
We define the notion of Betti structure for holonomic D-modules which
are not necessarily regular singular. We establish the fundamental func-
torial properties. We also give auxiliary analysis of holomorphic functions
of various types on the real blow up.

Nous définissons la notion de structure Betti pour les D-modules holo-
nomes qui ne sont pas nécessairement singuliers réguliers. Nous établis-
sons leurs propriétés fonctorielles principales. Nous donnons également
une analyse supplémentaire des fonctions holomorphes de divers types
sur l’éclatement réel.
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HOLONOMIC D-MODULES WITH

BETTI STRUCTURE

Takuro Mochizuki

Abstract. — We define the notion of Betti structure for holonomic D-modules
which are not necessarily regular singular. We establish the fundamental func-
torial properties. We also give auxiliary analysis of holomorphic functions of
various types on the real blow up.

Résumé (D-modules holonomes munis d’une structure de Betti)

Nous définissons la notion de structure Betti pour les D-modules holonomes
qui ne sont pas nécessairement singuliers réguliers. Nous établissons leurs pro-
priétés fonctorielles principales. Nous donnons également une analyse supplé-
mentaire des fonctions holomorphes de divers types sur l’éclatement réel.
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CHAPTER 1

INTRODUCTION

In this paper, we introduce the notion of Betti structure for holonomic D-
modules, motivated by a question in [13]. For regular holonomic D-modules,
it is clearly defined by the Riemann-Hilbert correspondence, which is a basis of
the theory of mixed Hodge modules (see [55]–[58]). Namely, a Betti structure
of a regular holonomic DX -module M is defined to be a Q-perverse sheaf F
with an isomorphism α : F ⊗ C ≃ DRX M. It has a nice functorial property
for some of standard functors such as pull back, push-forward, dual, etc., in
the algebraic situation.

As for the non-regular case, there has been a significant progress toward
a generalized Riemann-Hilbert correspondence between holonomic D-modules
and some topological objects, a kind of perverse sheaves equipped with“Stokes
structure” in some sense. The asymptotic analysis for good meromorphic flat
bundles (see [33], [52] and [47]) and the existence of resolution of turning
points (see [26], [27], [47]) lead us a rather satisfactory understanding of
the structure of meromorphic flat bundles. Moreover, the recent work of
A. D’Agnolo and M. Kashiwara [10], [11] based on the theory of Ind-sheaves
[24] gives us a description of holonomic D-modules in terms of some topolog-
ical objects. It should also lead us to a thorough theory of Betti structure of
holonomic D-modules.

However, except in the one dimensional case, it turned out that a rather
complicated machinery is necessary for the complete description of generalized
Riemann-Hilbert correspondence. (See [11] and [24]; see also [54].) In this
study, we shall directly define the notion of “Betti structure” for holonomic
D-modules with functorial property by using only the classical machinery of
holonomic D-modules and perverse sheaves. It still requires non-trivial tasks,
and provides us with non-trivial consequences on the compatibility of the

9
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2 CHAPTER 1. INTRODUCTION

Stokes structure and the Q-structure. We hope that it would be useful for
direct understanding of Betti structures and for a further study toward the
generalized Riemann-Hilbert correspondence, at least temporarily.

1.1. Pre-Betti structure

To define the notion of Betti structure of a holonomic DX-module M, it is a
most naive idea to consider a pair of Q-perverse sheaf F and an isomorphism

α : F ⊗ C ≃ DRX(M)

as above, which is called a pre-Betti structure of M in this paper.A holonomic
DX-module with a pre-Betti structure is called a pre-Q-holonomic DX-module.
We should say that pre-Betti structure is too naive for the following reasons:

◃ It is not so intimately related with Stokes structure.
◃ Although pre-Betti structures have nice functoriality with respect to dual
and proper push-forward, they are not functorial with respect to the
push-forward for open immersion, the pull back, the nearby cycle and
vanishing cycle functors. Recall that the de Rham functor is not com-
patible with the latter class of functors, when irregular singularities are
present.

It is the main goal in this paper to introduce a condition for a pre-Betti
structure to be a “Betti structure”. We use an inductive way on the dimension
of the support, which was a strategy of M. Saito to define his mixed and pure
Hodge modules [55] and [57].

In the following, a Q-structure of a C-perverse sheaf FC is a Q-perverse
sheaf FQ with an isomorphism FQ ⊗Q C ≃ FC.

1.2. Betti structure in the one dimensional case

We explain our condition for Betti structure in the one dimensional case.

1.2.1. The generalized Riemann-Hilbert correspondence in the one
dimensional case. — We know the well established theory on the general
structure of holonomic D-modules on curves (the generalized Riemann-Hilbert
correspondence). Namely, in the one dimensional case, we have a natural
bijective correspondence between meromorphic flat bundles and local systems
with Stokes structure, and any holonomic D-modules are described as the
gluing of meromorphic flat bundles and skyscraperD-modules. We shall review

MÉMOIRES DE LA SMF 138/139
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1.2. BETTI STRUCTURE IN THE ONE DIMENSIONAL CASE 3

it very briefly. For simplicity, we consider holonomic D-modules on X = ∆ =
{|z| < 1} which may have a singularity at the origin D = {O}.

1.2.1.1. The Stokes structure of meromorphic flat bundles. — Let V be a
meromorphic flat bundle on (X,D). Let π : X̃(D) → X be the real blow up
along D. Let L be the local system on X̃(D) associated to the flat bundle
V|X−D. Let P be any point of π−1(D). According to the classical asymptotic

analysis, we have the Stokes filtration FP of the stalk LP given by the growth
order of flat sections with respect to any meromorphic frame of V . The mero-
morphic flat bundle V can be reconstructed from the flat bundle V|X−D and

the system of filtrations {FP
∣∣P ∈ π−1(D)}, which is the Riemann-Hilbert-

Birkhoff correspondence for meromorphic flat bundles on curves.
Let V ∨ be the dual of V as a meromorphic flat bundle, and let V! := DXV ∨

be the dual of V ∨ as a DX-module. Let us recall that the de Rham complexes
DRX(V ) and DRX(V!) can be described in terms of Stokes filtrations. Let L≤D
and L<D be the constructible subsheaves of L such that L≤DP = FP

≤0(LP ) and

L<D
P = FP

<0(LP ). Then, we have natural isomorphisms:

(1) DR(V ) ≃ Rπ∗L≤D[1], DR(V!) ≃ Rπ∗L<D[1].

1.2.1.2. Gluing of holonomic D-modules. — Let us very briefly recall a key
construction due to A. Beilinson [4] on the gluing of holonomic D-modules,
which we will review in §2.2 in more details. (See also [32] and [59] for the
other formalisms for gluing.) Let M be any holonomic DX-module such that
V := M(∗D) is a meromorphic flat bundle on (X,D). We have the natural

morphisms V!
a0−−→ M b0−−→ V . According to [4], we have the D-modules

Ξz(V ) and ψz(V ) associated to V , with morphisms

(2) ψz(V )
a1−−−→ Ξz(V )

b1−−−→ ψz(V ), V!
a2−−−→ Ξz(V )

b2−−−→ V.

It can be shown that b0 ◦a0 = b2 ◦a2. We also have b2 ◦a1 = 0 and b1 ◦a2 = 0.
We obtain the D-module φz(M) as the cohomology of the naturally associated
complex:

(3) V! −→ Ξz(V )⊕M −→ V

We have the naturally induced morphisms ψz(V )
can−−→ φz(M)

var−−→ ψz(V ).
Then, M is reconstructed as the cohomology of the complex:

(4) ψz(V ) −→ Ξz(V )⊕ φz(M) −→ ψz(V )

Recall that Ξz(V ), ψz(V ), and φz(M) are called the maximal extension, the
nearby cycle sheaf, and the vanishing cycle sheaf of M.
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4 CHAPTER 1. INTRODUCTION

1.2.2. Betti structure of holonomic D-modules on curves. — We ex-
plain when a pre-Betti structure of holonomic D-modules seems eligible to be
called a Betti structure in the one dimensional case. Essentially, the condition
describes a compatibility with the Stokes structure.

1.2.2.1. Good Q-structure of meromorphic flat bundles. — Let V be a mero-
morphic flat bundle on (X,D), and let L denote the associated local system
on X̃(D) with the Stokes structure. A Q-structure of V is a Q-structure of the
associated local system on X \D, which is equivalent to a Q-structure of L.
It is called a good Q-structure of V if the Stokes filtrations FP (P ∈ π−1(D))
are defined over Q, with respect to the induced Q-structure of L. By the iso-
morphisms (1), we obtain the pre-Betti structures of V and V!. Moreover, it is
easy to observe that ψz(V ) and Ξz(V ) are also naturally equipped with pre-
Betti structures such that the morphisms ai and bi (i = 1, 2) are compatible
with pre-Betti structures.

1.2.2.2. Betti structure of holonomic D-modules on curves. — Let M be a
holonomic D-module on (X,D) such that V := M(∗D) is a meromorphic flat
bundle. Let (F ,α) be a pre-Betti structure of M. We call it a Betti structure
if the following holds:

◃ The induced Q-structure on DR(V|X−D) induces a good Q-structure
of V . As remarked above, we have the induced pre-Betti structures
on V and V!.

◃ The natural morphisms a0 and b0 are compatible with the pre-Betti
structures.

Note that we obtain a pre-Betti structure on φz(M) from the expression as
the cohomology of the complex (3), and the morphisms var and can are com-
patible with the pre-Betti structures. The pre-Betti structure of M can be
reconstructed from the pre-Betti structure of φz(M) and the good Q-structure
of V .

1.3. Betti structure in the higher dimensional case

We would like to generalize the notion of Betti structure in the higher
dimensional case.

1.3.1. Good meromorphic flat bundle and good Q-structure. — Let
X be any complex manifold with a simple normal crossing hypersurface D.
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1.3. BETTI STRUCTURE IN THE HIGHER DIMENSIONAL CASE 5

It is fundamental to understand the structure of good meromorphic flat bun-
dles on (X,D), which is now well established after the work of H.Majima,
C. Sabbah and the author. (See [33], [47], [48], [52] and [54]; see [49] for a
survey.) Very briefly, the asymptotic analysis for meromorphic flat bundles on
curves can be naturally generalized for good meromorphic flat bundles in the
higher dimensional case, and we obtain the Riemann-Hilbert-Birkhoff corre-
spondence, which is a natural correspondence between good meromorphic flat
bundles and local systems with Stokes structure.

Let us recall it very briefly. Let (V,∇) be a good meromorphic flat bundle.
Let π : X̃(D) → X be the real blow up along D, which means in this paper
the fiber product of the real blow up along the irreducible components of D
taken over X. Let L be the local system on X̃(D) associated to V|X−D. For

any point P ∈ π−1(D), we have the Stokes filtration FP of the stalk LP . It
satisfies a compatibility condition with the Stokes filtrations FQ for Q which
are close to P . We can reconstruct V from V|X−D and the system of filtrations

{FP
∣∣P ∈ π−1(D)}. Moreover, if we are given a local system with the family of

Stokes filtrations {FP | P ∈ π−1(D)} satisfying the compatibility condition,
we have the corresponding good meromorphic flat bundle V . This is the
Riemann-Hilbert-Birkhoff correspondence for good meromorphic flat bundles.

As in the one dimensional case, the de Rham complexes of V and V! are
described in terms of the local system L with the Stokes structure. We obtain
the constructible subsheaf L≤D of L which consists of flat sections with the
moderate growth. It is described as L≤DP = FP

≤0(LP ) (P ∈ π−1(D)) in terms of

the Stokes filtrations. Let L<D be the constructible subsheaf of L, which con-
sists of flat sections with rapid decay along D. It is also described in terms of
the Stokes filtration (see §5.1.2). Then, we have DRX(V ) ≃ Rπ∗L≤D[dimX]
and DRX(V!) ≃ Rπ∗L<D[dimX] as in (1).

For any holomorphic function g on X such that g−1(0) = D, we obtain DX-
modules ψg(V ) and Ξg(V ) with morphisms as in (2) by using the formalism of
Beilinson. Their de Rham complexes are also described in terms of the local
system L with the Stokes filtrations.

As in the one dimensional case, a Q-structure of V is a Q-structure of the
associated local system onX\D, which is equivalent to a Q-structure of L. It is
called a good Q-structure of V if the Stokes filtrations are defined over Q. If V
is equipped with a good Q-structure, the DX -modules V , V!, Ξg(V ) and ψg(V )
are naturally equipped with pre-Betti structures, and the natural morphisms
as in (2) are compatible with the pre-Betti structures.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

13

13



6 CHAPTER 1. INTRODUCTION

1.3.2. Good Q-structure of meromorphic flat connections. — In the
higher dimensional case, not all meromorphic flat bundles are good, which is
one of the main difficulties. Let us recall local resolutions of turning points
due to K.Kedlaya [26], [27]. (See [52] for the original conjecture; see also [44]
and [47] for the algebraic case.)

Let X be a complex manifold with a hypersurface D. Let V be a reflexive
OX(∗D)-module with a flat connection, which is called a meromorphic flat
connection [38]. For any P ∈ X, there exist a neighbourhood XP of P in X
and a projective birational morphism λP : X̌P → XP such that

(i) X̌P is smooth and ĎP := λ−1P (D) is normal crossing,

(ii) X̌P \ ĎP ≃ XP \D,

(iii) V̌P := λ∗PV is a good meromorphic flat bundle on (X̌P , ĎP ). (See
Theorem 8.2.2 of [27].)

Such (XP ,λP ) is called a local resolution of V in this paper. If X and V are
algebraic, we have a global resolution. (See Theorem 8.1.3 of [27] or Theorem
16.2.1 of [47].)

Then, the notion of good Q-structure is generalized for meromorphic flat
connections which are not necessarily good. Namely, a Q-structure of V is
called good if the induced Q-structure of good meromorphic flat bundles V̌P

are good for any local resolutions (XP ,λP ). Even in this case, the de Rham
complexes DRX(V ) and DRX(V!) have naturally induced Q-structures. More-
over, if we are given a holomorphic function g on X such that g−1(0) = D,
the holonomic DX-modules ψg(V ) and Ξg(V ) are naturally equipped with
pre-Betti structures, with which the morphisms in (2) are compatible.

1.3.3. Cells and gluing. — Let us recall that any holonomic D-module
M can be described as the gluing of a “cell” and a holonomic D-module M′

whose support SuppM′ is strictly smaller than SuppM. Namely, for any
P ∈ SuppM, there exists a tuple C = (Z,U,ϕ, V ) as follows:

(Cell 1) ϕ : Z → X is a morphism of complex manifolds such that P ∈ ϕ(Z)
and that dimZ is equal to the dimension of SuppM at P . We impose
that there exists a neighbourhoodXP of P inX such that ϕ : Z → XP

is projective.

(Cell 2) U ⊂ Z is the complement of a hypersurface DZ . We impose that the
restriction ϕ|U is an immersion, and that there exists a hypersurfaceH
of XP such that ϕ−1(H) = DZ .
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1.3. BETTI STRUCTURE IN THE HIGHER DIMENSIONAL CASE 7

(Cell 3) V is a good meromorphic flat bundle on (Z,DZ ). We impose
M(∗H) = ϕ†V for a hypersurface H as in (Cell 2). Note that we
obtain the natural morphisms ϕ†V! →M→ ϕ†V .

Such C is called a cell of M at P . A holomorphic function g on X is called
a cell function for C if ϕ(U) = SuppM\ g−1(0). We set gZ := g ◦ϕ. We have
natural isomorphisms ϕ†ΞgZ (V ) ≃ Ξgϕ†(V ) and ϕ†ψgZ (V ) ≃ ψgϕ†(V ). By the
formalism of Beilinson, the DX-module φg(M) is obtained as the cohomology
of the complex

(5) ϕ†V! −→ Ξgϕ†(V )⊕M −→ ϕ†V.

We have the description of M around P as the cohomology of the complex

ψg(ϕ†V ) −→ Ξg(ϕ†V )⊕ φg(M) −→ ψg(ϕ†V ).

In other words, M is described as the gluing of the cell C and φg(M).

1.3.4. Betti structure

1.3.4.1. Compatibility of cell and pre-Betti structure. — We introduce the
compatibility condition of a cell C and a pre-Betti structure F of M. We say
that F and C are compatible if the following holds:

◃ Note that the flat bundle V|U has an induced Q-structure. We suppose
that it is a good Q-structure in the sense of §1.3.2.

◃ By the first condition, ϕ†V , ϕ†V!, Ξgϕ†V and ψgϕ†V are equipped with
the induced pre-Betti structures. Then, we impose that the morphisms
ϕ†V! →M→ ϕ†V are compatible with pre-Betti structures.

Such a cell C is called a Q-cell of M at P . Since φg(M) is the cohomology of
the complex (5), it is equipped with the induced pre-Betti structure.

1.3.4.2. Inductive definition of Betti structure. — Let us define the notion
of Betti structure of M at P , inductively on the dimension of SuppM. If
dimP SuppM = 0, a Betti structure is defined to be a pre-Betti structure.
Let us consider the case dimP SuppM ≤ n. We say that a pre-Betti structure
of M is a Betti structure at P if there exists an n-dimensional Q-cell C =
(Z,ϕ, U, V ) at P with the following properties:

◃ dimP ((SuppM ∩ XP ) \ ϕ(Z)) < n for some neighbourhood XP of P
in X.

◃ For a cell function g for C, the induced pre-Betti structure of φg(M)
is a Betti structure at P . Note that dimSuppφg(M) < n by the first
condition.
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8 CHAPTER 1. INTRODUCTION

A holonomic D-module with Betti structure is called a Q-holonomic D-module.
Morphisms of Q-holonomic DX-modules are defined to be morphisms of pre-
Q-holonomic DX-modules.

Remark 1.3.1. — The above is not exactly the same as the definition in §7.2,
but they give equivalent objects.

1.4. Main goal

1.4.1. The category of Q-holonomic D-modules. — Besides giving the
details on the above arguments, it is our main purpose to show that our notion
of Betti structure is nice. The category of Q-holonomic D-modules should
contain the holonomic D-modules naturally induced from any meromorphic
flat connections with a good Q-structure, for which we have the following
theorem.

Theorem 1.4.1. — Let X be any complex manifold with a hypersurface D.
Let V be any meromorphic flat connection on (X,D) with a good Q-structure.
Then, the natural pre-Betti structures of V and V! are Betti structures.

See Theorem 8.1.3 for a refined result. Some of the functors for holonomicD-
modules should be enriched with Betti structures, as in the following theorems.

Theorem 1.4.2 (Theorem 8.1.1). — Let F : X → Y be any projective mor-
phism of complex manifolds. For any Q-holonomic DX -module M, the push-
forward F i

†M are also naturally Q-holonomic for any i.

Theorem 1.4.3 (Theorem 8.1.4). — Let X be any complex manifold with a
hypersurface D. Let M be any Q-holonomic DX -module. Then, M⊗OX(∗D)
has a unique Betti structure, for which M→M⊗OX(∗D) is compatible with
the Betti structures.

Theorem 1.4.4 (Proposition 8.3.7). — Let X be any complex manifold with
a hypersurface D. Let M be any Q-holonomic DX-module. Let V be any
meromorphic connection on (X,D) with a good Q-structure. Then, M⊗ V is
naturally a Q-holonomic DX -module.

The following is an easier result.

Theorem 1.4.5

◃ The category of Q-holonomic DX -modules is abelian.

◃ The dual of Q-holonomic DX-modules are naturally Q-holonomic.
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1.4. MAIN GOAL 9

◃ Let M be a Q-holonomic DX-module. Let M′ ⊂ M be a subobject in
the category of pre-Q-holonomic DX -modules. Then, M′ is also Q-holonomic.
We have a similar claim for quotients.

By using the theorems, we obtain that the category of Q-holonomic D-
modules contains expected objects. For example, it contains the holonomic
D-modules obtained from the structure sheaf of any algebraic variety by suc-
cessive use of the pull back and the push-forward by algebraic morphisms,
and the exponential twist by algebraic functions. (This type of holonomic
D-modules are closely related with extended exponential-motivic D-modules
in [28].) It implies the compatibility of the Q-structure and the Stokes struc-
ture for some naturally obtained meromorphic flat bundles. Such phenomena
are expected in the non-commutative Hodge theory [25].

In the algebraic case, the derived category of Q-holonomic D-modules is
equipped with standard functoriality.

Theorem 1.4.6. — The category of Q-holonomic algebraic D-modules is
equipped with the standard functors such as dual, push-forward, pull-back,
tensor product, inner homomorphism, the nearby and vanishing cycle functors,
compatible with those for the category of holonomic algebraic D-modules with
respect to the forgetful functor.

1.4.2. Analysis on real blow up. — We also give some analysis on the real
blow up, which is a complement to [54]. Very briefly, we can capture the Stokes
structure by considering the de Rham complex on the real blow up, at least
in the case of good meromorphic flat bundles. We have several useful classes
of functions on the real blow up, the moderate growth, the rapid decay, and
the Nilsson type. We study or review the fundamental property of the sheaves
of such functions and the corresponding de Rham complexes. We will not
restrict ourselves to our main purpose, i.e., the study on Betti structure. For
example, we shall prove that the sheaf of holomorphic functions of moderate
growth is flat over the sheaf of holomorphic functions on the underlying space
(Theorem 4.1.1). Although we will not use it in this paper, it is quite basic,
and the author expects that it would be useful for a further study.

Remark 1.4.7. — G. Morando informed the author that the theory of ind-
sheaves [24] provides us with a powerful method to study analysis on the real
blow up. (See also the recent work by A. D’Agnolo and M. Kashiwara [10].)
While the author hopes that it would make the subject more transparent,
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he also hopes that his direct way would also be significant for our understand-
ing at this moment.
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CHAPTER 2

PRELIMINARY

2.1. Notation and words

2.1.1. Dual, push-forward and de Rham functor. — We prepare some
notation. See very useful text books [17] and [22] for more details and preci-
sions on D-modules. Let X be a complex manifold with dimX = dX . Let DX

denote the sheaf of holomorphic differential operators on X. In this paper,
DX-module means left DX-module. Let Hol(X) be the category of holonomic
DX-modules, and let Db

hol(DX) be the derived category of cohomologically

bounded holonomic DX-complexes.Let Ωj
X denote the sheaf of holomorphic

j-forms. The invertible sheaf ΩdX
X is denoted by ΩX . The sheaves of C∞-

(p, q)-forms are denoted by Ωp,q
X . The dual functor on the derived category of

DX-modules is denoted by DX , i.e.,

DXM• := RHomDX (M•,DX ⊗ Ω⊗−1X )[dX ].

Recall that if M is a holonomic DX -module, then DXM is a holonomic DX-
module. For DX -modules Mi (i = 1, 2), the tensor product M1 ⊗OX M2 is
naturally a DX-module. For any tangent vector field v, we have

v(m1 ⊗m2) = (vm1)⊗m2 +m1 ⊗ (vm2).

The DX-module is denoted by M1⊗D M2. It is also denoted by M1⊗M2 if
there is no risk of confusion.

Lemma 2.1.1. — Let M be any holonomic DX -module. Let V be any DX-
module, which is coherent and locally free as an OX-module. Its dual is denoted
by V ∨. Then, we have a natural isomorphism

DX(M⊗D V ) ≃ (DXM)⊗D V ∨.
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12 CHAPTER 2. PRELIMINARY

Proof. — We recall Remark 3.4 in [22]. For any left DX-module N , we have
the left DX -action on DX ⊗D N . It is also equipped with a right DX-action
given by the multiplication (f ⊗m) · g = fg ⊗m for g ∈ DX . The two-sided
(DX ,DX)-module is denoted by N1. Similarly, we have a left action of DX

on DX ⊗OX N (the tensor product ⊗OX is taken for the OX-module structure
of DX given by the right multiplication) given by the multiplication g·(f⊗m) =
gf⊗m for g ∈ DX , and a rightDX -action given by (f⊗m)·v = fv⊗m−f⊗vm
for a tangent vector v. The two-sided (DX ,DX)-module is denoted by N2. We
have a naturally defined OX-morphism N → N1 given by m %→ 1 ⊗m. It is
naturally extended to a morphism of left DX -modules N2 → N1. Actually, it
is an isomorphism and compatible with the right DX -action, as remarked in
[22].

We have two left DX-actions on DX ⊗ Ω⊗−1X . The first one is the natural
one, and the second one is induced by the right DX-action. They induce
two OX-actions. Let (DX ⊗ Ω⊗−1X ) ⊗i

OX
N denote the tensor product with

respect to the i-th one. Each is equipped with two left DX -actions. From the
consideration in the previous paragraph, we obtain a natural isomorphism

ι : N ⊗1
OX

(DX ⊗ Ω⊗−1X ) −→ N ⊗2
OX

(DX ⊗ Ω⊗−1X ),

compatible with the DX -actions.
Let us return to Lemma 2.1.1. We have the following natural isomorphisms

of DX -modules:

(6) DX(M⊗D V ) = RHomDX (M⊗D V, DX ⊗ Ω⊗−1X )

≃ RHomDX

(
M, V ∨ ⊗1

OX
(DX ⊗ Ω⊗−1X )

)

≃ RHomDX

(
M, V ∨ ⊗2

OX
(DX ⊗ Ω⊗−1X )

)
= (DXM)⊗D V ∨.

Here, the first one is obtained by using Godement type injective resolution,
and the second one is induced by ι above.

For any field R, let RX denote the sheaf on X associated to the constant
presheaf valued in R. Let Db(RX) (resp. Db

c(RX)) denote the derived category
of cohomologically bounded (resp. bounded constructible) RX-complexes, and
let Per(X,R) denote the category of R-perverse sheaves. Let ωX,R denote the
dualizing complex of RX-modules. It will be denoted by ωX if there is no risk
of confusion.

The dual functor on the derived category of RX-modules is also denoted
by DX , i.e., for an RX-complex F•, let

DXF• := RHomRX (F
•,ωX,R).
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2.1. NOTATION AND WORDS 13

The de Rham functor is denoted by DRX , i.e.,

DRX M := ΩX ⊗L
DX

M = Ω•
X ⊗OX M[dX ].

According to [19], it gives a functor of triangulated categories

DRX : Db
hol(DX) −→ Db

c(CX)

compatible with the t-structures, where the t-structure of Db
hol(DX) is the

natural one, and the t-structure of Db
c(CX) is given by the middle perversity.

In particular, it induces an exact functor DRX : Hol(X) → Per(X,C). We
can identify

ωX = DRX OX [dX ].

It is easy to observe that DRX M = 0 implies M = 0 for M ∈ Hol(X).
The functor DRX : Hol(X) → Per(X,C) is faithful, although it is not full in
general.

Let F : X → Y be a morphism of complex manifolds. The push-forward for
CX-complexes in the derived category is denoted by RF∗. (It is also denoted
by F∗ if there is no risk of confusion.) Its i-th perverse cohomology is denoted
by F i

† . Put

DX→Y := OX ⊗F−1OY
F−1DY ,

DY←X := ΩX ⊗F−1OY
F−1(DY ⊗OY Ω⊗−1Y ).

The push-forward for DX-complexes is denoted by F†, i.e.,

F†M = RF∗(DY←X ⊗L
DX

M).

Its i-th cohomology is denoted by F i
† .

Recall that these functors are compatible on the derived categories. Let
F : X → Y be a proper morphism of complex manifolds. We have natural
transformations

DRY ◦F† ≃ RF∗ ◦DRX , DX ◦DRX ≃ DRX ◦DX , DY ◦ F† ≃ F† ◦DX .

In [58], the following diagram is constructed and it is proved to be commutative
(see Theorem 3.3 of [58]):

(7)

RF∗DX DRX
≃−−−−→ RF∗DRX DX

≃−−−−→ DRY F†DX

≃
⏐⏐" ≃

⏐⏐"

DYRF∗DRX
≃−−−−→ DY DRY F†

≃−−−−→ DRY DY F† .
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14 CHAPTER 2. PRELIMINARY

2.1.2. Hypersurfaces. — For any hypersurfaceD ⊂ X, let OX(∗D) denote
the sheaf of meromorphic functions whose poles are contained in D. For
M ∈ Hol(X), we have M(∗D),M(!D) ∈ Hol(X) given as follows:

M(∗D) := M⊗OX OX(∗D), M(!D) := DX
(
(DXM)(∗D)

)
.

We have naturally defined morphism M → M(∗D). The morphism
DX(M) → DX(M)(∗D) and the natural transformation DX ◦DX ≃ idX
induce M(!D) →M. (See §3.3 and §A3.3 of [22] for DX ◦DX ≃ id.) They
are uniquely characterized that the restrictions to X \ D are the identities.
If D is given as the zero set of a holomorphic function f , they are denoted
by M(∗f) and M(!f), respectively. If we are given two hypersurfaces Di

(i = 1, 2), we set

M(⋆1D1)(⋆2D2) :=
(
M(⋆1D1)

)
(⋆2D2),

where ⋆i ∈ {∗, !}.
We put DX(∗D) := DX ⊗OX(∗D).
A DX(∗D)-moduleM is called holonomic, if it is holonomic as a DX-module.

Let Hol(X, ∗D) be the category of holonomic DX(∗D)-modules, which is natu-
rally a full subcategory of Hol(X). The dual functor on Hol(X, ∗D) is denoted
by DX(∗D), i.e.,

DX(∗D)(M) = DX(M)(∗D).

Let j : X \D → X be the inclusion. We define a functor

j∗ : Hol(X) −→ Hol(X, ∗D), j∗(M) = M(∗D).

The natural inclusion Hol(X, ∗D) → Hol(X) is denoted by j∗. Another
functor j! : Hol(X, ∗D) → Hol(X) is defined by j!(M) := (j∗M)(!D). The
functors j∗, j∗ and j! are exact. In this notation, we have M(∗D) = j∗j∗M
and M(!D) = j!j∗M for M ∈ Hol(X).

It is generalized as follows.
Let H be a hypersurface of X and k : X \H → X denote the inclusion.

For M ∈ Hol(X, ∗D), we define k∗M := M(∗H). We can naturally regard
Hol(X, ∗(D ∪H)) as a full subcategory of Hol(X, ∗D). The natural inclusion
is denoted by k∗. We define another functor

k! : Hol
(
X, ∗(D ∪H)

)
−→ Hol(X, ∗D), k!M = j∗

((
(j ◦ k)∗M

)(
!(D ∪H)

))
.

Later (§6.4), we shall consider a successive composition of the operations.
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2.1. NOTATION AND WORDS 15

2.1.3. Pre-K-holonomic D-modules. — Let M be any holonomic DX-
module. Let K be any subfield of C. A pre-K-Betti structure of M is defined
to be a K-perverse sheaf F with an isomorphism λ : F⊗K C ≃ DRX M. Such
a tuple (M,F ,λ) is called a pre-K-holonomic DX -module. We will often
omit to denote λ. A morphism of K-holonomic DX-modules (M1,F1) →
(M2,F2) is defined to be a pair of a morphism of DX -modules M1 → M2

and a morphism of perverse sheaves F1 → F2 such that the following induced
diagram is commutative:

F1 ⊗K C
≃−−−−→ DRX(M1)⏐⏐"

⏐⏐"

F2 ⊗K C
≃−−−−→ DRX(M2) .

The category of pre-K-holonomic DX-modules is denoted by Holpre(X,K).

The following lemma is clear.

Lemma 2.1.2. — Holpre(X,K) is abelian.

Let F be a pre-K-Betti structure of M. We have induced pre-K-Betti
structures DF and F i

†F of DM and F i
†M, where F : X → Y be a proper

morphism. We put

D(M,F) := (DM,DF) and F i
† (M,F) := (F i

†M, F i
†F).

Lemma 2.1.3. — The isomorphism DF†M ≃ F†DM is compatible with the
induced pre-K-Betti structures.

Proof. — Because (7) is commutative, we have the commutativity of the fol-
lowing naturally induced diagram:

DRDF†M
≃−−−−→ DF†DRM ≃−−−−→ DF†F ⊗ C

≃
⏐⏐" ≃

⏐⏐" ≃
⏐⏐"

DRF†DM ≃−−−−→ F†DDRM ≃−−−−→ F†DF ⊗ C .

It means the claim of the lemma.

2.1.4. Formal completion. — Let Y be a real analytic manifold. Let C∞Y
denote the sheaf of C∞-functions on Y . For any real analytic subset Z, let
C∞<Z
Y denote the subsheaf of C∞Y which consists of the sections f such that

the Taylor series of f at each point P ∈ Z is 0. We set C∞
Ẑ

:= C∞Y /C∞<Z
Y .

We have other descriptions:
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16 CHAPTER 2. PRELIMINARY

(i) It is the sheaf of Whitney functions of class C∞ on Z, i.e., sections of
∞-jets along Z satisfying the conditions in Theorem I.2.2 of [34].

(ii) Let IZ,∞ be the ideal sheaf of C∞Y corresponding to Z. Then, C∞
Ẑ

is also

isomorphic to lim←− C∞Y /Im
Z,∞. (See the proof of Theorem I.4.1 of [34].)

For any C∞Y -module F , let F|Ẑ denote F ⊗C∞
Y

C∞
Ẑ
. Let Zi (i = 1, 2) be

real analytic subsets in Y . According to Corollary IV.4.4 with Definition I.5.4
of [34], the following natural sequence is exact:

0 −→ C∞
Ẑ1∪Z2

−→ C∞
Ẑ1
⊕ C∞

Ẑ2
−→ C∞

Ẑ1∩Z2
−→ 0.

Let Zi (i ∈ Λ) be real analytic subsets of Y . For any subset I ⊂ Λ, we put

ZI :=
⋂

i∈I
Zi and Z(I) :=

⋃

i∈I
Zi.

We fix a total order on Λ. For J ⊂ K ⊂ Λ, we have the restriction rJ,K :
C∞
ẐJ
→ C∞

ẐK
. If K = J ) {i}, we put

κ(J,K) :=
{
k ∈ J | k < i

}
and dJ,K := (−1)κ(J,K)rJ,K .

We set

Km(C∞
Ẑ(I)

) :=
⊕

|J |=m+1
J⊂I

C∞
ẐJ

.

The above morphisms dJ,K induce dm : Km(C∞
Ẑ(I)

) → Km+1(C∞
Ẑ(I)

). Thus, we

obtain a complex K•(C∞
Ẑ(I)

). By using the exactness in the previous paragraph,

it can be proved that the natural inclusion C∞
Ẑ(I)
→ K0(C∞

Ẑ(I)
) induces a quasi-

isomorphism C∞
Ẑ(I)
≃ K•(C∞

Ẑ(I)
). (See [52], for example.)

Let X be a complex manifold. For a complex analytic subset Z, we set

OẐ := lim←−OX/Im
Z ,

where IZ denote the ideal sheaf of Z.We set

Ω•,•

Ẑ
:= Ω•,•

X|Ẑ

which is equipped with the differential operators ∂ and ∂. If Z is smooth, it
is easy to see that the natural inclusion OẐ → Ω0,•

Ẑ
is a quasi-isomorphism.

Let D be a simple normal crossing hypersurface with the irreducible de-
composition D =

⋃
i∈ΛDi. By the above procedures, we obtain the complexes

K•(OD̂(I)). It is known that the natural inclusion OD̂(I) → K0(OD̂(I)) induces

a quasi-isomorphism OD̂(I) ≃ K•(OD̂(I)). (See [14] and [52].) We also have

Ω0,•

D̂(I)
≃ K•(Ω0,•

D̂(I)
). Then, we obtain OD̂(I) ≃ Ω0,•

D̂(I)
.
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We recall a useful isomorphism due to Z.Mebkhout (Lemma 2.2.1.3
of [43]).(1)

Proposition 2.1.4 (Z.Mebkhout). — Let M be any coherent DX-module.
Let Z be any hypersurface of X. Then,

RHomDX

(
M(∗Z),OẐ

)
= 0 and M(!Z)⊗L

DX
OẐ = 0.

See (3.10) of [22] to deduce the second vanishing from the first.

2.2. Beilinson’s construction

Let us recall Beilinson’s beautiful construction of the nearby cycle functor,
the vanishing cycle functor and the maximal functor, which is essential for our
purpose. It is particularly convenient for the study of functoriality. See [4] for
more details and precisions (see also [32] and [59]).

2.2.1. Preliminary. — Let k be any field of characteristic 0. Let

A := k((s)) and Ai := sik[[s]].

For a ≤ b, we put Aa,b := Aa/Ab. The multiplication of s induces a nilpotent
endomorphism NA of Aa,b. We put

Gm := Spec k[t, t−1].

We define

Ia,b := OGm ⊗Aa,b.

It is equipped with the connection given by ∇α = NA(α)(dt/t) for α ∈ Aa,b.
We have natural morphisms Ia,b → Ic,d for a ≥ c and b ≥ d, which are
compatible with the connections. We have a natural isomorphism

Ia,a+1 ≃ I0,1 = OGm , sa ←→ 1.

This construction makes sense also in the analytic situation. The multi-
valued flat sections are formally given by α · exp(−s log t) for α ∈ Aa,b.

(1) The author thanks the referee who informed this result to him.
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2.2.2. Nearby cycle functor and maximal functor. — Let X be any
complex manifold with a hypersurface D. Let f be a meromorphic function
on (X,D), i.e., the poles of f are contained in D. We set

Ia,b
f := f∗Ia,b(∗D),

which are meromorphic flat bundles on (X, f−1(0) ∪D). Let

j : X − f−1(0) −→ X.

For a holonomic DX(∗D)-module M, we obtain the holonomic DX(∗D)-modules

Ma,b
f := M⊗ Ia,b

f = j∗j
∗(M⊗ Ia,b

f ).

We obtain DX(∗D)-modules Πa,b
f ! M := j!j∗Ma,b

f and Πa,b
f∗M := j∗j∗Ma,b

f . We
define

Πa,b
f∗!(M) := lim←−

N→∞
Cok(Πb,N

! M→ Πa,N
∗ M).

The following lemma is easy to see.

Lemma 2.2.1. — For any point P ∈ X, there exists a neighbourhood XP and
a large integer N0 such that the following natural morphisms are isomorphisms
on XP for any N ≥ N0:

Cok(Πb,N+1
! M→ Πa,N+1

∗ M) −→ Cok(Πb,N
! M→ Πa,N

∗ M).

Proof. — See the proof of Lemma 4.1.1 of [50], for example.

Beilinson defined the functors ψ(a)
f := Πa,a

f∗! and Ξ(a)
f := Πa,a+1

f∗! . In the case
a = 0, they are denoted by ψfM and ΞfM, respectively. The multiplica-

tion of s naturally induces isomorphisms ψ(a)
f M ≃ ψ(a+1)

f M and Ξ(a)
f M ≃

Ξ(a+1)
f M. Note that we have natural isomorphisms Πa,a+1

f⋆ (M) ≃ j⋆j∗M
for ⋆ = ∗, ! induced by the multiplication of a power of s. They will be implic-
itly identified. We have the exact sequences of holonomic DX(∗D)-modules:

0→ Πa,a+1
f ! M

c
(a)
1−−−−→ Ξ(a)

f M
c
(a)
2−−−−→ ψ(a)

f M→ 0,

0→ ψ(a+1)
f M

d
(a)
1−−−−→ Ξ(a)

f M
d
(a)
2−−−−→ Πa,a+1

f∗ M→ 0.

The multiplication of s and the endomorphism c(a)2 ◦ d
(a)
1 induce an endomor-

phism N (a+1) of ψ(a+1)
f M.

Recall the important observation due to Beilinson (see [4] for lim
←→

):

lim
←→

Πa,b
f ! M ≃ lim

←→
Πa,b

f∗M.
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2.2. BEILINSON’S CONSTRUCTION 19

In particular, it implies that N (a+1) is locally nilpotent. We also obtain the
isomorphism

Πa,b
f∗!(M) ≃ lim−→

N→∞
Ker(Π−N,b

f ! M→ Π−N,a
f∗ M).

As in Lemma 2.2.1, Ker(Π−N,b
f ! M → Π−N,a

f∗ M) is locally independent of the
choice of a large N . See §4.1 of [50] for an elementary argument. In particular,
we have the identifications

ψ(a)
f M ≃ lim−→

N→∞
Ker(Π−N,a

f ! M→ Π−N,a
f∗ M),(8)

Ξ(a)
f M ≃ lim−→

N→∞
Ker(Π−N,a+1

f ! M→ Π−N,a
f∗ M).(9)

Remark 2.2.2. — When we distinguish that we work on the category of

DX(∗D)-modules, we will use the symbols ψ(a)
f (M, ∗D), Ξ(a)

f (M, ∗D), etc.

2.2.3. Vanishing cycle functor and gluing. — Let f be as above. Let
MX be any holonomic DX(∗D)-module. We set M := MX(∗f). We have the

natural identifications Πa,b
f⋆MX = Πa,b

f⋆M for ⋆ = ∗, !. We also have Πa,b
f∗!MX =

Πa,b
f∗!M. In particular, ψ(a)

f MX = ψ(a)
f M and Ξ(a)

f MX = Ξ(a)
f M. We set

M(a)
X := MX ⊗Aa,a.

We have the naturally defined morphisms:

Πa,a+1
f ! M

c(a)1,X−−−−→ M(a)
X

d(a)2,X−−−−→ Πa,a+1
f∗ M.

Beilinson defined the vanishing cycle functor φ(a)f MX as the H1-cohomology
of the following sequence of holonomic DX(∗D)-modules:

Πa,a+1
f ! M

c(a)1 ⊕c
(a)
1,X−−−−−−→ Ξ(a)

f M⊕M(a)
X

d(a)2 −d
(a)
2,X−−−−−−→ Πa,a+1

f∗ M.

The morphisms d(a)1 and c(a)2 induce can and var:

ψ(a+1)
f M can−−−−→ φ(a)f M var−−−−→ ψ(a)

f M.

By construction, we have var ◦ can = c(a)2 ◦ d
(a)
1 .

Conversely, let MY be a holonomic DX(∗D)-module whose support is con-
tained in Y = f−1(0), with morphisms

ψ(1)
f M u−−→MY

v−−→ ψ(0)
f M, v ◦ u = c(0)2 ◦ d

(0)
1 .
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20 CHAPTER 2. PRELIMINARY

Then, we obtain a holonomic DX(∗D)-module Glue(MY , u, v) as the cohomol-
ogy of the complex:

ψ(1)
f M

d(0)1 ⊕u−−−−→ Ξf (M)⊕MY
c(0)2 −v−−−−→ ψ(0)

f M.

Beilinson made an excellent observation that the above two operations are
mutually inverse. See [4] for more details.

2.2.4. Comparison with ordinary definitions. — Let ψ̃f,−1 and φ̃f be
the nearby cycle functor and the vanishing cycle functor defined in terms of
V -filtrations, i.e., ψ̃f,−1(M) := GrV−1(ιf†M) and φ̃f (MX) := GrV0 (ιf†MX),
where ιf : X → X × C denotes the graph, and V denotes a V -filtration
of ιf†MX along t.

For simplicity, ψ̃f,−1 is denoted by ψ̃f in the following.

Lemma 2.2.3. — We have natural isomorphisms ψf ≃ ψ̃f, and φf ≃ φ̃f .

Proof. — Recall that φ̃f (MX) and ψ̃f (MX) are naturally equipped with the
nilpotent endomorphismsN , which are the nilpotent part of the multiplication
of −∂tt. We have natural identifications

φ̃f (Π
a,b
f ! M) ≃ φ̃f (Πa,b

f∗M) ≃ ψ̃fM⊗Aa,b.

The natural nilpotent endomorphisms are given by

N ⊗ id− id⊗(s•),

which is denoted by N − s. Here, s• denotes the multiplication of s on Aa,b.
In the following, we argue on any compact subset of X.

Let us look at the natural morphism Ga,b : Πa,b
f ! M→ Πa,b

f∗M. The supports

of the kernel and the cokernel are contained in f−1(0). The morphism

φ̃f (G
a,b) : φ̃f (Π

a,b
f ! M) −→ φ̃f (Π

a,b
f∗M)

is naturally identified with

N − s : ψ̃fM⊗Aa,b −→ ψ̃fM⊗Aa,b.

Hence, if b is sufficiently larger than a, Cok(Ga,b) is isomorphic to ψ̃fM ⊗
Aa,a+1, independently of b. Therefore, we obtain ψ(a)

f M ≃ ψ̃fM⊗Aa,a+1. In

particular, we naturally have ψ(0)
f M = ψ̃fM.

It follows that Cok(Πa+1,M
f ! M → Πa,M

f∗ M) are independent of any suffi-

ciently large M , which should be isomorphic to Ξ(a)
f M. We obtain

φ̃f (Ξ
(a)
f M) ≃ Cok

(
N − s : ψfM⊗Aa+1,M → ψfM⊗Aa,M

)
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2.2. BEILINSON’S CONSTRUCTION 21

for any sufficiently large M . Because φ(0)f (MX) is naturally isomorphic to the
cohomology of the complex

φ̃f (Π
0,1
f ! M) −→ φ̃f (Ξ

(0)
f M)⊕ φ̃f (MX) −→ φ̃f (Π

0,1
f∗M),

it is easy to obtain φ(0)f (M) ≃ φ̃f (M) by a direct calculation.

2.2.5. Compatibility with dual. — In [4], the pairing A × A → k =
A−1/A0 is given by

〈
f(s), g(s)

〉
= Ress=0

(
f(s) g(−s)ds

)
.

It induces pairings Aa,b ⊗A−b,−a → A−1/A0. Then, we obtain flat pairings

Ia,b ⊗ I−b,−a −→ I−1,0.

We can identify Ia,b with the dual of I−b,−a by the pairing.
Let D denote the dual functor on the category of holonomic DX(∗D)-

modules. By using the DX(∗D)-version of Lemma 2.1.1, we obtain identifica-
tions:

D(Πa,b
f∗M) ≃ Π−b,−af ! (DM), D(Πa,b

f ! M) ≃ Π−b,−af∗ (DM).

By (8) and (9), we obtain the identifications

DXψ
(a)
f (M) ≃ ψ(−a)

f (DXM) and DXΞ(a)
f (M) ≃ Ξ(−a−1)

f (DXM).

We have DX(c(a)1 ) = d(−a−1)2 , DX(c(a)2 ) = d(−a−1)1 and DX(c(a)1,X) = d(−a−1)2,X .

Hence, we obtain DXφ
(a)
f (MX) ≃ φ(−a−1)f (DXMX). The morphisms

DXψ
(a)
f M D var−−→DXφ

(a)
f MX

D can−−→DXψ
(a−1)
f M

are identified with

ψ(−a+1)
f M can−−→ φ(−a)f MX

var−−→ ψ(−a)
f M.

The multiplication of s induces an isomorphism Φs : ψ(a)(M) ≃ ψ(a+1)(M),
etc. Under the above identifications, we have DΦs = −Φs.

Remark 2.2.4. — In [50], we use the pairing A × A → k given by
⟨f(s), g(s)⟩ = Ress=0(f(s)g(−s)ds/s). It makes an inessential shift of
the indexes in the formulas.
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2.2.6. Compatibility with push-forward. — Let F : X → Y be any
proper morphism. Assume that D = F−1(DY ), for simplicity. Let g be any
holomorphic function on Y . Let M be any holonomic DX(∗D)-module. We
set g̃ := F ∗g. Let jY : Y − g−1(0) → Y and jX : X − g̃−1(0) → X. We have
natural isomorphisms

F i
†(M⊗ Ia,b

g̃ ) ≃ F i
†(M)⊗ Ia,b

g

of DY (∗DY )-modules. We naturally have (jY ⋆j∗Y )F
i
† ≃ F i

† ◦ (jX⋆j∗X) for ⋆ = ∗, !.
Hence, it is easy to obtain the identifications

F i
†ψ

(a)
g̃ M = ψ(a)

g F i
†M, F i

†Ξ
(a)
g M = Ξ(a)

g F†M, F i
†φ

(a)
g M = φ(a)g F i

†M.

2.2.7. Choice of a function. — Let f and h be meromorphic functions
on (X,D). We suppose that h is nowhere vanishing on X \ D. We have
natural isomorphisms of OX -modules

Ia,b
f ≃ Ia,b

hf ≃ Aa,b ⊗OX(∗D)(∗f).

For their flat connections ∇f and ∇hf and for α ∈ Aa,b, we have the formulas:

∇fα = α · s df
f

, ∇hfα = α · s
(df

f
+

dh

h

)
.

If we have log h on X, we have a flat isomorphism Φ : Ia,b
f ≃ Ia,b

hf given by
Φ(α) = exp(−s log h)α. It induces isomorphisms:

(10) Ξ(a)
f ≃ Ξ(a)

hf , ψ(a)
f ≃ ψ(a)

hf , φ(a)f ≃ φ(a)hf .

They depend on the choice of a branch of log h.

2.2.8. Q-structure of Ia,b. — In the analytic case, the Q-structure of Aa,b

is given as follows:

C · sj ⊃ Q ·
(
2π
√
−1

)j
sj .

It gives a Q-structure of the fiber of Ia,b over 1 ∈ C∗. We extend it to a flat
Q-structure of the flat bundle I|C∗ . Let u := 2π

√
−1 s. The connection of Ia,b

is expressed as

∇(ua, . . . , ub−1) = (ua, . . . , ub−1)N
1

2π
√
−1

dt

t
·

Here, N denotes the constant matrix such that Ni,i+1 = 1 and Ni,j = 0
otherwise. Since the monodromy is expressed by exp(−N), the Q-structure is
well defined. More generally, for any subfield K ⊂ C, we obtain a K-structure
of Ia,b in this way. The pairing ⟨. , .⟩ : Ia,b⊗ I−b,−a → I−1,0 is defined over Q.
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Under the identification I−1,0 ≃ I0,1 by the multiplication of s, the pairing
takes values in (2π

√
−1 )−1Q.

2.2.9. Comparison with the functors for perverse sheaves. — Let
Loc(Ia,b)Q denote the Q-local system associated to Ia,b. The fiber over 1
is uaQ[[u]]/ubQ[[u]], and the monodromy along the loop with the clockwise
direction is given by the multiplication of exp(u). Taking the limit, we have
a Q-local system Loc(I)Q, whose fiber over 1 is Q((u)), and the monodromy
is given by the multiplication of exp(u). We have subsystems Loc(Ia)Q ⊂
Loc(I)Q whose fiber over 1 is uaQ[[u]]. We have

Loc(Ia,b)Q ≃ Loc(Ia)Q/Loc(I
b)Q.

Recall another expression of these local systems as in [4].
Let AP := Q((v)). We set t := v + 1. The pairing AP × AP → Q(−1) is

given as follows:

⟨f(t), g(t)⟩ = Res
t=1

(f(t) g(t−1)
dt

t
)

1

2π
√
−1

·

We have a Q-local system IP on C∗ such that the fiber over 1 is AP , and
the monodromy along the loop with the clockwise direction is given by the
multiplication of t = 1 + v. Let us compare IP and Loc(I)Q. We take an
algebra homomorphism Φ : Q((u)) → Q((v)) determined by Φ(exp(u)) = 1+v.
We identify the fibers of Loc(I)Q and IP by Φ. Because it is compatible
with the monodromy, it induces the identification Loc(I)Q ≃ IP . Note that
Φ(f(−u)) = Φ(f)(t−1) and Φ(du) = dt/t. Hence the pairing is preserved.

Remark 2.2.5. — Recall that the functors ψ, Ξ and φ for perverse sheaves
are given in terms of IP , according to [4]. The above comparison gives the
compatibility of the de Rham functor DR with φ, ψ and Ξ in the regular
singular case.
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CHAPTER 3

GOOD HOLONOMIC D-MODULES AND
THEIR DE RHAM COMPLEXES

3.1. Good holonomic D-modules

We shall introduce the notion of good holonomic D-modules on any complex
manifold X with a normal crossing hypersurface D =

⋃
i∈ΛDi. They are

D-modules locally described as the gluing of meromorphic flat bundles on⋂
j∈J Dj (J ⊂ Λ). In §§3.1.1–3.1.3, we study the local case. We explain

the global case in §3.1.4. We explain a kind of quiver description of good
holonomic D-modules in the local case in §3.1.5.

In the local case, for any good holonomic D-modules, we have various com-

mutativity of functors such as φ(a)i φ(b)j (M) ≃ φ(b)j φ(a)i (M), for which goodness
seems truly used.

3.1.1. I-good meromorphic flat bundles. — Let ∆n denote a multi-disc
in Cn, i.e., ∆n := {(z1, . . . , zn) ∈ Cn ; |zi| < 1}. We consider the case

X := ∆n, Di := {zi = 0} and D :=
ℓ⋃

i=1

Di.

We set ℓ := {1, . . . , ℓ}. For I ⊂ ℓ, we set

D(I) :=
⋃

i∈I

Di and DI :=
⋂

i∈I

Di.

We put

∂DI := DI ∩D(Ic), where Ic := ℓ− I.

Let M(X,D) be the set of meromorphic functions on X whose poles are con-
tained in D. Let H(X) be the set of holomorphic functions on X. We give
a review on good meromorphic flat bundles. See [45], [48] and [49] for more
detailed reviews.
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26 CHAPTER 3. GOOD HOLONOMIC D-MODULES

3.1.1.1. Good set of irregular values. — Let f ∈ M(X,D). Suppose that
there exists m = (mi) ∈ Zℓ≥0 such that

(i) zmf =
∏

zmi
i f is holomorphic,

(ii) if m ̸= (0, . . . , 0), we have (zmf)(O) ̸= 0.

Then, we set ord(f) := −m. In general, such m does not exist. For any
holomorphic function f , we have ord(f) = (0, . . . , 0). If ord(g) exists for
g ∈ OX(∗D), then ord(g + f) = ord(g) for any holomorphic function f . So,
the notion ord is considered for elements in M(X,D)/H(X).

We use the order ≤ on Zℓ given by m ≤ n if mi ≤ ni for any i. A finite
subset I ⊂M(X,D)/H(X) is called good if the following holds:

◃ For any f ∈ I, there exists ord(f).

◃ For any f, g ∈ I, there exists ord(f−g), and the set {ord(f−g)
∣∣ f, g ∈ I}

is totally ordered.

For any good set of irregular values I ⊂M(X,D)/H(X) and for any subset
I ⊂ ℓ, let I ′(I) be the set of the elements a ∈ I which are regular along zi
(i ∈ I), and we put I(I) := {a|DI

∣∣ a ∈ I ′(I)}. It is a good set of irregular
values on (DI , ∂DI).

3.1.1.2. Unramifiedly I-good meromorphic flat bundle. — Let

I ⊂M(X,D)/H(X)

be a good set of irregular values. Recall that a meromorphic flat bundle (E ,∇)
on (X,D) is called unramifiedly I-good if the following holds:

◃ Let II denote the image of I to M(X,D)/M(X,D(Ic)). For any
P ∈ DI \ ∂DI , the formal completion (E ,∇)|P̂ is decomposed into
⊕

b∈II (ÊP,b, ∇̂P,b) such that ∇̂P,b − db̃ idÊP,b
are regular singular, where b̃

are any lifts of b to M(X,D).

In this paper, we say that a meromorphic flat bundle (E ,∇) on (DI , ∂DI) is
unramifiedly I-good if it is unramifiedly I(I)-good.

3.1.1.3. Ramified case. — For a positive integer m, let

X(m) := ∆n =
{
|ζi| < 1

}
, D(m)

i := {ζi = 0} and D(m) =
ℓ⋃

i=1

D(m)
i .

We have a natural ramified covering ϕm : X(m) → X along D given by

ϕm(ζ1, . . . , ζn) = (ζm1 , . . . , ζmℓ , ζℓ+1, . . . , ζn),
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3.1. GOOD HOLONOMIC D-MODULES 27

and the induced ramified coverings D(m)
I → DI . Let

I ⊂M(X(m),D(m))/H(X(m))

be any good set of irregular values which is preserved by the action of the Galois
group of the ramified covering X(m)/X. In this paper, a meromorphic flat
bundle E on (DI , ∂DI) is called I-good if it is the descent of an unramifiedly

I-good meromorphic flat bundle E(m) on (D(m)
I , ∂D(m)

I ).

3.1.1.4. Some functors along the divisors. — In this subsection, we use the
following notation for simplicity of the description.

Notation 3.1.1. — The vanishing cycle functors φ(a)zi are denoted by φ(a)i .
For any I = (i1, . . . , im) ∈ {1, . . . , ℓ}m and any a = (a1, . . . , am) ∈ Zm, we set

φ(a)I = φ(a1)i1
◦ · · · ◦ φ(am)

im .

If a = (0, . . . , 0), it is often denoted just by φI . We use the symbols ψ(a)
I , Ξ(a)

I

and Πa,b
i⋆ with a similar meaning. For any holonomic DX-module M, we set

M(∗i) := M(∗Di) and M(!i) := M(!Di).

If we are given a subset I ⊂ ℓ, we put

M(!I) := M
(
!D(I)

)
and M(∗I) := M

(
∗D(I)

)
.

Lemma 3.1.2. — Let (E ,∇) be any I-good meromorphic flat bundle on

(X,D). For 1 ≤ i, j ≤ ℓ with i ̸= j, the natural morphism φ(a)i (E) →
φ(a)i (E)(∗j) is an isomorphism.

