /,*D7) and qbécf)(V’ ,xDY)
on Z'. They are K-holonomic, which can be proved by the argument in the
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proof of Lemma 8.2.1. We obtain that
(V' «D) and  ¢{ (£} (V/),*D)

are K-holonomic by the assumption SI(< n).
By Lemma 8.3.1 and assumption LOC(< n),

¢\ @iV D) and ¢\ (W, +D)

are K (*xD)-holonomic. Because qﬁ(ga)(cpTV, *D) C qﬁ;a) (¢} V', D) is compatible

with the pre-K-Betti structures, (;Sga)(goTV, xD) is also a K (xD)-holonomic by
Lemma 7.3.5. Since the surjection

O (P V, xD) — ¢\ (oW, *D)

is compatible with the pre-K-Betti structures, ¢§]a) (p1V1,xD) is also K (*D)-
holonomic by Lemma 7.3.5. U

COROLLARY 8.3.6. — Assume that SI(<n), GOOD(< n) and LOC(< n)
hold. Let f be a cell function of an n-dimensional cell C = (Z,U, ¢, V) as
Dx (+py-module. Then, w;a)(goTV, D) and E(a)(goTV, xD) with the canonical
pre-K -Betti structures are K (*D)-holonomic.

Proof. — Applying the previous results to Haf(cpTV, «D) for x = x, !, we obtain
that they are K (xD)-holonomic. Then, we obtain the corollary. O

8.3.3. Localization. — Let us prove LOC(< n) by assuming SI(< n),
GOOD(< n) and LOC(< n). By Proposition 7.3.7, the problem is local.
Let M be a K-holonomic Dx-module with dim Supp M < n.

Let P be any point of D. Let (Z,U,¢,V) be a bounding cell of M at P
with a cell function g as K-holonomic D-modules. By taking a refinement, we
may assume U N D = @. We put g := ¢ !(g) and D; := ¢~ 1(D). We have
the expression of M as the cohomology of the complex of the K-holonomic
D-modules

(112) Do (V) — E0 0 (V) @ 6 (M) — Do (V).

By the assumption of the induction, wéa)(goTVg,*D) and ¢§a) (M, xD) are
equipped with the induced K (xD)-Betti structures. We also have the
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commutative diagram of pre-K-holonomic D-modules

D) —— oM —— P ev)

| ! !

oM (@iVi, % D) —— o0 (M, D) —— ¥ (@i Vi, D).

We have the canonical pre-K-Betti structures of ngf) (V,xDp) and
Hgl)(V «D7). According to Corollary 8.3.6, their push-forward @ngff) (V,xDy)
and goTugl)(V, xD1) are K (xD)-holonomic.

We also have the commutative diagram of pre- K-holonomic D-modules

PN (V) ——  aER(V) —— (V)

! ! l

oo (V,xDy) —— o Z (VD) —— @il (V,xDy).

By Proposition 7.3.7, the identification
e (V,xD1) = i (p4V,+D)

is compatible with the pre-K-Betti structures. Hence, we obtain a K (xD)-
Betti structure of M(xD) with a morphism of pre-K-holonomic D-modules
M — M(xD) whose restriction to X — D is an isomorphism. The functoriality
is clear from the above construction. O

8.3.4. Twist. — Let (M, F) be any K (xD)-holonomic D(*xD)-module such
that dim Supp M < n. Let V be a meromorphic flat connection on (X, D)
with a good K-structure Fy. According to Lemma 7.2.7, Fyx_p ® Fy|x—p
is a K-Betti structure of (M ® V)| x_p.

PROPOSITION 8.3.7. — Assume that SI(< n), GOOD(< n) and LOC(< n)

hold. There exists a K(xD)-Betti structure Fygy of M &V such that
Fmevix—p = Fmx—p @ Fyx_p-

It is functorial with respect to M and V.

Proof. — Let P € D. 1t is enough to consider the issue locally around P. We

use an induction on dimp Supp M. Let C = (Z,U, p, V') be a dominating cell

of M at P. Let g be a cell function for C as Dy ,p)-module. By the inductive
assumption, we have the K (xD)-Betti structures of

W (p1V,xD) @V and ¢\ (p1V,xD) @ V.
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According to Corollary 8.3.6, we have the K (+D)-Betti structures of
W (o1 V,xD) @V and  E®(p3V, D) @V
induced by the isomorphisms
WM, xD) @V = (M @V, +D), E(M,*D) @V ~EW (M@ V,*D).

By the uniqueness, the induced K (xD)-Betti structures on wéa) (M,*D) @V
are equal. Because M ® V is expressed as the cohomology of the complex

WM, +D)@V — EP (M, +D)@ V@ o) (M, D)2V — (M, +D)®V,
we obtain a K (xD)-Betti structure on M ® V with the desired property. [
8.3.5. Nearby, vanishing and maximal functors. — Suppose that
SI(< n), GOOD(< n) and LOC(< n) hold. Let (M,F) be a K-holonomic
Dx-module with dim Supp M < n. Let f be any holomorphic function on X.
As proved in §8.3.3, we obtain a morphism M — M(xf) of K-holonomic Dx-
modules. By considering the dual, we also obtain a morphism of K-holonomic

Dx-modules M(!f) — M.
By Proposition 8.3.7, for any a < b, we have K-holonomic Dx-modules

IGP(M) (k= 1),
Hence, we obtain K-holonomic Dx-modules H?Jf! (M). In particular, we obtain
K-holonomic Dx-modules = (M) and w;a) (M) with morphisms
M) — EQ M) — M(xf) and ) (M) — EP (M) — P (M)

in Hol(X, K'). We obtain a K-holonomic Dx-module (ﬁ;o) (M) as the cohomol-
ogy of the complex

M) — P (M) D M — M(xf)
in Hol(X, K'). We can recover M as the cohomology of the complex
M) — =P M) @ o (M) — P (M)
in Hol(X, K).

8.4. Some resolutions

This subsection is a preliminary for the proof of Theorem 8.1.1.
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8.4.1. Non-characteristic condition. — Let M be a holonomic D-
module on a complex manifold X. There exists a stratification

Supp(M) = [
FISHN
such that
(i) each Z; is a smooth locally closed analytic subset of X,

(i) Ch(M) = [Len 77, X

LEMMA 8.4.1. — A complex submanifold W C X is non-characteristic with
respect to M if and only if W and Z; are transversal for any i € A. In that

case, for the inclusion v : W — X, we have Ch(t.t* M) = [[;cp T (X -
Proof. — We have subspaces (T X)|p and (Ty, X)p of (T"X)p for any P €
W N Z;. Then, W and Z; are transversal at P if and only if

(Tw X)1p 0 (T7,X)1p = {0}

The first claim of the lemma is clear. The second claim follows from general
formulas of the characteristic varieties for the pull back by a non-characteristic
closed immersion and the push-forward by a closed immersion. O

LEMMA 8.4.2. — Let D be a smooth hypersurface of X. If D is non-
characteristic with respect to M, the natural morphism M(!D) - M & O(!D)
18 an isomorphism

Proof. — Let ¢ : D — X be the closed immersion. Because D is non-
characteristic with respect to M, we have the exact sequence
0 — ixi'"M — M(1D) — M — 0.
We have
0 — ii"Ox — Ox(ID) — Ox — 0.
By the non-characteristic condition and the projection formula, we obtain
0 — ii'tM — M®O0x(!D) — M — 0.

