
We consider semi-classical Schrödinger operators with potentials sup-
ported in a bounded strictly convex subset O of Rn with smooth bound-
ary. Letting h denote the semi-classical parameter, we consider classes
of small random perturbations and show that with probability very close
to 1, the number of resonances in rectangles [a, b]− i[0, ch

2
3 [, is equal to

the number of eigenvalues in [a, b] of the Dirichlet realization of the un-
perturbed operator in O up to a small remainder.

On considère des opérateurs de Schrödinger dont les potentiels ont leur
supports dans un ensemble strictement convexe à bord lisse O ! Rn.
En désignant par h le paramètre semi-classique, nous considérons des
classes de petites perturbations aléatoires et montrons qu’avec une
probabilité très proche de 1, le nombre de résonances dans des rec-
tangles [a, b]− i[0, ch

2
3 [ est égal (à un petit reste près) au nombre de

valeurs propres dans [a, b] de la réalisation de Dirichlet de l’opérateur
dans O.
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WEYL LAW FOR SEMI-CLASSICAL
RESONANCES WITH RANDOMLY

PERTURBED POTENTIALS

Johannes Sjöstrand

Abstract. — We consider semi-classical Schrödinger operators with potentials
supported in a bounded strictly convex subset O of Rn with smooth boundary.
Letting h denote the semi-classical parameter, we consider classes of small
random perturbations and show that with probability very close to 1, the
number of resonances in rectangles [a, b]� i[0, ch

2
3 [, is equal to the number of

eigenvalues in [a, b] of the Dirichlet realization of the unperturbed operator
in O up to a small remainder.

Résumé (Loi de Weyl pour des résonances semi-classiques associées aux poten-

tiels avec perturbations aléatoires)

On considère des opérateurs de Schrödinger dont les potentiels ont leur sup-
ports dans un ensemble strictement convexe à bord lisse O b Rn. En désignant
par h le paramètre semi-classique, nous considérons des classes de petites per-
turbations aléatoires et montrons qu’avec une probabilité très proche de 1,
le nombre de résonances dans des rectangles [a, b]� i[0, ch

2
3 [ est égal (à un

petit reste près) au nombre de valeurs propres dans [a, b] de la réalisation de
Dirichlet de l’opérateur dans O.

c� Mémoires de la Société Mathématique de France 136, SMF 2014
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CHAPTER 1

INTRODUCTION

There is now a very large literature about the distribution of scattering
poles (resonances) often using methods from non-self-adjoint spectral theory
and microlocal analysis, including many results about upper and lower bounds
on the density of resonances. See for instance [34], [6] and the references given
there. Less is known about actual asymptotics for the number of resonances in
various domains. In this paper we shall give such a result for the semi-classical
Schrödinger operator

(1.1) P = �h2�+ V (x),

on Rn where V 2 L1(Rn;R) has compact support.
Recall that the resonances or scattering poles of the operator (1.1) can be

defined as the poles of the meromorphic extension of the resolvent

(P � z)�1 : C1
0 (Rn) �! H2

loc(Rn)

across the positive real axis, to the logarithmic covering space of C \ {0}
when n is even and to the double covering when n is odd. Alternatively we
can continue (P � k2)�1 from the upper half-plane across R \ {0} which gives
a meromorphic function on C when n is odd. Using the second definition,
we can introduce the number N(r) of resonances in the disc D(0, r) when n

is odd.
In one dimension and for h = 1, M. Zworski [38] showed that if [a, b] is the

convex hull of the support of V , then

(1.2) N(r) =
2(b� a)

⇡
r + o(r), r ! 1,

which is 2 times the asymptotic number of eigenvalues  r2 of the Dirichlet
realization of �� + V on [a, b], the factor 2 being explained by the fact that
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the resonances are symmetric around the imaginary axis. He also showed
that most of these concentrate to narrow sectors around the real axis. This
extended an earlier result of T. Regge [20]. Subsequently, B. Simon [21] gave
a di↵erent proof, inspired by the work of R. Froese [12], who got similar results
for potentials that do not necessarily have compact support but are very small
near infinity. See also the recent works [8], [7], [10] about Weyl and non-Weyl
asymptotics for graphs.

In higher odd dimensions, M. Zworski [40] considered the case of radial
potentials of the form

V (x) = f
�
|x|
�

with support in B(0, a) where f 2 C2([0, a]), a > 0, f(a) 6= 0 and obtained a
Weyl type asympotics (still with h = 1),

(1.3) N(r) = Kna
nrn + o(rn), r ! +1,

where Kn > 0. Recall also that Zworski [39] gave an upper bound in the non-
radial case with the correct power of r and using his analysis, P. Stefanov [34],
gave an explicit formula for the constant Kna

n in the radial case and showed
that the right hand side of (1.3) is up to o(rn) the sum of 2 times the number of
eigenvalues  r2 for the interior Dirichlet problem in the ball B(0, a) and the
number of scattering poles for the exterior Dirichlet Laplacian in Rn \B(0, a).
(See also G. Vodev [35].) He also showed (as a corollary of a more general
result for operators with black box) that if we drop the radiality assumption
and only assume that V 2 L1(Rn;R) has its support in B(0, a), then we have
the upper bound

(1.4) N(r)  Kna
nrn + o(rn), r ! +1.

T. Christiansen [6] introduced the set Ma of L1 potentials V with support
in B(0, a) for which we have (1.3) and gave the leading asymptotics, of the
form Crn, for the number of resonances in sectors in the lower half-plane inter-
sected with the disc D(0, r). These formulas were implicit in [40], [34] in the
case of the radial potentials considered there. In particular, when considering
smaller and smaller sectors adjacent to R+ or R� we can see, using Lemma 3.3
of [6] and some wellknown formulas for the � function and the volume of the
unit ball, that the constant C converges to the one we get in the leading
Weyl asymptotics for the number of Dirichlet eigenvalues for the Laplacian
in B(0, a). In the theorems 1.2, 1.3 of the same paper the author gives in-
teresting extensions “for most values of z” to the case of potentials V (x, z)
depending holomorphically on a parameter z with suppV (. , z) ⇢ B(0, a) such

MÉMOIRES DE LA SMF 136
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that V (. , z0) belongs to Ma for at least one value of z0. Such results remain
significant also after restriction to real-valued potentials. (See also earlier re-
sults of the same author, cited in [6].) In the recent work [9] (which appeared
after the submission of the present work), T.-C. Dinh and D.-V. Vu obtain
sharper results, namely that for holomorphic families of potentials, if one ele-
ment is in a sharpened version of the class Ma, then so do all elements away
from a pluri-polar set.

The main result of this paper has some relations to the above mentioned
ones. We work in the semi-classical limit (h ! 0) and the ball B(0, a) is
replaced by a more general strictly convex set. Our is result does not make
use of any class of the type Ma and the conclusion concerns the number of
resonances in a thin rectangle. Nevertheless it is very interesting to note the
similarities of the results, and there are also similarities in the proofs at least
on some ideological level.

We next proceed with a rough description of our result and leave the precise
statements to the next section. Let O b Rn be open strictly convex with
smooth boundary and let V0 2 C1(O ;R) vanish to the order v0 > 0 on the
boundary. By V0 we also denote the extension to all of Rn which vanishes
outside O and we consider the potential

V (x) = V0(x) + �eq!(x)

where � > 0 is a small parameter > 0 and eq! a random perturbation whose
properties will be specified in the next section. A possible choice of � is a high
power of h. Our main result, Theorem 2.2 then states that if 0 < a < b < 1
and if C > 0 is large enough so that the exterior Dirichlet problem for �h2�

has no resonances in the rectangle [a, b] + ih
2
3 [�C�1, 0], then with probability

very close to 1, the number of resonances of

P = �h2�+ V

in the rectangle [a, b] + ih
2
3 [�C�1, 0] is equal to the number N0([a, b]) of

eigenvalues in [a, b] of the Dirichlet realization of h2� + V0 in O plus two
“errors”. The first error is a term that can be bounded by a positive power
of h times h�n. The second error is bounded by a constant times

N0
�
[a� ⇢, a+ ⇢]

�
+N0

�
[b� ⇢, b+ ⇢]

�

where ⇢ = h
2
3�� for any fixed � > 0. As will be stated more explicitly in

the theorems 2.1 and 2.5, we can choose our random perturbations to be
concentrated to a ball of radius hN in the Sobolev space Hs for arbitrarily
large N and s.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



4 CHAPTER 1. INTRODUCTION

In the case of a deterministic potential with a potential well in an island,
one can count resonances in rectangles closer to the real axis. Such results can
be found in the appendix of [19] and in Section 9 of [16]. The phenomen is
now a little di↵erent however, due to the potential barrier, and the reference
asymptotics of eigenvalues now depends on the behaviour of the operator near
the potential well.

The motivation for this work was to apply recent results and techniques for
proving Weyl asymptotics for non-self-adjoint di↵erential operators with small
random perturbations either in the semi-classical limit or in the limit of large
eigenvalues [25], [27], [4], to the problem of resonances.

Indeed, using some version of complex scaling or its microlocal versions, this
can be viewed as an eigenvalue problem for a non-self-adjoint operator.

The new di�culty here is however that if we want to keep a realistic problem
we should apply the random perturbation first and use complex scaling only
outside the support of the perturbation. If we let p(x, ⇠) denote the leading
semi-classical symbol of the scaled operator, and we let z vary in a complex
domain like a thin recatngle along the real axis, then as soon as z is not real,
the set p�1(z) must belong to the part of phase space which corresponds to
the scaled region (since the original unscaled symbol is real valued) and hence
the support of the random perturbation is away from the x-space projection of
this set. This leads to a di�culty since the method in [25], [27] is based on the
study of the random matrix (eq!ej | ēk), where e1, . . . , eN is an orthonormal
family of eigenfunctions of (P � z)⇤(P � z) corresponding to the small eigen-
values and where we let P denote the scaled operator. Now, the ej will be
concentrated to the projection of p�1(z) which sits outside the obstacle, hence
away from the support of the random perturbation. Our random matrix will
therefore tend to be small which is a serious problem in the approach of [25]
and [27]. In order to make the distance smaller, one could try to make the dis-
torsion very important already very close to the support of the perturbation,
but that leads to the use of very exotic symbols and after some attempts in
that direction we decided to follow a di↵erent less intuitive approach. In the
next section we formulate the result and in Chapter 3 we give an outline of
the proof.

It would be interesting to have related statements about almost sure Weyl
asymptotics of large resonances in certain parabolic neighborhoods of the real
axis in the non-semi-classical case (h = 1). It is quite possible that such a
result can be obtained from the present paper along the same lines as the

MÉMOIRES DE LA SMF 136
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CHAPTER 2

THE RESULT

We start with a concrete case of our main result (Theorem 2.1). After that
we give the full formulation (Theorem 2.2) which includes a description of the
probability measures that are involved. After that we give a simplified and
partially generalized version of the main result (Theorem 2.5) which combined
with a result of V. Ivrii [17] gives Theorem 2.1.

Let O b Rn be open, strictly convex with smooth boundary. Let  > 0 be
the geometric constant in (2.14) below and let ⇣1 > 0 be the smallest zero of
the Airy function Ai(�t). The concrete version of the main result is then

Theorem 2.1. — Let s > 1
2n, � > 0 and

N = min
�
]12(n� 1),+1[ \ Z

�
, es > max

�
1
2n+ 3, 2N + 1

2n
�
.

Then there exists a probability measure µ on Hs(O) with support in the ball

�
W 2 Hs(O); kWkHs  h�

 

such that the following holds. Let 0 < c1 < c2 < 2 (12)
2
3⇣1. There exists a

constant C > 0 such that if 1
2  a < b  2, c1  c  c2, e✏ � Ch(ln 1/h)2 and

V0 2 Hes(O), then for

P = �h2�+ V0 +W, W 2 Hs(O),

we have with probability (with respect to the random term W )

(2.1) � 1�O(1)
h(ln 1/h)2

hN7
e�e✏/(Ch(ln 1/h)2),
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that for the set �(P ) of resonances of P , counted with their algebraic multi-

plicity,
���#

�
�(P ) \

�
[a, b] + ih

2
3 c[�1, 0]

��
� 1

(2⇡h)n

ZZ

a⇠2+V0(x)b
dxd⇠

���(2.2)

 O(1)h�
2
3�ne✏.

Here we also assume that n � 3 or that neither a nor b is a critical value

of V0.

The constant N7 is independent of the other parameters, while the con-

stants O(1) in (2.1), (2.2) depend on c1, c2,�, es, s and on an upper bound

on kV0kHes(O).

We now start to formulate the more complete result. Our unperturbed
operator will be

(2.3) P0 = �h2�+ V0 : L
2(Rn) �! L2(Rn),

where V0 2 C1(O) and we identify V0 with its zero extension. We also assume

(2.4) On @O we have V0(x) = 0 and @⌫V0  0,

where ⌫ denotes the exterior unit normal.

The result concerns the distribution of resonances of

(2.5) P = P� = P0 + �⇥(x)q!(x),

where ⇥(x) 2 C1(O) satisfies

(2.6) 0 < ⇥(x) ⇣ dist(x, @O)v0 , x 2 O \ @O, v0 2
⇤
1
2(n� 1),+1

⇥
\ N.

As in (2.3), ⇥ also denotes the 0-extension to all of Rn. It belongs to Ck
0 (Rn)

if v0 > k. It would be interesting to be able to work with a profile in C1
0 .

As in [25], [27], we choose the random function q! of the form

(2.7) q!(x) =
X

0<µ
k

L

↵k(!)✏k(x), |↵|RD

 R,

where ✏k is an orthonormal basis of real eigenfunctions of h2 eR, where eR is
an h-independent real positive elliptic 2nd order operator on X with smooth
coe�cients. Here X is a smooth compact manifold of dimension n contain-
ing O (in the sense that we have some di↵eomorphism from a neighborhood
of O onto an open set in X and we identify O with its image). For instance,
we can let X be an n-dimensional torus and choose � eR to be the Laplacian.
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Moreover, h2 eR✏k = µ2
k✏k, µk > 0. We choose L = L(h), R = R(h) in the

following intervals where s 2
⇤
1
2n, v0 +

1
2

⇥
, ✏ 2

⇤
0, s� 1

2n
⇥
, ✓ 2

⇤
0, 12

⇥
are fixed:

(2.8)

8
>><

>>:

h�Mmin ⌧ L  Ch�M , M � Mmin :=
v0 + (13 + n)/(1� 2✓)

s� 1
2n� ✏

,

h�fMmin  R  h�fM , fM � fMmin := (
1

2
n+ ✏)Mmin + 1 +

3

2
n+ v0,

and we shall denote by Lmin and Rmin the lower bounds for L and R in
these estimates. By Weyl’s law for the large eigenvalues of elliptic self-adjoint
operators, the dimension D is of the order of magnitude (L/h)n. We introduce
the small parameter

(2.9) � = ⌧0h
↵/C, ⌧0 2

⇤
0, h

5
3
⇤
, ↵ � ↵(n, v0, s, ✏, ✓,M, fM),

where an explicit (and not very nice) expression for ↵(n, v0, s, ✏, ✓,M, fM) can
be deduced from the proof.

The random variables ↵j(!) will have a joint probability distribution

(2.10) P (d↵) = C(h)e�(↵;h)L(d↵),

where for some N4 > 0,

(2.11) |r↵�| = O(h�N4),

and L(d↵) is the Lebesgue measure on RD. (C(h) is the norming constant.)

We need the parameter

(2.12) ✏0(h) = h
⇣⇣

ln
1

h

⌘2
+ ln

1

⌧0

⌘

and assume that ⌧0 = ⌧0(h) is not too small, so that ✏0(h) is small.

It was shown by T. Hargé and G. Lebeau [15], see also [30], that the exterior
Dirichlet problem for �h2� on Rn \ O has no resonances in the set

(2.13) =z � �2(h<z) 2
3⇣1 + Ch, 1

2
 <z  2,

if C is large enough, where

(2.14)  = 2�
1
3 cos

⇡

6
min
S@O

Q
2
3 ,

Q is the second fundamental form on @O and ⇣1 > 0 is the smallest zero
of Ai(�t) with Ai denoting the Airy function which spans the space of solutions
to (�@2t +t)u = 0 that are exponentially subdominant on the positive real axis.

For technical reasons, we shall restrict the attention to rectangles of the form

R = [a, b] + ih
2
3 c[�1, 0], 1

2  a < b  2, c > 0 with c small enough so that R is
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contained in the domain (2.13). Thus we will assume that c < 2(12)
2
3⇣1. (We

could replace the bounds 1
2 and 2 by any other positive bounds 0 < b1 < b2.)

Let P 0
in denote the Dirichlet realization of P0 in O and let N0(�) denote

the number of eigenvalues of P 0
in in the interval ] �1,�], counted with their

multiplicity. Similarly, if I ⇢ R we let N0(I) denote the number of such
eigenvalues in I. The main result of this work is:

Theorem 2.2. — Let �(P�) denote the set of resonances of P�. Let 0 < c1 <

c2 < 2(12)
2
3⇣1, ⇢ = h��0+

2
3 , where �0 > 0 is arbitrarily small but fixed. Then

there exists a constant C > 0 such that for 1
2  a < b  2, c1  c  c2 and

e✏ � C✏0(h), we have with probability

(2.15) � 1�O(1)
✏0(h)

hn+N6+
2
3

e�e✏/C✏0(h),

where the constant O(1) is independent of a, b, c,e✏, h, that
���#

�
�(P�) \

�
[a, b] + ih

2
3 c[�1, 0]

��
�N0

�
[a, b]

����(2.16)

 O(1)
⇣ X

w=a,b

N0
�
[w � ⇢, w + ⇢]

�⌘
+ h�

2
3�ne✏.

Here N6 = max(N3, N5), where N3 = n(M + 1), N5 = N4 + fM .

Remark 2.3. — As in [25], [27] and in an earlier work with M. Hager cited
there, with probability

(2.17) � 1�O(1)
✏0(h)

hn+N6+
4
3

e�e✏/C✏0(h),

we have (2.16) simultaneously for 1
2  a < b  2 and c1  c  c2.

As we point out in Remark 15.1, for a general perturbation W = �⇥q! as
in Theorem 2.2, we have

kWkHes
h

(Rn)  O(�)LesR,

provided that 1
2n < es < v0 + 1

2 . Here Hes
h is the standard Sobolev space

equipped with its natural semi-classical norm (see Chapter 6). By playing
with the parameters, the perturbations in Theorem 2.2 can be chosen to be
bounded by arbitrarily high powers of h in Sobolev spaces with arbitrarily
high regularity exponents.

We also have:
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Proposition 2.4. — The conclusion in Theorem 2.2 remains valid if we

change V0 by adding an h-independent potential W0 2 L1(O) such that

W0 = O(dist(x, @O)3), @↵W0 2 L1 for |↵|  2N and W0 2 Hs(O). Here N

is the smallest integer in ]12(n � 1),+1[ and s > 1
2n is the parameter in

Theorem 2.2.

Recall that Hs(O) = {v 2 Hs(Rn); supp v ⇢ O}. Combining the remark
and Theorem 2.2, we get the following less detailed but perhaps more trans-
parent version of our main result, where our unperturbed potential is V0 = W0.

Theorem 2.5. — Let s > 1
2n, � > 0 and let

N = min
� ⇤

1
2(n� 1),+1

⇥
\ Z

�
, es > max

�
1
2n+ 3, 2N + 1

2n
�
.

Then there exists a probability measure µ on Hs(O) with support in the ball
�
W 2 Hs(O); kWkHs  h�

 

such that the following holds. Let 0 < c1 < c2 < 2(12)
2
3⇣1, ⇢ = h��0+

2
3 , where

�0 > 0 is arbitrarily small but fixed. There exists a constant C > 0 such that

if 1
2  a < b  2, c1  c  c2, e✏ � Ch(ln 1/h)2 and V0 2 Hes(O), then for

P = �h2�+ V0 +W, W 2 Hs(O),

we have with probability (with respect to the random term W )

(2.18) � 1�O(1)
h(ln 1/h)2

hN7
e�e✏/Ch(ln 1/h)2 ,

that for the set �(P ) of resonances of P ,
���#

�
�(P ) \

�
[a, b] + ih

2
3 c[�1, 0]

��
�N0

�
[a, b]

����(2.19)

 O(1)
⇣ X

w=a,b

N0
�
[w � ⇢, w + ⇢])

⌘
+ h�

2
3�ne✏.

Here N7 (equal to n+N6+
2
3 as in Theorem 2.2, with M = Mmin, fM = fMmin)

is independent of the other parameters, while the constants O(1) in (2.18),
(2.19) depend on c1, c2,�, es, s and on an upper bound on kV0kHes(O).

Indeed, it su�ces to apply Proposition 2.4 with V0 = W0 and to observe:

. V0 is of class C3 with support in @O and therefore V0 = O(dist(x, @O)3),

. It su�ces to choose the perturbation W = �⇥q! as in (2.5)–(2.9) with

M = Mmin, fM = fMmin, ⌧0 = h5/3 and the parameters v0 and ↵ su�ciently
large.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



12 CHAPTER 2. THE RESULT

. We can choose the probability µ to be “P” in (2.10), with � = 0 (so that
N4 = 0), but any other choice as in (2.10), (2.11) is OK.

We end the section by explaining how Theorem 2.1 follows from Theo-
rem 2.5. It su�ces to apply the following result of V. Ivrii [17], Theorem 2.1.
(See also related results by L. Zieliński [37] in the case without boundary.)

Consider the semi-classical Schrödinger operator P = �h2� + V (x) on
the open set X b Rn with smooth (C1) boundary. We assume that rV

is continuous with modulus of continuity ⌫(t) = O(| ln t|�1). We equip P

with Dirichlet boundary conditions. When n = 1, 2 we assume the micro-
hyperbolicity property that |rV | 6= 0 when V = E, uniformly for E in some
compact interval J in ]0,+1[. Then, uniformly for E in J , 0 < h  1,
the number of eigenvalues in ] � 1, E] is equal to the standard Weyl term
(2⇡h)�1vol ({(x, ⇠) 2 T ⇤X; ⇠2+V (x)  E}) plus a remainder which isO(h1�n)
for n � 2 and O(ln 1/h) for n = 1.
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CHAPTER 3

SOME ELEMENTS OF THE PROOF

We will introduce a distorsion � ⇢ Cn of Rn which concides with Rn along O
and with an exterior dilation of Rn outside O as in [29], [30], [31] and [15].
Let P = P� be the corresponding dilation of �h2�+V , V = V0+�⇥(x)q!(x).
Then (see for instance [28]) P = P� has discrete spectrum in an angle
�✓0 < arg z  0 and the eigenvalues there coincide with the resonances.

Let Pext be the Dirichlet realization of P on � \ O, so that the spectrum
of Pext in the above angle coincides with the set of resonances for the exterior
Dirichlet problem for �h2� (recalling that suppV ⇢ O). As we recalled in

Chapter 2, there are no such resonances in [12 , 2] + ih
2
3 c0[�1, 0] if we fix

(3.1) 0 < c0 < 2
�
1
2

� 2
3⇣1.

Restricting z to the domain

(3.2)
1

2
< <z < 2, =z > �c0h

2
3 ,

we can therefore introduce the

. Green operator Gext(z) : H0(� \ O) ! H2(� \ O) and

. the Poisson operator Kext : H
3
2 (@O) ! H2(� \ O)

so that the exterior Dirichlet operator

(3.3) Pext(z) =
⇣P � z

h
1
2 �

⌘
= H2(� \ O) �! H0(�)⇥H

3
2 (� \ @O)

has the bounded inverse

(3.4) Eext(z) =
�
Gext h�

1
2Kext(z)

�
: H0(� \ O)⇥H

3
2 (@O) �! H2(� \ O).

Here � is the operator of restriction to @O. Let

Next = �hD⌫Kext
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denote the exterior Dirichlet to Neumann operator, where D⌫ = 1
i
@
@⌫ and ⌫

denotes the exterior unit normal. Introduce

B = �hD⌫ �Next� : H2(O) �! H
1
2 (@O),(3.5)

Pout(z) =
⇣P � z

h
1
2B

⌘
: H2(O) �! H0(O)⇥H

1
2 (@O).(3.6)

For z in the domain (3.2) we shall see, by considering the continuity conditions
at @O, that z is a resonance (i.e. belongs to the spectrum of P�) if and only
if Pout(z) is non-bijective, or equivalently if 0 2 �(Pout(z)) where Pout(z) =
P � z : H0(O) ! H0(0) is the closed unbounded operator whose domain is
the “outgoing” space: D(Pout(z)) = {u 2 H2(O); B(z)u = 0}.

Let

(3.7) Pin(z) =
⇣P � z

h
1
2 �

⌘
: H2(O) �! H0(O)⇥H

3
2 (@O),

which is bijective precisely when z is not a (real) eigenvalue of the Dirichlet
realization of P in O. Away from the Dirichlet spectrum we introduce the
inverse

Ein(z) =
�
Gin(z), h

� 1
2Kin(z)

�
: H0(O)⇥H

3
2 (@O) �! H2(O)

and notice (cf. (7.18), (7.19)) that

(3.8) Pout(z) =
⇣ 1 0

h
1
2BGin Nin �Next

⌘
Pin(z).

Here Nin = �hD⌫Kin is the interior Dirichlet to Neumann map. Thus for z

away from the Dirichlet spectrum, z is a resonance precisely when 0 belongs

to the spectrum of Nin �Next : H
3
2 (@O) ! H

1
2 (@O).

In Chapter 4 we show how to define — up to some non-vanishing factor —
detA(z) for certain holomorphic or meromorphic families of operators that
are not necessarily Schatten class perturbations of the identity. With this
extended notion of the determinant we get from (3.8) that

(3.9) detPout(z) = detPin det(Nin �Next).

A rather substantial part of the paper is devoted to the study of Nin, Next,

in the regions |=z| � h
2
3 / eC and =z � �c0h

2
3 respectively, where eC is an

arbitrarily large constant. Many such studies have already been done (see for
instance [31]), but as is often the case, we found it necessary to make a new
one for the needs of this paper. From this study we get somewhat roughly,

(3.10) ln
��det(Nin �Next)

��  O(h1�n).
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for

(3.11) <z 2
⇤
1
2 , 2

⇥
, |=z| ⇣ h

2
3 , =z � �h

2
3 c0.

The exponent in (3.10) reflects the fact that we have made a reduction to
the n� 1 dimensional manifold @O.

In view of (3.9) this gives a precise upper bound on ln | detPout(z)| for z

in the region (3.11). Combined with a rough polynomial upper bound on

ln | detPout(z)| in the full region |=z|  h
2
3 /C and the maximum principle,

we get the upper bound

(3.12) ln
�� detPout(z)

��  �in(z) +O(h1�n)

in the rectangle (3.11), where �in(z) coincides with ln | detPin(z)| for |=z| �
h

2
3 / eC and is extended (suitably) as a harmonic function inside |=z| < h

2
3 / eC.

A last and quite substantial part of the paper is to show (in the spirit

of [25], [27]) that for every z with h
2
3 / eC  |=z|  c0h

2
3 , 1

2 < <z < 2, we
also have a lower bound on ln | det(Nin �Next)| almost as sharp as the upper
bound (3.10) with probability very close to 1.

With these upper and lower bounds at our disposal, the main result follows
by applying Theorem 1.2 of [26] to the holomorphic function detPout(z), whose
zeros are the resonances.
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CHAPTER 4

GRUSHIN PROBLEMS AND DETERMINANTS

The results in the first three sections below are not new, see [3], [13], but
we thought that a short and self-contained presentation can be useful.

4.1. Gaussian elimination

We review some standard material, see for instance [32]. Let Hj , Gj , j =
1, 2, be complex Hilbert spaces(1). Consider a bounded linear operator

(4.1) P =
⇣P11 P12

P21 P22

⌘
: H1 ⇥H2 �! G1 ⇥ G2.

When P is bijective (with bounded inverse) we denote the inverse by

(4.2) P�1 = E =
⇣E11 E12

E21 E22

⌘
.

Proposition 4.1. — 1) Assume that P11 is bijective. Then by Gaussian

elimination we have the standard factorization into lower and upper triangular

matrices:

(4.3) P =
⇣P11 0
P21 1

⌘⇣ 1 P�1
11 P12

0 P22 � P21P
�1
11 P12

⌘
.

The first factor is bijective since P11 is, so the bijectivity of P is equivalent to

that of the second factor, which in turn is equivalent to that of P22�P21P
�1
11 P12.

When P is bijective, we have the formula,

(4.4) P�1 =
⇣ 1 a

0 (P22 � P21P
�1
11 P12)�1

⌘⇣P�1
11 0
b 1

⌘
=:

⇣E11 E12

E21 E22

⌘
=: E ,

(1) All Hilbert spaces in this work are assumed to be separable.
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where a = �P�1
11 P12(P22 � P21P

�1
11 P12)�1, b = �P21P

�1
11 and in particular,

(4.5) E22 = (P22 � P21P
�1
11 P12)

�1.