Proof. — Because the support of φ(a)i (E) and φ(a)i (E)(∗j) are contained in Di,
it is enough to prove that the induced morphism for the formal completions

φ(a)i (E)|P̂ −→ φ(a)i (E)(∗j)|P̂
is an isomorphism for each P ∈ Di. We have only to consider the case
P = (0, . . . , 0). We use the notation introduced in §3.1.1.3. Take lifts ã

of a ∈ I. We have regular singular meromorphic flat bundles (Ra,∇a) on
(X(m),D(m)) for a ∈ I, and an action of the Galois group G of ϕm on
(E ′,∇′) =

⊕
a∈I(Ra,∇a + d ã ), such that the formal completions of (E ′,∇′)

and ϕ∗m(E ,∇) at (0, . . . , 0) are isomorphic in a G-equivariant way. Let (E ′′,∇′′)
be the meromorphic flat bundle on (X,D) obtained as the descent of (E ′,∇′).
The formal completions of (E ′′,∇′′) and (E ,∇) at P are isomorphic. Then, by
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using the standard argument to prove the uniqueness of V -filtrations, the iso-
morphism E ′′

|P̂
≃ E|P̂ is compatible with the V -filtrations along zi. Therefore,

it is enough to prove the claim for E ′′.
Let (R,∇) be a regular singular meromorphic flat bundle on (X,D). Let b ∈

M(X(m),D(m)) such that ord(b) exists. We set L(b) := OX(m)(∗D(m)) e with
the connection ∇e = edb. We obtain a meromorphic flat bundle ϕm∗(L(b))
on (X,D). By the previous consideration, it is enough to prove the claim for
any direct summand of the meromorphic flat bundle E1 = R⊗ϕm∗L(b), which

follows from the claim for E1. We may assume that b =
∏ℓ

j=1 ζ
bj
j for some

bj ≤ 0.
Let V (R) denote the V -filtration along zi. For m ∈ S := {0, 1, . . . ,m−1}ℓ,

let ζm :=
∏ℓ

k=1 ζ
mk
k . We have

ϕ∗L(b) =
⊕

m∈S

OX(∗D)ζme.

If bi < 0, the V -filtration V (E1) of E1 is given by Vα(E1) = E1 for any α ∈ C.
If bi = 0, we have Vα(E1) =

⊕
Vα+mi/m(R) ⊗ OXζme. Hence, the natural

morphism φi(E1) → φi(E1)(∗Dj) (j ̸= i) is an isomorphism in the both cases.

Lemma 3.1.3. — If i ̸= j, the natural morphism E(!i) → E(!i)(∗j) is an
isomorphism.

Proof. — Let N denote the nilpotent part of the action of −∂izi on φi(E). We
have the following commutative diagram:

0 −−→ KerN −−→ E(!i) −−→ E −−→ CokN −−→ 0

a

⏐⏐% b

⏐⏐% =

⏐⏐% c

⏐⏐%

0 −−→ KerN(∗j) −−→ E(!i)(∗j) −−→ E −−→ CokN(∗j) −−→ 0 .

By Lemma 3.1.2, we obtain that a and c are isomorphisms. Hence, b is also
an isomorphism.

3.1.2. I-good holonomic D-modules. — We continue to use the notation
introduced in §3.1.1.

Definition 3.1.4. — A holonomic DX -moduleM is called I-good on (X,D)
if the following holds:

◃ M(∗D) is an I-good meromorphic flat bundle on (X,D).

◃ For any I = (i1, . . . , im) ∈ {1, . . . , ℓ}m, φI(M)(∗Ic) is the push-forward
of an I-good meromorphic flat bundle on (DI , ∂DI) by DI → X.
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The full subcategory of I-good holonomic D-modules is abelian, and it
is closed under extensions. If V is a good meromorphic flat bundle, it is a
good holonomic DX -module in the above sense. When we do not have to
distinguish I, we will omit to denote it. We will implicitly use the following
obvious lemma.

Lemma 3.1.5. — Let M be a holonomic DX-module. Suppose that (i) M(∗D)
is an I-good meromorphic flat bundle, (ii) φi(M) are I-good for any i =
1, . . . , ℓ. Then, M is I-good.

Lemma 3.1.6. — Let M be an I-good holonomic D-module on (X,D). Then
DXM is −I-good, where −I = {−a | a ∈ I}.

Proof. — We use an induction on the dimension of the support of M. It is
easy to check that DXM(∗D) is a good meromorphic flat bundle. By the

inductive assumption, φ(a)i (DXM) ≃ DXφ
(−a−1)
i (M) are also good. Hence,

we obtain that M is good.

For any good holonomic D-module M, let ρ(M) ∈ Z≥ 0 × Z>0 denote the
pair of dimSuppM and the number of the irreducible components of SuppM
with the maximal dimension. We use the lexicographic order on Z≥ 0 × Z>0.
For any good holonomic D-module M, there exists J ⊂ ℓ with dimSuppM =
n − |J | such that M(∗Jc) ̸= 0. The kernel N1 and the cokernel N2 of the
natural morphism M→M(∗Jc) satisfy ρ(Ni) < ρ(M) (i = 1, 2).

Lemma 3.1.7. — Let M be I-good on (X,D). Then, ψ(a)
i (M) are also I-good

for any i = 1, . . . , ℓ.

Proof. — We use an induction on ρ(M). Let J and Nj (j = 1, 2) be as

above. By the assumption of the induction, ψ(a)
i (Nj) (j = 1, 2) are good.

The DX -module M(∗Jc) is the push-forward of an I-good meromorphic flat
bundle EJ on (DJ , ∂DJ ) by the inclusion ιJ : DJ → X. If i ∈ J , we have

ψ(a)
i (M(∗Jc)) = 0. If i ̸∈ J , ψ(a)

i (M(∗Jc)) is isomorphic to ιJ†ψ
(a)
i (EJ). By

computing the formal completion ψ(a)
i (EJ)|P̂ of P ∈ ∂DJ as in the proof of

Lemma 3.1.2, we can prove that ψ(a)
i (EJ)|P̂ is I-good on (DJ , ∂DJ ). Hence,

we obtain that ψ(a)
i (M) is also I-good.

3.1.3. Commutativity of the functors along the coordinate functions.
— Let M be good on (X,D).
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Lemma 3.1.8. — For any i ̸= j, we have natural isomorphisms

φi
(
M(∗j)

)
≃ φi(M)(∗j) and φi

(
M(!j)

)
≃ φi(M)(!j).

Proof. — The second isomorphism is obtained as the dual of the first one.
Let us consider the first isomorphism. We have the following naturally defined
morphisms:

φi
(
M(∗j)

) a−−→ φi
(
M(∗j)

)
(∗j) b←−− φi(M)(∗j) .

Because the restriction of b to X − Dj is an isomorphism, it is easy to see
that b is an isomorphism. Let us prove that a is an isomorphism by using an
induction on ρ(M). As in the proof of Lemma 3.1.7, the issue can be reduced
to the case where M is a good meromorphic flat bundle, which is given in
Lemma 3.1.2.

Lemma 3.1.9. — M(∗j) and M(!j) are also good.

Proof. — Because φj(M(∗j)) ≃ ψj(M), we obtain that M(∗j) is good from
Lemmas 3.1.5, 3.1.7 and 3.1.8. By using Lemma 3.1.6, we obtain that M(!j)
is also good.

We have the following corollary of Lemma 3.1.9.

Corollary 3.1.10. — Let f be a meromorphic function on (X,D) whose
zeros and poles are contained in D. Take D(1) ⊂ D such that the poles of f
are contained in D(1). The holonomic DX -module Πa,b

f⋆ (M, ∗D(1)) is good

on (X,D). Hence, ψ(a)
f (M, ∗D(1)), Ξ(a)

f (M, ∗D(1)) and φ(a)f (M, ∗D(1)) are
also good on (X,D).

We have the following naturally defined morphisms:

M(∗i)(!j) a−−→M(∗i)(!j)(∗i) b←−−M(!j)(∗i) .

It is easy to prove that b is an isomorphism for i ̸= j.

Lemma 3.1.11. — The morphism a is also an isomorphism, by which we can
identify M(∗i)(!j) and M(!j)(∗i).

Proof. — By using an induction on ρ(M), we can reduce the issue to the case
where M is a good meromorphic flat bundle, which is given in Lemma 3.1.3.
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3.1. GOOD HOLONOMIC D-MODULES 31

In the following, we will not distinguish M(∗i)(!j) and M(!j)(∗i) for i ̸= j,
which will be denoted by M(∗i!j). For I # J ⊂ ℓ, we have the natural identi-
fication

M(!I∗J) ≃M(∗J !I),

which will be used implicitly.

Lemma 3.1.12. — We have the commutativity

Ξ(a)
i ◦Ξ

(b)
j = Ξ(b)

j ◦Ξ
(a)
i , ψ(a)

i ◦ψ
(b)
j = ψ(b)

j ◦ψ
(a)
i and φ(a)i ◦φ

(b)
j = φ(b)j ◦φ

(a)
i .

Moreover, the functors Ξ(a)
i , ψ(b)

j and φ(c)k are mutually commutative, where i,
j, k are mutually distinct. In the following, we will not care about the order
of these functors for good holonomic D-modules on (X,D).

Proof. — We obtain the natural identification Πa,b
i⋆ ◦ Π

c,d
j⋆′ = Πc,d

j⋆′ ◦ Π
a,b
i⋆ from

Lemma 3.1.11. Then, the claim of the lemma is clear.

3.1.4. Globalization. — Let X be a complex manifold with a normal cross-
ing hypersurface D.

Definition 3.1.13. — A holonomic DX -module M is called good on (X,D)
if the following holds:

◃ Let P be any point of D. Let (U, z1, . . . , zn) be a coordinate neighbour-
hood around P such that D ∩ U =

⋃ℓ
i=1{zi = 0}. Then, M|U is good in the

sense of Definition 3.1.4.

We obtain the following from the results in §3.1.2–§3.1.3.

Lemma 3.1.14. — Let M be good on (X,D).

◃ The dual DXM is also good on (X,D).
◃ Let D(1) ⊂ D be the union of some irreducible components. Then,
M(∗D(1)) and M(!D(1)) are also good on (X,D).

◃ Let D(i) ⊂ D (i = 1, 2) be the unions of some irreducible components
such that dimD(1) ∩D(2) < dimX − 1. We have a natural isomorphism
M(∗D(1))(!D(2)) ≃M(!D(2))(∗D(1)).

◃ Let f be a meromorphic function on (X,D) which is invertible on
X \D. Take D(1) ⊂ D such that the poles of f are contained in D(1).

Then, ψ(a)
f (M, ∗D(1)), Ξ(a)

f (M, ∗D(1)) and φ(a)f (M, ∗D(1)) are also good
on (X,D).
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3.1.5. A quiver description in the local case. — We set

X := ∆n, Di =
{
zi = 0

}
and D =

ℓ⋃

i=1

Di.

We use the notation introduced in §3.1.1. Let I ⊂ M(X(m),D(m))/H(X(m))
be a good set of irregular values which is preserved by the action of the Galois
group of the ramified covering X(m) → X.

We consider tuples of I-good meromorphic flat bundles VI on (DI , ∂DI)
(I ⊂ ℓ), with a tuple of morphisms

ψ(1)
i (VI)

gI,i−−−−→ VIi
fI,i−−−−→ ψ(0)

i (VI)

for I ⊂ ℓ and i ∈ ℓ\I. Here Ii := I ∪{i}. We impose the following conditions:

◃ fI,i ◦ gI,i is equal to var ◦ can : ψ(1)
i (VI)→ ψ(0)

i (VI);

◃ for any I ' {i} ' {j} ⊂ ℓ, we have the commutativity

ψ(0)
j (fI,i) ◦ fIi,j = ψ(0)

i (fI,j) ◦ fIj,i,

gIi,j ◦ ψ(1)
j (gI,i) = gIj,i ◦ ψ(1)

i (gI,j),

fIj,i ◦ gIi,j = ψ(0)
i (gI,j) ◦ ψ(1)

j (fI,i).

For such C(a) = ((V (a)
I ), (f (a)

I,i , g
(a)
I,i )) (a = 1, 2), morphisms C(1) → C(2) are

defined to be a tuple of morphisms ϕI : V (1)
I → V (2)

I of meromorphic flat
bundles such that the following diagram is commutative:

ψ(1)
i (V (1)

I )
g
(1)
I,i−−−−−−−→ V (1)

Ii

f
(1)
I,i−−−−−−−→ ψ(0)

i (V (1)
I )

ψ
(1)
i (ϕI)

⏐⏐% ϕIi

⏐⏐% ψ
(0)
i (ϕI )

⏐⏐%

ψ(1)
i (V (2)

I )
g(2)I,i−−−−−−−→ V (2)

Ii

f(2)
I,i−−−−−−−→ ψ(0)

i (V (2)
I ) .

Let C(X,D) denote the category of such objects and morphisms (we do not
fix I).

Let M be a good holonomic D-module on (X,D). Set VI(M) :=

φ(0)I (M)(∗∂DI ) and V∅(M) := M(∗D), which are naturally equipped with
morphisms

ψ(1)
i

(
VI(M)

) gI,i(M)
−−−−−→ VIi(M)

fI,i(M)
−−−−−→ ψ(0)

i

(
VI(M)

)
.

Thus, we obtain an object in C(X,D) denoted by Φ(M). The construction
gives a functor M : Holgood(X,D)→ C(X,D).

Proposition 3.1.15. — Φ is an equivalence of categories.
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Proof. — Let us construct a quasi-inverse functorΥ : C(X,D)→ Holgood(X,D).

Let ιI : DI → X denote the inclusion. For any I ⊂ ℓ, we set M(0)
I := ιI†VI .

For I ⊂ ℓ with 1 ̸∈ I, we define M(1)
I as the gluing of VI and VI1 by fI,1 and

gI,1, i.e., M(1)
I is the cohomology of the complex

ιI1†ψ
(1)
1 (VI)

d(1)1 +gI,1−−−−−−→ ιI†Ξ
(1)
1 (VI)⊕ ιI1†VI1

c(0)2 −fI,1−−−−−−→ ιI1†ψ
(0)
1 (VI).

For I ' {i} ⊂ ℓ \ {1}, we have naturally induced morphisms

ψ(1)
i (M(1)

I )
g
(1)
I,i−−−−→ M(1)

I1

f
(1)
I,i−−−−→ ψ(0)

i (M(1)
I ).

Then,

(i) f (1)
I,i ◦ g

(1)
I,i is equal to the canonical morphism;

(ii) for any I ' {i} ' {j} ⊂ ℓ \ {1}, we have the commutativity

ψ(0)
j (f (1)

I,i ) ◦ f
(1)
Ii,j = ψ(0)

i (f (1)
I,j ) ◦ f

(1)
Ij,i,

g(1)Ii,j ◦ ψ
(0)
j (g(1)I,i ) = g(1)Ij,i ◦ ψ

(0)
i (g(1)I,j ),

f (1)
Ij,i ◦ g

(1)
Ii,j = ψ(0)

i (g(1)I,j ) ◦ ψ
(1)
j (f (1)

I,i ).

Inductively on m, we can introduce good holonomic D-modules M(m)
I on

(X,D) for I ⊂ ℓ \m, and morphisms for I ' {i} ⊂ ℓ \m

(11) ψ(1)
i (M(m)

I )
g(m)
I,i−−−−→ M(m)

I1

f(m)
I,i−−−−→ ψ(0)

i (M(m)
I )

such that

ψ(0)
j (f (m)

I,i ) ◦ f (m)
Ii,j = ψ(0)

i (f (m)
I,j ) ◦ f (m)

Ij,i ,

g(m)
Ii,j ◦ ψ

(0)
j (g(m)

I,i ) = g(m)
Ij,i ◦ ψ

(0)
i (g(m)

I,j ),

f (m)
Ij,i ◦ g

(m)
Ii,j = ψ(0)

i (g(m)
I,j ) ◦ ψ(1)

j (f (m)
I,i ).

Indeed, suppose we are given such holonomic D-modules for m− 1, we define

M(m)
I for I ⊂ ℓ\m as the gluing of M(m−1)

I andM(m−1)
Im by g(m−1)I,m and f (m−1)

I,m .
By the construction, we have the induced morphisms as in (11) with the desired
property. After the procedure, we obtain a good holonomic D-module

Υ
(
(VI | I ⊂ ℓ), (fI,i, gI,i | I ' {i} ⊂ ℓ)

)
:= M(ℓ).

Clearly, Υ and Φ are mutually quasi-inverse.

We can describe some functors on Holgood(X,D) in terms of C(X,D). Let

C =
(
(VI), (gI,i, fI,i)

)
.
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34 CHAPTER 3. GOOD HOLONOMIC D-MODULES

◃ For i, we define C(∗Di) = ((V ′I ), (g
′
I,i, f

′
I,i)) as follows.

We set V ′I := VI (i ̸∈ I) or V ′I := ψ(0)
i (VI\{i}) (i ̸∈ I). If j ̸= i, g′I,j and

f ′I,j are the naturally induced morphisms, and g′I,i and f ′I,i are given by the
canonical morphisms

ψ(1)
i (VI)

can−−→ ψ(0)
i (VI)

id−−→ ψ(0)
i (VI).

◃ We define C(!Di) as follows.

We set V ′I := VI (i ̸∈ I) or V ′I := ψ(1)
i (VI\{i}) (i ̸∈ I). If j ̸= i, g′I,j and

f ′I,j are the naturally induced morphisms, and g′I,i and f ′I,i are given by the

canonical morphisms ψ(1)
i (VI)

id−−→ ψ(1)
i (VI)

var−−→ ψ(0)
i (VI). We have natu-

rally defined morphisms C(!Di)→ C → C(∗Di). It is easy to observe

Φ
(
M(⋆Di)

)
≃ Φ(M)(⋆Di).

◃ We define ψ(a)
i (C) = ((V ′I ), (g

′
I,i, f

′
I,i)) as follows.

If i ̸∈ I, we set V ′I = 0. If i ∈ I, we set V ′I := ψ(a)
i (VI\i). The morphisms g′I,i

and f ′I,i are the naturally induced ones. Then, we have a natural isomorphism

Φψ(a)
i (M) ≃ ψ(a)

i Φ(M).

◃ We define φ(a)i (C) = ((V ′I ), (g
′
I,i, f

′
I,i)) as follows.

If i ̸∈ I, we set V ′I = 0. If i ∈ I, we set V ′I := V (a)
I . The morphisms g′I,i and

f ′I,i are the naturally induced ones. Then, we have a natural isomorphism

Φφ(a)i (M) ≃ φ(a)i Φ(M).

◃ We define D(C) = ((V ′I ), (g
′
I,i, f

′
I,i)) as follows.

We set V ′I := D(V (−1)
I )(∗∂DI). The morphisms g′I,i and f ′I,i are the natu-

rally induced ones. Then, we have a natural isomorphism

ΦD(M) ≃DΦ(M).

3.1.6. Appendix. — The category Holgood(X,D) of good holonomic D-
modules on (X,D) is not abelian. Indeed, a direct sum of good holonomic
D-modules is not necessarily good. If we would like to work on an abelian
category, it would be convenient to restrict ourselves to a smaller category.

We generalize the notion of good system of irregular values in §2.4.1 of [47].
For any point P ∈ D, we introduce some rings. To define them, we introduce
a category CP .
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◃ Objects in CP are holomorphic maps ϕ : (Z,Q) → (X,P ) of smooth
complex manifolds which are coverings with ramification along D on a neigh-
bourhood of P . We set DZ := ϕ−1(D).

◃ Morphisms F : ((Z,Q),ϕ) → ((Z ′, Q′),ϕ′) are holomorphic maps

F : (Z,Q) −→ (Z ′, Q′) such that ϕ′ ◦ F = ϕ.

Such morphisms induce the morphisms OZ′(∗DZ′)Q′ → OZ(∗DZ)Q over

OX(∗D)Q. Let ÕX(∗D)P denote a colimit of OZ(∗DZ)Q. Similarly, let ÕX,P

denote the colimit of OZ,Q.

We have another more direct description. Let C{z1, . . . , zn} denote the
ring of convergent power series. Let C{z1, . . . , zn}z1...zℓ denote its localization
with respect to z1 · · · zℓ. For a coordinate system (z1, . . . , zn) such that D =⋃ℓ

i=1{zi = 0}, we have natural isomorphisms

ÕX,P ≃ lim−→
e

C{z1/e1 , . . . , z1/eℓ , zℓ+1, . . . , zn},

ÕX(∗D)P ≃ lim−→
e

C{z1/e1 , . . . , z1/eℓ , zℓ+1, . . . , zn}z1/e1 ···z1/eℓ
.

A finite subset I ⊂ ÕX(∗D)P /ÕX,P can be regarded as I ⊂ OZ(∗DZ)Q/OZ,Q

for some ((Z,Q),ϕ) ∈ CP . It is called a good set of ramified irregular values if:

(i) it is a good set of irregular values on (Z,DZ),

(ii) it is stable under the action of the Galois group of ϕ.

Note that if P1 is close to P , we choose Q1 ∈ ϕ−1(P1), and we obtain a
natural map IP → OZ(∗DZ)Q1/OZ,Q1 → ÕX(∗D)P1/ÕX,P1 . The image is
well defined.

Definition 3.1.16. — A good system of ramified irregular values on (X,D)
is a family of good sets of ramified irregular values I = {IP

∣∣P ∈ D} satisfying
the following condition.

◃ If P1 is sufficiently close to P , we impose that the image of IP in the
image of IP in ÕX(∗D)P1/ÕX,P1 is equal to IP1 .

Let I = (IP | P ∈ D) be a good system of ramified irregular values
on (X,D). A holonomic DX -module M is called I-good if for any P ∈ D
there exists a neighborhood XP such that M|XP

is IP -good. Then, the cate-
gory of I-good holonomic D-modules on (X,D) is an abelian full subcategory
of Hol(X).
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3.2. De Rham complexes

3.2.1. De Rham complex with infinite decay. — For any complex man-
ifold X, let Ωp,q

X denote the sheaf of C∞-(p, q)-forms on X.We set

dX := dimX.

For any analytic subset Z ⊂ X, we set

Ωp,q

Ẑ
:= Ωp,q

X ⊗C∞
X

C∞
Ẑ
.

For any hypersurface D ⊂ X, we set

Ωp,q

Ẑ
(∗D) := Ωp,q

Ẑ
⊗OX OX(∗D).

We say that D1 ∪ D2 = D is a decomposition of D if Di ⊂ X (i = 1, 2) are
hypersurfaces such that codimX(D1 ∩D2) > 1.

In that situation, we say that D2 is the complement of D1 in D. In other
words, the complement of D1 in D is the union of the irreducible components
of D which are not contained in D1.

When we are given a hypersurface D ⊂ X with a decomposition D =
D1 ∪D2, we denote the kernel of Ωp,q

X (∗D2)→ Ωp,q

D̂1
(∗D2) by

Ωp,q
X (∗D2)

<D1 .

Let D0 be a normal crossing hypersurface of X with a decomposition D0 =
D1 ∪D2. For any coherent DX-module M, we define DR<D1≤D2

X M as

Cone
(
DRX(M(∗D2)

)
→ DRD̂1

(
M(∗D2)

)
)[−1]

in the derived category Db(CX). We have the following natural quasi-
isomorphisms:

DR<D1≤D2
X M ≃ ΩdX ,•<D1

X (∗D2)⊗L
DX

M ≃ TotΩ•,•<D1
X (∗D2)⊗OX M[dX ].

Here, Tot means the total complex associated to the double complex. In the
following, we shall often omit to denote Tot. It is easy to observe that the
natural morphism DR<D1≤D2

X M→ DR<D1≤D2
X (M(∗D0)) is an isomorphism.

We also have the following natural isomorphisms in Db(CX):

DR<D1
X

(
DXM(∗D0)

)
≃ ΩdX ,•

X (∗D2)
<D1 ⊗L

DX
DXM(∗D0)

≃ RHomDX

(
M, Ω0,•

X (∗D2)
<D1

)
[dX ].

The following proposition is an immediate consequence of the isomorphism
of Mebkhout recalled in Proposition 2.1.4.
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Proposition 3.2.1. — If (M(∗D2))(!D1) ≃M(∗D2), the natural morphism

DR<D1≤D2
X (M) −→ DR≤D2

X (M)

is an isomorphism in Db
c(CX).

3.2.2. The identification in the case of good holonomic D-modules

Let X be a complex manifold with a normal crossing hypersurface D. Let
D0 ⊂ D be the union of some irreducible components with a decomposition
D0 = D1 ∪D2. Let M be a good holonomic D-module on (X,D).

The following proposition is a special case of Proposition 3.2.1.(1)

Proposition 3.2.2. — If M(!D1) = M, the natural morphism

DR<D1≤D2
X M −→ DR≤D2

X M

is a quasi-isomorphism.

We obtain the following isomorphisms in Db
c(CX):

DR<D1≤D2
X (M)

≃←−− DR<D1≤D2
X

(
M(!D1)

) ≃−−−→ DR≤D2
X

(
M(!D1)

)
.(12)

We have already seen the right isomorphism. For the left isomorphism, we
may use

Ωp,q<D1
X ≃ Ωp,q<D1

X (∗D1).

We will identify DR<D1≤D2
X (M) and DR≤D2

X (M(!D1)) by (12).

Lemma 3.2.3. — If D1 ⊂ D′1 ⊂ D, then the following diagram of the natural
morphisms is commutative:

DR
<D′

1
X M ≃−−−−→ DRX M(!D′1)⏐⏐$

⏐⏐$

DR<D1
X M ≃−−−−→ DRX M(!D1).

It is also factorized as follows:

DR
<D′

1
X M ≃←−−−− DR<D1 M(!D′1)

≃−−−−→ DRX M(!D′1)⏐⏐$
⏐⏐$

⏐⏐$

DR<D1
X M ≃←−−−− DR<D1 M ≃−−−−→ DRX M(!D1).

(1) The author thanks the referee for the simplified proof of the proposition.
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Proof. — We have the following commutative diagram:

DR
<D′

1
X M ≃←−−−− DR<D′

1 M(!D′1)
≃−−−−→ DRX M(!D′1)⏐⏐"

⏐⏐"
⏐⏐"

DR<D1
X M ≃←−−−− DR<D1 M(!D1)

≃−−−−→ DRX M(!D1).

Then, the claim of the lemma is clear.

3.2.3. Duality. — We continue to use the notation in §3.2.2. For simplicity,
we assume D = D0. We have a morphism of complexes

(13) Tot
(
TotΩ•,•<D2(∗D1)[dX ]⊗ TotΩ0,•<D1(∗D2)[dX ]

)
−→ TotΩ•,•[2dX ]

by ξ ⊗ η &−→(−1)pdX ξ ∧ η, where ξ and η are local sections of
(
TotΩ•,•<D2(∗D1)

)p+dX and
(
TotΩ0,•<D1(∗D2)

)q+dX

respectively. Let I•
1 be a DX-injective resolution of TotΩ0,•<D1(∗D2)[dX ], and

let I•
2 be a CX-injective resolution of TotΩ•,•[2dX ]. Then, the morphism is

extended to a CX-homomorphism DR≤D1<D2
X (I•

1)→ I•
2.

For any coherent DX -module M, we have the following natural morphism:

(14) DR<D1≤D2
X (DXM) −→ DX DR<D2≤D1

X (M).

Indeed, DR<D1≤D2
X DXM is represented by HomDX (M,I•

1). Hence, we have
the desired morphism given as follows:

HomDX (M,I•
1) −→ HomCX (DR<D2≤D1

X M,DR<D2≤D1
X I•

1)

−→ HomCX (DR<D2≤D1
X M,I•

2).

Theorem 3.2.4. — Let V be a good meromorphic flat bundle on (X,D). The
following diagram is commutative:

(15)

DR<D1≤D2(V ∨)
G1−−−−→ DX DR<D2≤D1(V )

≃
⏐⏐" ≃

%⏐⏐

DR V ∨(!D1)
G2−−−−→
≃

DX DRX
(
V (!D2)

)
.

Here, G1 is induced by (14) and DR<D1≤D2
X (DXV ) ≃ DR<D1≤D2

X (V ∨). The
vertical isomorphisms are given by (12), and G2 is induced by the natural iso-
morphism of D-modules V ∨(!D1) ≃DX(V (!D2)). (See §3.1.3.) In particular,
G1 is also an isomorphism.
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Proof. — We have the commutativity of the natural morphisms

DR<D1≤D2

X (V ∨)
≃−→ DR<D1≤D2

X (DXV ) −→ DX DR<D2≤D1

X (V )

≃

!⏐⏐ ≃

⏐⏐# ≃

⏐⏐#

DR<D1≤D2
X

(
V ∨(!D1)

) ≃−→ DR<D1≤D2
X

(
DX(V (!D2))

)
−→ DX DR<D2≤D1

X

(
V (!D2)

)
⏐⏐#

⏐⏐#
⏐⏐#

DRX

(
V ∨(!D1)

) ≃−→ DRX

(
DX(V (!D2))

)
−→ DX DRX

(
V (!D2)

)
.

Then, the claim of the theorem is clear.

3.2.4. Functoriality for birational morphisms. — Let X be a complex
manifold, and let D be a normal crossing hypersurface with a decomposition
D = D1 ∪D2. Let D3 be a hypersurface of X. Let ϕ : X ′ → X be a proper
birational morphism such that

(i) D′ = ϕ−1(D ∪D3) is normal crossing,

(ii) X ′ \D′ ≃ X \ (D ∪D3).

We put D′1 := ϕ−1(D1). Let D′2 be the complement of D′1 in D′.
Let M′ be any coherent DX′-module having a good filtration in the neigh-

bourhood of fibers of ϕ. We have the natural morphism

(16) DR<D1≤D2
X ϕ†M′ −→ Rϕ∗DR

<D′
1≤D′

2
X′ M′.

Indeed, we have

DR<D1≤D2
X ϕ†M′ ≃ Rϕ∗

(
ΩX′ ⊗ϕ−1OX

ϕ−1(Ω0,•<D1
X (∗D2))⊗L

DX′
M′)(17)

−→ Rϕ∗
((
ΩX′ ⊗ Ω

0,•<D′
1

X′ (∗D′2)
)
⊗L

DX′
M′)

≃ Rϕ∗
(
DR

<D′
1≤D′

2
X′ (M′)

)
.

Let V be a good meromorphic flat bundle on (X,D), and we set

V ′ := ϕ∗V ⊗OX′(∗D′).

We have a natural isomorphism
(
V (∗D3)

)
(!D1) ≃ ϕ†

(
V ′(!D′1)

)
.

Hence, we have a morphism of DX-modules V (!D1)→ ϕ†(V ′(!D′1)). We obtain
the following morphism from (16) and V → ϕ†V ′:

(18) DR<D1≤D2
X (V ) −→ Rϕ∗DR

<D′
1≤D′

2
X′ (V ′).
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It is equal to the one induced by ϕ−1(Ω•,•<D1
X (∗D2)⊗V )→ Ω

•,•<D′
1

X′ (∗D′2)⊗V ′.
Note that we have natural isomorphisms

(ΩX′ ⊗ V ′)⊗L
DX′

(OX′ ⊗ϕ−1OX
ϕ−1(DX ⊗ Ω−1X ))(19)

≃ (ΩX′ ⊗ V ′)⊗L
DX′(∗D′)

(
OX′(∗D′)⊗ϕ−1OX

ϕ−1(DX ⊗ Ω−1X )
)

≃ (ΩX′ ⊗ V ′)⊗L
DX′(∗D′) (DX′(∗D′)⊗ϕ−1OX

ϕ−1ΩX) ≃ V ′.

By considering the dual with V ∨ (see Theorem 3.2.4), we also obtain the
following morphism:

(20) Rϕ∗DR
<D′

2≤D′
1

X′ (V ′) −→ DR<D2≤D1
X (V ).

Theorem 3.2.5. — We have the commutative diagram

(21)

DR<D1≤D2
X V −−−−→ Rϕ∗DR

<D′
1≤D′

2
X′ V ′

≃
⏐⏐$ ≃

⏐⏐$

DRX V (!D1) −−−−→ Rϕ∗DRX′ V ′(!D′1).

Here, the vertical isomorphisms are given in (12), the upper horizontal arrow
is (18), and the lower horizontal arrow is induced by the morphism of DX-
modules V (!D1)→ ϕ†(V ′(!D′1)). Similarly, we have the commutative diagram

(22)

Rϕ∗DR
<D′

2≤D′
1

X′ V ′ −−−−→ DR<D2≤D1
X V

≃
⏐⏐$ ≃

⏐⏐$

Rϕ∗DRX′ V ′(!D′2) −−−−→ DRX V (!D2).

Here, the vertical isomorphisms are given in (12), the upper horizontal arrow
is (20), and the lower horizontal arrow is induced by the natural morphism of
DX-modules ϕ†(V ′(!D′2))→ V (!D2).

Proof. — We have the commutative diagram

DR<D1≤D2
X (V ) −→ DR<D1≤D2

X (ϕ†V ′) −→ Rϕ∗DR
<D′

1≤D′
2

X V ′

≃
%⏐⏐

%⏐⏐ ≃
%⏐⏐

DR<D1≤D2
X

(
V (!D1)

)
−→ DR<D1≤D2

X

(
ϕ†V ′(!D′1)

)
−→ Rϕ∗DR

<D′
1≤D′

2
X V ′(!D′1)⏐⏐$

⏐⏐$
⏐⏐$

DRX V (!D1) −→ DRX ϕ†V ′(!D′1) −→ Rϕ∗DRX V ′(!D′1).

Then, we obtain the commutativity of (21).
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Let us consider the commutativity of (22). Recall the commutativity of (7).
We have the commutative diagram for N → ϕ†N ′, where N (resp. N ′) is a
coherent DX-module (resp. DX′-module):

Rϕ∗DRX DN ′ ≃ DRϕ†DN ′ ≃ DRDϕ†N ′ → DRDN⏐" ⏐" ⏐"

Rϕ∗DDRX N ′ ≃ DRϕ∗DRN ′ ≃ DDRϕ†N ′ → DDRN .

The vertical arrows are also isomorphisms. Hence, the lower horizontal ar-
row in (22) is obtained as the dual of DRX V ∨(D1) → Rϕ∗DRX′ V ′∨(!D′1)
in Db

c(CX). Then, the commutativity of (22) follows from the commutativity
of (21). Thus, the proof of Theorem 3.2.5 is finished.
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CHAPTER 4

SOME SHEAVES ON THE REAL BLOW UP

4.1. Holomorphic functions

We shall introduce the sheaves of holomorphic functions of various types.
We give some statements mainly on flatness. The proof will be given later.

4.1.1. Preliminary. — Let X be an n-dimensional complex manifold with
a simply normal crossing hypersurface D with the irreducible decomposition⋃

i∈ΛDi. In this paper, the real blow up π : X̃(D) → X means the fiber

product of X̃(Di) over X.For any subset I ⊂ Λ, we set

DI :=
⋂

i∈I
Di and D(I) :=

⋃

i∈I
Di.

Formally, D∅ := X. For J ⊂ Ic := Λ \ I, we put

DI(J) := DI ∩D(J).

In particular, ∂DI := DI(Ic).

4.1.2. Holomorphic functions with moderate growth or rapid decay

Recall that holomorphic functions on an open subset U ⊂ X̃(D) are defined
to be C∞-functions on U whose restriction to U \ π−1(D) are holomorphic.
A holomorphic function f on U is called of rapid decay if the following holds:

◃ Let P be any point of π−1(D) ∩ U . We take a holomorphic coordinate
system (z1, . . . , zn) around π(P ) such that D =

⋃ℓ
i=1{zi = 0}. Then, we

have f = O(
∏ℓ

i=1 |zi|N ) for any N around P .

The sheaf of holomorphic functions on X̃(D) is denoted OX̃(D) and the sheaf

of holomorphic functions with rapid decay is denoted Arapid

X̃(D)
.
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Let U be any open subset in X̃(D). A holomorphic function f on U \π−1(D)
is called of moderate growth if the following holds:

◃ Let P be any point of π−1(P )∩U ̸= ∅. We take a holomorphic coordinate
system (z1, . . . , zn) around π(P ) such that D =

⋃ℓ
i=1{zi = 0}. Then, we

have f = O(
∏ℓ

i=1 |zi|−N ) for some N around P .

In this paper, the sheaf of holomorphic functions with moderate growth is
denoted Amod

X̃(D)
.

We shall prove the following (Proposition 4.2.4, Theorem 4.6.1).

Theorem 4.1.1. — The sheaves OX̃(D), Arapid

X̃(D)
and Amod

X̃(D)
are flat over

π−1(OX).

4.1.3. Partially rapid decay functions on completions. — Suppose
that Z is π−1(DI(J)) for some I # J ⊂ Λ. Let IZ ⊂ OX̃(D) be the ideal sheaf

of Z, and put

OẐ := lim←−OX/Im
Z .

For a given OX̃(D)-module F , we set F|Ẑ := F⊗OX̃(D)
OẐ . According to a gen-

eralized Borel-Ritt theorem due to Majima and Sabbah (see [33], Proposition
II.1.1.16 of [52]), the natural morphism O ̂π−1(DI )

→ O ̂π−1(DI (J))
is surjective.

The kernel is denoted by O<D(J)
̂π−1(DI )

. If DI = X and D(J) = D, it is equal

to Arapid

X̃(D)
.

We shall prove the following theorem. (See Proposition 4.2.4 for a refined
claim.)

Proposition 4.1.2. — The sheaves O<D(J)
̂π−1(DI)

and O ̂π−1DI(J)
are flat over

π−1(OX).

4.1.4. Holomorphic functions of Nilsson type

4.1.4.1. Preliminary. — We set

Nil(z) :=
⊕

α∈C
zαC[log z].

For (α, k) ∈ C × Z≥ 0, we put ϕα,k(z) := zα(log z)k ∈ Nil(z). Let T be any
finite subset contained in {α ∈ C

∣∣ 0 ≤ Re(α) < 1}. For simplicity, we assume
0 ∈ T . Let N be a non-negative integer. We set

NilT,N(z) :=
{∑

aα,j,k ϕα+j,k(z) ∈ Nil(z)
∣∣ aα,j,k ∈ C, j ≥ −N, k ≤ N, α ∈ T

}
.
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Note that NilT,N(z) is a finitely generated free C[z]-module. For T ⊂ T ′ and
N ≤ N ′, we have a natural inclusion NilT,N (z) ⊂ NilT ′,N ′(z). We have

Nil(z) = lim−→NilT,N (z).

Let C̃z be the real blow up of Cz along 0. Let ι be the inclusion ι : C∗z → C̃z.
We have the subsheaves of ι∗OC∗ on C̃ corresponding to Nil(z) and NilT,N (z).
The sheaves are also denoted by Nil(z) and NilT,N (z).

For ℓ ≥ 1, put

Nil(z1, . . . , zℓ) := Nil(z1)⊗C · · · ⊗C Nil(zℓ),

NilT,N (z1, . . . , zℓ) := NilT,N (z1)⊗C · · ·⊗C NilT,N (zℓ).

We naturally regard Nil(z1, . . . , zℓ) as a subsheaf of ι∗OCn−D on the real blow
up C̃(D), where D =

⋃ℓ
i=1{zi = 0} and ι : Cn − D → C̃n(D). For (α,k) ∈

Cℓ × Zℓ≥0, we put

ϕα,k(z1, . . . , zn) :=
ℓ∏

i=1

ϕαi,ki(zi),

which are regarded as multi-valued flat sections of Nil(z1, . . . , zℓ).

4.1.4.2. Holomorphic functions of Nilsson type. — LetX be an n-dimensional
complex manifold with a simply normal crossing hypersurface D. Let D =
D(1) ∪D(2) be a decomposition.

We shall introduce a sheaf A<D(1)≤D(2)

X̃(D)
on X̃(D).

First, let us consider the case X = ∆n, D =
⋃ℓ

i=1{zi = 0}. Let ℓ = I1 * I2
be determined by D(j) =

⋃
i∈Ij{zi = 0} for j = 1, 2. Let ȷ̃ denote the inclusion

X − D → X̃(D). Let A<D(1)≤D(2)

X̃(D)
be the image of the naturally defined

morphisms

O<D(1)

X̃(D)
⊗Nil(zi | i ∈ I2) −→ ȷ̃∗OX−D.

We can observe that they are independent of the choice of a coordinate system

(z1, . . . , zn). Hence, we obtain globally defined sheaf A<D(1)≤D(2)

X̃(D)
on X̃(D).

It is also denoted by Anil<D(1)

X̃(D)
.

We shall prove the following. (See Theorem 4.3.1 and Corollary 4.3.3 for
refined claims.)

Theorem 4.1.3. — A<D(1)≤D(2)
is flat over π−1OX . We also have

Rπ∗Anil
X̃(D)

≃ OX(∗D).
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Remark 4.1.4. — This type of sheaves are useful when we study the de
Rham complex of V (!D(1)∗D(2)) for a good meromorphic flat bundle on (X,D).
Compared with functions with moderate growth, we may consider functions
with rapid decay along some direction and of Nilsson type along other direc-
tion.

4.1.5. Real blow up along holomorphic functions

4.1.5.1. Category of complex manifolds over Cℓ. — It is convenient to con-
sider the category Catℓ of complex manifolds over Cℓ given as follows.

◃ An object of Catℓ is a morphism f : X → Cℓ of complex manifolds.

◃ Morphisms ϕ : (X1, f1) → (X2, f2) in Catℓ are morphisms of complex
manifolds ϕ : X1 → X2 such that f1 = f2 ◦ ϕ.

We say that ϕ has some property when the underlying ϕ has the property.
For example, we say that ϕ : (X1, f1) → (X2, f2) is a closed immersion when
ϕ : X1 → X2 is a closed immersion. For a given object (X, f) in Catℓ, we set

DX := f−1(D0),

where D0 :=
⋃ℓ

i=1{zi = 0}.
Let C̃ denote the real blow up of C along z = 0. We have C̃ℓ(D0) = C̃ℓ.
For any object (X, f) in Catℓ, we have the naturally defined map

Γf : X −→ X × Cℓ, Γf (x) =
(
x, f(x)

)
.

A morphism ϕ : (X1, f1) → (X2, f2) induces maps X1 × Cℓ → X2 × Cℓ and
X1 × C̃ℓ → X2 × C̃ℓ, which are denoted by ϕ1 and ϕ̃1, respectively.

4.1.5.2. Real blow up along functions. — Let (X, f) be an object in Catℓ.
Let j : X × (C∗)ℓ → X × C̃ℓ denote the inclusion. Let X̃(f) denote the

topological space obtained as the closure of j(Γf (X \DX)) in X × C̃ℓ, which
is called the real blow up of X along f [54]. The projection X̃(f) → X is
denoted by πf . The inclusion X̃(f) → X × C̃ℓ is denoted by Γ̃f . If there
is no risk of confusion, we shall omit to denote the subscript f to simplify
the notation. If f is submersive, X̃(f) is naturally diffeomorphic to X̃(DX).
A morphism ϕ : (X1, f1) → (X2, f2) in Catℓ naturally induces a continuous
map ϕ̃ : X̃1(f1)→ X̃2(f2).

4.1.5.3. Moderate growth and rapid decay. — Let (X, f) ∈ Catℓ. Let U be
any open subset of X̃(f). A holomorphic function s on U \ π−1f (DX) is called

of moderate growth if we have |s| = O(
∏

|fi|−N ) for some N locally around
any point of U ∩π−1(DX). A holomorphic function s on U \π−1f (DX) is called
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of rapid decay if we have |s| = O(
∏

|fi|N ) for any N locally around any point
of U ∩ π−1(DX). The sheaf of holomorphic functions with moderate growth

(resp. rapid decay) is denoted by Amod
X̃(f)

(resp. Arapid

X̃(f)
).

We shall prove the following theorem. (See Theorems 4.5.1, 4.5.3, and
Theorems 4.4.3, 4.5.4 for refined claims.)

Theorem 4.1.5

◃ The sheaves Amod
X̃(f)

and Arapid

X̃(f)
are flat over π−1f (OX).

◃ Let Γ̃f : X̃(f)→ X × C̃ℓ denote the inclusion. Then, we naturally have

Γ̃f∗Arapid

X̃(f)
≃ π−1OΓf (X) ⊗π−1OX×Cℓ

Arapid

X×C̃ℓ
,

Γ̃f∗Amod
X̃(f)

≃ π−1OΓf (X) ⊗π−1OX×Cℓ
Amod

X×C̃ℓ.

◃ Let ρ0 : X̃(DX) → X̃(f) denote the naturally induced map. Then, we
naturally have

Rρ0∗Arapid

X̃(DX)
≃ Arapid

X̃(f)
, Rρ0∗Amod

X̃(DX)
≃ Amod

X̃(f)
.

◃ Let ϕ : (Y, g) → (X, f) be a projective morphism in Catℓ. Let M be a
coherent OY -module. Then, we have the following natural isomorphism:

Amod
X̃(f)

⊗π−1
f OX

π−1f Rϕ∗M −→ Rϕ̃∗(Amod
Ỹ (g)
⊗π−1

g OY
π−1g M).

4.2. C∞-functions

4.2.1. Preliminary. — Let X be any n-dimensional complex manifold with
a simply normal crossing hypersurface D with the irreducible decomposition⋃

i∈ΛDi. We use the notation in §4.1.1. Let D◦ be a (possibly empty) hyper-
surface of X such that

(i) D ∪D◦ is simply normal crossing,

(ii) dimD ∩D◦ < n− 1.

For J ⊂ Λ, we set

D(J ) := D(J) ∪D◦.

For I ) J ⊂ Λ, we put

DI(J ) := DI ∩D(J ).

Let Ω0,q

X̃(D)
denote the sheaf of C∞-logarithmic (0, q)-forms on X̃(D), i.e., a

section of Ω0,q

X̃(D)
is locally described as a linear combination of

f ·dz i1/zi1 · · · dz im/zim ·dz j1 · · · dz jk (1 ≤ ip ≤ ℓ, ℓ+1 ≤ jq ≤ n, f ∈ C∞
X̃(D)

)
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in terms of a local holomorphic coordinate system (z1, . . . , zn) such that D is
locally described as

⋃ℓ
i=1{zi = 0}. We have the naturally defined operator

∂ : Ω0,q

X̃(D)
−→ Ω0,q+1

X̃(D)
.

The complex Ω0,•

X̃(D)
is called the Dolbeault complex of X̃(D). We put

Ω0,•

Ẑ
:= Ω0,•

X̃(D)|Ẑ

for any real analytic subset Z ⊂ X̃(D).
For a given C∞-manifold Y and a real analytic subset W ⊂ X, let

C∞<W
̂π−1(DI )×Y

denote the sheaf C∞<π−1(W )×Y
̂π−1(DI )×Y

on X̃(D)×Y , for simplicity of the description.

We also put on X̃(D)× Y

Ω0,•<W
̂π−1(DI)×Y

:= Ω0,•

X̃(D)
⊗C∞

X̃(D)
C∞<W

̂π−1(DI )×Y
.

Let qI denote the projection π−1(DI) → D̃I(∂DI). If we are given a holo-
morphic coordinate system (z1, . . . , zn) as above, then

O<D(J)
̂π−1(DI)

= q−1I O<DI(J)

D̃I (∂DI)
[[zi | i ∈ I]].

By a natural diffeomorphism π−1(DI) ≃ D̃I(∂DI) × (S1)|I|, we can locally
identify

C∞<D(J )
̂π−1(DI )

= C∞<DI(J )

D̃I(∂DI )×(S1)|I|
[[zi | i ∈ I]].

For I ⊂ J and m ≥ 0, put

T (m, I, J) := {K ⊂ J
∣∣ I ⊂ K, |K| = |I|+m+ 1}.

We set

Km(O ̂π−1(DI (J))
) :=

⊕

K∈T (m,I,J)

O ̂π−1(DK)
.

We obtain a complex K•(O ̂π−1(DI (J))
) as in §2.1.4. Similarly, we obtain a com-

plex K•(Ω0,•<D◦

̂π−1(DI (J))×Y
). See §I.5 of [34] and §II.1.1 of [52] for the following.

Lemma 4.2.1. — Let B be O ̂π−1(DI(J))
or Ω0,•<D◦

̂π−1(DI (J))×Y
. The natural inclu-

sion B → K0(B) induces a quasi-isomorphism B → K•(B).
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4.2.2. Dolbeault resolution. — In this subsection, we suppose D◦ = ∅.

Proposition 4.2.2 (See [33], [52]). — Ω0,•
̂π−1(DI (J))

and Ω0,•<D(J)
̂π−1(DI )

are c-soft

resolutions of O ̂π−1(DI (J))
and O<D(J)

̂π−1(DI )
respectively, where J ⊂ Ic.

Proof. — We give only an outline. In each case, it is easy to compute the 0-th
cohomology of the Dolbeault complexes. It is enough to prove the vanishing
of the higher cohomology. We may assume X = ∆n, Di = {zi = 0} and
D =

⋃ℓ
i=1Di.

First, let us look at Ω0,•

X̃(D)
. For 1 ≤ j ≤ n, let P0

≤j be the sheaf of C∞-

functions on X̃(D) which are ∂i-holomorphic for i > j. We set

Xj := ∆j =
{
(z1, . . . , zj)

}
and Dj,ℓ :=

⋃

i≤min{j,ℓ}

{zi = 0}.

Let q≤j be the projection X̃(D) → X̃j(Dj,ℓ). Let P1
≤j be the sheaf of C∞-

sections of q−1≤jΩ
0,1

X̃j(Dj,ℓ)
, which are ∂i-holomorphic for i > j. We set

P•
≤j :=

•∧
P1
≤j

over P0
≤j. We have the naturally defined operator

∂ : P•
≤j −→ P•+1

≤j .

Because P•
≤0 = OX̃(D) and P•

≤n = Ω0,•

X̃(D)
, it is enough to prove that the

natural inclusions P•
≤j → P•

≤j+1 are quasi-isomorphisms for the vanishing of

the higher cohomology of Ω0,•

X̃(D)
. Let Q0

≤j = P0
≤j+1. Let Q1

≤j be the sheaf

of q−1≤jΩ
0,1

X̃j(Dj,ℓ)
which are ∂i-holomorphic for i > j + 1. We take the exterior

product Q•
≤j =

∧• Q1
≤j over Q0

≤j . We have the naturally defined operator

∂j+1 : Q•
≤j → Q•

≤j ∧ dz j+1/zj+1 (j − 1 ≤ ℓ),

∂j+1 : Q•
≤j → Q•

≤j ∧ dz j+1 (j ≥ ℓ).

We clearly have Ker ∂j+1 = P•
≤j . Let us prove Cok ∂j+1 = 0. In the case j ≥ ℓ,

it can be proved by the argument for the standard Dolbeault’s lemma. Let us
consider the case j < ℓ.

Lemma 4.2.3. — ∂j+1 : Q•

≤j| ̂π−1(Dj+1)
→ Q•

≤j| ̂π−1(Dj+1)
∧ dz j+1/zj+1 is an

epimorphism.
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Proof. — We use the polar coordinate system zj+1 = rj+1 e
√
−1 θj+1 . The

action of ∂j+1 is expressed as follows:

∂j+1

(∑

n

fn(θj+1) z
n
j+1

)
=

∑

n

(
1
2

√
−1 ∂θj+1

)
fn(θj+1) z

n
j+1 · dzj+1/zj+1

Then, it is easy to prove the claim of Lemma 4.2.3.

Put D′ :=
⋃ℓ

i=1,i ̸=j+1{zi = 0}, and consider the real blow up

π′ : X̃(D′) −→ X.

We have a naturally induced morphism

q′≤j : X̃(D′) −→ X̃j(Dj,ℓ).

Let S1
≤j,X be the sheaf of sections of (q′≤j)

−1Ω0,1

X̃j(Dj,ℓ)
on X̃(D′), which are ∂i-

holomorphic for i > j + 1. Let S0
≤j,X be the sheaf of C∞-functions on X̃(D′),

which are ∂i-holomorphic for i > j + 1. We set

S•
≤j :=

•∧
S1
≤j.

It is easy to prove the vanishing of the cokernel of ∂j+1 : S•
≤j → S•

≤j ∧ dz j+1

by using the argument for standard Dolbeault’s lemma.

Let P ∈ π−1(D). Let U be a small neighbourhood around P . We will shrink
it in the following argument. According to Lemma 4.2.3, for any section ϕ
of Q•

≤j ∧ dz j+1/zj+1 on U , we can take a local section ψ of Q•
≤j such that

(ϕ− ∂jψ)| ̂π−1(Dj)∩U
= 0.

We put λ := ϕ−∂jψ. We take a cut function ρ around P , i.e., ρ is constantly 1
around P and constantly 0 near the boundary of U . We can regard ρλ as a
section of S•

≤j∧dz j+1. Then, we can find a section κ of S•
≤j around πj(P ) such

that ∂j+1κ = ρλ, where πj denotes the natural projection X̃(D) → X̃(D′).
We obtain ϕ = ∂j(ψ + κ) around P . Thus, we obtain the vanishing of the
cokernel of ∂j+1 : Q•

≤j → Q•
≤j ∧ dzj+1/zj+1, and hence the vanishing of the

higher cohomology of Ω0,•

X̃(D)
.

Because π−1(DI) = D̃I(∂DI) × (S1)|I|, we can reduce the vanishing of
the higher cohomology of Ω0,•

̂π−1(DI)
to the vanishing of Ω0,•

D̃I(∂DI )
by a formal

calculation as in Lemma 4.2.3. By using the resolution in Lemma 4.2.1, we
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4.2. C∞-FUNCTIONS 51

obtain the vanishing of the higher cohomology of Ω0,•
̂π−1(D(I))

. We have the

diagram of exact sequences

0 −−→ O<D(I)

X̃(D)
−−→ OX̃(D) −−→ O ̂π−1(D(I))

−−→ 0
⏐⏐"

⏐⏐"
⏐⏐"

0 −−→ Ω0,•<D(I)

X̃(D)
−−→ Ω0,•

X̃(D)
−−→ Ω0,•

̂π−1(D(I))
−−→ 0.

Then, we obtain the vanishing of the higher cohomology of Ω0,•<D(I)

X̃(D)
. By a

formal calculation as in Lemma 4.2.3, we obtain the vanishing of the higher

cohomology of Ω0,•
̂π−1(DI(J))

and Ω0,•<D(J)
̂π−1(DI)

.

4.2.3. Flatness. — In this subsection, D◦ is not necessarily empty.

Proposition 4.2.4. — Let I # J ⊂ Λ. The sheaves

C∞<D(J )
̂π−1(DI )

, C∞<D◦

̂π−1(DI (J))
, O<D(J)

̂π−1(DI )
, O ̂π−1(DI(J))

are flat over π−1OX . In particular, OX̃(D) and Arapid

X̃(D)
are flat over π−1OX .

Proof. — Let us recall a general result. For a real analytic manifold Y , let
OR

Y denote the sheaf of real analytic functions on Y . If Y is the product of a

complex manifold Y1 and a real analytic manifold Y2, let OY1−hol
Y denote the

sheaf of real analytic functions which are holomorphic in the Y1-direction. The
extension OY1−hol

Y ⊂ OR
Y is faithfully flat.

Lemma 4.2.5. — Let W1 ⊂ W2 ⊂ Y be real analytic subsets. Then, C∞<Wi
Y

and C∞<W1
Y /C∞<W2

Y are flat over OR
Y .

Proof. — The sheaf C∞Y is faithfully flat over OR
Y (Corollary 1.12 of [34]).

Theorem VI.1.2 of [34] implies a C∞<W1
Y ∩ C∞<W2

Y = a C∞<W2
Y for any real

analytic subsets W1 ⊂W2 ⊂ Y and for any ideal sheaf a of OR
Y . By using the

argument in the proof of Proposition III.4.7 in [34], we can prove the following:

◃ Let A be a ring. Let M be an A-flat module. Let N be an A-submodule
of M . If aM ∩N = aN for any ideal a of A, then N and M/N are also
A-flat.

We immediately obtain the claim of Lemma 4.2.5 from these results.

Let Z0 be a complex manifold with a normal crossing hypersurface D0.
Let Z1 be a real analytic manifold. We put Z := Z0 × Z1 and D := D0 × Z1.
Let G denote the composite of the maps Z → Z0 → Z0×Cn, where the latter
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is induced by the inclusion {(0, . . . , 0)} ⊂ Cn. Let (t1, . . . , tn) be the standard
holomorphic coordinate system of Cn.

Lemma 4.2.6. — C∞<D
Z [[t1, . . . , tn]] is flat over G−1OZ0×Cn .

Proof. — Let ι1 : Z → Z2 := Z × Rn the inclusion induced by
{
(0, . . . , 0)

}
−→ Rn.

We put D2 := D×Rn. We regard that (t1, . . . , tn) is a real coordinate system
of Rn ⊂ Cn. We have the natural identification

C∞<D
Z [[t1, . . . , tn]] = C∞<D2

Z2
/C∞<D2∪Z

Z2
.

According to Lemma 4.2.5, it is flat over ι−11 OR
Z2
. Let G1 be the composite of

Z → Z0 → Z0 × Rn. We have a natural isomorphism

G−11 OZ0−hol
Z0×Rn ≃ G−1OZ0×Cn .

Since the extension G−11 OZ0−hol
Z0×Rn ⊂ OR

Z2
is faithfully flat, we obtain the claim

of Lemma 4.2.6.

Let us return to the proof of Proposition 4.2.4. We may assume that
X = ∆n, Di = {zi = 0}, D =

⋃ℓ
i=1Di and D◦ =

⋃m
i=ℓ+1 Di. For I ⊂ ℓ,

let πI : X̃(D(I))→ X be the real blow up. We have the natural identification

π−1I (DI) = DI × (S1)|I| and π−1I

(
DI(I

c
)
)
= DI(I

c
)× (S1)|I|.