Then, we obtain the claim of the lemma. O
LEMMA 8.4.3. — Let D; (i =1,2) be smooth hypersurfaces of X such that

(i) Dy and D+ are transversal,

(ii) Dy, Do and D1 N Dy are non-characteristic with respect to M.

Then, Dy is non-characteristic with respect to M(xD1), and we have
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Proof. — By the assumption, D; (i = 1,2) and Dy N Dy are transversal to Z;
for j € A. It is elementary to check that D5 is transversal to D1 N Z; (j € A).
We obtain that Dy is non-characteristic with respect to M(xD1). We obtain
the isomorphisms (113) from Lemma 8.4.2. O

8.4.2. Non-characteristic tuple of hyperplane subbundles. — Let &£
be a locally free sheaf on any complex manifold Y. Let X be its projectivization
with the projection G : X — Y. If a section s of Op(g)/y (1) gives a nowhere
vanishing section of G.(Op(s)/y (1)), the zero set of s is called a hyperplane
subbundle of X. For any hyperplane subbundle H of X and P €Y, let Hp
denote the fiber over P.

Let M be any holonomic Dx-module. Let H := (Hy,...,Hy) be a tu-
ple of hyperplane subbundles of X such that, for each P € Y, the tuple of
hyperplanes (Hyjp, Hyjp, .., Hy|p) is of general position.

We say that H is non-characteristic with respect to M if Hy := (;c; H;
are non-characteristic with respect to M for any I C {1,...,N}.

We can prove the following lemma by a standard argument of genericity.

LEMMA 8.4.4. — Suppose that (Hy,...,Hy) is non-characteristic with re-
spect to M. Let P be any point of Y. Then, if we shrink Y around P,
we can take a hyperplane subbundle Hyny1 such that (Hy, ..., Hy,Hyy1) is
also non-characteristic with respect to M. O

Recall the following general lemma.

LEMMA 8.4.5. — Let (Hy, H2) be a tuple of hyperplane bundles of X, which
is non-characteristic with respect to M. Then, for any i # 0,

G (M(xH;!Hy)) = 0.

Proof. — Let M; (i = 1,2) be holonomic Dx-modules, and let H; be hyper-
surfaces which is non-characteristic with respect to M;. Because M; has a
global good filtration according to [39], we have an exhaustive filtration G,
(a =1,2,...) by coherent Ox-submodules of M;. We have

R'G.(Ga(+H1) ® X y) = 0
for any b > 0. Hence, we have

R'G.Mi(+H1) ® Q) = 0.
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Then, we obtain GéMl(*Hl) = 0 for any ¢ > 0. By using the duality, we
obtain that

Gi(M2(!Hs)) =0
for any ¢« < 0. Then, the claim follows from Lemma 8.4.3. U
8.4.3. Resolutions. — Let X, Y, M beasin §84.2and H = (Hy,...,Hy)

be a tuple of hyperplane subbundles of X, non-characteristic with respect
to M. Let i:={1,...,i}, and let ty; denote the inclusion H; C X. We put

No == M(xHi), C;:= gy M and N;:=Ci(xHit).
We have the natural exact sequences
(114) 0—M—Ny—C —0, 0—C —N; —Ciy1 — 0.
Hence, we obtain the exact sequence
(115) 0—M-—Ny — N, — - — N, — -+

Let H = (H;|j=1,...,N’) be a tuple of hyperplane subbundles of X such
that H L H' is non-characteristic with respect to M. We set

Qio:=N;(lH}), Ki_j:= LHJ/__TL*H]/'./\/'Z‘ and  Q; _j:=K; _;j(!Hjt1).
We have the natural exact sequences .
0 —Ki-1— Qio— N, —0, 0—K;_j-1—Qi—j —Ki_j —0.
Hence, we obtain the exact sequences
0¢—Ni¢+— Qio¢— Qi 1¢— Qi 2¢— -

By construction, we have the naturally defined morphisms Q; _; — Q;q1,—;
and the commutative diagram:

Qi—j —— Qiy1,-j

! l

Qi—j+1 — Qit1,—j+1-
Let Tot(Q,,.) denote the total complex of the double complex Q,,. We have
natural quasi-isomorphisms

Tot(Q...) —— N, ¢— M.
By the construction, for each Q; _;, there exists a holonomic D-module P; _;
such that

(1) (Hit+1, Hj,,) is non-characteristic with respect to P; ;.

(ii) Qi7_j = Pi,—j(*Hi+1!Hjl'+1)-
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8.5. Step 3

Let us prove that SI(< n), GOOD(< n) and LOC(< n) imply SI(< n). The
following argument is inspired by [3].

8.5.1. Special case I. — Let G : X — Y be any projective morphism of
complex manifolds with dim X < n. Let D be a hypersurface of X. Let V' be
a meromorphic flat connection on (X, D) with a good K-structure. Suppose
that we are given a sequence of hypersurface pairs §) contained in D. We
obtain a K-holonomic Dx-module M := Py (V) with the canonical K-Betti
structure F.

ProrosiTION 8.5.1. — If G?r./\/l = 0 for i # 0, then RG,F is a K-Betti
structure of G?M.

Proof. — It is enough to argue the issue locally around any points of Y. Let
us consider the case Supp G(T)M C G(X). We take a holomorphic function f
such that Supp G?./\/l C f740) and G(X) ¢ f~1(0). We set

fx =foG.
As remarked in §8.3.5, we have a description of the K-holonomic D-module

¢§‘(;)3 M as the cohomology of

M(Ufx) — EPM(xfx) & M — M(xfx).

X

By the assumption,
GiM(!fx) = Gt M(xfx) = G{EY) M(xfx) = 0.
Hence, we obtain
GHM, F) = G;¢) (M, F)

as pre-K-holonomic D-modules. By SI(< n), we obtain that RG.F is a K-
Betti structure of G(T)M'

Let us consider the case G(X) = Supp G(T)/\/l. Let P € Supp G?M. Let
C=(Z,U,p,FE) be a cell of G(T)M at P with a cell function g. We set

gz = go_lg and gx = G_lg.

We have the K-Betti structures F(xgx) of M(xgx) by LOC(< n). By con-
sidering the dual, we obtain the K-Betti structure F(lgx) of M(lgx).
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LEMMA 8.5.2. — The K-structure of E is good, and the natural isomorphisms
prE(xgz) = Gy (M)(x9)
are compatible with the pre-K -Betti structures for x = x,!.

Proof. — We argue the case x = !. The case x = * can be argued similarly.
We take a projective birational morphism x : X’ — X such that

(i) X' is smooth,
(i) X' = (gx o) 7' (0) = X — gx'(0),
(iii) the induced morphism X’ — Y factors into X’ %% 72 4 V.
We set
gx =gxor and $' = 1(H),
V= k'V@0O(xgx) and M :=Rg(V)(lgx).
Note that kM ~ M(lgx) and Gz M' = E(lgz).
We have the canonical pre-K-Betti structure 7’ of M’. We have
R F' = F(lgx).

By Theorem 6.5.1, we obtain that the K-structure of E is compatible with
the Stokes structures, and that RG z,F' is the canonical K-Betti structure of
G z3M'. Hence, we obtain that RG.F(lgx) is the canonical K-Betti structure
of Gy(M)(lg) = ¢+E(lgz). Thus, we obtain Lemma 8.5.2. O

LEMMA 8.5.3. — The natural isomorphisms
GHEL) (M(xgx)) = ES(E)  and  Giabfl) (M(xgx)) = ¢ (o1 E)
are compatible with the induced pre-K -Betti structures.