2) Now assume that P is bijective. Then P11 is bijective precisely when

E22 is, and when that bijectivity holds we have

(4.6) E�1
22 = P22 � P21P

�1
11 P12, P�1

11 = E11 � E12E
�1
22 E21

The first statement is clear. The second statement is more standard and
also quite simple to verify.

4.2. Generalized determinants for holomorphic Fredholm families

Let ⌦ ⇢ C be open connected, let H1, H2 be two complex Hilbert spaces
and let

P : ⌦ �! L(H1,H2)

be a holomorphic family of Fredholm operators of index 0, such that P (z) is
bijective for at least one z 2 ⌦. Then by analytic Fredholm theory (see for
instance the appendix in [16]) we know that the set �(P ) ⇢ ⌦ where P (z)
is not bijective, is discrete. Let z0 2 �(P ). Then we can find N 2 N and
operators R+ : H1 �! CN , R� : CN ! H2 such that

(4.7) P(z) :=
⇣P (z) R�

R+ 0

⌘
: H1 ⇥ CN ! H2 ⇥ CN

is bijective for z 2 neigh(z0,⌦) (i.e. for z in some neighborhood of z0 in ⌦).
Let

(4.8) E(z) =
⇣ E(z) E+(z)
E�(z) E�+(z)

⌘
: H2 ⇥ CN �! H1 ⇥ CN

denote the inverse, depending holomorphically on z.
Working in a small neighborhood of z0 disjoint from �(P ) \ {z0}, we apply

the following standard computations and arguments (see [18], [32]) where the
first formula is already in (4.6):

P (z)�1 = E(z)� E+(z)E�+(z)
�1E�(z),

P�1@zP = E(z)@zP � E+(z)E�+(z)
�1E�(z)@zP,

writing @ = @z = @/@z. Here the first term to the right is holomorphic and the
second term is of finite rank with a finite pole at z = z0. Let � be the oriented
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boundary of the open disc D(z0, ✏) with center z0 and with radius ✏ > 0 small
enough. Integrating along �, we get

1

2⇡i

Z

�
P�1@zP dz = � 1

2⇡i

Z

�
E+E

�1
�+E�@zP dz.

The integrand to the right is of trace class, so the left hand side is of trace
class and we get

(4.9) tr
1

2⇡i

Z

�
P�1@P dz = � 1

2⇡i

Z

�
trE+E

�1
�+E�@P dz.

The relation EP = 1 implies

(4.10) E�P + E�+R+ = 0, E�R� = 1,

and di↵erentiating the relation PE = 1 gives

(4.11) (@P )E+ + P@E+ +R�@E�+ = 0.

Combining this with the cyclicity of the trace, we have

�trE+E
�1
�+E�@P = �trE�1

�+E�(@P )E+

= trE�1
�+E�P@E+ + trE�1

�+E�R�@E�+

= �trE�1
�+E�+R+@E+ + trE�1

�+@E�+

= �trR+@E+ + trE�1
�+@E�+.

The first term in the last expression vanishes since R+@E+ = @(R+E+) =
@(1) = 0, so (4.9) becomes

tr
1

2⇡i

Z

�
P (z)�1@P (z)dz =

1

2⇡i

Z

�
trE�1

�+@E�+dz(4.12)

=
1

2⇡
var arg�(ln detE�+) = m(z0, detE�+),

where m(z0, detE�+) denotes the multiplicity of z0 as a zero of detE�+(z).

Remark 4.2. — From the cyclicity of the trace in the beginning of the cal-
culations we see that

R
�(@zP )P�1dz is of trace class and has the same trace

as
R
� P

�1@zP dz.

A more elegant presentation of the above discussion could be based on (4.3):

P =
⇣P (z) 0

⇤ 1

⌘⇣ 1 ⇤
0 E�1

�+

⌘
=: AB,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



20 CHAPTER 4. GRUSHIN PROBLEMS AND DETERMINANTS

which at least formally leads to

0 = tr

Z

�
P�1@Pdz = tr

Z

�
A�1@Adz + tr

Z

�
B�1@Bdz(4.13)

= tr

Z

�
P�1@P dz � tr

Z

�
E�1

�+@E�+dz.

Definition 4.3. — By detP = det⌦ P we denote any holomorphic func-

tion f on ⌦ with f�1(0) = �(P ) for which

(4.14) m(z0, f) = tr
1

2⇡i

Z

@D(z0,r)
P (z)�1@P (z)dz, for all z0 2 �(P ).

Here r > 0 is small enough so that �(P ) \D(z0, r) = {z0}.

By Mittag-Le✏er’s theorem such a holomorphic function exists and it is
unique up to a non-vanishing holomorphic factor.

Proposition 4.4. — Let Q : ⌦ ! L(H2,H3) have the same general proper-

ties as P (z). Then the determinants of P , Q, QP can be defined as above so

that

(4.15) det
�
Q(z)P (z)

�
=
�
detQ(z)

��
detP (z)

�
.

Proof. — We clearly have

�(QP ) = �(Q) [ �(P )

as sets, and we have to prove that

(4.16) m
�
z0, det(QP )

�
= m(z0, detP ) +m(z0, detQ),

for every z0 2 ⌦, where m(z0, detP ) is defined to be zero when z 62 �(P ) and
otherwise as in (4.14).

Let z0 2 �(P ) [ �(Q) and let z0 6= z 2 neigh(z0). We have at z,

(4.17) (QP )�1@(QP ) = P�1Q�1(@Q)P + P�1@P.

Here the first term to the right needs to be transformed. For each of the
operators A = P�1, B = Q�1(@Q)P we make a decomposition

A = Ahol +Asing

where Ahol is holomorphic in a full neighborhood of z0 and Asing has a pole
at z0 but is of finite rank and hence of trace class. Now write

AB �BA = (AholBhol �BholAhol) + (AholBsing �BsingAhol)(4.18)

+(AsingBhol �BholAsing) + (AsingBsing �BsingAsing).
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The first term to the right is holomorphic near z0, while the other three are
of trace class with vanishing trace. Thus if � = @D(z0, r) with 0 < r small
enough,

R
�(AB �BA)dz is of trace class and with trace 0.

Applying this to the first term to the right in (4.17), we see that
Z

�

�
P�1Q�1(@Q)P �Q�1@Q

�
dz

is of trace class and has trace 0. It follows that (2⇡i)�1
R
� P

�1Q�1(@Q)P dz

is of trace class and has the same trace as (2⇡i)�1
R
� Q

�1@Qdz and we get

tr
1

2⇡i

Z

�
(QP )�1@(QP )dz = tr

1

2⇡i

Z

�
Q�1@Qdz + tr

1

2⇡i

Z

�
P�1@P dz,

which amounts to (4.16).

4.3. Extension to meromorphic families

In this section we essentially follow [13], see also [3]. Let ⌦ be open and
connected. Let P : ⌦ ! L(H1,H2) be meromorphic with the poles z1, z2, . . . .
Here Hj are complex Hilbert spaces.

Definition 4.5. — We say that P (z) is a meromorphic Fredholm function
(or Fredholm family) if the following hold:

. P (z) is Fredholm of index 0 on ⌦ \ {z1, z2, . . .} and bijective for at least

one z in that set.

. Let z0 be any pole and write the Laurent series at z0 as

P (z) =
N0X

1

(z � z0)
�jPj +B(z), z 2 neigh(z0),

with B(z) holomorphic. Then Pj are of finite rank (implying that B(z) is

Fredholm of index zero for z 6= z0). Moreover, B(z0) is a Fredholm operator

of index 0.

The motivation for introducing this class is that if Q(z) is a holomorphic
family of Fredholm operators on ⌦, bijective for at least one z 2 ⌦, then
P (z) = Q(z)�1 is a meromorphic Fredholm function.

If P j(z), j = 1, 2 are meromorphic Fredholm families on ⌦, then P 1(z)P 2(z)
is also such a family. In fact, the first property in the definition is easy to verify
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and if z0 is a pole for one or both factors, we write

P j(z) =

N
jX

1

(z � z0)
�kP j

k +Bj(z)

and check that

P 1(z)P 2(z) =
N1+N2X

1

(z � z0)
�kPk +B(z)

where Pk are of finite rank and B(z0) = B1(z0)B2(z0) + K, where K is of
finite rank.

We shall show that the class of meromorphic Fredholm functions on ⌦ is
closed under inversion and introduce the notion of meromorphic determinant
for such families. The key will be a well chosen Grushin problem.

We pause to recollect the condition for the well-posedness of a Grushin
problem

(4.19) Pu+R�u� = v, R+u = v+,

when P : H1 ! H2 is a fixed Fredholm operator of index 0 and R+ : H1 ! CN

and R� : CN ! H2 are of rank N . Since (4.19) defines an operator

P =
⇣ P R�
R+ 0

⌘
: H1 ⇥ CN �! H2 ⇥ CN

of index 0, it is bijective precisely when it is injective, so it su�ces to review
when (4.19) is injective. The necessary and su�cent condition for that is

(4.20) u 2 N (R+) and Pu 2 R(R�) =) u = 0,

where N indicates the null space and R the range. Now let P (z) be a mero-
morphic Fredholm function with a pole at z0. We look for R± as above (inde-
pendent of z) such that the problem

(4.21)
⇣ N0X

1

(z � z0)
�jPj +B(z)

⌘
u+R�u� = v, R+u = v+

is well-posed for all z in a pointed neighborhood of z0.
Since the Pj are finitely many operators of finite rank, we can choose R+

with N large enough, so that

Pj |N (R+)
= 0, N (R+) ⇢ N

�
B(z0)

�?
.
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Then B(z0)(N (R+)) is a closed subspace of H2 of codimension N , and we
choose R� of rank N such that B(z0)(N (R+)) \R(R�) = 0, i.e.

(4.22) H2 = B(z0)
�
N (R+)

�
�R(R�).

Then the problem

B(z0)u+R�u� = v, R+u = v+

is well-posed and we check that (4.21) has the same property. Indeed, P (z) =
B(z) on N (R+) and hence this restriction is injective for z close to z0, and
P (z)(N (R+))�R(R�) = H2.

Let us also analyze the structure of the solution operator to the prob-
lem (4.21). Let eE+ be a right inverse of R+ so that a general u 2 H1 has
the direct sum decomposition

(4.23) u = u0 + eE+ev+, u0 2 N (R+), ev+ 2 CN .

Then the second equation of (4.21) holds precisely when ev+ = v+. Let ⇧0,
⇧00 be the projections on the first and second summands in the direct sum
decomposition (4.22) and write H2 3 v = ⇧0v +⇧00v = v0 + v00.

Since Pju
0 = 0, the first equation in (4.21) becomes

B(z)u0 +R�u� = v �
N0X

1

(z � z0)
�jPj

eE+v+ �B(z) eE+v+

and we determine u0 and u� by applying ⇧0 and ⇧00 respectively, using
that ⇧0B(z)|N (R+) = ⇧0B(z0)|N (R+) + O(z � z0) is bijective: N (R+) !
B(z0)(N (R+)), that ⇧00R� = R� and that R� : CN ! R�(CN ) is bijective.
If eE� is a left inverse of R�, we get

⇧0B(z)u0 = v0 �
N0X

1

(z � z0)
�j⇧0Pj

eE+v+ �⇧0B(z) eE+v+,

u0 =
�
⇧0B(z)|N (R+)

��1
⇣
v0 �

N0X

1

(z � z0)
�j⇧0Pj

eE+v+ �⇧0B(z) eE+v+

⌘
,

and

u� = eE�⇧00
⇣
v �

N0X

1

(z � z0)
�jPj

eE+v+ �B(z) eE+v+

⌘

� eE�⇧00�B(z)�B(z0)
�
u0.

As usual, we write the solution of (4.21) in the form

(4.24) u = Ev + E+v+, u� = E�v + E�+v+,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



24 CHAPTER 4. GRUSHIN PROBLEMS AND DETERMINANTS

where “explicit” expressions for E, E• can be obtained from the above compu-
tations. We see that

(4.25) E(z) =
�
⇧0B(z)|N (R+)

��1
⇧0

is a holomorphic family of Fredholm operators of index 0, while E+(z), E�(z),
E�+(z) are meromorphic operator valued functions with singular terms of
finite rank. In particular, E�+(z) is a meromorphic function with values in
the N⇥N matrices which is invertible for z 6= z0, so that detE�+ is meromor-
phic with a possible pole at z0, non-vanishing and holomorphic in a pointed
neighborhood of that point. Thus E�1

�+ is also meromorphic and we conclude
that

P (z)�1 = E(z)� E+(z)E�+(z)
�1E�(z)

is a meromorphic family of Fredholm operators near z0. Thus we get

Proposition 4.6. — If P (z) is a meromorphic Fredholm function, then

P (z)�1 has the same property.

We shall next extend the discussion of determinants in Section 4.2. When
R± are independent of z and P =

�P (z)
R�

R+
0

�
= H1⇥CN ! H2⇥CN is bijective

with inverse E =
�

E
E+

E�
E�+

�
, we notice that

P�1@P =
⇣ E@P 0
E�@P 0

⌘
.

In the case of our special problem (4.21), E(z) is given in (4.25) and the
non-holomorphic part of E@P is

�
⇧0B(z)|N (R+)

��1
⇧0@z

⇣ N0X

1

(z � z0)
�jPj

⌘

which is of finite rank and with the same trace as

⇧0@z
⇣ N0X

1

(z � z0)
�jPj

⌘�
⇧0B(z)|N (R+)

��1
.

This operator vanishes, since Pj |N (R+)
= 0. Thus

R
� P�1@Pdz and

R
� E@P dz

are of trace class and have the trace 0 if � = D(z0, r) for 0 < r ⌧ 1.

As in and around (4.9) we now get

tr
1

2⇡i

Z

�
P�1@P dz = �tr

1

2⇡i

Z

�
E+E

�1
�+E�@P dz = tr

1

2⇡i

Z

�
E�1

�+@E�+dz,
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leading to

(4.26) tr
1

2⇡i

Z

�
P�1@P dz = m(z0, detE�+),

where the integer m(z0, detE�+) is the order of z0 as a zero of detE�+ when
the latter function is holomorphic near z0 and when detE�+ has a pole at z0,
then �m(z0, detE�+) is the order of that pole.

Note for future reference that

(4.27) P�1@P = a+ b,

where a is holomorphic near z0 and b is of finite rank and

(4.28) tr b = tr(E�1
�+@E�+).

We emphasize that in view of (4.26), (2⇡i)�1tr
R
� P

�1@P dz is an integer,
and we can then give the following extension to meromorphic families of the
notion of determinant:

Definition 4.7. — Let P : ⌦ ! L(H1,H2) be a meromorphic Fredholm func-

tion with the poles z1, z2, . . . By detP = det⌦ P we denote any meromorphic

function f(z) whose restriction to ⌦ \ {z1, z2, . . .} is a determinant for P in

the sense of Definition 4.3, and such that for every pole zj of P , we have

tr
1

2⇡i

Z

@D(z
j

,r)
P (z)�1@P (z)dz = m(zj , f)

when r > 0 is small enough.

Observe that Proposition 4.4 and its proof extend to the case of meromor-
phic Fredholm functions.

4.4. Determinants via traces

If H is a complex Hilbert space and P = P (z) 2 L(H,H) is a trace class
perturbation of the identity, depending holomorphically on the complex pa-
rameter z, we can define D(z) = ln detP (z) and we have

(4.29)
d

dz
D(z) = trP (z)�1 dP

dz
,

at the points where P is bijective. Now even when P is not a trace class per-
turbation of the identity, it may happen that P�1dP/dz is of trace class, and
we can now consider the case when P (z) 2 L(H1,H2) for di↵erent complex
Hilbert spaces H1, H2. By integration of (4.29), we may then say that D(z)
is well-defined up to a constant as a possibly multivalued function on every
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connected component of the open set where P (z) is invertible. If P�1dP/dz is
not of trace class we may di↵erentiate further and hope to reach an expression
which is of trace class. Then we would be able to define D(z) up to a polyno-
mial. In this section we carry out such a scheme. The idea of reaching trace
class operators by means of di↵erentiation in connection with determinants
has been used by G. Carron [5].

Let ⌦ ⇢ C be open and connected, let Hj , j = 1, 2, 3, be complex Hilbert
spaces. Let ⌃ = ⌃(P ) ⇢ ⌦ be discrete and let P : ⌦ \ ⌃ ! L(H1,H2)
be holomorphic and pointwise bijective. Let Cp = Cp(H1,H2) denote the
Schatten class of index p 2 [1,+1] (see for instance [14]). Assume that for
some p 2 [1,+1[,

(4.30) @kzP (z) 2 Cmax(1,p/k), 1  k 2 N,

locally uniformly on ⌦. By the Cauchy inequalities, it su�ces to check this
for k  N , where N = N(p) is the smallest integer � p.

Recall that Cp increases with p and that if C 2 Cp(H1,H2) and D 2
Cq(H2,H3), then DC 2 Cr(H1,H3) with 1/r = min(1, 1/p + 1/q). (See [14],
Prop. 7.2.) In the following, we shall think of bounded operators as being
of order = 0 and of elements in Cp as being of order = �1/p. In all cases
we restrict here the order to the interval [�1, 0] and then orders are additive
under composition: ord(DC) = max(�1, ord(D) + ord(C)). (We adopt the
convention that the order is not unique; if C is of order ↵ and ↵  �  0,
then C is also of order �.)

We also notice that P (z)�1 satisfies (4.30).

On the set ⌦ \ ⌃(P ), we check that

(4.31) @j�1
z

�
P (z)�1@zP (z)

�
2 Cmax(1,p/j), j � 1,

i.e. of order = max(�1,�j/p). Thus, for p  j 2 N, we can define

(4.32) DP,j(z) = tr
�
@j�1
z (P (z)�1@zP (z))

�
, z 2 ⌦ \ ⌃(P ).

Clearly,

@zDP,j(z) = DP,j+1(z).

We can now define the determinant of P (z). At the end of the section we
show that this new notion coincides with the one for meromorphic families of
Fredholm operators of the preceding subsection.

Definition 4.8. — Let N = N(p) be the smallest integer � p. We define

DP (z) = ln detP (z) to be any multivalued holomorphic function on ⌦ \ ⌃(P )
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which solves the equation

(4.33) @Nz DP (z) = tr
�
@N�1
z (P (z)�1@zP (z))

�
.

Thus DP (z) is well defined (on the universal covering space of ⌦ \ ⌃(P )) up

to a polynomial of degree N � 1.

Let Q : ⌦ ! L(H2,H3) be a second family with the same general proper-
ties as P (z) and for simplicity with the same p in (the analogue of) (4.30).
Then Q(z)P (z) fulfills the same assumptions and we next check the additivity
property

(4.34) ln detPQ = ln detP + ln detQ, on ⌦ \
�
⌃(P ) + ⌃(Q)

�
,

i.e.

(4.35)
⇣ d

dz

⌘N
ln detPQ =

⇣ d

dz

⌘N
ln detP +

⇣ d

dz

⌘N
ln detQ,

when N is the smallest integer � p.

When p = 1 = N , this is straightforward:

d

dz
ln detPQ = tr(PQ)�1 d

dz
(PQ)(4.36)

= trQ�1P�1 dP

dz
Q+ trQ�1P�1P

dQ

dz

= trQ�1P�1 dP

dz
Q+ trQ�1 dQ

dz
·

Here we use the cyclicity of the trace to see that the first term in the last
expression is equal to trP�1dP/dz and we thus get (4.35) when N = 1.

Recall that the cyclicity of the trace says that tr(P1P2 � P2P1) = 0, when
P1 2 Cp1(H1,H2), P2 2 Cp2(H2,H1) and 1 = 1/p1 + 1/p2.

Lemma 4.9. — Let P1(z) 2 L(H1,H2) and P2(z) 2 L(H2,H1) depend holo-

morphically on z 2 ⌦. Then d(P1P2 � P2P1)/dz is a sum of terms of the form

Q1Q2 �Q2Q1. More precisely,

(P1P2 � P2P1)
0 = [P 0

1P2 � P2P
0
1] + [P1P

0
2 � P 0

2P1],

where we indicate derivatives with a prime.

Iterating the lemma we see that (d/dz)N (P1P2 � P2P1) is a linear combi-

nation of terms of the form Q1Q2 �Q2Q1, with Qj = @
N

j

z Pj , N1 +N2 = N .
Now return to (4.36), or rather the last two equations there that are valid

without traces, and write

Q�1P�1 dP

dz
Q = P�1 dP

dz
+ (P1P2 � P2P1),
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with P1 = Q�1P�1dP/dz, P2 = Q. The lemma shows that
⇣ d

dz

⌘N�1⇣
Q�1P�1 dP

dz
Q
⌘
=
⇣ d

dz

⌘N�1⇣
P�1 dP

dz

⌘

+ a linear combination of terms of the form Q1Q2 �Q2Q1

with ord(Qj)  max(�1,�Nj/p), N1 +N2 = N.

The cyclicity of the trace then implies that

tr
⇣ d

dz

⌘N�1⇣
Q�1P�1 dP

dz
Q
⌘
= tr

⇣ d

dz

⌘N�1⇣
P�1 dP

dz

⌘

and we obtain (4.35) for a general N .

As in the case of meromorphic families of Fredholm operators, if z0 2 ⌃(P )
and � = @D(z0, r) with r > 0 small enough,

R
� P

�1@P dz is of trace class:

Proposition 4.10. — With P , p, N = N(p) as in Definition 4.8, let z0
in ⌃(P ), � = @D(z0, r) with r > 0 small enough, so that D(z0, r) \ ⌃(P ) = {z0}.
Then

R
� P

�1@P dz is of trace class and we have

tr
1

2⇡i

Z

�
P�1@P dz = tr

1

2⇡i

Z

�

(�z)N�1

(N � 1)!
@N�1(P�1@P )dz(4.37)

=
1

2⇡i

Z

�

(�z)N�1

(N � 1)!
DP,N (z)dz,

where zN�1/(N � 1)! can be replaced by any other polynomial p(z) such that

@N�1p(z) = 1

Proof. — The second equality follows by moving the trace inside the integral
and recalling the definition of DP,N . The first equality and the fact thatR
� P

�1@P dz is of trace class, follows from the corresponding stronger equality
without “tr” in front which can be obtained by integration by parts.

Now, assume in addition that ⌦ is simply connected and that P is a mero-
morphic Fredholm function on ⌦ in the sense of Definition 4.5. Then we know
that

(4.38) tr
1

2⇡i

Z

�
P�1@P dz = m(z0, f) 2 Z,

where f denotes the meromorphic Fredholm determinant of Definition 4.7. On
the other hand, we can do integrations by parts in the last expression in (4.37)
and obtain

(4.39) tr
1

2⇡i

Z

�
P�1@P dz =

1

2⇡i

Z

�
@zDP (z)dz,
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which, combined with (4.38), says that

(4.40) var�DP = 2⇡im(z0, f) 2 2⇡iZ
and hence eDP and its logarithmic derivative @DP are single-valued holomor-
phic functions on ⌦ \ ⌃.

So far, this only shows that

DP =
1X

1

(z � z0)
�jaj +m(z0, f) ln(z � z0) + g(z),

where g is holomorphic, so eDP = eg+
P

a
j

(z�z0)�j

(z�z0)m(z0,f) may have a bad
singularity at z0. We therefore return to the Grushin problem in Section 4.3.
The remark (4.27), (4.28) shows that

tr @N�1P�1@P = tr(@N�1a) + @N�1tr(E�1
�+@E�+),

where E�+ is a meromorphic finite matrix and tr(@N�1a) is holomorphic in a
full neighborhood of z0. Consequently,

@DP = tr(E�1
�+@E�+) + holomorphic = @(lnE�+) + holomorphic,

which rules out the bad singularity and we see that eDP = eg(z � z0)m(z0,f)

near z0. Globally eDP

(z) is indeed a determinant in the sense of Definition 4.7.

Proposition 4.11. — Let P (z) be a holomorphic family on ⌦ \ ⌃ as in the

beginning of this section and assume in addition that ⌦ is simply connected

and that P is a meromorphic Fredholm function on ⌦. Then the determi-

nants detP (z) in the sense of Definition 4.8 and in the sense of Definition 4.7
coincide up to a non-vanishing holomorphic factor.

The following complement will be used in Chapter 13.

4.5. Addendum

Consider a Schatten class perturbation of the identity, Q(z) = 1 � K(z),
where K(z) 2 Cp is holomorphic in some domain in C and as in (4.30):

(4.41) @kzK(z) 2 Cmax(1,p/k), 1  k 2 N.
This assumption remains valid if we replace p by N = [p], the smallest in-
teger � p and then (in view of the mean value property for holomorphic
functions) takes the simpler form

(4.42) @kzK(z) 2 CN/k, 1  k  N,

(4.43) K(z) 2 CN .
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Considering the Taylor expansions (and mimicking the definition of modified
determinants for Schatten class perturbations of the identity), we get

(4.44)

8
>><

>>:

Q(z) = A(z)B(z),

A(z) = expF (z), F (z) = K(z) + · · ·+ K(z)N�1

N � 1
,

B(z) =
�
1 +RN (K)KN

�
,

where kRN (K)k  C(kKk). Thus
��RN (K)KN

��
C1

 C
�
kKk

�
kKkNC

N

,

so detB(z) can be defined as in Section 4.4. The definition coincides with that
of determinants of trace class perturbations of the identity and we get

(4.45)
�� detB(z)

��  exp
�
C(kKk)kKkNC

N

�
.

As for A(z) = expF (z), we see that F (z) satisfies (4.42), (4.43). Moreover
from applying @z to the di↵erential equation @t exp(tF (z)) = F (z) exp(tF (z)),
we have

@z(e
F ) =

Z 1

0
e(1�t)F (z)

�
@zF (z)

�
etF (z)dt 2 CN

and from similar expressions for @kz (e
F ) we see that A = eF satisfies (4.42)

and (4.43). Now,

e�F@z e
F =

Z 1

0
e�tF (@zF )etF dt = @zF +

Z 1

0
[ e�tF , (@zF )etF ]dt,

so tr @N�1
z (e�F@z eF ) = tr @Nz F, which is bounded in modulus by

O(1)
X

N1+···+N
q

=N
N

q

�0, qN�1

k@N1K · · · @NqKkC1(4.46)

 O(1)
X

N1+···+N
q

=N
N

q

�0, qN�1

k@N1KkC
N/N1

· · · k@NqKkC
N/N

q

.

Combining this with (4.44), (4.45), we get:

Proposition 4.12. — Under the above assumptions,

detQ(z) = I(z) II(z), I(z) = detA(z), II(z) = detB(z),

where |II(z)| is bounded by the right hand side of (4.45) and |@Nz ln I(z)| is
bounded by the expression (4.46).
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CHAPTER 5

COMPLEX DILATIONS

5.1. Complex dilations and symmetry

We start by reviewing some easy facts for complex distortions (see [28],
[29], [30], [31], [33]) and we shall pay a special attention to symmetry with
respect to the natural bilinear form. Let � ⇢ Cn be a maximally totally real

(m.t.r.) simply connected smooth sub-manifold and let P =
P

|↵|m a↵D
↵,

where a↵ 2 C1(�). If u 2 C1(�), we put

Pu = ( eP eu ) |�,

where eP =
P

ea↵D↵ and ea↵, eu are almost holomorphic extensions of a↵, u to a
neighborhood of �.

If P t =
P

(�D)↵ � a↵ is the formal transpose of P , we can define as above
P tu 2 C1(�) for u 2 C1(�) and if we define

(5.1) hu |vi� =

Z

�
u(x)v(x)dx1 ^ ... ^ dxn =

Z

�
u(x)v(x)dx, u, v 2 C1

0 (�),

we get from Stokes’ formula that

hPu |vi� = hu |P tvi�.
Now, let b� ⇢ Cn be a second maximally totally real smooth manifold and

let � : b� ! � be a smooth di↵eomorphism. (For instance, b� can be an open
subset of Rn and � a “parametrization” of �.) We can then define

(5.2)
@�

@y
=
⇣@e�j
@yk

⌘
,

where e�(y) = (e�1(y), . . . , e�n(y)) is an almost holomorphic extension of � =
(�1, . . . , �n). Let f 2 C1(b�) and define U : C1(�) ! C1(b�) by

(5.3) Uu(y) = f(y)u
�
�(y)

�
, u 2 C1

0 (�).



32 CHAPTER 5. COMPLEX DILATIONS

If u, v 2 C1
0 (�), we get

hUu |Uvib� =

Z

b�
u
�
�(y)

�
v
�
�(y)

�
f(y)2dy,

hu |vi� =

Z

�
u(x)v(x)dx =

Z

b�
u
�
�(y)

�
v
�
�(y)

�
det

⇣@�
@y

⌘
dy.

Choose f = (det @�/@y)
1
2 for some fixed continuous branch of the square

root (assuming for simplicity that b� is simply connected). Then

(5.4) hUu |Uvib� = hu |vi�,

so U is orthogonal,

(5.5) U t = U�1.

As usual, this imples that the operations of conjugation with U and trans-
position commute: If P is as above and we define the pull-back

bP = U � P � U�1 = U � P � U t,

then

(5.6) bP t = UP tU t.