From Lemma 4.2.6, we obtain that

C∞<D(I
c
)

̂π−1
I (DI)

= C∞<DI(I
c
)

π−1
I (DI)

[[zi | i ∈ I]]

is flat over π−1I OX .

Lemma 4.2.7. — C∞<D(I
c
)

̂π−1(DI)
is flat over π−1OX . (Note that π : X̃(D)→ X.)

Proof. — The claim is clear outside of π−1(∂DI). Let P be any point of ∂DI .
Let a be any finitely generated ideal of OX,P . We take a free resolution Q•

of a, i.e., · · · → Q1 → Q0 → a. We obtain a π−1OX -free resolution π−1Q• of
π−1a. We set Q̃j = Qj for j ≥ 0 and Q̃−1 := a for simplicity of the description.

It is enough to prove that π−1Q̃• ⊗ C∞<D(I
c
)

̂π−1(DI )
is exact.

Let ρ : X̃(D)→ X̃(D(I)) be the naturally induced map. Note

ρ∗
(
π−1Q̃• ⊗ C∞<D(I

c
)

̂π−1(DI )

)
= π−1I (Q̃•)⊗ ρ∗

(
C∞<D(I

c
)

̂π−1(DI )

)
= π−1I (Q̃•)⊗ C∞<D(I

c
)

̂π−1
I (DI )

.
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The first equality is the projection formula. As for the second one, it is enough

to observe that the natural morphism C∞<D(I
c
)

π−1
I (DI)

→ ρ∗C∞<D(I
c
)

π−1(DI)
is an isomor-

phism. It is clearly injective. Let f be a section of ρ∗C<∞D(I
c
)

π−1(DI)
. The restriction

g := f|π−1
I (DI\D(I

c
)) gives a C∞-function on π−1I (DI \ ∂DI). For any differ-

ential operator R on π−1I (DI), R(g)(P ) goes to 0 when P goes to a point

in π−1I (∂DI). Hence, g gives a section of C∞<D(I
c
)

π−1
I (DI )

which is mapped to f .

Let Q ∈ π−1(P ). Take any cycle ϕ of π−1Q̃i ⊗ C∞<D(I
c
)

̂π−1(DI )
at Q. By using a

cut function around Q, we can regard it as a global cycle of π−1Q̃i⊗C∞<D(I
c
)

̂π−1(DI )
whose support is a small neighbourhood of Q. Then, it can be regarded as

a cycle of π−1I (Q̃i) ⊗ C∞<D(I
c
)

̂π−1
I (DI )

around ρ(Q). Because C∞<D(I
c
)

̂π−1
I (DI )

is flat over

π−1I OX , we obtain that ϕ is a boundary in the complex π−1I (Q̃•)⊗ C∞<D(I
c
)

̂π−1
I (DI)

.

Then, it is easy to deduce that ϕ is a boundary in π−1(Q̃•)⊗C∞<D(I
c
)

̂π−1(DI)
. Thus,

the proof of Lemma 4.2.7 is finished.

Let us prove that C∞<D(J )
̂π−1(DI )

is flat over π−1OX , where I $ J ⊂ ℓ. We put

S(I, J,m) :=
{
K ⊂ ℓ− J | I ⊂ K, |K| = m

}
.

Put GI,ℓ+1 := C∞<D(J )
̂π−1(DI )

, and descending inductively we set

GI,m := Ker
(
GI,m+1 →

⊕

K∈S(I,J,m)

C∞<D(Kc)
̂π−1(DK)

)
.

We have GI,|I|+1 = C∞<D(I
c
)

̂π−1(DI )
, which is flat over π−1OX . By an induction, we

obtain that GI,m are flat over π−1OX .

Hence, we obtain that C∞<D(J )
̂π−1(DI)

is flat over π−1OX . By using the resolution

of C∞<D◦

̂π−1(DI (J))
in Lemma 4.2.1, we obtain that C∞<D◦

̂π−1(DI (J))
is flat over π−1OX .

As a result, we obtain that Ω0,•<D(J )
̂π−1(DI )

and Ω0,•<D◦

̂π−1(DI (J))
are flat over π−1OX ,

where J ⊂ Ic. In particular, Ω0,•<D(J)
̂π−1(DI )

and Ω0,•
̂π−1(DI(J))

are flat over π−1OX .

Then, we obtain the π−1OX -flatness of O<D(J)
̂π−1(DI)

and O ̂π−1(DI (J))
by using

Proposition 4.2.2. Thus, the proof of Proposition 4.2.4 is finished.
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4.3. Nilsson type functions

4.3.1. C∞-functions of Nilsson type. — LetX, D andD◦ be as in §4.2.1.
We put

D(3) := D(1) ∪D◦.

We shall introduce a sheaf C∞<D(3)≤D(2)

X̃(D)
on X̃(D). First, let us consider the

case

X = ∆n, D =
ℓ⋃

i=1

{zi = 0} and D◦ =
m⋃

i=ℓ+1

{zi = 0}.

Let ℓ = I1 " I2 be determined by D(j) =
⋃

i∈Ij{zi = 0} for j = 1, 2. Let ȷ̃

denote the inclusion X −D → X̃(D). Let C∞<D(3)≤D(2)

X̃(D)
be the image of the

naturally defined morphisms:

C∞<D(3)

X̃(D)
⊗Nil(zi | i ∈ I2) −→ ȷ̃∗C∞<D◦

X−D .

We can observe that they are independent of the choice of a coordinate system

(z1, . . . , zn). Hence, we obtain a globally defined sheaf C∞<D(3)≤D(2)

X̃(D)
on X̃(D).

It is also denoted by C∞ nil<D(3)

X̃(D)
. Put

Ω0,•<D(3)≤D(2)

X̃(D)
:= Ω0,•

X̃(D)
⊗C∞

X̃(D)
C∞<D(3)≤D(2)

X̃(D)
.

We will prove the following theorem in §4.3.6. (More refined claims will be
proved.)

Theorem 4.3.1

◃ Ω0,•<D(1)≤D(2)

X̃(D)
is naturally a c-soft resolution of A<D(1)≤D(2)

X̃(D)
if D◦ = ∅.

◃ The sheaves A<D(1)≤D(2)

X̃(D)
and Ω0,•<D(3)≤D(2)

X̃(D)
are flat over π−1OX .

Let D(i) =
⋃

j∈Λi
D(i)

j (i = 1, 2) be the irreducible decomposition. Fix
k ∈ Λ1 " Λ2. We put

E(i) :=
⋃

j∈Λi\{k}

D(i)
j (i = 1, 2).

We put E := E(1) ∪ E(2) and E(3) := D(3). We have the naturally defined
projection ρ : X̃(D)→ X̃(E). We will prove the following theorem in §4.3.7.

Theorem 4.3.2. — If k ∈ Λ1, the following naturally defined morphism is an
isomorphism:

Ω0,•<E(3)≤E(2)

X̃(E)
−→ ρ∗Ω

0,•<D(3)≤D(2)

X̃(D)
.
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If k ∈ Λ2, the following naturally defined morphism is a quasi-isomorphism:

Ω0,•<E(3)≤E(2)

X̃(E)
(∗D(2)

k ) −→ ρ∗Ω
0,•<D(3)≤D(2)

X̃(D)
.

Corollary 4.3.3. — The natural morphism

Ω0,•<D(1)

X (∗D(2)) −→ π∗Ω
0,•<D(1)≤D(2)

X̃(D)

is a quasi-isomorphism. In particular, Rπ∗Anil
X̃(D)

≃ OX(∗D).

For the proof of the theorems, we may assume

X = ∆n, D =
ℓ⋃

i=1

{zi = 0} and D◦ =
m⋃

i=ℓ+1

{zi = 0},

where 1 ≤ ℓ ≤ m ≤ n. We set Di := {zi = 0} for i = 1, . . . ,m. We use the
notation in §4.1.1. For a subset J ⊂ ℓ, we set J := J ( (m \ ℓ).

4.3.2. Refinements. — For any locally closed real analytic subset
Z ⊂ X̃(D), we implicitly regard OẐ as a sheaf on X̃(D) in a natural
way.

For any I ( J ⊂ ℓ, let Anil<D(J)
̂π−1(DI )

denote the image of the naturally defined

morphism

O<D(J)
̂π−1(DI )

⊗C[z1,...,zℓ] Nil(z1, . . . , zℓ) −→ O ̂π−1(DI\∂DI)
⊗C[zi|i∈I] Nil(zi | i ∈ I).

In the case I = ∅, it is Anil<D(J)

X̃(D)
.

For I ( J ⊂ ℓ, let Anil
̂π−1(DI(J))

denote the image of the naturally defined

morphism

O ̂π−1(DI (J))
⊗C[z1,...,zℓ] Nil(z1, . . . , zℓ)

−→
⊕

j∈J
O ̂π−1(DIj\∂DIj)

⊗C[zi|i∈Ij] Nil(zi | i ∈ Ij).

Here, Ij := I ( {j}. In particular, Anil
̂π−1(D(J))

is the image of the morphism

O ̂π−1(D(J))
⊗C[z1,...,zℓ] Nil(z1, . . . , zℓ) −→

⊕

j∈J
O ̂π−1(Dj\∂Dj)

⊗C[zj ] Nil(zj).

Let Anil<D(J)
̂π−1(DI),T,N

and Anil
̂π−1(DI (J)),T,N

be the sheaves obtained from

NilT,N (z1, . . . , zℓ) instead of Nil(z1, . . . , zℓ).
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For T ⊂ T ′ and N ≤ N ′, we have natural inclusions

Anil<D(J)
̂π−1(DI ),T,N

⊂ Anil<D(J)
̂π−1(DI),T ′,N ′

and Anil
̂π−1(DI (J)),T,N

⊂ Anil
̂π−1(DI(J)),T ′,N ′

.

We have the natural isomorphisms

(23) Anil<D(J)
̂π−1(DI)

≃ lim−→Anil<D(J)
̂π−1(DI),T,N

and Anil
̂π−1(DI (J))

≃ lim−→Anil
̂π−1(DI (J)),T,N

.

Let qI : π−1(DI)→ D̃I(∂DI) denote the projection. Let

πI : D̃I(∂DI) −→ DI

be the real blow up. Then, we have

Anil<D(J)
̂π−1(DI),T,N

(24)

= q−1I Anil<DI(J)

D̃I(∂DI ),T,N
[[zi | i ∈ I]]⊗C[zi|i∈I] NilT,N (zi | i ∈ I),

Anil
̂π−1(DI(J)),T,N

(25)

= q−1I Anil
̂π−1

I (DI (J)),T,N
[[zi | i ∈ I]]⊗C[zi|i∈I] NilT,N (zi | i ∈ I).

4.3.3. Specialization. — Let us construct for any I ( J ⊂ ℓ a morphism

Anil
̂π−1(DI )

−→ Anil
̂π−1(DI (J))

.

First, let us construct Anil
X̃(D)

→ Anil
̂π−1(D)

in the case D = D1. Let Φ denote
the natural morphism

Φ : OX̃(D) ⊗Nil(z1) −→ ȷ̃∗OX−D,

where ȷ̃ : X −D → X̃(D).

Lemma 4.3.4. — Assume that D = D1. Let S ⊂ C be a finite subset such
that the induced map S → C/Z is injective. Assume that we are given

f =
∑

α∈S

M∑

j=0

fα,j ⊗ ϕα,j(z1) ∈ OX̃(D) ⊗Nil(z1)

such that Φ(f) ∈ O<D
X̃(D)

. Then, we have fα,j ∈ O<D
X̃(D)

. In particular, we have

the well defined map Anil
X̃(D)

→ Anil
̂π−1(D)

in the case D = {z1 = 0}.

Proof. — Let us consider the growth order of fα,j zα1 (log z1)
j . For the polar

coordinate system z1 = r e
√
−1 θ, we have

zα1 = exp
(
β log r − γθ +

√
−1 (γ log r + βθ)

)
,

where β = Reα and γ = Imα.
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Let V be the set of (α, j) ∈ S×Z≥0 such that fα,j is not contained in O<D
X̃(D)

.
We will derive a contradiction by assuming V ̸= ∅.

For each (α, j) ∈ V , there exists a unique integer m(α, j) such that

(i) hα,j := z−m(α,j)
1 fα,j ∈ OX̃(D),

(ii) hα,j|π−1(D) is not constantly 0.

We set

κ := max
(α,j)∈V

{
Reα+m(α, j)

}
, S :=

{
(α, j) ∈ V | Reα+m(α, j) = κ

}
.

For (α1, j1), (α2, j2) ∈ S, we have Reα1 = Reα2 and m(α1, j1) = m(α2, j2).
We also have Imα1 ̸= Imα2 if α1 ̸= α2. We obtain the following estimate for
some ϵ > 0:

(26)
∑

(α,j)∈V

hα,j|π−1(D) z
α+m(α,j)
1 (log z1)

j

= rκ(
∑

(α,j)∈V

hα,j|π−1(D) e
− Imαθ+

√
−1 (Imα log r+Reαθ)(log z1)

j) = O(rκ+ϵ).

Let us deduce that hα,j|π−1(D) are constantly 0 from (26). Assume the contrary.
Let Q ∈ π−1(D) at which hα,j(Q) ̸= 0 for one of (α, j) ∈ V . We may assume
θ(Q) = 0. We obtain the following from (26):

(27)
∑

(α,j)∈V

hα,j(Q)e
√
−1 Imα log r(log r)j = O(rϵ).

But, for any δ > 0, we can take 0 < r < δ such that the amplitudes of the
complex numbers

(−1)jhα,j(Q)e
√
−1 Imα log r, (α, j) ∈ V,

are sufficiently close, which contradicts with (27). Hence, hα,j (α, j) ∈ V are
constantly 0. Thus, we obtain Lemma 4.3.4.

Let us return to the general case. We take S ⊂ C such that the induced
map S → C/Z is bijective. Let qi : (S×Z)ℓ → S×Z be the projection onto the
i-th component, and πi : (S × Z)ℓ → (S × Z)ℓ−1 be the projection forgetting
the i-th component. For a given

∑

(α,k)∈Sℓ×Zℓ
≥ 0

Aα,k ⊗ ϕα,k ∈ OX̃(D) ⊗Nil(z1, . . . , zℓ),

we set
iFβ,j :=

∑

qi(α,k)=(β,j)

Aα,k · ϕπi(α,k)(zj | j ̸= i).
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Put ic := ℓ − {i}. If
∑

Aα,k · ϕα,k belongs to O<Di

X̃(D)\π−1(D(ic))
, we obtain

iF
β,j| ̂π−1(Di\∂Di)

= 0 by applying Lemma 4.3.4 to
∑ iFβ,j · ϕβ,j(zi). It implies

that the morphism

OX̃(D) ⊗Nil(z1, . . . , zℓ) −→ O ̂π−1(Di)
⊗Nil(z1, . . . , zℓ) −→ Anil

̂π−1(Di)

factors through Anil
X̃(D)

. Hence, we have a well defined morphism

Anil
X̃(D)

−→ Anil
̂π−1(Di)

.

By construction, it is an epimorphism. We also obtain that the following
morphism factors through Anil

X̃(D)
:

OX̃(D) ⊗Nil(z1, . . . , zℓ)

−→ O ̂π−1(D(I))
⊗Nil(z1, . . . , zℓ) −→ Anil

̂π−1(D(I))
⊂

⊕

i∈I
Anil

̂π−1(Di)
.

Hence, we obtain the well defined morphism Anil
X̃(D)

→ Anil
̂π−1(D(I))

. We also

obtain Anil
X̃(D),T,N

→ Anil
̂π−1(D(I)),T,N

. They are surjective by construction. By

using (23), (24) and (25), we also obtain epimorphisms

Anil
̂π−1(DI )

−→ Anil
̂π−1(DI (J))

and Anil
̂π−1(DI),T,N

−→ Anil
̂π−1(DI (J)),T,N

.

Lemma 4.3.5. — We have :

Anil<D(J)
̂π−1(DI )

= Ker
(
Anil

̂π−1(DI)
→ Anil

̂π−1(DI (J))

)
,

Anil<D(J)
̂π−1(DI ),T,N

= Ker
(
Anil

̂π−1(DI),T,N
→ Anil

̂π−1(DI (J)),T,N

)
.

Proof. — The implication ⊂ is clear. Let us prove the converse. First, we
consider the case I = ∅. Let f =

∑
Aα,k ϕα,k be any section of

Ker
(
Anil

X̃(D)
−→ Anil

̂π−1(D(J))

)
.

Let us prove the following equality on ̂π−1(DK − ∂DK) for any subset K ⊂ ℓ
such that K ∩ J ̸= ∅:

(28)
∑

qK(α,k)=(β,j)

A
α,k| ̂π−1(DK)

∏

i̸∈K

ϕαi,ki(zi) = 0.

We use an induction on |K|. In the case |K| = 1, it follows from the assump-
tion. Let K = K ′ ' {j}. Assume that we have already known (28) for K ′.
Using Lemma 4.3.4, we obtain the claim for K. As a special case of (28), we
have A

α,k| ̂π−1(Dℓ)
= 0.
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Note that the expression of f is not unique. We would like to replace Aα,k

such that the following holds:

P (m) : A
α,k| ̂π−1(DK)

= 0 if |K| ≥ m and K ∩ J ̸= ∅.

We use a descending induction on m. In the case m = ℓ, it holds as was
already proved. Assume that P (m+1) holds. Take K ⊂ ℓ such that |K| = m
and K ∩ J ̸= ∅. We have

A
α,k| ̂π−1(DK)

∏

i̸∈K

ϕαi,ki(zi) ∈ O<D(Kc)
̂π−1(DK)

.

By a generalized Borel-Ritt theorem due to Majima and Sabbah, we can take

Gα,k ∈ O<D(Kc)

X̃(D)
satisfying

G
α,k| ̂π−1(DK)

= A
α,k| ̂π−1(DK)

∏

i̸∈K

ϕαi,ki(zi).

By (28), the following holds:
∑

qK(α,k)=(β,j)

G
α,k| ̂π−1(DK)

= 0.

We have the equality

f =
∑

α,k

(
Aα,k −

Gα,k∏
i ̸∈K ϕαi,ki(zi)

)
ϕα,k(z1, . . . , zℓ)

+
∑

β,j

( ∑

qK(α,k)=(β,j)

Gα,k

)
ϕβ,j(zi | i ∈ K).

Note that
∑

qK(α,k)=(β,j)Gα,k is 0 on ̂π−1(DK) ∪ ̂π−1(D(Kc)). In particular,

it is 0 on
⋃

|K1|=m
̂π−1(DK1). By construction, Aα,k −Gα,k

∏
i̸∈K ϕαi,ki(zi)

−1

vanishes on ̂π−1(DK). Moreover, if A
α,k| ̂π−1(DL)

= 0 for some |L| = m with

L ∩ J ̸= ∅, Aα,k −Gα,k
∏

i̸∈K ϕαi,ki(zi)
−1 also vanishes on ̂π−1(DL). Hence,

by applying the above procedure to each K satisfying |K| = m and K∩J ̸= ∅,
we can arrive at P (m). The status P (0) means

f =
∑

Aα,k ϕα,k

with Aα,k ∈ O<D(J)

X̃(D)
, which implies that f ∈ Anil<D(J)

X̃(D)
.

Thus, we are done in the case I = ∅.
We can reduce the general case to the case I = ∅ by using (23), (24)

and (25). Thus, the proof of Lemma 4.3.5 is finished.
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4.3.4. A resolution. — For I ⊂ J and m ≥ 0, put

T (m, I, J) :=
{
K ⊂ J | I ⊂ K, |K| = |I|+m+ 1

}
.

We set

Km
(
Anil

̂π−1(DI (J))

)
:=

⊕

K∈T (m,I,J)

Anil
̂π−1(DK)

.

We obtain a complex K•(Anil
̂π−1(DI (J))

) as in §2.1.4.

Lemma 4.3.6. — The 0-th cohomology of K•(Anil
̂π−1(DI (J))

) is Anil
̂π−1(DI(J))

, and

the higher cohomology sheaves are 0. A similar claim holds for Anil
̂π−1(DI(J)),T,N

.

Proof. — It is enough to consider the issue for K•(Anil
̂π−1(DI (J)),T,N

). First, let

us consider the case I = ∅. We use an induction on |J | and the dimension
of X. The cases |J | = 1 or dimX = 1 are clear. Let J = J0 # {j}. Assume
that the claim holds for J0. We set

Lm
T,N :=

⊕

|K|=m+1
j∈K⊂J

Anil
̂π−1(DK),T,N

.

We have the exact sequence

0 −→ L•
T,N −→ K•

(
Anil

̂π−1(D(J)),T,N

)
−→ K•

(
Anil

̂π−1(D(J0)),T,N

)
−→ 0.

Let qj : π−1(Dj)→ D̃j(∂Dj) and πj : D̃j(∂Dj) → Dj be the projections. We
have a natural isomorphism

L•
T,N

≃ Cone
(
Anil

̂π−1(Dj),T,N
→ q−1j K•(Anil

̂π−1
j (Dj∩D(J0)),T,N

)[[zj ]]⊗C[zj] NilT,N (zj)
)
[−1].

By the inductive assumption, we obtain the vanishing of the higher cohomology
sheaves of L•

T,N and K•(Anil
̂π−1(D(J0)),T,N

). Hence, we obtain the vanishing of

the higher cohomology of K•(Anil
̂π−1(D(J)),T,N

). The calculation of the 0-th

cohomology is easy.
The general case can be easily reduced to the case I = ∅ by (23), (24)

and (25).
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4.3.5. The C∞-version. — Let Y be a C∞-manifold.

For I ! J ⊂ ℓ, let C∞ nil<D(J )
̂π−1(DI)×Y

denote the image of the morphism

C∞<D(J )
̂π−1(DI )×Y

⊗C[zi|i∈Jc] Nil(zi | i ∈ Jc)

−→ C∞<D(J )
̂π−1(DI\∂DI )×Y

⊗C[zi|i∈I] Nil(zi | i ∈ I).

Let C∞ nil<D◦

̂π−1(DI (J))×Y
be the image of the morphism

C∞<D◦

̂π−1(DI (J))×Y
⊗C[z1,...,zℓ] Nil(z1, . . . , zℓ)

−→
⊕

j∈J

C∞<D◦

̂π−1(DIj−∂DIj)×Y
⊗C[zi|i∈Ij] Nil(zi | i ∈ Ij).

In particular, C∞ nil<D◦

̂π−1(D(J))×Y
is the image of the morphism

C∞<D◦

̂π−1(D(J))×Y
⊗C[z1,...,zℓ] Nil(z1, . . . , zℓ) −→

⊕

j∈J
C∞<D◦

̂π−1(Dj−∂Dj)×Y
⊗C[zj ] Nil(zj).

Similarly, C∞ nil<D(J )
̂π−1(DI)×Y,T,N

and C∞ nil<D◦

̂π−1(DI(J))×Y,T,N
denote the sheaves obtained

from NilT,N (z1, . . . , zℓ) instead of Nil(z1, . . . , zℓ). We have

C∞ nil<D(J )
̂π−1(DI)×Y,T,N

(29)

= C∞ nil<DI(J )

D̃I(∂DI)×(S1)|I|×Y,T,N
[[zi | i ∈ I]]⊗C[zi|i∈I] NilT,N (zi | i ∈ I),

C∞ nil<D◦

̂π−1(DI(J))×Y,T,N
(30)

= C∞ nil<D◦∩DI

̂π−1
I (DI (J))×(S1)|I|×Y,T,N

[[zi | i ∈ I]]⊗C[zi|i∈I] NilT,N (zi | i ∈ I).

By the argument in §4.3.3, we obtain the well defined surjective morphisms:

(31) C∞ nil<D◦

̂π−1(DI )×Y
−→ C∞ nil<D◦

̂π−1(DI (J))×Y
, C∞ nil<D◦

̂π−1(DI )×Y,T,N
−→ C∞ nil<D◦

̂π−1(DI (J))×Y,T,N
.

By the argument in the proof of Lemma 4.3.5, we can prove that the kernels

of the morphisms in (31) are C∞ nil<D(J )
̂π−1(DI)×Y

and C∞ nil<D(J )
̂π−1(DI )×Y,T,N

, respectively.

We set
Km

(
C∞ nil<D◦

̂π−1(DI (J))×Y

)
:=

⊕

K∈T (m,I,J)

C∞ nil<D◦

̂π−1(DK)×Y
.

We obtain a complex K•(C∞ nil<D◦

̂π−1(DI (J))×Y
). It is easy to see that the 0-th coho-

mology is C∞ nil<D◦

̂π−1(DI (J))×Y
. By using an argument in the proof of Lemma 4.3.6,

we can prove the vanishing of the higher cohomology.
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Similar claims hold for K•(C∞ nil<D◦

̂π−1(DI(J))×Y,T,N
).

4.3.6. Proof of Theorem 4.3.1. — We do not consider D◦ in this subsec-
tion. We put

Ω0,• nil<D(J)
̂π−1(DI )

:= Ω0,•

X̃(D)
⊗C∞

X̃(D)
C∞nil<D(J)

̂π−1(DI )
,

Ω0,• nil
̂π−1(DI(J))

:= Ω0,•

X̃(D)
⊗C∞

X̃(D)
C∞ nil

̂π−1(DI (J))
.

We use the symbols Ω0,• nil<D(J)
̂π−1(DI),T,N

and Ω0,• nil
̂π−1(DI(J)),T,N

with a similar meaning.

The following proposition implies the first claim of Theorem 4.3.1.

Proposition 4.3.7. — The complexes Ω0,• nil<D(J)
̂π−1(DI)

and Ω0,• nil
̂π−1(DI(J))

are c-

soft resolutions of the sheaves Anil<D(J)
̂π−1(DI)

and Anil
̂π−1(DI(J))

respectively. Similar

claims hold for Anil<D(J)
̂π−1(DI ),T,N

and Anil
̂π−1(DI (J)),T,N

.

Proof. — We use an induction on dimX. In the case dimX = 0, the

claim is trivial. Let us prove the claim for ̂π−1(DI). For I ̸= ∅, let
qI : π−1(DI) → D̃I(∂DI) denote the naturally induced morphism. We put
NilT,N(I) := NilT,N (zi | i ∈ I). By using the inductive assumption and
a formal calculation as in Lemma 4.2.3, we can prove that the following
morphisms are quasi-isomorphisms:

(32) q−1I Anil<DI(J)

D̃I(∂DI ),T,N
[[zi | i ∈ I]] ⊗NilT,N (I)

−→ q−1I Ω0,• nil<DI(J)

D̃I(∂DI ),T,N
[[zi | i ∈ I]] ⊗NilT,N (I) −→ Ω0,• nil<D(J)

̂π−1(DI ),T,N
.

It implies the claim for Anil<D(J)
̂π−1(DI ),T,N

. We obtain the claim for Anil<D(J)
̂π−1(DI )

from (23). For any subset I ⊂ ℓ (I can be ∅), by using the resolutions

K•(Anil
̂π−1(DI(J))

) and K•(Ω0,• nil
̂π−1(DI(J))

), we can reduce the claim for Anil
̂π−1(DI(J))

to the claims for Anil
̂π−1(DK)

(I # K). The claim for Anil
̂π−1(DI(J)),T,N

can be

obtained in a similar way. By using the exact sequences

0 −→ Ω0,•<D

X̃(D)
−→ Ω0,• nil

X̃(D)
−→ Ω0,• nil

̂π−1(D)
−→ 0,

0 −→ O<D
X̃(D)

−→ Anil
X̃(D)

−→ Anil
̂π−1(D)

−→ 0,
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we obtain the claim for Anil
X̃(D)

. By using the exact sequences

0 −→ Ω0,•<D(J)

X̃(D)
−→ Ω0,• nil

X̃(D)
−→ Ω0,• nil

̂π−1(D(J))
−→ 0,

0 −→ Anil<D(J)

X̃(D)
−→ Anil

X̃(D)
−→ Anil

̂π−1(D(J))
−→ 0,

we obtain the claim for Anil<D(J)

X̃(D)
. The claims for Anil

X̃(D),T,N
and Anil<D(J)

X̃(D),T,N
can be obtained similarly.

The following proposition implies the second claim of Theorem 4.3.1.

Proposition 4.3.8. — C∞ nil<D(J )
̂π−1(DI)

, C∞ nil<D◦

̂π−1(DI (J))
, Anil<D(J)

̂π−1(DI)
and Anil

̂π−1(DI(J))

are flat over π−1OX . Similar claims hold for C∞ nil<D(J )
̂π−1(DI ),T,N

, C∞ nil<D◦

̂π−1(DI(J)),T,N
,

Anil<D(J)
̂π−1(DI ),T,N

and Anil
̂π−1(DI (J)),T,N

are also flat over π−1OX .

Proof. — We have C∞ nil<D(Ic)
̂π−1(DI)

= C∞<D(Ic)
̂π−1(DI )

⊗C[zi|i∈I] Nil(zi| i ∈ I), which is

flat over π−1OX , according to Lemma 4.2.7. Then, we can prove Proposition
4.3.8 by the arguments in the last part of the proof of Proposition 4.2.4.

4.3.7. Proof of Theorem 4.3.2. — The first claim of Theorem 4.3.2 is
obvious. We give a preliminary for the second claim. Put

X ′ := C×X, X ′0 := {0}×X, D′ := (C×D) ∪ ({0} ×X).

Let J ⊂ ℓ. Put D′(J ) := C × D(J ). Let π0 : X̃ ′(D′) → X ′ and π1 :
C × X̃(D) → C ×X be the real blow up. We have a natural diffeomorphism
π−10 (X ′0) ≃ S1× X̃(D). Let ρ0 : X̃ ′(D′)→ C× X̃(D) be the naturally induced

map. We use the coordinate system z = r e
√
−1 θ of C. We have a natural

inclusion:

(33) C∞ nil<D′(J )
̂π−1
1 (X′

0)
(∗X ′0) −→ ρ0∗

(
C∞ nil<D′(J )

̂π−1
0 (X′

0)

)
.

The operator z ∂z induces endomorphisms of C∞ nil<D′(J )
̂π−1
1 (X′

0)
(∗X ′0) and ρ0∗(C

∞ nil<D′(J )
̂π−1
0 (X′

0)
),

which are denoted by F1 and F2, respectively.

Lemma 4.3.9. — The cokernel of Fi (i = 1, 2) are 0, and (33) induces an
isomorphism Ker F1 ≃ Ker F2.
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Proof. — It is easy to obtain the vanishing of Cok F1 by a formal calculation.
Let us prove the other claims. We take S ⊂ C such that

(i) the induced map S → C/Z is bijective,

(ii) 0 ∈ S.
According to the decomposition Nil(z) =

⊕
α∈S zαC[z, z−1] [log z], we have

the decomposition

C∞ nil<D′(J )
̂π−1
0 (X′

0)
=

⊕

α∈S
C∞ nil<D′(J )

̂π−1
0 (X′

0),α
.

Let U ⊂ X̃(D) be an open subset. Let f be a section of C∞ nil<D′(J )
̂π−1
0 (X′

0),α
on

S1 × U ⊂ π−10 (X ′0) expressed as follows:

f =
∑

β,k

∑

n,j

fβ,k,n,j ϕβ,k e
−
√
−1 θαzα+n

(
log |z|2

)j
(fβ,k,n,j ∈ C∞<D(J )

S1×X̃(D)
).

We have the equality

z ∂zf =
∑

β,k

∑

n,j

(
1
2

√
−1 ∂θ + 1

2α
)
fβ,k,n,j ϕβ,k e

−
√
−1 θαzα+n

(
log |z|2

)j
(34)

+
∑

β,k

∑

n,j

fβ,k,n,jϕβ,k e
−
√
−1 θαzα+nj

(
log |z|2

)j−1
.

For any section g of C∞<D(J )

S1×X̃(D)
on S1 × U , we can solve the equation

∂θG−
√
−1αG = g (α ̸= 0)

in C∞ nil<D(J )

S1×X̃(D)
. We remark

∫ 2π
0 e−

√
−1αθg(θ)dθ = 0. It is easy to obtain

Cok(z ∂z) = 0 and Ker(z ∂z) = 0 in the part α ̸= 0 by using (34). Let us
consider the part α = 0. We use the filtration with respect to the order of
log |z|2. If we take Gr with respect to this filtration, the second term in (34)
with α = 0 disappears. We obtain H0Grj = H1 Grj for each j, and they are
represented by constants with respect to θ. Then, the second term in (34)
induces H0 Grj ≃ H1Grj−1 for j ≥ 1. Hence, we obtain the vanishing of
the cokernel of z ∂z, and the kernel is H0Gr0. Then, the remaining claims of
Lemma 4.3.9 are clear.
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We have the morphism of exact sequences

0 −−→ Ω
0,•<D′(J )∪X′

0

C×X̃(D)
−−→ Ω0,•<D′(J )

C×X̃(D)
(∗X ′0) −−→ Ω0,•<D′(J )

̂π−1
1 (X′

0)
−−→ 0

=

⏐⏐"
⏐⏐" ≃

⏐⏐"

0 −−→ ρ0∗Ω
0,•<D′(J )∪X′

0

X̃′(D′)
−−→ ρ0∗Ω

0,•<D′(J )

X̃(D′)
−−→ ρ0∗Ω

0,•<D′(J )
̂π−1
0 (X′

0)
−−→ 0.

The left vertical arrow is an isomorphism. According to Lemma 4.3.9, the
right vertical arrow is a quasi-isomorphism. Thus, the central vertical arrow
is also a quasi-isomorphism, which is the second claim of Theorem 4.3.2.

4.4. Push-forward

4.4.1. Preliminary. — We shall freely use the notation in §4.1.5.2. Let
(t1, . . . , tℓ) denote the standard coordinate system of Cℓ. We set

D0 :=
ℓ⋃

i=1

{ti = 0}.

We have C̃ℓ(D0) = C̃ℓ. Let X be any complex manifold. The projection
X × C̃ℓ → X × Cℓ is denoted by π. We put HX := X ×D0.

For any closed complex submanifold Y ⊂ X, we have naturally defined
morphisms:

(35) π−1OY×Cℓ ⊗L
π−1OX×Cℓ

Amod
X×C̃ℓ −→ ı̃∗Amod

Y×C̃ℓ ,

(36) π−1OY×Cℓ ⊗L
π−1OX×Cℓ

Arapid

X×C̃ℓ
−→ ı̃∗Arapid

Y×C̃ℓ
.

Here, ı̃ : Y × C̃ℓ → X × C̃ℓ denotes the map induced by the inclusion Y ⊂ X.

Lemma 4.4.1. — The morphisms (35) and (36) are isomorphisms.

Proof. — Let us prove the claim for (35). The other case can be proved sim-
ilarly. It is enough to argue it locally around each point of HX . It is easy
to reduce the case X = ∆n = {(z1, . . . , zn) ; |zi| < 1} and Y = {z1 = 0}.
Let F be the endomorphism of Amod

X×C̃ℓ
given by F (x) = z1x. The complex

Amod
X×C̃ℓ

F→ Amod
X×C̃ℓ

expresses π−1OY×Cℓ ⊗L
π−1OX×Cℓ

Amod
X×C̃ℓ

. Clearly, F is in-

jective. It is enough to prove that the induced map ρ : Cok(F ) → Amod
Y×Cℓ is

an isomorphism. It is clearly surjective. Let f be any section of Amod
X×C̃ℓ

on

U ⊂ X × C̃ℓ such that ρ(f) = 0. Then, z−11 f naturally gives a holomorphic
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function on U \ π−1(HX). Let us prove that z−11 f is of moderate growth. We
may assume that U is the product of a multi-sector

St =
{
(t1, . . . , tℓ) ; | arg(ti)− θ0i| ≤ δ0i, 0 < |ti| < r0i (i = 1, . . . , ℓ)

}

(θ0i ∈ R, δ0i > 0, r0i > 0) in (C∗)ℓ, and multi-discs U1 = {|z1| ≤ r1} and
U = {(z2, . . . , zn) ; |zi| ≤ r2}. We put U ′1 := {1

2r1 ≤ |z1| ≤ r1}. On U ′1×U×St,

we have |z−11 f | ≤ C
∏ℓ

i=1 |ti|−N . By using the maximum principle, we obtain
the estimate of z−11 f on U1 × U × St.

4.4.2. The push-forward of coherent OX-modules. — For any
π−1OX×Cℓ -module M, we canonically have a standard π−1OX×Cℓ-flat

resolution N•(M) of M given as follows. For any open subset U ⊂ X × C̃ℓ,
let NU be the free π−1(OX×Cℓ)|U -module generated by M(U), and let N ′U
denote its 0-extension on X × C̃ℓ. It is naturally equipped with a morphism
aU : N ′U → M. We put N0(M) :=

⊕
U N ′U , and then a :=

⊕
U aU gives a

surjection N0(M)→M. By applying the same procedure to Ker a, we obtain
a flat π−1OX×Cℓ-module N1(M) with a surjection N1(M) → Ker a. By the
standard inductive procedure, we obtain the flat resolution. In particular, we
obtain a canonical flat resolution N•(Amod

X×C̃ℓ
).

Let ϕ : (Y, g) → (X, f) be a morphism in Catℓ. We have a canonical
morphism ϕ̃−11 N•(Amod

X×C̃ℓ
) → N•(Amod

Y×C̃ℓ
). Hence, for any OY -sheaf M , we

obtain the morphism

ϕ̃−11 N•(Amod
X×C̃ℓ)⊗ϕ̃−1

1 π−1OX×Cℓ
π−1(Γg∗M)

−→ N•(Amod
Y×C̃ℓ)⊗π−1OY ×Cℓ

π−1(Γg∗M).

It induces the morphism

Amod
X×C̃ℓ ⊗L

π−1OX×Cℓ
π−1(Γf∗Rϕ!M)(37)

−→ Rϕ̃1!(Amod
Y×C̃ℓ ⊗L

π−1OY ×Cℓ
π−1Γg∗M).

Similarly, we have the natural morphism:

Arapid

X×C̃ℓ
⊗L
π−1OX×Cℓ

π−1(Γf∗Rϕ!M)(38)

−→ Rϕ̃1!

(
Arapid

Y×C̃ℓ
⊗L
π−1OY ×Cℓ

π−1(Γg∗M)
)
.

Remark 4.4.2. — Because Arapid

X×C̃ℓ
is flat over π−1OX×Cℓ (Proposition 4.2.4),

we may replace ⊗L in (38) with ⊗. Later, we shall prove that Amod
X×C̃ℓ

is also

flat over π−1OX×Cℓ (Theorem 4.6.1).
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Theorem 4.4.3. — Suppose that M is OY -coherent and that ϕ is projective.
Then, the morphisms (37) and (38) are isomorphisms.

Proof. — We shall give details for (37). Because the other case can be argued
in a similar way, we give only an indication in the last. It is enough to consider
the cases

(i) ϕ is a closed immersion,

(ii) ϕ is the projection Y = Pn ×X → X.

4.4.2.1. The case (i). — The following natural morphisms are isomorphisms:

π−1(Γf∗ϕ∗M)⊗L
π−1OX×Cℓ

Amod
X×C̃ℓ

(39)

≃ π−1(ϕ1∗Γg∗M)⊗L
π−1ϕ1∗OY ×Cℓ

(
π−1ϕ1∗OY×Cℓ ⊗L

π−1OX×Cℓ
Amod

X×C̃ℓ

)

≃ ϕ̃1∗
(
π−1(Γg∗M)⊗L

π−1OY ×Cℓ
Amod

Y×C̃ℓ

)
.

Here, we have used Lemma 4.4.1. Thus, we are done in the case (i).

4.4.2.2. The case (ii). — Let us consider the case where ϕ : Y = Pn×X → X
is the projection. Let L be a line bundle on Pn. Its pull back to Y × Cℓ =
Pn ×X × Cℓ is denoted by LY .

Lemma 4.4.4. — Let q > 0. If Hq(Pn, L) = 0, we have

Rqϕ̃1∗(π
−1Γg∗LY ⊗π−1OY ×Cℓ

Amod
Y×C̃ℓ) = 0.

Proof. — We have the natural decomposition ∂Y×Cℓ = ∂Pn + ∂X + ∂Cℓ into
the differentials of the Pn-direction, the X-direction and the Cℓ-direction. Let
BY×C̃ℓ be the sheaf of C∞-functions κ on Y × C̃ℓ satisfying (∂X + ∂Cℓ)κ = 0
and the following condition locally:

(Moderate) For any differential operator R on Pn, there exists N > 0 such
that R(κ) = O(

∏ℓ
i=1 |ti|−N ).

We naturally have Amod
Y×C̃ℓ

⊂ BY×C̃ℓ . We set

B0,•

Y×C̃ℓ
:= BY×C̃ℓ ⊗ π−1(Ω0,•

Y/X).

The naturally defined morphism Amod
Y×C̃ℓ

→ B0,•

Y×C̃ℓ
is a quasi isomorphism,

which can be proved by a standard argument for Dolbeault’s lemma. Hence,
we obtain the following ϕ̃1-soft resolution of π−1(LY )⊗π−1OY ×Cℓ

Amod
Y×C̃ℓ

:

π−1(LY )⊗π−1OY ×Cℓ
Amod

Y×C̃ℓ −→ π−1(LY )⊗π−1OY ×Cℓ
B0,•

Y×C̃ℓ

We take a hermitian metric hL of L. We fix a Kähler metric gPn of Pn.
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Let ∂∗L denote the formal adjoint of ∂L : C∞(L⊗ Ω0,•
Pn )→ C∞(L⊗ Ω0,•+1

Pn ).

Let ∆0,•
L denote the Laplacian on Γ(Pn, L⊗Ω0,•

Pn ) associated to hL and gPn .
Let G0,• be the Green operator.
By the assumption Hq(Pn, L) = 0 for q > 0, we have ∆0,q ◦ G0,q = G0,q ◦

∆0,q = id if q > 0. We have [G0,•, ∂L] = [G0,•, ∂∗L] = 0. In particular, if
∂Lτ = 0 for τ ∈ Γ(Pn, L ⊗ Ω0,q) (q > 0), we have ∂L∂∗LG(τ) = τ . Recall the
following standard results for elliptic operators:

◃ G0,q are integral operators.
◃ For any non-negative integer m, there exists Cm > 0 such that
∥G0,q(τ)∥L2

m+2
≤ Cm ∥τ∥L2

m
for any τ ∈ Γ(Pn, L ⊗ Ω0,q), where ∥.∥L2

m

denotes the Sobolev norm.

Let P ∈ π−1(HX). Let UP be an open neighbourhood of P in X × C̃ℓ. Put

U◦P := UP \ π−1(HX).

We have ϕ̃−11 (UP ) = Pn × UP . Let τ ∈ Γ(Pn × UP ,π−1LY ⊗π−1OY ×Cℓ
B0,q).

We obtain a C∞-function G(τ) on Pn × U◦P , and we have ∂ziG(τ) = 0
and ∂ziG(τ) = G(∂ziτ) for any local coordinate system (z1, . . . , zn) on
X × Cℓ. Then, by the estimate of the Green operator, we obtain that
G(τ) ∈ Γ(Pn × UP ,π−1LY ⊗π−1OY

B0,q). Moreover, if ∂Lτ = 0 and q > 0, we
have ∂L(∂∗LG(τ)) = τ . Thus, we obtain Lemma 4.4.4.

Lemma 4.4.5. — We have ϕ̃1∗Amod
Y×C̃ℓ

≃ Amod
X×C̃ℓ

, i.e., the morphism (37) is

an isomorphism for OY .

Proof. — Let P ∈ π−1(HX). Let UP be a small neighbourhood of P in X×C̃ℓ.
Let κ ∈ Γ(Pn×UP ,Amod

Y×C̃ℓ
). Take any point Q of Pn. We consider the inclusion

ιQ : UP ≃ UP × {Q} → Pn × UP . We have µ := ι−1Q (κ) ∈ Γ(UP ,Amod
X×C̃ℓ

). It is

easy to deduce that κ = ϕ̃(µ). Then, we obtain Lemma 4.4.5.

Lemma 4.4.6. — Let L be a line bundle on Pn. Then (37) is an isomorphism
for LY .

Proof. — We use an induction on n. In the case n = 0, the claim is trivial.
Assume that we have already obtained the claim in the case n − 1. Let L =
OPn(m). If m = 0, the claim follows from Lemma 4.4.5. We fix a hyperplane
Pn−1
∞ ⊂ Pn. If m > 0, we can reduce the claim to the case m − 1, by using

the exact sequence 0 → OPn(m − 1) → OPn(m) → OPn−1
∞

(m) → 0. If m < 0,
we can reduce the claim to the case m + 1, by using the exact sequence 0 →
OPn(m)→ OPn(m+ 1)→ OPn−1

∞
(m+ 1)→ 0.
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Let us finish the proof in the case (ii). It is enough to prove that (37) is an
isomorphism around any point of X × Cℓ, which we shall implicitly use. We
may assume to have a resolution

(· · · −→ Qp −→ Qp−1 −→ · · · −→ Q1 −→ Q0) ≃M,

such that Qp are of the form
⊕Np

i=1(Lp,i)Y , where Lp,i are line bundles on Pn.
By Lemma 4.4.6, the morphisms (37) for Qp are isomorphisms. Hence, (37)
for M is also an isomorphism. Thus, the proof for (37) is finished.

Let us give an indication to prove that (38) is an isomorphism. We can
argue the case (i) in the same way. In the case (ii), we replace the condition
(Moderate) in the proof of Lemma 4.4.4 with the following:

(Rapid) Let R be any differential operators on Pn. Then, R(κ) = O(
∏

|ti|N )
for any N .

Then, we can prove that (38) is an isomorphism in the case (ii). Thus, the
proof of Theorem 4.4.3 is finished.

4.5. Characterization by growth order

4.5.1. Statements

Theorem 4.5.1. — Let (X, f) be an object in Catℓ.

◃ Tor
π−1OX×Cℓ

i (Amod
X×C̃ℓ

, π−1OΓf (X)) = 0 for i ̸= 0. Namely,

Amod
X×C̃ℓ ⊗L

π−1OX×Cℓ
π−1OΓf (X) ≃ Amod

X×C̃ℓ ⊗π−1OX×Cℓ
π−1OΓf (X).

◃ Let ϕ : (Y, g) → (X, f) be a projective birational morphism such that (i)
DY is normal crossing, (ii) Y \DY ≃ X \DX . For the naturally induced
map ρ : Ỹ (DY )→ X × C̃ℓ, we have

Rρ∗Amod
Ỹ (DY )

≃ Amod
X×C̃ℓ ⊗π−1OX×Cℓ

π−1OΓf (X),(40)

Rρ∗Arapid

Ỹ (DY )
≃ Arapid

X×C̃ℓ
⊗π−1OX×Cℓ

π−1OΓf (X).(41)

◃ The support of Amod
X×C̃ℓ

⊗π−1OX×Cℓ
π−1OΓf (X) and Arapid

X×C̃ℓ
⊗π−1OX×Cℓ

π−1OΓf (X) are X̃(f).

Remark 4.5.2. — Note that Arapid

X×C̃ℓ
is flat over π−1OX×Cℓ , according to

Proposition 4.2.4. The first claim of the theorem is a special case of the
flatness of Amod

X×C̃ℓ
over π−1OX×Cℓ (Theorem 4.6.1).
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Let us state some consequences. We have the sheaves of algebras Amod
X,f and

Arapid
X,f on X̃(f) determined by the conditions

Γ̃f∗Amod
X,f = π−1(OΓf (X))⊗π−1OX×Cℓ

Amod
X×C̃ℓ,

Γ̃f∗Arapid
X,f = π−1(OΓf (X))⊗π−1OX×Cℓ

Arapid

X×C̃ℓ
.

Theorem 4.5.3. — Let (X, f) ∈ Catℓ.

◃ For the inclusion j : X \ DX → X̃(f), the natural morphism Amod
X,f →

j∗OX\DX
is a monomorphism. The image is Amod

X̃(f)
.

◃ The natural morphism Arapid
X,f → j∗OX\DX

is a monomorphism. The

image is Arapid

X̃(f)
.

◃ In particular, if f is submersive, then we naturally have Amod
X,f ≃ Amod

X̃(DX)
and Arapid

X,f ≃ Arapid

X̃(DX)
.

Proof. — It follows from the descriptions (40) and (41).

Theorem 4.4.3 can be reformulated in terms of Amod
X̃(f)

and Arapid

X̃(f)
.

Theorem 4.5.4. — Let ϕ : (Y, g)→ (X, f) be a projective morphism in Catℓ.
Let M be any coherent OY -module. Then, the following natural morphisms
are isomorphisms:

Amod
X̃(f)

⊗L
π−1OX

π−1Rϕ∗M ≃ Rϕ̃∗(Amod
Ỹ (g)
⊗L
π−1OY

π−1M),(42)

Arapid

X̃(f)
⊗L
π−1OX

π−1Rϕ∗M ≃ Rϕ̃∗(Arapid

Ỹ (g)
⊗L
π−1OY

π−1M).(43)

After the flatness results in Proposition 4.2.4 and Theorem 4.6.1 below, we
may replace ⊗L with ⊗ in (42) and (43).

4.5.2. Proof of Theorem 4.5.1. — Let us begin with the simplest case.

Lemma 4.5.5. — Suppose that f is submersive. For the naturally induced
closed immersion ρ : X̃(DX)→ X × C̃ℓ, the following natural morphisms are
isomorphisms:

π−1OΓf (X) ⊗L
π−1OX×Cℓ

Amod
X×C̃ℓ −→ ρ∗Amod

X̃(DX)
,(44)

π−1OΓf (X) ⊗L
π−1OX×Cℓ

Arapid

X×C̃ℓ
−→ ρ∗Arapid

X̃(DX)
.(45)
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Proof. — It is enough to argue it locally around any point of HX . We may
assume X = {(z1, . . . , zn)} and f = (z1, . . . , zℓ). Let G : X × Cℓ → Cn × Cℓ

be given by

G(z1, . . . , zn, t1, . . . , tℓ) = (z1 − t1, z2 − t2, . . . , zℓ − tℓ, zℓ+1, . . . , zn, t1, . . . , tℓ).

Then, G ◦ Γf (z1, . . . , zn) = (0, . . . , 0, zℓ+1, . . . , zn, z1, . . . , zℓ). By using G, it is
easy to prove that the morphisms (44) and (45) are isomorphisms.

Let us consider the case where DX is normal crossing. We have a naturally
defined map X \ DX → X × (C∗)ℓ as the graph. Let us observe that it is

extended to ρ1 : X̃(DX) → X × C̃ℓ. Let fi be the composite of f : X →
Cℓ and the projection Cℓ → C onto the i-th component. It induces a map
gi : X \ DX → C∗. It is enough to observe that it is extended to a map
X̃(DX) → C̃. Let P be any point of DX . Because f−1i (0) is contained in
the normal crossing hypersurface DX , we can take a holomorphic coordinate
neighbourhood (XP ; z1, . . . , zn) around P such that DX =

⋃p
j=1{zj = 0}

and fi =
∏p

j=1 z
mj

j , where mj > 0. Let zj = ri e
√
−1 θj . Because the map

X̃(DX)→ C∗ is described as
(
r1, e

√
−1 θ1 , . . . , rp e

√
−1 θℓ, zp+1, . . . , zn

)
%−→

∏
rmi
i e

√
−1mθi ,

we obtain that gi|XP \DX
is extended to X̃P (DX ∩XP )→ C̃. Then, the claim

follows.
We have the naturally defined morphism:

(46) Amod
X×C̃ℓ ⊗π−1OX×Cℓ

π−1OΓf (X) −→ ρ1∗Amod
X̃(DX)

.

Proposition 4.5.6. — Suppose that DX := f−1(D0) is normal crossing.
The morphism (46) is an isomorphism. Moreover, we have the following iso-
morphisms:

Rρ1∗Amod
X̃(DX)

≃ ρ1∗Amod
X̃(DX)

,

Amod
X×C̃ℓ ⊗L

π−1OX×Cℓ
π−1OΓf (X) ≃ Amod

X×C̃ℓ ⊗π−1OX×Cℓ
π−1OΓf (X).

Proof. — In the proof, we omit to denote π−1. We have the maps

Γ̃(1)
f : X̃(DX) −→ X̃(DX)× C̃ℓ and Γ̃(2)

f : X̃(DX) −→ X̃(DX)× Cℓ

induced by f . We have the projections:

ν1 : X̃(DX)× C̃ℓ −→ X × C̃ℓ and ν2 : X̃(DX)× C̃ℓ −→ X̃(DX)× Cℓ.
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We set D′X := DX×Cℓ. According to §II.1.1 of [52], we have the isomorphisms

Rν1∗Amod
X̃(DX)×C̃ℓ ≃ Amod

X×C̃ℓ(∗D′X), Rν2∗Amod
X̃(DX)×C̃ℓ ≃ Amod

X̃(DX)×Cℓ(∗HX).

Hence, we have the natural isomorphisms

Rν1∗(Amod
X̃(DX)×C̃ℓ ⊗L

OX×Cℓ
OΓf (X)) ≃ Amod

X×C̃ℓ(∗D′X )⊗L
OX×Cℓ

OΓf (X)(47)

≃ Amod
X×C̃ℓ ⊗L

OX×Cℓ
OΓf (X)(∗DX′)

≃ Amod
X×C̃ℓ ⊗L

OX×Cℓ
OΓf (X)(∗HX)

≃ Amod
X×C̃ℓ(∗HX)⊗L

OX×Cℓ
OΓf (X)

≃ Amod
X×C̃ℓ ⊗L

OX×Cℓ
OΓf (X).

We also have

Rν2∗(Amod
X̃(DX)×C̃ℓ ⊗L

OX×Cℓ
OΓf (X)) ≃ Amod

X̃(DX)×Cℓ(∗HX)⊗L
OX×Cℓ

OΓf (X)(48)

≃ Amod
X̃(DX)×Cℓ ⊗L

OX×Cℓ
OΓf (X).

Lemma 4.5.7. — Γ̃(2)
f is a closed embedding, and that we have

(49) Amod
X̃(DX)×Cℓ ⊗L

OX×Cℓ
OΓf (X) ≃ Amod

X̃(DX )×Cℓ ⊗O
X×Cℓ

OΓf (X) ≃ Γ̃(2)
f∗A

mod
X̃(DX)

.

Proof. — For the expression f = (f1, . . . , fℓ), we define G′ : X×Cℓ → X×Cℓ

by G′(P, t1, . . . , tℓ) := (P, t1 − f1(P ), . . . , tℓ − fℓ(P )). We have G′ ◦ Γf (P ) =
(P, 0, . . . , 0). Then, we can prove (49) by an induction on ℓ.

Lemma 4.5.8. — The support of Tor
π−1OX×Cℓ

∗ (Amod
X̃(DX)×C̃ℓ

,π−1OΓf (X)) is con-

tained in Γ̃(1)
f (X̃(DX)).

Proof. — Let U denote an ℓ-dimensional vector space with a basis e1, . . . , eℓ.
We set

Ck−ℓ :=
k∧
U ⊗OX×Cℓ .

Let ∂ : Cm → Cm+1 be given by

∂α =
∑

(ti − fi)ei ∧ α.

Then, we obtain a complex of OX×Cℓ -modules C•, and it gives a free resolution

of OX×Cℓ-module OΓf (X). If Q ∈ X̃(DX) × C̃ℓ is not contained in Γ̃(1)
f (X),

then one of ti− fi are invertible in Amod
X̃(DX)×C̃ℓ

around Q. Hence, the complex

Amod
X̃(DX)×C̃ℓ

⊗C• is acyclic around Q. It implies the claim of Lemma 4.5.8.
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Note that ν2 induces a homeomorphism Γ̃(1)
f (X) ≃ Γ̃(2)

f (X). By
Lemma 4.5.8, we obtain that for p ̸= 0

Rpν2∗ Tor
π−1OX×Cℓ

j (Amod
X̃(D)×C̃ℓ , π

−1OΓf (X)) = 0.

By applying the argument of the spectral sequence with (49) to (48), we obtain
that

Tor
π−1OX×Cℓ

j (Amod
X̃(D)×C̃ℓ , π

−1OΓf (X)) = 0

for j ̸= 0, i.e.,

Amod
X̃(D)×C̃ℓ ⊗L

π−1OX×Cℓ
π−1OΓf (X) ≃ Amod

X̃(D)×C̃ℓ ⊗π−1OX×Cℓ
π−1OΓf (X)

on X̃(DX) × C̃ℓ. We also obtain an isomorphism of sheaves on X̃(DX) ≃
Γ̃(i)
f (X):

Amod
X̃(D)×C̃ℓ ⊗OX×Cℓ

OΓf (X) ≃ Amod
X̃(DX)

.

From (47), we obtain

Rρ1∗Amod
X̃(DX)

≃ Rν1∗(Amod
X̃(DX )×C̃ℓ ⊗OX×Cℓ

OΓf (X))(50)

≃ Amod
X×C̃ℓ ⊗L

OX×Cℓ
OΓf (X).

Note Rpν1∗(Amod
X̃(DX )×C̃ℓ

⊗OX×Cℓ
OΓf (X)) = 0 unless p ≥ 0, and the p-th coho-

mology sheaf of Amod
X×C̃ℓ

⊗L
OX×Cℓ

OΓf (X) is 0 unless p ≤ 0. Hence, (50) implies

the claims of Proposition 4.5.6.