Proof. — By Lemma 8.5.2, the natural isomorphisms
G (M(xgx) © T57) (xgx) = o1 © T52 (xg2)

are compatible with the induced pre-K-Betti structures. Hence, the
Lemma 8.5.3. O

By Lemma 8.5.2, the morphisms ¢1Ey — GiM — ¢;E are compatible
with the induced pre-K-Betti structures, i.e., C is a K-cell. Hence, we have
an induced pre-K-Betti structure D¢§0) (RG.F) of ¢§0)(G$M). We also have
the induced K-Betti structure qué())g (F) of qbé())g./\/l. By using Lemma 8.5.3, we
obtain 2o\ (RG,F) = RG.PoL) (F) under the isomorphism

$D(GIM) = G M.
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By the assumption SI(< dim X'), we obtain that quéo)(RG*]:) is a K-Betti

structure of ¢§0) (G4M). Thus, we obtain Proposition 8.5.1. O
8.5.2. Special case II. — Let G : X — Y be a projective morphism of

complex manifolds. Let ¢ : Z — X be a projective morphism. Let Dy
be a hypersurface of Z. Assume that ¢|z_p, is an immersion. Let V be a
meromorphic flat connection on (Z, Dz) with a good K-Betti structure.

Suppose that we are given a sequence of hypersurface pairs 7 of Z con-
tained in Dz. We obtain the K-holonomic Dz-modules M := piBg, (V).

LEMMA 8.5.4. — Suppose G?r./\/l = 0 unless i = 0. Then, the pre-K-
holonomic Dy -module G?M is K-holonomic.

Proof. — It follows from Proposition 8.5.1. O

8.5.3. Special case III. — Let £ be a locally free sheaf on a complex
manifold Y. Let X be its projectivization. Let H; (i = 0, 1,2) be hyperplane
subbundles. Let A/ be a K-holonomic D-module on X such that N (xHgy) = N.
By shrinking Y, we may assume that X =Y x P" for some n.

LEMMA 8.5.5. — Let A C X be any closed complex analytic subset. If we
shrink Y appropriately, there exists a meromorphic function g on X such that

(i) the poles of g are contained in Hy,
(ii) A is contained in HyU g~1(0).

Proof. — Let Z4 denote the ideal sheaf of A on X. If m is sufficiently large,
we have a non-zero section of Z4(mH) for m. O

LEMMA 8.5.6. — We can take a meromorphic function g on X such that
(i) the poles of g are contained in Hy,
(ii) N(xg) is obtained as oV for a cell C = (Z,U, ¢, V).

(Note that we do not assume that V' is a good meromorphic flat bundle on Z.)

Proof. — We have a decomposition of Supp(N) into the locally closed com-
plex analytic subsets | [ A; such that the characteristic variety of A is || T5X.
Applying the previous lemma to the lower dimensional strata, we find a mero-
morphic function g on X such that

(i) the poles are contained in Hy,
(i) A; € HoU g 1(0) if dim A; < dim Supp(N).
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By using the resolution of singularity to the irreducible components of
Supp(N) with the maximal dimension, we obtain the cell. O

Suppose that H = (Hy, Hs) is non-characteristic with respect to A/, N'(xg),
N (1g)(xHy), ¥S (N, % Hy), 5 (N, xHy) and ¢\ (N, «Hp). In this case, H is
non-characteristic with respect to Hggb(/\/ ,*Hy) and H;;b(/\/ ) for any a, b.

LEMMA 8.5.7. — The induced pre-K -Betti structure of G?‘I?HN is a K-Betti
structure.
Proof. — By LOC(< n),
‘BH(HZ!’b(./\/, xHp)) and Pg (H‘g‘;b./\/)

are naturally K-holonomic D-modules. By Lemma 8.4.5, we have

SPm (I (W, +Hy)) =0,  GiPa(TIEN) =0
unless i = 0. According to Lemma 8.5.4,

b

GiBu (TN, +Hy)) and  GPw (LN

are K-holonomic. Hence, we obtain that
GIPHEW (N, «Hy) and  GYPry(” (N, H)
are K-holonomic. We have the description of G(T)‘,BH./\/’ as the cohomology of
the complex of pre-K-holonomic Dy-modules
APy (N, «Hy) — GIBaEL (W, xHo) & GIP oY) (N, xH)
— GIBaY (N, +Hp).

By SI(< n), we obtain that G?‘Bthéo) (N, *Hy) is K-holonomic. Then, we
obtain Lemma 8.5.7. ]

8.5.4. Proof of Theorem 8.1.1. — It is enough to consider the case X =
P(E) for some locally free sheaf £ on Y. Let (M, F) be a K-holonomic Dx-
module with dim Supp M < n. Let us prove that FTZ (M, F) are K-holonomic.

We take a resolution N, of M as in (115) of §8.4.3. Then, by applying
the construction Q,, in §8.4.2 to each N, we take a resolution Tot(Q(MN,)...)
of M. It is naturally equipped with the K-Betti structure Tot(]:.%.). Then,
FJrZ (M, F) is described as the i-th cohomology of

Tot (FY (QM.)e e, F2.)).

e, 0,0
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Hence, it is enough to show that FJP(Q(./\/’.).,.7 FZ,.) are K-holonomic. By the
construction, we have dim Supp Q(N); ; < dim Supp M for (k,1,5) # (0,0,0),
to which we can apply the inductive assumption. Hence, it is enough to show
that FP(Q(NO)()’O,‘F(?O,O) is K-holonomic, which follows from Lemma 8.5.7.

O
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CHAPTER 9

DERIVED CATEGORY OF ALGEBRAIC
K-HOLONOMIC D-MODULES

We study the standard functors on the derived category of algebraic K-
holonomic D-modules. It is enough to follow very closely the arguments in [3],
[4], [5] and [57], [58]. This section is included for a rather expository purpose.

9.1. Standard exact functors

Let X be a smooth complex quasi-projective variety. We take a smooth
projective completion X C X such that D = X — X is a hypersurface. We set

Hol(X, K) := Hol(X, D, K),

which is independent of the choice of a completion X (Proposition 8.3.4). Let
DP(Hol(X, K)) denote the derived category of Hol(X, K). We will implicitly
use the following obvious lemma. (Later, we will prove a stronger version in
Theorem 9.4.1.)

LEMMA 9.1.1. — The forgetful functor Hol(X, K) — Hol(X) is faithful. O

9.1.1. Dual. — For any M € Hol(X,*D, K), we have the K-holonomic
Dy (xpymodule Dx M := Dg(M)(+D).

LEMMA 9.1.2. — Dx (M) is well defined in Hol(X, K).

Proof. — Let X’ be another smooth projective compactification of X. Put
D'=X-X.
We may assume to have a projective morphism

o: X — X



176 CHAPTER 9. DERIVED CATEGORY OF K-HOLONOMIC D-MODULES

such that ¢|x =idx. We have a K-holonomic Dy,(*D,)—module M’ such that
@sM’ = M, which is unique up to canonical isomorphisms. Then, the natural
isomorphism

p1(DM')(+D") ~ D(M)(xD)

preserves the K-Betti structure by the uniqueness (Corollary 8.3.2). It implies
the claim of the lemma. O

COROLLARY 9.1.3. — There exists a functor Dx on Hol(X, K) which is com-
patible with the standard duality functors on Hol(X) and the category of K-
perverse sheaves. We also have a functor Dx on D*(Hol(X, K)), compatible
with the standard duality functors on D? (X) and DY(Kx). They are unique
up to natural equivalences. [

We use the symbol XD if we would like to emphasize that it is a functor
for K-holonomic D-modules.