Let now b� ⇢ Rn. We can use U to define an L2-inner product on C1
0 (�)

by putting

(5.7) (u |v) = (u |v)� = (Uu |Uv)
L2(b�),

which is the inner product that makes U formally unitary. More explicitly,

(5.8) (u |v) =
Z

b�
u
�
�(y)

�
v
�
�(y)

� ���det
@�

@y

���dy =

Z

�
u(x)v(x)✓(x)dx,

where

✓(x) =
|det @�/@y|
det @�/@y

, x = �(y),

is the unique unimodular factor for which ✓(x)dx is a positive density on �
(and in particular independent of the parametrization �).

We have

(5.9) (u |v) = hu |Cvi�, u, v 2 C1
0 (�),

where C is the antilinear involution defined by Cv = ✓v. The formal adjoint
of P for our scalar product on � is given by

(5.10) P ⇤ = C�1P tC = CP tC.
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5.2. Dilations and convex sets

Let

(5.11) P = �h2�+ V (x), V 2 L1
comp(Rn;R).

Let first f : Rn ! R be smooth, equal to 0 near suppV and equal to
(tan ✓)12d0(x)

2 for large x, where d0(x) = |x| and 0 < ✓ < 1
2⇡. Then we

consider the m.t.r. manifold � = �f of Cn, given by

(5.12) x = y + if 0(y), y 2 Rn.

(See [24] for a quick review in the semi-classical case.) The bijectivity of
the complex Jacobian map @x/@y = 1 + if 00(y) implies indeed that �f is
maximally totally real. P� can be computed in the parametrization (5.12)
using the formal chain rule:

@

@y
=
�
1 + if 00(y)

� @
@x

, @

@x
=
�
1 + if 00(y)

��1 @

@y
,

and hence away from the support of V we get

(5.13) P� = �h2 det
�
1+if 00(y)

��1
⇣ @

@y

⌘t
det

�
1+if 00(y)

��
1+if 00(y)

��2
⇣ @

@y

⌘

which has the semi-classical principal symbol

(5.14)
�
(1 + if 00(y)

��1
⌘)2 =

⌦�
1 + if 00(y)

��2
⌘, ⌘

↵
.

Here h. , .i denotes the bilinear scalar product on Rn and also its bilinear ex-
tension to Cn. Since ⌘ is real in (5.14), we can write this symbol as

�
(1 + if 00(y)

��2
⌘ |⌘

�
,

where (. | .) is the usual sesquilinear scalar product on Cn.
For large y, we have f 00(y) = (tan ✓)1 and here it is convenient to use

the equivalent parametrization x = ei✓ey, where ey, y 2 Rn are related by
y = (cos ✓)ey, and get

(5.15) P� = e�2i✓(�h2�ey).

In general we assume

(5.16) f 00(y) � 0,

and we shall study the inverse of (1 + if 00(y))2 = 1� f 00(y)2 + 2if 00(y). If C is
a complex n⇥ n matrix, define as usual

<C = 1
2
(C + C⇤), =C = 1

2i
(C � C⇤).
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Proposition 5.1. — If C = (1+ if 00(y))2 for some fixed y 2 Rn, then under

the assumption (5.16), we have :

1) =C�1  0.

2) We have =C�1 < 0 (i.e. C�1 is negative definite) i↵ f 00(y) > 0.

3) The symbol (C�1⌘ |⌘), ⌘ 2 Rn is elliptic: |(C�1⌘|⌘)| ⇣ |⌘|2 and takes its

values in a sector �⇡ + ✏  arg (C⌘ |⌘)  0 for some ✏ > 0.

4) When f 00(y) > 0 it take its values in a sector �⇡+ ✏  arg(C⌘ |⌘)  �✏.

Proof. — We already know that C : Cn ! Cn is bijective and a direct calcu-
lation shows that

=C�1 = �C⇤�1(=C)C�1 = �2C⇤�1f 00(y)C�1,(5.17)

<C�1 = C⇤�1(<C)C�1 = C⇤�1(1� f 00(y)2)C�1.(5.18)

Assertions 1) and 2) follow from (5.17). Now look at

(5.19) (C�1⌘ |⌘) =
�
(<C)C�1⌘ |C�1⌘

�
� i

�
(=C)C�1⌘ |C�1⌘

�
.

If the imaginary part of this expression (i.e. the last term) is zero, then since
=C � 0, we conclude that (=C)(C�1⌘) = 0, i.e. f 00(y)C�1⌘ = 0. For such
an ⌘ the real part of (5.19) becomes

�
(<C)C�1⌘ |C�1⌘

�
=
�
(1� f 00(y)2)C�1⌘ |C�1⌘

�
= kC�1⌘k2.

Assertions 3) and 4) follow.

The proposition shows that P� is elliptic in the classical sense. Defin-
ing the Sobolev spaces Hs(�) in the usual way and equipping P� with
the domain H2(�), we see that the essential spectrum of P� is the half-
line e�2i✓[0,+1[. As explained for instance in [28], [29], [30], [31], [33],
P� has no spectrum in the open upper half-plane and the eigenvalues in the
sector e�i[0,✓[]0,+1[ are precisely the resonances of P there. (For a more
complete discussion and further references, see [28], [29], [30], [31], [33].)

Let O b Rn be open with smooth boundary and strictly convex. Then
d(x) := dist(x,O) is smooth on Rn \ O and we have

(5.20) @↵(d� d0) = O
�
hxi�|↵|�.

Now assume that

(5.21) suppV ⇢ O .

Outside O we look for f of the form

(5.22) f(x) = g
�
d(x)

�
,
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where g 2 C1(R;R) vanishes on the negative half-axis. Then

(5.23) f 0(x) = g0
�
d(x)

�
d0(x), f 00(x) = g0

�
d(x)

�
d00(x)+g00

�
d(x)

�
d0(x)⌦d0(x).

Here d0(x) can be identified with the exterior normal ⌫(⇡(x)) at the projection
⇡(x) 2 @O of x. When x /2 @O we also have d0(x) = (x�⇡(x))/|x�⇡(x)|. It is
further wellknown that d00(x) is positive semi-definite with null-space Rd0(x).
Thus we see from (5.23) that f 00(x) � 0 when g0, g00 � 0 and we have f 00(x) > 0
when g0, g00 > 0.

Introduce geodesic coordinates: Let x0 : ⌦ ! @O be a local parametrization
of the boundary, where ⌦ is some open set in Rn�1. Then we have local
(geodesic) coordinates (z0, zn) 2 ⌦⇥ ]� ✏,+1[ on Rn, given by

(5.24) x = x(z0) + zn⌫
�
x(z0)

�
.

In these coordinates, if f is as in (5.22), then � = �f is obtained by letting zn
become complex:

(5.25) z0 = y0, zn = �(yn), �(yn) := yn + ig0(yn).

We have (see [30], Section 2, also [31], Section 3 and [29]):

(5.26) P = D2
z
n

+R(z,Dz0) + a(z)@z
n

,

where

(5.27) R(z,Dz0) = R(z0, 0, Dz0)� znQ(z,Dz0),

and R, Q are elliptic second order di↵erential operators with positive principal
symbols:

(5.28) r(z, ⇣ 0), q(z, ⇣ 0) > 0.

The coe�cients are analytic in zn and smooth in z. In the parametriza-
tion (5.25) for �, we get

P� =
⇣ 1

�0(yn)
Dy

n

⌘2
+R(y0, 0;Dy0)(5.29)

��(yn)Q
�
y0, �(yn);Dy0

�
+ a

�
y0, �(y0)

� 1

�0(yn)
@y

n

·

This formula remains valid if we make a real change of variables in yn in order
to normalize �0(yn).

If we choose g so that g(d) = (tan ✓)d2 for large d � r0 > 0, then as we have
seen, f 00 > 0 in the corresponding region. Let � 2 C1

0 (Rn; [0, 1]) be equal to
one in a neighborhood of 0 and put

ed = edR = �
⇣ x

R

⌘
d(x) +

⇣
1� �

⇣ x

R

⌘⌘
d0(x).
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Then we still have (5.20) if we replace d or d0 with ed and from this it follows
that ef := (tan ✓) ed 2 satisfies ef 00(x) > 0 for d(x) � r0, provided that R � 0.
Summing up we have

Proposition 5.2. — Let f(x) = g(d) with g as above and assume that

g0(d) > 0, g00(d) > 0 for d > r0/2 where r0 > 0. Then we can find f = f(x)
smooth and real-valued such that

. f(x) = g(d) for d  1
2r0 > 0,

. f(x) = 1
2(tan ✓)d0(x)

2 near infinity,

. f 00(x) > 0 for d(x) � 1
2r0.

To study the resonances for the exterior Dirichlet problem in Rn \ O one
may use complex scaling with a contour

(5.30) �ext,f : x = y + if 0(y), y 2 Rn \ O,

where f 2 C1(Rn \ O) vanishes on @O, f 00 > 0 away from @O and f(x) =
1
2(tan ✓)d0(x)

2 near infinity. One then considers the restriction Pext of �h2� to
this contour with domain H2 \H1

0 (�ext) and the exterior Dirichlet resonances
in the sector e�i[0,2✓[ coincide with the eigenvalues of this operator. (See [29],
[30], [31] and references cited there.) A convenient choice of f near @O is
f(x) = 1

2(tan ✓)d(x)
2 and according to [15] we know that ✓ = 1

3⇡ is in some
sense the optimal choice.

In our case it will be convenient to use a Lipschitz contour:

(5.31) f(x) =

(
0 in O,

1
2(tan ✓)d(x)

2 near @O in Rn \ O,

and as above further away from O . Then f is of class C1,1 and smooth
away from @O. Consequently, � = �f is a Lipschitz manifold, smooth away
from @O and is naturally decomposed into the interior part O and the exterior
part; �f,ext. Again, we can define P� as P |� with the appropriate continuity
conditions at @O:

D(P�) =
�
u = uO + uext; uO 2 H2(O), uext 2 H2(�f,ext),(5.32)

uO = uext, @⌫uO = @⌫uext on @O
 
,

where ⌫ is the exterior unit normal to O. (On the exterior part we identify @⌫
with (@⌫)�ext .) It follows from Stokes’ formula that P� is symmetric.
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Near a point x0 2 @O, the problem

(5.33)

8
>>>><

>>>>:

(P � z)uO = vO,
(P � z)uext = vext,

�uO � �uext = v0,

�@⌫uO � �@⌫uext = v1

can be viewed as an elliptic boundary value problem for an operator with ma-
trix valued symbol (after a reflexion so that, near x0, we consider uO and uext
to live on the same side of the boundary). Here we take v• to be in L2 in a
neighborhood of x0 and make the same starting assumption about uO and uext.

Then if v0 2 H
3
2 , v1 2 H

1
2 , the standard theory tells us that the traces are well-

defined and that uO and uext actually belong to the spaces H2(O), H2(Rn\O)
respectively. Away from the boundary, the usual arguments of complex scaling
apply, and we see that P �z : D(P ) ! L2 is a holomorphic family of Fredholm
operators of index 0, when z 2 C \ e�2i✓[0,+1[.

Proposition 5.3. — Let � be the singular contour above. The spectrum of

P = P� in the sector e�i[0,2✓[ ]0,+1[ coincides with the set of resonances

for P there.

We have already recalled that the proposition holds when � is a smooth
contour, of the same form near infinity. We also recall from [28, Section 3]
(see also [24] for a semi-classical version as well as [29], [30], [31], [33]), that
one can show directly, using a result on holomorphic extension of null solutions
to non-characteristic equations, that P�1 and P�2 have the same spectrum if �1

and �2 are two smooth contours as above, which coincide near infinity.
The new part of the proof in the case of singular contours will be to show

how to extend null-solutions holomorphically near the singular part of �, i.e.
near @O and in order to do so we need to study holomorphic extensions of the
resolvent kernel. Since we are not interested here in how the estimates depend
on h, we will take h = 1 for simplicity. The arguments below are related with
the more abstract method of exterior complex scaling of B. Simon [22].

We first consider the free resolvent on Rn for =z > 0,

R0(z) = (��� z)�1.

The distribution kernel is of the form R0(z)(x, y) = R0(z)(x� y), where

(5.34) R0(z)(x) =
1

(2⇡)n

Z
eix·⇠

1

⇠2 � z
d⇠.
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As already mentioned, R0(z) extends holomorphically as an operator
C1
0 (Rn) ! C1(Rn) across ]0,+1[ to the double and universal cover-

ings of C \ {0}, when n is odd and even respectively. Moreover, for x in any
compact subset of Rn and for z in any compact subset of the covering space,
there exists a constant C > 0 such that

��R0(z)(x)
�� 

8
>><

>>:

C n = 1,

C
�
1 +

�� ln |x|
��� n = 2,

C|x|2�n n � 3,

(5.35)

��rxR0(z)(x)
�� 

(
C n = 1,

C|x|1�n n � 2.
(5.36)

More precise results are known of course, see for instance [35], but we have
a quick proof of (5.35), (5.36) by noticing that we can make an x-dependent
complex deformation in the integral (5.34) for large x and obtain

R0(z)(x) = O(1) +

Z

|⇠|�1
O(1)e�|x|·|⇠|/C |⇠|�2d⇠,

rR0(z)(x) = O(1) +

Z

|⇠|�1
O(1)e�|x|·|⇠|/C |⇠|�1d⇠,

and treating the gradient estimate for n = 1 separately.

Finally, R0(z) is rotation invariant; R0(z)(Ux) = R0(z)(x) if U : Rn ! Rn

is orthogonal. See Section 2 of [23] as well as further references given there.
As explained in that reference, (5.34) remains valid also for z in the covering
space, we just have to make a complex deformation of the integration contour
in a region where |⇠| is bounded, in order to avoid the zeros ⇠2�z and this has
no importance for the local properties of x 7! R0(z)(x) while it does influence
the exponential decay or increase near infinity.

We now want to extend (5.34) holomorphically with respect to x. The very
first observation is that if x0 2 Rn\{0} then R0(z)(x) extends holomorphically
in x to small neighborhood of x0, by making the small complex deformation
of the integration contour in (5.34) already alluded to.

More generally, assume that x 2 Cn and that x ·x 6= 0. Write x = (x ·x) 1
2 f1

for some branch of the square root. Then f1 · f1 = 1 and we can find vectors
f2, . . . , fn 2 Cn such that f1, . . . , fn is an orthonormal basis for the bilinear
symmetric product x · y: fj · fk = �j,k. Let e1, . . . , en be the canonical basis
in Rn and define the complex orthogonal map U : Cn ! Cn by

(5.37) Uej = fj .
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Let ! = ((x · x)/|x · x|) 1
2 with the same branch of the square root as above.

Then x = !Uy, where y = |x ·x| 12 e1 2 Rn and y · y = |x ·x|. At least formally,
we have

R0(z)(x) =: I(x, z) =

Z
eix·⇠

1

⇠2 � z

d⇠

(2⇡)n
=

Z
ei!Uy·⇠ 1

⇠2 � z

d⇠

(2⇡)n
·

Choose the integration contour ⇠ = !�1U⌘, ⌘ 2 Rn. Then d⇠ = !�nd⌘,
⇠2 = !�2⌘2 and we get

I(x, z) =

Z
eiy·⌘

1

!�2⌘2 � z

d⌘

!n(2⇡)n
=

1

!n�2

Z
eiy·⌘

1

⌘2 � !2z

d⌘

(2⇡)n
,

so at least formally, we have

(5.38) I(x, z) = !2�nI(y,!2z), ! =
⇣ x · x
|x · x|

⌘ 1
2
, y 2 Rn, x · x = !2y · y.

We can use this formula together with the initial remark about holomor-
phic extentions to small neighborhoods of real points to define the desired
holomorphic extension of I(x, z) from Rn

x \{0}. Naturally this will give rise to
a ramified (multivalued) function and in order to get some more understand-
ing, let [0, 1] 3 t 7! xt 2 Cn be a continuous map starting at a real point
x0 2 Rn \ {0} and ending at some given point x 2 Cn with x · x 6= 0 such
that xt · xt 6= 0 for all t. Then we can choose U = Ut depending continuously
on t with U0 = 1. If we have choosen a branch of I(y, z) for real y, then we
get the branch

I(x, z) = !2�n
1 I(y,!2

1z),

obtained by following the curve [0, 1] 3 t 7! !2
t z from z to !2

1z. We
conclude that I(x, z) is a well-defined multivalued holomorphic function
of x 2 {w 2 Cn; w · w 6= 0} and z in the double/universal covering space
of C \ {0}. Moreover for (x, z) in any fixed compact subset of the above
domain of definition, we still have (5.35), (5.36).

Now we observe that the singular contour � in Proposition 5.3 is of the
form � = �f : x = y + if 0(y), where f is real-valued of class C1,1(Rn) which is
convex and f(y) = 1

2(tan ✓)d0(y)
2 near infinity. If xj = yj + if(yj), j = 0, 1,

are two di↵erent points on �f , then

f 0(y1)� f 0(y0) = A(y0, y1)(y1 � y0),

where

A(y0, y1) =

Z 1

0
f 00(ty1 + (1� t)y0)dt � 0,
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and

(x1 � x0) · (x1 � x0) =
⇥
(1�A(y1, y0)

2) + 2iA(y0, y1)
⇤
(y1 � y0) · (y1 � y0).

The same argument as for the ellipticity of ���
f

shows that

�f ⇥ �f 3 (x0, x1) 7�! (x1 � x0) · (x1 � x0)

takes its values in a sector ei[0,⇡�✏][0,+1[ and that
��(x1 � x0) · (x1 � x0)

�� ⇣ |x1 � x0|2, x0, x1 2 �f .

Combining these facts with the deformation [0, 1] 3 t 7! �tf from Rn to �f ,
we see that R0(z)(x, y) = R0(z)(x � y) is well-defined on �f ⇥ �f away from
the diagonal, and we can define

R0,�u(x) =

Z

�
R0(z)(x, y)u(y)dy, x 2 �f , u 2 C0(�), � = �f .

This gives a continuous operator C0(�) ! C(�). Let P0 = ��. Using that

(��x � z)R0(z)(x, y) = (��t
y � z)R0(z)(x, y) = 0, x 6= y,

as well as the bound on the strength of the singularity at x = y described
in (5.35), (5.36), we see that in the case when f is smooth, we have

(P0,� � z)R0,�(z)v(x) = C(x, f)v(x),

R0,�(z)(P0,� � z)u(x) = eC(x, f)u(x),

for x 2 �, u, v 2 C1
0 (�). It is further clear that C(x, f), eC(x, f) only depend

on the restriction of f to a small neighborhood of <x, so we can replace f be a
new function ef which is equal to f near <x with ef 00 varying very little and being
constant near infinity. We can then determine the constants by letting v, u
be suitable Gaussians and possibly after an additional deformation argument,
we get C(x, f) = eC(x, f) = 1. Thus

(5.39) (P0,� � z)R0,�(z)v = v,

(5.40) R0,�(z)(P0,� � z)u = u,

when u, v 2 C1
0 (�), � = �f and f is smooth. To extend this to the general case

when f is a convex C1,1 function would require first to define the operator P0,�,
and we prefer to avoid that work and just consider the case of the special
singular contour in Proposition 5.3. Then for v 2 C0(�) (5.39) still holds away
from @O.

We also remark that if v 2 C0(�), then u := R0,�v is of class C1 up to the
boundary both on O and on �ext and we have

(5.41) �u⌦ = �uext, �@⌫u⌦ = �@⌫uext.
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Using now that (5.33) is an elliptic boundary value problem, we see that R0,�v

belongs locally to D(P�) and this holds more generally for v 2 L2
comp(�).

If u 2 C0(�) and uO and uext are C2 up to the boundary and satisfy (5.41),
then we can make integrations by parts in

R0,�(P0,� � z)u(x) =

Z
R0(z)(x, y)(��� � z)u(y)dy

after introducing a cuto↵ around the singularity and passing to the limit and
get (5.40) as in the case when f is smooth. By density this extends to the case
when u 2 D(P�) has compact support.

We can now complete the proof of Proposition 5.3. Let � = �f be the

singular contour in that proposition and let ef be smooth, convex, equal to 0
in O and equal to f outside a small neighborhood of O . Let e� = � ef be the

corresponding smooth contour, so that the spectrum of eP = Pe� in the sector

e�i[0,2✓[ ]0,+1[ coincides with the set of resonances there. As in [28], it su�ces
to show the following two facts:

1) If u 2 D(P�) and (P� � z)u = 0, then u has a holomorphic extension to
a domain containing

(5.42)
�
y + i

�
t ef 0(y) + (1� t)f 0(y)

�
; f(y) 6= ef(y), 0  t  1

 
,

such that its restriction eu to e� belongs to D(Pe�) and satisfies
(Pe� � z)eu = 0.

2) If eu 2 D(Pe�) and (Pe��z)eu = 0, then eu has a holomorphic extension to a
domain containing the set (5.42) such that its restriction u to � belongs
to D(P�) and satisfies (P� � z)u = 0.

Let b� 2 C1
0 (Rn) be equal to one near supp (f � ef ) and define the cuto↵s �

and e� on � and on e� respectively by

�
�
y + if 0(y)

�
= e�

�
y + i ef 0(y)

�
= b�(y).

We first prove 1) and let u be as in that statement. Then

(5.43) (P� � z)�u = [P�,�]u,

where the right hand side has its support in the region where � and e� coincide.
We can rewrite (5.43) as

(5.44) (P0,� � z)�u = [P�,�]u� V u

and V u also has its support where � and e� coincide. Applying (5.40) gives

(5.45) �u = R0,�(z)
�
[P�,�]u� V u

�
.
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From the properties of R0(z), we see that �u has a holomorphic extension to a
domain containing the set (5.42). Its restriction to e� solves (Pe�� z)eu = 0 and

eu = u in the regions where � and e� coincide. From elliptic regularity we see
that eu is locally in H2 and hence globally so eu belongs to the domain of Pe�.
This proves 1).

The proof of 2) works the same way with the small di↵erence that instead
of invoking the ellipticity of Pe� on the smooth manifold e�, we invoke the
ellipticity of the boundary value problem (5.33).
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CHAPTER 6

SEMI-CLASSICAL SOBOLEV SPACES

This section is a review of some easy facts about Sobolev spaces, see Sec-
tion 2 in [25], [27] for more details about the first part. We let

Hs
h(Rn) ⇢ S 0(Rn), s 2 R,

denote the semi-classical Sobolev space of order s equipped with the norm
khhDisuk where the norms are the ones in L2, `2 or the corresponding operator
norms if nothing else is indicated. Here

hhDi =
�
1 + (hD)2

� 1
2 .

Proposition 6.1. — Let s > 1
2n. Then there exists a constant C = C(s)

such that for all u, v 2 Hs
h(Rn), we have u 2 L1(Rn), uv 2 Hs

h(Rn) and

kukL1  Ch�
1
2nkukHs

h

,(6.1)

kuvkHs

h

 Ch�
1
2nkukHs

h

· kvkHs

h

.(6.2)

Let X be a compact smooth manifold. We cover X by finitely many co-
ordinate neighborhoods X1, . . . , Xp and for each Xj , we let x1, . . . , xn denote
the corresponding local coordinates on Xj . Let 0  �j 2 C1

0 (Xj) have the
property that

Pp
1 �j > 0 on X. Define Hs

h(X) to be the space of all u 2 D0(X)
such that

(6.3) kuk2Hs

h

:=
pX

1

���jhhDis�ju
��2 < 1.

It is standard to show that this definition does not depend on the choice of the
coordinate neighborhoods or on �j . With di↵erent choices of these quantities
we get norms in (6.3) which are uniformly equivalent when h ! 0. In fact,
this follows from the h-pseudodi↵erential calculus on manifolds with symbols
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in the Hörmander space Sm
1,0 that we quickly reviewed in the appendix in [25].

An equivalent definition of Hs
h(X) is the following: Let

(6.4) h2 eR =
X

(hDx
j

)⇤rj,k(x)hDx
k

be a self-adjoint non-negative elliptic operator with smooth coe�cients on X,
where the star indicates that we take the adjoint with respect to some fixed
positive smooth density onX. Then h2 eR is essentially self-adjoint with domain
H2(X), so

(1 + h2 eR)
1
2 s : L2 �! L2

is a closed densely defined operator for s 2 R, which is bounded precisely

when s  0. Standard methods allow to show that (1 + h2 eR)
1
2 s is an h-

pseudodi↵erential operator with symbol in Ss
1,0 and semi-classical principal

symbol given by (1 + r(x, ⇠))
1
2 s, where

r(x, ⇠) =
X

j,k

rj,k(x)⇠j⇠k

is the semi-classical principal symbol of h2 eR. See the appendix in [25]. The
h-pseudodi↵erential calculus gives for every s 2 R:

Proposition 6.2. — The space Hs
h(X) is the space of all u 2 D0(X) such

that (1 + h2 eR)
1
2 su 2 L2 and the norm kukHs

h

is equivalent to k(1 + h2 eR)
1
2 suk,

uniformly when h ! 0.

Remark 6.3. — From the first definition we see that Proposition 6.1 remains
valid if we replace Rn by a compact n-dimensional manifold X.

Remark 6.4. — We will also consider the case when the manifold X is the
disjoint union of a compact part and Rn \ B(0, R) for some R > 0. The
definition and properties of Hs

h(X) are quite clear.

Of course, Hs
h(X) coincides with the standard Sobolev space Hs

1(X) and
the norms are equivalent for each fixed value of h, but not uniformly so with
respect to h. We have the following variant (see [27], Section 2):

Proposition 6.5. — Let s > 1
2n. Then there exists a constant C = Cs > 0

such that

(6.5) kuvkHs

h

 CkukHs

1
· kvkHs

h

, 8u 2 Hs(Rn), v 2 Hs
h(Rn).

The result remains valid if we replace Rn by X.
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Let ⌦ b Rn be open with smooth boundary. Let Hs
h(⌦) denote the Banach

space of restrictions to ⌦ of elements in Hs
h(Rn). It is a standard fact that

if s > 1
2 , then the restriction operator � : u 7! u |@⌦ is bounded:

Hs
1(⌦) �! H

s� 1
2

1 (@⌦).

The restriction operator � has a right inverse ��1 which is bounded

H
es� 1

2
1 (@⌦) ! Hes

1(⌦) for all es 2 R. More generally, if s > 3
2 , then⇣ �

�D⌫

⌘
: Hs

1(⌦) �! H
s� 1

2
1 (@⌦)⇥H

s� 3
2

1 (@⌦)

has a right inverse which is O(1) : H
es� 1

2
1 ⇥H

es� 3
2

1 ! Hes
1 for all es 2 R. Here ⌫

is the exterior unit normal and D⌫ = i�1@/@⌫.
In the semi-classical case, we obtain from the same (standard) proofs that

(6.6) � = Os(h
� 1

2 ) : Hs
h(⌦) ! H

s� 1
2

h (@⌦), s > 1
2

has a right inverse such that

(6.7) ��1 = Oes(h
1
2 ) : H

es� 1
2

h (@⌦) �! Hes
h(⌦), es 2 R.

More generally, the operator
⇣ �

�hD⌫

⌘
: Hs

h(⌦) �! H
s� 1

2
h (⌦)⇥H

s� 3
2

h (@⌦)

has a right inverse which is O(h
1
2 ) : H

es� 1
2

h ⇥H
es� 3

2
h ! Hes

h for all es 2 R.
The following observation can be turned into a proof by reduction to the

standard non-semi-classical case: The change of variables x = hex trans-
forms hDx into Dex and if u(x) = eu(ex), then

kukHs

h

(⌦) = h
1
2nkeukHs

1(h
�1⌦).

Similarly for functions on @⌦, we have

kukHs

h

(@⌦) = h
1
2 (n�1)keukHs

1(h
�1@⌦).
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CHAPTER 7

REDUCTIONS TO O AND TO @O

In this section, we let P = �h2� + V and O be as in Section 5.2. We
choose the contour � as there, either singular or smooth. When � is smooth,
the domain of P� is the space H2

h(�), and when � has a singularity along the
boundary of O, it is given by (5.32). (Later we shall also need to consider the
case when � is constructed as in the preceeding section but with O replaced by
a slightly larger set eO with the same properties, containing an h-neighborhood
of O.) By abuse of notation we sometimes write H2(�) also for D(P�).

The exterior Dirichlet problem is

(7.1) (P � z)u = v on �ext = � \ O, u|@O = w,

for given v 2 L2(� \O), w 2 H
3
2 (@O) with the solution u in H2(� \O). Here,

�u = u |@O. The corresponding closed operator Pext has the domain

D(Pext) =
�
u 2 H2(� \ O); �u = 0

 
.

The eigenvalues are the resonances for the exterior Dirichlet problem. We

restrict the attention to the case when 1
2  <z  2, =z � �ch

2
3 , where

c < 2(12)
2
3⇣1 (cf. Theorem 2.2). When z 62 �(Pext), we can express the solution

of (7.1) as

(7.2) u = Gext(z)v +Kext(z)w.

Put

(7.3) Nextw = �hD⌫Kextw,

where � is the operator of restriction to @O and ⌫ is the exterior unit normal.