Proposition 4.5.9. — Suppose that DX is normal crossing. Then, the nat-
ural map

Arapid

X×C̃ℓ
⊗π−1OX×Cℓ

π−1OΓf (X) ≃ ρ1∗A
rapid

X̃(DX)

is an isomorphism. Moreover, we have Rρ1∗Arapid

X̃(DX)
≃ ρ1∗Arapid

X̃(DX)
.

Proof. — It is proved by the arguments in the proof of Proposition 4.5.6. We
omit to denote π−1. We have the isomorphisms

Rν1∗A
<HX≤D′

X

X̃(DX)×C̃ℓ
≃ A<HX

X×C̃ℓ
(∗D′X) and Rν2∗A

≤HX<D′
X

X̃(DX)×C̃ℓ
≃ A<D′

X

X̃(DX)×Cℓ
(∗HX).

Hence, we have the natural isomorphisms

Rν1∗(A
<HX≤D′

X

X̃(DX)×C̃ℓ
⊗OX×Cℓ

OΓf (X)) ≃ A<HX

X×C̃ℓ
(∗D′X )⊗OX×Cℓ

OΓf (X)(51)

≃ A<HX

X×C̃ℓ
⊗OX×Cℓ

OΓf (X),
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Rν2∗(A
≤HX<D′

X

X̃(DX)×C̃ℓ
⊗OX×Cℓ

OΓf (X))(52)

≃ A<D′
X

X̃(DX)×Cℓ
(∗HX)⊗O

X×Cℓ
OΓf (X)

≃ A<D′
X

X̃(DX)×Cℓ
⊗OX×Cℓ

OΓf (X) ≃ Γ̃(2)
f∗A

<DX

X̃(DX )
.

Let us consider the morphisms

A<HX≤D′
X

X̃(D)×C̃ℓ
⊗OX×Cℓ

OΓf ←− A<(HX∪D′
X)

X̃(D)×C̃ℓ
⊗OX×Cℓ

OΓf(53)

−→ A<D′
X≤HX

X̃(D)×C̃ℓ
⊗OX×Cℓ

OΓf .

Because ti − fi are invertible on A<HX

̂π−1(D′
X)

and A<D′
X

̂π−1(HX )
, we have

A<HX

̂π−1(D′
X)
⊗OX×Cℓ

OΓf (X) = 0 and A<D′
X

̂π−1(HX)
⊗OX×Cℓ

OΓf (X) = 0.

Hence, the morphisms in (53) are isomorphisms. By the argument in the proof
of Lemma 4.5.8, we obtain that the support of the sheaves in (53) are contained

in Γ̃(1)
f (X). Because ν2 gives a homeomorphism Γ̃(1)

f (X̃(D)) ≃ Γ̃(2)
f (X̃(D)), we

identify A<HX≤D′
X

X̃(D)×C̃ℓ
⊗OX×Cℓ

OΓf (X) with A<DX

X̃(DX )
as sheaves on X̃(DX). Then,

the claim of Proposition 4.5.9 follows from (51).

Let us finish the proof of Theorem 4.5.1. Let (X, f) be any object in Catℓ.
We take any projective birational morphism ϕ : (Y, g)→ (X, f) such that

(i) DY is normal crossing,

(ii) Y \DY ≃ X \DX .

We set D′Y := DY × Cℓ and D′X := DX × Cℓ. We have

Rϕ∗OY (∗DY ) ≃ OX(∗DX).

By using Theorem 4.4.3, we obtain

Rϕ̃1∗
(
Amod

Y×C̃ℓ ⊗L
π−1OY ×Cℓ

π−1Γg∗
(
OY (∗DY )

))

≃ Amod
X×C̃ℓ ⊗L

π−1OX×Cℓ
π−1Γf∗

(
OX(∗DX )

)
.

By using Proposition 4.5.6, we obtain

Rϕ̃1∗
(
Amod

Y×C̃ℓ ⊗L
π−1OY ×Cℓ

π−1Γg∗(OY (∗DY ))
)

(54)

≃ Rϕ̃1∗(Amod
Y×C̃ℓ ⊗L

π−1OY ×Cℓ
π−1OΓg(Y ))

≃ Rϕ̃1∗(Amod
Y×C̃ℓ ⊗π−1OY ×Cℓ

π−1OΓg(Y )).
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We also have

Amod
X×C̃ℓ ⊗L

π−1OX×Cℓ
π−1Γf∗

(
OX(∗DX )

)
≃ Amod

X×C̃ℓ ⊗L
π−1OX×Cℓ

π−1OΓf (X).

We obtain

Rϕ̃1∗(Amod
Y×C̃ℓ ⊗π−1OY ×Cℓ

π−1OΓg(Y )) ≃ Amod
X×C̃ℓ ⊗L

π−1OX×Cℓ
π−1OΓf (X).

It implies that the claims for Amod in Theorem 4.5.1. The claims for Arapid

can be proved similarly.

4.5.3. Complement for the sheaf of Nilsson type functions (Ap-
pendix). — Let us consider an analogue for the sheaves of Nilsson type
functions. We restrict ourselves to the case ℓ = 1. Let Anil

X×C̃
denote the sheaf

of holomorphic functions of Nilsson type on X × C̃.

Lemma 4.5.10. — For any complex manifold i : (Y, g) ⊂ (X, f) in Cat1, the
naturally defined morphism

Anil
X×C̃ ⊗

L
π−1OX×C

π−1OY×C −→ ı̃∗Anil
Y×C̃

is an isomorphism.

Proof. — As in Lemma 4.4.1, we have an isomorphism

Arapid

X×C̃
⊗L

OX×C
OY×C ≃ Arapid

Y×C̃
.

We can check Anil
̂π−1(HX )

⊗L
OĤX

O
ĤY
≃ Anil

̂π−1(HY )
directly. Then, the claim of

the lemma follows.

Let ϕ : (Y, g) → (X, f) be a morphism in Cat1. For any OY -coherent
sheaf M , we have the following naturally defined morphism

(55) Anil
X×C̃⊗

L
π−1OX×C

π−1(Γf∗Rϕ∗M) −→ Rϕ̃1∗(Anil
Y×C̃⊗

L
π−1OY ×C

π−1Γg∗M).

Proposition 4.5.11. — Suppose that M is OX -coherent, and that ϕ is pro-
jective. Then, the morphism (55) is an isomorphism.

Proof. — By Theorem 4.4.3, we have an isomorphism

Arapid

X×C̃
⊗L
π−1OX×C

π−1(Γf∗Rϕ∗M) ≃ Rϕ̃1∗(Arapid

Y×C̃
⊗L
π−1OY ×C

π−1Γg∗M).

We also have the formal isomorphism

Anil
ĤX
⊗L
π−1OX×C

π−1(Γf∗Rϕ∗M) ≃ Rϕ̃1∗(Anil
ĤY
⊗L
π−1OY ×C

π−1Γg∗M).

Then, the claim of the proposition follows.
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Theorem 4.5.12. — Let (X, f) be an object in Cat1. Let ϕ : (Y, g)→ (X, f)
be a projective birational morphism such that

(i) DY is normal crossing,

(ii) Y \DY ≃ X \DX .

For the naturally induced map ρ : Ỹ (DY )→ X × C̃, we have

Rρ∗Anil
Ỹ (DY )

≃ Anil
X×C̃ ⊗π−1OX×C

π−1OΓf (X).

Proof. — As in the proof of Theorem 4.5.1, it is enough to consider the case
where ϕ = id. We use the notation in the proof of Proposition 4.5.6. We have
the isomorphismRν1∗Anil

X̃(DX)×C̃
≃ Anil

X×C̃
(∗D′X). Hence, we have the following

natural isomorphism

Rν1∗(Anil
X̃(DX)×C̃ ⊗

L
OX×C

OΓf (X)) ≃ Anil
X×C̃ ⊗OX×C

OΓf (X).

We have the naturally defined morphism

Anil
X̃(DX)×C̃ ⊗OX×C

OΓf (X) −→ Γ̃(1)
f∗A

nil
X̃(DX )

.

It is enough to prove that the induced morphism is an isomorphism:

(56) Rν1∗(Anil
X̃(DX)×C̃ ⊗OX×C

OΓf (X)) −→ Rν1∗(Γ̃
(1)
f∗A

nil
X̃(DX)

).

We have already known that the following is an isomorphism, by Proposi-
tion 4.5.9:

Rν1∗(Arapid

X̃(DX)×C̃
⊗OX×C

OΓf (X)) −→ Rν1∗(Γ̃
(1)
f∗A

rapid

X̃(DX)
).

Let DX =
⋃

i∈Λ Di be the irreducible decomposition. For any I ⊂ Λ, we set

DI0 :=
⋂

i∈I

(
Di × {0}

)
.

To prove that (56) is an isomorphism, it is enough to prove that the following
natural morphisms are isomorphisms:

(57) Rν1∗A<∂DI0

̂π−1(DI0)
⊗OX×C

OΓf (X) −→ Rν1∗Γ̃
(1)
f∗A

<∂DI

̂π−1
1 (DI )

It is enough to consider the issue locally around any point of DX × {0}. We
may assume that X = ∆n, DX =

⋃ℓ
i=1{zi = 0} and f =

∏ℓ
i=1 z

mi
i .

Lemma 4.5.13. — We may assume that g.c.d.(mi | i ∈ I) = 1.

Proof. — Let p := g.c.d.(mi | i ∈ I). We set

X ′ := ∆n and D′ :=
ℓ⋃

i=1

{zi = 0}.
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We define D′I :=
⋂

i∈I{zi = 0}. On X ′, we set g :=
∏

i̸∈I z
mi
i ×

∏
i∈I z

mi/p
i . We

define ψ : X → X ′ by zi #→ zpi (i ∈ I) and zi #→ zi (i ̸∈ I). We have f = g ◦ ψ.
The map ψ gives

DI ≃ D′I and D̃I(∂DI) ≃ D̃′(∂D′I).

Let Γ̃(1)
g : X̃ ′(D′) → X̃ ′(D′) × C̃ and ν ′1 : X̃ ′(D′) × C̃ → X ′ × C̃ be given

similarly to Γ̃(1)
f and ν1. We have the following natural commutative diagram

of the sheaves on D̃I(∂DI):

Rν1∗A<∂DI0

̂π−1(DI0)
⊗OX×C

OΓf (X) −−−−→ Rν1∗Γ̃
(1)
f∗A

<∂DI

̂π−1
1 (DI)

≃
$⏐⏐ ≃

$⏐⏐

Rν ′1∗A
<∂D′

I0

̂π−1(D′
I0)
⊗OX′×C

OΓg(X′) −−−−→ Rν ′1∗Γ̃
(1)
g∗ A

<∂D′
I

̂π−1
1 (D′

I )
.

It is easy to check that the vertical arrows are isomorphisms. Then, we obtain
the claim of Lemma 4.5.13.

Let π1 : X̃(DX)→ X, π2 : X̃(f)→ X and π : X̃(DX)× C̃→ X ×C be the
projections. We have

π−11 (DI) ≃ D̃I(∂DI)× (S1)|I|, π−1(DI0) ≃ D̃I(∂DI)× (S1)|I|+1,

π−12 (DI) ≃ DI × S1.

We decompose the map ν1|π−1(DI0) : π
−1(DI0)→ π−12 (DI) into

D̃I(∂DI)× (S1)|I|+1 µ1−−→ D̃I(∂DI)× S1 µ2−−→ DI × S1.

To prove that (57) are isomorphisms, it is enough to prove that

(58) Rµ1∗A<∂DI0

̂π−1(DI0)
⊗OX×C

OΓf −→ Rµ1∗Γ̃
(1)
f∗A

<∂DI

̂π−1
1 (DI )

is an isomorphism. We have the expression

A<∂DI0

̂π−1(DI0)
≃ lim−→

T,N

(
A∂DI

D̃I(∂DI ),T,N
[[t, zi | i ∈ I]]⊗C[t,zi|i∈i] Nil(t, zi | i ∈ I)

)
.

By the argument in Lemma 4.3.9, or by a direct computation of the cohomol-
ogy of the sheaves on the fiber of µ1, we obtain

Rµ1∗A<∂DI0

̂π−1(DI0)
≃ lim−→

T,N

(
A<∂DI

D̃I(∂DI),T,N
[[t, zi | i ∈ I]]⊗C[t] Nil(t)

)
.

Hence, we obtain the natural isomorphism

(59) Rµ1∗A<∂DI0

̂π−1(DI0)
⊗OX×C

OΓf ≃ lim−→
T,N

(
A<∂DI

D̃I(∂DI),T,N
[[zi | i ∈ I]]⊗C[t] Nil(t)

)
.
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Here, t acts as f on A<∂DI

D̃I(∂DI ),T,N
[[zi | i ∈ I]]. We have the expression

A<∂DI

̂π−1
1 (DI )

≃ lim−→
T,N

(
A<∂DI

D̃I(∂DI ),T,N
[[zi | i ∈ I]]⊗C[zi|i∈I] Nil(zi | i ∈ I)

)
.

We take T0 ⊂ C such that T0 → C/Z is bijective. We have the decomposition

Nil(zi | i ∈ I) =
⊕

α∈T I
0

zαC[zi, log zi | i ∈ I].

We have the corresponding decomposition:

A<∂DI

D̃I(∂DI ),T,N
[[zi | i ∈ I]] ⊗C[zi|i∈I] Nil(zi | i ∈ I)(60)

=
⊕

α∈T I
0

A<∂DI

D̃I(∂DI ),T,N
[[zi | i ∈ I]]zα ⊗ C[log zi | i ∈ I].

Recall f =
∏ℓ

i=1 z
mi
i with g.c.d.(mi | i ∈ I) = 1. Under the assumption, the

map C/Z → (C/Z)I given by β '−→ (βmi | i ∈ I) is injective. We have the
subsheaf

(61)
⊕

β∈T0

A<∂DI

D̃I(∂DI ),T,N
[[zi | i ∈ I]]

∏

i∈I

zβmi
i ⊗ C[log zi | i ∈ I].

Let Q be the quotient of (60) by (61). Note that the fibers of µ1 ◦ Γ̃(1)
f are

connected. By a direct computation of the sheaves on the fibers of µ1 ◦ Γ̃(1)
f ,

we obtain the push-forward of Q by µ1 ◦ Γ̃(1)
f is 0. Moreover, we obtain that

the push-forward of (61) is naturally isomorphic to

(62)
⊕

β∈T0

A<∂DI

D̃I(∂DI ),T,N
[[zi | i ∈ I]]

∏

i∈I
zβmi
i

(
log(

ℓ∏

i=1

zmi
i )

)
.

Hence, the push-forward of A<∂DI

̂π−1
1 (DI )

by µ1 ◦ Γ̃(1)
f is isomorphic to the limit

of (62). Together with (59) we obtain Theorem 4.5.12.

For any object (X, f) in Cat1, we have the sheavesAnil
X,f on X̃(f) determined

by the condition Γ̃f∗Anil
X,f = π−1OΓf (X) ⊗π−1OX×C

Anil
X×C̃

. For a morphism

ϕ : (X1, f1)→ (X2, f2) in Cat1, we naturally have ϕ̃−1Anil
X2,f2

→ Anil
X1,f1

.

We obtain the following propositions as in the case of Arapid and Amod.

Proposition 4.5.14. — For the inclusion j : X \DX → X̃(DX), the natural
morphism Anil

X,f → j∗OX\DX
is a monomorphism.
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Proposition 4.5.15. — Let ϕ : (Y, g) → (X, f) be a projective morphism
in Cat1. Let M be any coherent OY -module. Then, the following natural
morphism is an isomorphism:

Anil
X,f ⊗π−1OX

π−1Rϕ∗M ≃ Rϕ̃∗(Anil
Y,g ⊗π−1OY

π−1M).

4.6. Flatness of the sheaf of holomorphic functions with moderate
growth

4.6.1. Statement. — Let (X, f) be any object in Catℓ. Let

j : X \DX −→ X̃(f)

denote the natural inclusion. For any OX-module M , we set

π∗modM := Amod
X̃(f)

⊗π−1OX
π−1M.

It is also denoted by π∗f modM , when we would like to emphasize the dependence
on f . We shall prove the following theorem.

Theorem 4.6.1. — Amod
X̃(f)

is flat over π−1OX , i.e., π∗modM ≃ Amod
X̃(f)
⊗L
π−1OX

π−1M for any coherent OX -module M . Moreover, the natural morphism
π∗mod(M)→ j∗(M|X\DX

) is injective.

Corollary 4.6.2. — Amod
X̃(f)

is faithfully flat over π−1OX(∗DX ).

We define π∗rapidM := Arapid

X̃(f)
⊗π−1OX

π−1f M . We can prove the following by

a similar argument.

Proposition 4.6.3. — The natural morphism π∗rapid(M) → j∗(M|X\DX
) is

injective.

By Theorem 4.3.1, Arapid

X̃(f)
is flat over π−1OX . So, we have the following.

Proposition 4.6.4. — Arapid

X̃(f)
is faithfully flat over π−1OX(∗DX).
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4.6.2. Induction. — We consider the following conditions for any coherent
OX -module M :

(P1): π−1M ⊗L
π−1OX

Amod
X̃(f)

≃ π−1M ⊗π−1OX
Amod

X̃(f)
.

(P2): π∗mod(M)→ j∗(M|X\DX
) is injective.

Let P(X) denote the class of coherent OX -modules satisfying the conditions
(P1) and (P2). It is our purpose to prove that any coherent OX-modules are
members of P(X). We shall implicitly use that the conditions are local.

We shall prove the following claim by using an induction on k:

(Qk): Let (X, f) be any object in Catℓ. Let M be any coherent OX-module
such that dimSuppM ≤ k. Then, M is a member of P(X).

4.6.3. Preliminary. — The following lemma is easy to prove.

Lemma 4.6.5. — Let 0 → M1 → M2 → M3 → 0 be an exact sequence of
coherent OX-modules.

◃ If M2 and M3 are members of P(X), then M1 is also a member of P(X).

◃ If M1 and M3 are members of P(X), then M2 is also a member of
P(X).

The following direct corollary will be used implicitly.

Corollary 4.6.6. — Let ρ : M1 → M2 be any morphism of coherent OX-
modules such that Cok(ρ),Ker(ρ) ∈ P(X). If M2 is contained in P(X), then
M1 is also contained in P(X).

Lemma 4.6.7. — Let Z be any complex submanifold of X with the inclusion
iZ : Z → X. Let MZ be any locally free OZ-module. Then, we have iZ∗MZ ∈
P(X).

Proof. — It follows from Theorem 4.5.1 and Theorem 4.5.4.

4.6.4. Functoriality for the push-forward. — Let ϕ : (X ′, f ′)→ (X, f)
be a morphism in Catℓ such that ϕ : X ′ → X is projective and birational. We
do not assume thatX ′\DX′ is isomorphic toX\DX . LetD′′ be the exceptional
divisor of ϕ. Let M be a coherent OX′-module such that M ∈ P(X ′). Assume
that dimSuppM = k and dimϕ(SuppM ∩D′′) < k.

Lemma 4.6.8. — Assume that Qk−1 holds. Then, we obtain ϕ∗(M ′) ∈ P(X).
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Proof. — According to Theorem 4.5.4, we have the isomorphism:

(63) Rϕ̃∗(Amod
X̃′(f ′)

⊗L
π−1OX′

π−1M) ≃ Amod
X̃(f)

⊗L
π−1OX

π−1Rϕ∗M.

If i > 0, we have Riϕ∗M ∈ P(X), because dimSuppRiϕ∗M < k. By using
the degeneration of the spectral sequence, we obtain

H i(Amod
X̃(f)

⊗L
π−1OX

π−1Rϕ∗M) ≃
{

Torπ
−1OX
−i (Amod

X̃(f)
,π−1ϕ∗M) (i < 0),

π∗modR
iϕ∗M (i ≥ 0).

By (63) and the isomorphism Amod
X̃′(f ′)

⊗L
π−1OX′

M ≃ Amod
X̃′(f ′)

⊗π−1OX′ M , we

have H i = 0 for i < 0. Hence, we obtain that ϕ∗M satisfies (P1). Because

π∗modϕ∗M ≃ ϕ̃∗(π∗modM),

(P2) for ϕ∗M follows from (P2) for M .

We have a direct consequence. Let (X ′, f ′)→ (X, f) be a morphism in Catℓ
such that ϕ : X ′ → X is a projective birational morphism. We do not assume
that X ′ \ DX′ is isomorphic to X \ DX . Let Z ′ ⊂ X ′ be a k-dimensional
irreducible complex submanifold. We assume that Z ′ is not contained in the
exceptional divisor of ϕ, in particular, Z ′ is birational to ϕ(Z ′). We obtain
the following lemma from Lemma 4.6.7 and Lemma 4.6.8.

Corollary 4.6.9. — Let MZ′ be any locally free OZ′-module. Suppose Qk−1.
Then, we have ϕ∗(iZ′∗MZ′) ∈ P(X).

4.6.5. Coherent sheaves on submanifolds. — Let Z be any k-dimen-
sional irreducible submanifold of X with the inclusion iZ : Z → X.

Lemma 4.6.10. — Let M be any coherent OX-module such that Supp(M)⊂Z.
Assume that Qk−1 holds. Then, we have M ∈ P(X).

Proof. — It is enough to consider locally around each point P of X. We shall
shrink X around P without mention.

First, let us consider the case where M = iZ∗MZ . We may assume that MZ

is a torsion-free OZ -module. We can find a projective birational morphism
ϕ : (X ′, f ′)→ (X, f) in Catℓ such that

(i) the strict transform Z ′ of Z is a complex submanifold of X ′,

(ii) there exists a locally freeOZ′-moduleM ′ with a morphism ψ : ϕ∗M →M ′

such that ψ|X′\D′′ is an isomorphism.
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We obtain a morphism ψ1 : M → ϕ∗M ′, which is an isomorphism on Z \
ϕ(D′′). By Qk−1, Ker ψ1 and Cok ψ1 are contained in P(X). Then, we obtain
ιZ∗M ∈ P(X).

In the general case, we have a finite increasing filtration

F =
{
Fi(M)

∣∣ i = 0, . . . , N
}

of M by OX -modules such that each Fi(M)/Fi−1(M) comes from an OZ -
module. Then, the claim of the lemma is reduced to the result in the previous
paragraph.

4.6.6. End of the proof of Theorem 4.6.1. — Let Z be any k-
dimensional irreducible reduced analytic subset of X such that Z ̸⊂ DX .

Lemma 4.6.11. — Let M be any coherent OX-module such that Supp(M)⊂Z.
Assume that Qk−1 holds. Then, we have M ∈ P(X).

Proof. — It is enough to consider the issue locally around any point P of X.
Hence, we shall shrink X around P without mention. Let Z1 denote the union
of the singular points of Z and DX ∩ Z. There exists a projective birational
morphism ϕP : (X ′, f ′)→ (X, f) in Catℓ with the following properties:

◃ The induced morphism X \D′′ → X \ (Z1 ∪D) is an isomorphism.

◃ The strict transform Z ′ of Z is a complex submanifold of X ′.

We have M → ϕ∗ϕ∗M , which is an isomorphism outside the singular locus
of Z. Hence, we obtain M ∈ P(X) by Lemma 4.6.8 and Lemma 4.6.10.

Let M be any coherent OX -module such that dimSupp(M) ≤ k. If we
have a decomposition Supp(M) = Z1 ∪ Z2 such that Z1 ∩ Z2 ! Zi, then
we have an exact sequence 0 → M1 → M → M2 → 0 of coherent OX-
modules, such that Supp(Mi) ⊂ Zi. Hence, by an easy induction, we obtain
M ∈ P(X) from Lemma 4.6.11. Thus, our induction can proceed, and the
proof of Theorem 4.6.1 is finished.

4.7. Push-forward of good D-modules and real blow up

4.7.1. Rapid decay and moderate growth. — Let (X, f) be any object
in Catℓ. We put

Dmod
X̃(f)

:= π−1(DX)⊗π−1OX
Amod

X̃(f)
.

For any DX-module M, we set

π∗f mod(M) := π−1M⊗π−1OX
Amod

X̃(f)
, π∗f rapid(M) := π−1M⊗π−1OX

Arapid

X̃(f)
.
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They are naturally Dmod
X̃(f)

-modules.

Let ϕ : (X, f) → (Y, g) be any morphism in Catℓ. For any Dmod
X̃(f)

-

module M̃ , we put

(64) ϕ̃†(M̃ ) := Rϕ̃!(π
−1(DY←X)⊗L

π−1DX
M̃ ).

Let M be any DX-module. We have the naturally defined morphism

ϕ̃−1Amod
Ỹ (g)
⊗ϕ̃−1π−1OY

π−1(M) −→ π∗f mod(M).

It induces the following morphism in the derived category of DY,g-modules:

Rϕ̃!

(
π−1(DY←X ⊗L

DX
M)⊗ϕ̃−1π−1OY

ϕ̃−1Amod
Ỹ (g)

)
−→ ϕ̃†π

∗
f mod(M).

We also have the isomorphisms:

Rϕ̃!

(
π−1(DY←X ⊗L

DX
M)⊗ϕ̃−1π−1OY

ϕ̃−1Amod
Ỹ (g)

)

≃ Rϕ̃!

(
π−1(DY←X ⊗L

DX
M)

)
⊗π−1OY

Amod
Ỹ (g)

≃ π−1Rϕ!(DY←X ⊗L
DX

M)⊗π−1OY
Amod

Ỹ (g)
≃ π∗gmodϕ†M.

Hence, we obtain the following morphism in the derived category of DY,g-
modules:

(65) π∗gmodϕ†M −→ ϕ̃†π
∗
f mod(M).

Similarly, we obtain the morphism

(66) π∗g rapidϕ†M −→ ϕ̃†π
∗
f rapid(M).

Proposition 4.7.1. — Assume that ϕ is projective, and that M has a good
filtration in the neighbourhood of fibers of ϕ. Then, the morphisms (65)
and (66) are isomorphisms.

Proof. — By considering a resolution, it is enough to consider the case
M = M ⊗OX DX ⊗ Ω−1X , and M is an OX -coherent sheaf. Then, the claim is
reduced to Theorem 4.5.4.

Let (X, f) be an object in Catℓ such that DX is normal crossing. We set

Dmod
X̃(DX)

:= Amod
X̃(DX)

⊗π−1OX
π−1DX .

Let π1 : X̃(DX)→ X be the projection. For any DX-module M, we define

π∗1modM := Amod
X̃(DX)

⊗π−1OX
M, π∗1 rapidM := Arapid

X̃(DX)
⊗π−1OX

M.

We have the naturally defined proper map ρ : X̃(DX)→ X̃(f).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

91

91



84 CHAPTER 4. SOME SHEAVES ON THE REAL BLOW UP

We obtain the following proposition from Theorem 4.5.1.

Proposition 4.7.2. — We have the following natural isomorphisms for any
coherent DX-module M:

Rρ∗π
∗
1modM ≃ π∗f modM, Rρ∗π

∗
1 rapidM ≃ π∗f rapidM.

4.7.2. Compatibility with the de Rham functor. — For any DX-
module M, we put

DRmod
X,f (M) := π−1(DRX M)⊗π−1OX

Amod
X̃(f)

≃ π−1(ΩX)⊗L
π−1DX

π∗f mod(M),

DRrapid
X,f (M) := π−1(DRX M)⊗π−1OX

Arapid

X̃(f)
≃ π−1(ΩX)⊗L

π−1DX
π∗f rapid(M).

Corollary 4.7.3. — Suppose that M has a good filtration in the neighbour-
hood of fibers of ϕ. Assume that ϕ is projective. Then, we have natural
isomorphisms:

Rϕ̃!DRmod
X,f (M) ≃ DRmod

Y,g ϕ†(M), Rϕ̃!DRrapid
X,f (M) ≃ DRrapid

Y,g ϕ†(M).

Proof. — From ϕ̃†π∗modM ≃ π∗modϕ†M, we obtain the isomorphisms

Rϕ̃! DRmod
X,f M ≃ Rϕ̃!(π

−1ΩX ⊗L
π−1DX

π∗f modM)(67)

≃ π−1ΩY ⊗L
π−1DY

ϕ̃†π
∗
f modM

≃ π−1ΩY ⊗L
π−1DY

(π∗gmodϕ†M) ≃ DRmod
Y,g ϕ†M.

Thus, we obtain the first isomorphism. We obtain the second one similarly.

Let (X, f) be an object in Catℓ such that DX is normal crossing. We
consider the real blow up π1 : X̃(DX) → X. We define DRmod

X̃(DX)
(M) and

DRrapid

X̃(DX )
(M) as follows:

DRmod
X̃(DX)

(M) := π−1Ω⊗L
π−1DX

π∗1mod(M),

DRrapid

X̃(DX)
(M) := π−1Ω⊗L

π−1DX
π∗1 rapid(M).

We have the naturally defined proper map ρ : X̃(DX)→ X̃(f).

Proposition 4.7.4. — The following natural morphisms are isomorphisms:

Rρ∗DRmod
X̃(DX)

(M) ≃ DRmod
X,f (M), Rρ∗DRrapid

X̃(DX )
(M) ≃ DRrapid

X,f (M).

Proof. — It immediately follows from Proposition 4.7.2.

We obtain the following corollary from Corollary 4.7.3 and Proposition 4.7.4.
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Corollary 4.7.5. — Let ϕ : X → Y be any projective morphism of com-
plex manifolds. Let DY be a normal crossing hypersurface of Y such that
DX := ϕ−1(DY ) is normal crossing. Let ϕ̃ : X̃(DX) → Ỹ (DY ) be the in-
duced map. Then, for any coherent DX-module having a good filtration in the
neighbourhood of fibers of ϕ, we have the following natural isomorphisms:

Rϕ̃!DRmod
X̃(DX )

(M) ≃ DRmod
Ỹ (DY )

ϕ†M,(68)

Rϕ̃!DRrapid

X̃(DX )
(M) ≃ DRrapid

Ỹ (DY )
ϕ†M.(69)

Remark 4.7.6. — G. Morando informed the author that the isomor-
phism (68) and its generalizations can be deduced from some results in [24].
While the author hopes that the generalization would make the subject more
transparent, he also hopes that our direct method would be also significant
for our understanding.

4.7.3. Nilsson type (Appendix). — We have variants in the case of Nils-
son type. Let (X, f) be an object in Cat1. We set

Dnil
X̃(f)

:= Anil
X̃(f)

⊗π−1OX
π−1DX .

For any DX-module M, we set π∗nil(M) := π−1M ⊗π−1OX
Anil

X̃(f)
. They are

naturally Dnil
X̃(f)

-modules.

Let ϕ : (X, f)→ (Y, g) be a morphism in Cat1. For any Dnil
X̃(f)

-module M̃ ,

we define ϕ̃†(M̃ ) by the formula (64). We also define

DRnil
X,f (M) := π−1ΩX ⊗L

π−1DX
π∗f nilM.

We obtain the following from Proposition 4.5.15.

Proposition 4.7.7. — Suppose that ϕ is projective and that M has a good
filtration in the neighbourhood of fibers of ϕ. Then, the natural morphism

(70) π∗nilϕ†M −→ ϕ̃†π
∗
nil(M)

is an isomorphism. In particular, a natural morphism Rϕ̃! DRnil
X,f (M) ≃

DRnil
Y,g ϕ†M is an isomorphism.

Let (X, f) be an object in Cat1 such that DX is normal crossing. We
consider the real blow up π1 : X̃(DX)→ X. We define

DRnil
X̃(DX )

(M) := π−11 Ω⊗π−1
1 OX

π∗1 nilM

for any DX-module M. We obtain the following proposition from Theo-
rem 4.5.12.
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Proposition 4.7.8. — Let ρ : X̃(DX)→ X̃(f) be the natural map. We have
a natural isomorphism

Rρ∗π
∗
1 nil(M) ≃ π∗nil(M).

In particular, we obtain an isomorphism Rρ∗DRnil
X̃(D)

(M) ≃ DRnil
X,f (M).

Corollary 4.7.9. — Let ϕ : X → Y be any projective morphism of complex
manifolds. Let DY be a smooth hypersurface of Y such that ϕ−1(DY ) is normal
crossing. Let ϕ̃ : X̃(DX) → Ỹ (DY ) be the induced map. Then, for any
coherent DX -module M having a good filtration in the neighbourhood of fibers
of ϕ, we have the natural isomorphism

Rϕ̃!DRnil
X̃(DX)

(M) ≃ DRnil
Ỹ (DY )

(M).
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CHAPTER 5

COMPLEXES ON THE REAL BLOW UP
ASSOCIATED TO GOOD MEROMORPHIC

FLAT BUNDLES

5.1. De Rham complexes

5.1.1. De Rham complex and a description by dual. — Let X be a
complex manifold and D be a normal crossing hypersurface with a decompo-
sition D = D1 ∪D2. (Note that Di are not necessarily irreducible; see §3.2.1.)
We set

dX := dimX.

Let π : X̃(D)→ X be the real blow up. Let Ω•
X denote the sheaf of holomor-

phic 1-forms on X. We put

Ω•<D1≤D2

X̃(D)
:= A<D1≤D2

X̃(D)
⊗π−1OX

π−1Ω•
X ,

Ω•,•<D1≤D2

X̃(D)
:= Ω0,•<D1≤D2

X̃(D)
⊗π−1OX

π−1Ω•
X .

For any holonomic D-module M on X, we define

DR<D1≤D2

X̃(D)
(M) := A<D1≤D2

X̃(D)
⊗π−1OX

π−1 DRX(M)

≃ Ω•<D1≤D2

X̃(D)
[dX ]⊗π−1OX

π−1M

≃ Tot
(
Ω•,•<D1≤D2

X̃(D)
⊗π−1OX

π−1M
)
[dX ].

Note DR<D1≤D2

X̃(D)
(M) ≃ DR<D1≤D2

X̃(D)
(M(∗D)) because Ω•<D1≤D2

X̃(D)
(∗D) =

Ω•<D1≤D2

X̃(D)
.
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We have a natural isomorphism Rπ∗DR<D1≤D2

X̃(D)
(M) ≃ DR<D1≤D2

X M in-

duced as follows, by Theorem 4.3.1:

Rπ∗Tot
(
Ω•,•<D1≤D2

X̃(D)
⊗π−1OX

π−1M
)
[dX ](71)

≃ Tot
(
Rπ∗Ω

•,•<D1≤D2

X̃(D)
⊗OX M

)
[dX ]

≃ Tot
(
Ω•,•<D1
X (∗D2)⊗OX M

)
[dX ].

Lemma 5.1.1. — We have a natural isomorphism

RHomπ−1DX
(π−1M,A<D1≤D2

X̃(D)
)[dX ] ≃ DR<D1≤D2

X̃(D)
(DM).

Proof. — Since M is DX-coherent, we have the isomorphisms

RHomπ−1DX
(π−1M, A<D1≤D2

X̃(D)
)[dX ](72)

≃ RHomπ−1DX
(π−1M, π−1DX)⊗L

π−1DX
A<D1≤D2

X̃(D)
[dX ]

= π−1(ΩX ⊗OX DM)⊗L
π−1DX

A<D1≤D2

X̃(D)

≃
(
π−1ΩX ⊗π−1OX

A<D1≤D2

X̃(D)

)
⊗L
π−1DX

π−1DM.

Because A<D1≤D2

X̃(D)
is flat over π−1OX (Theorem 4.3.1), π−1DX ⊗π−1OX

A<D1≤D2

X̃(D)
is flat over π−1DX . Therefore,

A<D1≤D2

X̃(D)
≃ π−1(DX ⊗OX Θ−•

X )⊗π−1OX
A<D1≤D2

X̃(D)

is a π−1DX -flat resolution. Hence, (72) is quasi-isomorphic to the following:
(
π−1(Ω•

X ⊗DX)⊗π−1OX
A<D1≤D2

X̃(D)

)
⊗π−1DX

π−1DM[dX ](73)

≃ Ω•<D1≤D2

X̃(D)
⊗π−1OX

π−1DM[dX ].

Thus, we obtain the desired isomorphism.

According to Lemma 5.1.1, we have a natural isomorphism

(74) DR<D1≤D2

X̃(D)
(M) ≃ RHomπ−1DX

(π−1DM, A<D1≤D2

X̃(D)
)[dX ]

≃ RHomπ−1DX
(π−1D(M(∗D)), A<D1≤D2

X̃(D)
)[dX ].

We will implicitly identify them in the following argument.

MÉMOIRES DE LA SMF 138/139

96

96



5.1. DE RHAM COMPLEXES 89

5.1.2. A combinatorial description in the case of good meromorphic
flat bundles. — Let X be a complex manifold with a normal crossing hy-
persurface D. Let π : X̃(D)→ X be the real blow up. Let V be a good mero-
morphic flat bundle on (X,D). We have the local system on X−D associated
to V|X−D. Its prolongment over X̃(D) is denoted by L. If V is unramifiedly

good, for any P ∈ π−1(D), we have the Stokes filtration FP of the stalk LP

indexed by the set of the irregular values Irr(V,π(P )) ⊂ OX(∗D)π(P )/OX,π(P )

with the order ≤P . The system of filtrations {FP
∣∣P ∈ π−1(D)} satisfies some

compatibility condition. See [47], [48] or §3 of [49] for more details.
Let D = D1 ∪ D2 be a decomposition. Let us describe DR<D1≤D2

X̃(D)
(V ) in

terms of the Stokes filtrations. If V is unramifiedly good, for P ∈ X̃(D),
let L<D1≤D2

P be the union of the subspaces FP
a (LP ) ⊂ LP such that

(i) a ≤P 0,

(ii) the poles of a contain the germ of D1 at π(P ).

If V is not unramifiedly good, we take a ramified covering ϕ : (X ′,D′) →
(X,D) such that V ′ = ϕ∗V is unramifiedly good. We obtain the local system
L′ and a sheaf L′<D′

1≤D′
2 on X̃ ′(D′) associated to V ′ with the Stokes structure.

By taking the descent, we obtain a subsheaf L<D1≤D2 ⊂ L.

Lemma 5.1.2. — The family {L<D1≤D2
P } gives a constructible sheaf L<D1≤D2

on X̃(D).

Proof. — It is enough to consider the case X = ∆n and D =
⋃ℓ

i=1{zi = 0}.
We may also assume that V is unramifiedly good. By using a decomposition
around P as in Theorem 4.1 of [49], it is easy to observe that it is enough
to consider the case V = OX(∗D) with a flat connection ∇e = eda, where
a =

∏m
i=1 z

−mi
i (mi > 0) for some 1 ≤ m ≤ ℓ. We have a decomposition

ℓ = I1 ) I2 such that Dj =
⋃

i∈Ij{zi = 0}. For P ∈ X̃(D), we set Ij(P ) :=

{i ∈ Ij
∣∣ zi(π(P )) = 0}. We set

Fa := −|a|−1 Re a.

We put

R0 :=
m⋃

i=1

{zi = 0} and R1 :=
ℓ⋃

i=m+1

{zi = 0} \R0.

◃ For P ∈ X −D, we have L<D1≤D2
P ̸= 0.

◃ For P ∈ π−1(R1), we have L<D1≤D2
P ̸= 0 if and only if I1(P ) = ∅.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

97

97



90 CHAPTER 5. COMPLEXES

◃ For P ∈ π−1(R0), we have L<D1≤D2
P ̸= 0 if and only if (i) Fa(P ) < 0, (ii)

I1(P ) ⊂ m.

Then, the claim of the lemma is clear.

We recall the following proposition. (See [33] and [52]; see also [16].)

Proposition 5.1.3. — The natural inclusion L<D1≤D2 [dX ]→ DR<D1≤D2

X̃(D)
(V )

is a quasi-isomorphism.

Proof. — We give a preparation from elementary analysis on multi-sectors.
We set

Y := ∆z ×∆n
w and DY = {z = 0} ∪

ℓ⋃

i=1

{wi = 0}.

Let π : Ỹ (DY )→ Y be the real blow up. For m > 0 and m = (m1, . . . ,mk) ∈
Zk
>0 (0 ≤ k ≤ ℓ), we put

a = z−m
k∏

i=1

w−mi
i .

We put Fa = −|a−1|Re(a), which naturally gives a C∞-function on Ỹ (DY ).
Take a point P ∈ π−1(O) ⊂ Ỹ (DY ). Let S = Sz × Sw be a small multi-sector
in Y −DY such that P is contained in the interior part of the closure of S in
Ỹ (DY ).

◃ If Fa(P ) < 0 (resp. Fa(P ) > 0), we assume that Fa < 0 (resp. Fa > 0)
on S.

◃ If Fa(P ) = 0, we assume that Fa is monotonous with respect to θ, where

z = r e
√
−1 θ is the polar coordinate system. Let θi (i = 1, 2) be the

arguments of the edges of Sz, i.e., Sz = {(r, θ) | θ1 ≤ θ ≤ θ2, 0 < r ≤ r0}.
Let θ+ be one of θi such that Fa > 0 on {r e

√
−1 θ+}× Sw.

Let f be a holomorphic function on S of moderate growth with respect to z
and w. We set

(75) Φ(f)(z,w) :=

∫

γ(z,w)
exp

(
−a(z,w) + a(ζ,w)

)
f(ζ,w)dζ .

Here, γ(z,w) is a path contained in Sz × {w} taken as follows.

Case Fa(P ) < 0. We fix a point z0 ∈ Sz, and γ(z,w) is a path from z0 to z.

Case Fa(P ) > 0. Let γ(z,w) be the segment from 0 to z.
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5.1. DE RHAM COMPLEXES 91

Case Fa(P ) = 0. Let θ+ be as above. For the polar coordinate system z =

r e
√
−1 θ, let γ(z,w) be the union of the ray {ρe

√
−1 θ+ | 0 ≤

ρ ≤ r} and the arc connecting r e
√
−1 θ+ and z.

Lemma 5.1.4. — For each N > 0, there exists CN > 0 such that

∣∣Φ(f)(z,w)
∣∣ ≤ CN · C |z|N

ℓ∏

i=1

|wi|Ni

if |f(z,w)| ≤ C |z|N
∏ℓ

i=1 |wi|Ni .

Proof. — We give only an outline. Consider the case Fa(P ) < 0. Let z0 =

r0 e
√
−1 θ0 and z = r e

√
−1 θ. We may assume that the path γ is the union of

(i) the arc γ1 connecting z0 and z1 = r0 e
√
−1 θ,

(ii) the segment γ2 connecting z1 and z.

The segment γ2 is divided into

γ2,1 = γ1 ∩
{
|ζ| > 3

2 |z|
}

and γ2,2 = γ1 ∩
{
|ζ| ≤ 3

2 |z|
}
.

The contributions of γ1 and γ2,1 are dominated by

∣∣ exp(−a(z,w))
∣∣

ℓ∏

i=k+1

|wi|Ni .

The function Re a is monotone on γ2,2. We also have

∣∣f(ζ,w)
∣∣ ≤ C ′ |zN |

ℓ∏

i=1

|wi|Ni

on γ2,2. Hence, the contribution of γ2,2 is dominated by |z|N
∏ℓ

i=1 |wi|Ni . Let

us consider the case Fa(P ) ≥ 0. On γ, we have |f(ζ,w)| ≤ C ′ |zN |
∏ℓ

i=1 |wi|Ni ,
and Re(a) is monotone. Hence, it is easy to obtain the desired estimate.

Let us return to the proof of Proposition 5.1.3. It is enough to consider the
case X = ∆n and D =

⋃ℓ
i=1{zi = 0}. We may assume that V is unramifiedly

good. Let P ∈ π−1(0, . . . , 0). By using the local decomposition around P as in
Theorem 4.1 of [49], we can reduce the issue to the case V =

⊕M
i=1OX(∗D) ei

with a flat connection

∇e = e
(
da +

ℓ∑

i=1

(αi IM +Ni)
dz i
zi

)
,
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where IM denotes the identity matrix, Ni (i = 1, . . . , ℓ) are mutually commut-
ing nilpotent matrices, αi are complex numbers, and we put

e := (e1, . . . , en) and a :=
m∏

i=1

z−mi
i .

Then, it is easy to observe that L<D1≤D2 is naturally isomorphic to the 0-th
cohomology of DR<D1≤D2

X̃(D)
(V )[−dX ]. Hence, it is enough to show the vanishing

of the higher cohomology of DR<D1≤D2

X̃(D)
(V )[−dX ]. It is enough to consider the

case rankV = 1, and we put v = e1.
First, let us consider the case D1 = D. For a subset J ⊂ {1, . . . , n}, we set

dzJ = dz j1 ∧ · · · ∧ dz jk .

For a section ω of Ω•<D
X̃(D)

, we have the unique decomposition ω =
∑
ωJ dzJ ,

where ωJ ∈ A<D
X̃(D)

. Let Si (i = 1, . . . , ℓ) be a small sector in ∆∗zi , and let U

be a small neighbourhood of (0, . . . , 0) in
∏n

i=ℓ+1∆zi , such that the closure S

of S :=
∏

Si × U in X̃(D) is a neighbourhood of P . In the following, we will
shrink S without mention. It is easy to observe that it is enough to consider
the case αi = 0 (i = 1, . . . , ℓ).

Take h = 1, . . . , n. Assume ∇(ω v) = 0 for some section ω of Ω•<D
X̃(D)

on S

such that ωJ = 0 unless J ⊂ {1, . . . , h}. We have d(exp(a)ω) = 0. For the
expression

exp(a)ω =
∑

h ̸∈J

fJdzhdzJ +
∑

h ̸∈J

fJ dzJ ,

we set

τ(z) =
∑

h ̸∈J

exp(−a)(
∫

γ(z)
fJ dzh)dzJ ,

where γ(z) is a path taken as follows:

◃ If h ≤ m, the condition is similar to that for the path in (75).
◃ If m < h, γ is a path connecting (z1, . . . , zh−1, 0, zh+1, . . . , zn) and
(z1, . . . , zn).

By using Lemma 5.1.4, we obtain that τ ∈ Ω•<D
X̃(D)

⊗ V . By a formal computa-

tion, we can show that ω v−∇(τ v) does not contain dz j for j ≥ h. Hence, we
can show the vanishing of the higher cohomology of Ω•<D

X̃(D)
⊗V by an induction.

We have the decomposition I1 * I2 = ℓ such that Dj =
⋃

i∈Ij{zi = 0}. Let

us consider Ω•<D(Jc)≤D(J)
̂π−1(DJ )

⊗ V for any subset J ⊂ I2, where Jc := ℓ \ J .
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Ifm∩J ̸= ∅, it is easy to show that Ω•<D(Jc)≤D(J)
̂π−1(DJ )

⊗V is acyclic by a formal

computation. Assume m∩ J = ∅. Let VJ = ODJ (∗∂DJ ) vJ be equipped with
the flat connection

∇vJ = vJ · da|DJ

on DJ . Let qJ be the projection π−1(DJ) → D̃J (∂DJ). Then, it is easy to
obtain by a formal computation a natural quasi-isomorphism

q−1J (Ω•<∂DJ

D̃J (∂DJ )
⊗ VJ) ≃ Ω•<D(Jc)≤D(J)

̂π−1(DJ )
⊗ V.

Hence, we obtain the vanishing of the higher cohomology of Ω•<D(Jc)≤D(J)
̂π−1(DJ )

⊗V .

We put h := |I2|. Let G•
h denote the kernel of the surjection

Ω•<D1≤D2

X̃(D)
⊗ V −→ Ω•<D1≤D2

̂π−1(DI2 )
⊗ V.

Inductively, let G•
k be the kernel of the surjection

G•
k+1 −→

⊕

J⊂I2
|J |=k

Ω•<D(Jc)≤D(J)
̂π−1(DJ )

⊗ V.

Because G•
1 = Ω<D

X̃(D)
⊗ V , we obtain the vanishing of the higher cohomology

by an induction on k. Thus, the proof of Proposition 5.1.3 is finished.

Similarly, we also obtain the following (see also [54]).

Proposition 5.1.5. — The natural inclusion L≤D[dX ] → DRmod
X̃(D)

(V ) is an

isomorphism in Db
c(CX̃(D)).

5.1.3. Isomorphisms. — Let X and D be as in the beginning of §5.1.1.
Let H be hypersurfaces of X contained in D1. We have the naturally defined
projection ρ : X̃(D)→ X̃(H).

Lemma 5.1.6. — For any good meromorphic flat bundle V on (X,D), the
following natural morphisms are isomorphisms:

(76) Rρ∗DR<D1≤D2

X̃(D)
(V )

a1←−− DR<D1

X̃(H)
(V )

a2←−− DR<D1

X̃(H)

(
V (!D1)

)

a3−−→ DR<H
X̃(H)

(
V (!D1)

)
.

Proof. — The claim for a1 follows from Theorem 4.3.2. The claim for a2 is
clear. Let us look at a3. We use an induction on dimX and the number
of the irreducible components of D1 \ H. We may assume X = ∆n and
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D =
⋃ℓ

i=1{zi = 0}. We set Li := {zi = 0}. We may assume D1 =
⋃ℓ1

i=1 Li,

H =
⋃m1

i=1 Li and D2 =
⋃ℓ1+m1

i=ℓ1+1 Li. We set

D3 :=
ℓ1⋃

i=2

{zi = 0}.

We set X ′ := L1 and D′2 := D2 ∩X ′. We set

D′3 := X ′ ∩D3 and H ′ := X ′ ∩
m1⋃

i=2

Li.

Let ι : X ′ → X denote the inclusion. There exist good meromorphic flat
bundles V ′3 and V ′′3 with the exact sequence

0 −→ ι†V
′
3(!D

′
3) −→ V (!D1)

c→ V (!D3) −→ ι†V
′′
3 (!D

′
3) −→ 0.

Let K denote the image of c. We have the following:

0→ DR<D3

X̃(H)

(
ι†V ′3(!D

′
3)
)
−−→ DR<D3

X̃(H)

(
V (!D1)

)
−−→ DR<D3

X̃(H)
(K) → 0

⏐⏐&
⏐⏐&

⏐⏐&
0→ DR

X̃(H)

(
ι†V ′3(!D

′
3)
)
−−→ DR

X̃(H)

(
V (!D1)

)
−−→ DR

X̃(H)
(K) → 0,

0→ DR<D3

X̃(H)
(K) −−→ DR<D3

X̃(H)

(
V (!D3)

)
−−→ DR<D3

X̃(H)

(
ι†V ′′3 (!D

′
3)
)
→ 0

⏐⏐&
⏐⏐&

⏐⏐&
0→ DR

X̃(H)
(K) −−→ DR

X̃(H)
(V (!D3)) −−→ DR

X̃(H)

(
ι†V ′′3 (!D

′
3)
)
→ 0.

By using the inductive assumption, we obtain that

DR<D3

X̃(H)

(
V (!D1)

)
−→ DRX̃(H)

(
V (!D1)

)

is a quasi-isomorphism. Because we have DR<D3

X̃(H)
(V (!D1)

)
≃ DR<D3

X̃(H)
(V (!L1))

and DR<D1

X̃(H)
(V (!D1)) ≃ DR<D1

X̃(H)
(V (!L1)), it is enough to prove the natural

morphism

(77) DR<D1

X̃(H)

(
V (!L1)

)
−→ DR<D3

X̃(H)

(
V (!L1)

)

is a quasi-isomorphism.
Let I ⊂ {1, . . . , ℓ} =: ℓ be any subset with 1 ∈ I. Let πH : X̃(H) → X

denote the projection. We set

LI :=
⋂

i∈I
Li and ∂LI := LI ∩

⋃

j∈ℓ\I

Lj .

Lemma 5.1.7. — DR<∂LI

̂π−1
I (LI )

(V (!L1)) = 0.
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Proof. — By using the pull back and the push-forward with respect to a
ramified covering, we may assume that V is unramifiedly good. Let I ⊂
M(X,D)/H(X) denote the set of irregular values of V . We set

L(Ic) :=
⋃

j∈ℓ\I

Lj .

Let II denote the image of I in M(X,D)/M(X,L(Ic)). For each [a] ∈ II ,
we fix a representative a in M(X,D). There exist meromorphic OL̂I

(∗∂D)-

subbundles V̂[a] of V|L̂I
stable by the connection and a decomposition

V|L̂I
=

⊕

[a]∈II

V̂[a]

compatible with the connection, such that ∇̂reg
a := ∇̂a − da idV̂[a]

are regular

along Li (i ∈ I), where ∇̂a denotes the induced connection on V̂[a].

Let j ∈ I. Suppose ordzj a < 0. We consider the Deligne-Malgrange filtra-

tion P∗ on V̂[a]. (See [45] for a survey.) We have

(∂ja)
−1∇̂reg

a,∂j
PbV̂[a] ⊂ PbV̂[a]

for any b ∈ Rℓ. Hence we obtain that ∇̂a,∂j is invertible on C∞<∂LI

̂π−1
H (LI )

⊗ V̂[a].

Suppose moreover that j ̸= 1 and that ordz1(a) = 0. Let ≤ denote the total
order on C defined by the lexicographic order on (Re(α), Im(α)) ∈ R×R. We
have the V -filtration P̃ of V̂[a] along z1 indexed by (C,≤) such that

(i) z1∇̂a,∂1 preserves the filtration P̃
(ii) the endomorphisms of GrP̃β (V̂[a]) induced by −∇̂a,∂1z1 − β are nilpotent

for any β.

The induced morphisms ∇̂a,∂1 : GrP̃β (V̂[a]) → GrP̃β+1(V̂[a]) are isomorphisms

unless β = −1. We can observe that the filtration P̃ is preserved by ∇̂[a],∂j

and the multiplication of ∂ja. Hence, ∇̂a,∂j is invertible on

C∞<∂LI

̂π−1
H (LI)

⊗ PaV̂[a] and C∞<∂LI

̂π−1
H (LI )

⊗GrPa V̂[a].

Suppose ordzj a = 0 for any j ∈ I, i.e., [a] = [0]. For the Deligne-Malgrange

filtration P∗ of V̂[0], we have

∇[0],∂1

(
PbV̂[0](∗∂LI)

)
⊂ Pb+(1,0,...,0)V̂[0](∗∂LI).
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For the V -filtration P̃ along z1, we obtain that if β < −1, the following
morphism is an isomorphism:

∇̂0,∂1 : C∞<∂LI

̂π−1
H (LI )

⊗ P̃β(V̂[0]) −→ C∞<∂LI

̂π−1
H (LI)

⊗ P̃β+1(V̂[0]).

We have the decomposition

V (!L1)|L̂I
=

⊕

[a]

V̂ (!L1)[a],

compatible with the decomposition of V|L̂I
. If ordz1 a < 0, we have

V̂ (!L1)[a] = V̂[a].

The action of ∇̂a,∂1 on C∞<∂LI

̂π−1
H (LI )

⊗ V̂ (!L1)[a] is invertible. If ordz1 a = 0, for the

V -filtration P̃ along z1, we have P̃β(V̂ (!L1)[a]) = P̃β(V̂[a]) for β < 0, and that

∇̂a,∂1 : GrP̃β (
̂V (!L1)[a]) −→ GrP̃β+1(

̂V (!L1)[a])

are isomorphisms for β ≥ −1. If [a] ̸= [0], take j ∈ I such that ordzj a < 0,

and then the action of ∇̂a,∂j on C∞<∂LI

̂π−1
H (LI )

⊗ V̂ (!L1)[a] is invertible. If [a] = [0],

the action of ∇̂0,∂1 on C∞<∂LI

̂π−1
H (LI )

⊗ V̂ (!L1)[a] is invertible. Then, the claim of
Lemma 5.1.7 follows.

Then, by an easy inductive argument, we obtain that (77) is a quasi-
isomorphism, and the proof of Lemma 5.1.6 is finished.

Suppose that we are given a holomorphic function G : X → Cℓ such that
G−1(D0) = H, where D0 =

⋃ℓ
i=1{zi = 0}.

Lemma 5.1.8. — For the naturally defined map ρ1 : X̃(D) → X̃(G), we ob-
tain the natural isomorphism

(78) Rρ1∗DR<D1≤D2

X̃(D)
(V ) ≃ DRrapid

X,G

(
V (!D1)

)
.

Proof. — It follows from Lemma 5.1.6 and Proposition 4.7.4.

Let ϕ : X ′ → X be a projective birational morphism such that:

(i) D′ := ϕ−1(D) is normal crossing,

(ii) X ′ \D′ ≃ X \D.
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We put D′1 := ϕ−1(D1) and H ′1 := ϕ−1(H1). Let D′2 be the complement of
D′1 in D′. We set G′ := G ◦ ϕ. We put V ′ := ϕ∗V . We have the natural
commutative diagram:

X̃ ′(D′)
ϕ̃1−−−−→ X̃(D)

ρ′1

⏐⏐# ρ1

⏐⏐#

X̃ ′(G′)
ϕ̃−−−−→ X̃(G).

We set ρ2 := ϕ̃ ◦ ρ′1. Correspondingly, we have the commutative diagram of
isomorphisms by the construction:

(79)

Rρ2∗DR
<D′

1≤D′
2

X̃′(D′)
(V ′) −−−−→ Rρ1∗DR<D1≤D2

X̃(D)
(V )

≃
⏐⏐# ≃

⏐⏐#

Rϕ̃∗DRrapid
X′,G′

(
V ′(!D′1)

) ≃−−−−→ DRrapid
X,G

(
V (!D1)

)
.

The lower horizontal arrow is an isomorphism according to Corollary 4.7.5.

5.2. Duality

5.2.1. Duality morphisms. — Let X, D and M be as in §5.1.1. We have
the following natural morphism given in a way parallel to that of (14):

(80) DR<D1≤D2

X̃(D)
(DM) −→ DDR<D2≤D1

X̃(D)
(M).