LEMMA 9.1.4. — For M, N € Hol(X, K), we have a natural isomorphism:
EXt%‘IOl(X,K) (M,N) ~ EXt%‘IOl(X,K) (KDXN, KDXM)

Proof. — It follows from the comparison of Yoneda extensions. O

9.1.2. Localization. — Let H be a hypersurface of X. As is shown in
Theorem 8.1.4 and Proposition 8.3.4, we have the localization

«H : Hol(X, K) — Hol(X,K), M —s M(xH).
It is an exact functor. By considering the dual, we obtain an exact functor
lH : Hol(X, K) — Hol(X,K), M — M(H).
They induce exact functors *H and !H on D’(Hol(X, K)).
LEMMA 9.1.5. — For M, N € Hol(X, K), we have the natural isomorphisms:
Extiyo)x i) (M N (+D)) = Extig g x g0y (M(+D), N(xD)),

EXti‘Iol(X,K) (M('D)7N> = EXti—Iol(X,K) (M('D),N('D))

Proof. — It follows from comparisons of Yoneda extensions. O
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9.1.3. Nearby cycle, vanishing cycle and maximal functors. — Let g
be an algebraic function on X. By Proposition 8.3.7, we have the exact func-
tors 1157 (x = x,!) on Hol(X, K) given by

M3 (M) == (M @3%)(xg) (a,b € Z).

Hence, we obtain the exact functors Eéa), éa) and (bg,a) on Hol(X, K). They
induce the corresponding exact functors on D°(Hol(X, K)). We use the sym-
bols KEg,a), Kq/}éa) and K(;Sga), when we would like to emphasize that they are

functors for K-holonomic D-modules. We remark that the functors are not

compatible with the forgetful functor D®(Hol(X, K)) — D%(Kx).
The K-Betti structure of ng(]a) (M, F) is denoted by Dw;a) (F) for the dis-

tinction, when we would like to emphasize it. Similar notations such as DEga)

and qu(ga) are used.

9.2. Push-forward and pull-back

9.2.1. Statements. — Let f: X — Y be an algebraic morphism of quasi-
projective varieties. We take a commutative diagram

X —— Y

where
(i) a; are open immersions,
(ii) X and Y are smooth projective,
(iii) Hx = X — X and Hy :=Y — Y are hypersurfaces.
We have a natural equivalence between Hol(X,*Hy, K) and Hol(X, K).
Let M € Hol(X,*Hx, K) correspond to M € Hol(X, K).
According to Theorem 8.1.1, we obtain the following objects in Hol(Y, K):

KfM) == fiM and  Kfi(M) = f{(M(\Hx))(+Hy).

They are independent of the choice of X up to natural isomorphisms. Thus,
we obtain cohomological functors X i, K fi: Hol(X, K) — Hol(Y, K) for i € Z.

PROPOSITION 9.2.1. — For x = | %, there exists a functor of triangulated
categories

Kf, : D’(Hol(X, K)) — D"(Hol(Y, K))
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such that
(i) it is compatible with the standard functor f, : D? (X)) — Db (Y),
(ii) the induced functor H'(Xf,) : Hol(X, K) — Hol(Y, K) is isomorphic
to K fL.

It is characterized by the property (i) and (ii) up to natural equivalences.

As in §4 of [57], the pull back is defined to be the adjoint of the push-
forward.

PROPOSITION 9.2.2. — The functor Xf, has the right adjoint Xf', and Xf,
has the left adjoint K f*. Thus, we obtain the functors

Kf*: DP(Hol(Y,K)) — D(Hol(X,K)) (x=1,%).

They are compatible with the corresponding functors of holonomic D-modules
with respect to the forgetful functor.

Let us consider the case where f is a closed immersion, via which X is
regarded as a submanifold of Y. Let D% (Hol(Y, K)) be the full subcategory
of DY(Hol(Y, K)) which consists of the objects M?* such that the supports of
the cohomology €D, HiM?* are contained in X.

PROPOSITION 9.2.3. — The natural functor X f; : D Hol(X, K) — D% Hol(Y, K)
s an equivalence.

REMARK 9.2.4. — Itis a deep theorem(!) of Z. Mebkhout that the irregularity
sheaf of any holonomic D-module M is a perverse sheaf. See [43]. By using
the above functors, in the algebraic case, we obtain that the irregularity sheaf
of a K-holonomic D-module is equipped with an induced K-structure which
is clear by the definition of the irregularity sheaf. We may apply the argument
even in the analytic case. U

9.2.2. Preliminary. — Let X be a smooth complex projective variety with
a hypersurface D. Let
D*(Hol(X,*D, K))
denote the derived category of Hol(X,*D, K). Similarly, let
D" (Hol(X, D))
denote the derived category of Hol(X,*D).

M This remark is due to the referee.

MEMOIRES DE LA SMF 138/139



9.2. PUSH-FORWARD AND PULL-BACK 179

Let f: X — Y be a morphism of smooth projective varieties. Let Dx and
Dy be hypersurfaces of X and Y respectively, such that Dy D f~!(Dy). We
have the functor

Kfi: Hol(X,*Dx, K) — Hol(Y, *Dy, K),

naturally given by f; We have a decomposition Dx = Dx; U Dxs such that
Dxs = f~1(Dy). We set Dy := (Dx1, Dx2). We have the functor

Kff : Hol(X, *Dx, K) — Hol(Y,*Dy, K), "f{(M,F) = i M.
LEMMA 9.2.5. — For « = x,!, there exist functors
Kf.: D*(Hol(X,+Dx, K)) — D°(Hol(Y,*Dy, K))

such that

(i) they are compatible with the standard functors f, : D®(Hol(X,*Dx)) —
DY(Hol(Y, *Dy)) by the forgetful functors,

(ii) the induced functor H'(Xf,) : Hol(X,*Dx, K) — Hol(Y,*Dy, K) are
isomorphic to Kf?.

It is characterized by (i) and (i) up to natural equivalences.

Proof. — Let us consider the case x = *. Let M be a K-holonomic Dx(.p)-
module. Let H = (Hy,...,Hys) be a tuple of hypersurfaces of X. We put

H; = H.
i€l
We take a K-vector space U with a base (e1,...,en). For I = (i1,...,%m) C

{1,..., M}, let Ur denote the subspace of A\*U generated by e;, A---Ae;,, .
For m > 0, we set

HM) = @ M(xHp) ® Ur.
[I|=m+1
For Ii := I'U{i} C {1,..., M}, the natural morphism M(xHj) — M (xH[;)
and the multiplication of e; induce

M(*H]) QU — M(*Hh) ® Uy;.

They give a complex (C3z (M), 0xmr). We have a natural morphism of com-
plexes

M — Cig(M).
If N H; = @, it is a quasi-isomorphism.
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Suppose we are given a tuple of hypersurfaces L = (Lq,...,Ly). We put
HL = (Hy,...,Hpy, Ly, ..., Ly). The natural projection
CiarM) — Cig(M)

gives a complex of morphisms.