Definition 7.1. — Pout(z) is the operator �h2�+ V � z on O with domain

(7.4) D
�
Pout(z)

�
=
�
u 2 H2(O); (�hD⌫ �Next(z)�)u = 0

 
.



48 CHAPTER 7. REDUCTIONS TO O AND TO @O

Notice that the domain varies with z and this is why we avoid writing
“Pout � z”. In the first part of this section we shall show that z is a resonance
of P precisely when 0 2 �(Pout(z)), but for technical reasons we will prefer to
work with the full problem,

(7.5) Pout(z)u = v, h
1
2Bu = w,

where

(7.6) B = �hD⌫ �Next� : H2(O) �! H
1
2 (@O).

It is easy to check that this is an elliptic boundary value problem in the classical
sense. (The semi-classical structure of Next and of (7.5) will require more work
below.) The well-posedness of (7.5) is of course equivalent to the bijectivity of

(7.7) Pout(z) =
⇣P � z

h
1
2B

⌘
: H2(O) �! H0(O)⇥H

1
2 (@O).

Here and below we sometimes write Hs instead of Hs
h.

In the following we impose the condition

(7.8) |=z|  h
2
3 c0,

1
2  <z  2

with c0 as in (3.1), so that the exterior Dirichlet problem is well-posed. (We
could here drop the upper bound on =z.)

Under the condition (7.8) we shall show that Pout(z) and P��z are“equiva-
lent”, and to do so we shall see that Pout(z) appears as the e↵ective Hamiltonian
(up to an invertible factor) in a well-posed Grushin problem for P� � z.

Let ◆ : L2(O) ! L2(�) be the natural zero extension map and let

⇧ : H2(�) �! H2(O)

be the restriction map. Let

bK = O(h
1
2 ) : H

1
2 (@O) �! H2(O)

be a right inverse of B (cf. the last observation in Chapter 6). Put

(7.9) P(z) =
⇣P� � z ◆ 0

⇧ 0 bK

⌘
: H2(�)⇥L2(O)⇥H

1
2 (@O) �! L2(�)⇥H2(O).

We will view P(z) as a 2 ⇥ 2 block matrix with the upper left block given
by P� � z. We claim that P(z) is bijective. This amounts to finding a unique

solution (u, u�, u0�) 2 H2(�)⇥ L2(O)⇥H
1
2 (@O) of the problem

(7.10) (P� � z)u+ ◆u� = v, ⇧u+ bKu0� = v+
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for every given (v, v+) 2 L2(�)⇥H2(O). The exterior part (i.e. the restriction
to �ext = � \ O) of the first equation in (7.10) is (with the natural notation)

(P�ext � z)uext = vext,

which has the general solution

uext = Gext(z)vext +Kext(z)g,

where g 2 H
3
2 (�) is arbitrary to start with. Notice that

Buext = BGext(z)vext,

since BKext(z) = 0 by the definition of Next(z). Here the continuity condition
on u given by (5.32), can be written

(7.11) �uint = �uext, Buint = Buext.

The interior part of (7.10) is

(7.12) (P � z)uint + u� = vint, uint + bKu0� = v+ in O,

giving

uint = v+ � bKu0�, u� = vint � (P � z)uint.

The second condition in (7.11) now gives Bv+ � u0� = BGextvext, i.e.

(7.13) u0� = Bv+ �BGextvext.

The first part of (7.11) boils down to

(7.14) �v+ � � bKu0� = g.

Thus the unique solution of (7.10) is given by u = uint+uext, u�, u0�, where

u0� = B(v+ �Gextvext),

uint = (1� bKB)v+ + bKBGextvext,

u� = vint � (P � z) bKBGextvext � (P � z)(1� bKB)v+,

uext = (1 +Kext� bKB)Gextvext +Kext�(1� bKB)v+.

Using the characteristic functions 1O and 1�ext to indicate the projection to
the interior and exterior parts of functions on �, we get in matrix form:

P(z)�1 =(7.15)
0

BB@

1O bKBGext1�
ext

+ 1�
ext

(1 +Kext� bKB)Gext1�
ext

1O(1� bKB) + 1�
ext

Kext�(1� bKB)

1O � (P � z) bKBGext1�
ext

�(P � z)(1� bKB)

�BGext1�
ext

B

1

CCA.
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As already mentioned we can use block matrix notation and write

P(z) =
⇣P11 P12

P21 P22

⌘
,

where

P11 = P� � z, P12 = (◆ 0), P21 = ⇧, P22 = (0 bK).

Then

E(z) := P(z)�1 =
⇣E11 E12

E21 E22

⌘
,

where

E22 =
⇣�(P � z)(1� bKB)

B

⌘
=
⇣�1 h�

1
2 (P � z) bK

0 h�
1
2

⌘
Pout(z),

and Pout(z) was defined in (7.7). The upper triangular matrix in the last
expression is invertible, so the invertibility of E22 is equivalent to that of Pout

and using also the second part of Proposition 4.1, we get

Proposition 7.2. — For z in the region (7.8) we have that z 2 �(P�) if and
only if 0 2 �(Pout(z)).

P� � z, Pout(z) are holomorphic families of Fredholm operators of index
0 and combining (4.3) with Proposition 4.4, we see that det(P� � z) and
detPout(z) have zeros of the same multiplicity at the points of �(P�).

We next discuss a reduction to the boundary when z is not a Dirichlet
eigenvalue. Let Pin denote the Dirichlet realization of P in O, so that D(Pin) =
{u 2 H2(O); �u = 0}. Let

(7.16) Pin(z) =
⇣P � z

h
1
2 �

⌘
: H2(O) �! H0(O)⇥H

3
2 (@O),

so that Pin(z) is bijective precisely when z is not a Dirichlet eigenvalue;
z /2 �(Pin). Let

Ein(z) =
�
Gin(z) h�

1
2Kin(z)

�

be the inverse which is well defined for z away from the spectrum of Pin. Then

Pout(z)Ein(z) =
⇣(P � z)Gin (P � z)h�

1
2Kin

h
1
2BGin BKin

⌘
.

Here (P � z)Gin = 1, (P � z)Kin = 0 and

(7.17) BKin = �hD⌫Kin �Next = Nin �Next,
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where the last equility defines Nin : H
3
2 (@O) ! H

1
2 (@O) so

(7.18) Pout(z)Ein(z) =
⇣ 1 0

h
1
2BGin Nin �Next

⌘
.

Composing with Pin to the right, we get

(7.19) Pout(z) =
⇣ 1 0

h
1
2BGin Nin �Next

⌘
Pin(z).

Notice that this factorization makes sense only when z /2 �(Pin(z)) since Nin is
defined only under that assumption. The last factor in the right hand side is of
course bijective then, and the first lower triangular factor is bijective precisely

when Nin(z)�Next(z) : H
3
2 ! H

1
2 is bijective, or equivalently when 0 is not in

the spectrum of this operator, considered as an unbounded operatorH
1
2 ! H

1
2

with domain H
3
2 .

Proposition 7.3. — For z in the region (7.8) and not in �(Pin), we have

the equivalence

0 2 �(Pout(z)) () 0 2 �(Nin �Next).

Again we have holomorphic families of Fredholm operators of index 0 and
we have the analogue of the remark after Proposition 7.2.

We end the chapter with a symmetry observation (cf. (5.1)).

Proposition 7.4. — Pout(z), Nin and Next are symmetric.

Proof. — This follows from Green’s formula. For u, v 2 H
3
2 (@O), we have

hNinu |vi@O � hu |Ninvi@O
= hhD⌫Kinu |vi@O � hu |hD⌫Kinvi@O

=
i

h

�
h�h2�Kinu |KinviO � hKinu | � h2�KinviO

�

=
i

h

�
h(P � z)Kinu |KinviO � hKinu |(P � z)Kinvi

�
= 0.

The symmetry of Next follows in the same way by applying Green’s formula
on �ext. Let u, v 2 D(Pout(z)), so that �hD⌫u = Next�u and similarly for v.
Using again Green’s formula, we get
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⌦
Pout(z)u |v

↵
O �

⌦
u |Pout(z)v

↵
O

= �h2
�
h�u |viO � hu |�viO

�

=
h

i
(hhD⌫u |vi@O � hu |hD⌫vi@O)

=
h

i

�
hNextu |vi@O � hu |Nextvi@O

�
= 0,

where the last equality follows from the symmetry of Next.
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CHAPTER 8

SOME ODE PREPARATIONS

In this chapter we make some preparations for the study of the interior
and exterior Dirichlet to Neumann maps and some related estimates for the
exterior resolvent.

8.1. Nullsolutions and factorizations of 2nd order ODEs

It will be convenient to factorize our equations and we make some extremely
elementary and certainly well-known remarks. Let

(8.1) P = @2t + a(t)@t + b(t)

be a di↵erential operator with smooth coe�cients on an interval or with holo-
morphic coe�cients on a simply connected open set in C. Let e�↵(t) belong
to the kernel of P ,

(8.2) P (e�↵) = 0.

This means that P takes the form P = (@t +↵0)2 + f(t)(@t +↵0) + g(t), where
g ⌘ 0 and we get

(8.3) P = (@t � �0)(@t + ↵0),

where �0 = ↵0 � a,

(8.4) � = ↵�
Z t

ads.

Notice that P t = (@t � ↵0)(@t + �0), so e� belongs to the kernel of P t.
When P is symmetric, P t = P , we have a = 0, � = ↵.
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8.2. Simple turning point analysis

We recall some elements of the complex WKB method and refer to [36],
[11] for more extensive expositions. Let V = V (x) be holomorphic in some
simply connected open set ⇢ C. We consider the equation

(8.5)
�
(hDx)

2 + V (x)
�
u = 0,

with u holomorphic. The zeros of V are the turning points by definition. Away
from those points we can construct formal local solutions of the form

(8.6) u(x) = a(x;h)ei�(x)/h, a(x;h) ⇠ a0(x) + ha1(x) + · · · ,
where �(x) is a solution of the eiconal equation

(8.7) (�0(x))2 + V (x) = 0,

and a0, a1, . . . solve a sequence of transport equations obtained from
�
(�0(x) + hDx)

2 + V (x)
�
a = 0,

equivalent to �
�0(x)hD + hD � �0 + (hD)2

�
a = 0 :

2�0(x)@a0 + �00a0 = 0, (T0)

and for j � 1:
2�0(x)@aj + �00aj = i@2aj�1. (Tj)

We can prescribe a0(x0), a1(x0), . . . (if x0 is not a turning point) and then the
formal symbol becomes uniquely determined in a neighborhood of x0. The so
called exact WKB method (see also the appendix) tells us that if � : [0, 1] ! ⌦
is a C1 curve with �(0) = x0, avoiding the turning points and with the property
that �=�(�(t)) has positive derivative(1), then there exists an exact holomor-
phic solution of (8.5) of the form (8.6) in a neighborhood of �(]0, 1]) where
a0(x0), a1(x0), . . . can be arbitrarily prescribed (in the sense that a(x;h) is
holomorphic in x with the asymptotic expansion of (8.6) in the space of holo-
morphic functions in a neighborhood of the range of �). Moreover, the solution
is unique up to a term O(h1)e�=�/h.

Actually the formal expansion can be improved by using the Ansatz

(�0)�
1
2 ei�/h, and then determining �(x;h) ⇠ �(x) + h2�2(x) + h4�4(x) + · · ·

from a Riccati type equation. Notice that the solution of (T0) is of the form

a0(x) = C(�0)�
1
2 = eCV (x)�

1
4 .

We can consider multivalued solutions of (8.7) away from the turning points.
A C1 curve in ⌦ is called a Stokes line if =� is constant on � and it is called

(1) So that ei�(x)/h is exponentially growing with increasing t.
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an anti-Stokes line if <� is constant. (Sometimes the terminology is reversed.)
Locally away from the turning points the Stokes and anti-Stokes lines intersect
each other perpendicularly. The curve � in the above exact WKB remark
necessarily intersects the Stokes lines transversally.

A turning point x0 2 ⌦ is called a simple turning point if it is a simple zero
of V , so that

(8.8) V 0(x0) 6= 0.

We next consider the singularity of the solution of the eiconal equation near
a simple turning point that we assume to be x0 = 0 for simplicity. If the
Taylor expansion of �V at x = 0 is �V (x) = a2x + O(x2), then �0(x) is a
double-valued holomorphic function of the form

�0(x) = ax
1
2
�
1 +O(x)

�
,

where the last factor is holomorphic in a full neighborhood of x = 0. By
integration it is clear that � is also double-valued and of the form

�(x) = 2
3
ax

3
2
�
1 +O(x)

�
,

where again the last factor is holomorphic near 0.
The union of the Stokes and anti-Stokes curves reaching the turning point

x = 0 is contained in

(8.9)
�
x 2 neigh(0); =� = 0 or <� = 0

 
=
�
x 2 neigh(0); =(�2) = 0

 
,

which is also the set of points x solving

a2x3
�
1 +O(x)

�
= t3, t 2 neigh(0,R),

i.e. a
2
3x(1 +O(x)) = t, or equivalently

x = f(a�
2
3 t),

where f is analytic and f(0) = 0, f 0(0) = 1. Since there are three branches
of the cubic root of a we see that the set (8.9) is the union of three smooth
curves, �j , j = 0, 1, 2, that pass through 0 and intersect there at angles 2

3⇡.
With a suitable orientation, each �j is first a Stokes line �

�
j until it hits 0 and

then becomes an anti-Stokes line �+j on the other side. It will be convenient

to let ��j be open in the sense that 0 /2 ��j , 0 2 �+j . The three Stokes lines
divide a pointed neighborhood into three “Stokes sectors” ⌃j , j = 0, 1, 2, as
indicated Figure 1. Each Stokes sector is the union of Stokes lines in addition
to the two Stokes lines that make up the boundary. In the figure we draw two
such additional lines in each sector.
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Figure 1. Three Stokes sectors

For each j 2 Z/3Z, we choose the branch � = �j of the solution of the
eiconal equation tending to 0 when x ! 0 which has positive imaginary part

on the interior of ⌃j and we can extend � holomorphically to ⌦ \ ��j , so that

�j = ��j±1 in ⌃j±1. Here ⌦ is a fixed small open disc centered at 0. The exact
WKB method tells us that (8.5) has a solution u = uj in ⌦ of the following

asymptotic form in ⌦ \ ��
j , where ��

j is any fixed neighborhood of ��j :

(8.10) uj = aj(x;h)ei�j(x)/h, aj ⇠ aj0 + haj1 + · · · , a0(x) 6= 0.

The Wronskian W (uj , uk) := (hDuj)uk � ujhDuk is constant, and can be
computed asymptotically for j 6= k at any point on ��` where ` is the index
di↵erent both from j and k. Since �j = ��k there, we get

(8.11) W (uj , uk) = 2�0ja
j
0a

k
0 +O(h).

Also recall that W (u, u) = 0.
This can be used to study uj near ��j . Since the space of solutions of (8.5)

is of dimension 2, we have

(8.12) uj =
X

k; k 6=j

cj,kuk, cj,k = cj,k(h) 2 C,

and if k 6= j, we let ` = `(j, k) be the index di↵erent both from j and k and
get W (uj , u`) = cj,kW (uk, u`),

(8.13) cj,k =
W (uj , u`)

W (uk, u`)
⇠ c0j,k + hc1j,k + · · · , c0j,k 6= 0.
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We shall next show that (8.10) extends to ⌦ \ (��
j [ D(0, Ch

2
3 )) where

now ��
j is a conic neighborhood of ��j and C � 1, in the sense that the

asymptotic expansion for aj is in powers of h/x
3
2 . Letting j be fixed for a

while, we suppress “j” from the notation. Recall that a0, a1 are determined by
the sequence of transport equations (T0), (T1), . . . above. Using the eiconal
equation for � we get

(8.14) @(V
1
4a0) = 0, @(V

1
4ak) =

1
2
V � 1

4@2ak�1.

Starting with a0 = Const. V � 1
4 = O(x�

1
4 ) and using (8.14) and the Cauchy

inequalities, we get iteratively that

(8.15) ak(x) = O(x�
1
4�k 3

2 ), x ! 0.

Thus, we can give a meaning to

1X

0

akh
k =

1X

0

(xk
3
2ak)

⇣ h

x
3
2

⌘k
,

in the region |x| � h
2
3 as an asymptotic sum in powers of the small parame-

ter h/x
3
2 .

In the appendix, we show that the holomorphic function a has this asymp-

totic expansion in the region |x| � h
2
3 .

Proposition 8.1. — Fix j 2 Z/3Z and let u = uj be a solution of (8.5),
which has the structure (8.10) in a neighborhood of a point x+0 2 �+j \ {0}.
Then for r > 0 small enough, u remains of the form (8.10) in

D(0, r) \
�
��
j [D(0, Ch

2
3 )
�
,

�j is any neighborhood of ��j of the form
S

x2��
j

D(x, ✏|x|) where C = C✏ > 0

is large enough. The coe�cients ajk in (8.10) satisfy (8.15) and the precise

meaning of the asymptotics in (8.10) is that

(8.16) aj �
N�1X

k=0

ajkh
k = O

�
x�

1
4 (h/x

3
2 )N

�
.

We shall next estimate the region where u = u0 may have its zeros and
take j = 0 in order to fix the ideas. From Proposition 8.1 it is clear that the

zeros have to be close to ��0 and in particular we need to study what happens

in an h
2
3 neighborhood of 0, where we have no asymptotics. If � : [a, b] ! C
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is a smooth curve and v, w are holomorphic functions defined near �, then
Z

�
vwdx =

Z b

a
v�w�dt,

where we define

u�(t) = �̇
1
2u
�
�(t)

�
.

This means that the passage u 7! u� conserves symmetry of di↵erential oper-
ators, and more precisely, we check that

(Du)� = �̇�
1
2Dt�̇

� 1
2u� ,

and the equation (8.5) restricted to � reads

(8.17)
⇥
(�̇�

1
2hDt�̇

� 1
2 )2 + V

�
�(t)

�⇤
u� = 0

Here we can rework the first term and put the two Dt together in the center.
We get

(8.18)
�
� (h@t)

2 + �̇2 eV
�
�̇�1u� = 0, �̇�1u� = �̇�

1
2u � �,

where

(8.19) eV = V
�
�(t)

�
+
⇣h
�̇

⌘2h1
4

⇣ �̈
�̇

⌘2
� 1

2
@t

⇣ �̈
�̇

⌘i
= V � � +O(h2).

Proposition 8.2. — If � is a Stokes curve or an anti-Stokes curve, we have

=(�̇2V � �) = 0.

More precisely, �̇2V � � is < 0 in the first case and > 0 in the second case.

Proof. — Stokes and anti-Stokes curves are characterized by the property
that =�̇�0 = 0 and <�̇�0 = 0 respectively, where � solves the eiconal equa-
tion (8.7). For both types of curves, we have =(�̇�0)2 = 0 which means that
=(�̇2V � �) = 0. On a Stokes curve we have (�̇�0)2 > 0, so �̇2V � � < 0 and
on an anti-Stokes curve we have (�̇�0)2 < 0, so �̇2V � � > 0.

Now complete �0 into a smooth family of curves �s, s 2 neigh(0,R), so that
x = �s(t) defines local coordinates s, t and the smooth function

f(s, t) = =
⇥
(@t�s)

2V
�
�s(t)

�⇤

vanishes for s = 0. Assuming, as we may, that �0(0) = 0, �0(t) = �±0 (t),
for ±t > 0, we get for s = 0:

(@sf)(0, 0) = =
�
�̇20V

0(0)@s�s(0)
�
.
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This is 6= 0 since V 0(0) 6= 0 and @s�s(0)s=0 is not colinear with �̇0. It follows
that ±f(s, t) ⇣ s and we may assume that the plus sign is valid;

(8.20) =
⇥�
@t�s(t)

�2
V
�
�s(t)

�⇤
⇣ s, (s, t) 2 neigh(0).

Now let u = u0 be a solution of (8.5) as in (8.14) which is exponentially
decaying in the Stokes sector ⌃0 containing the anti-Stokes line �+0 .

Proposition 8.3. — The zeros of u0 are within a distance O(h2) from ��0
and away from a disc D(0, h

2
3 /C) if C > 0 is large enough.

Proof. — We first prove that the zeros are within a distance O(h2) from �0.
From the WKB structure we already know that they have to be inside a
small neighborhood of {0} [ ��0 . Let x0 be a zero of u and let s = s0 be
determined by the property that x0 belongs to �s0 , so that x0 = �s0(t0)

for �1/O(1)  t0  o(1). Take � = �s0 in (8.18): Multiplying by �̇�
1
2u � �,

we get Z 1

t0

⇥�
(�h@t)

2 + �̇2 eV
�
�̇�

1
2u � �

⇤
�̇�

1
2u � � dt = 0.

Here u � � is exponentially decaying for t � 1/O(1) and vanishes at t0 so we
can integrate by parts and get

(8.21)

Z 1

t0

⇥��h@t(�̇�
1
2u � �)

��2 + �̇2 eV |�̇� 1
2u � �|2

⇤
dt = O(e�

1
Ch ).

Now =�̇2 eV = =(�̇2V ��)+O(h2) and =(�̇2V ��) ⇣ s0, so taking the imaginary
part of (8.21), we get

(|s0|�O(h2))

Z 1

t0

|�̇� 1
2u � �|2dt  O(e�

1
Ch ).

Consequently, s0 = O(h2) so the zero is at a distance  O(h2) from �0.

It remains to prove that the zeros stay away from D(0, h
2
3 /C) and belong

to a h2-neighborhood of ��0 . Let x0 = �s0(t0) be a zero so that s0 = O(h2).

Then, with � = �s0 we have <�̇2V ⇣ t. Let v = �̇�
1
2u � � and take the real

part of (8.21):

(8.22)

Z 1

t0

�
|h@tv|2 + <(�̇2 eV )|v|2

�
dt = O(e�

1
Ch ).

Now,

<(�̇2 eV ) � t� t0
C

� C
�
|t0|+ h2

�
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and we get
Z 1

t0

⇣
|h@tv|2 +

t� t0
C

|v|2
⌘
dt  O(e�

1
Ch ) + C

�
|t0|+ h2

�
kvk2,

where the norm is the one in L2([t0, 1]). Here, we can drop the first term to
the right since kvk is bounded from below by a power of h. On the other
hand, we know (either by using well-known facts about the Dirichlet problem
for the Airy operator or by more direct arguments) that the left hand side

is bounded from below by C�1h
2
3 kvk2 (using also that v(1) is exponentially

small). Hence, h
2
3C  C

�
|t0|+ h2

�
, leading to

|t0| �
h

2
3

eC
·

Now a second look at (8.22) shows that we cannot have t0 � h
2
3 / eC, and the

proof is complete.

Remark 8.4. — By pushing the argument slightly further we see that every

zero of u0 in any fixed disc D(0, Ch
2
3 ) is of the form

(8.23) �h
2
3V 0(0)�

1
3 ⇣j +O(h

4
3 ),

for some j, where 0 < ⇣1 < ⇣2 < · · · are the zeros of Ai(�t).

In fact, let x1 be such a zero and consider the equation (8.18) along the
curve � = �s that contains x1. Assume that the parametrization is chosen
with �(0) = x1 and such that � is oriented in the direction of ⌃0 for increasing t.
Choose a similar parametrization of �0 so that �(t) � �0(t) = O(h2). Pulling

�̇�
1
2u � � to �0 by means of � � ��1

0 , we get a quasi-mode eu(t) satisfying

(8.24)
�
� (h@t)

2 + �̇20V
�
�0(t)

��
eu(t) = O(h2)keuk in L2

�
[0, 1/C0]

�
,

which is exponentially decaying for t � h
2
3 and satisfies the Dirichlet

condition eu(0) = 0. This means that the self-adjoint Dirichlet realization
on [0, 1/C0] of the operator to the left in (8.24) has an eigenvalue = O(h2).
Now it is a routine exercise in self-adjoint semi-classical analysis to see that

the eigenvalues of this operator in any interval ]�1, Ch
2
3 ] are of the form

(8.25) U(0) + h
2
3U 0(0)

2
3 ⇣j +O(h

4
3 ),

where U(t) = �̇20V (�0(t)) is the potential in (8.24). Thus for some j,

�̇0(0)
2V

�
�0(0)

�
+ h

2
3
�
�̇0(0)

3V 0��0(0)
�� 2

3 ⇣j = O(h
4
3 ),
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which simplifies to

V (x1) + h
2
3V 0(0)

2
3 ⇣j +O(h

4
3 ) = 0,

leading to (8.23).

Remark 8.4 allows us to control the exterior Dirichlet problem for =z � �c0h
2
3

for c0 as in (3.1).

8.3. The exterior ODE

We are concerned with the operator

(8.26) P = �(h@x)
2 � xQ(x) + ha(x)h@x,

where Q, a are holomorphic on neigh(0,C) and Q > 0 on the real domain.

Let �� be the contour x = ��(s), 0  s  s0, 0 < s0 ⌧ 1,

(8.27)

(
��(s) = s for 0  s  �,

��(s) = � + e
1
3 i⇡(s� �) for �  s  s0,

and let b = ��(s0) be the second end point. Here � � 0 is a small parameter
that eventually will take the values 0 and Ch.

Consider the Dirichlet problem

(8.28) (P � z)u = v on ��, u(0) = 0, u(b) = 0,

where

(8.29) z = �+ h
2
3w, � 2 R, |w|  1

O(1)
·

We start by discussing the case � = 0 and later we indicate the additional
arguments in order to treat the case � > 0. When � = 0, the operator reduces
to the rotated Airy operator with a perturbation,

(8.30) e�
2
3⇡i

�
� (h@s)

2 + sQ(e
1
3⇡is)

�
+ e�

1
3⇡iha(e

1
3⇡is)h@s,

which as in [15], [29], [30], [31] can be treated by ressorting to the spectral
theory for the Dirichlet problem for the Airy operator. When � > 0 this
appeared as more di�cult and in order to cover that case also we chose to
use the complex WKB method. The last term ha(x)h@x will have no real
importance and can be eliminated by writing

P = �
�
h@x � 1

2hya(x)
�2 � xQ(x) +O(h2)

= e
1
2A
⇥
� (h@x)

2 � xQ(x) +O(h2)
⇤
e�

1
2A,
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where A = O(1) is a primitive of a. Since the perturbation O(h2) can be
absorbed in the estimates below, we will assume from now on that a = 0. We
will also concentrate on the most interesting case when |�|  1/C and indicate
later how to treat the easier cases when � is positive and bounded from above
as well as the case when � is negative and arbitrarily large.

Assuming that |�|  1/C, we see that the equation (8.28) has a turning
point x0(z), given by

(8.31) x0Q(x0) + z = 0.

If x1 2 R is the real turning point, given by x1Q(x1) + � = 0, then

(8.32) x0 = x1 �
1

@V (x1)
h

2
3w +O(h

4
3 ), where V (x) = xQ(x).

We have the following picture

where we draw the three Stokes lines through x0, the Stokes sector ⌃, and
notice that the zeros of the corresponding subdominant solution are very
close to the Stokes line ��0 opposite to ⌃ and separated from the turning

point by a distance � h
2
3 /C. A direct calculation from (8.31), (8.23) shows

that the imaginary parts of these zeros are  �h
2
3 /O(1) when |�| ⌧ 1 and

=w � �Q(0)
2
3 ⇣1 cos

1
6⇡ + 1/O(1).

From Proposition 8.1, we see that the equation (P � z)u = 0 has a solution
which is subdominant in ⌃, of the form

(8.33) e��(x;h)/h

in (neigh(x0,C) \ V �
0 ) [D(x0, h

2
3 /C) where V �

0 is a any small “conic” neigh-
borhood of ��0 as in Proposition 8.1, such that

(8.34) �0(x;h) = �00(x) +
O(h)

x� x0

and �0 solves the eiconal equation, (�00)2 = xQ(x) + z. (Compared to Propo-
sition 8.1, we have found it convenient to drop the prefactor “i”.) Notice that

the first term in the right hand side of (8.34) dominates when |x� x0| � h
2
3 .
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Moreover, in any set of the form D(x0, h
3
2 /C)[ (D(x0, Ch

3
2 )\V �

0 ), we have

(8.35) �0 = O(h
1
3 ).

In fact, writing x � x0 = h
2
3 y leads to the equation �(@2y +W (y))u = 0 in a

fixed h-independent domain where W is holomorphic and bounded. Rewrit-
ing this as a first order system, we see that |u(y)| + |@yu(y)| is of constant
order of magnitude, say ⇣ 1 and the equation tells us that @2yu = O(1).
We also know that u is non-vanishing and after shrinking the domain by
a fixed rate arbitrarily close to 1, we conclude that |u(y)| � 1/O(1). In-
deed, if |u(y0)| = ✏⌧ 1, then |u0(y0)| ⇣ 1 and from the Taylor expansion,
u(y) = u(y0) + u0(y0)(y � y0) + O((y � y0)2), we see that u must have a
zero in the disc D(y0, r) if ✏ ⌧ r ⌧ 1. Thus |u(y)| ⇣ 1, u0(y) = O(1) and

hence @y lnu = O(1). Hence h
2
3@x lnu = O(1) and @x� = h@x lnu = O(h

1
3 )

as claimed.