Namely, we take a π−1(DX)-injective resolution Ĩ•
1 of Ω0,•<D1≤D2

X̃(D)
[dX ],

and a CX̃(D)-injective resolution Ĩ•
2 of TotΩ•,•<D

X̃(D)
[2dX ] with a morphism

DR≤D1<D2

X̃(D)
Ĩ•
1 → Ĩ•

2 extending a natural morphism

DR≤D1<D2

X̃(D)
(Ω0,•<D1≤D2

X̃(D)
[dX ]) −→ TotΩ•,•<D

X̃(D)
[2dX ].

Then, (80) is given as the composite of the morphisms

Homπ−1(DX)(π
−1M, Ĩ•

1)(81)

−→ HomCX̃(D)
(DR<D2≤D1

X̃(D)
M,DR<D2≤D1

X̃(D)
Ĩ1)

−→ HomCX̃(D)
(DR<D2≤D1

X̃(D)
M, Ĩ2).
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Proposition 5.2.1. — The following diagram is commutative:

(82)

Rπ∗DR<D1≤D2

X̃(D)
(DM) −−−−→ Rπ∗DDR<D2≤D1

X̃(D)
(M)

≃
⏐⏐" ≃

⏐⏐"

DR<D1≤D2
X (DM) −−−−→ DDR<D2≤D1

X (M).

The upper horizontal arrow is induced by (80), the lower horizontal arrow is
given as in (14), the left vertical arrow is given in (71), and the right vertical
arrow is given by

Rπ∗DDR<D2≤D1

X̃(D)
M ≃DRπ∗DR<D2≤D1

X̃(D)
M ≃DDR<D2≤D1

X (M).

Proof. — We have a morphism Rπ∗DR<D1≤D2

X̃(D)
(DM) → DR<D1≤D2

X (DM)

given as follows, by Lemma 5.1.1:

(83)

Rπ∗RHomπ−1DX
(π−1M, Ω0,•<D1≤D2

X̃(D)
)[dX ] ≃ RHomDX

(M, Rπ∗Ω
0,•<D1≤D2

X̃(D)
)[dX ]

≃ RHomDX
(M, Ω0,•

X (∗D2)
<D1)[dX ].

It is equal to the morphism obtained as in (71). Then, the claim of the
proposition can be checked easily.

5.2.2. The case of good meromorphic flat bundles. — Let us consider
the case where M is a good meromorphic flat bundle V on (X,D).

Theorem 5.2.2. — The duality morphism

DR<D1≤D2

X̃(D)
DV −→DDR<D2≤D1

X̃(D)
V

is an isomorphism.

Proof. — We begin with elementary preparations. Let R2 = S0 ∪ S1 ∪ S2 be
a decomposition given as follows:

S0 :=
{
(x, y)

∣∣ y ≥ 0
}
, S1 :=

{
(x, y)

∣∣ y ≤ 0, x ≤ 0
}
,

S2 :=
{
(x, y)

∣∣ y ≤ 0, x ≥ 0
}
.

We put

X1 := (R × S1) ∪ (R≥0 × S0), X2 := (R× S2) ∪ (R≤0 × S0).

The following lemma is easy to see.

Lemma 5.2.3. — Xi ⊂ R3 (i = 1, 2) are closed C0-submanifolds with bound-
aries. We have X1 ∪X2 = R3 and X1 ∩X2 = ∂Xi.
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We put J := ]−1, 1[, J+ := [0, 1[, J− := ]−1, 0], and Ii := [0, 1[ (i = 1, 2, 3).
We have a homeomorphism ∂(I1 × I2 × I3) ≃ R2, and we can identify the
decomposition

∂(I1 × I2 × I3) = (∂I1 × I2 × I3) ∪ (I1 × ∂I2 × I3) ∪ (I1 × I2 × ∂I3)

with R2 = S0 ∪ S1 ∪ S2. We put

X ′1 := (J × I1 × ∂I2 × I3) ∪ (J+ × ∂I1 × I2 × I3),

X ′2 := (J × I1 × I2 × ∂I3) ∪ (J− × ∂I1 × I2 × I3).
They are closed subsets of J ×∂(I1×I2×I3). We obtain the following lemma
from Lemma 5.2.3.

Lemma 5.2.4. — X ′i ⊂ J × ∂(I1× I2× I3) are C0-submanifolds with bound-
aries. We have X ′1 ∪X ′2 = J × ∂(I1 × I2 × I3) and X ′1 ∩X ′2 = ∂X ′i.

We recall some elementary facts on constructible sheaves. Let Y be an
oriented ℓ-dimensional C0-manifold with the boundary ∂Y . For a closed
C0-submanifold W ⊂ ∂Y with boundary such that dimW = ℓ − 1, let
jW : Y −W → Y denote the inclusion. We have the natural isomorphisms

RHomCY (jW !CY−W ,K) ≃ RjW∗RHomCY −W (CY−W , Rj!WK) ≃ RjW∗j
∗
WK.

The dualizing complex ωY of Y is given by j∂Y !CY−∂Y [ℓ].

Lemma 5.2.5. — Let Yi ⊂ ∂Y be closed C0-submanifolds with boundaries
such that Y1 ∪ Y2 = Y and Y1 ∩ Y2 = ∂Yi. Then, we have

DjY1!CY−Y1 ≃ jY2!CY−Y2 .

Proof. — The left hand side is naturally isomorphic to

jY1∗j
∗
Y1
ωY ≃ jY1∗j0!CY−∂Y [ℓ],

where j0 denotes the inclusion Y − ∂Y → Y − Y1. Then, we can check the
claim directly.

Let us return to the proof of Theorem 5.2.2. It is enough to consider the
case X = ∆n and D =

⋃ℓ
i=1{zi = 0}. As in the proof of Proposition 5.1.3,

we can reduce the issue to the case where V = OX(∗D) v with a meromorphic
flat connection ∇v = v da, where a =

∏m
i=1 z

−mi
i (mi > 0). We put

Fa := −|a|−1 Re a.

We have the decomposition I1*I2 = ℓ such thatDj =
⋃

i∈Ij{zi = 0} (j = 1, 2).
We set

Ij(> m) :=
{
i ∈ Ij

∣∣ i > m
}
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and

D(> m) :=
ℓ⋃

i=m+1

{zi = 0}, D(≤ m) :=
m⋃

i=1

{zi = 0}.

We consider the closed subsets Wi ⊂ π−1(D) (i = 1, 2) given as follows:

W1 := π−1
(
D1 ∩D(> m)

)
∪
[
π−1(D(≤ m)) ∩ {Fa ≥ 0}

]
,

W2 := π−1
(
D2 ∩D(> m)

)
∪
[
π−1(D(≤ m)) ∩ {Fa ≤ 0}

]
.

Lemma 5.2.6. — Wi ⊂ π−1(D) are closed C0-submanifolds with boundaries,
and we have W1 ∪W2 = π−1(D) and W1 ∩W2 = ∂Wi.

Proof. — It is easy to observe that it is enough to consider the case n = ℓ. We
have the natural identification X̃(D) ≃ (S1)ℓ × Rℓ≥ 0. By the decomposition

ℓ = m ( I1(> m) ( I2(> m),

we identify Rℓ≥0 = Rm
≥0 × RI1(>m)

≥0 × RI2(>m)
≥0 .

We argue the case Ij(> m) ̸= ∅ (j = 1, 2). The other cases are easier. We
fix homeomorphisms

Rm
≥0 ≃ I1 × Rm−1, RI1(>m)

≥0 ≃ I2 × R|I1(>m)|−1, RI2(>m)
≥0 ≃ I3 × R|I2(>m)|−1.

We put N := m+ |I1(> m)|+ |I2(> m)|− 3. Let H± be the subsets of (S1)ℓ

given as

H+ :=
{
cos

(∑
miθi

)
≥ 0

}
and H− :=

{
cos

(∑
miθi

)
≤ 0

}
.

Then, π−1(D) is identified with (S1)ℓ× ∂(I1× I2× I3)×RN , under which we
have

W1 ≃
(
((S1)ℓ × I1 × ∂I2 × I3) ∪ (H− × ∂I1 × I2 × I3)

)
× RN ,

W2 =
(
((S1)ℓ × I1 × I2 × ∂I3) ∪ (H+ × ∂I1 × I2 × I3)

)
× RN .

For Q ∈ H+ ∩H−, we can take a neighbourhood UQ such that U ≃ J ×Rℓ−1

under which H± ∩ UQ = J± × Rℓ−1. Then, we obtain Lemma 5.2.6 from
Lemma 5.2.4.

Let jWi : X̃(D) \Wi → X̃(D) be the inclusion. Let L and L∨ be the local

systems on X̃(D) associated to V and V ∨, respectively. According to the
description of L<D1≤D2 and L∨<D2≤D1 , we have the natural isomorphisms:

L<D1≤D2 ≃ jW1!(LX̃(D)\W1
), L∨<D2≤D1 ≃ jW2!(L∨X̃(D)\W2

).
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Lemma 5.2.5 gives an isomorphism D(L<D1≤D2 [dX ]) ≃ L∨<D2≤D1 [dX ]. It is
uniquely determined by its restriction to X −D. Then, we can deduce that

DR<D1≤D2

X̃(D)
DV −→DDR<D2≤D1

X̃(D)
V

is an isomorphism. Thus, the proof of Theorem 5.2.2 is finished.

Corollary 5.2.7. — For any good meromorphic flat bundle V on (X,D),
we have the commutative diagram of the isomorphisms:

Rπ∗DR<D1≤D2

X̃(D)
DV

≃−−−−→ Rπ∗DDR<D2≤D1

X̃(D)
V

≃
⏐⏐" ≃

⏐⏐"

DRX V ∨(!D1)
≃−−−−→ DDRX V (!D2).

Proof. — It follows from Theorem 3.2.4, Proposition 5.2.1 and Theorem 5.2.2.

5.3. Functoriality

Let X be a complex manifold, and let D be a normal crossing hypersurface
with a decomposition D = D1 ∪ D2. Let D3 be a hypersurface of X. Let
ϕ : X ′ → X be a proper birational morphism such that

(i) D′ := ϕ−1(D ∪D3) is normal crossing,

(ii) X ′ \D′ ≃ X \ (D ∪D3).

Let X̃(D) → X and X̃ ′(D′) → X ′ be the real blow up. Both the projections
are denoted by π. Let ϕ̃ : X̃ ′(D′)→ X̃(D) be the induced map. We put D′1 :=
ϕ−1(D1). We have D′2 ⊂ D′ such that D′ = D′1 ∪D′2 is a decomposition. Let
V be a meromorphic flat bundle on (X,D). We set V ′ := ϕ∗(V )⊗OX′(∗D′).

Theorem 5.3.1. — We have in Db
c(CX̃(D)) a morphism

DR<D1≤D2

X̃(D)
(V ) −→ Rϕ̃∗DR

<D′
1≤D′

2

X̃′(D′)
(V ′)

such that the following diagram of perverse sheaves is commutative:

(84)

Rπ∗DR<D1≤D2

X̃(D)
(V ) −−−−→ Rπ∗Rϕ̃∗DR

<D′
1≤D′

2

X̃(D′)
(V ′)

≃
⏐⏐" ≃

⏐⏐"

DRX
(
V (!D1)

)
−−−−→ Rϕ∗DRX′

(
V ′(!D′1)

)
.

Here, the vertical isomorphisms are given by (71) and (12), and the lower hor-
izontal arrow is induced by the morphism of D-modules V (!D1)→ ϕ†V ′(!D′1).
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Similarly, we have a morphism

Rϕ̃∗DR
<D′

2≤D′
1

X̃′(D′)
(V ′) −→ DR<D2≤D1

X̃(D)
(V )

such that the following diagram of perverse sheaves is commutative:

(85)

Rπ∗Rϕ̃∗DR
<D′

2≤D′
1

X̃′(D′)
(V ′) −−−−→ Rπ∗DR<D2≤D1

X̃(D)
(V )

≃
⏐⏐# ≃

⏐⏐#

Rϕ∗DRX
(
V ′(!D′2)

)
−−−−→ DRX

(
V (!D2)

)
.

Proof. — We have a naturally induced morphism

(86) ϕ̃−1(Ω•,•<D1≤D2

X̃(D)
⊗ π−1V ) −→ Ω

•,•<D′
1≤D

′
2

X̃′(D′)
⊗ π−1V ′.

It induces a morphism of cohomologically constructible complexes

(87) DR<D1≤D2

X̃(D)
(V ) −→ ϕ̃∗DR

<D′
1≤D′

2

X̃′(D′)
(V ′).

We can directly check the commutativity of the diagram:

Ω•,•<D1≤D2
X ⊗ V −−−−→ ϕ∗(Ω

•,•<D′
1≤D′

2
X′ ⊗ V ′)

⏐⏐#
⏐⏐#

π∗(Ω
•,•<D1≤D2

X̃(D)
⊗ π−1V ) −−−−→ π∗(ϕ̃∗Ω

•,•<D′
1≤D′

2

X̃′(D′)
⊗ π−1V ′).

It implies the commutativity of the diagram

(88)

Rπ∗DR<D1≤D2

X̃(D)
(V ) −−−−→ Rπ∗Rϕ̃∗DR

<D′
1≤D′

2

X̃′(D′)
(V ′)

≃
⏐⏐# ≃

⏐⏐#

DR<D1≤D2
X (V ) −−−−→ Rϕ∗DR

<D′
1≤D′

2
X′ (V ′).

Then, we obtain the commutativity of (84) from Theorem 3.2.5.

Considering the dual of (87) with V ∨ (see Theorem 5.2.2), we obtain the
morphism:

(89) Rϕ̃∗DR
≤D′

1<D′
3

X̃′(D′)
(V ′) −→ DR≤D1<D2

X̃(D)
(V ).

Let us prove the commutativity of the diagram (85). From (88) for V ∨, we
obtain the commutative diagram:

DRπ∗Rϕ̃∗DR
<D′

1≤D′
2

X̃′(D′)
(V ′∨) −−−−→ DRπ∗DR<D1≤D2

X̃(D)
(V ∨)

≃
⏐⏐# ≃

⏐⏐#

DRϕ∗DR
<D′

1≤D′
2

X′ (V ′∨) −−−−→ DDR<D1≤D2
X (V ∨).
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By Proposition 5.2.1 and Theorem 5.2.2, we have the following commutative
diagram:

DRπ∗DR<D1≤D2

X̃(D)
(V ∨)

≃−−−−→ Rπ∗DR≤D1<D2

X̃(D)
(V )

≃
⏐⏐" ≃

⏐⏐"

DDR<D1≤D2(V ∨)
≃−−−−→ DR<D2≤D1

X (V ).

We have a similar diagram for V ′. Then, we obtain the commutativity of (85)
from the constructions of (89) and (20).

5.4. A rigidity property (Appendix)

The author originally used Theorem 5.4.1 below for the functoriality of the
Betti structure by projective morphisms. After the improvement, it is now not
necessary. But, it seems interesting to the author, so we keep it. The reader
can skip this subsection.

5.4.1. Statement. — We set X := ∆n and D :=
⋃ℓ

i=1{zi = 0}. Let V be a
good meromorphic flat bundle on (X,D). Let L be the associated local system
on X̃(D). Let g be a holomorphic function on X such that g−1(0) = D. We
have the naturally defined morphisms:

X̃(D)
π1−−−−→ X̃(g)

π0−−−−→ X.

We put π2 := π0 ◦π1. We set K := Rπ1∗L≤D. In this subsection, we will work
on the derived category of cohomologically constructible sheaves.

Theorem 5.4.1. — The restriction Hom(K,K) → Hom(K|π−1
0 (X−D), K|π−1

0 (X−D))
is injective.

We will give a consequence in §5.4.6.

5.4.2. Reduction. — We put D[m] :=
⋃

I⊂ℓ
|I|=m

DI . It is easy to see that

Hom(K|π−1
0 (X−D[2]), K|π−1

0 (X−D[2])) −→ Hom(K|π−1
0 (X−D), K|π−1

0 (X−D))

is injective. Hence, it is enough to show for m ≥ 2 the injectivity of the
morphisms

Hom(K|π−1
0 (X−D[m+1]), K|π−1

0 (X−D[m+1])) −→ Hom(K|π−1
0 (X−D[m]), K|π−1

0 (X−D[m])).

Then, it is easy to observe that it is enough to consider the case ℓ = n and
the morphism

Hom(K,K) −→ Hom(K|π−1
0 (X−O), K|π−1

0 (X−O)).
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By the adjunction Hom(π∗1K,L≤D) ≃ Hom(K,K), it is enough to show the
injectivity of the morphism

Hom(π∗1K, L≤D) −→ Hom(π∗1K|π−1
2 (X−O), L

≤D
|π−1

2 (X−O)
).

We have Riπ1∗L≤D = 0 unless 0 ≤ i ≤ n − 1, because the real dimension of
the fiber is less than n− 1. We set

Ki := π∗1R
iπ1∗L≤D.

Let j : π−12 (X −O)→ X̃(D) and i : π−12 (O)→ X̃(D).

Lemma 5.4.2. — To prove Theorem 5.4.1, it is enough to prove

(90) Extj(i∗i∗Ki,L≤D) = 0 (i, j ≤ n− 1).

Proof. — From the distinguished triangle Ki[−i] → τ≥iπ∗1K → τ≥i+1π∗1K
+1→,

we obtain the long exact sequence

Exti−1(Ki,L≤D) −→ Hom(τ≥i+1π
∗
1K,L≤D)(91)

−→ Hom(τ≥iπ
∗
1K,L≤D) −→ Exti(Ki,L≤D)

and the corresponding long exact sequences for the restrictions to π−12 (X−O).

The injectivity of Hom(τ≥ iπ∗1K, L≤D)→ Hom(τ≥iπ∗1K|π−1
2 (X−O),L

≤D
|π−1

2 (X−O)
)

can follow from the injectivity of

(92) Exti(Ki,L≤D) −→ Exti(Ki
|π−1

2 (X−O)
, L≤D

|π−1
2 (X−O)

),

(93) Hom(τ≥ i+1π
∗
1K, L≤D) −→ Hom(τ≥i+1π

∗
1K|π−1

2 (X−O),L
≤D
|π−1

2 (X−O)
),

and the surjectivity of

(94) Exti−1(Ki,L≤D) −→ Exti−1(Ki
|π−1

2 (X−O)
,L≤D

|π−1
2 (X−O)

).

By an easy inductive argument, we can reduce Theorem 5.4.1 to the injectivity
of (92) and the surjectivity of (94) for any i ≤ n− 1.

From the exact sequence 0→ j!j
∗Ki → Ki → i∗i

∗Ki → 0 and the adjunction
Exti(j!j∗Ki,L≤D) ≃ Exti(j∗Ki, j∗L≤D), we obtain the exact sequence

(95) Exti−1(Ki, L≤D) −→ Exti−1(j∗Ki, j∗L≤D)→ Exti(i∗i
∗Ki, L≤D)

−→ Exti(Ki,L≤D) −→ Exti(j∗Ki, j∗L≤D).

Hence, the proof of Theorem 5.4.1 is reduced to the vanishing

Exti(i∗i
∗Ki, L≤D) = 0
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for any 0 ≤ i ≤ n− 1. For that purpose, it is enough to prove (90). Thus, the
proof of Lemma 5.4.2 is finished.

In the following, we will prove Exti(π−11 (I),L≤D) = 0 (i = 0, . . . , n− 1) for
any constructible sheaf I on π−10 (O) ≃ S1.

5.4.3. Local form of π−11 (I). — Let (z1, . . . , zn) be a coordinate system
with z−1i (0) = Di. It induces a coordinate system (θ1, . . . , θn) of π−12 (O),
which is independent of the choice of (z1, . . . , zn) up to parallel transport.
We take a coordinate system t of C, which induces a coordinate system θ
of π−10 (O). The induced map π−12 (O) → π−10 (O) is affine with respect to the
coordinate systems (θ1, . . . , θn) and θ.

Let us consider the behaviour of π−11 (I) around P ∈ π−12 (O), where I is
a constructible sheaf on π−10 (O). We may assume P = (0, . . . , 0). The map
π−12 (O)→ π−10 (O) is of the form (θ1, . . . , θn) &→

∑
αi θi+β, where β = π1(P ).

The sheaf I is the direct sum of sheaves of the following forms:

◃ the constant sheaf around β;
◃ j!CJ or j∗CJ , where J is an open interval such that one of the end points
is β, and j denotes the inclusion J → π−1(O).

Hence, π−11 (I) around P is described as the direct sum of sheaves of the fol-
lowing forms:

◃ the constant sheaf Cπ−1
0 (O);

◃ j∗CH or j!CH , where H is an open half space such that ∂H contains P ,
and j : H → π−10 (O). They are denoted by CH∗ and CH!.

5.4.4. Local form of L≤D and L/L≤D. — Let P ∈ π−10 (O). We have a
decomposition around P :

L =
⊕

a∈Irr(∇)

La, L≤D =
⊕

a∈Irr(∇)

L≤Da .

Let us describe La and L/L≤Da around P . For an appropriate coordinate
system, a = z−m1

1 · · · z−mn
n for some mi ≥ 0. Let

qa : ∆
n −→ ∆, (z1, . . . , zn) &−→

∏
zmi
i .

Let π∆ : ∆̃(0)→ ∆ be the real blow up. We have the induced map

qa : X̃(D) −→ ∆̃(0), (ri, θi) &−→
( n∏

i=1

rmi
i ,

∑
miθi

)
.
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Let Q be the local system on ∆̃(0) with Stokes structure, corresponding to
the meromorphic flat bundle (O∆(∗0), d + d(1/z)). Note that Q/Q≤0 is the
constructible sheaf j∗CJ on π−1∆ (0), where j : J = (−π,π)→ π−1∆ (0). Let r(a)
be the rank of La. We have isomorphisms:

La ≃ q∗aQ⊕ r(a), L≤Da ≃ q∗a(Q≤0)⊕ r(a), La/L≤Da ≃ q∗a(Q/Q≤0)⊕ r(a).

Around P , we have an isomorphism q∗a(Q/Q≤0) ≃ ι∗C, where Z := q−1a (J)
and ι : Z → (S1)n × Rn

≥0. Note that Z is of the form Z0 × ∂Rn
≥0, where Z0 is

the inverse image of J via the induced map (S1)n × {0} → S1 × {0}. Hence,
q∗a(Q/Q≤0) is isomorphic to one of the following, around P :

◃ the constant sheaf C(S1)n×∂Rn
≥ 0

;

◃ jK∗CK×∂Rn
≥0
, where K is an open half space such that ∂K contains P ,

and jK : K × ∂Rn
≥0 → (S1)n × Rn

≥ 0. It is denoted by CK×∂Rn
≥0∗.

5.4.5. Proof of Theorem 5.4.1. — We reduce the proof of the theorem
to the computation of Exti(π−11 I, q−1a (Q/Q≤0)) for i ≤ n − 2, where I is a
constructible sheaf on π−10 (O).

Lemma 5.4.3. — We have Exti(π−11 I, q−1a Q) = 0 for any i. In particular, we
have isomorphisms

Exti(π−11 I, q−1a Q≤0) ≃ Exti−1
(
π−11 I, q−1a (Q/Q≤0)

)
.

Proof. — Let ι : (S1)n × {0} → (S1)n × ∂Rn
≥0 denote the inclusion. There

exists a constructible sheaf F on (S1)n such that π−11 I ≃ ι∗F . We have the
adjunction

Exti(ι∗F , q−1a Q) = ι∗Exti(F , i!q−1a Q).

Note ι!q−1a Q = Dι−1D(q−1a Q) = 0, because Dq−1a Q is 0-extension of a con-
stant sheaf on (S1)n ×Rn

>0 by (S1)n ×Rn
>0 → (S1)n ×Rn

≥0. Hence, we obtain

Exti(ι∗F , q−1a Q) = 0, and the proof of Lemma 5.4.3 is finished.

Now, let us prove the following vanishing of the stalks at P :

(96) Extj
(
π−11 I, q−1a (Q/Q≤0)

)
P
= 0, (j ≤ n− 2).

It can be computed on (S1)n×∂Rn
≥0. We have the following cases, divided by

the local forms of π−11 (I) and q−1a (Q/Q≤0) around P :

(I): π−11 I ≃ C(S1)n and q−1a (Q/Q≤0) ≃ C(S1)n×∂Rn
≥0
;

(II): π−11 I ≃ C(S1)n and q−1a (Q/Q≤0) ≃ CK×∂Rn
≥0 ∗;

(III): π−11 I = CH⋆ and q−1a (Q/Q≤0) ≃ C(S1)n×∂Rn
≥ 0

, where ⋆ = ∗, !;
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(IV): π−11 I ≃ CH⋆ and q−1a (Q/Q≤0) ≃ CK×∂Rn
≥ 0∗, where ⋆ = ∗, !.

Moreover, this last case is divided into three subcases:
(IV-1) ∂H and ∂K are transversal,
(IV-2) H = K,
(IV-3) H = −K.

In the following, for a given i : Y1 ⊂ Y2 and ⋆ = ∗, !, let CY1⋆ := i⋆CY1 on Y2.
It is also denoted just by CY1 if there is no risk of confusion.

5.4.5.1. The case (I). — Instead of (S1)n×{0}→ (S1)n×∂Rn
≥0, it is enough

to consider the inclusion {0} → ∂Rn
≥0 ≃ Rn−1. We obtain (96) from the

following standard result:

Extj(C0,CRn−1)0 ≃
{

0 (j ≤ n− 2),

C (j = n− 1).

5.4.5.2. The case (II). — We have the exact sequence

0 −→ C(S1)n\K! −→ C(S1)n −→ CK∗ −→ 0.

Let ι denote the inclusion ((S1)n \K)× ∂Rn
≥ 0 → (S1)n × ∂Rn

≥ 0. Note ι
∗ = ι!,

and hence ι!CK×∂Rn
≥0∗ = 0. We have

Extj
(
C((S1)n\K)×{0} !, CK×∂Rn

≥0 ∗
)
P

≃ ι∗Extj
(
C((S1)n\K)×{0}, ι

!CK×∂Rn
≥0∗

)
P
= 0.

Hence, we obtain

Extj
(
C(S1)n ,CK×∂Rn

≥ 0 ∗)P ≃ Extj(CK∗,CK×∂Rn
≥ 0∗

)
P
=

{
0 (j ≤ n− 2),
C (j = n− 1).

5.4.5.3. The case (III). — Let us consider the case ⋆ = ∗. We have the exact
sequence:

0 −→ C(S1)n×∂Rn
≥ 0\H×{0} ! −→ C(S1)n×∂Rn

≥ 0
−→ CH∗ −→ 0.

Let k1 denote the inclusion H × {0} → (S1)n × ∂Rn
≥ 0, and let k2 denote the

open embedding of the complement. Because k∗1C(S1)n×∂Rn
≥ 0\H×{0} ! = 0, we

have the isomorphisms

RHom(C(S1)n×∂Rn
≥ 0\H×{0} !, C(S1)n×∂Rn

≥ 0
)P(97)

≃ RHom(C(S1)n×∂Rn
≥ 0\H×{0}!, C(S1)n×∂Rn

≥ 0\H×{0}!)P

≃ k2∗(C(S1)n×∂Rn
≥ 0\H×{0})P ≃ (C(S1)n×∂Rn

≥ 0
)P .

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

115

115



108 CHAPTER 5. COMPLEXES

We obtain RHom(CH∗, C(S1)n×∂Rn
≥ 0

)P = 0. In particular, Extj(CH∗,C(S1)n×∂Rn
≥ 0

)P
is null for any j.

Let us consider the case ⋆ = !. From the exact sequence

0 −→ CH! −→ C(S1)n −→ C(S1)n\H ∗ −→ 0,

we obtain the isomorphisms

Extj(CH!,C(S1)n×∂Rn
≥ 0

)P = Extj(C(S1)n , C(S1)n×∂Rn
≥ 0

)P =

{
0 (j ≤ n− 2),
C (j = n− 1).

5.4.5.4. The case (IV-1). — Let us consider the case ⋆ = ∗. Let N be the
kernel of CH∗ → CH∩K∗.

Lemma 5.4.4. — We have RHom(N , CK×∂Rn
≥0∗)P = 0.

Proof. — Let ι be the inclusion ((S1)n \K)× ∂Rn
≥ 0 → (S1)n × ∂Rn

≥ 0. Then,

N is of the form ι!N1. Then, the claim follows from ι!CK×∂Rn
≥ 0∗ = 0.

We have the exact sequence:

0 −→ CK×∂Rn
≥0\(H∩K)×{0}! −→ CK×∂Rn

≥0
−→ C(H∩K)×{0}∗ −→ 0.

Let k : K×∂Rn
≥ 0 \ (H ∩K)×{0}→ K×∂Rn

≥0 denote the inclusion. We have
the isomorphisms

RHom(CK×∂Rn
≥0\(H∩K)×{0}!, CK×∂Rn

≥0
)P(98)

≃ Rk∗RHom(CK×∂Rn
≥ 0\(H∩K)×{0}, CK×∂Rn

≥ 0\(H∩K)×{0})P

≃ CK×∂Rn
≥ 0,P

.

Hence, we obtain RHom(C(H∩K)×{0} ∗, CK×∂Rn
≥0 ∗)P = 0. In particular, we

have Extj(CH∗, CK×∂Rn
≥0 ∗)P = 0 for any j.

Let us consider the case ⋆ = !. We have an exact sequence

0→ CH! → C(S1)n → C(S1)n\H∗ → 0

on (S1)n. By using the previous results, we obtain

Extj(CH!, CK×∂Rn
≥0∗)P =

{ 0 (j ≤ n− 2),
C (j = n− 1).
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5.4.5.5. The case (IV-2). — Let us consider the case ⋆ = ∗. By considering
0→ ∂Rn

≥0, we obtain

Extj(CH∗,CH×∂Rn
≥0∗)P ≃

{ 0 (j ≤ n− 2),
C (j = n− 1).

Let us consider the case ⋆ = !. We have an exact sequence

0 −→ CH! −→ CH∗ −→ C∂H∗ −→ 0.

Let us look at Extj(C∂H∗, CH×∂Rn
≥ 0

)P . For 0→ [0, 1[×Rn−1, we have

Extj(C0,C[0,1[×Rn−1) = 0

for any j. Hence, we obtain

Extj(CH!, CH×∂Rn
≥0
)P =

{
0 (j ≤ n− 2),
C (j = n− 1).

5.4.5.6. The case (IV-3). — It is easy to show Extj(CH!,CK×∂Rn
≥0
) = 0 for

any j. By using the argument in (IV-2), we can show Extj(CH∗,CK×∂Rn) = 0
for any j. Thus, the proof of Theorem 5.4.1 is finished.

5.4.6. A uniqueness result on the K-structure. — We use the notation
in §5.4.1. Let V be a good meromorphic flat bundle on (X,D). Let g be a
holomorphic function on X such that g−1(0) = D, and let ig be the graph
X → X × C. We regard DRnil

X×C̃(ig†V ) as a cohomologically constructible

sheaf on X̃(g).
Let K be a subfield of C. A K-structure of DRnil

X×C̃(ig†V ) is defined to be

a K-cohomologically constructible complex F on X̃(g) with an isomorphism
α : F ⊗C ≃ DRnil

X×C̃(ig†V ) in the derived category. Two K-structures (Fi,αi)

(i = 1, 2) are called equivalent if there exists an isomorphism β : F1 → F2 for
which the following diagram is commutative:

F1 ⊗ C
β⊗C−−−−→ F2 ⊗ C

α1

⏐⏐% α2

⏐⏐%

DRnil
X×C̃(ig†V )

=−−−−→ DRnil
X×C̃(ig†V ).

Lemma 5.4.5. — Let (Fi,αi) (i = 1, 2) be K-structures of DRnil
X×C̃(ig†V ).

If their restriction to π−11 (X − D) are equivalent, then they are equivalent

on X̃(g).
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Proof. — We put F C
i := Fi ⊗ C. We have the commutative diagram

Hom(F1,F2)⊗ C −−−−→ Hom(F1|π−1
1 (X−D),F2|π−1

1 (X−D))⊗C
⏐⏐"≃

⏐⏐"≃

Hom(F C
1 ,F C

2 ) −−−−→ Hom(F C
1|π−1

1 (X−D)
,F C

2|π−1
1 (X−D)

).

According to Theorem 5.4.1, the horizontal arrows are injective. Hence, we
obtain the equality

Hom(F1,F2) = Hom(F1|π−1
1 (X−D),F2|π−1

1 (X−D)) ∩Hom(F C
1 ,F C

2 )

in Hom(F C
1|π−1

1 (X−D)
,F C

2|π−1
1 (X−D)

). Then, the element of Hom(F C
1 ,F C

2 ) cor-

responding to the identity of DRnil
X×C̃(ig†V ) comes from Hom(F1,F2).
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CHAPTER 6

GOOD K-STRUCTURE

6.1. Good meromorphic flat bundles

6.1.1. Good K-structure of good meromorphic flat bundles. — Let
K ⊂ C be a subfield. Let X be a complex manifold with a normal crossing
hypersurface D.

Definition 6.1.1. — Let V be a good meromorphic flat bundle on (X,D).

◃ A K-structure of V is a pre-K-Betti structure of the flat bundle V|X−D.

◃ A K-structure of V is good if the Stokes structures are defined over K.

Later (see §6.4), we shall extend the definition to the case where V is not
necessarily good.

Let D = D1 ∪ D2 be a decomposition. Let L be the local system with
the Stokes structure on X̃(D) associated to V . Recall that the complex
DR<D1≤D2

X̃(D)
(V ) is quasi-isomorphic to L<D1≤D2 [dimX]. (See §5.1.2.)

If V has a good K-structure, it is naturally equipped with a K-structure
L<D1≤D2
K [dimX]. By the isomorphisms (12) and (71), we obtain a pre-K-Betti

structure

F<D1≤D2
V := Rπ∗L<D1≤D2

K [dimX]

of the holonomic D-module V (!D1). This pre-K-Betti structure is called
canonical. Let D′1 ∪D′2 = D be another decomposition such that D1 ⊂ D′1.
The natural morphism V (!D′1) → V (!D1) is compatible with the pre-K-Betti
structures. We use the symbols FV ∗ and FV ! to denote F≤DV and F<D

V , re-
spectively. We also use the symbol FV to denote FV ∗ for simplicity.

More generally, let ι : Z ⊂ X be a complex submanifold with a normal cross-
ing hypersurface DZ . Let VZ be a good meromorphic flat bundle on (Z,DZ).
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112 CHAPTER 6. GOOD K-STRUCTURE

We say that ι†VZ has a good K-structure if VZ has a good K-structure in the
above sense. The canonical pre-K-Betti structures for ι†VZ(!DZ,1) are also
defined in a similar way for a decomposition DZ = DZ,1 ∪DZ,2.

6.1.2. Some basic property

6.1.2.1. Some functoriality. — Let X be any complex manifold with a normal
crossing hypersurface D. The following lemma is clear.

Lemma 6.1.2. — Let Vi (i = 1, 2) be good meromorphic flat bundles on (X,D)
with a good K-structure. If V1 ⊕ V2 is good, then the induced K-structure is
good. Similar claims hold for V1 ⊗ V2 and Hom(V1, V2).

Let V be a good meromorphic flat bundle on (X,D). Let ϕ : X ′ → X be
a morphism of complex manifolds such that D′ := ϕ−1(D) is normal crossing.
We obtain a good meromorphic flat bundle V ′ := ϕ∗V on (X ′,D′). Suppose
that V is equipped with a K-structure, which induces a K-structure of V ′.

Lemma 6.1.3. — If the K-structure of V is good, the K-structure of V ′ is
also good. Conversely, suppose that ϕ is surjective and that the K-structure
of V ′ is good. Then, the K-structure of V is good.

Proof. — Let P ′ be any point of D′. Let P := ϕ(P ′). We take a small
neighbourhood XP with a coordinate (z1, . . . , zn) around P in X such that
D =

⋃ℓ
i=1{zi = 0}, and a ramified covering

κP : (X(1)
P ,D(1)

P ) −→ (XP ,D ∩XP )

such that V (1)
P := κ∗P (V ) is unramifiedly good. Let ei (i = 1, . . . , ℓ) denote the

ramification index of κP along zi = 0. We take a small neighbourhood X ′P ′

of P ′. Because (zi ◦ ϕ)−1(0) (i = 1, . . . , ℓ) are contained in D′ ∩X ′P , we can
take a ramified covering

κ′P ′ : (X
′(1)
P ′ ,D′(1)P ′ ) −→ (X ′P ′ ,D′ ∩X ′P ′)

such that there exist functions (zi ◦ ϕ ◦ κ′P ′)1/ei (i = 1, . . . , ℓ) on X ′(1)P ′ . Then,

we have a morphism ρ : X ′(1)P ′ → X(1)
P such that κP ◦ ρ = ϕ ◦ κ′P ′ . Then,

V ′(1) := (κ′P ′)∗V ′ = ρ∗κ∗P (V )

is unramifiedly good. Let L be the local system on X̃(1)
P (D(1)

P ) associated

to V (1). Let L′ be the local system on X̃ ′(1)P ′ (D′(1)P ) associated to V ′(1). The
map induced by ρ is denoted

ρ̃ : X̃ ′(1)P (D′(1)P ) −→ X̃(1)
P (D(1)

P ).
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6.1. GOOD MEROMORPHIC FLAT BUNDLES 113

We have L′ = ϕ̃−1(L). Let

π(1) : X̃(1)
P (D(1)

P ) −→ X(1)
P and π′(1) : X̃ ′(1)P ′ (D′(1)P ′ ) −→ X ′(1)P ′

denote the projections. Let Q′1 be any point of (π′(1))−1(D′(1)P ). We set

Q1 := ρ̃(Q′1).

Let P ′1 := π′(1)(Q′) and P1 := π(1)(Q). The set of the irregular values of V ′(1)

at P ′1 is the pull back of the set of the irregular values of V (1) at P1. The
partial order ≤Q′

1
on the set is equal to ≤Q1 . The Stokes filtration FQ′

1 is

obtained as the pull back of FQ1 . Hence, FQ1 is defined over K if and only
if FQ′

1 is defined over K.

6.1.2.2. Curve test. — Let us consider the case X = ∆n, Di := {zi = 0}
and D =

⋃ℓ
i=1 Di. We set D◦i := Di \

⋃
j ̸=iDj . Let pi : X → Di denote the

projection.

Proposition 6.1.4. — Let V be a good meromorphic flat bundle on (X,D)
with a K-structure with the property:

(C1) Let P be any point of D◦i for i = 1, . . . , ℓ. Then, the induced K-
structure of V|p−1

i (P ) is good.

Then, the K-structure of V is good.

Proof. — We may assume that V is unramifiedly good. Let π : X̃(D) → X
denote the projection. Let L be the local system on X̃(D) with the induced
K-structure. Let Q be any point of π−1(D). It is enough to prove that the
Stokes filtration FQ(LQ) is defined over K. It is enough to consider the case
π(Q) = (0, . . . , 0). We set

S :=
{
(a, b) ∈ Irr(V )2 | a ̸= b

}
.

We have i such that ordzi(a − b) < 0 for any (a, b) ∈ S. For any (a, b) ∈ S,
let H(a, b) be denote the intersection of π−1(Di) and the closure of

{
R ∈ X \D | Re(a− b)(R) = 0

}

in X̃(D). Let U be a small neighbourhood of Q in π−1(Di). Then, for any
(a, b) ∈ S, we have a <Q b if and only if we have a <Q′ b for any

Q′ ∈ U ′ := π−1(D◦i ) ∩ U \
⋃

(a,b)∈S

H(a, b).
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114 CHAPTER 6. GOOD K-STRUCTURE

We have natural identifications of LQ and LQ′ for Q′ ∈ U . We have

FQ
a =

⋂

Q′∈U ′

FQ′

a .

Under the assumption (C1), FQ′

a are defined over K for any Q′ ∈ U ′. Hence,
we obtain that FQ

a are defined over K.

6.1.2.3. Sub-quotients. — Let X be any complex manifold with a normal
crossing hypersurface D. Let 0 → V1 → V → V2 → 0 be an exact sequence
of good meromorphic flat bundles on (X,D). Suppose that V and Vi are
equipped with K-structures which are compatible with the morphisms.

Lemma 6.1.5. — If the K-structure of V is good, then the K-structures of Vi

(i = 1, 2) are good.

Proof. — We may assume that V is unramifiedly good. We may assume that
X = ∆ and D = {0}. Let Li and L be the local systems on X̃(D) corre-
sponding to Vi and V , respectively. For any point P ∈ X̃(D), the stalks L1P

and LP are equipped with the Stokes filtrations FP . Note that the Stokes
filtrations are characterized by the growth order. Hence, L1P → LP is strict
with respect to the filtrations, i.e., FP (L1P ) is equal to the filtration obtained
as the restriction of FP (LP ). Then, if L1P and FP (LP ) are defined over K,
the filtration FP (L1P ) is also defined over K.

Lemma 6.1.6. — Let Vi (i = 1, 2) be good meromorphic flat bundles on
(X,D). Let f : V1 → V2 be a morphism of meromorphic flat bundles.

◃ Ker(f), Im(f) and Cok(f) are also good.

◃ Suppose that Vi are equipped with good K-structures, and that f is compat-
ible with the K-structures. Then, the induced K-structures of Ker(f), Cok(f)
and Im(f) are good.

Proof. — It is enough to check the claims locally around any point of D. We
may assume that Vi are unramifiedly good. Let P be any point of D. Let f|P̂
denote the induced morphism V1|P̂ → V2|P̂ . Because the formal completion

is exact, we have Ker(f)|P̂ ≃ Ker(f|P̂ ) and similar isomorphisms for Im and

Cok. We have the decompositions Vi|P̂ =
⊕

a∈Irr(Vi,P ) Vi,P̂ ,a. It is easy to check

that f|P̂ is compatible with the decompositions. Then, the first claim follows.

The second claim follows from the first claim and Lemma 6.1.5.
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6.1. GOOD MEROMORPHIC FLAT BUNDLES 115

If Vi are unramifiedly good in Lemma 6.1.6, we have

Irr(Ker f, P ) ⊂ Irr(V1, P ), Irr(Cok f, P ) ⊂ Irr(V2, P ),

Irr(Im f, P ) ⊂ Irr(V1, P ) ∩ Irr(V2, P ).

6.1.3. Functoriality for projective birational morphisms. — Let D3

be a hypersurface of X. Let ϕ : X ′ → X be a projective birational morphism
such that D′ := ϕ−1(D ∪D3) is normal crossing, and that

X ′ \D′ ≃ X \ (D3 ∪D).

Let V be a good meromorphic flat bundle on (X,D). Suppose that V is
equipped with a good K-structure. We put

V ′ := ϕ∗V ⊗OX′(∗D′).

The induced K-structure of V ′ is good. Let D1∪D2 be a decomposition of D.
We set D′1 := ϕ−1(D1). We take D′2 ⊂ D′ such that D′1∪D′2 is a decomposition
of D′.

Proposition 6.1.7. — The natural morphisms

V (!D1) −→ ϕ†V
′(!D′1), ϕ†V

′(!D′2) −→ V (!D2)

are compatible with the canonical pre-K-Betti structures.

Proof. — Let us prove the second claim. We use the notation introduced in
§5.3. Let ϕ̃ : X̃ ′(D′)→ X̃(D) be the induced map. By construction, it is easy
to see that the morphisms

DR<D1≤D2

X̃(D)
(V ) −→ Rϕ̃∗DR

<D′
1≤D′

2

X̃′(D′)
(V ′),

Rϕ̃∗DR
<D′

2≤D′
1

X̃′(D′)
(V ′) −→ DR<D2≤D1

X̃(D)
(V )

are compatible with the induced K-structures. Then, the second claim follows
from Theorem 5.3.1.

6.1.4. A characterization of compatibility with Stokes filtrations

Let X = ∆n and D =
⋃ℓ

i=1{zi = 0}. Let V be an unramifiedly good
meromorphic flat bundle on (X,D). Its good set of irregular values is denoted
by Irr(V ). For each a ∈ Irr(V ), put

L(−a) = OX(∗D) e
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116 CHAPTER 6. GOOD K-STRUCTURE

with the meromorphic flat connection ∇e = ed(−a). We fix a K-structure of
L(−a) by the trivialization exp(a) e. We have on X̃(D) a constructible sheaf

DRrapid

X̃(D)

(
V ⊗ L(−a)

)
.

The following lemma will be useful to check that a K-structure is good.

Lemma 6.1.8. — Suppose that V has a K-structure with the property:

◃ For each a ∈ Irr(V ), the induced K-structure of (V ⊗ L(−a))|X−D is

extended to a K-structure of DRrapid

X̃(D)
(V ⊗ L(−a)).

Then, the K-structure of V is good.

Proof. — Let L be the local system with the Stokes structure on X̃(D) as-
sociated to V|X\D. It is equipped with the Stokes structure i.e., for each

P ∈ π−1(D), the stalk LP has the Stokes filtration FP . By the assumption,
the local system L has a K-structure. Let O = (0, . . . , 0) ∈ X. Let π denote
the projection X̃(D)→ X. It is enough to prove that the Stokes filtrations FP

of LP are defined over K for P ∈ π−1(O).
Let S denote the set of pairs (a, b) in Irr(V ) with a ̸= b. For any (a, b) ∈ S,

let H(a, b) denote the closure of the set {Re(a − b)} in X̃(D). Take a small
neighbourhood U1 of P in π−1(O) such that for any (a, b) ∈ S, we have
H(a, b) ∩ U1 ̸= ∅ if and only if P ∈ H(a, b). Let

U ′1 := U1 \
⋃

(a,b)∈S

H(a, b).

We have a <P b if and only if a <P ′ b for any P ′ ∈ U ′1. We have natural
identifications LP ≃ LP ′ for any P ′ ∈ U1. Under the identifications, we have

FP
a =

⋂

P ′∈U ′
1

FP ′

a .

So, if FP ′

a are defined over K for any P ′ ∈ U ′1, FP
a is also defined over K. For

the points P ′ ∈ U ′1, the order ≤P ′ is totally ordered. So, it is enough to prove
that FP ′

<a are defined over K for any a ∈ Irr(V ) and for any P ′ ∈ U ′1. But, it
follows from the assumption of the lemma.

6.1.5. The behaviour of the pre-K-Betti structure by the nearby
cycle functor and the maximal functor. — We set

X := ∆n and D :=
ℓ⋃

i=1

{zi = 0}.
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6.1. GOOD MEROMORPHIC FLAT BUNDLES 117

Let V be a good meromorphic flat bundle on (X,D) with a good K-structure.
For each I ⊂ ℓ, we set I!i := I ∪ {i} and I∗i := I \ {i}. The D-module

Πa,b
i⋆

(
V
(
!D(I)

))
= (V ⊗ Ia,b

zi )
(
!D(I⋆i)

)

has the canonical pre-K-Betti structure, where ⋆ = ∗, !. Hence, ψ(a)
i (V (!D(I)))

and Ξ(a)
i (V (!D(I))) have the induced pre-K-Betti structures.

Lemma 6.1.9. — The induced K structure of ψ(a)
i (V ) is good, i.e., it is

compatible with the Stokes filtrations. The induced pre-K-Betti structure of

ψ(a)
i (V (!D(I))) is canonical for each I ⊂ ℓ.

Proof. — It is enough to consider the case a = 0 and i = 1. We give a
preparation. We set Π−∞,a

f⋆ V := lim−→N
Π−N,a

f⋆ (V ). By Lemma 3.2.3, we have
the commutative diagram

(99)

DRX
(
Π−∞,0

1! (V (!D(I)))
)
−−−−→ DRX(Π−∞,0

1∗ (V (!D(I)))
)

≃
#⏐⏐ ≃

#⏐⏐

DR<D(I∗1)
X (Π−∞,0

1! V ) −−−−→ DR<D(I∗1)
X (Π−∞,0

1∗ V )

≃
#⏐⏐ ≃

#⏐⏐

DR<D(I!1)
X (V ⊗ I−∞,0

z1 ) −−−−→ DR<D(I∗1)
X (V ⊗ I−∞,0

z1 ).

By the upper square, the induced K-structure of DRX ψ(0)
1 (V (!D(I))) can be

identified with the K-structure of

DR<D(I∗1)
X ψ(0)

1 (V )(100)

≃ Cone
(
DR<D(I∗1)

X (Π−∞,0
1! V )→ DR<D(I∗1)

X (Π−∞,0
1∗ V )

)
.

We set D′ :=
⋃ℓ

i=2Di. Let π1 : X̃(D′) → X be the real blow up. We obtain

(100) as the push-forward of the following on X̃(D′):

(101) DR
<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

ψ(0)
1 (V )

≃ Cone
(
DR

<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

(Π−∞,0
1! V )→ DR

<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

(Π−∞,0
1∗ V )

)
.

We prepare some commutative diagram in a general setting. For any holonomic
DX-module M, we put

DR
<D(I!1)≤D(ℓ−I!1)
X̃(D′)

M := TotΩ
•,•,<D(I!1)≤D(ℓ−I!1)
X̃(D′)

⊗π−1
1 OX

π−11 M[dimX],

DR
<D(I∗1)≤D(ℓ−I∗1)
X̃(D′)

M := TotΩ
•,•,<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

(∗D1)⊗π−1
1 OX

π−11 M[dimX].
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We have the commutative diagram

DR
<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

M(!D1) −−−−→ DR
<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

M(∗D1)
!⏐⏐ =

!⏐⏐

DR
<D(I!1)≤D(ℓ−I!1)
X̃(D′)

M −−−−→ DR
<D(I∗1)≤D(ℓ−I∗1)
X̃(D′)

M.

If M is a good meromorphic flat bundle, the left vertical arrow is also a quasi-
isomorphism, which follows from Lemma 5.1.6.

Let ρ : X̃(D) → X̃(D′) be the induced map. We have the natural com-
mutative diagram, where the vertical arrows are quasi-isomorphisms by The-
orem 4.3.2:

DR
<D(I!1)≤D(ℓ−I!1)
X̃(D′)

M −−−−→ DR
<D(I∗1)≤D(ℓ−I∗1)
X̃(D′)

M

≃
⏐⏐$ ≃

⏐⏐$

ρ∗DR
<D(I!1)≤D(ℓ−I!1)
X̃(D)

M −−−−→ ρ∗DR
<D(I∗1)≤D(ℓ−I∗1)
X̃(D)

M.

Thus, we obtain the commutative diagram, in which the vertical arrows are
quasi-isomorphisms:

(102)

DR
<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

(Π−∞,0
1! V ) −→ DR

<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

(Π−∞,0
1∗ V )

≃
!⏐⏐ ≃

!⏐⏐

ρ∗DR
<D(I!1)≤D(ℓ−I!1)
X̃(D)

(V ⊗ I−∞,0
z1 ) −→ ρ∗DR

<D(I∗1)≤D(ℓ−I∗1)
X̃(D)

(V ⊗ I−∞,0
z1 ).

Because DR
<D(I!1)≤D(ℓ−I!1)
X̃(D)

(V ⊗ I−∞,0
z1 ) and DR

<D(I∗1)≤D(ℓ−I∗1)
X̃(D)

(V ⊗ I−∞,0
z1 )

are equipped with K-structures compatible with the morphism, we obtain

a K-structure of DR
<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

ψ(0)
1 (V ) from (101) and (102). The lower

square in (99) is obtained as the push-forward of (102). Hence, theK-structure

of DRX ψ(0)
1 (V (!D(I))) is obtained as the push-forward of the K-structure of

DR
<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

ψ(0)
1 (V ).

Let us consider the case I = {1, . . . , ℓ}. By the above consideration, we
obtain that FP

<0 is compatible with the K-structure, where FP denotes the

Stokes filtration of ψ(0)
1 (V ) at each point P ∈ π−11 (∂D1). By considering the

tensor product with meromorphic flat bundles with rank one, we can deduce
that FP is defined over K, as in Lemma 6.1.8. Since the pre-K-Betti structure

of ψ(0)
1 (V (!D(I))) comes from the K-structure of DR

<D(I∗1)≤D(ℓ−I!1)
X̃(D′)

ψ(0)
1 (V ),

it is canonical.
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6.2. Good holonomic D-modules with good K-structure (Local case)

6.2.1. Definition. — Let X = ∆n and D =
⋃ℓ

i=1{zi = 0}. Set ℓ :=
{1, . . . , ℓ}. Let M be a good holonomic D-module on (X,D).

Definition 6.2.1. — We say that M has a good K-structure if

(i) for each I ⊂ ℓ, φI(M)(∗D(Ic)) is equipped with a good K-structure
(put φ∅(M) := M),

(ii) for i ̸∈ I, the induced morphisms

ψ(1)
i

(
φI(M)

(
∗D(Ic)

))
−→

(
φiφI(M)

)(
∗D(Ic!i)

)
(103)

−→ ψ(0)
i

(
φI(M)

(
∗D(Ic)

))

are compatible with the K-structures, where I!i := I ' {i}.

Morphisms of good holonomic D-modules with a good K-structure

f : M1 −→M2

are morphisms of D-modules such that φI(f) are compatible withK-structures
for any I ⊂ ℓ.

Let Holgood(X,D,K) denote the category of good holonomic DX -modules
with a good K-structure on (X,D).

Lemma 6.2.2. — Let f : M1 → M2 be a morphism in Holgood(X,D,K).
Then, the D-modules Ker(f), Im(f) and Cok(f) are naturally objects in
Holgood(X,D,K).

Proof. — It follows from Lemma 6.1.6. (See also the reconstruction of a good

holonomic D-module M from φ(0)I (M) in §6.3.)

6.2.2. Cells. — Let V be any good meromorphic flat bundle on X
with a good K-structure. Let us observe that we have natural objects in
Holgood(X,D,K) associated to V .

Lemma 6.2.3. — Let D(1) be a hypersurface of X contained in D.

◃ We can naturally regard V (!D(1)) as an object in Holgood(X,D,K).

◃ Suppose that we are given an object M in Holgood(X,D,K) such that

(i) the underlying DX-module is isomorphic to V (!D(1)),

(ii) the K-structure on X \ D is equal to that of V (!D(1)) under the
isomorphism.

Then, M is isomorphic to V (!D(1)) in Holgood(X,D,K).
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Proof. — We have I ⊂ ℓ such that D(1) = D(I). We have for any J ⊂ ℓ
a natural isomorphism

φ(0J )
J

(
V
(
!D(I)

))
(∗D(Jc)) ≃ ψ(δJ∩I)

J∩I ψ
(0J\I)

J\I (V ),

where δJ∩I = (1, . . . , 1) ∈ ZJ∩I and 0J\I = (0, . . . , 0) ∈ ZJ\I . They are
equipped with good K-structures, satisfying the compatibility condition (103).
Via these K-structures, we regard V (!D(I)) ∈ Holgood(X,D,K). Thus, we
obtain the first claim.

Let us prove the second claim. We are given the isomorphism of DX -modules
V (!D(1)) ≃ M under which the K-structures on X \ D are equal. Suppose

that we have already known that φ(0)I (V (!D(1))) ≃ φ(0)I (M) preserves the K-
structures. Set V1 := V (!D(1)) and V2 := M. Because one of

ψ(1)
i φ(0)I (Vi) −→ φ(0)i φ(0)I (Vi) or ψ(1)

i φ(0)I (Vi) −→ φ(0)i φ(0)I (Vi)

is an isomorphism compatible with K-structures. Hence, we obtain that

φ(0)i φ0I (V1)→ φ(0)i φ0I (V2) is also compatible with the K-structures.

More generally, take J ' I ⊂ ℓ. Let VJ be a good meromorphic flat bundle
on DJ with a good K-structure. Then, we can naturally regard ι†VJ(!D(I))
as an object in Holgood(X,D,K).

Let g be a meromorphic function on (X,D) such that g−1(0) ⊂ D. Let D =
D1 ∪D2 be a decomposition such that D1 ⊃ g−1(∞) and D2 ⊂ g−1(0). (Note

thatDi are not necessarily irreducible.) Because Ξ(0)
g (V, ∗D1) and ψ

(0)
g (V, ∗D1)

are the kernel of
(
V ⊗ I−∞,a

g (!D2)
)
(∗D1) −→ V ⊗ I−∞,0

g (∗D)

for a = 1, 0, they are naturally objects in Holgood(X,D,K).

6.2.3. Some operations. — Let us observe that some operations on
Hol(X) are naturally lifted on Holgood(X,D,K). Let Forget denote the
forgetful functor from Holgood(X,D,K) to Hol(X).

Lemma 6.2.4. — We have a naturally defined dual functor D on Holgood(X,D,K)
such that

D ◦ Forget = Forget ◦D.

Proof. — Let M ∈ Holgood(X,D,K). For each I ⊂ {1, . . . , ℓ},

φ(a)I

(
DM)(∗D(Ic)

)
≃Dφ(−a−δ)I (M)

(
∗D(Ic)

)
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has an induced K-structure. For I0 := I ! {i}, the morphisms

ψ(1)
i φ(0)I (DM)

(
∗D(Ic0)

)
−→ φ(0)i φ(0)I (DM)

(
∗D(Ic0)

)

−→ ψ(0)
i φ(0)I (DM)

(
∗D(Ic0)

)

are obtained as the dual of

ψ(0)
i φ(−δ)I (M)

(
∗D(Ic0)

)
−→ φ(−1)i φ(−δ)I (M)

(
∗D(Ic0)

)

−→ ψ(−1)
i φ(−δ)I (M)

(
∗D(Ic0)

)
,

they are compatible with the K-structure. Hence, they give a good K-
structure on DM. The construction gives a contravariant functor D on
Holgood(X,D,K).