Let H' = (Hj,...,H)) be a tuple of hypersurfaces on X. We take a K-
vector space U’ with a base (e,...,¢ey). For J = (j1,...,jn) C {1,...,N},
let U} be the subspace of A U’ generated by e A---Ael . For n <0, we set

M) = @5 M(H) 2 U
|J|=—n+1
Let ¢/ denote the dual base. For Jj = J U {j} C {l,...,N}, the natural
morphism M(HY;) — M(H}) and the inner product of ¢}’ induce
M(H};) @ Uy; — M(HYy) @ Uj.
They give a complex (Cfpy (M), digyr). We have a natural morphism of com-
plexes

Cirr (M) — M.
If N H] = @, it is a quasi-isomorphism.
Suppose that we are given a tuple of hypersurfaces L' = (L},..., L},). We
put H'L' = (HY,...,H)\,L,...,L),). The natural inclusion
ta (M) — Cgrp (M)
gives a quasi-isomorphism.
Let M* be a complex of K-holonomic Dx(,p,)-modules. Let H and H'

be tuples of hypersurfaces. The total complex of C;;Crpy (M*) is denoted by
Co gy (M*).

The total complexes of C;p;(M*) and Cfpy (M*) are also denoted by the same

notation. We assume (H; = H; = @.

We have the natural quasi-isomorphisms of complexes

CompM®) —— Cig(M*) «—— M-*.

Let (H;, H}) (i = 1,2) be tuples of hypersurfaces as above. We say that
we have a morphism (H1, H)) — (Hy, HY) if Hy D Hy and H) C H), are
satisfied. Then, we have a naturally defined quasi-isomorphism of complexes:

Claym (M*) — Clrom, (M*).

For a tuple of ample hypersurfaces (H, H') which is non-characteristic with
respect to M* (§8.4.2), we have f.?Mp(*H]!H‘]> = 0 unless ¢ = 0. For
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each M*, we choose such (H(M?*), H'(M*)). We obtain a complex of K-
holonomic Dy (,p,,)-modules

REAM®) = FPC b vy ey (M),

Let M$ <& M LA M be morphisms, where a is a quasi-isomorphism.
We take a tuple of ample hypersurfaces (H, H') such that

(i) the tuple (H,H') is non-characteristic with respect to M¢$ and M,

(ii) the tuple (H,H (M), H', H'(M))) is non-characteristic with respect

to M:.
We have the morphism of complexes
Ce g (M3) e gy MT) —— Cl gy g (MS).

Here, ag is a quasi-isomorphism. We set H; = H(M?) and H, = H'(M}).

7
We have the quasi-isomorphisms

C gy (M) —2 C o Copr,(M?) 2o e Comam (M3?).

Note that C} gy Clprpr (M3) and Coarner Crrnr (M) are naturally isomor-
phic. We also have the quasi-isomorphisms

% %

Cpamr Coppr (M3) == Cop i Cog(M}) == Clpy pp (M3).

Note that fJr (ap) and f? (a;j) are quasi-isomorphisms. They induce a morphism
in D(Hol(Y, *Dy, K)):

(116) BRAM) — BfAM3)

If we are given morphisms M$ «— M/’ LN M3 such that a’ and b’ are chain
homotopic to a and b respectively, it is easy to check that the induced mor-
phisms (116) in D?(Hol(Y, *Dy, K)) are the same.

Let us check that (116) is independent from the choice of (H,H'). Let
(L, L") be other choice. Take a sequence of sufficiently generic ample hyper-
surfaces (HY), H'U)) (j = 1,...,2L) satisfying the above conditions, such
that

(i) (HY, H'W) = (H,H') and (H®Y, H'®Y) = (L, L),

(ii) we have morphisms

(H(mel)’ H/(2m71)) « (H(Qm),HI@m)) N (H(2m+1)7H/(2m+1))‘

Then, it is easy to check that (H,H') and (L,L’') induce the same mor-
phism (116) in D?(Hol(Y, * Dy, K)). Hence, the morphism (116) depends only
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on the morphism in D*(Hol(X, *Dx, K)) determined by (a,b), i.e., we obtain
a morphism

Home(Hol(X,K))(MI:M ) — Home(Hol (Y,K)) ( M, Kf*-Mi)'
Thus, we obtain a functor
D*(Hol(X,*Dx, K)) — D°(Hol(Y, *Dy, K)).

We set
Kf =KDy o&f, 0 KDy
By the construction, they satisfy the conditions (i) and (ii). The uniqueness

follows from the existence of a resolution by K-holonomic D-modules N such
that ff./\/' = 0 unless 7 = 0. O

9.2.3. Proof of Proposition 9.2.1. — We take projective completions
X Cc X and Y CY with the following commutative diagram:

X —— X
(117) fl

y —S Y.
Set Dx := X—X and Dy := Y —Y. The functor X f, : D?(Hol(X, *Dx, K)) —
D*(Hol(Y, Dy, K)) induces Xf, : D*(Hol(X, K)) — D*(Hol(Y, K)).

Let X € X’ and Y C Y be other projective completions with a commuta-
tive diagram as in (117). We set D% := X’ — X and D}, :=Y — Y. Let us
prove that the induced morphisms X f, : D?(Hol(X, K)) — D°(Hol(Y, K)) are
equal up to natural equivalences. It is enough to consider the case where we

|

have the commutative diagram:
x I ¥
ox | or |
x 1 v
Here, px and ¢y are projective and birational such that cp)_(l (Dx) = D’y and
w;l(Dy) = D{,. The following diagrams are commutative up to equivalences:

DY(Hol(X', + D'y, K)) —Ls DY(Hol(Y', DY, K))

K%x*l K‘PY*J(

DY(Hol(X,+Dx, K)) —2 DP(Hol(Y,*Dy, K)).
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It implies that Xf, : D°(Hol(X,K)) — D°(Hol(Y,K)) are independent of
the choice of projective completions up to equivalences. Thus, the proof of
Proposition 9.2.1 is finished. U

9.2.4. Proof of Proposition 9.2.3. — Let M, N € Hol(X, K). According
to Proposition 3.1.16 of [5], it is enough to check the following effaceability:
> For any f € Extﬁol(Y,K) (M, N), there exists a monomorphism N — N’
in Hol(X, K) such that the image of f in Extiy,y sy (M, N”) is 0.
We can prove it by using the arguments in §2.2.1 and §2.2.2 in [3]. O

9.2.5. Proof of Proposition 9.2.2. — It is enough to consider the cases
(i) f is a closed immersion,
(ii) f is a projection X x Y — Y.

We closely follow the arguments in §2.19 and §4.4 of [57].

9.2.5.1. Closed immersion. — Let f : X — Y be a closed immersion. Let

M:* be a complex of K-holonomic Dy-modules. Let H; (i = 1,...,N) be
sufficiently general ample hypersurfaces of Y such that

(i) H; DX,
(il) M* — M*(xH;) are monomorphisms,
(i) NN, H; = X.