As in Section 8.1 we factor P � z as

(8.36) P � z = (�0 � h@x)(�
0 + h@x)

and we shall use this to find a solution u of the equation (P � z)u = v. First
invert �0 � h@x by integration from b to get

(8.37) (�0 + h@x)u = �1

h

Z x

b
e(�(x)��(y))/hv(y)dy =: Kv(x).

In order to estimate the L(L2)-norm of this integral operator and of similar
ones, we collect some useful properties.

Lemma 8.5. — Assume that 0  �  Ch and orient �� from 0 to b. Write

y � x for y, x 2 �� if y precedes x. For x, y, w 2 �� with 0 � y � w � x � b

we have with a new constant C > 0:

(8.38)
1

C

Z x

y

���0(z)
�� · |dz|� Ch  <�(x)�<�(y) 

Z x

y

���0(z)
�� · |dz|,

(8.39)
1

C

���0(w)
�� · |x� y|� Ch 

Z x

y

���0(z)
�� · |dz|  C

����0(x)
�� · |x� y|+ h

�
,

(8.40)
1

C✏
e�

✏

h

R
x

y

|�0(z)|·|dz|  h
1
3 + |�0(x)|

h
1
3 + |�0(y)|

 C✏ e
✏

h

R
x

y

|�0(z)|·|dz|,

for every ✏ > 0. Here C✏ > 0 is independent of h.
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Proof. — The second inequality in (8.38) is obvious. By additivity it su�ces
to show the first inequality in each of the following three cases (where the
second case may be void):

1) x, y belong to the horizontal segment [0, �];

2) x, y belong to �� \D(x0, Ch
2
3 );

3) x, y are both beyond the cases 1) and 2).

In case 1) both
R x
y |�0(z)| · |dz| and <(�(x) � �(y)) are O(h) since � = O(h).

In the second case this remains true since |x� y| = O(h
2
3 ) and �0(z) = O(h

1
3 )

for y � z � x. In the third case the first inequality in (8.38) follows from the
fact that �� is here transversal to the Stokes lines and more precisely that

d

dt
<�

�
��(t)

�
⇣
���0(��(t))

��, for y � ��(t) � x.

Now consider (8.39). If x is as in case 1) or 2) then
R x
y |�0(z)| · |dz| and

|�0(w)| · |x�y| are O(h). If x is as in case 3), then |�0(x)| � 1
C |�0(w)| for w � x

and we get the desired inequalities.

We finally show (8.40). Let I denote the modulus of the logarithmic deriva-

tive of h
1
3 + |�0(x)| along ��. Then

I  |�00|
h

1
3 + |�0(x)|

which is O(h�
2
3 ) on �� \D(x0, Ch

2
3 ) for every C > 0, and on �� \D(x0, Ch

2
3 ):

I = O(1)
|x� x0|�

1
2

h
1
3 + |x� x0|

1
2

=
O(1)

|x� x0|
·

Summing up the estimates in both regions, we have

I =
O(1)

h
2
3 + |x� x0|

·

The modulus II of the logarithmic derivative with respect to x of

e
R
x

y

|�0(z)|·|dz|/h is bounded by |�0(x)|/h which is O(h�
2
3 ) in the first re-

gion and ⇣ |x � x0|
1
2 /h in the second region, provided that C is large

enough.
It follows that I  ✏II, except in the intersection of �� with the disc

|x� x0|  (h/✏)
2
3 . The integrals of both I and II over this exceptional region

are O✏(1) and (8.40) follows.
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Lemma 8.6. — The following L(L2)-norms are O(1):

(h
1
3 + |�0|) �K and (h

1
3 + |�0|)2 �K � (h 1

3 + |�0|)�1.

Proof. — We first notice that we can replace |�0(w)| to the left in (8.39) by

|�0(w)|+ h
1
3 .

By Schur’s lemma, the L(L2)-norm of (h
1
3 + |�0|) � K is bounded by the

geometric mean of the following two quantities:

I =
1

h
sup
x2�

�

Z x

b

�
h

1
3 +

���0(x)
���e

1
h

<(�(x)��(y))|dy|,

II =
1

h
sup
y2�

�

Z y

0

�
h

1
3 +

���0(x)
���e

1
h

<(�(x)��(y))|dx|.

Combining (8.38) and (8.39) with |�0(w)| replaced by h
1
3 + |�0(w)|, we see that

for x � y,

�
h

1
3 +

���0(x)
���e

1
h

<(�(x)��(y)) 
�
h

1
3 +

���0(x)
���eC� 1

Ch

(h
1
3+|�0(x)|)|x�y|,

implying that I = O(1).

In order to estimate II, we also use (8.40) to get

1

h

�
h

1
3 +

���0(x)
���e

1
h

<(�(x)��(y))

 1

h

�
h

1
3 +

���0(x)
���e�

1
Ch

R
x

y

|�0(z)|·|dz|


bC
h

�
h

1
3 +

���0(y)
���e�

1
2Ch

R
x

y

|�0(z)|·|dz|

 1

h
(h

1
3 + |�0(y)|)e eC� 1

e
Ch

(h
1
3+|�0(y)|)|x�y|

,

and it follows that II is O(1). Thus the L(L2)-norm of (h
1
3 + |�0|) �K is O(1)

as claimed.

The estimate of the norm of (h
1
3 + |�0|)2 �K � (h 1

3 + |�0|)�1 is just a slight
variation of the above arguments, using (8.40) from the start.

From the definition of K in (8.37) we get

(8.41) �h@xKv = v � �0 �Kv,

and we conclude that

(8.42) h@x �K,
�
h

1
3 +

���0
���h@x �K �

�
h

1
3 + |�0|

��1
are O(1) in L(L2).
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Now, recall that we can get u from (�0+h@x)u =: w by integration outwards
from x = 0:

(8.43) u(x) =
1

h

Z x

0
e�(�(x)��(y))/hw(y)dy =: Lw.

The same estimates apply to L and for the solution u = LKv of the equation
(P � z)u = v, we get

(8.44)
���h

1
3 + |�0|

�2
u
��+

���h
1
3 + |�0|

�
h@xu

��  O(1)kvk.

Recalling that

(P � z) = (�0 � h@)(�0 + h@) = (�0)2 � h�00 � (h@)2,

and that �00 = O(h�
1
3 ), we also get k(h@)2uk  O(1)kvk and thus for u = LKv:

(8.45) |||u||| :=
���h

1
3 + |�0|

�2
u
��+

��(h
1
3 + |�0|)h@xu

��+ k(h@x)2uk  O(1)kvk.

By construction, u(0) = 0, but the Dirichlet condition at x = b is not
necessarily fulfilled. Now, for instance by using a di↵erent factorization

(P � z) = (e�0 + h@)(e�0 � h@)

and some easy iterations, we see that the problem

(8.46) (P � z)eb = 0, eb(0) = 0, eb(b) = 1

has a solution on �� which decays exponentially away from b and satisfies

|||eb||| = O(h
1
2 ).

Moreover, we have u(b) = O(h�
1
2 )kvk. In fact, (8.45) shows that

kukH2
h

 O(1)kvk, if we take the H2
h norm over {x 2 ��; a � x � b},

where a 2 �� is close to b, and as in (6.6), we have |u(b)|  O(h�
1
2 )kukH2

h

.

Thus the function eu = u � u(b)eb solves (P � z)eu = v, eu(0) = eu(b) = 0
and (8.45) remains valid with u replaced by eu. Since our Dirichlet problem is
Fredholm of index zero, we also know that eu is the unique solution. Dropping
the tildes we get:

Proposition 8.7. — Consider the problem (8.28) for z as in (8.29) with

� = 1/O(1) and let u be the unique solution constructed above. Then,

(8.47)
���h

1
3 + |�0|

�2
u
��+

��(h@x)2u
��+

���h
1
3 + |�0|

�
h@xu

��  O(1)kvk,

where the L2 norms are taken over ��.

We make a few remarks about extensions and variants. The first is that
we can replace � in (8.47) with �0, the solution of the eiconal equation,
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(�00)2 = xQ(x) + z. Indeed, when |x � x0|  O(h
2
3 ) we have �0,�00 = O(h

1
3 )

and when |x� x0| � Ch
2
3 , then |�0| ⇣ |�00|.

The second observation is that along ��, if we let x1 denote the real turning
point (given by x1Q(x1) + � = 0, x1 ⇣ ��, then

h
1
3 + |�00| ⇣ h

1
3 + |x� x0|

1
2 ⇣

�
|x� x0|+ h

2
3
� 1

2

⇣
�
|x� x1|+ h

2
3
� 1

2 ⇣
�
s+ |�|+ h

2
3
� 1

2 ,

where we write x = ��(s). Thus (8.47) can be written

(8.48)
���h

2
3 + |�|+ s

�
u
��+

��(h@x)2u
��+

���h
2
3 + |�|+ s

� 1
2h@xu

��  O(1)kvk.
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CHAPTER 9

PARAMETRIX FOR THE EXTERIOR
DIRICHLET PROBLEM

Choose geodesic coordinates (x0, xn) with x0 being local coordinates on @O,
so that the exterior of O is locally given by xn > 0 and P = �h2� in Rn \ O
becomes (locally near a boundary point):

(9.1) P = (hDx
n

)2 +R(x0, hDx0)� xnQ(x, hDx0) + ha(x)hDx
n

.

(Cf. (5.26), (5.27), (5.28).) Here R is an elliptic second order di↵erential
operator with principal symbol r(x0, ⇠0) = |⇠0|2. Similarly, Q is elliptic in the

x0 variables with principal symbol q(x, ⇠0) ⇣ |⇠0|2. For z = �+h
2
3w with � 2 R,

� ⇠ 1, |w|  1/O(1), we consider

P (x0, ⇠0)� z = P (x0, xn, ⇠0, hDx
n

)� z(9.2)

= (hDx
n

)2 +R(x0, ⇠0)� xnQ(x, ⇠0) + ha(x)hDx
n

� z

as an ODO-valued symbol. We let xn vary in ��, 0  �  Ch.

We investigate three di↵erent regions in T ⇤@O.

1) (x0, ⇠0) belongs to a small neighborhood of the glancing hypersurface G:
r(x0, ⇠0) = �. Then the estimates in Section 8.3 apply with � there replaced
by �� r(x0, ⇠0) and from (8.48) we get

���h
2
3 +

���� r(x0, ⇠0)
��+ s

�
u
��+

��(h@x
n

)2u
��(9.3)

+
���h

2
3 +

���� r(x0, ⇠0)
��+ s

� 1
2h@x

n

u
��  O(1)kvk,

when (P (x0, ⇠0)� z)u = v along ��, u(0) = u(b) = 0.

2) (x0, ⇠0) belongs to the hyperbolic region r(x0, ⇠0)  � � 1/O(1). Then
the turning point x0 is away from 0 and hence also from �� and the es-
timates of Section 8.3 still apply and give (9.3), where we notice that
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h
2
3 + |�� r(x0, ⇠0)|+ s ⇣ 1:

(9.4) kuk+ kh@x
n

uk+
��(h@x

n

)2u
��  O(1)kvk.

Notice that q may be very small in this region but the estimates now work
without any reference to a turning point.

3) (x0, ⇠0) belongs to the elliptic region r(x0, ⇠0) � � + 1/O(1). When in
addition r(x0, ⇠0)  O(1) we get (9.4) again. When r(x0, ⇠0) � 1 we multiply
with |⇠0|�2 and get

|⇠0|�2(P (x0, ⇠0)� z) = (ehDx
n

)2 + eR� xn eQ+ eha(xn)ehDx
n

� ez = eP � ez,

where eR = |⇠0|�2R(x0, ⇠0) ⇣ 1, eQ = |⇠0|�2Q ⇣ 1, eh = h/|⇠0| ⌧ 1, ez = z/|⇠0|2,
|ez| ⌧ 1. For the rescaled problem the turning point is well o↵ to the right
and �� intersects the Stokes lines transversally. We still get (9.4), now for
( eP � ez)u = v and h replaced by eh and after scaling back, we get

(9.5) h⇠0i2kuk+ h⇠0ikh@x
n

uk+
��(h@x

n

)2u
��  O(1)kvk

for solutions of (8.28).
For a fixed � 2 {0, Ch}, let B(x0, ⇠0) be the space of functions on �� vanishing

at both end points and equipped with the norm given be the left hand side of
(9.3), (9.4), (9.5) respectively when (x0, ⇠0) is as in the three cases.

Then P (x0, ⇠0) � z = O(1) : B(x0, ⇠0) ! L2(��) and has an inverse E(x0, ⇠0)
which is O(1) : L2(��) ! B(x0, ⇠0).

Outside a fixed neighborhood of the glancing hypersurface, we have the nice
symbol properties

(9.6) @↵x0@
�
⇠0P = O↵,�

�
h⇠0i�|�|� : B(x0, ⇠0) �! L2(��).

Near the glancing hypersurface we have a poblem when derivatives fall on R

and we get the weaker estimate

(9.7) @↵x0@
�
⇠0P = O↵,�(1)

�
h

2
3 +

���� r(x0, ⇠0)
����(|↵|+|�|)

.

This is the reason why traditionally (as in [31], [33] and other works cited
there) one uses some form of second microlocalization. If (x0, ⇠0) is a point
on the glancing hypersurface, we conjugate P (x, hD) with a microlocally de-
fined elliptic Fourier integral operator acting in the tangential variables and
get a new operator of the form (9.1) where now R, Q are tangential classical h-
pseudodi↵erential operators and a is replaced by a(x, hDx0 ;h), a classical pseu-
dodi↵erential operator of order 0 in h, and where

(9.8) R(x0, ⇠0) = ⇠1.
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(See Sections 4 and 5 in [31] and [33] respectively.) Then the problem appears
only when we di↵erentiate with respect to ⇠1:

(9.9) @↵x0@
�
⇠0P = O↵,�(1)

�
h

2
3 +

���� r(x0, ⇠0)
�����1 .

Di↵erentiating the identity (P � z)E = 1, we get with @↵ = @↵x0,⇠0 :

(P � z)@↵E =
X

↵0+↵00=↵
↵0 6=0

c↵0,↵00(@↵
0
P )(@↵

00
E),

and after applying E to the right and using that E(P � z) = 1,

@↵E =
X

↵0+↵00=↵
↵0 6=0

c↵0,↵00E(@↵
0
P )(@↵

00
E).

By induction we then get

(9.10) @↵x0@
�
⇠0E = O↵,�

�
h⇠0i�|�|� : L2(��) �! B(x0, ⇠0),

outside any fixed neighborhood of the glancing hypersurface G. Near any fixed
point of G, we get

(9.11) @↵x0@
�
⇠0E = O↵,�(1)

�
h

2
3 +

���� r(x0, ⇠0)
�����1 ,

after conjugation with an elliptic tangential Fourier integral operator, that
reduces R to ⇠1.

We now turn to the n-dimensional situation and recall the definition of
the singular contour �f in (5.12) and its exterior part �ext,f , where f sat-
isfies (5.31). We take ✓ = 1

3⇡ there and put �0 = �f . For � > 0, let
O�� = O + B(0, �). Then dist(x,O��) = max(d(x) � �, 0). Let f� be as
in (5.31) with d(x) replaced by dist(. ,O��), still with ✓ = 1

3⇡. Put �� = �f
�

.
In this section we only work on the exterior parts �ext,� and for simplicity we
drop the subscript “ext”. Using geodesic coordinates we have

(9.12) ��,b :=
�
x; x0 2 @O, xn 2 ��

 
⇢ ��.

(Later on we will also include O into the contour �� and the �� above will
then be renamed ��,ext.)

Let Bb be the space of functions u = u(x0, xn) on ��,b with u(x0, 0) =
u(x0, b) = 0 for which the following norm is finite:

(9.13) kukB = h
2
3 kuk+

���R(x0, hDx0)� �
�
u
��+ ksuk+

��(h@x
n

)2u
��.

Continuing to treat P as a pseudodi↵erential operator on @O with operator
valued symbol, we obtain a right parametrix of P � z in the following way
(cf. [31], [33]):
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Let �1, . . . ,�N 2 C1
0 (T ⇤@O) have their supports in small neighborhoods

of the points ⇢1, . . . , ⇢N 2 G that we assume are “evenly distributed” on G
with N su�ciently large and so that

PN
1 �j = 1 near G. Put �0 = 1�

PN
1 �j .

Define corresponding tangential pseudodi↵erential operators �j(x0, hDx0)

on @O in the standard way, so that
PN

1 �j(x0, hDx0) = 1 microlocally near G.
With suitable choices of the above quantities, there exist semi-classical elliptic
Fourier integral operators of order 0, defined microlocally near ⇢j , such that
R(x0, hDx0) = UjhDx1U

�1
j microlocally near supp�j where U�1

j denotes
a microlocal inverse of Uj . Then our parametrix of P � z is an operator
E = O(1) : L2(��,b) ! Bb of the form

(9.14) E = E0�0(x
0, hDx0) +

NX

1

UjEj(x
0, hDx0)U�1

j �j(x
0, hDx0).

Here the symbol E0(x0, ⇠0) belongs to the space S0(T ⇤@O;L(L2,Bb)) of sym-
bols that satisfy (9.10) and has an asymptotic expansion,

(9.15) E0 ⇠ E0,0 + hE0,1 + h2E0,2 + · · · ,

with E0,k 2 S�k, the space of symbols F satisfying

@↵x0@
�
⇠0F = O↵,�

�
h⇠0i�k�|�|� : L2(��) �! B(x0, ⇠0).

Moreover, E0,0 = (P (x0, ⇠0)� z)�1.
For j = 1, . . . , N , Ej has the property (9.11) with r = ⇠1 and we have an

asymptotic expansion

(9.16) Ej ⇠ Ej,0 + h
1
3Ej,1 + · · · ,

with Ej,k satisfying (9.11) and with Ej,0 = (P (x0, ⇠0) � z)�1 where it is un-
derstood that P (x0, ⇠0) is now simplified with the conjugation by Uj so that
R(x0, hDx0) has become hDx1 . The main property of E is that

(9.17)
�
P (x, hD)� z

�
E = 1 +O(h1) in L(L2, L2).

We can also construct a left parametrix eE with an expression similar to (9.14)
but with the cuto↵ operators to the left, and by a standard argument we see
that eE = E +O(h1) in L(L2,Bb).

Summing up the discussion so far, we have:
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Proposition 9.1. — We can construct an operator E = O(1) : L2(��,b) ! Bb

as above, so that

(9.18)

(�
P (x, hD)� z

�
E = 1 +O(h1) in L(L2, L2),

E
�
P (x, hD)� z

�
= 1 +O(h1) in L(Bb,Bb).

We now consider P = �h2� on all of �� and notice that P � z is semi-
classically elliptic away from any fixed neighborhood of @O, so we have a
pseudodi↵erential parametrixQ(x, hD;h) in that region with symbolQ(x, ⇠;h)

satisfying @↵x @
�
⇠Q = O(h⇠i�2�|�|) such that if � 2 C1(��) is a standard cuto↵

to a small neighborhood of @O, then

(P � z)Q(1� �) = (1� �) +K1,

(1� �)Q(P � z) = (1� �) +K2,

where K1, K2 are negligible operators O(h1) : H�s
h ! Hs

h for every s � 0.
Further, we may arrange so that the distribution kernel KQ(x, y) of Q vanishes
when |x� y| > ✏, for any fixed given ✏ > 0.

Assuming that supp� ⇢ ��,b, we choose ✏ > 0 small enough and put

(9.19) F = �E�+Q(1� �)�Q[P,�]E�.

Then, F = O(1) : L2(��) ! B(��) and
(P � z)F = 1 +K3,

where K3 = O(h1) : L2 ! L2. Here B(��) denotes the space of distribu-
tions u such that �u 2 B(��,b), (1� �)u 2 H2

h(��). The construction of a left
parametrix is similar, and by a standard argument we see that F is also a left
parametrix. Summing up, we get:

Proposition 9.2. — The operator F in (9.19) is O(1) : L2(��) ! B(��) and
satisfies

(9.20) (P � z)F = 1 +K3, F (P � z) = 1 +K4,

where K3 = O(h1) : L2(��) ! L2(��), K4 = O(h1) : B(��) ! B(��).
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EXTERIOR POISSON OPERATOR AND
DN MAP

We need some more estimates in the one dimensional case. Recall that if
u 2 C1

0 ([0,1[), then

(10.1)
��u(0)

��2  2kuk · k@uk.
If u 2 C1([0,1[), let � 2 C1

0 ([0,1[), �(0) = 0 and put �L(x) = �(x/L).
Applying (10.1) to �Lu gives

(10.2)
��u(0)

��2  C
⇣ 1

L
kuk2[0,L] + kuk[0,L]k · @uk[0,L]

⌘
.

If ⇤ > 0 is a continuous function on [0,1[ of increasing order of magnitude
(⇤(x) � C�1⇤(y) when x � y) we get

��u(0)
��2  C

⇣ 1

L⇤(0)2
k⇤uk2[0,L] +

1

h⇤(0)
k⇤uk[0,L] · kh@uk[0,L]

⌘
.

Choose L so that L⇤(0)2 = h⇤(0), L = h/⇤(0). Then,

(10.3)

8
><

>:

��u(0)
��2  C

h⇤(0)

�
k⇤uk2[0,h/⇤(0)] + kh@uk2[0,h/⇤(0)]

�
,

p
h⇤(0)

��u(0)
��  C

�
k⇤uk[0,h/⇤(0)] + kh@uk[0,h/⇤(0)]

�
.

Recall that for (x0, ⇠0) near a point on the glancing hypersurface, r = �,

(10.4) kukB(x0,⇠0) = k⇤2uk+ k⇤h@x
n

uk+
��(h@x

n

)2u
��,

where ⇤2 = (h
2
3 + |r � �|+ s), r = r(x0, ⇠0), xn = ��(s), 0 � x � b. Since ⇤ is

increasing, we can apply (10.3) and estimate |u(0)| with the first two terms in
the B-norm and |h@x

n

u(0)| using the last two terms:

(10.5) h
1
2⇤(0)

3
2
��u(0)

��  CkukB,

(10.6) h
1
2⇤(0)

1
2
��h@x

n

u(0)
��  CkukB,
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or more explicitly,

(10.7) h
1
2
�
h

2
3 + |r � �|

� 3
4
��u(0)

��  CkukB,

(10.8) h
1
2
�
h

2
3 + |r � �|

� 1
4
��h@x

n

u(0)
��  CkukB.

We next estimate the B(x0, ⇠0)-norm of the null-solution in (8.33),

u = ex0,⇠0 = e�
1
h

�(x
n

;h), �(xn;h) = �x0,⇠0(xn;h), �(0) = 0,

of (P (x0, ⇠0)� z)u = 0 along ��. We know that
�
h

1
3 + |�0|

�2 ⇣ h
2
3 + |r � �|+ s,

�
xn = ��(s)

�
,

and that

<@s� ⇣ |�0| � 1

C

�
h

2
3 + |r � �|+ s

� 1
2

when s+ |r � �| � h
2
3 . Thus with b = ��(s0),

kex0,⇠0k2 =
Z s0

0
e�

2
h

<�(x
n

(s))ds 
Z 1

0
e�

1
Ch

(h
2
3+|r��|) 12 sds,

which leads to

kex0,⇠0k  O(1)h
1
2

(h
2
3 + |r � �|) 1

4

·

We will also use that the same estimate holds for ke
1
2
x0,⇠0k.

Next look at

��(h
2
3 + |r � �|+ s)ex0,⇠0

�� =
�
h

2
3 + |r � �|

�����
h

2
3 + |r � �|+ s

h
2
3 + |r � �|

ex0,⇠0

����.

From Lemma 8.5 we see that

h
2
3 + |r � �|+ s

h
2
3 + |r � �|

e
1
2
x0,⇠0

is bounded, so
����
h

2
3 + |r � �|+ s

h
2
3 + |r � �|

ex0,⇠0

����  O(1)ke
1
2
x0,⇠0k  O(1)h

1
2

(h
2
3 + |r � �|) 1

4

·

Thus,
��(h

2
3 + |r � �|+ s)ex0,⇠0

��  O(1)h
1
2
�
h

2
3 + |r � �|

� 3
4 .

The other terms in the B norm of u satisfy the same estimates and we get

(10.9) kex0,⇠0kB  O(1)h
1
2
�
h

2
3 + |r � �|

� 3
4 .
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Since ex0,⇠0(0) = 1, we see that this is the reverse inequality to (10.7) up to a
bounded factor, so

(10.10) kex0,⇠0kB ⇣ h
1
2
�
h

2
3 + |r � �|

� 3
4 .

Remark 10.1. — Using that ex0,⇠0(b) = O(e�
1

Ch ), we can add an exponen-
tially small reflected term as in (8.46) to get a null solution which vanishes at

b and after dividing with a factor 1 + O(e�
1

Ch ) we get a new function ex0,⇠0

satisfying (Px0,⇠0�z)ex0,⇠0 = 0, ex0,⇠0(0) = 1, ex0,⇠0(b) = 0 as well as the estimate
(10.10).

Recall that P (x0, ⇠0) � z : B(x0, ⇠0) ! L2 has a uniformly bounded inverse
E(x0, ⇠0) and that we have the estimates (9.9), (9.11). Di↵erentiate the equa-

tion (P (x0, ⇠0)� z)ex0,⇠0 = 0 and notice that @↵x0@
�
⇠0ex0,⇠0(0) = @↵x0@

�
⇠0ex0,⇠0(b) = 0

when |↵|+ |�| 6= 0, so that @↵x0@
�
⇠0ex0,⇠0 2 B. We get

(10.11) @↵x0@
�
⇠0ex0,⇠0 =

X

↵0+↵00=↵
�0+�00=�

|↵00|+|�00|<|↵|+|�|

c↵0,↵00,�0,�00E(@↵
0

x0 @
�0
⇠0 P )(@↵

00
x00 @

�00
⇠00 ex0,⇠0).

By induction, we see that

(10.12) k@↵x0@
�
⇠0ex0,⇠0kB = O(1)h

1
2
�
h

2
3 + |r � �|

� 3
4��1 .

As a first approximation to the Poisson operator on ��,b, we take

(10.13) K0w = Oph(ex0,⇠0)

where Oph denotes the classical h-quantization in Rn�1 also in the case of
vector and operator valued symbols, so that our K0 is microlocally defined
in T ⇤(@O) and maps functions of x0 to functions of x. (Here it is tacitly
assumed that we have reduced R to hDx1 as in (9.11).) Then

�K0 = 1,(10.14)

(P � z)K0 = Oph(fx0,⇠0),(10.15)

where

(10.16) fx0,⇠0 ⇠
X

↵ 6=0

h|↵|

↵!
@↵⇠0P (x0, ⇠0)D↵

x0ex0,⇠0

and we have used that (P (x0, ⇠0) � z)ex0,⇠0 = 0. From (9.9), (10.12), we see
that

k@↵x0@
�
⇠0fx0,⇠0kL2 = O(1)h

3
2
�
h

2
3 + |r � �|

�� 1
4��1 .
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We get the microlocal Poisson operator to all orders in h by putting

eK = K0 � E � (P � z)K0.

Here

E(P � z)K0w = Oph(er ),

where

(10.17) k@↵x0@
�
⇠0erkB

x

0
,⇠

0 = O(1)h
3
2 (h

2
3 + |r � �|)� 1

4��1 .

This bound is “better” than (10.12) by a factor

h(h
2
3 + |r � �|)�1  h

1
3 ,

thus we get

(10.18) eKw = Oph(ex0,⇠0 + erx0,⇠0),

solving

(10.19) � eK = 1, (P � z) eK = O(h1) : L2 �! B.

As in Proposition 9.2 it is now routine to show that the exact exterior Poisson
operator is microlocally given by (10.18) near any fixed point of the glancing
hypersurface G.

Away from G the construction of a Poisson operator on ��,b and on �� is more
routine and we omit the details. Using a truncation as in the preceding chapter,
we can carry over the construction from ��,b to ��. The preceding chapter gives
an approximate Green operator for the exterior problem while the present
chapter does the same for the Poisson operator. By simple Neumann series
we can replace approximate solution operators by the exact ones and get the
following result that summarizes the constructions of this and the preceding
sections where we start to use the notation �ext

� to emphasize that O is not
part of this contour.

Proposition 10.2. — The exterior Dirichlet problem

(10.20) (P � z)u = v, �u = w, on �ext
� ,

where � is the operator of restriction to the boundary, has a unique solution

u 2 H2
h(�

ext
� ) for every (v, w) 2 L2(�ext

� )⇥H
3
2
h (@O), of the form

(10.21) u = Gextv +Kextw.
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If � 2 C1(�ext
� ) has its support away from a fixed distance to @O and is

equal to one near infinity (and satisfies uniform estimates with all its deriva-

tives when h ! 0), then

(10.22) �Gext, Gext� = O(1) : L2 �! H2
h,

(10.23) �Kext = O(h1) : H
3
2
h (@O) �! H2

h.