Lemma 6.2.5. — Let D(1) ⊂ D be a hypersurface of X. We have a functor

Φ∗D(1) : Holgood(X,D,K) −→ Holgood(X,D,K)

such that
Forget ◦Φ∗D(1)(M) = Forget(M)(∗D(1))

for any M in Holgood(X,D,K). We also have a natural transformation

M −→ Φ∗D(1)(M).

Such a functor is unique.

Proof. — First, let us observe the uniqueness. LetM ∈ Holgood(X,D,K). We
have I ⊂ ℓ such that D(1) = D(I). For any J ⊂ ℓ, the following isomorphism
is compatible with the K-structure:

φ(0)J\I(M)
(
∗D((J \ I)c)

) α−−−−→ φ(0)J\I(Φ∗D(1)M)
(
∗D((J \ I)c)

)
.

The following induced isomorphism is compatible with the K-structure:

ψ(0)
J∩Iφ

(0)
J\I(M)

(
D(Jc)

) ψ(0)
J∩I(α)−−−−−→ ψ(0)

J∩Iφ
(0)
J\I(Φ∗D(1)M)

(
D(Jc)

)
.

Note that the following natural morphism is an isomorphism:

φ(0)J (Φ∗D(1)M)
(
∗D(Jc)

)
−−−−→ ψ0

J∩Iφ
(0)
J\I(Φ∗D(1)M)

(
∗D(Jc)

)
.

It is compatible with the K-structure by the condition for Φ∗D(1)M. Hence,
the good K-structure of

φ(0)J\I(M)
(
∗D((J \ I)c)

)

uniquely determines the K-structure of φ(0)J (Φ∗D(1)M)(∗D(Jc)). It means the
uniqueness of Φ∗D(1) .

As for the existence of Φ∗D(1) , it is enough to consider the case I = {1}.
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If i ∈ J , we have

φ(0)J

(
M(∗D(1))

)
≃ ψ(0)

1 φ(0)J\{1}(M).

If i ̸∈ J , we have

φ(0)J

(
M(∗D(1))

)
≃ φ(0)J

(
M)(∗D(1)).

The induced K-structures on φ(0)J

(
M(∗D(1))

)
(∗D(Jc)) give a good K-

structure of M(∗D(1)), for which the natural morphism M→M(∗D(1)) is a
morphism in Holgood(X,D,K).

Lemma 6.2.6

◃ For any hypersurface D(1) of X contained in D, we have a unique functor

Φ!D(1) : Holgood(X,D,K) −→ Holgood(X,D,K)

such that, for any M in Holgood(X,D,K),

Forget ◦Φ!D(1)(M) = Forget(M)(!D(1))

with a natural transformation Φ!D(1) → id.

◃ We have Φ⋆D(1) ◦ Φ⋆D(2) = Φ⋆(D(1)∪D(2)).

◃ If dim(D(1) ∩D(2)) < n− 1, then Φ!D(1) ◦ Φ∗D(2) = Φ∗D(2) ◦ Φ!D(1).

Proof. — The first claim follows from Lemma 6.2.5 as the dual. The second
claim follows from the uniqueness. For M ∈ Holgood(X,D,K), the underlying
DX-modules of Φ!D(1) ◦ Φ∗D(2)(M) and Φ∗D(2) ◦ Φ!D(1)(M) are

M(!D(1) ∗D(2)) = M(∗D(2)!D(1)).

We have in Holgood(X,D,K) the natural morphisms

Φ!D(1)(M) −→ Φ!D(1) ◦ Φ∗D(2)(M), Φ!D(1)(M) −→ Φ∗D(2) ◦Φ!D(1)(M).

Then, by the argument for the uniqueness in the proof of Lemma 6.2.5, we
obtain that the K-structures are the same.

We denote Φ⋆D(1)(M) by M(⋆D(1)) for ⋆ = ∗, !.

6.3. Good pre-K-holonomic D-modules

6.3.1. Statements. — Let X = ∆n and D =
⋃ℓ

i=1{zi = 0}. Let
Holpre(X,K) denote the category of pre-K-holonomic DX-modules.
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Proposition 6.3.1. — We have a naturally defined exact fully faithful func-
tor Υ : Hol(X,D,K)→ Holpre(X,K) over Hol(X). We have Υ ◦D = D ◦Υ.
The essential image of Υ is independent of the choice of a holomorphic coor-
dinate system.

Definition 6.3.2. — Any object in the essential image of Υ is called a good
pre-K-holonomic D-module on (X,D). The pre-K-Betti structure is called a
good pre-K-Betti structure. (The definition will be globalized in Definition
6.3.4 below.)

Let V be a good meromorphic flat bundle on (X,D) with a good K-
structure. Let D(1) ⊂ D be a hypersurface of X.

Proposition 6.3.3. — The canonical pre-K-Betti structure of V (!D(1)) is
associated to the good K-structure of V (!D(1)) by Υ.

We shall construct the functor in §6.3.3–§6.3.5. We shall prove the full
faithfulness in §6.3.7. The independence from the coordinate system will be
proved in §6.3.8. Proposition 6.3.3 will be proved in §6.3.6.

6.3.2. Some consequences. — Before going to the proof of Proposition
6.3.1, we give some consequences. The full faithfulness and the independence
on the coordinate system in Proposition 6.3.1 ensure that we can globalize the
notion of good pre-K-holonomic D-modules in Definition 6.3.2.

Definition 6.3.4. — Let Y be any complex manifold with a normal crossing
hypersurface DY . Let M be a good holonomic D-module on (Y,DY ) with a
pre-K-Betti structure F . It is called a good pre-K-holonomic D-module if
its restriction to any holomorphic coordinate neighbourhood is a good pre-K-
holonomic D-module. In that case, F is called a good pre-K-Betti structure.

The category of good pre-K-holonomic D-modules on (Y,DY ) is not abelian
(see §3.1.6). If we would like to work on abelian categories, for example, the
full subcategory of I-good pre-K-holonomic D-modules is abelian, where I is
any good system of ramified irregular values on (Y,DY ).

Let Y be any complex manifold with a normal crossing hypersurface D. Let
V be a good meromorphic flat bundle on (Y,D) with a good K-structure. Let
g be any meromorphic function on (Y,D) such that it is invertible on Y \D.
We take a hypersurface D(1) ⊂ D such that g−1(0) ⊂ D(1). We obtain a good
meromorphic flat bundle V⊗Ia,b

g with a good K-structure on (Y,D). It induces
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pre-K-holonomic D-modules Πa,b
g⋆ (V )(∗D(1)), Ξ(a)

g (V, ∗D(1)) and ψ(a)
g (V, ∗D(1))

with the canonical pre-K-Betti structures. We obtain the following proposition
from Proposition 6.3.3.

Proposition 6.3.5. — The holonomic DY -modules

Πa,b
g⋆ (V )(∗D(1)), Ξ(a)

g (V, ∗D(1)), ψ(a)
g (V, ∗D(1)), φ(a)g (V, ∗D(1))

are naturally good pre-K-holonomic D-modules on (Y,D).

The claims for ψ(a)
g (V, ∗D(1)) and φ(a)g (V, ∗D(1)) will be particularly useful.

6.3.3. Induced pre-K-Betti structures of Ξ(a)
I ψb

J(ι†VI). — In the fol-
lowing, we shall prove Proposition 6.3.1 and Proposition 6.3.3.

Let K " J " I = L ⊂ ℓ. Let VI be an I-good meromorphic flat bundle
on (DI , ∂DI). Let ι : DI → X. For a map f : K " J → {0, 1}, we set
K0(f) := f−1(0) ∩K. We put

Cf (J,K, ι†VI) :=
(
ι†VI ⊗

⊗

k∈K0(f)

I−∞,1
zk ⊗

⊗

k ̸∈K0(f)

I−∞,0
zk

)(
!D

(
f−1(0)

))
.

Let 0 denote the constant map valued in {0}. Let δi denote the map such

that δi(j) = 0 (j ̸= i) and δi(i) = 1. We can identify Ξ(0)
K ψ(0)

J

(
ι†VI

)
as the

kernel of the following morphism:

(104) C0
(
J,K, ι†VI

)
−→

⊕

i∈K%J

Cδi
(
J,K, ι†VI

)
.

If VI has a good K-structure, we obtain a pre-K-Betti structure of

Ξ(0)
K ψ(0)

J (ι†VI) by (104). By taking the tensor product with Ia,a+1 appropri-

ately, we also obtain an induced pre-K-Betti structure of Ξ(a)
K ψ(b)

J (ι†VI).

Lemma 6.3.6. — The following morphisms are compatible with the pre-K-
Betti structures:

Ξ(a)
K ψ(b)

J ψ(1)
i

(
ι†VI

)
−→ Ξ(a)

K ψ(b)
J Ξ(0)

i

(
ι†VI

)
−→ Ξ(a)

K ψ(b)
J ψ(0)

(
ι†VI

)
.

Proof. — It is clear by construction.

Recall that we have the naturally induced good K-structure on ψ(0)
i

(
ι†VI

)

for i ̸∈ I (Lemma 6.1.9).

Lemma 6.3.7. — For any i ̸∈ L, the natural isomorphism

Ξ(0)
K ψ(0)

Ji

(
ι†VI

)
≃ Ξ(0)

K ψ(0)
J

(
ψ(0)
i (ι†VI)

)

is compatible with the induced K-structures.
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Proof. — Both the K-structures are obtained as the kernel of the mor-
phism (104) for (Ji,K).

6.3.4. ℓ-squares of complexes. — For small categories Ai (i = 1, . . . , ℓ),
let

∏ℓ
i=1 Ai denote their product, i.e., the category whose objects and

morphisms are given by ob
(∏ℓ

i=1 Ai

)
=

∏ℓ
i=1 ob(Ai) and Mor(a, b) =

∏
Mor(ai, bi). Let Γ be a small category given by the following commutative

diagram:

(0, 0)
a−−−−→ (0, 1)

b

⏐⏐% c

⏐⏐%

(1, 0)
d−−−−→ (1, 1)

c ◦ a = d ◦ b.

Let A be an abelian category. Let C(A) be the category of complexes in A.
A square in C(A) is a functor F : Γ→ C(A). For a given square F , let H(F )
be the total complex of the following double complex:

F (0, 0)[1]
F (a)+F (b)−−−−−−−→ F (0, 1) ⊕ F (1, 0)

F (c)−F (d)−−−−−−−→ F (1, 1)[−1].

An ℓ-square in C(A) is a functor F : Γℓ → C(A). Let πi : Γℓ → Γℓ−1 be the
projection forgetting the i-th component. For a given ℓ-square F , we obtain
an (ℓ− 1)-square πi∗F by πi∗F (a) = H

(
F|π−1

i (a)

)
.

Lemma 6.3.8. — For i < j, we have an isomorphism πi∗πj∗F ≃ πj−1∗πi∗F .

Proof. — It is enough to consider the case ℓ = 2, (i, j) = (1, 2). The i-th
terms of the both complexes are given by

⊕

a1+a2+b1+b2=i−2

F (a1, a2, b1, b2).

The multiplication of −1 on F (0, 0, 0, 0) ⊕ F (1, 1, 0, 0) ⊕ F (0, 0, 1, 1) ⊕
F (1, 1, 1, 1) interpolates the differentials for πi∗πj∗F and πj−1∗πi∗F .

More generally, for any subset I ⊂ ℓ, I-square in C(A) is a functor ΓI →
C(A). For the naturally defined projection πI : Γℓ → ΓI , we take I = I0 ⊂
I1 ⊂ · · · ⊂ Im = ℓ, which induces the factorization πI = π(1) ◦ π(2) ◦ · · · ◦ π(m),

where π(i) : ΓIi → ΓIi−1 . Then, we obtain an I-square πI∗F := π(1)∗ ◦· · ·◦π(m)
∗ F .

It is well defined up to isomorphisms as above.
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6.3.5. A construction of the functor Υ. — Letm be any positive integer.
Let I ⊂M(X(m),D(m))/H(X(m)) be any good set of ramified irregular values
as in §3.1.1. Let M be any I-good holonomic D-module on (X,D).

Let H ⊂ ℓ. Let us construct an H-square in the category of I-good holo-
nomic D-modules on (X,D). For (i, j) =

(
(ik, jk)

∣∣ k ∈ H
)
∈ obΓH , we have

the following subsets of H:

I(i, j) =
{
k
∣∣ (ik, jk) = (0, 1)

}
, K(i, j) =

{
k
∣∣ (ik, jk) = (1, 0)

}
,

J0(i, j) =
{
k
∣∣ (ik, jk) = (0, 0)

}
, J1(i, j) =

{
k
∣∣ (ik, jk) = (1, 1)

}
.

Then, we put

QH(M, i, j) := Ξ(0)
I(i,j)ψ

(δJ0(i,j)
)

J0(i,j)
ψ(0)
J1(i,j)

φ(0)K(i,j)M.

For k0 ̸∈ H, we have the following naturally induced diagram:

(105)

ψ(1)
k0

Ξ(0)
I ψ

(δJ0)
J0

ψ(0)
J1
φ(0)K M −−−−→ Ξ(0)

k0
Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M

⏐⏐'
⏐⏐'

φ(0)k0
Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M −−−−→ ψ(0)

k0
Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M.

For each decomposition H = {h} ∪ (H − {h}), we have a similar dia-
gram. Thus, we obtain an H-square QH(M) of good holonomic D-modules.
The cohomology of the complex associated to (105) is naturally isomor-

phic to Ξ(0)
I ψ

(δJ0)
J0

ψ(0)
J1
φ(0)K M. Hence, we have a natural quasi-isomorphism

πH∗Qℓ(M) ≃ QH(M). In particular, we have a natural quasi-isomorphism
πℓ∗Qℓ(M) ≃M.

If M has a good K-structure, each Qℓ(M, i, j) is equipped with the pre-

K-Betti structure Fℓ
M(i, j) given as in §6.3.3.

Lemma 6.3.9. — The morphisms in (105) are compatible with the induced
pre-K-Betti structures.

Proof. — The morphisms

ψ(1)
k0

Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M→ Ξ(0)

k0
Ξ(0)
I ψ

(δJ0)
J0

ψ(0)
J1
φ(0)K M→ ψ(0)

k0
Ξ(0)
I ψ

(δJ0)
J0

ψ(0)
J1
φ(0)K M

are compatible with the pre-K-Betti structures by construction, as remarked
in Lemma 6.3.6. Let K ′ := ℓ− (K ( k0). By definition, the morphisms

ψ(1)
k0
φ(0)K M

(
∗D(K ′)

)
→ φ(0)k0

φ(0)K M
(
∗D(K ′)

)
→ ψ(0)

k0
φ(0)K M

(
∗D(K ′)

)
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are compatible with the K-structures. We remark Lemma 6.3.7, and then it
follows that the morphisms

ψ(1)
k0

Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M→ φ(0)k0

Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M→ ψ(0)

k0
Ξ(0)
I ψ

(δJ0 )
J0

ψ(0)
J1
φ(0)K M

are compatible with the pre-K-Betti structures.

Thus, we obtain a pre-K-Betti structure of πℓ∗Qℓ(M) ≃ M, which is in-
dependent of the choice of a factorization of πℓ. It is called the pre-K-Betti
structure of M associated to the good K-structure, and denoted by FM. We
obtain a pre-K-holonomic DX-module Υ(M) := (M,FM). Thus, we obtain
the desired exact functor Υ : Holgood(X,D,K) → Holpre(X,K). It is clearly
exact.

6.3.6. Proof of Proposition 6.3.3. — If M
(
∗D(Hc)

)
= M, any

QH(M, i, j) are equipped with the pre-K-Betti structures, which induce
a pre-K-Betti structure of M.

Lemma 6.3.10. — The associated pre-K-Betti structures of M are the same.

Proof. — The naturally defined morphisms

Ξ(0)
HcΞ

(0)
K ψ

(δJ0)
J0

ψ(0)
J1
φ(0)I (M) −→ Ξ(0)

K ψ
(δJ0 )
J0

ψ(0)
J1
φ(0)I (M)

induce the quasi-isomorphism πℓ∗Qℓ(M)→ πH∗QH(M), which is compatible
with the pre-K-Betti structures.

Let us prove Proposition 6.3.3. By the above consideration, the following
isomorphisms are compatible with the pre-K-Betti structures:

V
(
!D(H)

) ≃−−→ QH
(
V
(
!D(H)

)) ≃←− Qℓ
(
V
(
!D(H)

))
.

Thus, we obtain Proposition 6.3.3.

6.3.7. Full faithfulness. — Let us prove that the functor Υ is fully faithful.
We denote Υ(Mi) byMi to simplify the notation. LetMi ∈ Holgood(X,D,K)
(i = 1, 2). Suppose we are given a morphism ϕ : M1 →M2 in Holpre(X,K).
We would like to prove that ϕ gives a morphism in Holgood(X,D,K).

We use an induction on ρ(M1 ⊕M2). (See §3.1.2 for ρ.) We take a subset
J ⊂ ℓ such that |J | = n−dimSupp(M1⊕M2) and (M1⊕M2)

(
∗D(Jc)

)
̸= 0.

Let g be a holomorphic function such that g−1(0) = D(Jc). Then, Mi(∗g) and
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Mi ⊗ Ia,b
g come from good meromorphic flat bundles with good K-structures

on (DJ ,DJ(Jc)). We have the following morphisms in Holgood(X,D,K):

Mi(!g) −→ Ξ(0)
g

(
Mi(∗g)

)
−→Mi(∗g).

They are compatible with the associated pre-K-Betti structures. By the
localization in Lemma 6.2.5 and Lemma 6.2.6, we obtain the following in
Holgood(X,D,K):

Mi(!g) −→Mi −→Mi(∗g).
Note the uniqueness of good K-structure on Mi(⋆g) in Lemma 6.2.3. We
obtain the following diagram of the pre-K-holonomic D-modules:

M1(!g) −−−−→ Ξ(0)
g (M1(∗g)) ⊕M1 −−−−→ M1(∗g)⏐⏐$ϕ(!g)

⏐⏐$Ξ
(0)
g (ϕ)⊕ϕ

⏐⏐$ϕ(∗g)

M2(!g) −−−−→ Ξ(0)
g (M2(∗g)) ⊕M2 −−−−→ M2(∗g).

We obtain a morphism φ(0)g (ϕ) : φ(0)g (M1)→ φ(0)g (M2) in Holpre(X,K). By

using the inductive assumption, φ(0)g (ϕ) is a morphism in Holgood(X,D,K).
Then, ϕ is obtained as the cohomology of the following:

(106)

ψ(1)
g

(
M1(∗g)

)
−−−−→ Ξ(0)

g
(
M1(∗g)

)
⊕ φ(0)g (M1) −−−−→ ψ(0)

g
(
M1(∗g)

)
⏐⏐$ψ(1)

g ϕ

⏐⏐$Ξ
(0)
g (ϕ)⊕φ(0)g ϕ

⏐⏐$ψ(0)
g ϕ

ψ(1)
g

(
M2(∗g)

)
−−−−→ Ξ(0)

g
(
M2(∗g)

)
⊕ φ(0)g (M2) −−−−→ ψ(0)

g
(
M2(∗g)

)
.

The morphisms in (106) are morphisms in Holgood(X,D,K). Therefore, we
obtain that ϕ is also a morphism in Holgood(X,D,K).

6.3.8. Independence from the coordinate system. — Let us prove that
the essential image of Υ is independent of the choice of a coordinate sys-
tem. Let (w1, . . . , wn) be another holomorphic coordinate system such that
w−1i (0) = z−1i (0). It is enough to prove the following lemma.

Lemma 6.3.11. — If M has a good K-structure with respect to the coordi-
nate system (z1, . . . , zn), it has an induced good K-structure with respect to
(w1, . . . , wn) such that the associated pre-K-Betti structures are the same.

Proof. — We use symbols φ(0)z,I and φ(0)w,I to distinguish the dependence on the
coordinate systems. As remarked in §2.2.7, we have the natural isomorphisms

(10). They induce isomorphisms φ(0)z,I(M) ≃ φ(0)w,I(M) and ψ(a)
i φ(0)z,I(M) ≃

ψ(a)
i φ(0)z,I(M). Hence, we obtain good K-structure of M with respect to
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6.4. MEROMORPHIC FLAT CONNECTIONS WITH GOOD K-STRUCTURE 129

(w1, . . . , wn). Let Qℓ
z(M) and Qℓ

w(M) denote the ℓ-square associated to
M with respect to the coordinate systems (z1, . . . , zn) and (w1, . . . , wn), re-

spectively. It is easy to observe that isomorphisms (10) induce πℓ∗Q
ℓ
z(M) ≃

πℓ∗Q
ℓ
w(M) compatible with pre-K-Betti structures, and they induce the iden-

tity on M. Hence, the associated pre-K-Betti structures on M are the same.
Thus, the proof of Lemma 6.3.11 and Proposition 6.3.1 are finished.

6.4. Meromorphic flat connections with good K-structure

6.4.1. Good K-structure of meromorphic flat connections. — Let X
be a complex manifold with a hypersurface D. Let V be a meromorphic flat
connection on (X,D), i.e., V is a reflexive OX(∗D)-coherent sheaf with a flat
connection. We do not assume that V is good.

Definition 6.4.1. — As in the case of good meromorphic flat bundles, a
K-structure of V means a pre-K-Betti structure of the flat bundle V|X\D.

Recall that, according to K. Kedlaya (see [26], Theorem 8.2.2 of [27]), for
any point P ∈ X, there exist a neighbourhood XP ⊂ X and a projective
birational morphism λP : X̌P → XP such that

(i) λP : X̌P \ λ−1P (D) ≃ XP \D,

(ii) ĎP := λ−1P (D) is normal crossing,

(iii) λ∗PV is a good meromorphic flat bundle.

(See also [44] and Theorem 16.2.1 of [47] for the algebraic case.)

Such (XP ,λP ) is called a local resolution of V in this paper. In the situation,
we set DP := D ∩XP .

Definition 6.4.2. — A K-structure of V is called good at P if the following
holds:

◃ For any local resolution (XP ,λP ) around P , the induced pre-K-Betti
structure of λ∗P (V|XP \D) is a good K-structure of λ∗PV .

A K-structure of V is called good if it is good at any point of X.

If a K-structure of V is good, the induced K-structure on the dual V ∨ is
also good. The following lemma is easy to see.

Lemma 6.4.3. — Let Vi (i = 1, 2) be meromorphic flat bundles on (X,D)
with a good K-structure.
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◃ The naturally induced K-structures on V1⊕V2, V1⊗V2 and Hom(V1, V2)
are good.

◃ Let f : V1 → V2 be a flat morphism which is compatible with the K-
structures. Then, the naturally induced K-structures of Ker f , Cok f
and Im(f) are good.

Let ϕ : X ′ → X be a morphism of complex manifolds such that D′ :=
ϕ−1(D) is normal crossing. We have the induced good meromorphic flat bundle
V ′ = ϕ∗V . A K-structure of V induces a K-structure of V ′.

Lemma 6.4.4. — If the K-structure of V is good, the K-structure of V ′ is
also good. Conversely, suppose that the K-structure of V ′ is good and that ϕ
is surjective. Then, the K-structure of V is also good.

Proof. — Let (XP ,λP ) be a local resolution for V around P ∈ X. We take a
projective birational morphism λ : X̌ ′P → X̌P ×X X ′ such that:

(i) X̌ ′P is smooth,

(ii) the induced morphism ϕP : X̌ ′P → X̌P gives X̌ ′P \Ď′P ≃ X̌P \ĎP , where
Ď′P := λ−1(X̌P ×X D′).

The induced map λ′P : X̌ ′P → X ′ gives a local resolution for V ′. Then, the
claim follows from Lemma 6.1.3.

We obtain the following lemma from Proposition 6.1.4.

Lemma 6.4.5. — Let V be a meromorphic flat connection on (X,D) with a
K-structure. Suppose that, for any morphism ∆→ X with ϕ(∆)∩D = {ϕ(0)},
the induced K-structure of ϕ∗(V ) is good. Then, the K-structure of V is
also good.

We obtain the following lemma from Lemma 6.1.5.

Lemma 6.4.6. — Let V be a meromorphic flat connection with a good K-
structure. Let V1 ⊂ V be a sub-connection such that V1|X\D is compatible with
the K-structure. Then, the induced K-structure of V1 is good. A similar claim
holds for quotients of V .

6.4.2. Canonical pre-K-Betti structures. — Let V be a meromorphic
flat connection on (X,D) with a good K-structure. Let

D = D1 ∪D2
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6.4. MEROMORPHIC FLAT CONNECTIONS WITH GOOD K-STRUCTURE 131

be a decomposition, i.e., Di are unions of irreducible components of D such
that codimX(D1 ∩D2) > 1. Let (XP ,λP ) be any local resolution of V around
P ∈ X. Put

DP1 = D1 ∩XP and ĎP1 := λ−1P (D1).

We have the decomposition ĎP = ĎP1 ∪ ĎP2. We set

VP := V|XP
and V̌P := λ∗PV.

The canonical pre-K-Betti structure V<ĎP1≤ĎP2

V̌P
of V̌P (!ĎP1) induces a pre-

K-Betti structure G of VP (!DP1). Let (X(1)
P ,λ(1)P ) be another local resolution

of V around P ∈ X. It induces a pre-K-Betti structure G(1) of V|X(1)
P

. We

have G(1) = G on XP ∩X(1)
P . Indeed, we can find a local resolution (X(2)

P ,λ(2)P )

with morphisms a : X̌(2)
P → X̌(1)

P and b : X̌(2)
P → X̌P such that

λ(2)P = λ(1)P ◦ a = λP ◦ b.

By using (X(2)
P ,λ(2)P ) with Proposition 6.1.7, we can prove that the pre-K-

Betti structures are equal. Therefore, by gluing the pre-K-Betti structures
around any P ∈ X, we obtain a pre-K-Betti structure of V (!D1). (See Propo-
sition 10.2.9 of [23].)

We denote it by F<D1
V . It is called the canonical pre-K-Betti structure

of V (!D1).
By taking the dual of (V ∨)(!D1), we obtain a pre-K-Betti structure of

(V (!D))(∗D1), denoted by F<D≤D1
V .

Let D3 be a hypersurface of X. Let ϕ : X ′ → X be a projective birational
morphism such that:

(i) X ′ \D′ ≃ X \ (D ∪D3) where D′ := ϕ−1(D ∪D3),

(ii) D′ is normal crossing.

We set D′1 := ϕ−1(D1). We have D′2 such that D′ = D′2 ∪D′1 is a decomposi-
tion. We set V ′ = ϕ∗V (∗D′).

Proposition 6.4.7. — The natural morphisms

V (!D1) −→ ϕ†V
′(!D′1), ϕ†

(
V ′(!D′)(∗D′1)

)
−→ V (!D)(∗D1)

are compatible with the canonical pre-K-Betti structures.

Proof. — Let (XP ,λP ) be a local resolution for V around P ∈ X. We take a
projective birational morphism λ : X̌ ′P → X̌P ×X X ′ such that:

(i) X̌ ′P is smooth,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014

139

139



132 CHAPTER 6. GOOD K-STRUCTURE

(ii) the induced morphism ϕP : X̌ ′P → X̌P gives X̌ ′P \Ď′P ≃ X̌P \ĎP , where
Ď′P := λ−1(X̌P ×X D′).

The induced map λ′P : X̌ ′P → X ′ gives a local resolution for V ′. By Propo-
sition 6.1.7, λ∗P (V )(!ĎP1)→ ϕP †(λ′∗PV

′(!Ď′P1)) is compatible with the pre-K-
Betti structures. Then, we obtain that

V (!D1) −→ ϕ†V
′(!D′1)

is compatible with the pre-K-Betti structures. We obtain the claim for the
other as the dual.

6.4.3. Pre-K-Betti structure on the real blow up. — Let X, D and V
be as in the beginning of §6.4.2. Let G : X → Cℓ be a holomorphic function
such that G−1(D0) ⊂ D1, where D0 =

⋃ℓ
i=1{zi = 0}. We obtain an object

(X,G) in Catℓ. Let π : X̃(G)→ X denote the real blow up.

Lemma 6.4.8. — The natural morphism

Rπ∗DRrapid
X,G

(
V (!D1)

)
−→ DRX

(
V (!D1)

)

is an isomorphism in Db(CX).

Proof. — It is enough to check the claim locally around each P ∈ X. Let
(XP ,λP ) be a local resolution of V around P . We set GP := G|XP

and

ǦP := G ◦ λP . We obtain a morphism λP : (X̌P , ǦP ) → (XP , GP ) in Catℓ.
We set M̌P := V̌P (!Ď1). By Corollary 4.7.3, we have in Db(CX̃P (GP )) the

isomorphism

Rλ̃P∗DRrapid
X̌P ,ǦP

(M̌P ) ≃ DRrapid
XP ,GP

(λP †M̌P ) = DRrapid
X,G

(
V (!D1)

)
|X̃P (GP )

.

By using RπǦP ∗DRrapid
X̌P ,ǦP

(M̌P ) ≃ DRX̌P
(M̌P ), we obtain the claim.

In the situation of the proof of Lemma 6.4.8, let ˜̌XP (ĎP ) be the real blow

up along ĎP . We have the natural map ρ : ˜̌XP (ĎP ) → ˜̌XP (ǦP ). As in
Lemma 5.1.8, we have the following natural isomorphism:

Rρ∗DR≤ĎP2<ĎP1
˜̌XP (ĎP )

(V̌P ) ≃ DRrapid
X̌P ,ǦP

(V̌P
(
!ĎP1)

)
.

In particular, a good K-structure of V̌P induces a K-structure of

DRrapid
X̌P ,ǦP

(
V̌P (!ĎP1)

)
.

We would like to glue them.
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6.4. MEROMORPHIC FLAT CONNECTIONS WITH GOOD K-STRUCTURE 133

Lemma 6.4.9. — Suppose that there exists a finite family
{
(Ui,λi) | i ∈ Λ

} (
|Λ| <∞

)

of local resolutions of V such that X =
⋃

Ui. Then, there exists an object K
in Db(KX̃(G)) with isomorphisms

c1 : K ⊗ C ≃ DRrapid
X,G

(
V (!D1)

)
in Db(CX̃(G)),

c2 : Rπ∗K ≃ F<D1
V in Db(KX),

such that c2 ⊗ C is equal to Rπ∗c1.

Proof. — We shall construct a K-complex K on X̃(G) as follows. For I ⊂ Λ,
we set UI :=

⋂
i∈I Ui. Let ιI : UI → X denote the inclusion. We set

GI := G|UI
.

Take local resolutions λI : ǓI → UI of V . We may assume to have

λIJ : ǓJ −→ ǓI

such that ιI ◦ λI ◦ λIJ = ιJ ◦ λJ for any I ⊂ J . We have

λI1I2 ◦ λI2I3 = λI1I3 .

We put VI := λ∗IV .

We set ĎI := λ−1I (D), and ĎI1 := λ−1I (D1). Let ĎI2 denote the complement

of ĎI1 in ĎI . Let π̌I : ˜̌U I(ĎI) → ǓI denote the real blow up. We have the
induced morphisms

λ̃IJ : ˜̌UJ(ĎJ) −→ ˜̌UI(ĎI)

and the induced morphisms

λ̃I : ˜̌U I(ĎI) −→ ŨI(GI).

Let ι̃I : ŨI(GI)→ X̃(G) denote the inclusion.

Let LK,I denote the K-local system on ˜̌U I(ĎI) with the Stokes structure
associated to VI with good K-structure. We have the constructible sheaves

L<ĎI1≤ĎI2
K,I on ˜̌U I(ĎI), and natural morphisms

λ̃−1IJ L
<ĎI1≤ĎI2
K,I −→ L<ĎJ1≤ĎJ2

K,J .

For any sheaf F , let Gd(F) denote its Godement resolution. By the construc-
tion, we have natural morphisms

(107) λ̃−1IJ Gd(L<ĎI1≤ĎI2
K,I ) −→ Gd(λ̃−1IJ L

<ĎI1≤ĎI2
K,I ) −→ Gd(L<ĎJ1≤ĎJ2

K,J ).
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We set

G•
K,I := ι̃I∗λ̃I∗Gd(L<ĎI1≤ĎI2

K,I )[dX ]

on X̃(G). The morphisms (107) induce λJI : G•
K,I → G•

K,J . They satisfy

λI1I2 ◦ λI2I3 = λI1I3 .

We take a K-vector space UK with a basis {ei | i ∈ Λ}. Let UK,I denote
the subspace in

∧• UK generated by ei1 ∧ · · · ∧ eim where I = (i1, . . . , im).
For m ∈ Z≥0, we set

Km,•
K :=

⊕

|I|=m+1

G•
I,K ⊗ UK,I.

We have the morphism Km,•
K → Km+1,•

K induced by the morphisms

λI,I∪{j} ⊗ (ej ∧ •).

They give a double complex K•,•
K of KX̃(G)-modules. The total complex is

denoted by K•
K .

We have the C-local systems LI with the Stokes structure on ˜̌UI(ĎI) asso-
ciated to V . Using LI with the same construction, we obtain complexes G•

C,I ,
a double complex K•,•

C and a complex K•
C.

We have naturally defined isomorphisms

L<ĎI1≤ĎI2
K,I ⊗ C −→ L<ĎI1≤ĎI2

I .

The natural morphisms

Gd(L<ĎI1≤ĎI2
K,I )⊗ C −→ Gd(L<ĎI1≤ĎI2

I )

are quasi-isomorphisms. By the projection formula, we have the natural iso-
morphisms

ι̃I∗λ̃I∗
(
Gd(L<ĎI1≤ĎI2

K,I )[dX ]⊗ C
)
≃ GK,I ⊗ C.

It also implies that the complex (ι̃ ◦ λ̃I)∗(Gd(L<ĎI1≤ĎI2
K,I )⊗C) represents

R(ι̃ ◦ λ̃I)∗
(
Gd(L<ĎI1≤ĎI2

K,I )⊗ C
)
.

Hence, the natural morphism GK,I ⊗C→ GC,I is a quasi-isomorphism. Then,
it is easy to deduce that the natural morphism K•

K ⊗K C → K•
C is a quasi-

isomorphism.

We have the natural quasi-isomorphism

L<ĎI1≤ĎI2
I [dX ] −→ DR<ĎI1≤ĎI2

˜̌UI(ĎI )
(V̌I).
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We have morphisms

λ̃−1JI DR<ĎI1≤ĎI2
˜̌UI (ĎI)

(V̌I) −→ DR<ĎJ1≤ĎJ2
˜̌UJ (ĎJ )

(V̌J).

By applying the above construction to DR<ĎI1≤ĎI2
˜̌UI(ĎI )

(V̌I) instead of L<ĎI1≤ĎI2
I [dX ],

we obtain double complexes G•,•
I,DR on X̃(G), and a complex K•

DR on X̃(G).
The natural morphism K•

C → K•
DR is a quasi-isomorphism.

Set ȞI := Ǧ−1I (0). We have on ˜̌UI(ȞI) the complexes

DR<ĎI1
˜̌UI(ȞI )

(V̌I) and DR<ȞI
˜̌UI (ȞI)

(
V̌I(!ĎI1)

)
.

By applying the above construction to them, we obtain double complexes G•,•
I,a

(a = 1, 2), and complexes Ka (a = 1, 2) on X̃(G). We have the following
natural quasi-isomorphisms of complexes, as in Lemma 5.1.6:

G•
I,DR ←− G•

I,1 −→ G•
I,2.

Hence, we have the natural quasi-isomorphisms of complexes

K•
DR ←− K•

1 −→ K•
2.

We set

G•
I,3 := ι̃I∗Gd

(
ι̃I
−1DRrapid

X,G

(
V (!D1)

))
.

As before, by the Čech construction we obtain a complex K•
3. We have natural

quasi-isomorphism GI,3 → GI,2, which induce K•
3 → K•

2. By construction, we
have natural quasi-isomorphisms

GdDRrapid
X,G

(
V (!D1)

)
−→ K•

3.

(See Proposition 2.8.4 of [23].) In all, we obtain the sequence of quasi-
isomorphisms

(108) K•
K ⊗ C −→ K•

DR ←− K•
1 −→ K•

2 ←− GdDRrapid
X,G

(
V (!D1)

)
.

We define c1 as the composite of the morphisms.
The projections ϕi : K•

K|Ũi(Gi)
→ G•

K,i|Ũi(Gi)
are quasi-isomorphisms. It is

easy to see that

λ{ij},i|Ũij(Gij)
◦ ϕi|Ũij(Gij)

and λ{ij},j|Ũij(Gij )
◦ ϕj|Ũij(Gij)

are chain homotopic. Hence, π∗K• is a K-perverse sheaf obtained as the gluing
of π∗GK,i|Ũi(Gi)

. We obtain an isomorphism of K-perverse sheaves

F<D1
V ≃ π∗K•,
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which is c2. We can easily compare (c2 ⊗C)|Ui
and Rπ∗(c1)|Ui

, and we obtain
c2 ⊗ C = Rπ∗(c1).

6.4.4. Sequence of hypersurface pairs. — Let X be a complex manifold.
Let H = (H!,H∗) be an ordered pair of (possibly empty) hypersurfaces of X.
Such a pair is called a hypersurface pair in the following. For any coherent
DX-module M, we define

PH(M) :=
(
M(∗H∗)

)
(!H!) and P′H(M) :=

(
M(!H!)

)
(∗H∗).

We set DH = (H∗,H!). Then, we have natural isomorphisms

D(PH(M)) ≃ P′DH(DM).

If we are given a sequence of hypersurface pairs H = (H1,H2, . . . ,HN ), we
set

PH := PHN ◦ · · · ◦PH2 ◦PH1 and P′H := P′HN
◦ · · · ◦P′H2

◦P′H1
.

Clearly, PH can be described as P′H1
for an appropriate H1. We shall use a

special case of this operation in §8.5.

6.4.5. Generalization. — Let X, D and V be as in the beginning of §6.4.2.
Suppose that we are given a sequence of hypersurface pairs H = (H1, . . . ,HN )
contained in D. Let us observe that PH(V ) and P′H(V ) are naturally equipped
with pre-K-Betti structures.

Let P be any point ofX. We take a local resolution (XP ,λP ) of V around P .
By taking the pull back, we obtain a sequence of hypersurface pairs

ȞP := λ∗P (H)

contained in ĎP . For the irreducible decomposition ĎP =
⋃

j∈ΛP
ĎPj, there

uniquely exists a subset IP ⊂ ΛP such that

PȞP
(V̌P ) ≃ V̌P

(
!ĎP (IP )

)
,

where ĎP (IP ) =
⋃

j∈IP ĎPj . Hence, we have the canonical pre-K-Betti struc-

ture V̌P (!ĎP (IP )) induced by the good K-structure of V̌P . By the natural
isomorphism

λP †PȞP
(V̌P ) ≃ PH(V )|XP

,

we obtain a pre-K-Betti structure of PH(V )|XP
.

Suppose that we are given other local resolutions (X(i)
P ,λ(i)P ) (i = 1, 2) as

in §6.4.2. We put V̌ (2)
P := λ(2)∗P V . We have the expression

P
Ȟ
(2)
P
(V̌ (2)

P ) ≃ V̌ (2)
P

(
!Ď(2)

P (I(2)P )
)
.
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For the morphism a : X̌(2)
P → X̌P , we have

ĎP (IP ) = a
(
Ď(2)

P (I(2)P )
)
.

We have the natural isomorphisms of holonomic D-modules

a†PȞ
(2)
P
(V̌ (2)

P ) ≃ a†
(
V̌ (2)
P

(
!a−1(ĎP (IP ))

))
≃ PȞP

(V̌P )

which are compatible with the pre-K-Betti structures. Therefore, we obtain
the pre-K-Betti structures of PH(V ) by gluing the locally given pre-K-Betti
structures. We obtain a pre-K-Betti structure of P′H(V ) in the same way.

They are called the canonical pre-K-Betti structure of PH(V ) and P′H(V ),
denoted by FH,V and F ′H,V .

Lemma 6.4.10. — Let H◦ = (H◦1, . . . ,H
◦
N ) be a sequence of hypersurface

pairs such that H◦i∗ ⊂ Hi∗ and H◦i! ⊃ Hi! for any i. The natural morphisms
PH◦(V ) → PH(V ) and P′H◦(V ) → P′H(V ) are compatible with the K-Betti
structures.

Proof. — It is reduced to the easy case where V is good.

Let G : X → Cℓ be a holomorphic function. The following lemma can
be shown by the same arguments as those in the proof of Lemma 6.4.8 and
Lemma 6.4.9.

Proposition 6.4.11. — Suppose that G−1(D0) ⊂ HN ! for HN = (HN !,HN∗).
Then, the natural morphism

Rπ∗DRrapid
X,G

(
PH(V )

)
−→ DRX

(
PH(V )

)

is an isomorphism. If we are given a finite family of local resolutions of V as in
Lemma 6.4.9, then there exists an object K in Db(KX̃(G)) with isomorphisms

c1 : K ⊗ C ≃ DRrapid
X,G

(
PH(V )

)
in Db(CX̃(G)),

c2 : Rπ∗K ≃ FH,V in Db(KX),

such that c2 ⊗ C is equal to Rπ∗c1.

Let D3, ϕ : X ′ → X and V ′ be as in Proposition 6.4.7. By the pull back,
we obtain a sequence of hypersurface pairs H′ := ϕ−1H.

Proposition 6.4.12. — The natural morphisms

ϕ†PH′

(
V ′(!D′)

)
−→ PH

(
V (!D)

)
and PH(V ) −→ ϕ†PH′(V ′)
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are compatible with the canonical pre-K-Betti structures. The natural mor-
phisms

ϕ†P
′
H′

(
V ′(!D′)

)
−→ P′H

(
V (!D)

)
and P′H(V ) −→ ϕ†P

′
H′(V ′)

are also compatible with the canonical pre-K-Betti structures.

Proof. — It is reduced to the case where V is good. We have

PH(V ) = V (!D(1)) and PH′(V ′) = V ′(!D′(1))

for some D(1) ⊂ D and D′(1) ⊂ D′. We have ϕ(D′(1)) = D(1). We set
L(1) := ϕ−1(D(1)). Then, the natural morphisms

PH(V ) ≃ ϕ†V
′(!L(1)) −→ ϕ†PH′(V ′)

are compatible with the pre-K-Betti structures. Similarly, we obtain that

P′H(V ) −→ ϕ†P
′
H′(V ′)

is compatible with the pre-K-Betti structure. We obtain the others by the
dual.

6.5. Preliminary for push-forward

Let Y be a complex manifold with a hypersurface DY . Let G : X → Y be
a projective morphism of complex manifolds. We set

DX0 := G−1(DY ).

Let DX be a hypersurface of X with a decomposition DX = DX1 ∪DX2 such
that DX0 ⊂ DX2.

Let V be a meromorphic flat connection on (X,DX ) with a good K-
structure. Put M := V (!DX2). Let FM be the canonical pre-K-Betti
structure. Assume the following:

◃ Gi
†M = 0 for any i ̸= 0, and V1 := G0

†(M)(∗DY ) is a meromorphic flat
connection on (Y,DY ).

We put

G := RG∗(FM)|Y−DY
,

which gives a pre-K-Betti structure of G0
†(M)|Y−DY

.

The following theorem will be used in the proof of Theorem 8.1.1. (See
§8.5.1.)
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Theorem 6.5.1. — The K-structure G of V1 is good, i.e., it is compatible
with the Stokes filtrations. Moreover, RG∗FM is the canonical pre-K-Betti
structure of G0

†(M).

Proof. — It is enough to consider the issues locally around any point P of Y .
Let (YP ,λP ) be a local resolution of V1. We take a projective birational mor-
phism λ : X ′ → Y̌P ×Y X such that:

(i) X ′ is smooth,

(ii) D′X := X̌P ×X DX is normal crossing,

(iii) the induced morphism X ′ \D′X → X \DX is an isomorphism.

Let µ : X ′ → X and G′ : X ′ → Y̌P be the induced maps. We obtain
a meromorphic flat connection V ′ = µ∗V with a good K-structure. We set
D′X2 := µ−1(DX2). We have

µ†
(
V ′(!D′X2)

)
= V (!DX2), G′†

(
V ′(!D′X )

)
(∗DP ) = λ∗PV1,

λP †G
′
†
(
V ′(!D′X)

)
≃M|YP

.

It is enough to prove the claims on Y̌P . Hence, we may and will assume
that DY is normal crossing, and that V1 is a good meromorphic flat bundle.

It is enough to consider the case where Y := ∆n and DY :=
⋃ℓ

i=1{zi = 0}.
We have

G0
†(M) = V1(!DY ).

Let F : Y → Cℓ be given by (z1, . . . , zℓ). We set FX := F ◦ G. We obtain
in Catℓ a projective morphism

G : (X,FX ) −→ (Y, F ).

We have Ỹ (F ) = Ỹ (DY ). According to Corollary 4.7.5, we have the following
isomorphism in Db

c(Ỹ (DY )):

RG̃∗DRrapid

X̃(FX)
(M) ≃ DRrapid

Ỹ (D)
(G0

†M).

The good K-structure of V induces a K-structure of DRrapid

X̃(DX2)
(M)

on X̃(DX2) (Lemma 6.4.9). It induces a K-structure of RG̃∗DRrapid

X̃(FX)
(M),

which is compatible with the natural K-structure of G0
†(M)|Y \DY

.

Let us prove that the K-structure of V1 is good. First, we consider the case
where V1 is unramifiedly good. Take a ∈ Irr(V1). Let L(−a) be a meromorphic
flat bundle with a K-structure as in §6.1.4. Then,

V ⊗G∗L(−a)
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has a good K-structure. By applying the previous argument, we obtain that

DRrapid

Ỹ (DY )

(
V1 ⊗ L(−a)

)

has a K-structure, whose restriction to Y \DY is the same as one induced by
the K-structure of V1 and L(−a). Hence, by Lemma 6.1.8, we obtain that the
K-structure of V1 is good if V1 is unramifiedly good.

Let us consider the case where V1 is not necessarily unramified. Let

κ : Y ′ −→ Y

be a ramified covering such that κ∗V1 is unramifiedly good. We put

D′Y := κ−1(DY ).

We take a projective birational map µ : X ′ → X ×Y Y ′ such that:

(i) X ′ is smooth,

(ii) X ′ − µ−1(X ×Y D′) ≃ X − (X ×Y D′).

We set D′X := µ−1(DX ×Y Y ′). Let µ1 : X ′ → X and G′ : X ′ → Y ′ be the
induced morphisms. We have the decomposition D′X = D′X1 ∪D′X2 such that

D′X2 := µ−11 (DX2).

Let M′ := µ∗1(V )(!D′X2). Applying the previous argument to G′ 0† (M′), we
obtain that the K-structure of V1 is good even in the ramified case.

Because the pre-K-Betti structure G of G0
†M is induced by the K-structure

of DRrapid

X̃(D)
(G0

†M), it is canonical. Thus, the proof of Theorem 6.5.1 is finished.

Corollary 6.5.2. — Under the assumption, the induced K-structure of
a meromorphic flat connection G0

†(DM) is good, and RG∗DFM gives the

canonical pre-K-Betti structure of G0
†DM.

We have a variant of Theorem 6.5.1 and Corollary 6.5.2. Let

H = (H1, . . . ,HN )

be a sequence of hypersurface pairs of X contained in DX .

Theorem 6.5.3. — Suppose either

(i) DX0 ⊂ HN !; or

(ii) HN ! = ∅ and DX0 ⊂ HN∗.
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We also assume that Gi
†PH(V ) = 0 unless i = 0. Then, the induced K-

structure of G0
†PH(V )(∗DY ) is good, and the induced pre-K-Betti structure

RG∗(FH,V ) is the canonical pre-K-Betti structure of G0
†PH(V ).

Proof. — The case (i) can be proved by Proposition 6.4.11 and the argument
in the proof of Theorem 6.5.1. The case (ii) can be obtained as the dual.
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CHAPTER 7

K-HOLONOMIC D-MODULES

7.1. Preliminary

7.1.1. Cells and cell functions. — Let X be a complex manifold or a
smooth complex algebraic variety. In the complex analytic case, we use or-
dinary topology. In the algebraic case, we consider Zariski topology. In the
algebraic setting, D-modules are assumed to be algebraic. An open subset U
is called principal if it is the complement of a hypersurface. Let P be a
point of X. For any closed subvariety W of X, let dimP W denote the di-
mension of the germ of W at P . Let M be a holonomic D-module on X with
dimP SuppM ≤ n. An n-dimensional cell ofM at P is a tuple C = (Z,U,ϕ, V )
as follows:

(Cell 1) ϕ : Z → X is a morphism of complex manifolds or smooth com-
plex algebraic varieties, such that P ∈ ϕ(Z) and dimZ = n. We
assume that there exists a neighbourhood of XP of P in X such
that ϕ : ϕ−1(XP ) → XP is projective. We permit that Z may be
non-connected or empty.

(Cell 2) U ⊂ Z is a principal open subset with the complementary hyper-
surface denoted by DZ . We assume that the restriction ϕ|U is an
immersion, and that there exists a hypersurface H of XP such that
ϕ−1(H) = DZ ∩ ϕ−1(XP ).

(Cell 3) V is a meromorphic flat connection on (Z,DZ) with morphisms

ϕ†(V!)P −→MP −→ ϕ†(V )P

such that MP (∗H) ≃ ϕ†(V )P for the hypersurface H in (Cell 2),
where the subscript “P” means the restriction to XP . Note that we
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144 CHAPTER 7. K-HOLONOMIC D-MODULES

have MP (!H) ≃ ϕ†(V!)P , where V! := V (!DZ). The restriction of V
to some connected components of Z may be 0.

The cell C is called good if

(i) DZ is normal crossing,

(ii) V is good on (Z,DZ).

For a given holonomic DX -module M and P ∈ SuppM, there always exists
a cell for M at P . If dimP M = 1, any cell is good. If dimP M = 2, there
always exists a good cell for M at P , due to Kedlaya [26]. (See also [44] for
the algebraic case.) In the algebraic case, there always exists a good cell for
M at P (see [27], [44] and [47]).

Remark 7.1.1. — Let (Z,U,ϕ) be a tuple satisfying (Cell 1) and (Cell 2).
If we are given a meromorphic flat connection V on (Z,DZ), the tuple
(Z,U,ϕ, V ) is called a cell at P .

Let g be a holomorphic or algebraic function on XP . It is called a cell
function for C if U = ϕ(SuppMP \ g−1(0)). For such g, we obtain a descrip-
tion of MP as the cohomology of the complex in the category of analytic or
algebraic holonomic DXP -modules:

ψ(1)
g

(
ϕ†(V )P

)
−→ Ξ(0)

g

(
ϕ†(V )P

)
⊕ φ(0)g (MP ) −→ ψ(0)

g

(
ϕ†(V )P

)
.

For a given cell, a cell function always exists after we shrink XP and Z appro-
priately.

Remark 7.1.2. — Let C be a cell of M at P . If we have a neighbourhood XP

of P for which (Cell 1–3) are satisfied, they are also satisfied for any neigh-
bourhood X ′P ⊂ XP . Hence, we do not have to be careful with a choice
of XP .

7.1.2. Refinement and enhancement. — Let C′ = (Z ′,ϕ′, U ′, V ′) and
C = (Z,ϕ, U, V ) be n-cells of M at P . We say that C′ is a refinement of C,
and denote C′ ≺ C if the following holds:

◃ ϕ′ factors through ϕ in the sense that there exists ϕ1 : Z ′ → Z such that

(i) ϕ′ = ϕ ◦ ϕ1,

(ii) ϕ1(U ′) ⊂ U .

◃ V ′ = ϕ∗1V ⊗OZ′(∗DZ′), where DZ′ := Z ′ − U ′.

In that situation, there exist naturally induced morphisms

(109) ϕ′†(V
′
! )P −→ ϕ†(V!)P −→MP −→ ϕ†(V )P −→ ϕ′†(V

′)P .
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We say that C′ is a dominant refinement of C if U ′ is dense in U .

Let C = (Z,U,ϕ, V ) be an n-cell of M at P . We take an n-dimensional
closed subvariety Z ′ ⊂ X such that dim(ϕ(Z)∩Z ′) < n. We take a refinement
of C such that ϕ(U)∩Z ′ = ∅. Let Z1 be a complex manifold with a projective
birational morphism ϕ1 : Z1 → Z ′ and a smooth open subset U1 ⊂ Z1 such
that

(i) ϕ1|U1
is an immersion,

(ii) Z1 − U1 is normal crossing and the pull back of a hypersurface in X
around P .

We set Z̃ := Z % Z1 and Ũ := U % U1. We have the induced map ϕ̃ : Z̃ → X.
Let Ṽ be a meromorphic flat connection on Z̃ such that Ṽ|Z = V and Ṽ|Z1

= 0.

Then, it is easy to observe that C̃ := (Z̃, Ũ , ϕ̃, Ṽ ) is an n-cell of M, which is
called an enhancement of C.

In the following, for a cell C = (Z,U,ϕ, V ), we implicitly assume
ϕ−1(XP ) = Z by taking a refinement of C. So we omit the subscript ‘P ’
in ϕ†(V!)P and ϕ†(V )P .

7.1.3. K-cells and the induced pre-K-Betti structure on the
nearby cycle sheaves. — Let F be a pre-K-Betti structure of M.
Let C = (Z,U,ϕ, V ) be an n-cell of M at P .

Definition 7.1.3. — We say that F and C are compatible if the following
holds:

◃ The induced K-structure of V|U is good. (We do not assume that V is a
good meromorphic flat bundle. See §6.4.)

◃ The induced morphisms ϕ†(V!) → MP → ϕ†(V ) are compatible with
the pre-K-Betti structures. (See §6.4.2 for the canonical pre-K-Betti
structures of V! and V .)

Such a cell C is called a K-cell of (M,F).

It is not difficult to construct an example of a pre-K-holonomic D-module,
for which there does not exist a K-cell at some point.

Lemma 7.1.4. — Let C = (Z,U,ϕ, V ) be a K-cell of (M,F) at P . Any
refinement C′ = (Z ′, U ′,ϕ′, V ′) of C is also a K-cell. Moreover, the induced
morphisms in (109) are compatible with pre-K-Betti structures.

Proof. — It follows from Proposition 6.4.7.
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146 CHAPTER 7. K-HOLONOMIC D-MODULES

Let g be any cell function for a K-cell C. We observe that Ξ(a)
g (ϕ†(V )),

ψ(a)
g (ϕ†(V )) and φ(a)g (MP ) are equipped with induced pre-K-Betti structures.

We set V a,b
g⋆ := Πa,b

ϕ−1(g)⋆V for ⋆ = ∗, !. Note that ϕ†(V
a,b
g⋆ ) have the canonical

pre-K-Betti structures. Since Ξ(a)
g (ϕ†V ) and ψ(a)

g (ϕ†V ) are of the form

Ker
(
ϕ†(V

a,b
g! )→ ϕ†(V

a′,b′
g∗ )

)
,

they are equipped with induced pre-K-Betti structures, denoted by DΞ(a)
g (ϕ∗FV )

and Dψ(a)
g (ϕ∗FV ). We will use the following obvious lemma implicitly.

Lemma 7.1.5. — The natural isomorphisms

Ξ(a)
g

(
ϕ†(V )

)
≃ ϕ†

(
Ξ(a)
g◦ϕ(V )

)
, ψ(a)

g (ϕ†V ) ≃ ϕ†ψ
(a)
g◦ϕ(V )

are compatible with the induced pre-K-Betti structures.

Since φ(0)g (MP ) is the cohomology of the complex

ϕ†V! −→ Ξ(0)
g (ϕ†V )⊕M −→ ϕ†V,

we obtain a pre-K-Betti structure of φ(0)g (MP ), denoted by Dφ(0)g (F). The
tuples
(
Ξ(a)
g (ϕ†V ),DΞ(a)

g (ϕ∗FV )
)
,
(
ψ(a)
g (ϕ†V ),Dψ(a)

g (ϕ∗FV )
)
,
(
φ(a)g (M),Dφ(a)g (F)

)

are also denoted by Ξ(a)
g ϕ†(V,FV ), ψ

(a)
g ϕ†(V,FV ) and φ(a)g (M,F). We will

often omit to denote the pre-K-Betti structures if there is no risk of confusion.

7.2. K-Betti structure

7.2.1. Definition of K-Betti structure. — Let X be any complex man-
ifold, and P be any point of X. Let (M,F) be a pre-K-holonomic D-module
on X. Let us define the notion of K-Betti structure of M at P , inductively
on the dimension of SuppM at P .

Definition 7.2.1. — In the case dimP SuppM = 0, a K-Betti structure is
defined to be a pre-K-Betti structure.

Let us consider the case dimP SuppM ≤ n. We say that F is a K-
Betti structure of M at P if there exists an n-dimensional K-cell C0 =
(Z0,ϕ0, U0, V0) of (M,F) at P with the properties:

◃ dimP ((SuppM ∩XP ) \ ϕ0(Z0)) < n for some neighbourhood XP of P
in X;
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◃ for any dominant refinement C ≺ C0 and any cell function g for C, the in-
duced pre-K-Betti structure Dφ(0)g (F) is aK-Betti structure of φ(0)g (MP )

at P . Note that dimP φ
(0)
g (M) < n.

Such an n-cell C0 is called a bounding n-cell of M at P .

If C0 is a bounding n-cell of M, any dominant refinement and enhancement
are also bounding n-cells of M.