For any subset I = (i1,...,%4,) C {1,...,N}, let C; be the subspace of
A" CN generated by e, N+ Ne;, , where e; € CV denotes an element whose
k-th entry is 1 (k = i) or 0 (k # 4). For I = Iy U {i}, we set H; = (J,c; H;.
The inclusion MP(xHp,) — MP(xH ) and the multiplication of e; induces

MP(xHp,) ® C, — MP(xH) @ Cy.
For m > 0, we put
C™(MP,xH) := @ MP(xH;) ® C,
[T|=m

and we obtain the double complex C*(M?*, «H ). The total complex is denoted
by Tot C*(M-*,«xH ). It is easy to observe that the support of the cohomology of
Tot C*(M?*,«H) is contained in X. According to Proposition 9.2.3, we obtain

K M® := Tot C*(M*, xH)
in D°(Hol(X, K)). We obtain a functor
Kf': D*(Hol(Y, K)) — D"(Hol(X, K))
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as in Lemma 9.2.5. Note that the underlying Dy-complex is naturally quasi-
isomorphic to f'M¢*, where f'is the left adjoint of fi: Dﬁol(X) — Dﬁol(Y).
We have the naturally defined morphism

a:TotC*(M*, «H) — M-".
We put £* := Cone(a)). We have another description. For m > 0, we put
C"(MP +H) @ MP(xHp) @ Cy,

[I|=m+1

and we obtain the double complex C*(M*,*H). We have a natural quasi-
isomorphism K* ~ TotC*(M*,*H). By using the second description and
Lemma 9.1.5, we obtain the following vanishing for any A'* € D®(Hol(X, K)):

Hom py g0y, i) (F AN, K*) = 0.

Hence, we have the following isomorphisms for any K-holonomic Dx-
complex N

Hom po g1y, 10y (“ SN, M®) = Hom po oy, i)y (AN, A F M)
= Home(Hol(X,K))(N ) f-M )

Hence, we obtain that the above functor Xf' is the right adjoint of Xf,. By
taking the dual, we obtain the left adjoint X f* of K f,.

9.2.5.2. Projection. — Let f : Z x Y — Y be the natural projection. Let
(M, F) be a K-holonomic Dy-module. We put

Kfe (M, F) = (0 R M|~ dim Z], K R F).

It is easy to check that X f*(M, F) is K-holonomic. Thus, we obtain the exact
functor

Kf*: D (Hol(Y,K)) — D"(Hol(Z x Y, K)).

Let us prove that Xf* is the left adjoint of Xf,. It is enough to repeat the
argument in §4.4 of [57], which we include for the convenience of readers. It
is enough to construct natural transformations

a:id — KB and B KR —id
such that
BOKJMO{:Kf*./\/l._)Kf*Kf*[(f*./\/l._>Kf4<./\/l.7
KfBoa: KfN® — BEEPRENT — BEN®
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are the identities. We define « as the external tensor product with the natural
map (C,K) = (H%5(2), H*(Z,K)). For the construction of 3, the following
diagram is used:

IxXY — ZxZxY -y ZxY

q2 l P1 l
p2
ZxY —— Y.
Here, i is induced by the diagonal Z — Z x Z, q; are induced by the projection

Z X Z — Z onto the j-th component, and p; are the projections. We have the
morphisms of K-holonomic D-complexes

(118)  KfEf Mo = Kpshp, Mo

~ Koo Kt M® — Ko, (K KKt M#) o KB pe.
LEMMA 9.2.6. — We have in D*(Hol(Z x Y, K)) a natural isomorphism

KisKgx M ~ M.
Proof. — We have the following morphism of K-holonomic D-complexes:
M S K K o Ky K KB e pe o KpKgx pqe,

It is enough to check that the composite of the morphisms is an isomorphism
for the underlying Dy-modules. It is enough to consider the issue locally

around any point of Z x Y. Then, it can be checked by a direct computation.
O

We define 3 as the composite of (118) with the isomorphism in Lemma 9.2.6.
Let us look at Xf, o a, which is the composite of the morphisms

(119) Kf*Mo — Kpl*M. SN KPQ*szKpl*M. BN KPQ*KC]Q*KC]T °
N Kpg*KQQ*Ki*Ki*inkM. N Kf*Ki*KQTM.
~ Kr M*.

We have a natural identification p2.q5q} ~ p1+q1+q}, and p1. — p2.g5qy in (119)
is induced by « for ¢; under the identification. Then, it is easy to see that the
composite is the identity by the construction. As for 8o X f*q, it is expressed
as follows:

(120) BN =EpsNe — BpsBpL BNt — Koo KqiFpiNe

SN KQQ*Ki*Ki*Kq;Kp§N° ~ Kp;/\/’ _ Kf*N..
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We have a natural identification p3pipi« >~ ¢2.¢5p3, and p5 — p3pip1s in (120)
is induced by « for gqo. Then, it is easy to observe that the composite is the
identity. Thus, the proof of Proposition 9.2.2 is finished. U

9.3. Tensor product and inner homomorphism

9.3.1. Statement. — Let (M;,F;) (i = 1,2) be K-holonomic D-modules
on Xz

PropoSITION 9.3.1. — F1 X F; is a K-Betti structure of M1 X My, As a
result, we obtain a natural functor

X : Hol(X1, K) x Hol(X2, K) — Hol(X; x X9, K),
compatible with the standard external products
X : HOI(Xl) X HOI(XQ) — HO](Xl X XQ)

and
DE(KXJ X DE(KX2) — D(c)(KX1><X2)'

Before going into the proof of Proposition 9.3.1, We give a standard con-
sequence. Let X be an algebraic variety. Let 0x : X — X x X be the
diagonal morphism. We obtain the functors ® and RHom on D°(Hol(X, K))
in standard ways:

MRN =5 (MRN), RHom(M,N) :=E5(DxMRN)

They are compatible with the corresponding functors on Df’lol(X ).

9.3.2. Preliminary. — Let (M, Fpq) be a K-holonomic Dx-module. Let V
be a meromorphic flat connection on (Y, Dy) with a good K-structure. Let
Fy and Fyy denote the canonical K-Betti structures of V and V), respectively.

LEMMA 9.3.2. — Fy X Faq and Fy K Faq are K-Betti structures of VX M
and Vi X M, respectively.

Proof. — We use an induction on the dimension of the support of M. Let
P be any point of X. It is enough to consider locally around Y x {P}. Let
C =(Z,U, V) be a K-cell of M at P with a cell function g. The pre-K-
holonomic D-module V ® M is expressed as the cohomology of the following
complex of pre-K-holonomic D-modules:

VK ¢g(¢TV> — VK Eg(‘PTV) © VK ¢9(M> — VK ¢g(¢TV>-
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By the inductive assumption, Fy B Pipy (¢ Fv) and Fy K Py (. Fy) are K-
Betti structures of V M1y (p1V) and V X ¢4(p; V), respectively. We put

9z = ¢"g.
By using Theorem 8.1.2, we obtain that 7, K P=Z, (Fy) and Fy K Py, (Fy)
are K-Betti structures of VX =, (V) and V M)y, (V), respectively. By con-
struction, the isomorphism

VR ¢4 (1, (V) = VRYy(04V)

preserves K-Betti structures. Hence, we obtain that Fy X Fy is a K-Betti
structure. Thus, we obtain the first claim. By considering the dual, we obtain
the second claim. O

Let g be a holomorphic function on Y such that g=!(0) = Dy. We obtain
the following corollary from Lemma 9.3.2.