If we choose local geodesic coordinates x0, xn near a boundary point, then

near that point Gext is a pseudodi↵erential operator with operator valued sym-

bol,

(10.24) Gext = E(x0, hDx0 ;h),

where E fulfills (9.10), (9.11) (and for the latter estimate it is assumed that

P has been conjugated by a tangential Fourier integral operator in order to

straighten out R� �).

In the same coordinates

(10.25) �Kext = K(x0, hDx0 ;h),

where

(10.26)
��@↵x0@

�
⇠0K(x0, ⇠0;h)

��
B
x

0
,⇠

0 = O(1)h
1
2
�
h

2
3 + |r � �|

� 3
4��1

near G (after straightening of R� �), while away from G:

(10.27)
��@↵x0@

�
⇠0K(x0, ⇠0;h)

��
B
x

0
,⇠

0 = O(1)h
1
2 h⇠0i� 3

2�|�|.

By construction, Gext = O(1) : L2 ! B near @O and (cf. (10.4)) we get the
first part of

Corollary 10.3. — We have

(10.28) Gext = O(h�
2
3 ) : L2 �! H2

h,

(10.29) Kext = O(h�
1
6 ) : H

3
2
h (@O) �! H2

h.

For the second part, we combine (10.4) and (10.27).

Finally, we consider the exterior Dirichlet to Neumann (DN) map

(10.30) Next = hD⌫Kext,

where ⌫ denotes the exterior unit normal. From (10.25), (10.26), (10.8), we
see that this is a pseudodi↵erential operator with symbol

�hDx
n

�
K(x0, ⇠0;h)

�
=: next(x

0, ⇠0;h)
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satisfying

(10.31) @↵x0@
�
⇠0next

�
x0, ⇠0;h) = O(h⇠0i1�|�|�

away from G and

(10.32) @↵x0@
�
⇠0next(x

0, ⇠0;h) = O(1)
�
h

2
3 + |r � �|

� 1
2��1 ,

near G after the usual straightening. In particular, we have

Corollary 10.4. — For every s 2 R we have that

Next = O(1) : Hs+1
h �! Hs

h.
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CHAPTER 11

THE INTERIOR DN MAP

We work here inside O and assume that

(11.1) P = �h2�+ V (x),

where we will first assume only that V 2 L1(O;R) and soon make stronger
assumptions. The results will be applied to V0 in (2.3), but for simplicity we
drop the subscript 0 in this chapter.

We study the interior Poisson operator Kin(z) = H
3
2 (@O) ! H2(O) asso-

ciated to P � z and the interior DN-map

(11.2) Nin = �hD⌫Kin : H
3
2 (@O) �! H

1
2 (@O)

under the assumption that,

(11.3) <z = � ⇣ 1,
h

2
3

O(1)
 |=z|  O(1)h

2
3 .

Using the right inverse of � in (6.7), we can write

Kin = ��1 � (Pin � z)�1��1

and see that

(11.4)
��Kin(z)

��
L(H 3

2 ,H2)
= O(1)(h

1
2 + h�

2
3+

1
2 ) = O(1)h�

1
6

where Pin is the Dirichlet realization of P . Consequently,

(11.5) kNin(z)kL(H 3
2 ,H

1
2 )

 O(h�
1
2 )
��Kin(z)

��
L(H 3

2 ,H2)
= O(h�

2
3 ).

We now assume that

(11.6) V 2 C1(O ;R), �V = 0, �@⌫V  0,

where the last two assumptions can be somewhat weakened. Using parametrix
constructions, we shall improve the estimate (11.5) to:
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Proposition 11.1. — Under the assumption (11.3), we have

(11.7)
��Nin(z)

��
L(H 3

2 ,H
1
2 )

= O(1).

Proof. — We make parametrix constructions in di↵erent regions of T ⇤@O and
start with the hyperbolic region

H =
�
(x0, ⇠0) 2 T ⇤@O; r(x0, ⇠0) < �

 
,

where we write the operator in geodesic coordinates (with O given by xn  0)
as in (9.1). Near a point (x00, ⇠00) 2 H we construct a microlocal approximation
to the Poisson operator of the form

(11.8) eKin(z)w(x) =
1

(2⇡h)n�1

ZZ
e

i

h

(�(x,⌘0)�y0⌘0)a(x, ⌘0;h)w(y0)dy0d⌘0.

We write P as in (9.1):

(11.9)

(
P = (hDx

n

)2 +R(x, hDx0) + ha(x)hDx
n

,

R(x, hDx0) = R(x0, hDx0)� xnQ(x, hDx0),

where we recall that V is incorporated in P and hence in the term �xnQ and
the condition (11.6) together with the strict convexity of O assures that q > 0
for ⇠0 6= 0. Recall that a can be eliminated and assume for simplicity
that a = 0. As before p denotes the semi-classical principal symbol of P .

Now consider the eiconal equation

(11.10) p(x,�0)� z = 0 for x 2 neigh(x00, 0) \O, �(x0, 0, ⌘0) = x0⌘0.

With r(x, ⇠0) = r(x0, ⇠0)� xnq(x, ⇠0) it becomes

@x
n

� = ±
�
�+ h

2
3w � r(x,�0x0)

� 1
2 , ⌥=w > 0.

Using the principal branch of the square root we choose the sign as indicated.
If �0 is the real solution of the corresponding eiconal problem when w = 0, we
can solve (11.10) to all orders in h by the asymptotic expansion,

�(x, ⌘0) = �0(x, ⌘
0) + h

2
3�1(x, ⌘

0) + h
4
3�2(x, ⌘

0;h),

where �1,�2, . . . . = O(xn),

@x
n

�1 = ±1
2

�
�� r(x, @x0�0)

�� 1
2w,

so that

(11.11) =� ⇣ h
2
3=�1 ⇣ |xn=w|h

2
3 .
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By solving the transport equations in the usual way, we get the amplitude a
as a symbol of order 0 and if � 2 C1

0 (H) has its support in a small neighbor-

hood of (x00, ⇠00) we get a Fourier integral operator eKin(z) : C1(@O) ! C1(O)
solving

(11.12) (P � z) eKin(z) = O(h1) : D0(@O) �! C1(O),

(11.13) � eKin(z) = �(x0, hDx0).

Here (11.11) is important, since it assures that the distribution kernel
eKin(x, y0, z) of eKin(z) isO(h1) with all its derivatives when dist(x, @O) � h

1
3��

for any fixed � > 0. (Another standard fact, implicitly used here, is that
the distribution kernel is O(h1) with all its derivatives as soon as (x0, y0) is
outside any fixed neighborhood of the diagonal.)

From (11.11) we get additional damping, leading to

(11.14) eK = O(h
1
6 ) : H

3
2
h �! H2

h.

It also follows that

(11.15) �hD⌫
eKin(z) = e�(x0, hDx0 ;h)

where e�(x0, ⇠0;h) is a classical symbol of order 0 in h and of order �1 in ⇠0

which is O(h1) with all its derivatives outside any fixed neighborhood of the
support of �.

A similar even more standard construction works in the elliptic region

E =
�
(x0, ⇠0) 2 T ⇤@O; r(x0, ⇠0) > �

 
.

We get an operator bK = O(h
1
2 ) : H

3
2
h ! H2

h such that

(11.16) (P � z) bK = O(h1),

(11.17) � bK = 1� �(x0, hDx0),

(11.18) �hD⌫
bK = n�(x

0, hDx0 ;h),

where � 2 C1
0 (T ⇤@O) is any function equal to one in a neighborhood of G[H.

e� has the same properties as � and n� 2 S1(T ⇤@⌦) is equal to O(h1) with
all its derivatives away from supp (1� �).

We next turn to the more di�cult study near the glancing hypersurface

G =
�
(x0, ⇠0) 2 T ⇤@O; r(x0, ⇠0) = �

 
,

and we shall start by pushing the construction in H closer to G and almost

up to a distance � h
2
3 from that set. We write the operator in geodesic

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



84 CHAPTER 11. THE INTERIOR DN MAP

coordinates as in (9.1). Let ⇢0 = (x00, ⇠00) 2 G and assume, after conjugation
with an elliptic tangential Fourier integral operator that microlocally,

(11.19) R(x0, hDx0)� � = hDx1 , (x00, ⇠
0
0) = (0, 0).

Let ⌘0 2 Rn�1 satisfy

(⌘2, . . . , ⌘n�1) =
1

O(1)
, ⌘1 = �✏, h

2
3 ⌧ ✏⌧ 1.

We shall construct an asymptotic solution to the problem

(11.20) (P � z)u = 0, u(x0, 0) = a(x0)e
i

h

x0⌘0 ,

or equivalently with u = eix
0⌘0/heu,

(11.21) e�
i

h

x0⌘0(P � z)e
i

h

x0⌘0eu = 0, eu(x0, 0) = a(x0).

The conjugated operator to the left can be written

(11.22) (hDx
n

)2 + hDx1 � xnQ(x, ⌘0 + hDx0)� (✏+ h
2
3w).

From looking at the eiconal equation p(x,�0)� z = 0 with boundary condi-
tion �0x0(x0, 0) = ⌘0, it is natural to make the dilation in xn,

(11.23) xn = ✏exn, x0 = ex 0.

Then hDx
n

= h
✏Dex

n

, hDx0 = hDex 0 and a direct calculation shows that

(11.24) e�
i

h

x0⌘0(P � z)e
i

h

x0⌘0 = ✏
� eP � (1 + eh

2
3w)

�
,

where eh = h✏�
3
2 ⌧ 1 and

(11.25) eP = (ehDex
n

)2 + ✏
1
2 ehDex1 � exnQ(ex 0, ✏exn, ⌘

0 + ✏
3
2 ehDex 0).

Thus after dilation, we are in a “uniformly hyperbolic” situation and we get a
solution

eu = b(ex; eh)e
i

e
h

e�(ex)
, ex =

⇣
x0,

xn
✏

⌘
,

of the problem

(11.26)
� eP � (1 + eh

2
3w)

�
eu = O(eh

1
), eu(ex 0, 0) = a(ex 0),

defined in a region

|ex 0|  O(1), 0  �exn <
1

O(1)
,
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where b is a classical symbol of order 0 and e�(ex) is uniformly bounded with
all its derivatives in the same region. e� is here the solution of the eiconal
equation,

(11.27) ep(ex, e�0ex)� (1 + eh
2
3w) = 0, e�|ex

n

=0 = 0,

which satisfies

(11.28) =e� ⇣ |exn|eh
2
3 .

Thus,

|eu| = O(1)e�|ex
n

|/(Ceh
1
3 ),

which is O(eh
1
) in any region �exn � eh

1
3�� for any fixed � > 0.

In the original coordinates, we get the asymptotic solution of (11.20)

(11.29) u(x; ⌘0;h) = b
⇣xn
✏
, x0, ⌘0; eh

⌘
e

i

h

(x0⌘0+✏
3
2 e�(x

n

/✏,x0,⌘0)).

These solutions can be superposed to build a microlocal Poisson operator, if

we take a = 1, and we get Ǩ = O(eh
1/6

) : H
3
2
h ! H2

h, where we use the
modified norm X

|↵|2

��(hDx0)↵
0
(ehDex

n

)↵nv
��

on H2
h with L2(dx0dexn) as the underlying L2-norm. This gives in the original

coordinates,

(11.30)
X

|↵|2

��(hDx0)↵
0
(h✏�

1
2Dx

n

)↵nǨu
��
L2(dx)

 O(1)h
1
6 ✏

1
4 kuk

H
3/2
h

.

In particular, with the ordinary H2 norm,

(11.31) Ǩ = O(1)h
1
6 ✏

1
4 : H

3
2
h �! H2

h.

We get the approximation to the DN map:

(11.32) N approx
in = Oph

⇣
✏
1
2@ex

n

e�(x0, 0, ⇠0) + h

i✏
(@ex

n

b)(x0, 0, ⇠0; eh)
⌘
.

Here we must recall that ✏ = �⇠1, so the symbol of N approx
in is singular in

that variable but good enough for our 2-microlocal calculus, in view of the fact

that ✏� h
2
3 and it is a uniformly bounded operator: H

3
2
h ! H

1
2
h .

It remains to study the region

(11.33) �h
2
3��  r(x0, ⇠0)� �  e�,
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where �, e� > 0 are small and independent of h. Again, we reduce R to the
form (11.19) and restrict ⇠0 to a set

(⇠2, . . . , ⇠n�1) =
1

O(1)
, �h

2
3��  ⇠1  e�.

We consider (cf. (11.22))

(11.34) P (x, ⇠0, hDx
n

)� z = (hDx
n

)2 + ⇠1 � xnQ(x, ⇠0)� h
2
3w,

and we follow the approach for the exterior problem started in Section 8.3,
with two not very essential di↵erences:

. xn remains real and we study the Dirichlet problem on an interval [�b, 0]
for 0 < b ⌧ 1 independent of h;

. there will be a slight degeneration when ⇠1 ⌧ �h
2
3 .

We review the one-dimensional analysis with x0, ⇠0 as parameters, writing x

instead for xn and Q(x) instead of Q(x0, xn, ⇠0). We first assume that Q is

analytic. Let x0 be the complex turning point, given by

x0Q(x0) = ⇠1 � h
2
3w,

and we let x1 ⇣ ⇠1 be the corresponding real turning point given by

x1Q(x1) = ⇠1.

Then

x0 = x1 �
h

2
3w

V 0(x1)
+O(h

4
3 ), where V (x) = xQ(x).

As in the exterior case we take a null solution of the form u = e��(x;h)/h

which is subdominant in the direction of negative x and increasing in order of

magnitude when x increases. More precisely, for x� x1 ⌧ �h
2
3 we have

(11.35) �@x(<�) ⇣ |@x�| ⇣ |x� x1|
1
2

and for |x� x1|  O(h
2
3 ) we have @x� = O(h

1
3 ).

For x� x1 � h
2
3 (as well as for x� x1 ⌧ �h

2
3 ) we have (8.34), where

��00 =
�
⇠1 � xQ(x)� h

2
3w

� 1
2 ,
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and we choose the principal branch of the square root with a cut along R�,
which has positive real part. Then for x� x1 � h

2
3 we get when ±=w > 0:

��00 = ⌥i(xQ(x)� ⇠1 + h
2
3w)

1
2

= ⌥i(xQ(x)� ⇠1)
1
2

⇣
1 +

h
2
3w

xQ(x)� ⇠1

⌘ 1
2

= ⌥i(xQ(x)� ⇠1)
1
2 ⌥ ih

2
3w

2(xQ(x)� ⇠1)
1
2

+
O(h

4
3 )

(xQ(x)� ⇠1)
3
2

·

It follows that

(11.36) �<�00 ⇣
h

2
3

|x� x1|
1
2

when x� x1 � h
2
3 .

This quantity dominates over the remainder O(h)|x � x0|�1 in (8.34) when

|x� x0| � h
2
3 ,

h
2
3

|x� x0|
1
2

� h

|x� x0|
and hence

(11.37) �<�0 ⇣ h
2
3

|x� x1|
1
2

when x� x1 � h
2
3 .

This is slightly worse than (11.35) and if that estimate had been valid also for

x� x1 � h
2
3 , then we would get exactly the same estimates as in the case of

the exterior problem.

It is natural to ask how much worse (11.37) is than (11.35). Recall that we

work on an interval [�b, 0] and that x1 ⇣ ⇠1 � �h
2
3��, so x�x1  �x1  h

2
3��.

Thus we get

(11.38)
RHS(11.35)

RHS(11.37)
=

|x� x1|
h

2
3

 h��.

For �b  y  w  x  0 we have

(11.39)
1

C
h�
Z x

y

���0(t)
��dt� Ch  �<�(x) + <�(y) 

Z x

y

���0(t)
��dt,

(11.40)
1

C
|�0(w)| · |x� y|�Ch 

Z x

y

���0(t)
��dt  C

�
|�0(ez(x, y))| · |x� y|+h

�
,

where ez is the point in {x, y} maximizing |ez � x1|.
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The majoration (8.40) remains valid and we even have

(11.41)
1

C✏
e�

✏

h

(�<�(x)+<�(y))  h
1
3 + |�0(x)|

h
1
3 + |�0(y)|

 C✏ e
✏

h

(�<�(x)+<�(y)),

as can be seen by comparing the logarithmic derivative of h
1
3 + |�0(x)| with

�<�0/h in the region x� x1 � h
2
3 , where �00(x) = O(|x� x0|�

1
2 ) and (11.36)

holds.

The factor h� in (11.39) gives slight losses in the estimates of Subsection 8.3
and we get

Lemma 11.2. — If (P (x0, ⇠0)� z)u = 0 on [�b, 0], u(0) = u(�b) = 0, then

(11.42)
��(h

1
3 + |�0|)2u

��+
��(h@x)2u

��+
���h

1
3 + |�0|

�
h@xu

��  O(h�2�)kvk,

when ⇠1 � �h
2
3��.

Proof. — We solve the Dirichlet problem on [�b, 0] as in Section 8.3 and start
with applying the natural modification of the operator K:

(11.43) Kv(x) = �1

h

Z x

�b
e�(x)��(y))/hv(y)dy

and Lemma 8.6 deteriorates slightly to

Lemma 11.3. — The L(L2)-norms of
�
h

1
3 + |�0|

�
�K,

�
h

1
3 + |�0|

�2 �K �
�
h

1
3 + |�0|

��1
, K �

�
h

1
3 + |�0|

�

are O(1)h��.

Proof. — We use Schur’s lemma as in the proof of Lemma 8.6. Thus for

instance, the L2-norm of (h
1
3 + |�0|) �K is bounded by the geometric mean of

I =
1

h
sup

�bx0

Z x

�b

�
h

1
3 + |�0(x)|

�
e

1
h

(<(�(x)��(y))dy,

II =
1

h
sup

�by0

Z 0

y

�
h

1
3 + |�0(x)|

�
e

1
h

(<(�(x)��(y))dx.

Here, by (11.39), (11.40),

(11.44) e
1
h

<(�(x)��(y))  C e�
1

Ch

1��
R
x

y

|�0(t)|dt  eC e�
1

e
Ch

1�� (h
1
3+|�0(x)|)|x�y|

,

and we get I = O(h��).
To get the same estimate for II we also use (11.41). The other L2-norms

are estimated similarly.

The proof of Lemma 11.2 can now be finished as in Section 8.3.
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We next eliminate the analyticity assumption in Lemma 11.2. Let x1 be

the real turning point determined by x1Q(x1) = ⇠1, so that x1  O(1)h
2
3��.

Let x2 = x1 � h
2
3��. For a large but fixed N , put

eQ(x) =

8
>><

>>:

Q(x) if x  x2,

N�1X

0

1

↵!
Q(↵)(x2)(x� x2)

↵ if x � x2.

Since eQ is holomorphic in a h
2
3��-neighborhood of x1, we see that if eP is the

corresponding operator then we have a null solution e�e�/h of P � z with the
same properties as e��/h in the analytic case above and such that Lemma 11.2

applies. Now eQ�Q = O(1)h(
2
3��)N and if we choose N large enough, it follows

that P � z has a null solution e��/h, where
eQ�Q,�� e�,�0 � e�0,�00 � e�00 = O(h).

Another perturbation argument shows that Lemma 11.2 holds for P � z.
Let xn,1(x0, ⇠0) be the real turning point determined by

�xn,1Q(x0, xn,1, ⇠0) + ⇠1 = 0

where we recall that ⇠1 = r(x0, ⇠0)� �. In analogy with (9.3), we can reformu-
late (11.42) as

���h
2
3 + |xn � xn,1|

�
u
��+

��(h@x
n

)2u
��(11.45)

+
���h

2
3 + |xn � xn,1|

� 1
2 (h@x

n

)u
��  O(h�2�)

��(P (x0, ⇠0)� z)u
��

for smooth functions u on [�b, 0], vanishing at the end points. Notice here
that �

h
1
3 + |�0|

�2 ⇣ h
2
3 + |x� xn,1|.

Define the B(x0, ⇠0) norm to be the left hand side in (11.45) and let B be the
space of functions on [�b, 0] with finite B-norm that vanish at the end points.
Then we still have the symbol property (9.9) for P (x0, ⇠0) : B(x0, ⇠0) ! L2 and
we get (9.11) for E = (P (x0, ⇠0)� z)�1 with a slight loss:

(11.46) @↵x0@
�
⇠0E = O↵,�

�
h�2�(1+|↵|+|�|)��h

2
3 + |�� r(x0, ⇠0)|

���1 , L2 �! B.

Due to the non-monotonicity of ⇤ = (h
2
3 + |�� r(x, ⇠0)|) 1

2 as a function
of xn between xn,1 and 0 when xn,1 < 0, we get (10.7), (10.8) with loss:

h
1
2
�
h

2
3 + |r � �|

� 3
4
��u(0)

��  Ch�3�/4kukB,(11.47)

h
1
2
�
h

2
3 + |r � �|

� 1
4
��h@x

n

u(0)
��  Ch��/4kukB.(11.48)
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Normalize � by imposing the condition �(0) = 0 and let ex0,⇠0 = e�
1
h

� be the
null solution of P (x0, ⇠0)�z so that ex0,⇠0(0) = 1 and ex0,⇠0(�b) is exponentially
small. Using (11.41), (11.44), we get (10.9) with a � loss:

(11.49) kex0,⇠0kB  O(1)h
1
2 (1��)

�
h

2
3 + |r � �|) 3

4 .

Adding an exponentially small reflected null solution to ex0,⇠0 and renormal-
izing, we get a new null solution, that we denote by ex0,⇠0 instead of the earlier
one, which satisfies the boundary conditions ex0,⇠0(0) = 1, ex0,⇠0(�b) = 0 and
which also satisfies (11.49). Then we get the weakened version of (10.12):

(11.50) k@↵x0@
�
⇠0ex0,⇠0kB = O(1)h

1
2 (1��)�2�(|↵|+|�|)�h

2
3 + |r � �|

� 3
4��1 .

As a first approximation to the microlocal interior Poisson operator on
{x; �b  xn  0, |x0|  O(1)} we take (cf. (10.13))

(11.51) K0w = Oph(ex0,⇠0).

Then �K0 = 1, (P � z)K0 = Oph(fx0,⇠0), where,

fx0,⇠0 =
X

↵ 6=0

h|↵|

↵!
@↵⇠0P (x0, ⇠0)D↵

x0ex0,⇠0 ,

and by (9.9), (11.50),

k@↵x0@
�
⇠0fx0,⇠0kL2 = O(1)h

3
2� 5

2 ��2�(|↵|+|�|)�h
2
3 + |r � �|

�� 1
4��1 .

Using E as a first approximation, we can construct an operator-valued symbol
eE(x0, ⇠0;h) such that eE(x0, hDx0 ;h) inverts P (x0, hDx0) � z to all orders in h.
We get a microlocal Poisson operator to all orders in h by putting

eK = K0 � eE � (P � z)K0 = K0 +Oph(er ),

and er fulfills the slightly deteriorated version of (10.17):

k@↵x0@
�
⇠0erkB = O(1)h

3
2� 5

2 ��2�(1+|↵|+|�|)�h
2
3 + |r � �|

�� 1
4��1 .

Now eK can be written as in (10.18) and we have (10.19). The symbol
ex0,⇠0 + erx0,⇠0 there satisfies

��@↵x0@
�
⇠0(ex0,⇠0 + erx0,⇠0)

��
B = O(1)h

1
2� 1

2 ��2�(|↵|+|�|)�h
2
3 + |r � �|

� 3
4��1 ,

when � > 0 is small enough. From this estimate and the similar ones in the
other regions we get

(11.52) eK = O(h
1
6 ) : H

3
2
h �! H2

h,

and this also holds for the exact Poisson operator Kin = KV
in .
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The corresponding DN-map is a pseudodi↵erential operator with symbol

n(x0, ⇠0;h) = �hDx
n

(e+ er ),

and combing the above estimate with (11.48), we get the estimate

(11.53) @↵x0@
�
⇠0n = O(1)h�

3
4 ��2�(|↵|+|�|)�h

2
3 + |r � �|

� 1
2��1 .

This is a bounded symbol in the region where h�
3
4 �|r��| 12 = O(1), i.e. where

|r � �| = O(1)h
3
2 � and to get an better conclusion, we take a closer look.

First, we see that

�hDx
n

ex0,⇠0 = i@x
n

�(0) = O(1)
�
h

2
3 + |r � �|

� 1
2

is bounded. Secondly, from the above estimate on the B norm of er and (11.48),
we conclude that

�hDx
n

er = O(1)h1�( 52+
1
4 )�
�
h

2
3 + |r � �|

�� 1
2

which is also bounded. Thus we have an improvement of (11.53) when
↵ = � = 0, and we conclude that n is in a su�ciently good symbol class to
conclude that its quantization is L2 bounded.

Patching together the di↵erent microlocal Poisson operators, we get an

approximation mod O(h1) in L(H
3
2
h , H

2
h) of Kin and also the conclusion of

Proposition 11.1 from the boundedness of the corresponding microlocal DN-
maps.

Let V be as in Proposition 11.1 and let KV
in and N V

in denote the corre-
sponding Poisson and Dirichlet to Neumann operators. Let W 2 L1(⌦;R).
Then

KV+W
in = KV

in � (P V+W
in � z)�1WKV

in =: KV
in +A,

where in view of (11.52):

kAk
L(H

3
2
h

,H2
h

)
 O(1)h�

2
3+

1
6 kWkL1 = O(1)h�

1
2 kWkL1 .

Thus N V+W
in = N V

in +B, B = �hD⌫A, and we get

kBk
L(H

3
2
h

,H2
h

)
= O(1)h�

1
2� 1

2 kWkL1 = O(1)h�1kWkL1 .

This implies:

Proposition 11.4. — The conclusion of Proposition 11.1 remains valid if we

replace V in there with V +W , where W 2 L1(⌦;R) satisfies

(11.54) kWkL1  O(h).
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When W = �⇥q! is as in Theorem 2.2, we have (11.54), provided ↵ is large
enough. See Remark 15.1.

For a greater generality of our results it is of interest to have a the following
variant of the last proposition, where the perturbation W can be indepen-
dent of h. We start with some simple exponentially weighted estimates. Let
� 2 C1(O ;R) and consider

P V,✏ = e
✏�

h P V e�
✏�

h = P V + F,

where

F = i✏(�0 · hDx + hD · �0)� ✏2(�0)2 = O(✏) : H1
h �! H0

h.

Since (P V
in � z)�1 = O(h�

2
3 ) : H0

h ! H2
h when 1

2 < <z < 2, |=z| ⇣ h
2
3 , we

get the same conclusion for (P V,✏
in � z)�1 = e✏�/h(P V

in � z)�1 e�✏�/h, provided
that ✏⌧ h

2
3 .

Let �|@O = 0. Then KV,✏ = e✏�/hKV is the Poisson operator for P V,✏ � z.

We can also get KV,✏ by a perturbative argument, writing

KV,✏ = KV � (P V,✏
in � z)�1FKV

= KV +O(h�
2
3 ✏h

1
6 ) = O(h

1
6 ) : H

3
2
h �! H2

h.

Thus e✏�/hKV (z) = O(h1/6) : H
3
2
h ! H2

h. Now assume that

W (x) = O
�
dist(x, @O)N0

�
,

for some N0 > 0, to be determined. Then WKV = W e�✏�/h e✏�/hKV and

taking � ⇣ dist(·, @O), ✏ � h
2
3 /O(1), we see that

W e�✏�/h = O
�
distN0 e�dist/(Ch

1
3 )
�
= O(h

1
3N0).

Then as in the discussion prior to Proposition 11.4, we have KV+W
in = KV

in+A,
where

A = (P V+W
in � z)�1WKV

in = O(1)h�
2
3+

N0
3 + 1

6 : H
3
2
h �! H2

h.

The choice N0 = 3 gives A = O(h
1
2 ) : H

3
2
h ! H2

h and we get the following
variant and extension of Proposition 11.4:

Proposition 11.5. — The conclusion of Proposition 11.1 remains valid if we

replace V there with V +W , where W 2 L1(⌦;R) satisfies
(11.55) W (x) = O

�
dist(x, @O)3

�
.

More generally, we can take W = W1 +W2, where W1 and W2 fulfill (11.54)
and (11.55) respectively.
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CHAPTER 12

SOME DETERMINANTS

Let V0 is as in (11.6) and

(12.1) V = V0 +W,

where the real-valued term W is O(1) in L1. We let

(12.2) P = �h2�+ V =: P V , P0 = �h2�+ V0.

Recall the definitions of Pout, Pout, Pin, Pin in Chapter 7, with the potential V
as above.

Our first task is to define the determinants of the factors in (7.19). In the
following, Hs denotes Hs

h if nothing else is indicated.

Proposition 12.1. — The three factors in (7.19) are meromorphic families

of Fredholm operators in the region 1
2 < <z < 3

2 , =z > �h
2
3 c0, where c0 is as

in (3.1). More precisely,

Pin(z) : H
2(O) �! H0(O)⇥H

3
2 (@O),

Pout(z) : H
2(O) �! H0(O)⇥H

1
2 (@O)

are holomorphic Fredholm families, while

⇣ 1 0

h
1
2BGin Nin �Nout

⌘
: H0(O)⇥H

3
2 (@O) �! H0(O)⇥H

1
2 (@O)

is a meromorphic Fredholm family.