Definition 7.2.2. — If F is a K-Betti structure of M at any point of X, it
is called a K-Betti structure of M. A holonomic D-module with a K-Betti
structure is called a K-holonomic D-module.

Morphisms of K-holonomic D-modules (M1,F1)→ (M2,F2) are defined to
be morphisms of pre-K-holonomic D-modules. The category of K-holonomic
DX-modules is denoted by Hol(X,K). It is a full subcategory of the category
of pre-K-holonomic DX-modules Holpre(X,K) by definition.

Remark 7.2.3. — As we will see later in §8, for any K-cell C = (Z,U,ϕ, V )
with a cell function g at P , the pre-K-holonomic D-modules ϕ†(V ), ϕ†(V!),

ϕ†Ξ
(a)
g◦ϕ(V ), and ϕ†ψ(a)(V ) on a neighbourhood of P are K-holonomic. We will

see that Hol(X,K) is an abelian category in Proposition 7.2.4 below. So, we
may replace the condition in the higher dimensional case in Definition 7.2.1
with the following, which is easier to check:

◃ We say that F is a K-Betti structure of M at P if there exists an n-
dimensional K-cell C = (Z,ϕ, V, U) with a cell function g at P such

that the induced pre-K-Betti structure Dφ(0)g (F) is a K-Betti structure

of φ(0)g (M) at P .

It seems convenient for the author to begin with a stronger condition as in
Definition 7.2.1 for the development of the theory.

7.2.2. Abelian category. — It is basic to obtain the following.

Proposition 7.2.4. — Hol(X,K) is abelian.

Proof. — Let P be any point of X. We use an induction on the dimension
of SuppP M. Let (fD, fP) : (M1,F1) → (M2,F2) be a morphism of K-
holonomic D-modules. Let us prove that Ker(fP) is a K-Betti structure of
Ker fD.

Let n ≥ max{dimSuppP Mi}. Let Ci,0 = (Zi,0, Ui,0,ϕi,0, Vi,0) (i = 1, 2) be
bounding n-cells for Mi at P . By considering refinement and enhancement,
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we may assume that (Z1,0, U1,0,ϕ1,0) = (Z2,0, U2,0,ϕ2,0), which is denoted by
(Z0, U0,ϕ0). We have an induced morphism fZ0 : V1,0 → V2,0. We obtain a
cell C0(Ker) = (Z0, U0,ϕ0,Ker fZ0) of Ker fD. The K-structure of Ker fD is
good by Lemma 6.4.3.

Let C(Ker) = (Z,U,ϕ,KZ ) be a dominant refinement of C0(Ker).
We have refinements Ci = (Z,U,ϕ, Vi) of Ci,0 with the induced morphism

fZ : V1 → V2. We have Ker fZ ≃ KZ . We obtain the commutative diagram of
pre-K-holonomic D-modules:

ϕ†V1! −−−−→ M1P −−−−→ ϕ†V1⏐⏐"
⏐⏐"

⏐⏐"

ϕ†V2! −−−−→ M2P −−−−→ ϕ†V2.

Hence, the induced morphisms

ϕ†KZ! −→ Ker(fD)P −→ ϕ†KZ

are compatible with the pre-K-Betti structures. We have the commutative
diagram of pre-K-holonomic D-modules:

ϕ†(V
a,b
1,g!) −−−−→ ϕ†(V

a,b
1,g∗)⏐⏐"
⏐⏐"

ϕ†(V
a,b
2,g!) −−−−→ ϕ†(V

a,b
2,g∗).

Hence, the morphisms

Ξ(0)
g (ϕ†V1) −→ Ξ(0)

g (ϕ†V2), ψ(0)
g (ϕ†V1) −→ ψ(0)

g (ϕ†V2)

preserve the pre-K-Betti structures. Therefore, φ(0)g (fD) preserves the pre-K-
Betti structures, i.e.,

Dφ(0)g (fP) :
Dφ(0)g (F1) −→ Dφ(0)g (F2)

is induced. By the assumption of the induction, Ker Dφ(0)g (fP) is a K-Betti
structure. It is easy to obtain that

Dφ(0)g Ker fP = Ker Dφ(0)g (fP).

Then, we can conclude that (Ker fD,Ker fP) is aK-holonomic D-module. The
claims for the cokernel and the image can be proved similarly.
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7.2.3. Dual

Proposition 7.2.5. — Let (M,F) be a K-holonomic DX -module. Then, the
dual D(M,F) := (DM,DF) is also K-holonomic.

Proof. — Let P be any point of SuppM, and let C0 be a bounding n-cell
at P . Let C = (Z,U,ϕ, V ) be any refinement of C0. Let FV and FV ! be the
canonical pre-K-Betti structures of V and V!. Let C∨ := (Z,U,ϕ, V ∨). We
have the induced K-structure of V ∨.

By using Proposition 5.2.1 and Theorem 5.2.2, we obtain that DFV ! and
DFV are the canonical pre-K-Betti structures of V ∨ and V ∨! . Hence, we

obtain that C∨ and DF are compatible. We also obtain that DDΞ(a)
g ϕ∗FV

is equal to the canonical pre-K-Betti structure of Ξ(−a−1)
g ϕ∗V ∨. Moreover,

the induced K-structure of φ(a)g (DMP ) is equal to DDφ(−a−1)g F under the

isomorphism φ(a)g DMP ≃ Dφ(−a−1)g MP . By the inductive assumption, it is
K-Betti structure. Thus, we obtain that D(M,F) is K-holonomic.

7.2.4. Sub-objects and quotient objects. — Let (M,F) be a K-
holonomic D-module.

Proposition 7.2.6. — If (M1,F1) is a subobject of (M,F) in Holpre(X,K),
it is also K-holonomic. A similar claim holds for quotients.

Proof. — Let P be any point of X. We use an induction on the dimension of
the support of M. Let n ≥ dimP SuppM. Let C = (Z,U,ϕ, V ) be a bounding
n-cell of M at P . Let V1 ⊂ V denote the sub-connection induced by M1.
Then, C1 = (Z,U,ϕ, V1) is an n-cell of M1 at P . Let us prove that C1 and F1

are compatible. By Lemma 6.4.6, the K-structure of V1 is good. Let F∗ and
F! denote the canonical K-structures of ϕ†V and ϕ†V!. Let F1∗ and F1! denote
the canonical K-structures of ϕ†V1 and ϕ†V1!. We have the morphisms:

ϕ†(V!) −−−→ M −−−→ ϕ†(V )
!⏐⏐

!⏐⏐
!⏐⏐

ϕ†(V1!) −−−→ M1 −−−→ ϕ†(V1),

F! −−−→ F −−−→ F∗!⏐⏐
!⏐⏐

!⏐⏐

F1! F1 F1∗.

Because the morphism ϕ†(V1!) →M/M1 is 0, the morphism F1! → F/F1 is
also 0, i.e., F1! → F factors through F1. Similarly, we obtain that F1 → F∗
factors through F1∗. Hence, C1 is compatible with F1.

Let f be a cell function for C. We have

DΞ(a)
f (F) ⊃ DΞ(a)

f (F1) and Dψ(a)
f (F) ⊃ Dψ(a)

f F1.
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150 CHAPTER 7. K-HOLONOMIC D-MODULES

Hence, we obtain Dφ(a)f (F) ⊃ Dφ(a)f (F1), which are pre-K-Betti structures

of φ(a)f M and φ(a)f M1. By the assumption of the induction, we obtain

that Dφ(a)f (F1) is a K-Betti structure of φfM1.

7.2.5. Twist. — Let (M,F) be a K-holonomic D-module on X. Let V be
a flat bundle on X with a K-structure, i.e., we have a K-local system FV such
that FV ⊗ C[dimX] ≃ DRX(V ). Then, we obtain a pre-K-Betti structure
F ⊗ FV of M⊗ V.

Lemma 7.2.7. — F ⊗ FV is a K-Betti structure of M⊗ V.

Proof. — Let P be any point of X. We use an induction on dimP SuppM.
Let C = (Z,U,ϕ, V ) be a K-cell of M at P . Then, C′ = (Z,U,ϕ, V ⊗ ϕ∗V) is
a K-cell of M⊗ V at P . Let g be a cell function of C. Then, we have natural
isomorphism of pre-K-holonomic DX -modules

ψ(a)
g

(
ϕ†(V ⊗ ϕ∗V)

)
≃ ψ(a)

g

(
ϕ†(V )

)
⊗ V,

Ξ(a)
g

(
ϕ†(V ⊗ ϕ∗V)

)
≃ Ξ(a)

g

(
ϕ†(V )

)
⊗ V.

Hence, we obtain an isomorphism of pre-K-holonomic D-modules

φ(a)g (M⊗ V) ≃ φ(a)g (M)⊗ V.

By using the inductive assumption, we obtain that φ(a)g (M ⊗ V) is K-
holonomic. Hence, we obtain that M⊗ V is K-holonomic at P .

7.2.6. K-cells

Proposition 7.2.8. — Let (M,F) be a K-holonomic D-module. Then, any
cell C = (Z,U,ϕ, V ) of M is a K-cell.

Proof. — Let P be any point of Supp(M). Let C′P = (Z ′P , U
′
P ,ϕ

′
P , V

′
P ) be a

bounding K-cell of M at P , which is a refinement of C. By Lemma 6.4.4,
we obtain that the induced K-structure of V is good around ϕ−1(P ). By
varying P , we obtain that the K-structure of V is good. Moreover, for P and
C′P as above, the induced morphisms

MP −→ ϕ′P †V
′
P and ϕ†(V )P −→ ϕ′P †V

′
P

are compatible with pre-K-Betti structures, where ϕ†(V )P denotes the restric-
tion to a small neighbourhood of P . Because ϕ†(V )P → ϕ′P †V

′
P is a monomor-

phism, we obtain that MP → ϕ†(V )P is also compatible with pre-K-Betti
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structures. By varying P in X, we obtain that MP → ϕ†(V ) is also com-
patible with pre-K-Betti structures. We can prove that ϕ!V → M is also
compatible with pre-K-Betti structures with a similar argument.

7.3. K(∗D)-Betti structure

We introduce a variant notion of K(∗D)-Betti structure of holonomic
DX(∗D)-modules, where D is a hypersurface. It is rather auxiliary. In-
deed, as proved in §8, it is equivalent to K-Betti structure for holonomic
DX(∗D)-modules, although it will be convenient in some arguments.

7.3.1. Cells and cell functions for holonomic DX(∗D)-modules. —
Let X be any complex manifold or smooth complex algebraic variety, and D
be any hypersurface of X. Let M be any holonomic DX(∗D)-module, i.e., M
is a holonomic DX -module such that M(∗D) = M. A cell of a holonomic
DX(∗D)-module M is defined to be a cell of a holonomic DX -module M. The
notions of refinement and enhancement of a cell of a holonomic DX(∗D)-module
are defined in the same way. However, we will be interested in the morphisms

ϕ†(V!)(∗D) −→MP −→ ϕ†V.

The notion of cell functions is modified. Let C = (Z,U,ϕ, V ) be a cell of a
holonomic DX(∗D)-moduleM. A cell function g of C is a meromorphic function
on X whose poles are contained in D, such that U = SuppM\ (g−1(0) ∪D).

7.3.2. K(∗D)-cell. — Let M be a holonomic DX(∗D)-module. Let F be a
pre-K-Betti structure of M. Let C = (Z,U,ϕ, V ) be an n-cell of M at P .
We say that F and C are compatible if

(i) the induced K-structure of V is good,

(ii) the induced morphisms ϕ†(V!)(∗D) → MP → ϕ†(V ) are compatible
with the pre-K-Betti structures.

Such a cell C is called a K(∗D)-cell of (M,F). Note that condition (i)
implies that ϕ†(V!)(∗D) and ϕ†(V ) are equipped with the canonical pre-K-
Betti structure.

Let g be a cell function for a K(∗D)-cell C. For ⋆ = ∗, !, we set

V a,b
g⋆ (∗D) := (V ⊗ Ia,b

ϕ−1(g))(∗ϕ
−1D).
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Note that ϕ†(V
a,b
g⋆ (∗D)) have the canonical pre-K-Betti structures. Since

Ξ(c)
g (ϕ†V, ∗D) and ψ(c)

g (ϕ†V, ∗D) are of the form

Ker
(
ϕ†

(
V a,b
g! (∗D)

)
−→ ϕ†

(
V a′,b′
g∗ (∗D)

))
,

they are equipped with the induced pre-K-Betti structures DΞ(c)
g (ϕ∗FV ,∗D)

and Dψ(c)
g (ϕ∗FV ,∗D). The tuples

(
Ξ(c)
g (ϕ†V, ∗D),DΞg(ϕ∗FV , ∗D)

)
,

(
ψ(c)
g (ϕ†V, ∗D),Dψg(ϕ∗FV , ∗D)

)

are also denoted by Ξ(c)
g ϕ†(V,FV , ∗D) and ψ(c)

g ϕ†(V,FV , ∗D). We will often
omit to denote the pre-K-Betti structures. We will use the following obvious
lemma implicitly.

Lemma 7.3.1. — The natural isomorphisms

Ξ(a)
g (ϕ†V, ∗D) ≃ ϕ†Ξ

(a)
g (V, ∗ϕ−1D), ψ(a)

g (ϕ†V, ∗D) ≃ ϕ†ψ
(a)
g (V, ∗ϕ−1D)

are compatible with the induced pre-K-Betti structures.

Since φ(0)g (MP , ∗D) is the cohomology of the complex in the category of
pre-K-holonomic DX -modules

ϕ†(V!)(∗D) −→ Ξ(0)
g (ϕ†V, ∗D)⊕MP −→ ϕ†(V )(∗D),

we obtain a pre-K-Betti structure of φ(a)g (MP , ∗D) denoted by Dφ(a)g (F , ∗D).

Let φ(a)g (MP ,F , ∗D) denote the tuple
(
φ(a)g (MP , ∗D),Dφ(a)g (F , ∗D)

)
.

We will often omit to denote the pre-K-Betti structure.

7.3.3. Definition of K(∗D)-Betti structure. — Let us define the notion
of K(∗D)-Betti structure at any point of D, inductively on the dimension of
the support of DX(∗D)-modules. Let (M,F) be a pre-K-holonomic DX(∗D)-
module.

Note that we have M = 0 around P ∈ D in the case dimP SuppM = 0.

Definition 7.3.2. — Let P be any point of D. Suppose dimP SuppM ≤ n.
We say that F is a K(∗D)-Betti structure of M at P if there exists an n-
dimensional K(∗D)-cell C0 = (Z0,ϕ0, U0, V0) at P with the following proper-
ties:

◃ dimP ((SuppM ∩XP ) \ ϕ0(Z0)) < n for some neighbourhood XP of P
in X;
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7.3. K(∗D)-BETTI STRUCTURE 153

◃ for any dominant refinement C ≺ C0 and any cell function g for C as

a DX(∗D)-module, the induced pre-K-Betti structure Dφ(0)g (F , ∗D) is a
K(∗D)-Betti structure at P .

Such an n-cell C0 is called a bounding n-cell of M at P .

If C0 is a bounding n-cell of M, its dominant refinements and enhancements
are also bounding n-cells of M.

Definition 7.3.3. — A pre-K-Betti structure F of M is called a K(∗D)-
Betti structure if it is K-Betti structure of M at any points of X \D, and if
it is K(∗D)-Betti structure of M at any points of D. A holonomic DX(∗D)-
module with a K(∗D)-Betti structure is called a K(∗D)-holonomic DX(∗D)-
module.

Let Hol(X, ∗D,K) ⊂ Holpre(X,K) denote the full subcategory of K(∗D)-
holonomic DX(∗D)-modules. The following lemma is similar to Proposi-
tion 7.2.4.

Lemma 7.3.4. — The category Hol(X, ∗D,K) is abelian.

The following lemma is similar to Proposition 7.2.6.

Lemma 7.3.5. — Let (M,F) be any K(∗D)-holonomic DX -module. Any sub-
object of (M,F) in Holpre(X,K) is also K(∗D)-holonomic. A similar claim
holds for quotients.

The following lemma is analogue of Proposition 7.2.8.

Lemma 7.3.6. — Let (M,F) be a K(∗D)-holonomic DX(∗D)-module. Then,
any cell C = (Z,U,ϕ, V ) of M is a K(∗D)-cell.

7.3.4. Uniqueness. — We have the following uniqueness.

Proposition 7.3.7. — Let M be a holonomic DX(∗D)-module with K(∗D)-
Betti structures Fi (i = 1, 2). If F1|X−D = F2|X−D, then we have F1 = F2.

Proof. — It is enough to consider the issue locally around any point P ∈ D.
We use an induction on dimP SuppM. In the case dimP SuppM = 0, the
claim is clear. Suppose dimP SuppM ≤ n. Let C be any bounding cell at P ,

and let g be any cell function of C. Let Dφ(0)g (Fi, ∗D) be the induced pre-

K(∗D)-Betti structures of φ(0)g (M, ∗D). By the assumption of the induction,
we have

Dφ(0)g (F1, ∗D) = Dφ(0)g (F2, ∗D).
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154 CHAPTER 7. K-HOLONOMIC D-MODULES

Because Fi can be reconstructed from Dφ(0)g (Fi, ∗D) and the canonical

pre-K(∗D)-Betti structures of ψ(a)
g (ϕ∗V, ∗D) and Ξ(a)

g (ϕ∗V, ∗D), we obtain
F1 = F2.

7.3.5. Independence from a compactification. — Let F : X ′ → X be
a projective birational morphism of complex manifolds such that

X ′ −D′ ≃ X −D,

where D′ := F−1(D). Recall that F† denotes the push-forward of pre-K-
holonomic D-modules.

Proposition 7.3.8. — The functor F† induces an equivalence of the cate-
gories Hol(X, ∗D,K) and Hol(X ′, ∗D′,K).

Proof. — It is enough to check the claims locally around any P ∈ D. We begin
with a remark. Let M′ be a holonomic DX′(∗D′)-module. We set M := F†M.
Let C = (Z,U,ϕ, V ) be a cell of M at P . By taking a refinement, we may
assume that ϕ factors through F , i.e., ϕ = F ◦ ϕ′, and that C′ = (Z,U,ϕ′, V )
is a cell of M′. Let g be a cell function for C as a DX(∗D)-module. Note
that g′ = g ◦ F is a cell function for C′. We have a description of M′ as the
cohomology of the complex

(110) ψ(1)
g′ (ϕ

′
†V, ∗D′) −→ Ξ(0)

g′ (ϕ
′
†V, ∗D′)⊕ φ

(0)
g′ (M

′, ∗D′) −→ ψ(0)
g′ (ϕ

′
†V, ∗D′).

By the push-forward F†, it induces a description of M as the cohomology of
the complex

(111) ψ(1)
g (ϕ†V, ∗D) −→ Ξ(0)

g (ϕ†V, ∗D)⊕ φ(0)g (M, ∗D) −→ ψ(0)
g (ϕ†V, ∗D).

Suppose that F ′ is aK(∗D)-Betti structure ofM′. Let us prove that F†F ′ is
aK(∗D)-Betti structure of M. By Lemma 7.3.6, C′ is a K(∗D)-cell of M′. We
obtain that C is a K(∗D)-cell of M. Because the pre-K-holonomic D-module

φ(0)g (M, ∗D) is obtained as F†φ
(0)
g′ (M

′, ∗D), we obtain that φ(0)g (M, ∗D) is
K(∗D)-holonomic by the inductive assumption. Hence, F is also a K(∗D)-
Betti structure. Thus, F† induces a functor

Hol(X ′, ∗D′,K) −→ Hol(X, ∗D,K).

It is clearly faithful.
Let us prove that it is full. We use an induction on the dimensions of the

supports of the holonomic D-modules. Let (M′
i,F ′i) (i = 1, 2) be objects in

Hol(X ′, ∗D′,K). Let

f : F†(M′
1,F ′1) −→ F†(M′

2,F ′2)
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7.3. K(∗D)-BETTI STRUCTURE 155

be a morphism in Hol(X, ∗D,K). We have a morphism f ′ : M′
1 → M′

2

of holonomic DX′(∗D′)-modules. It is enough to show that it is compatible
with the K(∗D)-Betti structures. For the cohomological descriptions (110)

for M′
i, ψ

(a)
g′ (f ′) and Ξ(a)

g′ (f
′) are compatible with the pre-K-Betti structures.

Because φ(a)g (f) is compatible with the K(∗D)-Betti structures, we obtain

that φ(a)g′ (f
′) is compatible with the K(∗D′)-Betti structures. Thus, we obtain

that f ′ is compatible with the K(∗D′)-Betti structures.
Let us prove the essential surjectivity. We use an induction on the dimen-

sion of the support. Let M and M′ be as above. Let F be a K(∗D)-Betti
structure of M. By the inductive assumption, the K(∗D)-Betti struc-

ture of ψ(a)
g (ϕ†(V ), ∗D) and φ(a)g (M, ∗D) induce K(∗D)-Betti structures

of ψ(a)
g′ (ϕ′†(V ), ∗D′) and φ(a)g′ (M

′, ∗D′), which are compatible with the natural

morphisms. We also have the canonical K-Betti structures of ψ(a)
g′ (ϕ′†(V ), ∗D′)

and Ξ(a)
g′ (ϕ

′
†V, ∗D′). By Proposition 7.3.7, the induced K(∗D)-Betti struc-

tures on ψ(a)
g′ (ϕ′†(V ), ∗D′) are the same. Hence, (110) is a complex of

K(∗D)-holonomic D(∗D)-modules. Hence, we have an induced K(∗D)-Betti
structure of M′. The functoriality is clear from the above construction.
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CHAPTER 8

FUNCTORIALITY PROPERTIES

8.1. Statements

We give several statements.

Theorem 8.1.1. — Let F : X → Y be any projective morphism of com-
plex manifolds. For any K-holonomic DX-module (M,F), the push-forward
F i
†(M,F) := (F i

†M, F i
†F) are also K-holonomic for any i.

Here, F i
†F denotes the i-th cohomology of RF∗F with respect to the middle

perversity.

Theorem 8.1.2. — Let X be any complex manifold with a normal cross-
ing hypersurface D. Any good pre-K-holonomic D-module on (X,D) is K-
holonomic.

See Definition 6.3.4 for good pre-K-holonomic D-modules.

Theorem 8.1.3. — Let X be a complex manifold with a hypersurface D. Let
H be a sequence of hypersurface pairs contained in D. Let V be any mero-
morphic flat connection on (X,D) with a good K-structure. Then, the pre-K-
holonomic D-module PH(V ) is K-holonomic.

See §6.4 for hypersurface pairs and PH(V ).

Theorem 8.1.4. — Let X be any complex manifold with a hypersurface D.
We have a unique functor Hol(X,K) → Hol(X, ∗D,K) with the following
properties:

◃ It is an enhancement of the functor

Hol(X) −→ Hol(X, ∗D), M $−→M(∗D).
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158 CHAPTER 8. FUNCTORIALITY PROPERTIES

◃ For any (M,F) ∈ Hol(X,K), the natural morphism M → M(∗D) is
compatible with the induced pre-K-Betti structures.

8.1.1. Auxiliary statements. — We will use an induction on the dimen-
sion of the supports of D-modules for the proof. Let SI(≤ n) denote the
statement of Theorem 8.1.1 in the case dimSuppM ≤ n.

Let GOOD(≤ n) means the following:

◃ the claim of Theorem 8.1.2 holds if dimSuppM ≤ n;
◃ the claim of Theorem 8.1.3 holds if dimX ≤ n.

For any complex manifold X with a hypersurface D, let

Hol≤n(X,K) ⊂ Hol(X,K)

denote the full subcategory of K-holonomic DX -modules (M,F) with
dimSuppM ≤ n.

We use the symbols Hol≤n(X), Hol≤n(X, ∗D) and Hol≤n(X, ∗D,K) with a
similar meaning.

Let LOC(≤ n) means the following:

◃ The claim of Theorem 8.1.4 holds if we replace Hol(X,K), Hol(X, ∗D,K),
etc., by Hol≤n(X,K), Hol≤n(X, ∗D,K), etc.

Our induction will proceed as follows:

◃ SI(< n) + GOOD(< n) =⇒ GOOD(≤ n) (§8.2.3 and §8.2.4);
◃ SI(< n) + GOOD(≤ n) + LOC(< n) =⇒ LOC(≤ n) (§8.3.3);
◃ SI(< n) + GOOD(≤ n) + LOC(≤ n) =⇒ SI(≤ n) (§8.5).

Remark 8.1.5. — In the proof, we will observe the equivalence of K(∗D)-
Betti structure and K-Betti structure. (See Lemma 8.3.1.)

8.2. Step 1

8.2.1. K-cell. — Let ϕ : Z → X be a projective morphism of complex
manifolds such that dimZ = n. Let DZ be a hypersurface of Z. Assume that
ϕ|Z−DZ

is an immersion. Let V be a meromorphic flat connection on (Z,DZ)
with a good K-structure. We have the canonical pre-K-Betti structures FV

and FV ! of V and V (!DZ), respectively. More generally, for any sequence of hy-
persurface pairs H contained in DZ , we obtain the canonical pre-K-holonomic
DZ -modules PH(V ). Note that the natural morphisms

V (!DZ) −→ PH(V ) −→ V
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are compatible with the pre-K-Betti structures. Hence, we can regard
(Z,U, id, V ) as a K-cell of PH(V ).

Lemma 8.2.1. — Suppose SI(< n) and GOOD(< n). Let g be any cell func-
tion for C0 = (Z,U,ϕ, V ). We set

gZ := g ◦ ϕ.

The pre-K-holonomic φ(a)gZ (PH(V )) and φ(a)g (ϕ†PH(V )) are K-holonomic. In

particular, ψ(a)
gZ (V ) and ψ(a)

g ϕ†(V ) are K-holonomic.

Proof. — By SI(< n), it is enough to prove that φ(0)gZ (PH(V )) is K-holonomic.
It is enough to consider the issue locally around any point P ∈ DZ . We take
a local resolution (ZP ,λP ) of V . We put

ǧP := gZ ◦ λP and ȞP := λ−1P (H), V̌P := λ∗PV.

We have the good pre-K-holonomic DŽP
-module φ(0)ǧP

(PȞP
(V̌P )) (Proposi-

tion 6.3.5). By GOOD(< n), it isK-holonomic. By SI(< n), λP †φ
(0)
ǧP

(PȞP
(V̌P ))

is K-holonomic, which means that φ(0)gZ (PH(V )) is K-holonomic at P .

Proposition 8.2.2. — Suppose that SI(< n) and GOOD(< n) hold. Then,
the pre-K-holonomic D-modules ϕ†(V,FV ) and ϕ†(V!,FV !) are K-holonomic.

Proof. — Let us prove the claim for ϕ†(V,FV ). The other can be proved as the
dual. Let us prove that C0 = (Z,U,ϕ, V ) is a bounding n-cell for ϕ†(V,FV ).
Let P be any point of X. Let C′ = (Z ′, U ′,ϕ′, V ′) be a dominant refinement
at P with a cell function g. We have a factorization ϕ′ = ϕ ◦ ϕ1, where
ϕ1 : Z ′ → Z. We put

g′ := g ◦ ϕ.
We have V ′ = ϕ−11 V ⊗OZ′(∗g′). We have the canonical pre-K-Betti structures
FV ′ and FV ′! of V ′ and V ′! , respectively. According to Proposition 6.4.7, the
morphisms

ϕ1†V
′
! −→ ϕ†V −→ ϕ1†V

′

are compatible with pre-K-Betti structures. Hence, C′ is a K-cell. We obtain
a monomorphism

φ(0)g (ϕ†V ) −→ φ(0)g (ϕ′†V
′)

of pre-K-holonomic DX -modules. By Lemma 8.2.1, φ(0)g (ϕ′†V
′) is K-holo-

nomic. Then, we obtain that φ(0)g (ϕ†V ) is K-holonomic by Proposition 7.2.6.
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Corollary 8.2.3. — Assume that SI(< n) and GOOD(< n). Let f be a cell

function of C = (Z,U,ϕ, V ). Then, Ξ(a)
f (ϕ†V ) with the canonical pre-K-Betti

structures are K-holonomic.

Proof. — Applying the previous results to ϕ†(Π
a,b
f⋆V ) (⋆ = !, ∗), we obtain that

they are K-holonomic. Then, we obtain the corollary.

8.2.2. Gluing. — By Lemma 8.2.1 and Corollary 8.2.3, we have a glu-
ing construction of K-holonomic D-modules. Let X be a complex manifold,
C = (Z,U,ϕ, V ) be a K-cell as in §8.2.1. Let f be a cell function for C on X.
Let Q be a K-holonomic D-module whose support is contained in f−1(0).
Assume that we are given morphisms of K-holonomic D-modules

ψ(1)
f (ϕ†V ) −→ Q −→ ψ(0)

f (ϕ†V ),

such that the composite is equal to the canonical map ψ(1)
f (ϕ†V )→ ψ(0)

f (ϕ†V ).
Then, we obtain a K-holonomic D-module as the cohomology of the following
complex:

ψ(1)
f (ϕ†V ) −→ Ξ(0)

f (ϕ†V )⊕Q −→ ψ(0)
f (ϕ†V ).

8.2.3. Good holonomic D-module with good K-structure

Suppose SI(< n) and GOOD(< n). Let X be a complex manifold with a
simply normal crossing hypersurface D. Let M be a good pre-K-holonomic
D-module on (X,D) such that dimSuppM = n. Let us prove that M is
K-holonomic. We may assume that X = ∆N and D =

⋃ℓ
i=1{zi = 0}. Let

ρ(M) ∈ Z≥ 0 × Z>0 denote the pair of dimSuppM and the number of the
irreducible components of SuppM with the maximal dimension. We use the
lexicographic order on Z≥ 0 × Z>0. For a good holonomic D-module M on
(X,D), there exists J ⊂ ℓ with n = N − |J | such that M(∗g) ̸= 0 comes from
a meromorphic flat bundle V on DJ , where g :=

∏
j ̸∈J
j≤ℓ

zj . Let ι : DJ → X

denote the inclusion. We have a description of M as the cohomology of the
complex of pre-K-holonomic D-modules

ψ(1)
g (ι†V ) −→ Ξ(0)

g (ι†V )⊕ φ(0)g (M) −→ ψ(0)
g (ι†V ).

They are good pre-K-holonomic D-modules. By Lemma 8.2.1 and Corol-

lary 8.2.3, ψ(a)
g (V ) and Ξ(a)

g (V ) areK-holonomic. Because ρ(φ(0)g (M)) < ρ(M),

we obtain that φ(0)g (M) is K-holonomic. Hence, we obtain that M is also
K-holonomic.

MÉMOIRES DE LA SMF 138/139

168

168



8.3. STEP 2 161

8.2.4. Generalization. — We use the notation introduced in §8.2.1.

Proposition 8.2.4. — Suppose that SI(< n) and GOOD(< n). Then, the
pre-K-holonomic DX-module ϕ†PH(V ) is K-holonomic.

Proof. — It is enough to consider the issue locally around any point P ∈ X.
We will shrink X around P without mention. Let C′ = (Z ′, U ′,ϕ′, V ′) be a
dominant refinement of C with a cell function g for C′. We set H′ := (ϕ′)−1(H).

Lemma 8.2.5. — Under the assumptions SI(< n) and GOOD(< n), the pre-
K-holonomic D-module ϕ′†(PH′(V ′)) is K-holonomic.

Proof. — We have the expression of ϕ′†(PH′(V ′)) as the cohomology of the
following complex of pre-K-holonomic D-modules:

ψ(1)
g

(
ϕ′†(V

′)
)
−→ φ(0)g ϕ′†

(
PH′(V ′)

)
⊕ Ξ(0)

g ϕ′†(V
′) −→ ψ(0)

g

(
ϕ′†(V

′)
)
.

By Lemma 8.2.1 and Corollary 8.2.3, we obtain that the pre-K-holonomic

D-modules ψ(a)
g (ϕ′†(V

′)) and Ξ(a)
g ϕ′†(V

′) are K-holonomic. By Lemma 8.2.1,

φ(0)g ϕ′†(PH′(V ′)) is K-holonomic. Hence, we obtain that ϕ′†(PH′(V ′)) is K-
holonomic. Thus, we obtain Lemma 8.2.5.

We have a natural monomorphism of pre-K-holonomic D-modules

ϕ†
(
PH(V )

)
−→ ϕ′†

(
PH′(V ′)

)
,

as remarked in Proposition 6.4.12. Then, by Proposition 7.2.6, we obtain that
ϕ†(PH(V )) is K-holonomic.

8.2.5. K(∗D)-cell. — We use the notation introduced in §8.2.1. Let D be
a hypersurface of X such that DZ1 := ϕ−1(D) ⊂ DZ . We have the pre-
K-holonomic DZ-module V (!DZ1). We obtain the following proposition as a
special case of Proposition 8.2.4.

Proposition 8.2.6. — ϕ†(V (!DZ1)) is K-holonomic.

8.3. Step 2

8.3.1. Equivalence of K(∗D)-Betti structure and K-Betti structure

Let X be any complex manifold with a hypersurface D. Let (M,F) be any
pre-K-holonomic DX(∗D)-module with dimSuppM ≤ n.
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Lemma 8.3.1

◃ Assume SI(< n) and GOOD(< n). If F is a K(∗D)-Betti structure, then
it is a K-Betti structure.

◃ Assume LOC(≤ n). If F is a K-Betti structure, then it is a K(∗D)-Betti
structure.

Proof. — Let us prove the first claim. We use an induction on the dimension
of the support. Let P be any point of D ∩ SuppM. We take a bounding
cell C = (Z,U,ϕ, V ) of (M,F) at P , and a cell function g of C as DX(∗D)-
module. We have a description of M as the cohomology of the complex of
K(∗D)-holonomic DX(∗D)-modules

ψ(1)
g (ϕ†(V ), ∗D) −→ Ξ(0)

g (ϕ†V, ∗D)⊕ φ(0)g (M, ∗D) −→ ψ(0)
g (ϕ†(V ), ∗D).

By the inductive assumption, φ(0)g (M, ∗D) is K-holonomic. By Proposi-

tion 8.2.6, ψ(a)
g (ϕ†(V ), ∗D) and Ξ(a)

g (M, ∗D) are K-holonomic. Hence, we
obtain that M is also K-holonomic.

Let us prove the second claim. By the assumption LOC(≤ n), we obtain a
K(∗D)-holonomic DX(∗D)-module (M(∗D),F(∗D)) with a morphism of pre-
K-holonomic D-modules

(M,F) −→
(
M(∗D),F(∗D)

)
.

Because M = M(∗D), we obtain F = F(∗D), and hence F is a K(∗D)-Betti
structure.

We reformulate the uniqueness (Proposition 7.3.7) as follows.

Corollary 8.3.2. — Let ⋆ be ∗ or !. Assume SI(< n), GOOD(< n) and
LOC(≤ n). Let M be a holonomic D-module on X such that M(⋆D) = M.
Let Fi (i = 1, 2) be K-Betti structures on M. If F1|X−D = F2|X−D,
then F1 = F2.

Proof. — The claim for ⋆ = ∗ follows from Lemma 8.3.1 and Proposition 7.3.7.
We obtain the claim for ⋆ = ! by using the dual with Proposition 7.2.5.

Corollary 8.3.3. — Suppose SI(< n), GOOD(< n) and LOC(≤ n). Let M
be a holonomic DX -module. Assume that one of the following holds;

(i) M(!D)→M is surjective,

(ii) M→M(∗D) is injective.

Let Fi (i = 1, 2) be K-Betti structures on M. If F1|X−D = F2|X−D, then
F1 = F2.
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We reformulate the independence from a compactification (Proposi-
tion 7.3.8). Let F : X ′ → X be a projective birational morphism of complex
manifolds. Let D be a hypersurface, and we put

D′ := F−1(D).

Assume X ′ −D′ ≃ X −D.

Proposition 8.3.4. — Assume that SI(< n), GOOD(< n) and LOC(≤ n)
hold. Let M′ be a holonomic DX′(∗D′)-module. We set M := F†M′.

◃ If F ′ is a K-Betti structure of M′, then F∗F ′ is a K-Betti structure
of M.

◃ If F is a K-Betti structure of M, then M′ is equipped with a K-
Betti structure F ′ such that F ′|X′−D′ = F|X−D under the isomorphism

M′
|X′−D′ ≃M|X−D. It is functorial.

8.3.2. K(∗D)-cell. — Let ϕ : Z → X be a projective morphism of complex
manifolds such that dimZ = n. Let DZ be a normal crossing hypersurface
of Z. Assume that ϕ|Z−DZ

is an immersion. We suppose

D1 := ϕ−1(D) ⊂ DZ .

Let V be a meromorphic flat connection on (Z,DZ) with a good K-structure.
We obtain the pre-K-holonomic DZ -modules V and V!(∗D1).

Proposition 8.3.5. — Assume that SI(< n), GOOD(< n) and LOC(< n)
hold. Then, ϕ†V!(∗D1) and ϕ†V are K(∗D)-holonomic.

Proof. — Let us prove that C0 = (Z,U,ϕ, V ) is a bounding n-cell at any
P ∈ D ∩ ϕ(Z). It is enough to consider the issue locally. We shall shrink X
without mention.

Let C′ = (Z ′, U ′,ϕ′, V ′) be a dominant refinement at P with a cell function g
as DX(∗D)-modules. We have a factorization ϕ′ = ϕ ◦ϕ1, where ϕ1 : Z ′ → Z.
We put

g′ := g ◦ ϕ′ and D′1 := (ϕ′)−1D.

We have V ′ = ϕ−11 V ⊗ OZ′(∗g′). According to Proposition 6.4.7, the mor-
phisms ϕ′†(V

′
! )(∗D) → ϕ†(V!)(∗D) → ϕ†V → ϕ′†V

′ are compatible with the
canonical pre-K-Betti structures. We obtain the induced pre-K-Betti struc-

tures of φ(a)g (ϕ†(V ), ∗D) and φ(a)g (ϕ†(V!), ∗D).

We obtain pre-K-holonomic D-modules φ(a)g′ (V
′
! , ∗D′1) and φ(a)g′ (V

′, ∗D′1)
on Z ′. They are K-holonomic, which can be proved by the argument in the
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proof of Lemma 8.2.1. We obtain that

φ(a)g (ϕ′†V
′, ∗D) and φ(a)g

(
ϕ′†(V

′
! ), ∗D

)

are K-holonomic by the assumption SI(< n).

By Lemma 8.3.1 and assumption LOC(< n),

φ(a)g (ϕ′†V
′, ∗D) and φ(a)g (ϕ′†V

′
! , ∗D)

are K(∗D)-holonomic. Because φ(a)g (ϕ†V, ∗D) ⊂ φ(a)g (ϕ′†V
′, ∗D) is compatible

with the pre-K-Betti structures, φ(a)g (ϕ†V, ∗D) is also a K(∗D)-holonomic by
Lemma 7.3.5. Since the surjection

φ(a)g (ϕ′†V
′
! , ∗D) −→ φ(a)g (ϕ†V!, ∗D)

is compatible with the pre-K-Betti structures, φ(a)g (ϕ†V!, ∗D) is also K(∗D)-
holonomic by Lemma 7.3.5.

Corollary 8.3.6. — Assume that SI(< n), GOOD(< n) and LOC(< n)
hold. Let f be a cell function of an n-dimensional cell C = (Z,U,ϕ, V ) as

DX(∗D)-module. Then, ψ(a)
f (ϕ†V, ∗D) and Ξ(a)

f (ϕ†V, ∗D) with the canonical
pre-K-Betti structures are K(∗D)-holonomic.

Proof. — Applying the previous results to Πa,b
f⋆ (ϕ†V, ∗D) for ⋆ = ∗, !, we obtain

that they are K(∗D)-holonomic. Then, we obtain the corollary.

8.3.3. Localization. — Let us prove LOC(≤ n) by assuming SI(< n),
GOOD(< n) and LOC(< n). By Proposition 7.3.7, the problem is local.
Let M be a K-holonomic DX -module with dimSuppM ≤ n.

Let P be any point of D. Let (Z,U,ϕ, V ) be a bounding cell of M at P
with a cell function g as K-holonomic D-modules. By taking a refinement, we
may assume U ∩D = ∅. We put g1 := ϕ−1(g) and D1 := ϕ−1(D). We have
the expression of M as the cohomology of the complex of the K-holonomic
D-modules

(112) ψ(1)
g ϕ†(V!) −→ Ξ(0)

g ϕ†(V )⊕ φ(0)g (M) −→ ψ(0)
g ϕ†(V ).

By the assumption of the induction, ψ(a)
g (ϕ†V!, ∗D) and φ(a)g (M, ∗D) are

equipped with the induced K(∗D)-Betti structures. We also have the
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commutative diagram of pre-K-holonomic D-modules

ψ(1)
g (ϕ†V ) −−−−→ φ(0)g (M) −−−−→ ψ(0)

g (ϕ†V )
⏐⏐"

⏐⏐"
⏐⏐"

ψ(1)
g (ϕ†V!, ∗D) −−−−→ φ(0)g (M, ∗D) −−−−→ ψ(0)

g (ϕ†V!, ∗D).

We have the canonical pre-K-Betti structures of ψ(a)
g1 (V, ∗D1) and

Ξ(a)
g1 (V, ∗D1). According to Corollary 8.3.6, their push-forward ϕ†ψ

(a)
g1 (V, ∗D1)

and ϕ†Ξ
(a)
g1 (V, ∗D1) are K(∗D)-holonomic.

We also have the commutative diagram of pre-K-holonomic D-modules

ϕ†ψ
(1)
g1 (V ) −−−−→ ϕ†Ξ

(0)
g1 (V ) −−−−→ ϕ†ψ

(0)
g1 (V )

⏐⏐"
⏐⏐"

⏐⏐"

ϕ†ψ
(1)
g1 (V, ∗D1) −−−−→ ϕ†Ξ

(0)
g1 (V, ∗D1) −−−−→ ϕ†ψ

(0)
g1 (V, ∗D1).

By Proposition 7.3.7, the identification

ϕ†ψ
(a)
g1 (V, ∗D1) ≃ ψ(a)

g (ϕ†V, ∗D)

is compatible with the pre-K-Betti structures. Hence, we obtain a K(∗D)-
Betti structure of M(∗D) with a morphism of pre-K-holonomic D-modules
M→M(∗D) whose restriction to X−D is an isomorphism. The functoriality
is clear from the above construction.

8.3.4. Twist. — Let (M,F) be any K(∗D)-holonomic D(∗D)-module such
that dimSuppM ≤ n. Let V be a meromorphic flat connection on (X,D)
with a good K-structure FV . According to Lemma 7.2.7, FM|X−D ⊗FV|X−D
is a K-Betti structure of (M⊗ V)|X−D.

Proposition 8.3.7. — Assume that SI(< n), GOOD(< n) and LOC(< n)
hold. There exists a K(∗D)-Betti structure FM⊗V of M⊗ V such that

FM⊗V|X−D ≃ FM|X−D ⊗ FV|X−D.

It is functorial with respect to M and V.

Proof. — Let P ∈ D. It is enough to consider the issue locally around P . We
use an induction on dimP SuppM. Let C = (Z,U,ϕ, V ) be a dominating cell
of M at P . Let g be a cell function for C as DX(∗D)-module. By the inductive
assumption, we have the K(∗D)-Betti structures of

ψ(a)
g (ϕ†V, ∗D) ⊗ V and φ(a)g (ϕ†V, ∗D)⊗ V.
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According to Corollary 8.3.6, we have the K(∗D)-Betti structures of

ψ(a)
g (ϕ†V, ∗D)⊗ V and Ξ(a)

g (ϕ†V, ∗D)⊗ V

induced by the isomorphisms

ψ(a)
g (M, ∗D) ⊗ V ≃ ψ(a)

g (M⊗ V, ∗D), Ξ(a)
g (M, ∗D)⊗ V ≃ Ξ(a)

g (M⊗ V, ∗D).

By the uniqueness, the induced K(∗D)-Betti structures on ψ(a)
g (M, ∗D) ⊗ V

are equal. Because M⊗ V is expressed as the cohomology of the complex

ψ(1)
g (M, ∗D)⊗V −→ Ξ(0)

g (M, ∗D)⊗V⊕φ(0)g (M, ∗D)⊗V −→ ψ(0)
g (M, ∗D)⊗V,

we obtain a K(∗D)-Betti structure on M⊗ V with the desired property.

8.3.5. Nearby, vanishing and maximal functors. — Suppose that
SI(< n), GOOD(≤ n) and LOC(< n) hold. Let (M,F) be a K-holonomic
DX-module with dimSuppM ≤ n. Let f be any holomorphic function on X.
As proved in §8.3.3, we obtain a morphism M→M(∗f) of K-holonomic DX-
modules. By considering the dual, we also obtain a morphism of K-holonomic
DX-modules M(!f)→M.

By Proposition 8.3.7, for any a ≤ b, we have K-holonomic DX-modules

Πa,b
f⋆ (M) (⋆ = ∗, !).

Hence, we obtainK-holonomic DX-modules Πa,b
f⋆!(M). In particular, we obtain

K-holonomic DX-modules Ξ(a)
f (M) and ψ(a)

f (M) with morphisms

M(!f) −→ Ξ(0)
f (M) −→M(∗f) and ψ(1)

f (M) −→ Ξ(0)
f (M) −→ ψ(0)

f (M)

in Hol(X,K). We obtain a K-holonomic DX -module φ(0)f (M) as the cohomol-
ogy of the complex

M(!f) −→ Ξ(0)
f (M)⊕M −→M(∗f)

in Hol(X,K). We can recover M as the cohomology of the complex

ψ(1)
f (M) −→ Ξ(0)

f (M)⊕ φ(0)f (M) −→ ψ(0)
f (M)

in Hol(X,K).

8.4. Some resolutions

This subsection is a preliminary for the proof of Theorem 8.1.1.
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8.4.1. Non-characteristic condition. — Let M be a holonomic D-
module on a complex manifold X. There exists a stratification

Supp(M) =
∐

i∈Λ
Zi

such that

(i) each Zi is a smooth locally closed analytic subset of X,

(ii) Ch(M) =
∐

i∈Λ T ∗Zi
X.

Lemma 8.4.1. — A complex submanifold W ⊂ X is non-characteristic with
respect to M if and only if W and Zi are transversal for any i ∈ Λ. In that
case, for the inclusion ι : W → X, we have Ch(ι∗ι∗M) =

∐
i∈Λ T ∗Zi∩WX.

Proof. — We have subspaces (T ∗Zi
X)|P and (T ∗WX)|P of (T ∗X)|P for any P ∈

W ∩ Zi. Then, W and Zi are transversal at P if and only if

(T ∗WX)|P ∩ (T ∗Zi
X)|P = {0}.

The first claim of the lemma is clear. The second claim follows from general
formulas of the characteristic varieties for the pull back by a non-characteristic
closed immersion and the push-forward by a closed immersion.

Lemma 8.4.2. — Let D be a smooth hypersurface of X. If D is non-
characteristic with respect to M, the natural morphism M(!D)→M⊗O(!D)
is an isomorphism

Proof. — Let i : D → X be the closed immersion. Because D is non-
characteristic with respect to M, we have the exact sequence

0 −→ i∗i
∗M −→M(!D) −→M −→ 0.

We have

0 −→ i∗i
∗OX −→ OX(!D) −→ OX −→ 0.

By the non-characteristic condition and the projection formula, we obtain

0 −→ i∗i
∗M −→M⊗OX(!D) −→M −→ 0.

Then, we obtain the claim of the lemma.

Lemma 8.4.3. — Let Di (i = 1, 2) be smooth hypersurfaces of X such that

(i) D1 and D2 are transversal,

(ii) D1, D2 and D1 ∩D2 are non-characteristic with respect to M.

Then, D2 is non-characteristic with respect to M(∗D1), and we have

(113)
(
M(∗D1)

)
(!D2) ≃

(
M(!D2)

)
(∗D1) ≃M⊗O(!D2)⊗O(∗D2).
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Proof. — By the assumption, Di (i = 1, 2) and D1 ∩D2 are transversal to Zj

for j ∈ Λ. It is elementary to check that D2 is transversal to D1 ∩Zj (j ∈ Λ).
We obtain that D2 is non-characteristic with respect to M(∗D1). We obtain
the isomorphisms (113) from Lemma 8.4.2.

8.4.2. Non-characteristic tuple of hyperplane subbundles. — Let E
be a locally free sheaf on any complex manifold Y . LetX be its projectivization
with the projection G : X → Y . If a section s of OP(E)/Y (1) gives a nowhere
vanishing section of G∗(OP(E)/Y (1)), the zero set of s is called a hyperplane
subbundle of X. For any hyperplane subbundle H of X and P ∈ Y , let H|P
denote the fiber over P .

Let M be any holonomic DX-module. Let H := (H1, . . . ,HN ) be a tu-
ple of hyperplane subbundles of X such that, for each P ∈ Y , the tuple of
hyperplanes (H1|P ,H2|P , . . . ,HN |P ) is of general position.

We say that H is non-characteristic with respect to M if HI :=
⋂

i∈I Hi

are non-characteristic with respect to M for any I ⊂ {1, . . . , N}.
We can prove the following lemma by a standard argument of genericity.

Lemma 8.4.4. — Suppose that (H1, . . . ,HN ) is non-characteristic with re-
spect to M. Let P be any point of Y . Then, if we shrink Y around P ,
we can take a hyperplane subbundle HN+1 such that (H1, . . . ,HN ,HN+1) is
also non-characteristic with respect to M.

Recall the following general lemma.

Lemma 8.4.5. — Let (H1,H2) be a tuple of hyperplane bundles of X, which
is non-characteristic with respect to M. Then, for any i ̸= 0,

Gi
†
(
M(∗H1!H2)

)
= 0.

Proof. — Let Mi (i = 1, 2) be holonomic DX -modules, and let Hi be hyper-
surfaces which is non-characteristic with respect to Mi. Because Mi has a
global good filtration according to [39], we have an exhaustive filtration Ga

(a = 1, 2, . . . ) by coherent OX -submodules of M1. We have

RbG∗(Ga(∗H1)⊗ Ωj
X/Y ) = 0

for any b > 0. Hence, we have

RbG∗M1(∗H1)⊗ Ωj
X/Y = 0.
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Then, we obtain Gi
†M1(∗H1) = 0 for any i > 0. By using the duality, we

obtain that

Gi
†(M2(!H2)) = 0

for any i < 0. Then, the claim follows from Lemma 8.4.3.

8.4.3. Resolutions. — LetX, Y , M be as in §8.4.2 andH = (H1, . . . ,HN )
be a tuple of hyperplane subbundles of X, non-characteristic with respect
to M. Let i := {1, . . . , i}, and let ιHi denote the inclusion Hi ⊂ X. We put

N0 := M(∗H1), Ci := ιHi†ι
∗
Hi
M and Ni := Ci(∗Hi+1).

We have the natural exact sequences

(114) 0 −→M −→ N0 −→ C1 −→ 0, 0 −→ Ci −→ Ni −→ Ci+1 −→ 0.

Hence, we obtain the exact sequence

(115) 0 −→M −→ N0 −→ N1 −→ · · · −→ Nn −→ · · ·

Let H ′ = (H ′j | j = 1, . . . , N ′) be a tuple of hyperplane subbundles of X such
that H %H ′ is non-characteristic with respect to M. We set

Qi,0 := Ni(!H
′
1), Ki,−j := ιH′

j†ι
∗
H′

j
Ni and Qi,−j := Ki,−j(!Hj+1).

We have the natural exact sequences

0 −→ Ki,−1 −→ Qi,0 −→ Ni −→ 0, 0 −→ Ki,−j−1 −→ Qi,−j −→ Ki,−j −→ 0.

Hence, we obtain the exact sequences

0←− Ni ←− Qi,0 ←− Qi,−1 ←− Qi,−2 ←− · · ·

By construction, we have the naturally defined morphisms Qi,−j → Qi+1,−j
and the commutative diagram:

Qi,−j −−−−→ Qi+1,−j⏐⏐"
⏐⏐"

Qi,−j+1 −−−−→ Qi+1,−j+1.

Let Tot(Q•,•) denote the total complex of the double complex Q•,•. We have
natural quasi-isomorphisms

Tot(Q•,•)
≃−−→ N•

≃←−M.

By the construction, for each Qi,−j, there exists a holonomic D-module Pi,−j
such that

(i) (Hi+1,H ′j+1) is non-characteristic with respect to Pi,−j,

(ii) Qi,−j = Pi,−j(∗Hi+1!H ′j+1).
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8.5. Step 3

Let us prove that SI(< n), GOOD(≤ n) and LOC(≤ n) imply SI(≤ n). The
following argument is inspired by [3].

8.5.1. Special case I. — Let G : X → Y be any projective morphism of
complex manifolds with dimX ≤ n. Let D be a hypersurface of X. Let V be
a meromorphic flat connection on (X,D) with a good K-structure. Suppose
that we are given a sequence of hypersurface pairs H contained in D. We
obtain a K-holonomic DX-module M := PH(V ) with the canonical K-Betti
structure F .

Proposition 8.5.1. — If Gi
†M = 0 for i ̸= 0, then RG∗F is a K-Betti

structure of G0
†M.

Proof. — It is enough to argue the issue locally around any points of Y . Let
us consider the case SuppG0

†M ! G(X). We take a holomorphic function f

such that SuppG0
†M ⊂ f−1(0) and G(X) ̸⊂ f−1(0). We set

fX := f ◦G.

As remarked in §8.3.5, we have a description of the K-holonomic D-module

φ(0)fX
M as the cohomology of

M(!fX) −→ Ξ(0)
fX

M(∗fX)⊕M −→M(∗fX).

By the assumption,

G†M(!fX) = G†M(∗fX) = G†Ξ
(0)
fX

M(∗fX) = 0.

Hence, we obtain

G†(M,F) ≃ G†φ
(0)
fX

(M,F)

as pre-K-holonomic D-modules. By SI(< n), we obtain that RG∗F is a K-
Betti structure of G0

†M.

Let us consider the case G(X) = SuppG0
†M. Let P ∈ SuppG0

†M. Let

C = (Z,U,ϕ, E) be a cell of G0
†M at P with a cell function g. We set

gZ := ϕ−1g and gX := G−1g.

We have the K-Betti structures F(∗gX ) of M(∗gX) by LOC(≤ n). By con-
sidering the dual, we obtain the K-Betti structure F(!gX) of M(!gX).
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Lemma 8.5.2. — The K-structure of E is good, and the natural isomorphisms

ϕ†E(⋆gZ) ≃ G†(M)(⋆g)

are compatible with the pre-K-Betti structures for ⋆ = ∗, !.

Proof. — We argue the case ⋆ = !. The case ⋆ = ∗ can be argued similarly.
We take a projective birational morphism κ : X ′ → X such that

(i) X ′ is smooth,

(ii) X ′ − (gX ◦ κ)−1(0) ≃ X − g−1X (0),

(iii) the induced morphism X ′ → Y factors into X ′
GZ→ Z

ϕ→ Y .

We set

gX′ := gX ◦ κ and H′ := ϕ−1(H),

V ′ := κ∗V ⊗O(∗gX′) and M′ := PH′(V ′)(!gX′).

Note that κ†M′ ≃M(!gX) and GZ†M′ = E(!gZ).

We have the canonical pre-K-Betti structure F ′ of M′. We have

Rκ∗F ′ = F(!gX ).

By Theorem 6.5.1, we obtain that the K-structure of E is compatible with
the Stokes structures, and that RGZ∗F ′ is the canonical K-Betti structure of
GZ†M′. Hence, we obtain that RG∗F(!gX) is the canonical K-Betti structure
of G†(M)(!g) = ϕ†E(!gZ). Thus, we obtain Lemma 8.5.2.

Lemma 8.5.3. — The natural isomorphisms

G†Ξ
(a)
gX

(
M(∗gX )

)
≃ Ξ(a)

g (ϕ†E) and G†ψ
(a)
gX

(
M(∗gX )

)
≃ ψ(a)

g (ϕ†E)

are compatible with the induced pre-K-Betti structures.

Proof. — By Lemma 8.5.2, the natural isomorphisms

G†
(
M(∗gX )⊗ Ia,b

gX

)
(⋆gX) ≃ ϕ†E ⊗ Ia,b

gZ (⋆gZ)

are compatible with the induced pre-K-Betti structures. Hence, the
Lemma 8.5.3.

By Lemma 8.5.2, the morphisms ϕ†E! → G†M → ϕ†E are compatible
with the induced pre-K-Betti structures, i.e., C is a K-cell. Hence, we have

an induced pre-K-Betti structure Dφ(0)g (RG∗F) of φ(0)g (G0
†M). We also have

the induced K-Betti structure Dφ(0)gX (F) of φ(0)gXM. By using Lemma 8.5.3, we

obtain Dφ(0)g (RG∗F) = RG∗Dφ
(0)
gX (F) under the isomorphism

φ(0)g (G0
†M) ≃ G0

†φ
(0)
gXM.
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By the assumption SI(< dimX), we obtain that Dφ(0)g (RG∗F) is a K-Betti

structure of φ(0)g (G†M). Thus, we obtain Proposition 8.5.1.

8.5.2. Special case II. — Let G : X → Y be a projective morphism of
complex manifolds. Let ϕ : Z → X be a projective morphism. Let DZ

be a hypersurface of Z. Assume that ϕ|Z−DZ
is an immersion. Let V be a

meromorphic flat connection on (Z,DZ) with a good K-Betti structure.