COROLLARY 9.3.3. — P (Fy) R Fuq and PE(Fv) K Faq are K-Betti struc-
tures of Yg(V) KM and Z4(V) WM, respectively. O

9.3.3. Proof of Proposition 9.3.1. — Let P be any point of X;. It
is enough to consider locally around {P} x X3. We use an induction on
dimp Supp M;. Let C = (Z,U, p, V') be a K-cell of M;. The pre-K-holonomic
D-module M; K M, is expressed as the cohomology of the following complex:

¢g(g0TV) X My — Eg(QOTV) X My ® ¢9(M1) X My — ¢g(g0TV) X Mo

By the inductive assumption, 1,(piV) B My and ¢g4(piV) K My are K-
holonomic. According to Theorem 8.1.1 and Corollary 9.3.3, Z,(p;V) K M,
is K-holonomic. Hence, we obtain that My X M, is also K-holonomic. Thus,
we obtain Proposition 9.3.1. O

9.4. K-structure of the space of morphisms
9.4.1. Statements
THEOREM 9.4.1. — For M*,N* € D*(Hol(X, K)), the induced morphism
(121) Hom po go1(x, 1)) (M*, N°) @ C — Hom py (x) (M*,N*)
18 an isomorphism. In other words, the forgetful functor
DP(Hol(X,K)) ® C — Dpi(X)
18 fully faithful.
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We closely follow Beilinson’s argument in [3] for the proof.

THEOREM 9.4.2. — We have the natural isomorphism
Hom pp x5y (M*, N*) =~ Hom poon(x, k) (Ox, RHom(M*, N*)[dx]).
We essentially use a commutative diagram due to Saito in [58].

9.4.2. Homomorphisms and extensions for meromorphic flat connec-
tions with a good K-structure. — Let X be a smooth complex projective
variety with a hypersurface D.

LEMMA 9.4.3. — Let V' be a meromorphic flat connection on (X, D) with a
good K -structure. Let Fy be the canonical K-Betti structure of V.. We have
the following natural isomorphisms for i =0,1:

Extipx.x) (Ox (+D), V) ~ H' (X, Fy[—dx]).

Proof. — By taking a global resolution of turning points in the algebraic sit-
uation (see [27], [47]), we may assume that V is a good meromorphic flat
bundle. Let £(V) be the associated local system with the Stokes structure
on X (D). It is naturally equipped with a K-structure Lx (V). If we are given
an extension

0—V —P—0Ox(xD) —0
as K-holonomic Dx-modules, P is also a good meromorphic flat bundle with

a good K-structure, and it induces an extension

0— Lx(V)=P — L (P)=" — Kz p

of K-constructible sheaves. Conversely, assume that we are given an extension

— 0

of K-constructible sheaves

0 — Lr(V)SP — Gy — K

(D) — 0.

We obtain a K-local system Q~K = G| x\p, where ¢ : X\ D — X. The C-local

system Q~K ® C is naturally equipped with a Stokes structure compatible with
the K-structure. Hence, we obtain an extension of K-holonomic Dx-modules

00—V —P— Ox(xD) — 0.
The above procedures are mutually inverse. Thus, we obtain a bijection

Similarly, we have a natural isomorphism

Extiox.x) (Ox (+D), V) =~ H (X, Fy[-dx]). O
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Let V,W be meromorphic flat connections on (X,D) with good K-
structures. We have a natural bijection

Ext iy x.i0)(Ws V) 2 Extigox gy (Ox (+D), WY @ V)
for any i. We obtain the natural isomorphisms
Extirx. i) (W, V) = H' (X, Fiyvey [—dx])
for ¢ = 0,1. Because
H'(X, Fwvey[—dx])®xC ~ H'(X,DRx (W"®V)[—dx]) = Hhr(X,W'aV),

the vector spaces Hpp (X, WY @ V) have the natural K-structure. We say
that an element f € Hjp(X, WY @ V) is compatible with K-structure if it
comes from H'(X, Fiyvgy[—dx]). An element f € HLx (X, WY ® V) induces
an extension

0—V-—P—W-—0

in Hol(X, K) as observed above.

9.4.3. Some extensions. — Let X be a smooth complex quasi-projective
variety. Let V; (i = 1,2) be algebraic flat bundles on X with a good K-
structure, i.e., there exists a projective variety X O X such that

(i) D:= X — X is normal crossing,

(i) V; are good meromorphic flat bundles on (X, D) with a good K-
structure.

According to [3], we have
Extiiorx) (V1 V2) = Hpp(X, V)Y ® Va).
LEMMA 9.4.4. — There exist a Zariski open subset U C X and an extension

V3 D Voiy on U of algebraic flat bundles with a good K-structure, such that
the induced morphisms

Extiox) (Vs Va) — Extigg oy (Vi V3)
are 0 fori > 0.

Proof. — We use an induction on dim X. In the case dim X = 0, the claim
is trivial. Let us consider the case dim X > 0. We take a Zariski open subset
X1 C X with a smooth affine fibration p : X; — Z; such that the relative
dimension is 1. For any algebraic flat bundle V on X7, we put

pi(V) = Rip.(V @ Q% /7).
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For a Zariski open subset Z{ C Zi, the induced morphism p=(Z}]) — Zj is
also denoted by p.

We may assume that L, := pf(V}Y @ Vi) are algebraic flat bundles on Z;,
which is equipped with the induced good K-structure. We have L, = 0 un-
less ¢ = 0,1. By the argument in §2.1 of [3], we can reduce Lemma 9.4.4 to
Lemma 9.4.5 below which is Lemma 2.1.2 of [3] with a minor enhancement.
LEMMA 9.4.5

(a) There exist a Zariski open subset Zy C Z1 and an extension P D Vyx,
of algebraic flat bundles with good K -structure on Xo := p~'(Zs), such
that the following induced morphism is 0:

PV @ Vaix,) — pr(Vy @ P).
(b) There exists a Zariski open subset Z3 C Zy and an extension @ D Vaix,

of algebraic flat bundles with good K -structure on X3 := p~1(Z3), such
that the following induced maps are 0 for any p > 0:

HgR(ZZSvpg(‘/lv ® VvQ\X3)) — HgR(Z3apEk)(‘/lv ® Q))

Proof. — Tt is enough to use the argument in the proof of Lemma 2.1.2 of [3].
We give only an indication. Let

a € Hpp(Z1, LY ® L) = Hpp(Z1, pi((p" L1 @ V1) @ V)

be the element corresponding to the identity of L1, which is compatible with
K-structure. We have the exact sequence compatible with K-structures

Hpg (X1, (p* L1 @ V1)¥ @ Vo) — HPgr(Z1, pi((p*L1 @ V1)¥ @ V2))
s} *
—— Hig (21, 00((p" L @ V1) ® V)
= H3p(Z1, L ® Ly).

Applying the inductive assumption to L§ and LY, we have a Zariski open
subset Zo C Z; and an extension ¢ : le C R of algebraic flat bundles with a
good K-structures on Zs, such that the induced morphism

H*(Z, L} ® Ly) — H*(Z1,R® Ly)
is 0. In particular, ¢(da) = 0. We obtain the element
pla) € BB (21, R® Ly) = HYp (21, o (6 RY © V1)" @ Va))
which is compatible with K-structure. By construction, we have a lift

(@) € Hbg (X, ("R © V1)" © Va)
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compatible with K-structure. It induces an extension
0— Vox, — P— p*RY @ Vyx, — 0

of algebraic flat bundles with good K-structure on Xo. (See §9.4.2.) It is easy
to observe that P is the desired one. Thus, we obtain the claim (a). The

claim (b) can also be proved by the argument in [3]. O

9.4.4. Vanishing and lifting. — Let X be a smooth quasi-projective vari-
ety. We put C1(X) := Hol(X) and Co(X) := Hol(X,K)®C. Let V; (i = 1,2)
be algebraic flat bundles on X with good K-structure. Let us consider the
natural morphism:

g9x + Exti, ) (V1, Vo) — Extg, xy(V1, Va)
They are isomorphisms in the cases ¢ = 0,1 (§9.4.2).