Proof. — This is clear for Pin, Pout, and the factorization (7.19) then implies
that the remaining factor is a meromorphic Fredholm family.
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From (7.19) and the last proposition, we get

(12.3) detPout(z) = det(Nin �Next) detPin(z).

The next result will permit us to do some analysis.

Proposition 12.2. — The determinants of the factors in (7.19) can also be

defined as in Section 4.4.

Proof. — We have

(12.4) @zPin(z) =
⇣�1
0

⌘
, @2zPin(z) = 0.

Thus the Cp-norm of @zPin(z) : H2 ! H0 ⇥ H
3
2 can be bounded by that

of the inclusion map ◆ : H2(O) ! H0(O). Here we can consider O as a
bounded subset with smooth boundary of a torus T and choose a uniformly
bounded Seeley extension � : H2(O) ! H2(T ) so that ◆ = ⇢◆T�, where
◆T : H2(T ) ! H0(T ) is the inclusion map and ⇢ : H0(T ) ! H0(O) is the
restriction map. ⇢ and � being uniformly bounded, it su�ces to study the
Schatten class norm of ◆T . Here H2(T ) = (1�h2�)�1(H0(T )) so the problem
is that of the Cp-norm of (1� h2�)�1 : H0(T ) ! H0(T ).

By Weyl’s law we get for p > 1
2n,

��(1� h2�)�1
��p
C

p

=

Z 1

0
(1 + h2�)�pdO(�

1
2n)

= O(h2)

Z 1

0

�
1
2n

(1 + h2�)p+1
d� = O(h�n)

Z 1

0

t
1
2n

(1 + t)p+1
dt

and then k◆T kpC
p

= O(h�n), so

(12.5)
��@zPin

��
C

p

= O(h�
n

p ), p > 1
2n.

This implies that Pin(z) satisfies (4.30) for any p > 1
2n, so its determinant can

be defined as in Section 4.4.

In order to treat the other two operators, we need to collect some more
information about Next.

Lemma 12.3. — For z as in Proposition 12.1, we have for all s 2 R, k 2 N:

(12.6) @kzNext(z) = O
�
(=z + c0h

2
3 )�k

�
: Hs �! Hs�1+2k.

Proof. — Microlocally near the glancing hypersurface and in the hyperbolic
region, this follows from Corollary 10.4 and the Cauchy inequalities. The extra
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regularization comes from the elliptic region and here Kext(z) is the Poisson
operator of an elliptic boundary value problem and satisfies

@kzKext(z) = Ck(Pext � z)�kKext(z).

Applying the lemma to B = B(z) in (7.6), we get

(12.7) @kzB(z) = O(1)h�
1
2 (=z + c0h

2
3 )�k : H2(O) �! H

1
2+2k(@O).

The Cp-norm of the inclusion map H
1
2+2k ! H

1
2 is bounded by a constant

times the Cp-norm of (1� h2�@O)�k which by Weyl asymptotics is finite and
O(h(1�n)/p) when p � 1 and p > (n� 1)/(2k). Thus for each such p,

@kzB 2 Cp(H
2, H

1
2 ), k@kzBkC

p

= O(h�
1
2+

1�n

p

�
=z + c0h

2
3 )�k

�
.

It then follows as in the proof of (12.5) that when p � 1 and p > n/(2k),

@kzPout(z) 2 Cp(H
2, H0 ⇥H

1
2 ),(12.8)

��@kzPout(z)
��
C

p

= O
�
h
�max(n

p

, 12+
n�1
p

+ 2
3k)

�
.

Thus we have verified (4.30) with p = 1
2(n+ ✏) and detPout(z) can indeed be

defined as in Section 4.4.
In that chapter we have seen that if P (z) fulfills (4.30), then so does P (z)�1

on the open subset of bijectivity. We also saw that if P1(z) 2 L(H1,H2)
and P2(z) 2 L(H2,H3) satisfy (4.30), then so does P1(z)P2(z). Having
checked that Pin(z) and Pout(z) satisfy (4.30), we conclude from (7.19)

that
� 1

h
1
2BGin

0
Nin�Next

�
also satisfies (4.30) and the proposition follows from

Section 4.4.
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CHAPTER 13

UPPER BOUNDS ON THE BASIC
DETERMINANT

The first task will be to get an upper bound on ln | detPout| in the whole
region

(13.1) |=z| < c0h
2
3 , 1

2 < <z < 2

by some negative power of h.

Using the addendum at the end of Section 4.4, we shall derive a rough upper
bound on ln | detPout(z)|. Let

eP = P + i1O, ePout(z) =
⇣ eP � z

B(z)

⌘
.

Assume first that W = 0 so that V = V0 is smooth. Thanks to the perturba-
tion i1O,

(13.2) ePin :=
⇣ eP � z

h
1
2 �

⌘
: Hs+2(O) �! Hs(O)⇥Hs+ 3

2 (@O)

is bijective with an inverse eEin(z) =
� eGin(z) h�

1
2 eKin(z)

�
, where

eGin = Os(1) : H
s �! Hs+2, eKin = Os(h

1
2 ) : Hs+ 3

2 �! Hs,

for 0 < h  h(s), 0  s < 1. This is the inverse of an elliptic boundary value
problem and we see that eNin, defined as in (7.17), is a nice h-pseudodi↵erential
operator on @O of order 0 in h and of order 1 in ⇠0, with leading symbol

�i(i+ (⇠0)2 � z)
1
2 , where we use the principal branch of the square root with

a cut along the negative real axis. This symbol takes its values in the interior
of the fourth quadrant. Then in analogy with (7.19), we have

(13.3) ePout(z) =
⇣ 1 0

h
1
2B eGin

eNin �Next

⌘
ePin(z),

where B was given in (7.6).
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We have already investigatedNext and found that it is an h-pseudodi↵erential
operator whose symbol is nice away from G where it becomes exotic but small.

Away from that set it is of order (0, 1) in (h, ⇠0) with leading part i((⇠0)2�z)
1
2 .

When =z � 0 its values are confined to the first quadrant.

From this it follows that eNin�Next is an elliptic h-pseudodi↵erential opera-
tor of order (0,1) whose symbol has a small exotic part near G. Consequently,
for every s 2 R;

(13.4) eNin �Next : H
s+ 3

2 �! Hs+ 1
2

is bijective with a uniformly bounded inverse for 0 < h  h(s) ⌧ 1.

It now follows from (13.3) and from the fact that

B = Os(h
� 1

2 ) : Hs+2 �! Hs+ 3
2

for every s � 0, that

eP�1
out = ePin(z)

�1
⇣ 1 0

�( eNin �Next)�1h
1
2B eGin ( eNin �Next)�1

⌘
(13.5)

=
� eGin � eKin( eNin �Next)

�1B eGin h�
1
2 eKin( eNin �Next)

�1
�
.

We conclude that for every s 2 [0,+1[,

(13.6)

8
>><

>>:

ePout(z) = Hs+2 ! Hs ⇥Hs+ 1
2 has an inverse,

eEout(z) =
� eGout h�

1
2 eKout

�
with eGout = Os(1) : Hs ! Hs+2,

eKout = Os(h
1
2 ) : Hs+ 1

2 ! Hs+2, for 0 < h  h(s).

Now drop the assumption that W = 0 and take again V = V0 +W where
we assume that kWkL1  1/C with C large enough. Then from (13.6) (where
we had V = V0) and a simple perturbation argument we see that

(13.7) (13.6) remains valid for s = 0.

Write

(13.8) Pout(z) =
�
1 +K(z)

� ePout(z),

where

K(z) =
⇣P � eP

0

⌘
eEout(z).

Now ePout(z) satisfies (12.8) when p � 1 and p > n/(2k) and hence also (4.30)
with p there equal to 1

2(n+✏). Moreover, as in the case of Pout, the correspond-

ing Schatten class norm of @kz ePout is bounded by some negative power of h.
Using the bounds on the norm eEout, we see that this operator has the same
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property. Consequently we have the same properties for K(z) and Proposi-
tion 4.12 applies and shows that det(1+K(z)) can be defined as in Section 4.4
and satisfies the upper bound

(13.9) ln
��det

�
1 +K(z)

���  O(h�N )

for some N � 0. Similarly, det ePout(z) is well-defined and can be realized so
that

(13.10)
�� ln |det ePout|

��  O(h�N ).

Combining this with (13.8), we get

Proposition 13.1. — There exists N0 > 0 such that

(13.11) ln
��detPout(z)

��  O(1)h�N0 .

We next start a more precise study of detPout in the region

(13.12) 1
2 < <z < 2, ch

2
3 < |=z| < c0h

2
3 ,

where c > 0 can be chosen arbitrarily small. For that we shall use Proposi-
tion 12.2 and study the two factors to the right in (12.3).

We start with det(Nin � Next) and the aim is to write this function as a
product of two factors, one being holomorphic and non-vanishing in the whole

rectangle ]12 , 2[ + i ] � h
2
3 c0, h

2
3 c0[, the other being of the form det(1 + T (z)),

where T is a meromorphic family of trace class operators on @O with poles

at �(Pin) and whose trace class norm is O(h1�n) when |=z| > h
2
3 c. Let

P = P V = �h2�+ V, P0 = P V0 = �h2�+ V0, V = V0 +W

with V0 as before, W = O(h) in L1 and we shall have to strengthen the
assumptions on W . In geodesic coordinates,

(13.13) P = (hDx
n

)2 +R(x, hDx0), P0 = (hDx
n

)2 +R0(x, hDx0).

Let S : C1(O) ! C1(O) be of the form S = S(x, hDx0) near @O in geodesic
coordinates, where S � 0 has compact support in ⇠0. In the interior of O we
arrange by cutting and pasting so that S is a pseudodi↵erential operator in all
the variables of order 0 in h and with symbol of compact support in ⇠. Put

(13.14) eP0 = P0 + S, eP = P + S.

Let � = �(x0, ⇠0) 2 C1
0 (T ⇤@O) be equal to 1 near H [ G. Let N = Nin be

the Dirichlet to Neumann map associated to P � z (and we will write P = Pin

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



100 CHAPTER 13. UPPER BOUNDS ON THE BASIC DETERMINANT

when we wish to emphasize that we take the Dirichlet realization). We start
with the trivial decomposition

(13.15) N = N�(x0, hDx0) + N
�
1� �(x0, hDx0)

�
.

By Proposition 11.4 the first term to the right is of trace class C1(H
3
2 , H

1
2 )

and the corresponding trace class norm is O(h1�n) when |=z| � h
2
3 c.

Now S can be chosen so that
⇣ eP0 � z

h
1
2 �

⌘
: H2 �! H0 ⇥H

3
2

is bijective with a uniformly bounded inverse
� eG0 h�

1
2 eK0

�
. Since kWkL1 =

O(h) ⌧ 1, we have the same fact for

⇣ eP � z

h
1
2 �

⌘
: H2 ! H0 ⇥H

3
2

and we let
� eG h�

1
2 eK

�
be the inverse.

K = Kin satisfies

(13.16) K(1� �) = eK(1� �) + (Pin � z)�1S eK(1� �).

Hence

(13.17)

8
<

:
N (1� �) = I + II, I = eN (1� �),

II = �hD⌫(P � z)�1S eK(1� �).

Here eK = eK0 � ( eP � z)�1W eK0 = eK0 +O(h
1
2 )kWkL1 : H

3
2 ! H2, so

(13.18) eN = eN0 +O(1)kWkL1 : H
3
2 �! H

1
2 .

Now, as we saw earlier in a slightly di↵erent situation, eN0 is a nice h-
pseudodi↵erential operator of order (0,1) in (h, ⇠0)) with leading symbol

�i(s(x0, ⇠0) + (⇠0)2 � z)
1
2 and as in (13.4) eN0 � Next = Hs+ 3

2 ! Hs+ 1
2 is

bijective with a uniformly bounded inverse for 0 < h < h(s) ⌧ 1. From

(13.18) we get the same conclusion for eN �Next : H
3
2 ! H

1
2 .

We shall next estimate the norm of S eK(1 � �) : H
3
2 ! H0 and for that

we try to “commute” 1� � and K and exploit that S(1� �) = O(h1). From
�[ eK,�] = 0, ( eP � z)[ eK,�] = �[ eP ,�] eK, we get

(13.19) [ eK,�] = �( ePin � z)�1[ eP ,�] eK.

Moreover,

(13.20) S eK(1� �) = S(1� �) eK � S[ eK,�],
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where the first term to the right is O(h1) : H
3
2 ! H0 and we shall see that

[ eK,�] = O(h
3
2 ) : H

3
2 ! H0, provided that rW = O(1) in L1: Assume

(13.21) @↵W = O(1) in L1, for |↵|  1,

in addition to the previous assumption that kWk = O(h). As in the remark
after Proposition 11.4, this will hold for W = �⇥q! as in Theorem 2.2.

Lemma 13.2. — Under the assumption (13.21), we have

(13.22) [ eK,�] = O(h
3
2 ) : H

3
2 �! H2.

Proof. — If Q 2 C1
0 (R2n) we have the following representation of the h-

pseudodi↵erential operator Q(x, hDx) in the classical quantization, obtained
in [1]:

Q(x, hD) =
⇣
� 1

⇡

⌘2n Z
· · ·

Z
(z1 � x1)

�1 · · · (zn � xn)
�1(⇣1 � hDx1)

�1

(⇣n � hDx
n

)�1@z̄1 · · · @z̄n@⇣̄1 · · · @⇣̄n(13.23)

eQ(z1, . . . , zn, ⇣1, . . . , ⇣n)L(dz)L(d⇣),

where eQ 2 C1
0 is an almost holomorphic extension satisfying

@(z̄,⇣̄)
eQ = O

��
|=z1| · · · |=zn| · |=⇣1| · · · |=⇣n|

�1�
.

From this representation we recover the well-known fact that Q = O(1) :
L2 ! L2 and for [Q,W ] we get a similar formula with 2n terms, obtained by
replacing one of (zj�xj)�1 or (⇣j�hDx

j

)�1 by (zj�xj)�1[xj ,W ](zj�xj)�1 or
(⇣j�hDx

j

)�1[hDx
j

,W ](⇣j�hDx
j

)�1 respectively. Then from the boundedness
of W and rW we see that

(13.24) [Q(x, hDx),W ] = O(h) : L2 �! L2.

The lemma now follows from (13.24) and (13.19).

Returning to (13.20), we see that

(13.25) S eK(1� �) = O(h
3
2 ) : H

3
2 ! H0.

We use this in the expression for II in (13.17) together with the telescopic
formula

(13.26) (P � z)�1 = ( eP � z)�1
N�1X

0

(S( eP � z)�1)k + (P � z)�1(S( eP � z)�1)N

to see that

(13.27) II(z) = III(z) + IV(z),
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where

(13.28) III(z) = �hD⌫( eP � z)�1
N�1X

0

(S( eP � z)�1)kS eK(1� �)

is holomorphic and O(h) : H
3
2 ! H

1
2 in the whole rectangle ]12 , 2[ + i] �

h
2
3 c0, h

2
3 c0[ and

(13.29) IV(z) = �hD⌫(P � z)�1(S( eP � z)�1)NS eK(1� �).

Let N be the smallest integer with

(13.30) N > 1
2(n� 1)

and assume that

(13.31) @↵W = O(1) in L1 for |↵|  2N.

Again this will hold for W = �⇥q! as in Theorem 2.2 if ↵( . ) there is large

enough. Then IV(z) is locally uniformly boundedH
3
2 ! H2(N+1)� 3

2 = H2N+ 1
2

away from �(Pin) and when |=z| � h
2
3 c the norm is uniformly

 O(h
3
2� 1

2� 2
3 ) = O(h

1
3 ).

Since 2N > n�1, we see that IV(z) 2 C1(H
3
2 , H

1
2 ) and that when |=z| � h

2
3 c

the corresponding trace class norm is  O(h
1
3+1�n). Summing up the discus-

sion so far, we have:

Proposition 13.3. — N = Nin can be decomposed as

(13.32) N = eN + III + (N � eN )�+ IV,

where eN = eN0+O(1)kWkL1 = O(1) : H
3
2 ! H

1
2 and III = O(h) : H

3
2 ! H

1
2

are holomorphic in the whole rectangle ]12 , 2[ + i]� h
2
3 c0, h

2
3 c0[, while (N� eN )�

and IV(z) are holomorphic away from �(Pin) with values in C1(H
3
2 , H

1
2 ) and

(13.33) k(N � eN )�kC1 + kIVkC1 = O(h1�n), |=z| � h
2
3 c.

Now write

(13.34) Nin �Next = bA(z) + (N � eN )�+ IV,

where

(13.35) bA(z) := eN + III�Next : H
3
2 �! H

1
2 ,

is holomorphic, uniformly bounded and uniformly invertible in the whole rect-
angle, and factorize,

(13.36) Nin �Next = bA(z) bB(z),
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(13.37) bB(z) = 1 + bA(z)�1
⇣
(N � eN )�+ IV

⌘
=: 1 + bC(z),

where bC(z) belongs to C1(H
3
2 , H

3
2 ) away from �(Pin) and the corresponding

trace class norm is O(h1�n) when |=z| � h
2
3 c.

We conclude that

(13.38) ln
�� det bB(z)

��  O(h1�n), when |=z| � h
2
3 c.

bA(z) in (13.35) is holomorphic in the whole rectangle. It follows from
Lemma 12.3 and the discussion after (12.7) that the Cp-norm of @kzNext :

H
3
2 ! H

1
2 is bounded by a negative power of h when p is � 1 and

> (n� 1)/(2k).

As in the proof of that lemma, we write

@kz eN (z) = Ck�hD⌫( ePin � z)�k eKin

and using (13.31) we see that @kz eN (z) = O(1) : H
3
2 ! H

1
2+2k for 2k  2N +2

and hence the Cp-norm of @kz eN : H
3
2 ! H

1
2 is bounded by some negative

power of h when p is � 1 and > (n� 1)/(2k), for k  N + 1. For k = N + 1
we have k > 1

2(n� 1), so n/(2k) < 1. From (13.28) we get the same estimates

for @kz III. Thus the Cp-norm of @kz bA(z) : H
3
2 ! H

1
2 is bounded by some

negative power of h when p is � 1 and > (n� 1)/(2k), k  N + 1.
In conclusion, det bA(z) and its inverse det bA(z)�1 can be defined in the

whole rectangle as in Section 4.4, such that for some N0,

ln
��det bA(z)

�� = O(h�N0).

The desired factorization of det(Nin �Next) is now

(13.39) det(Nin �Next) = det bA(z) det bB(z),

where det bA(z) and its inverse are holomorphic in the whole rectangle and
bounded from above by C exp(Ch�N0) for some C,N0 > 0.

Before continuing, we sum up and compare the two main results so far.
Proposition 4.12, applied to 1 +K(z) in (13.8), gives

(13.40) 1 +K(z) = A(z)B(z),

where in the rectangle (13.1),

(13.41) ln
��detA(z)

�� = O(h�N ),

(13.42) ln
��detB(z)

��  O(h�N ).
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More precisely, B(z) = 1+RN (K)KN =: 1+C(z), where C(z) is holomorphic
with values in the trace class operators and

(13.43)
��C(z)

��
C1

 O(h�N ).

Here, the exponent N may take a new value at each appearance. Further
(see (13.8))

(13.44) detPout = det ePout detA(z) detB(z),

where det ePout can be defined as in Section 4.4 such that

(13.45)
�� ln |det ePout|

�� = O(h�N ).

On the other hand we have (7.19), (12.3):

(13.46) detPout(z) = det
�
Pin(z)

�
det(Nin �Next),

where

(13.47) det(Nin �Next) = det bA(z) det bB(z), bB(z) = 1 + bC(z).

Here, det bA(z) is holomorphic and

(13.48) ln
��det bA(z)

�� = O(h�N )

in the whole rectangle, while bC(z) is meromorphic with values in C1(H
3
2 , H

3
2 )

with the poles at the (real) eigenvalues of Pin. Moreover, for |=z| � h
2
3 c we

have k bC(z)kC1  O(h1�n), so in that region

(13.49) ln
��det

�
1 + bC(z)

���  O(h1�n).

We shall now compare the expressions (13.44) and (13.46).
In (13.44) the first two factors to the left are well defined up to factors of

the form exp p(z) where p is a polynomial of degree  N and as we have seen,
we can choose realizations satisfying (13.44), (13.41). As for detB(z), defined
as a determinant of a trace class perturbation of 1 (which is a special case of
the definition in Section 4.4), we only have the upper bound (13.42).

In (13.46), detPin(z) = det(Pin � z) can be defined as in Section 4.4 up
to a factor exp p(z) as before, in such a way that ln | detPin|  O(h�N ) and

when |=z| � h
2
3 / eC, we even have ln | detPin(z)| = O(h�N ). This factor will

be further studied below. Similarly, we have (13.47), (13.48) and again we
define det bB as the determinant of a trace class perturbation of the identity.

When writing the identity

(13.50) detPout(z) = det ePout detA(z) detB(z) = detPin det bA(z) det bB(z),
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it is not a priori clear that we can choose det ePout, detA(z), det bA(z), detPin

all satifying the above bounds simultaneously, since we have made definite
choices of detB(z) and det bB(z). However, if we restrict the attention to the

region |=z| � h
2
3 c we know that B(z)�1 and bB(z)�1 are bounded in operator

norm by some negative power of h, and this additional information implies that
B(z)�1 = 1+D(z), bB(z)�1 = 1+ bD(z), where D(z) and bD(z) are bounded in
trace class norm by negative powers of h, so in that region we also get

ln
��detB(z)

��, ln
��det bB(z)

�� = O(h�N ).

Then if we choose the other factors with moduli that have polynomially
bounded logarithms, we can modify one of them by a factor exp p(z), where
p(z) is a polynomial of degree  N with real part = O(h�N ) and achieve
(13.50) in such a way that

. ln |x| = O(h�N ) when x = detA, det bA, det ePout in the whole rectangle;

. ln |x| = O(h�N ) for | ln z| � h
2
3 c, when x = detB(z), det bB(z), detPin;

. ln |x|  O(h�N ) in the whole rectangle, when x = detB(z), detPin.

Moreover, as we have seen,

(13.51) ln
��det bB(z)

��  O(h1�n), when |=z| � h
2
3 c.

The aim is to study the zeros of detPout(z) in the rectangle (13.1), using

the upper bound (13.11) and the more precise upper bound for |=z| � h
2
3 c

resulting from the last expression in (13.50) together with (13.51) and the fact
that ln | det bA| = O(h�N ). After division with det bA(z) we can concentrate on
the function

(13.52) f(z) = detPin det bB(z),

for which

(13.53) ln
��f(z)

��  O(h�N ).

Next, look at detPin(z). Let eK = O(h
1
2 ) : Hs ! Hs+ 1

2 , s 2 R be a right
inverse of �. Then, �

1 eK
�
: D(Pin)⇥H

3
2 �! H2

is a bijection with a bounded inverse and

Pin(z)
�
1 h�

1
2 eK

�
=
⇣
Pin � z h�

1
2 (P � z) eK

0 1

⌘
,

so

detPin(z) det
�
1 h�

1
2 eK

�
= det(Pin � z)
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and since eK is independent of z, we can take det(1 h�
1
2 eK) to be an arbitrary

non-vanishing constant, say 1 and get

(13.54) detPin(z) = det(Pin � z).

The method in Section 4.4 shows that

(13.55) @Nz ln det(Pin � z) = �(N � 1)! tr(Pin � z)�N ,

for N > 1
2n, so that (Pin � z)�N is of trace class.

Let � 2 C1
0 (]14 , 4[; [0, 1]) be equal to 1 in a neighborhood of [13 , 3]. If

N(�) = #
�
�(Pin) \ ]�1,�]

�
,

we get

@Nz ln det(Pin � z) = �(N � 1)!

Z
(�� z)�N dN(�)(13.56)

= �(N � 1)!

Z
(�� z)�N�(�)dN(�)

�(N � 1)!

Z
(�� z)�N

�
1� �(�)

�
dN(�).

Thus,

(13.57) ln det(Pin � z) = I(z) + II(z),

where

(13.58) �@Nz I(z) = (N � 1)!

Z
(�� z)�N�(�)dN(�)

(13.59) �@Nz II(z) = (N � 1)!

Z
(�� z)�N

�
1� �(�)

�
dN(�).

Up to a polynomial, we have for =z 6= 0:

(13.60) I(z) =

Z
ln(�� z)�(�)dN(�),

where we use the standard branch of ln with a cut along ]�1, 0[. In particular,

(13.61) <I(z) =
Z

ln |�� z|�(�)dN(�).

In order to estimate II(z), we shall use the rough estimate

(13.62) N(�) = O(h�n�
1
2n),

which is valid uniformly for 0 < h ⌧ 1, � � 1. It follows from (13.62) and an
integration by parts in (13.59), that

(13.63) @Nz II(z) = O(h�n)
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in the domain (13.1). By integration, we see that we can choose II(z) holo-
morphic in this domain such that

(13.64) II(z) = O(h�n).

This will allow us to replace detPin by exp I(z) in the definition of f(z)
in (13.52), without a↵ecting the validity of (13.53).

Before that we will discuss some harmonic majorants of <I(z). Recall that
if ⌦ b C has piecewise smooth boundary and if G = G⌦, K = K⌦ are the
corresponding Dirichlet and Poisson kernels for the Dirichlet problem for the
Laplacien, then by Green’s formula, we have

K(x, y) = @⌫
y

G(x, y),

where ⌫ is the exterior unit normal. This still holds when ⌦ = ⌦r is the
infinite strip {x 2 C; |=x| < r} and we consider the solutions to the Dirichlet
problem that are bounded when the data are bounded. In the case ⌦ = ⌦1 we
have (see for instance [26]) that G(x, y) is of class C1(⌦⇥⌦) away from the
diagonal and there exists C0 > 0 such that for every r > 0 and all ↵,� 2 N,
there exists a constant C = C↵,�,r such that

(13.65)
��r↵

xr�
yG(x, y)

��  C exp� 1

C0
|<x�<y|, when |x� y| > r > 0.

Moreover,

(13.66) Gr⌦(x, y) = G⌦

⇣x
r
,y

r

⌘
, Kr⌦(x, y) =

1

r
K⌦

⇣x
r
,y

r

⌘
.

Consider first the subharmonic function ln |x| on ⌦r and its smallest har-
monic majorant there, given by

�hr = 0, hr |@⌦
r

= ln |x|.
Then,  r := hr � ln |x| � 0 is equal to �2⇡G⌦

r

(x, 0) and we are interested in

fr := �@⌫ r = 2⇡@⌫G⌦
r

(x, 0) = 2⇡K⌦
r

(0, x) =
2⇡

r
K⌦1

⇣
0,

x

r

⌘
=

1

r
f1

⇣x
r

⌘
,

which is a non-negative function defined on the boundary and satisfies

(13.67) @↵x fr = O↵(1)r
�1�|↵| e�

1
C0r

|<x|
.

Also,

(13.68)

Z

@⌦
r

fr|dx| = 2⇡, fr(x̄) = fr(x).

The smallest harmonic majorant in ⌦r of

(13.69) �in := <I(x) =
X

�(�j) ln |z � �j |
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is

(13.70) hr,in(x) =
X

�(�j)hr(x� �j).

The function

(13.71) �r =

(
�in outside ⌦r

hin in ⌦r

is subharmonic, ��r is supported in @⌦r and equal to

(13.72)
X

�(�j)
�
fr(x� �j)�(=x� r) + fr(x� �j)�(=x+ r)

�
.

If 1
2  a < b  2, we get with

(13.73) gr(t) =
1

2⇡

�
fr(t+ ir) + fr(t� ir)

�
=:

1

r
g1

⇣ t
r

⌘
� 0,

that

(13.74)

Z

a<xb
��r(x)L(dx) = 2⇡

Z b

a
gr ⇤ (�dN)(t)dt.

Notice that gr(t) = (1/r)g1(t/r) is an approximation of � and we will

use (13.74) with r = h
2
3 c.

Returning to (13.52), (13.53), we see that the zeros of f in the rectangle
(13.1) will not change if we replace detPin in (13.52) by exp I(z), so we now
redefine f to be

(13.75) f(z) = eI(z) det bB(z),

and notice that (13.53) still holds because of (13.64). Moreover,

(13.76) ln
��f(z)

�� = �in(z) + ln
��det bB(z)

��,

and (13.53) tells us that

(13.77) ln
��f(z)

��  O(h�N )

in the whole rectangle, while (13.51) shows that

(13.78) ln
��f(z)

��  �in(z) +O(h1�n),

in the part of the rectangle where |=z| � h
2
3 c.