Suppose that we are given a sequence of hypersurface pairs HZ of Z con-
tained in DZ . We obtain the K-holonomic DZ -modules M := ϕ†PHZ (V ).

Lemma 8.5.4. — Suppose Gi
†M = 0 unless i = 0. Then, the pre-K-

holonomic DY -module G0
†M is K-holonomic.

Proof. — It follows from Proposition 8.5.1.

8.5.3. Special case III. — Let E be a locally free sheaf on a complex
manifold Y . Let X be its projectivization. Let Hi (i = 0, 1, 2) be hyperplane
subbundles. Let N be aK-holonomic D-module onX such that N (∗H0) = N .
By shrinking Y , we may assume that X = Y × Pn for some n.

Lemma 8.5.5. — Let A ! X be any closed complex analytic subset. If we
shrink Y appropriately, there exists a meromorphic function g on X such that

(i) the poles of g are contained in H0,

(ii) A is contained in H0 ∪ g−1(0).

Proof. — Let IA denote the ideal sheaf of A on X. If m is sufficiently large,
we have a non-zero section of IA(mH0) for m.

Lemma 8.5.6. — We can take a meromorphic function g on X such that

(i) the poles of g are contained in H0,

(ii) N (∗g) is obtained as ϕ†V for a cell C = (Z,U,ϕ, V ).

(Note that we do not assume that V is a good meromorphic flat bundle on Z.)

Proof. — We have a decomposition of Supp(N ) into the locally closed com-
plex analytic subsets

∐
Ai such that the characteristic variety of N is

∐
T ∗Ai

X.
Applying the previous lemma to the lower dimensional strata, we find a mero-
morphic function g on X such that

(i) the poles are contained in H0,

(ii) Ai ⊂ H0 ∪ g−1(0) if dimAi < dimSupp(N ).
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By using the resolution of singularity to the irreducible components of
Supp(N ) with the maximal dimension, we obtain the cell.

Suppose that H = (H1,H2) is non-characteristic with respect to N , N (∗g),
N (!g)(∗H0), ψ

(a)
g (N , ∗H0), Ξ

(a)
g (N , ∗H0) and φ

(a)
g (N , ∗H0). In this case, H is

non-characteristic with respect to Πa,b
g! (N , ∗H0) and Πa,b

g∗ (N ) for any a, b.

Lemma 8.5.7. — The induced pre-K-Betti structure of G0
†PHN is a K-Betti

structure.

Proof. — By LOC(≤ n),

PH(Πa,b
g! (N , ∗H0)) and PH

(
Πa,b

g∗N
)

are naturally K-holonomic D-modules. By Lemma 8.4.5, we have

Gi
†PH

(
Πa,b

g! (N , ∗H0)
)
= 0, Gi

†PH(Πa,b
g∗N ) = 0

unless i = 0. According to Lemma 8.5.4,

G0
†PH

(
Πa,b

g! (N , ∗H0)
)

and G0
†PH(Πa,b

g∗N )

are K-holonomic. Hence, we obtain that

G0
†PHΞ(a)

g (N , ∗H0) and G0
†PHψ

(a)
g (N , ∗H0)

are K-holonomic. We have the description of G0
†PHN as the cohomology of

the complex of pre-K-holonomic DY -modules

G0
†PHψ

(1)
g (N , ∗H0) −→ G0

†PHΞ(0)
g (N , ∗H0)⊕G0

†PHφ
(0)
g (N , ∗H0)

−→ G0
†PHψ

(0)
g (N , ∗H0).

By SI(< n), we obtain that G0
†PHφ

(0)
g (N , ∗H0) is K-holonomic. Then, we

obtain Lemma 8.5.7.

8.5.4. Proof of Theorem 8.1.1. — It is enough to consider the case X =
P(E) for some locally free sheaf E on Y . Let (M,F) be a K-holonomic DX-
module with dimSuppM ≤ n. Let us prove that F i

† (M,F) are K-holonomic.

We take a resolution N• of M as in (115) of §8.4.3. Then, by applying
the construction Q•,• in §8.4.2 to each Ni, we take a resolution Tot(Q(N•)•,•)
of M. It is naturally equipped with the K-Betti structure Tot(FQ

•,•,•). Then,

F i
†(M,F) is described as the i-th cohomology of

Tot
(
F 0
†
(
Q(N•)•,•,FQ

•,•,•

))
.
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Hence, it is enough to show that F 0
† (Q(N•)•,•,FQ

•,•,•) are K-holonomic. By the
construction, we have dimSuppQ(Nk)i,j < dimSuppM for (k, i, j) ̸= (0, 0, 0),
to which we can apply the inductive assumption. Hence, it is enough to show
that F 0

† (Q(N0)0,0,FQ
0,0,0) is K-holonomic, which follows from Lemma 8.5.7.
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CHAPTER 9

DERIVED CATEGORY OF ALGEBRAIC
K-HOLONOMIC D-MODULES

We study the standard functors on the derived category of algebraic K-
holonomic D-modules. It is enough to follow very closely the arguments in [3],
[4], [5] and [57], [58]. This section is included for a rather expository purpose.

9.1. Standard exact functors

Let X be a smooth complex quasi-projective variety. We take a smooth
projective completion X ⊂ X such that D = X −X is a hypersurface. We set

Hol(X,K) := Hol(X, ∗D,K),

which is independent of the choice of a completion X (Proposition 8.3.4). Let
Db(Hol(X,K)) denote the derived category of Hol(X,K). We will implicitly
use the following obvious lemma. (Later, we will prove a stronger version in
Theorem 9.4.1.)

Lemma 9.1.1. — The forgetful functor Hol(X,K)→ Hol(X) is faithful.

9.1.1. Dual. — For any M ∈ Hol(X, ∗D,K), we have the K-holonomic
DX(∗D)-module DXM := DX(M)(∗D).

Lemma 9.1.2. — DX(M) is well defined in Hol(X,K).

Proof. — Let X ′ be another smooth projective compactification of X. Put

D′ := X ′ −X.

We may assume to have a projective morphism

ϕ : X ′ −→ X
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176 CHAPTER 9. DERIVED CATEGORY OF K-HOLONOMIC D-MODULES

such that ϕ|X = idX . We have a K-holonomic DX ′(∗D′)-module M′ such that

ϕ†M′ = M, which is unique up to canonical isomorphisms. Then, the natural
isomorphism

ϕ†(DM′)(∗D′) ≃D(M)(∗D)

preserves the K-Betti structure by the uniqueness (Corollary 8.3.2). It implies
the claim of the lemma.

Corollary 9.1.3. — There exists a functor DX on Hol(X,K) which is com-
patible with the standard duality functors on Hol(X) and the category of K-
perverse sheaves. We also have a functor DX on Db(Hol(X,K)), compatible
with the standard duality functors on Db

hol(X) and Db
c(KX). They are unique

up to natural equivalences.

We use the symbol KDX if we would like to emphasize that it is a functor
for K-holonomic D-modules.

Lemma 9.1.4. — For M,N ∈ Hol(X,K), we have a natural isomorphism:

ExtiHol(X,K)(M,N ) ≃ ExtiHol(X,K)(
KDXN ,KDXM).

Proof. — It follows from the comparison of Yoneda extensions.

9.1.2. Localization. — Let H be a hypersurface of X. As is shown in
Theorem 8.1.4 and Proposition 8.3.4, we have the localization

∗H : Hol(X,K) −→ Hol(X,K), M &−→M(∗H).

It is an exact functor. By considering the dual, we obtain an exact functor

!H : Hol(X,K) &−→ Hol(X,K), M &−→M(!H).

They induce exact functors ∗H and !H on Db(Hol(X,K)).

Lemma 9.1.5. — For M,N ∈ Hol(X,K), we have the natural isomorphisms:

ExtiHol(X,K)

(
M,N (∗D)

)
≃ ExtiHol(X,K)

(
M(∗D),N (∗D)

)
,

ExtiHol(X,K)(M(!D),N ) ≃ ExtiHol(X,K)

(
M(!D),N (!D)

)
.

Proof. — It follows from comparisons of Yoneda extensions.
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9.1.3. Nearby cycle, vanishing cycle and maximal functors. — Let g
be an algebraic function on X. By Proposition 8.3.7, we have the exact func-
tors Πa,b

g⋆ (⋆ = ∗, !) on Hol(X,K) given by

Πa,b
g⋆ (M) := (M⊗ Ia,b

g )(⋆g) (a, b ∈ Z).

Hence, we obtain the exact functors Ξ(a)
g , ψ(a)

g and φ(a)g on Hol(X,K). They
induce the corresponding exact functors on Db(Hol(X,K)). We use the sym-

bols KΞ(a)
g , Kψ(a)

g and Kφ(a)g , when we would like to emphasize that they are
functors for K-holonomic D-modules. We remark that the functors are not
compatible with the forgetful functor Db(Hol(X,K))→ Db

c(KX).

The K-Betti structure of Kψ(a)
g (M,F) is denoted by Dψ(a)

g (F) for the dis-

tinction, when we would like to emphasize it. Similar notations such as DΞ(a)
g

and Dφ(a)g are used.

9.2. Push-forward and pull-back

9.2.1. Statements. — Let f : X → Y be an algebraic morphism of quasi-
projective varieties. We take a commutative diagram

X
f−−−−→ Y

a1

⏐⏐" a2

⏐⏐"

X
f̄−−−−→ Y

where

(i) ai are open immersions,

(ii) X and Y are smooth projective,

(iii) HX = X −X and HY := Y − Y are hypersurfaces.

We have a natural equivalence between Hol(X, ∗HX ,K) and Hol(X,K).
Let M ∈ Hol(X, ∗HX ,K) correspond to M ∈ Hol(X,K).

According to Theorem 8.1.1, we obtain the following objects in Hol(Y,K):

Kf i
∗(M) := f i

†M and Kf i
! (M) := f i

†
(
M(!HX)

)
(∗HY ).

They are independent of the choice of X up to natural isomorphisms. Thus,
we obtain cohomological functors Kf i

∗,
Kf i

! : Hol(X,K)→ Hol(Y,K) for i ∈ Z.

Proposition 9.2.1. — For ⋆ = !, ∗, there exists a functor of triangulated
categories

Kf⋆ : D
b
(
Hol(X,K)

)
−→ Db

(
Hol(Y,K)

)
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such that

(i) it is compatible with the standard functor f⋆ : Db
hol(X)→ Db

hol(Y ),

(ii) the induced functor H i(Kf⋆) : Hol(X,K) → Hol(Y,K) is isomorphic
to Kf i

⋆.

It is characterized by the property (i) and (ii) up to natural equivalences.

As in §4 of [57], the pull back is defined to be the adjoint of the push-
forward.

Proposition 9.2.2. — The functor Kf! has the right adjoint Kf !, and Kf∗
has the left adjoint Kf∗. Thus, we obtain the functors

Kf⋆ : Db(Hol(Y,K)) −→ Db
(
Hol(X,K)

)
(⋆ = !, ∗).

They are compatible with the corresponding functors of holonomic D-modules
with respect to the forgetful functor.

Let us consider the case where f is a closed immersion, via which X is
regarded as a submanifold of Y . Let Db

X(Hol(Y,K)) be the full subcategory
of Db(Hol(Y,K)) which consists of the objects M• such that the supports of
the cohomology

⊕
i HiM• are contained in X.

Proposition 9.2.3. — The natural functor Kf! : DbHol(X,K)→Db
X Hol(Y,K)

is an equivalence.

Remark 9.2.4. — It is a deep theorem(1) of Z. Mebkhout that the irregularity
sheaf of any holonomic D-module M is a perverse sheaf. See [43]. By using
the above functors, in the algebraic case, we obtain that the irregularity sheaf
of a K-holonomic D-module is equipped with an induced K-structure which
is clear by the definition of the irregularity sheaf. We may apply the argument
even in the analytic case.

9.2.2. Preliminary. — Let X be a smooth complex projective variety with
a hypersurface D. Let

Db
(
Hol(X, ∗D,K)

)

denote the derived category of Hol(X, ∗D,K). Similarly, let

Db
(
Hol(X, ∗D)

)

denote the derived category of Hol(X, ∗D).

(1) This remark is due to the referee.
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9.2. PUSH-FORWARD AND PULL-BACK 179

Let f : X → Y be a morphism of smooth projective varieties. Let DX and
DY be hypersurfaces of X and Y respectively, such that DX ⊃ f−1(DY ). We
have the functor

Kf i
∗ : Hol(X, ∗DX ,K) −→ Hol(Y, ∗DY ,K),

naturally given by f i
†. We have a decomposition DX = DX1 ∪DX2 such that

DX2 = f−1(DY ). We set DX := (DX1,DX2). We have the functor

Kf i
! : Hol(X, ∗DX ,K) −→ Hol(Y, ∗DY ,K), Kf i

! (M,F) = f i
†P
′
DX

M.

Lemma 9.2.5. — For ⋆ = ∗, !, there exist functors

Kf⋆ : D
b
(
Hol(X, ∗DX ,K)

)
−→ Db

(
Hol(Y, ∗DY ,K)

)

such that

(i) they are compatible with the standard functors f⋆ : Db(Hol(X, ∗DX ))→
Db(Hol(Y, ∗DY )) by the forgetful functors,

(ii) the induced functor H i(Kf⋆) : Hol(X, ∗DX ,K) → Hol(Y, ∗DY ,K) are
isomorphic to Kf i

⋆.

It is characterized by (i) and (ii) up to natural equivalences.

Proof. — Let us consider the case ⋆ = ∗. Let M be a K-holonomic DX(∗DX )-
module. Let H = (H1, . . . ,HM ) be a tuple of hypersurfaces of X. We put

HI :=
⋃

i∈I

Hi.

We take a K-vector space U with a base (e1, . . . , eM ). For I = (i1, . . . , im) ⊂
{1, . . . ,M}, let UI denote the subspace of

∧• U generated by ei1 ∧ · · · ∧ eim .
For m ≥ 0, we set

Cm
∗H(M) :=

⊕

|I|=m+1

M(∗HI)⊗ UI .

For Ii := I * {i} ⊂ {1, . . . ,M}, the natural morphism M(∗HI) →M(∗HIi)
and the multiplication of ei induce

M(∗HI)⊗ UI −→M(∗HIi)⊗ UIi.

They give a complex (C•
∗H(M), ∂∗H ). We have a natural morphism of com-

plexes

M −→ C•
∗H(M).

If
⋂

Hi = ∅, it is a quasi-isomorphism.
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Suppose we are given a tuple of hypersurfaces L = (L1, . . . , LN ). We put
HL = (H1, . . . ,HM , L1, . . . , LN ). The natural projection

C•
∗HL(M) −→ C•

∗H(M)

gives a complex of morphisms.
Let H ′ = (H ′1, . . . ,H

′
N ) be a tuple of hypersurfaces on X. We take a K-

vector space U ′ with a base (e′1, . . . , e
′
N ). For J = (j1, . . . , jn) ⊂ {1, . . . , N},

let U ′J be the subspace of
∧

U ′ generated by e′j1 ∧ · · · ∧ e′jn . For n ≤ 0, we set

Cn
!H′(M) :=

⊕

|J |=−n+1

M(!H ′J)⊗ U ′J .

Let e′∨j denote the dual base. For Jj = J ' {j} ⊂ {1, . . . , N}, the natural
morphism M(H ′Jj)→M(H ′J) and the inner product of e′∨j induce

M(H ′Jj)⊗ U ′Jj −→M(H ′J)⊗ U ′J .

They give a complex (C•

!H′(M), ∂!H ′). We have a natural morphism of com-
plexes

C!H′(M) −→M.

If
⋂

H ′i = ∅, it is a quasi-isomorphism.

Suppose that we are given a tuple of hypersurfaces L′ = (L′1, . . . , L
′
M ). We

put H ′L′ = (H ′1, . . . ,H
′
N , L′1, . . . , L

′
M ). The natural inclusion

C•

!H ′(M) −→ C•

!H′L′(M)

gives a quasi-isomorphism.

Let M• be a complex of K-holonomic DX(∗DX )-modules. Let H and H ′

be tuples of hypersurfaces. The total complex of C•
∗HC•

!H′(M•) is denoted by

C•

∗H!H ′(M•).

The total complexes of C•
∗H(M•) and C•

!H ′(M•) are also denoted by the same
notation. We assume

⋂
Hi =

⋂
H ′j = ∅.

We have the natural quasi-isomorphisms of complexes

C•

∗H!H′(M•) −−−−→ C•
∗H(M•) ←−−−− M•.

Let (H i,H
′
i) (i = 1, 2) be tuples of hypersurfaces as above. We say that

we have a morphism (H1,H
′
1) → (H2,H

′
2) if H1 ⊃ H2 and H ′1 ⊂ H ′2 are

satisfied. Then, we have a naturally defined quasi-isomorphism of complexes:

C•

∗H1!H ′
1
(M•) −→ C•

∗H2!H′
2
(M•).

For a tuple of ample hypersurfaces (H ,H ′) which is non-characteristic with
respect to M• (§8.4.2), we have f i

†Mp(∗HI !HJ) = 0 unless i = 0. For
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9.2. PUSH-FORWARD AND PULL-BACK 181

each M•, we choose such (H(M•),H ′(M•)). We obtain a complex of K-
holonomic DY (∗DY )-modules

Kf∗(M•) := f0
† C•

∗H(M•)!H ′(M•)(M
•).

Let M•
1

a←− M′•
1

b→ M•
2 be morphisms, where a is a quasi-isomorphism.

We take a tuple of ample hypersurfaces (H ,H ′) such that

(i) the tuple (H ,H ′) is non-characteristic with respect to M•
i and M′•

1 ,

(ii) the tuple (H ,H(M•
i ),H

′,H ′(M′
i)) is non-characteristic with respect

to M•
i .

We have the morphism of complexes

C•

∗H!H′(M•
1)

a0←−−−− C•

∗H!H′(M′•
1 ) −−−−→ C•

∗H!H ′(M•
2).

Here, a0 is a quasi-isomorphism. We set H i = H(M•
i ) and H ′i = H ′(M•

i ).
We have the quasi-isomorphisms

C•

∗H!H′(M•
i )

ai1−−−−→ C•

∗H!H′C•
∗Hi

(M•
i )

ai2←−−−− C•

∗H!H′C•

∗Hi!H′
i
(M•

i ).

Note that C•

∗H!H′C•

∗Hi!H′
i
(M•

i ) and C•

∗Hi!H′
i
C•

∗H!H ′(M•
i ) are naturally isomor-

phic. We also have the quasi-isomorphisms

C•

∗Hi!H′
i
C•

∗H!H ′(M•
i )

ai3−−−−→ C•

∗Hi!H′
i
C•
∗H(M•

i )
ai4←−−−− C•

∗HiH
′
i
(M•

i ).

Note that f0
† (a0) and f0

† (aij) are quasi-isomorphisms. They induce a morphism

in Db(Hol(Y, ∗DY ,K)):

(116) Kf0
∗ (M•

1) −→ Kf0
∗ (M•

2)

If we are given morphisms M•
1

a←−M′•
1

b→M•
2 such that a′ and b′ are chain

homotopic to a and b respectively, it is easy to check that the induced mor-
phisms (116) in Db(Hol(Y, ∗DY ,K)) are the same.

Let us check that (116) is independent from the choice of (H ,H ′). Let
(L,L′) be other choice. Take a sequence of sufficiently generic ample hyper-
surfaces (H(j),H ′(j)) (j = 1, . . . , 2L) satisfying the above conditions, such
that

(i) (H(1),H ′(1)) = (H ,H ′) and (H(2L),H ′(2L)) = (L,L′),

(ii) we have morphisms

(H (2m−1),H ′(2m−1))←− (H(2m),H ′(2m)) −→ (H(2m+1),H ′(2m+1)).

Then, it is easy to check that (H ,H ′) and (L,L′) induce the same mor-
phism (116) in Db(Hol(Y, ∗DY ,K)). Hence, the morphism (116) depends only
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on the morphism in Db(Hol(X, ∗DX ,K)) determined by (a, b), i.e., we obtain
a morphism

HomDb(Hol(X,K))(M•
1,M•

2) −→ HomDb(Hol(Y,K))(
Kf∗M•

1,
Kf∗M•

2).

Thus, we obtain a functor

Db
(
Hol(X, ∗DX ,K)

)
−→ Db

(
Hol(Y, ∗DY ,K)

)
.

We set
Kf! :=

KDY ◦ Kf∗ ◦ KDX .

By the construction, they satisfy the conditions (i) and (ii). The uniqueness
follows from the existence of a resolution by K-holonomic D-modules N such
that f i

†N = 0 unless i = 0.

9.2.3. Proof of Proposition 9.2.1. — We take projective completions
X ⊂ X and Y ⊂ Y with the following commutative diagram:

(117)

X
⊂−−−−−−−→ X

f

⏐⏐$ f̄

⏐⏐$

Y
⊂−−−−−−−→ Y .

SetDX := X−X andDY := Y −Y . The functor Kf⋆ : Db(Hol(X, ∗DX ,K))→
Db(Hol(Y , ∗DY ,K)) induces Kf⋆ : Db(Hol(X,K))→ Db(Hol(Y,K)).

Let X ⊂ X ′ and Y ⊂ Y
′
be other projective completions with a commuta-

tive diagram as in (117). We set D′X := X ′ − X and D′Y := Y − Y . Let us
prove that the induced morphisms Kf⋆ : Db(Hol(X,K))→ Db(Hol(Y,K)) are
equal up to natural equivalences. It is enough to consider the case where we
have the commutative diagram:

X ′
f̄ ′

−−−−−−−→ Y
′

ϕX

⏐⏐$ ϕY

⏐⏐$

X
f̄−−−−−−−→ Y .

Here, ϕX and ϕY are projective and birational such that ϕ−1X (DX) = D′X and
ϕ−1Y (DY ) = D′Y . The following diagrams are commutative up to equivalences:

Db
(
Hol(X ′, ∗D′X ,K)

) Kf⋆−−−−→ Db
(
Hol(Y

′
, ∗D′Y ,K)

)

KϕX⋆

⏐⏐$ KϕY ⋆

⏐⏐$

Db
(
Hol(X, ∗DX ,K)

) Kf⋆−−−−→ Db
(
Hol(Y , ∗DY ,K)

)
.
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It implies that Kf⋆ : Db(Hol(X,K)) → Db(Hol(Y,K)) are independent of
the choice of projective completions up to equivalences. Thus, the proof of
Proposition 9.2.1 is finished.

9.2.4. Proof of Proposition 9.2.3. — Let M,N ∈ Hol(X,K). According
to Proposition 3.1.16 of [5], it is enough to check the following effaceability:

◃ For any f ∈ ExtiHol(Y,K)(M,N ), there exists a monomorphism N → N ′

in Hol(X,K) such that the image of f in ExtiHol(Y,K)(M,N ′) is 0.
We can prove it by using the arguments in §2.2.1 and §2.2.2 in [3].

9.2.5. Proof of Proposition 9.2.2. — It is enough to consider the cases

(i) f is a closed immersion,

(ii) f is a projection X × Y → Y .

We closely follow the arguments in §2.19 and §4.4 of [57].

9.2.5.1. Closed immersion. — Let f : X → Y be a closed immersion. Let
M• be a complex of K-holonomic DY -modules. Let Hi (i = 1, . . . , N) be
sufficiently general ample hypersurfaces of Y such that

(i) Hi ⊃ X,

(ii) M• →M•(∗Hi) are monomorphisms,

(iii)
⋂N

i=1 Hi = X.

For any subset I = (i1, . . . , im) ⊂ {1, . . . , N}, let CI be the subspace of∧mCN generated by ei1 ∧ · · · ∧ eim , where ei ∈ CN denotes an element whose
k-th entry is 1 (k = i) or 0 (k ̸= i). For I = I0 ) {i}, we set HI =

⋃
i∈I Hi.

The inclusion Mp(∗HI0)→Mp(∗HI) and the multiplication of ei induces

Mp(∗HI0)⊗ CI0 −→Mp(∗HI)⊗ CI .

For m ≥ 0, we put

Cm(Mp, ∗H) :=
⊕

|I|=m

Mp(∗HI)⊗ CI ,

and we obtain the double complex C•(M•, ∗H). The total complex is denoted
by Tot C•(M•, ∗H). It is easy to observe that the support of the cohomology of
Tot C•(M•, ∗H) is contained in X. According to Proposition 9.2.3, we obtain

Kf !M• := Tot C•(M•, ∗H)

in Db(Hol(X,K)). We obtain a functor

Kf ! : Db
(
Hol(Y,K)

)
−→ Db

(
Hol(X,K)

)
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as in Lemma 9.2.5. Note that the underlying DY -complex is naturally quasi-
isomorphic to f !M•, where f ! is the left adjoint of f† : Db

hol(X)→ Db
hol(Y ).

We have the naturally defined morphism

α : Tot C•(M•, ∗H) −→M•.

We put K• := Cone(α). We have another description. For m ≥ 0, we put

Cm(Mp, ∗H) :=
⊕

|I|=m+1

Mp(∗HI)⊗ CI ,

and we obtain the double complex C •(M•, ∗H). We have a natural quasi-
isomorphism K• ≃ Tot C •(M•, ∗H). By using the second description and
Lemma 9.1.5, we obtain the following vanishing for any N • ∈ Db(Hol(X,K)):

HomDb(Hol(Y,K))(
Kf!N •,K•) = 0.

Hence, we have the following isomorphisms for any K-holonomic DX-
complex N •:

HomDb(Hol(Y,K))(
Kf!N •,M•) ≃ HomDb(Hol(Y,K))(

Kf!N •,Kf!
Kf !M•)

≃ HomDb(Hol(X,K))(N •,Kf !M•)

Hence, we obtain that the above functor Kf ! is the right adjoint of Kf!. By
taking the dual, we obtain the left adjoint Kf∗ of Kf∗.

9.2.5.2. Projection. — Let f : Z × Y → Y be the natural projection. Let
(M,F) be a K-holonomic DY -module. We put

Kf∗(M,F) :=
(
OZ !M[− dimZ],KZ ! F

)
.

It is easy to check that Kf∗(M,F) is K-holonomic. Thus, we obtain the exact
functor

Kf∗ : Db
(
Hol(Y,K)

)
−→ Db

(
Hol(Z × Y,K)

)
.

Let us prove that Kf∗ is the left adjoint of Kf∗. It is enough to repeat the
argument in §4.4 of [57], which we include for the convenience of readers. It
is enough to construct natural transformations

α : id −→ Kf∗
Kf∗ and β : Kf∗Kf∗ −→ id

such that

β ◦ Kf∗α : Kf∗M• −→ Kf∗Kf∗
Kf∗M• −→ Kf∗M•,

Kf∗β ◦ α : Kf∗N • −→ Kf∗
Kf∗Kf∗N • −→ Kf∗N •
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are the identities. We define α as the external tensor product with the natural
map (C,K)→ (H0

DR(Z),H0(Z,K)). For the construction of β, the following
diagram is used:

Z × Y
i−−−−→ Z × Z × Y

q1−−−−→ Z × Y

q2

⏐⏐" p1

⏐⏐"

Z × Y
p2−−−−→ Y.

Here, i is induced by the diagonal Z → Z×Z, qj are induced by the projection
Z×Z → Z onto the j-th component, and pj are the projections. We have the
morphisms of K-holonomic D-complexes

Kf∗Kf∗M• = Kp∗2
Kp1∗M•(118)

≃ Kq2∗
Kq∗1M• −→ Kq2∗(

Ki∗
Ki∗Kq∗1M•) ≃ Ki∗Kq∗1M•.

Lemma 9.2.6. — We have in Db(Hol(Z × Y,K)) a natural isomorphism

Ki∗Kq∗1M• ≃M•.

Proof. — We have the following morphism of K-holonomic D-complexes:

M• α→ Kq1∗
Kq∗1M• −→ Kq1∗

Ki1∗
Ki∗1

Kq∗1M• ≃ Ki∗1
Kq∗1M•.

It is enough to check that the composite of the morphisms is an isomorphism
for the underlying DY -modules. It is enough to consider the issue locally
around any point of Z × Y . Then, it can be checked by a direct computation.

We define β as the composite of (118) with the isomorphism in Lemma 9.2.6.
Let us look at Kf∗β ◦ α, which is the composite of the morphisms

Kf∗M• = Kp1∗M• −→ Kp2∗
Kp∗2

Kp1∗M• −→ Kp2∗
Kq2∗

Kq∗1M•(119)

−→ Kp2∗
Kq2∗

Ki∗
Ki∗Kq∗1M• −→ Kf∗

Ki∗Kq∗1M•

≃ Kf∗M•.

We have a natural identification p2∗q∗2q
∗
1 ≃ p1∗q1∗q∗1 , and p1∗ → p2∗q∗2q

∗
1 in (119)

is induced by α for q1 under the identification. Then, it is easy to see that the
composite is the identity by the construction. As for β ◦Kf∗α, it is expressed
as follows:

Kf∗N • = Kp∗2N • −→ Kp∗2
Kp1∗

Kp∗1N • −→ Kq2∗
Kq∗1

Kp∗1N •(120)

−→ Kq2∗
Ki∗

Ki∗Kq∗2
Kp∗2N • ≃ Kp∗2N • = Kf∗N •.
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We have a natural identification p∗2p
∗
1p1∗ ≃ q2∗q∗2p

∗
2, and p∗2 → p∗2p

∗
1p1∗ in (120)

is induced by α for q2. Then, it is easy to observe that the composite is the
identity. Thus, the proof of Proposition 9.2.2 is finished.

9.3. Tensor product and inner homomorphism

9.3.1. Statement. — Let (Mi,Fi) (i = 1, 2) be K-holonomic D-modules
on Xi.

Proposition 9.3.1. — F1 ! F2 is a K-Betti structure of M1 ! M2. As a
result, we obtain a natural functor

! : Hol(X1,K)×Hol(X2,K) −→ Hol(X1 ×X2,K),

compatible with the standard external products

! : Hol(X1)×Hol(X2) −→ Hol(X1 ×X2)

and

Db
c(KX1)×Db

c(KX2) −→ Db
c(KX1×X2).

Before going into the proof of Proposition 9.3.1, We give a standard con-
sequence. Let X be an algebraic variety. Let δX : X → X × X be the
diagonal morphism. We obtain the functors ⊗ and RHom on Db(Hol(X,K))
in standard ways:

M⊗N := Kδ∗X(M!N ), RHom(M,N ) := Kδ!X(DXM!N )

They are compatible with the corresponding functors on Db
hol(X).

9.3.2. Preliminary. — Let (M,FM) be aK-holonomic DX -module. Let V
be a meromorphic flat connection on (Y,DY ) with a good K-structure. Let
FV and FV ! denote the canonical K-Betti structures of V and V!, respectively.

Lemma 9.3.2. — FV !FM and FV ! !FM are K-Betti structures of V !M
and V! !M, respectively.

Proof. — We use an induction on the dimension of the support of M. Let
P be any point of X. It is enough to consider locally around Y × {P}. Let
C = (Z,U,ϕ, V ) be a K-cell of M at P with a cell function g. The pre-K-
holonomic D-module V ⊗M is expressed as the cohomology of the following
complex of pre-K-holonomic D-modules:

V ! ψg(ϕ†V ) −→ V ! Ξg(ϕ†V )⊕ V ! φg(M) −→ V ! ψg(ϕ†V ).
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By the inductive assumption, FV ! Dψg(ϕ∗FV ) and FV ! Dφg(ϕ∗FV ) are K-
Betti structures of V ! ψg(ϕ†V ) and V ! φg(ϕ†V ), respectively. We put

gZ := ϕ∗g.

By using Theorem 8.1.2, we obtain that FV ! DΞgZ (FV ) and FV ! DψgZ (FV )
are K-Betti structures of V ! ΞgZ (V ) and V ! ψgZ (V ), respectively. By con-
struction, the isomorphism

V ! ϕ†
(
ψgZ (V )

)
≃ V ! ψg(ϕ†V )

preserves K-Betti structures. Hence, we obtain that FM ! FV is a K-Betti
structure. Thus, we obtain the first claim. By considering the dual, we obtain
the second claim.

Let g be a holomorphic function on Y such that g−1(0) = DY . We obtain
the following corollary from Lemma 9.3.2.

Corollary 9.3.3. — Dψg(FV)!FM and DΞg(FV)!FM are K-Betti struc-
tures of ψg(V)!M and Ξg(V)!M, respectively.

9.3.3. Proof of Proposition 9.3.1. — Let P be any point of X1. It
is enough to consider locally around {P} × X2. We use an induction on
dimP SuppM1. Let C = (Z,U,ϕ, V ) be aK-cell of M1. The pre-K-holonomic
D-module M1!M2 is expressed as the cohomology of the following complex:

ψg(ϕ†V )!M2 −→ Ξg(ϕ†V )!M2 ⊕ φg(M1)!M2 −→ ψg(ϕ†V )!M2

By the inductive assumption, ψg(ϕ†V ) ! M2 and φg(ϕ†V ) ! M2 are K-
holonomic. According to Theorem 8.1.1 and Corollary 9.3.3, Ξg(ϕ†V ) !M2

is K-holonomic. Hence, we obtain that M1 !M2 is also K-holonomic. Thus,
we obtain Proposition 9.3.1.

9.4. K-structure of the space of morphisms

9.4.1. Statements

Theorem 9.4.1. — For M •, N • ∈ Db(Hol(X,K)), the induced morphism

(121) HomDb(Hol(X,K))(M
•, N •)⊗ C −→ HomDb

hol(X)(M
•, N •)

is an isomorphism. In other words, the forgetful functor

Db(Hol(X,K))⊗ C −→ Db
hol(X)

is fully faithful.
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We closely follow Beilinson’s argument in [3] for the proof.

Theorem 9.4.2. — We have the natural isomorphism

HomDb
hol(X,K)(M

•, N •) ≃ HomDb(Hol(X,K))

(
OX , RHom(M •, N •)[dX ]

)
.

We essentially use a commutative diagram due to Saito in [58].

9.4.2. Homomorphisms and extensions for meromorphic flat connec-
tions with a good K-structure. — Let X be a smooth complex projective
variety with a hypersurface D.

Lemma 9.4.3. — Let V be a meromorphic flat connection on (X,D) with a
good K-structure. Let FV be the canonical K-Betti structure of V . We have
the following natural isomorphisms for i = 0, 1:

ExtiHol(X,K)

(
OX(∗D), V

)
≃ H i

(
X,FV [−dX ]

)
.

Proof. — By taking a global resolution of turning points in the algebraic sit-
uation (see [27], [47]), we may assume that V is a good meromorphic flat
bundle. Let L(V ) be the associated local system with the Stokes structure
on X̃(D). It is naturally equipped with a K-structure LK(V ). If we are given
an extension

0 −→ V −→ P −→ OX(∗D) −→ 0

as K-holonomic DX -modules, P is also a good meromorphic flat bundle with
a good K-structure, and it induces an extension

0 −→ LK(V )≤D −→ LK(P )≤D −→ KX̃(D) −→ 0

of K-constructible sheaves. Conversely, assume that we are given an extension
of K-constructible sheaves

0 −→ LK(V )≤D −→ GK −→ KX̃(D) −→ 0.

We obtain a K-local system G̃K := ι̃∗G|X\D, where ι : X \D → X. The C-local

system G̃K ⊗C is naturally equipped with a Stokes structure compatible with
the K-structure. Hence, we obtain an extension of K-holonomic DX -modules

0 −→ V −→ P −→ OX(∗D) −→ 0.

The above procedures are mutually inverse. Thus, we obtain a bijection

Ext1Hol(X,K)

(
OX(∗D), V

)
≃ Ext1KX̃(D)

(
KX̃(D),LK(V )≤D

)
≃ H1

(
X,FV [−dX ]

)
.

Similarly, we have a natural isomorphism

Ext0Hol(X,K)

(
OX(∗D), V

)
≃ H0

(
X,FV [−dX ]

)
.
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Let V,W be meromorphic flat connections on (X,D) with good K-
structures. We have a natural bijection

ExtiHol(X,K)(W,V ) ≃ ExtiHol(X,K)

(
OX(∗D),W∨ ⊗ V

)

for any i. We obtain the natural isomorphisms

ExtiHol(X,K)(W,V ) ≃ H i
(
X,FW∨⊗V [−dX ]

)

for i = 0, 1. Because

H i
(
X,FW∨⊗V [−dX ]

)
⊗KC ≃ H i

(
X,DRX(W∨⊗V )[−dX ]

)
=: H i

DR(X,W∨⊗V ),

the vector spaces H i
DR(X,W∨ ⊗ V ) have the natural K-structure. We say

that an element f ∈ H i
DR(X,W∨ ⊗ V ) is compatible with K-structure if it

comes from H i(X,FW∨⊗V [−dX ]). An element f ∈ H1
DR(X,W∨ ⊗ V ) induces

an extension

0 −→ V −→ P −→W −→ 0

in Hol(X,K) as observed above.

9.4.3. Some extensions. — Let X be a smooth complex quasi-projective
variety. Let Vi (i = 1, 2) be algebraic flat bundles on X with a good K-
structure, i.e., there exists a projective variety X ⊃ X such that

(i) D := X −X is normal crossing,

(ii) Vi are good meromorphic flat bundles on (X,D) with a good K-
structure.

According to [3], we have

ExtiHol(X)(V1, V2) ≃ H i
DR(X,V ∨1 ⊗ V2).

Lemma 9.4.4. — There exist a Zariski open subset U ⊂ X and an extension
V3 ⊃ V2|U on U of algebraic flat bundles with a good K-structure, such that
the induced morphisms

ExtiHol(X)(V1, V2) −→ ExtiHol(U)(V1|U , V3)

are 0 for i > 0.

Proof. — We use an induction on dimX. In the case dimX = 0, the claim
is trivial. Let us consider the case dimX > 0. We take a Zariski open subset
X1 ⊂ X with a smooth affine fibration ρ : X1 → Z1 such that the relative
dimension is 1. For any algebraic flat bundle V on X1, we put

ρq∗(V) := Rqρ∗(V ⊗ Ω•
X1/Z1

).
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For a Zariski open subset Z ′1 ⊂ Z1, the induced morphism ρ−1(Z ′1) → Z ′1 is
also denoted by ρ.

We may assume that Lq := ρq∗(V ∨1 ⊗ V2) are algebraic flat bundles on Z1,
which is equipped with the induced good K-structure. We have Lq = 0 un-
less q = 0, 1. By the argument in §2.1 of [3], we can reduce Lemma 9.4.4 to
Lemma 9.4.5 below which is Lemma 2.1.2 of [3] with a minor enhancement.

Lemma 9.4.5

(a) There exist a Zariski open subset Z2 ⊂ Z1 and an extension P ⊃ V2|X2

of algebraic flat bundles with good K-structure on X2 := ρ−1(Z2), such
that the following induced morphism is 0:

ρ1∗(V
∨
1 ⊗ V2|X2

) −→ ρ1∗(V
∨
1 ⊗ P ).

(b) There exists a Zariski open subset Z3 ⊂ Z1 and an extension Q ⊃ V2|X3

of algebraic flat bundles with good K-structure on X3 := ρ−1(Z3), such
that the following induced maps are 0 for any p > 0:

Hp
DR

(
Z3, ρ

0
∗(V

∨
1 ⊗ V2|X3

)
)
−→ Hp

DR

(
Z3, ρ

0
∗(V

∨
1 ⊗Q)

)
.

Proof. — It is enough to use the argument in the proof of Lemma 2.1.2 of [3].
We give only an indication. Let

α ∈ H0
DR(Z1, L

∨
1 ⊗ L1) = H0

DR(Z1, ρ
1
∗
(
(ρ∗L1 ⊗ V1)

∨ ⊗ V2)
)

be the element corresponding to the identity of L1, which is compatible with
K-structure. We have the exact sequence compatible with K-structures

H1
DR

(
X1, (ρ

∗L1 ⊗ V1)
∨ ⊗ V2

)
−→ H0

DR

(
Z1, ρ

1
∗
(
(ρ∗L1 ⊗ V1)

∨ ⊗ V2
))

∂−−→ H2
DR

(
Z1, ρ

0
∗((ρ

∗L1 ⊗ V1)
∨ ⊗ V2)

)

= H2
DR(Z1, L

∨
1 ⊗ L0).

Applying the inductive assumption to L∨0 and L∨1 , we have a Zariski open
subset Z2 ⊂ Z1 and an extension ϕ : L∨1 ⊂ R of algebraic flat bundles with a
good K-structures on Z2, such that the induced morphism

H2(Z,L∨1 ⊗ L0) −→ H2(Z1, R⊗ L0)

is 0. In particular, ϕ(∂α) = 0. We obtain the element

ϕ(α) ∈ H0
DR(Z1, R⊗ L1) = H0

DR

(
Z1, ρ

1
∗((ρ

∗R∨ ⊗ V1)
∨ ⊗ V2)

)

which is compatible with K-structure. By construction, we have a lift

ϕ̃(α) ∈ H1
DR

(
X, (ρ∗R∨ ⊗ V1)

∨ ⊗ V2
)
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compatible with K-structure. It induces an extension

0 −→ V2|X2
−→ P −→ ρ∗R∨ ⊗ V1|X2

−→ 0

of algebraic flat bundles with good K-structure on X2. (See §9.4.2.) It is easy
to observe that P is the desired one. Thus, we obtain the claim (a). The
claim (b) can also be proved by the argument in [3].

9.4.4. Vanishing and lifting. — Let X be a smooth quasi-projective vari-
ety. We put C1(X) := Hol(X) and C2(X) := Hol(X,K)⊗C. Let Vi (i = 1, 2)
be algebraic flat bundles on X with good K-structure. Let us consider the
natural morphism:

gX : ExtiC2(X)(V1, V2) −→ ExtiC1(X)(V1, V2)

They are isomorphisms in the cases i = 0, 1 (§9.4.2).

Lemma 9.4.6. — Let i > 0.

◃ Let a ∈ ExtiC2(X)(V1, V2) such that gX(a) = 0. There exists U ⊂ X such

that a = 0 in ExtiC2(U)(V1|U , V2|U ).

◃ Let a ∈ ExtiC1(X)(V1, V2). There exist U ⊂ X and b ∈ ExtiC2(U)(V1|U , V2|U )

such that a|U = gU (b).

Proof. — We give only an outline. We use an induction on i. We have already
known the case i = 1. Let a ∈ ExtiC2(X)(V1, V2) such that gX(a) = 0.

We have an extension V2 ⊂ V3 of a meromorphic flat bundle with a good
K-structure such that the image of a is mapped to 0 via

ExtiC2(X)(V1, V2) −→ ExtiC2(X)(V1, V3).

Let K := V3/V2. We have c ∈ Exti−1C2(X)(V1,K) which is mapped to a via

Exti−1C2(X)(V1,K) −→ ExtiC2(X)(V1, V2).

We have d ∈ Exti−1C1(X)(V1, V3) which is mapped to gX(c) via

Exti−1C1(X)(V1, V3) −→ Exti−1C1(X)(V1,K).

By using the inductive assumption, we can find U ⊂ X and an element e ∈
Exti−1C2(U)(V1, V3) such that gU (e) = d|U . By using the inductive assumption,

and by shrinking U , we may assume that e is mapped to c|U via

Exti−1C2(X)(V1, V3) −→ Exti−1C2(X)(V1,K).

Hence, we obtain a|U = 0.
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Let a ∈ ExtiC1(X)(V1, V2). According to Lemma 9.4.4, we can find
U ⊂ X and an extension V2|U ⊂ V3 of meromorphic flat bundles with good
K-structures such that the induced map

ExtjC1(U)(V1|U , V2|U ) −→ ExtjC1(U)(V1|U , V3)

is 0 for any j > 0. We put K := V3/V2|U We can find c ∈ Exti−1C1(U)(V1|U ,K)

which is mapped to a via

Exti−1C1(U)(V1|U ,K) −→ ExtiC1(U)(V1|U , V2|U ).

By using the inductive assumption and by shrinking U , we can find an element
d ∈ Exti−1C2(U)(V1|U ,K) such that gU (d) = c. Let b be the image of d via

Exti−1C2(U)(V1|U ,K) −→ ExtiC2(U)(V1|U , V2|U ).

Then, it has the desired property.

9.4.5. Support. — Let X be a smooth quasi-projective variety. For any
subvariety Z ⊂ X, let Db

j,Z(X) (j = 1, 2) denote the derived category of
bounded complexes M • in Cj(X) such that the supports of H•(M •) are con-
tained in Z. For any M •, N • in Db

j,Z(X), we set

Homk
j,Z(M

•, N •) := HomDb
j,Z(X)

(
M •, N •[k]

)
.

If Z = X, we omit to denote Z. If Z is smooth, then Db
j,Z(X) is equivalent to

the derived category of Cj(Z). (See Proposition 9.2.3.)
Let i : Z → X denote the inclusion. The natural exact functor

Db
j,Z(X) −→ Db

j(X)

is denoted by i∗. As in §9.2.5, we have a functor

i! : Db
j(X) −→ Db

j,Z(X).

We set i∗ := DX ◦ i! ◦DX .

9.4.6. Proof of Theorem 9.4.1. — Let X be a smooth quasi-projective
variety. Let M •, N • ∈ Db

2(X). Let us prove that (121) is an isomorphism. We
use an induction on dimX.

It is enough to prove that (121) is an isomorphism when M,N ∈ C2(X).
Take any hypersurface D ⊂ X. Let i : D → X denote the inclusion. We have
the distinguished triangles

i∗i
!N −→ N −→ N(∗D)

+1−−→ and M(!D) −→M −→ i∗i
∗M

+1−−→ .
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9.4. K-STRUCTURE OF THE SPACE OF MORPHISMS 193

For j = 1, 2, we obtain the exact sequence

Extk−1Cj(X)

(
M(!D), N(∗D)

)
−→ Homk

j,D(i∗i
∗M, i∗i

!N)(122)

−→ ExtkCj(X)(M,N)

−→ ExtkCj(X)

(
M(!D), N(∗D)

)

−→ Homk+1
j,D (i∗i

∗M, i∗i
!N).

We naturally have

ExtiCj(X)

(
M(!D), N(∗D)

)
≃ ExtiCj(X)

(
M(∗D), N(∗D)

)
,

as remarked in Lemma 9.1.5.

By using the exact sequences (122) in the case where D is smooth, and by
using the inductive assumption, we can reduce the issue to the case where X
is affine, which we will assume in the following.

We use an induction on the dimension of the support of M ⊕N . We take
a projective birational morphism

ϕ : Z −→ Supp(M ⊕N)

such that Z is smooth. There exist an open subset U ⊂ Z, flat bundles VN

and VM on U with morphisms

M −→ ϕ†VM and N −→ ϕ†VN

which is an isomorphism on generic points of Supp(M ⊕ N). If we shrink U
appropriately, there exists a hypersurface D ⊂ X such that ϕ−1(D) = Z \ U .
In that case, we have

M(∗D) = ϕ†VM and N(∗D) = ϕ†VN .

In the exact sequence (122), the dimension of the supports of the cohomology
sheaves of i∗i∗M and i∗i!N are strictly smaller than dimSupp(M ⊕N). Then,
it is easy to obtain that (121) for i∗i∗M and i∗i!N is an isomorphism. By
using Proposition 9.2.3, we obtain

ExtkCj(X)

(
M(!D), N(∗D)

)
≃ ExtkCj(X)

(
M(∗D), N(∗D)

)
≃ ExtkCj(U)(VM , VN ).

For D1 ⊂ D2, we have the commutative diagram

M(!D1) −−−−→ M#⏐⏐ =

#⏐⏐

M(!D2) −−−−→ M,

N −−−−→ N(∗D1)

=

⏐⏐%
⏐⏐%

N −−−−→ N(∗D2).
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Let ia : Da → X denote the inclusions. We set Ua := Z \ϕ−1(Da). Hence, we
have the commutative diagram

Homi
j,D1

(i1∗i∗1M, i1∗i!1N) −→ ExtiCj(X)(M,N) −→ ExtiCj(U1)
(VM , VN )

⏐⏐" =

⏐⏐"
⏐⏐"

Homi
j,D2

(i2∗i∗2M, i2∗i!2N) −→ ExtiCj(X)(M,N) −→ ExtiCj(U2)
(VM , VN ).

Then, it is easy to prove that

ExtiC2(X)(M,N) −→ ExtiC1(X)(M,N)

is an isomorphism by using Lemma 9.4.6.

9.4.7. Proof of Theorem 9.4.2. — Recall a commutative diagram
in Proposition 4.6 of [58]. For M •, N • ∈ Db(DX), we have the commutative
diagram

(123)

HomD(DX)(M
•, N •)

≃−→ HomD(DX×X )

(
M • !DN •, δ†OX [dX ]

)
⏐⏐"

⏐⏐"

HomD(CX )(DRX M •, DRX N •)
≃−→ HomD(CX )

(
DRX M • ⊗DDRX N •, δ∗CX [2dX ]

)
.

Let M be a holonomic DX -module with a K-Betti structure F . We have

HomD(DX)(M,M) ≃ HomHol(X)(M,M) ≃ HomHol(X,K)(M,M)⊗ C.

We have similar isomorphisms for HomD(DX)(M ! DM, δ†OX [dX ]). Hence,
we obtain the following diagram from (123):

HomHol(X,K)(M,M)⊗ C
c−−→
≃

HomHol(X×X,K)

(
M !DM, δ†OX [dX ]

)
⊗ C

a

⏐⏐" b

⏐⏐"

HomD(CX)(DRX M, DRX M)
≃−−→ HomD(CX )

(
DRX M ⊗DDRX M, δ∗CX [2dX ]

)

≃

%⏐⏐ ≃

%⏐⏐

HomD(KX )

(
F ,F)⊗ C

≃−−→ HomD(KX)(F !DF , δ∗KX [2dX ]
)
⊗ C.

Note that a is injective. Hence, b is also injective. Since a and b are compatible
with K-structures, c is also compatible with K-structures. Let

C : M !DM −→ δ∗OX [dX ]

correspond to 1 : M →M . It is compatible with K-Betti structures.
For M • ∈ Db(Hol(X,K)), let

C : M •
!DM • −→ δ†OX [dX ]
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correspond to 1 : M • → M •. We obtain that C is compatible with K-Betti
structures. Then, we obtain that the isomorphism

HomD(DX)(M
•, N •) −→ HomD(DX×X)

(
M •

!DN •, δ†OX [dX ]
)

is compatible withK-Betti structures for anyM •, N • ∈ Dhol(X,K). By taking
the dual, we obtain Theorem 9.4.2.
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Inc., Boston, MA, 2008.

[18] B. Iversen, Cohomology of sheaves, Springer-Verlag, Berlin, 1986.

[19] M. Kashiwara, On the maximally overdetermined system of linear differ-
ential equations I, Publ. Res. Inst. Math. Sci. 10 (1974/75), 563–579.

[20] M. Kashiwara, The Riemann-Hilbert problem for holonomic systems,
Publ. Res. Inst. Math. Sci. 20 (1984), 319–365.

[21] M. Kashiwara, Vanishing cycle sheaves and holonomic systems of differen-
tial equations, in Algebraic geometry (Tokyo/Kyoto, 1982), Lecture Notes
in Math. 1016, Springer, Berlin, (1983), 134–142.

[22] M. Kashiwara, D-modules and microlocal calculus, Translations of Mathe-
matical Monographs, 217, Iwanami Series in Modern Mathematics, Amer-
ican Mathematical Society, 2003.

[23] M. Kashiwara and P. Schapira, Sheaves on manifolds, Springer-Verlag,
Berlin, 1990.

[24] M. Kashiwara, P. Schapira, Ind-sheaves, Astérisque 271 (2001).
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able, in Mathematics and physics (Paris, 1979/1982), Progr. Math., 37,
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K-Betti structure, 147
K-cell, 145
K-holonomic D-module, 147
K-structure, 111, 129
K(∗D)-Betti structure, 153
K(∗D)-cell, 151
K(∗D)-holonomic DX(∗D)-module, 153
I-good holonomic D-module, 29
canonical pre-K-Betti structure, 111, 130,

136
category Catℓ, 46
category Hol(X), 11
category Hol(X, ∗D), 14
category Hol(X, ∗D,K), 153
category Hol(X,K), 175
category Holgood(X,D,K), 119
category Holpre(X,K), 15
category Per(X,R), 12
category Db(RX), 12
category Db

hol(DX), 11
category Db

X(Hol(Y,K)), 178
cell, 143, 151
cell function, 144, 151
compatible, 145
complement, 36
complex F<D1≤D2

V , 111
complex FV ∗, 111
complex FV !, 111
complex K•, 16
complex ωX,R, 12
de Rham functor DRX , 13

decomposition, 36
divisor D(I), 25
dual functor D, 149, 175
dual functor DX , 11, 12
dual functor DX(∗D), 14
enhancement, 144, 151
function ϕα,k, 44
function ϕα,k, 45
functor !, 186
functor DR<D1≤D2

X , 36

functor DR<D1≤D2

X̃(D)
, 87

functor P′
H, 136

functor PH, 136

functor Dφ(a)
g , 177

functor Dψ(a)
g , 177

functor DΞ(a)
g , 177

functor Kf∗, 178
functor Kf !, 178
functor Kf∗, 178
functor Kf!, 178
functor DRmod

X,f , 84

functor DRrapid
X,f , 84

functor RHom, 186
functor ⊗, 186

functor φ(a)
I , 27

functor φ(a)
i , 27

functor π∗
mod, 79

functor π∗
f mod, 83

functor π∗
f rapid, 83

functor ψ(a)
I , 27
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functor ψ(a)
i , 27

functor Υ, 123
functor ϕ̃†, 83

functor Ξ(a)
I , 27

functor Ξ(a)
i , 27

functor j∗, 14
functor j∗, 14
functor j!, 14
good K-structure, 111, 119, 129
good cell, 144
good holonomic D-module, 29, 31
good pre-K-Betti structure, 123
good pre-K-holonomic D-module, 123
good set of ramified irregular values, 35
good system of ramified irregular values,

35
holomorphic functions with moderate

growth, 47
holomorphic functions with rapid decay,

47
local resolution, 129
localization, 176
maximal functor, 177
maximal functor Ξ(a)

f , 18

maximal functor Ξ(a)
f (•, ∗D), 19

meromorphic flat connection, 129
moderate growth, 44
nearby cycle functor, 177
nearby cycle functor ψ(a)

f , 18

nearby cycle functor ψ(a)
f (•, ∗D), 19

nearby cycle functor ψ̃f , 20
pre-K-Betti structure, 15
pre-K-holonomic DX -module, 15
pre-Betti structure, 2
principal open subset, 143
push-forward F i

† , 13
rapid decay, 43
real blow up X̃(D), 43

real blow up X̃(f), 46
refinement, 144, 151
sequence of hypersurface pairs, 136
set ∂DI , 25
set I(I), 25
set Nil(z), 44
set Nil(z1, . . . , zℓ), 45
set NilT,N (z), 44
set NilT,N (z1, . . . , zℓ), 45
set DI , 25

set H(X), 25
set HX , 65
set M(X,D), 25
sheaf Ia,b, 17
sheaf Ia,b

f , 18

sheaf A<D(1)≤D(2)

X̃(D)
, 45, 54

sheaf Amod
X̃(D)

, 44

sheaf Amod
X̃(f)

, 47

sheaf Amod
X,f , 70

sheaf Anil<D(J)

̂π−1(DI),T,N
, 56

sheaf Anil<D(J)
̂π−1(DI)

, 55

sheaf Anil<D(1)

X̃(D)
, 54

sheaf Anil
̂π−1(D(J))

, 55

sheaf Anil
̂π−1(DI(J)),T,N

, 56

sheaf Anil
̂π−1(DI(J))

, 55

sheaf Anil
X,f , 78

sheaf Arapid(X̃(D)), 43
sheaf Arapid

X̃(f)
, 47

sheaf Arapid
X,f , 70

sheaf C∞<Z
Y , 15

sheaf C∞<D(3)≤D(2)

X̃(D)
, 54

sheaf C∞<W
̂π−1(DI)×Y

, 48

sheaf C∞ nil<D(3)

X̃(D)
, 54

sheaf C∞
Z Y , 15

sheaf C∞
Ẑ
, 15

sheaf DX(∗D), 14
sheaf F,Zhat44
sheaf L<D1≤D2 , 89
sheaf M(∗D), 14
sheaf M(∗f), 14
sheaf M(∗I), 27
sheaf M(!D), 14
sheaf M(!f), 14
sheaf M(!I), 27
sheaf OX(∗D), 14

sheaf O<D(J)
̂π−1(DI)

, 44

sheaf OX̃(D), 43
sheaf OẐ , 16, 44

sheaf Ω0,•<W
̂π−1(DI)×Y

, 48

sheaf Ω0,•

Ẑ
, 48

sheaf Ω•,•<D1≤D2

X̃(D)
, 87
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sheaf Ω•,•

Ẑ
, 16

sheaf Ω• <D1≤D2

X̃(D)
, 87

sheaf Ωp,q

X̃(D)
, 48

sheaf Ωp,q

Ẑ
, 36

sheaf ΩX , 11
sheaf Ωj

X , 11
sheaf Ωp,q

X , 11, 36

sheaf Ωp,q
X (∗D2)

<D1 , 36

sheaf Ωp,q

Ẑ
(∗D), 36

sheaf Πa,b
f∗!, 18

sheaf Πa,b
f∗ , 18

sheaf Πa,b
f ! , 18

tensor product ⊗D, ⊗, 11
vanishing cycle functor, 177

vanishing cycle functor φ(a)
f , 19

vanishing cycle functor φ̃f , 20
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