LEMMA 9.4.6. — Leti> 0.
> Let a € ExtiCQ(X)(Vl, Vo) such that gx(a) = 0. There exists U C X such
that a = 0 in Exte, ) (Viw, Vo)
> Leta € EthCl(X)(Vl, Vo). There existU C X andb € EthCQ(U)(V”U, Vayur)
such that a)y = gu(b).

Proof. — We give only an outline. We use an induction on i. We have already
known the case ¢ = 1. Let a € EthCZ(X)(Vl, Va) such that gx(a) = 0.

We have an extension Vo C V3 of a meromorphic flat bundle with a good
K-structure such that the image of a is mapped to 0 via

EXté’z(X)(Vl’ Va) — EX%Q(X)(VL V3).

Let K := V3/V,. We have ¢ € EXtE%X)(VLIC) which is mapped to a via

Extg, (x)(V1,K) — Extg, (y)(V1, V2).

We have d € Exta%x)(vl, V3) which is mapped to gx(c) via

Exte, (x) (V1 Va) — Extg, () (Vi, K).

By using the inductive assumption, we can find U C X and an element e €
Exta%U)(Vl, V3) such that gy(e) = dy. By using the inductive assumption,
and by shrinking U, we may assume that e is mapped to ¢y via

i—1 i—1
EthCZ(X)(Vl,Vg) — EthCZ(X)(Vl,IC).

Hence, we obtain a;y = 0.
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Let a € Exticl(X)(Vl,Vz). According to Lemma 9.4.4, we can find
U C X and an extension Vy; C V3 of meromorphic flat bundles with good
K-structures such that the induced map

EXtc U )(V1|U7V2\U) — EXtc (U)(Vl\Ua V3)

is 0 for any j > 0. We put K := V3/Vyy We can find ¢ € Ext?
which is mapped to a via

1 (U)(Vl\Ua’Q

Ext ¢ () (Vs ) — Ext, oy (Vi Vao)-

By using the inductive assumption and by shrinking U, we can find an element
d € Ext; ! (Vijrr, K) such that gy (d) = c. Let b be the image of d via

Ca(U)
Exte, (U)(V1|U,’C) — EXtiCQ(U)(Vl\U, Vo)

Then, it has the desired property. O

9.4.5. Support. — Let X be a smooth quasi-projective variety. For any

subvariety Z C X, let D?,Z(X ) (j = 1,2) denote the derived category of
bounded complexes M* in Cj(X) such that the supports of H*(M*) are con-
tained in Z. For any M*, N* in D} ,(X), we set

Hom [ 7(M*, N*) := Hompy () (M*, N*[k]).
If Z = X, we omit to denote Z. If Z is smooth, then D?, (X)) is equivalent to

the derived category of C;(Z). (See Proposition 9.2.3.)
Let 7 : Z — X denote the inclusion. The natural exact functor

D% ,(X) — DY(X)
is denoted by .. As in §9.2.5, we have a functor
.|
it DY(X) — Db 4(X).
We set i* := Dy oi' o Dy.
9.4.6. Proof of Theorem 9.4.1. — Let X be a smooth quasi-projective
variety. Let M*, N* € D5(X). Let us prove that (121) is an isomorphism. We
use an induction on dim X.
It is enough to prove that (121) is an isomorphism when M, N € Cy(X).

Take any hypersurface D C X. Let i : D — X denote the inclusion. We have
the distinguished triangles

ii'N — N — N(+D) == and M(ID) — M — i,i*M —Ls |
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For j = 1,2, we obtain the exact sequence
(122) Ext]é,;(l)() (M(!D), N (D)) — Hom" j,(i.i* M, i,i'N)
— Ext§, xy (M(!D), N(+D))
— Hom ! 7 (i, M, ii' N).
We naturally have
Exti, xy (M(ID), N(+D)) = Extg, x) (M(+D), N(xD)),

as remarked in Lemma 9.1.5.

By using the exact sequences (122) in the case where D is smooth, and by
using the inductive assumption, we can reduce the issue to the case where X
is affine, which we will assume in the following.

We use an induction on the dimension of the support of M & N. We take
a projective birational morphism

w:Z — Supp(M & N)

such that Z is smooth. There exist an open subset U C Z, flat bundles Vi
and Vs on U with morphisms

M — (pTVM and N — (pTVN

which is an isomorphism on generic points of Supp(M @ N). If we shrink U
appropriately, there exists a hypersurface D C X such that =1 (D) = Z \ U.
In that case, we have

M(xD) = ¢iVyy and N(xD) = ¢; V.

In the exact sequence (122), the dimension of the supports of the cohomology
sheaves of i,i* M and i,i'N are strictly smaller than dim Supp(M @ N). Then,
it is easy to obtain that (121) for i,i*M and i,i'N is an isomorphism. By
using Proposition 9.2.3, we obtain

Extey ) (M(ID), N(xD)) =~ Ext¢, x) (M(+D), N(xD)) =~ Ext¢, y(Var, V).

For D, C D4, we have the commutative diagram

M(IDy) —— M N —— N(«Dy)
| - |
M(IDy) —— M, N —— N(xDy).
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Let i, : D, — X denote the inclusions. We set U, := Z \ p~*(D,). Hence, we
have the commutative diagram

Hom!, p, (i14i M, i1.iy N) — Extgj(x)(M, N) — Extgj(Ul)(vM, 1%%)
Hom’, p,, (iguis M, iguiyN) — Exticj(X)(M, N) — Exticj(U2)(VM, V).
Then, it is easy to prove that
Extg, (x) (M, N) — Extg, ) (M, N)
is an isomorphism by using Lemma 9.4.6. O

9.4.7. Proof of Theorem 9.4.2. — Recall a commutative diagram
in Proposition 4.6 of [58]. For M*, N* € D(Dy), we have the commutative

diagram
Hom p(py)(M*,N*) — Homp(py, ) (M*E DN*, §;Ox[dx])
(123) J l
Hom p(c ) (DRx M*, DRx N*) =5 Hompcy) (DRx M* ® DDRx N*, 6.Cx[2dx]).
Let M be a holonomic Dyx-module with a K-Betti structure . We have
HomD(DX)(M, M) ~ HomHOl(X)(M, M) ~ HomHOl(X’K)(M, M) ® C.

We have similar isomorphisms for Hom pp (M X DM, 6;Ox[dx]). Hence,
we obtain the following diagram from (123):

Hompe(x,x) (M, M) ® C %) Hom ol x x x,x) (M X DM, 6;Ox[dx]) @ C
‘| dl
HOHID((CX)(DRX M, DRX M) i} HomD((CX) (DRxM®DDRX M, (5*(Cx[2dx])
Hompry) (F.F)®@C  ——  Homp(gy)(F B DF, §.Kx[2dx]) ® C.

Note that a is injective. Hence, b is also injective. Since a and b are compatible
with K-structures, c is also compatible with K-structures. Let

C:MXDM — 5*Ox[dx]

correspond to 1 : M — M. It is compatible with K-Betti structures.
For M* € D*(Hol(X, K)), let

C:M*XDM: —)(STOX[d)(]
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correspond to 1 : M* — M*. We obtain that C is compatible with K-Betti
structures. Then, we obtain that the isomorphism

Hom p(p ) (M*,N*) — Hompp,, ) (M* K DN*, §;:Ox|dx])

is compatible with K-Betti structures for any M*, N* € Dy (X, K). By taking
the dual, we obtain Theorem 9.4.2. ]
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