Clearly, the whole discussion so far remains valid if we enlarge the rectan-
gle (13.1) by replacing 1

2 by a slightly smaller constant and the bound 2 by a
slightly larger constant. We can find ↵, � with 1

2�↵ ⇣ 1/O(1), ��2 ⇣ 1/O(1)
such that �in � �O(h�N ) for <z = ↵,�, and (13.53) tells us that

(13.79) ln
��f(z)

��  hr(z) +O(h�N ),
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on the same vertical segments, while (13.78) tells us that

(13.80) ln
��f(z)

��  hr(z) +O(h1�n)

on the horizontal parts of the boundary of [↵,�]+ ir[�1, 1]. By the maximum
principle, we get in the latter rectangle

ln
��f(z)

��  eh(z) +O(h1�n),

where eh is the harmonic function on [↵,�] + ir[�1, 1] which is equal to a
constant= O(h�N ) on the vertical parts of the boundary and equal to hr(z)

on the horizontal parts. Using that r is of the order of h
2
3 together with simple

estimates on the Poisson kernel in thin rectangles (see [26], Section 2), we see
that

eh(z)  O(1)h�N exp
⇣
� 1

O(1)r

⌘
+ hr(z)  hr(z) +O(h1�n)

on [12 , 2] + ir[�1, 1] and we get the estimate

ln |f(z)|  hr(z) +O(h1�n)

on the latter rectangle, leading to

(13.81) ln
��f(z)

��  �r(z) +O(h1�n) in the rectangle (13.1).

This estimate together with (13.74) form the main conclusion of this chapter.
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CHAPTER 14

SOME ESTIMATES FOR Pout

In this and the next two chapters we shall construct a suitable perturba-
tion W as in Theorem 2.2 such that we get a lower bound for f(z) in (13.52)
that matches (13.81). Here z is any given point in the set (13.12) and the per-
turbation will depend on that point. As we shall see, this amounts to getting
a good bound on the smallest singular value on bB (cf. (13.47)) or equivalently
on that of Pout, or of Nin(z)�Nout(z).

For µ > 0, let E(µ) ⇢ L2(O) be the spectral subspace associated to all
eigenvalues < µ2 of Pout(z)⇤Pout(z). We shall show that if µ is small enough
(to be specified below) and u 2 E(µ) is normalized, then kukL2(O

h

\O2h) cannot
be too small. When c � 0, we define

Oc =
�
x 2 O; dist(x, @O) > c

 
.

If u 2 E(µ), we have u =
PN

1 ujej , where e1, . . . , eN is an orthonormal
basis of eigenfunctions in E(µ), Pout(z)⇤Pout(z)ej = t2jej , 0  tj < µ, and

��Pout(z)u
��2 =

�
Pout(z)

⇤Pout(z)u |u
�
=

NX

1

|uj |2t2j  µ2
X

|uj |2 = µ2kuk2,

where all norms are in L2 if nothing else is specified. Thus, if u 2 E(µ),
and kuk = 1,

(14.1) Pout(z)u = v, kvk < µ.

By standard elliptic estimates, combined with the dilation x = hy,
hDx

j

= Dy
j

, we have for every fixed ✓ with 0 < ✓ ⌧ 1,

kukH2
h

(O(1+✓)h\O2h/(1+✓))
 C✓

�
kvk+ kukL2(O

h

\O2h)

�
(14.2)

 C✓
�
µ+ kukL2(O

h

\O2h)

�
.



112 CHAPTER 14. SOME ESTIMATES FOR Pout

Let � 2 C1
0 (O(1+✓)h; [0, 1]) be equal to 1 on O3h/2 and satisfy @↵� =

O(h�|↵|), ↵ 2 Nn. Let � = �f be a Lipschitz contour as in and around (5.31)
with ✓ = 1

3⇡. Let Pext be the Dirichlet realization of P on � \ O2h. Then

(14.3) (Pext � z)(1� �)u = (1� �)v � [P,�]u,

where we let u also denote the outgoing extension of u which is well-defined
since u 2 D(Pout(z)) and where v also denotes the 0 extension. Similarly,

(14.4) (Pin � z)�u = �v + [P,�]u.

If V vanishes outside O2h, we know from Chapter 9 (with O there replaced

byO2h) that k(Pext�z)�1kL(L2,L2) = O(h�
2
3 ). More generally, we shall assume

that

(14.5) kV kL1(O\O2h
) ⌧ h

2
3 ,

and we notice that this holds for V = V0 + �⇥q! in Theorem 2.2 if ↵ is large
enough. Then by a simple perturbation argument, the preceding estimate on
the exterior resolvent remains valid and we get from (14.2), (14.3),

(14.6) h
2
3
��(1� �)u

��
L2(O)

 O(1)
�
µ+ kukL2(O

h

\O2h)

�
.

Similarly, by using that k(Pin � z)�1kL(L2,L2) = O(h�
2
3 ), we get

(14.7) h
2
3 k�ukL2(O)  O(1)

�
µ+ kukL2(O

h

\O2h)

�
.

Combining the two estimates and recalling that kuk = 1, we get

(14.8) h
2
3  O(1)

�
µ+ kukL2(O

h

\O2h)

�
,

and if µ ⌧ h
2
3 , for all u 2 E(µ) with kukL2(O) = 1,

(14.9) kukL2(O
h

\O2h) �
h

2
3

O(1)
·

Next we make a remark about the Hs regularity of of elements in E(µ).
Assume that for some fixed s > 1

2n, we have V = V1 + V2

(14.10) kV1kHs

1
+ h�

1
2nkV2kHs

h

 O(1).

When V = V0 + W = V0 + �⇥q! is a potential as in Theorem 2.2, we take
V1 = V0, V2 = W and get (14.10), provided ↵(n, v0, s, ✏, ✓,M, fM) in (2.9)
is large enough (cf. Remark 15.1). So far we have systematically used the
semi-classical Sobolev spaces Hs = Hs

h but in (14.10) we also use the standard
Sobolev space Hs = Hs

1 (with h = 1). Following standard conventions, we let

H�
• (O) = H�

• (Rn)|O, H�
• (O) = {u 2 H�

• (Rn); suppu ⇢ O}.
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If u =
PN

1 ujej 2 E(µ), we have (P ⇤
outPout)ku =

PN
1 t2kj ujej , so

(14.11)
��(P ⇤

outPout)
ku
��  µ2kkuk, k 2 N.

We will assume that µ = O(1) and limit the attention to k in a bounded
interval, so the right hand side of (14.11) will be O(kuk). We study a priori

estimates in the interior. Let ⌦2 ⇢ ⌦1 ⇢ O be open with dist(⌦2, {⌦1) � h/C.
If Poutu = v, u, v 2 H�

h (⌦1), 0  �  s, we can write

�h2�u = v + (z � V )u =: w,

where

kwkH�

h

(⌦1)  O(1)
�
kvkH�

h

(⌦1) + kukH�

h

(⌦1)

�

and standard a priori estimates for �� (after the dilation x = hy) give

(14.12) kukH�+2
h

(⌦2)
 O(1)

�
kvkH�

h

(⌦1) + kukH�

h

(⌦1)

�
.

If s < � < s+ 2, we only get

(14.13) kukHs+2
h

(⌦2)
 O(1)

�
kvkH�

h

(⌦1) + kukH�

h

(⌦1)

�
.

The same a priori estimate holds for P ⇤
out.

We shall now use these estimates to study elements of E(µ) and first assume
for simplicity that (14.10) holds for all s > 0. From the fact that

(P ⇤
outPout)

ku = Ok(1)kuk
in H0(O) for all k 2 N we first infer by integration by parts, that

Pout(P
⇤
outPout)

k�1u = O(1)

in H0(O). Using the a priori estimate for P ⇤
out, we get

��Pout(P
⇤
outPout)

k�1u
��
H2(O

h/C

)

 O(1)
�
k(P ⇤

outPout)
kukH0(O) + kPout(P

⇤
outPout)

k�1ukH0(O)

�
 O(1),

and using the one for Pout, we get
��(P ⇤

outPout)
k�1u

��
H2(O

h/C

)

 O(1)
�
kPout(P

⇤
outPout)

kukH0(O) + k(P ⇤
outPout)

k�1ukH0(O)

�
 O(1).

Thus for all k 2 N,
k(P ⇤

outPout)
kukH2(O

h/C

) + kPout(P
⇤
outPout)

kukH2(O
h/C

)  O(1).

Here we use again the a priori estimates for P ⇤
out and Pout and get that for

every k 2 N,
��(P ⇤

outPout)
ku
��
H4(O2h/C)

+
��Pout(P

⇤
outPout)

ku
��
H4(O2h/C)

 O(1).
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Iterating this argument, we get for every j 2 N that for every k 2 N,
��(P ⇤

outPout)
ku
��
H2j(O2jh/C)

+
��Pout(P

⇤
outPout)

ku
��
H2j(O2jh/C)

 O(1).

Now if we make the assumption (14.10) for a fixed s > 1
2n, we see that

the above iteration works as long as 2j  s + 2, then if this last j is strictly
less than 1

2(s + 2), we can make one more iteration and reach the degree
of regularity s + 2. Hence the final conclusion is that if µ = O(1) and we
assume (14.10) for a fixed s > 1

2n, then for every C > 0, we have

(14.14)
��(P ⇤

outPout)
ku
��
Hs+2(O

h/C

)
+
��Pout(P

⇤
outPout)

ku
��
Hs+2(O

h/C

)
 O(1).

We end this chapter with some estimates relating the small singular values
of Pout(z) to those of Pout and when z belongs to the set (13.12), to those of
Nin �Nout and of bB(z) = 1 + bC(z) in (13.36) and (13.37).

Recall that Pout(z) is bijective precisely when Pout(z) is, and when so is the
case it easy to check that

(14.15) Pout(z)
�1 =

�
Pout(z)

�1 (1� Pout(z)
�1(P � z))h�

1
2 bK

�
,

where we recall that bK = O(h
1
2 ) : H

1
2 ! H2 is a right inverse of B.

Recall that when A : H1 ! H2 is a bounded operator between two Hilbert
spaces, then the singular values s1(A) � s2(A) � · · · are defined by the fact
that sj(A)2 is the decreasing sequence formed first by all discrete eigenvalues
of A⇤A above the essential spectrum and then (when H1 is infinite dimensional
only) by an infinite repetition of sup�ess(A⇤A). It is well known and easy to
see that the non vanishing singular values of A and of A⇤ are the same.

We have the Ky Fan inequalities

(14.16)

8
<

:
sn+k�1(A+B)  sn(A) + sk(B),

sn+k�1(BA)  sn(A)sk(B),

in the cases when B : H1 ! H2 and H2 ! H3 respectively.

Applying this to (14.15), we get

(14.17) sj
�
Pout(z)

�1
�
� sj

�
Pout(z)

�1
�
.

If ⇧1 : H0 ⇥H
1
2 ! H0, ⇧2 : H0 ⇥H

1
2 ! H

1
2 are the natural projections (of

norm 1), we can rewrite (14.15) as

Pout(z)
�1 = Pout(z)

�1⇧1 + (1� Pout(z)
�1(P � z))h�

1
2 bK⇧2

= Pout(z)
�1(⇧1 � (P � z)h�

1
2 bK⇧2) + h�

1
2 bK⇧2,
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which leads to

(14.18) sj
�
Pout(z)

�1
�
 O(1)

�
1 + sj

�
Pout(z)

�1
��
.

We now restrict z to (13.12) and consider (7.19) which can be written

(14.19) Pout(z)
�1 = Pin(z)

�1
⇣ 1 0
0 (Nin �Next)�1

⌘⇣ 1 0

�h
1
2BGin 1

⌘

and also

(14.20)
⇣ 1 0
0 (Nin �Next)�1

⌘
= Pin(z)Pout(z)

�1
⇣ 1 0

h
1
2BGin 1

⌘
.

Here the operator norms of P�1
in and h

1
2BGin are O(h�

2
3 ). From (14.19) we

get

(14.21) sj
�
Pout(z)

�1
�
 O(h�

4
3 )
�
1 + sj

�
(Nin �Next)

�1
��
,

while (14.20) leads to

(14.22) sj((Nin �Next)
�1)  O(h�

2
3 )sj

�
Pout(z)

�1
�
.

Finally, from (13.36), (13.37) and the uniform boundedness of bA(z) and its
inverse, we get

(14.23) sj((Nin �Next)
�1) ⇣ sj( bB(z)�1) = sj

��
1 + bC(z)

��1�
.

When A : H1 ! H2 is a Fredholm operator of index 0, we let t21  t22  · · ·
with tj � 0 describe the lower part of the spectrum of A⇤A in analogy with s2j .

Again tj(A) = tj(A⇤) and when A is bijective we have tj(A) = 1/sj(A�1).

Let N be the number of singular values 0  t1  · · ·  tN of 1 + bC(z) that
are  1

2 . If e1, . . . , eN is a corresponding orthonormal family of eigenfunc-

tions of (1 + bC(z))⇤(1 + bC(z)), then k(1 + bC(z))uk  1
2kuk and consequently

k bC(z)uk � 1
2kuk, for all u 2 Ce1� ...�CeN . By the mini-max characterization

of singular values, we get sN ( bC(z)) � 1
2 and using that the trace class norm

of bC(z) is O(h1�n), we conclude that N = O(h1�n). Combining this with
(14.23), (14.21), (14.17), we see that there exists a constant C > 0 such that

(14.24) tj
�
Pout(z)

�
� h

4
3 /C, for j � Ch1�n.
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CHAPTER 15

PERTURBATION MATRICES AND THEIR
SINGULAR VALUES

We shall use a general estimate from [25]. Let e1, . . . , eN 2 C0(⌦) \
L2(⌦), where ⌦ ⇢ Rn is open. Let E⌦ = ((ej |ek)L2(⌦))1j,kN be the cor-
responding Gramian and let 0  ✏1  · · ·  ✏N be its eigenvalues. Then
(see [25], Prop. 5.5), there exists a1, . . . , aN 2 ⌦ such that the singular values
s1 � · · · � sN � 0 of the N ⇥N matrix M = M�

a

, given by

Mj,k =
NX

⌫=1

ej(a⌫)ek(a⌫) =

Z
�a(x)ej(x)ek(x),

satisfy the estimates,

s1 �
(E1 · · ·EN )

1
N

vol (⌦)
and sk � s1

⇣ NY

1

⇣ Ej

s1vol (⌦)

⌘⌘ 1
N�k+1

.

Here Ej = ✏1 + · · ·+ ✏N+1�j , and we write �a =
P
�(·� a⌫).

Let be1, . . . , beN be an orthonormal basis in E(µ), µ ⌧ h
2
3 , and choose

⌦ = Oh \ O2h, ej = bej |⌦. Define E⌦ as above and let a1, . . . , aN 2 ⌦ be
a corresponding set of points. The eigenvalues ✏j and the singular values
sj = sj(M�

a

) remain unchanged if we replace be1, . . . , bej by another orthonor-
mal basis in E(µ).

Applying (14.9) to u =
P

ujbej , when ~u := (u1, . . . , uN )t is normalized in `2,

we see that E⌦(~u | ~u) � h
4
3 /O(1), so Ej � (N � j + 1)h

4
3 /O(1). Thus, for a

suitable choice of a1, . . . , aN 2 ⌦, we get after a simple calculation:

(15.1) s1 �
(N !)

1
N

hO(1)
h

4
3 ,

(15.2) sk � s
� k�1

N�k+1
1 h

1
3

N

N�k+1 (N !)
1

N�k+1C� N

N�k+1 .
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We will also need an upper bound on s1 = s1(M�
a

). Let s > 1
2n and adopt

the assumption (14.10). If ~u = (u1, . . . , uN )t, ~v = (v1, . . . , vN )t are normal-
ized, (14.14) with k = 0 implies that kukHs

h

(O
h/C

), kvkHs

h

(O
h/C

) are O(1) when

u =
P

ujbej , v =
P

vjbej and also from Proposition 6.1 that uv = O(h�
1
2n)

in Hs
h(O). Furthermore, we know from [25] that k�akH�s

h

(O
h/C

) = O(Nh�
1
2n).

Hence,

hM�
a

u, vi =
Z
�auvdx = O(1)k�akH�s

h

(O
h/C

)kuvkHs

h

(O
h/C

)  O(1)Nh�n,

and varying u, v we conclude that

(15.3) s1(M�
a

) = kM�
a

k  O(1)Nh�n.

Using this in (15.2) gives

(15.4) sk(M�
a

) � C�N+k�1
N�k+1 e�

N

N�k+1Nh
1
3N+n(k�1)

N�k+1 .

If we restrict k to the range 1  k  ✓N for some 0 < ✓ < 1, we get

(15.5) sk(M�
a

) � C� 1+✓
1�✓ e�

1
1�✓Nh

1
3+n✓

1�✓ .

Recall the form of the perturbed operator in (2.5), (2.6), (2.7), where ⇥
in C1(O) is also described. Clearly, ⇥ ⇣ e⇥(h) := hv0 in Oh \ O2h. The
potential �a/⇥ satisfies

(15.6) k⇥�1�akH�s

h

(O)  O(1)
N

e⇥(h)h
1
2n

·

As in [25], (6.15)–(6.18), we get the decomposition

(15.7) ⇥�1�a = q + r, q =
X

µ
k

L

↵k✏k,

where

(15.8) kqkH�s

h

(O) 
CN

e⇥(h)h
1
2n

,

(15.9) krkH�s

h

(O)  O(1)L�(s� 1
2n�✏) N

e⇥(h)h
1
2n

,

(15.10) k↵k`2  C
L

1
2n+✏N

e⇥(h)h
1
2n

·
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We also denote by ⇥ the zero extension of ⇥ to all of Rn. Under the
assumption (2.6), we have for |↵| = v0 + 1,

(15.11) D↵⇥ = f↵ + g↵,

where f↵ 2 C1(O)1O and g↵ is a smooth boundary layer (2 C1(@O)⌦�(!(x))
where ! 2 C1(Rn;R), !�1(0) = @O, d! 6= 0 on @O). Using the strict

convexity and stationary phase, we see that bg↵(⇠) = O(h⇠i� 1
2 (n�1)) and by

integration by parts, it follows that

b⇥(⇠) = O(1)h⇠i�v0�1� 1
2 (n�1).

Here the hat indicates the ordinary (h-independent) Fourier transform. In the
following, we shall assume that

(15.12) 1
2
n < s < v0 +

1
2
,

and then

(15.13) ⇥ 2 Hs
1(O).

From [27], we recall that if s > 1
2n, u 2 Hs(Rn), v 2 H�(Rn) for some

� 2 [�s, s], then uv 2 H�(Rn) and we have

kuvkH�

h

 O(1)kukHs

1
· kvkH�

h

.

From (15.7)–(15.9), we now deduce that

(15.14) �a = ⇥q + er, er = ⇥r,

where

(15.15) kerkH�s

h

(O)  O(1)L�(s� 1
2n�✏) N

e⇥(h)h
1
2n

,

(15.16) k⇥qkH�s

h

(O) 
CN

e⇥(h)h
1
2n

·

We also need to control the Hs
h(O)-norm of ⇥q. Recall from [25], [27] that

kqk2Hs

h

(O)  O(1)
X

µ
k

L

|↵k|2hµki2s  O(1)L2sk↵k2`2 ,

so

(15.17) k⇥qkHs

h

(O)  O(1)kqkHs

h

(O)  O(1)L
1
2n+s+✏ N

e⇥(h)h
1
2n

,

and in particular,

(15.18) k⇥qkL1(O)  O(h�
1
2n)k⇥qkHs

h

(O)  O(1)L
1
2n+s+✏ N

e⇥(h)hn
·
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From (15.15) we deduce (as above for M�
a

) that

(15.19) kMerk  O(1)kerkH�s

h

(O)h
� 1

2n  O(1)L�(s� 1
2n�✏) N

e⇥(h)hn
,

and returning to the decomposition (15.14) and the lower bound (15.5), we
get for 1  k  ✓N , 0 < ✓ < 1:

(15.20) sk(M⇥q) � C� 1+✓
1�✓ e�

1
1�✓Nh

1
3+n✓

1�✓ �O(1)
N

Ls� 1
2n�✏e⇥(h)hn

·

The lower bounds on L will imply that the first term to the right dominates
over the second.

Remark 15.1. — For a general perturbation W = �⇥q! as in Theorem 2.2,
the discussion above shows that

(15.21) kWkHes
h

(Rn)  O(�)Lesk↵k`2  O(�)LesR,

provided that 1
2n < es < v0 +

1
2 .
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To start with we choose z in the full rectangle (13.1) and later on we will

restrict the attention to ch
2
3 < |=z| < c0h

2
3 . We recall that Pout(z) is an elliptic

boundary value problem in the semi-classical sense in the region |⇠0| � 1.
It follows that

(16.1) kukH2  O(1)(k(P � z)uk+ kuk)

for u 2 D(Pout(z)). From this estimate we see that the small singular values
t1(Pout(z))  t2(Pout(z))  · · · are of the same order of magnitude as the
small singular values etj in the L2-sense defined as the square roots of the
small eigenvalues of Pout(z)⇤Pout(z) where Pout(z)⇤ is the adjoint of Pout(z) as
a closed densely defined operator: L2(O) ! L2(O). This follows from (16.1)
and the mini-max characterizations of tj and of etj . In this section it will be
convenient to work with the etj and we shall drop the tildes in order to simplify
the notation.

Recall that e⇥(h) = hv0 . Let ⌧0 2 ]0, h
4
3 /O(1)] and let N be determined by

(16.2) 0  t1(Pout)  · · ·  tN (Pout) < ⌧0  tN+1(Pout),

so that N  O(h1�n) in view of (14.24). The basic iteration step (cf. Prop. 7.2
in [25]) is

Proposition 16.1. — Let 0 < ✓ < 1
2 be the parameter in (2.8), let e✓ 2 ]0, ✓[

and  > 0. If N is su�ciently large, depending on ✓, e✓ only, there exists an

admissible potential q as in (2.7) with L = Lmin and R = Rmin (as introduced

in and after (2.8)), such that if

(16.3) P� = P � �⇥q, � = C�1h↵⌧0,
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C � 1, ↵ � ↵(n, v0, s, ✏, ✓, e✓,) large enough, then

(16.4) t⌫(P�,out) � t⌫(Pout)�O(1)�Nh�( 12n+s+✏)Mmin�v0�n, ⌫ � N + 1,

(16.5) t⌫(P�,out) � ⌧0h
N2 ,

⇥
(1� e✓)N

⇤
+ 1  ⌫  N.

Here we put N2 = ↵+ (13 +2n✓)/(1� 2✓) +  and let [a] = max(Z\ ]�1, a])
denote the integer part of a.

When N = O(1) we have the same result, provided that we replace (16.5)
by the estimate tN (P�,out) � ⌧0h

N2.

Proof. — The estimate (16.4) follows from the mini-max characterization of
singular values, which gives

(16.6) t⌫(P�,out) � t⌫(Pout)� �k⇥qkL1 ,

to which we can apply (15.18).

Let e1, . . . , eN 2 L2(O) be an orthonormal family of eigenfunctions of
P ⇤
outPout, corresponding to the eigenvalues t21, . . . , t

2
N . Using the symmetry

of Pout, established in Proposition 7.4 we see as in [25] that a corresponding
family of eigenfunctions of PoutP

⇤
out is given by

fj = �ej ,

where � denotes the antilinear operator of complex conjugation. The fj form
an orthonormal family corresponding to

�(PoutP
⇤
out) \ [0, ⌧20 [ = {t21, . . . , t2N}.

Let EN =
LN

1 Cej , FN =
LN

1 Cfj . Then Pout : EN ! FN and P ⇤
out :

FN ! EN have the same singular values t1, . . . , tN . Define R+ : L2(O) ! CN ,
R� : CN ! L2(O), by

R+u(j) = (u |ej), R�u� =
NX

1

u�(j)fj .

Then

(16.7) P =
⇣Pout R�
R+ 0

⌘
: D(Pout)⇥ CN ! L2 ⇥ CN

has the bounded inverse

(16.8) E =
⇣ E E+

E� E�+

⌘
,
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where

kEk  1

tN+1
 1

⌧0
, E+v+ =

NX

1

v+(j)ej , E�v(j) = (v|fj),(16.9)

and E�+ has the singular values tj(E�+) = tj(Pout) or equivalently,
sj(E�+) = tN+1�j(Pout).

When N is large, we consider two cases:

. Case 1. — sj(E�+) � ⌧0h
N2 for 1  j  N � [(1 � e✓)N ]. We get the

proposition with q = 0, P� = P .

. Case 2. — sj(E�+) < ⌧0h
N2 for some j  N � [(1 � e✓)N ]. Put P� =

P + �⇥q with q as in Chapter 15. From (16.3) we deduce that

(16.10) �
CN

e⇥(h)hn
L

1
2n+s+✏  ⌧0

2
,

and then by (15.18) that �k⇥qkL1  ⌧0/2. We can therefore replace Pout

by P�,out in (16.7) and still get a bijective operator

P� =
⇣P�,out R�

R+ 0

⌘

with the inverse

E� =
⇣ E� E�

+

E�� E��+

⌘
.

As in [25], we have

(16.11)

8
>>>>><

>>>>>:

E��+ = E�+ + �E�⇥qE+ + �2E�⇥qE⇥qE+ + · · · ,
E� = E +

P1
1 �kE(⇥qE)k,

E�
+ = E+ +

P1
1 �k(E⇥q)kE+,

E�� = E� +
P1

1 �kE�(⇥qE)k.

Here kE±k  1, kEk  1/⌧0 and in view of (16.10), we have �k⇥qkL1  1
2⌧0,

leading to:
(16.12)8
>>><

>>>:

E� = E +O
⇣ 1

⌧0

�k⇥qkL1

⌧0

⌘
, E�

+ = E+ +O
⇣�k⇥qkL1

⌧0

⌘
,

E�
� = E� +O

⇣�k⇥qkL1

⌧0

⌘
, E�

�+ = E�+ + �E�⇥qE+ +O
⇣(�k⇥qkL1)2

⌧0

⌘
.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2014



124 CHAPTER 16. END OF THE CONSTRUCTION

The leading perturbation in E��+ is �M = �E�⇥qE+, where M = M⇥q :
CN ! CN has the matrix

(16.13) Mj,k = (⇥qek |fj) =
Z

⇥qekejdx.

From the Ky Fan inequalities, we get

�sk+`�1(M⇥q)  sk(E
�
�+) + s`(E�+) +O

⇣(�k⇥qkL1)2

⌧0

⌘
,

which we write

(16.14) sk(E
�
�+) � �sk+`�1(M⇥q)� s`(E�+)�O

⇣(�k⇥qkL1)2

⌧0

⌘
.

Let ` = N � [(1� e✓)N ] so that s`(E�+) < ⌧0h
N2 and let k  N � [(1� e✓)N ]

so that

k + `� 1  2
�
N � [(1� e✓)N ]

�
� 1  2✓N,

for N large enough. Here, 2✓ < 1, so we can apply (15.20) with ✓ there
replaced by 2✓ and get a q as in the proposition such that

(16.15) sk+`�1(M⇥q) �
N

C(✓)
h

1
3+2n✓

1�2✓ �O(1)
N

Ls� 1
2n�✏e⇥(h)hn

·

Then (16.14) gives

sk(E
�
�+) � �N

✓
h

1
3+2n✓

1�2✓

C(✓)
� O(1)

Ls� 1
2n�✏e⇥(h)hn

◆
(16.16)

�⌧0hN2 �O
⇣(�k⇥qkL1)2

⌧0

⌘
.

Here we notice that with our choice of L = Lmin large enough, we have

O(1)

Ls� 1
2n�✏e⇥(h)hn

 h
1
3+2n✓

1�2✓

2C(✓)
·

Thus for k  N � [(1� e✓)N ]:

sk(E
�
�+) �

�N

2C(✓)
h

1
3+2n✓

1�2✓ � ⌧0h
N2 �O

⇣(�k⇥qkL1)2

⌧0

⌘
,
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and using (15.18):

sk(E
�
�+) � �N

⇣ 1

2C(✓)
h

1
3+2n✓

1�2✓ �O(1)
�

N⌧0
k⇥qk2L1

⌘
� ⌧0h

N2(16.17)

� �N
⇣ 1

2C(✓)
h

1
3+2n✓

1�2✓ � O(1)�N

⌧0
h�2( 12n+s+✏)M�2v0�2n

⌘
� ⌧0h

N2

� �N
⇣ 1

2C(✓)
h

1
3+2n✓

1�2✓ � O(1)�

⌧0
h1�3n�2v0�2( 12n+s+✏)M

⌘
� ⌧0h

N2

� �N

4C(✓)
h

1
3+2n✓

1�2✓ � ⌧0h
N2 ,

where the last estimate follows from the choice of � in (16.3) and we recall
that ↵ is large enough.

Here by the choice of N2 the last term is subdominant when h > 0 is small
enough and we get

(16.18) sk(E
�
�+) � ⌧0h

N2 , for 1  k  N �
⇥
(1� e✓)N

⇤
.

After an arbitrarily small abstract perturbation of P�,out, we may assume
that this operator is bijective, and we can then write the standard identity

P�1
�,out = E� � E�

+(E
�
�+)

�1E�
�

and apply the Ky Fan inequalities to get for 1 + [(1� e✓)N ]  ⌫  N :

s⌫(P
�1
�,out)  s1(E

�) + kE�
+k · kE�

�ks⌫
�
(E�

�+)
�1
�
 O(1)

1

hN2⌧0
,

since s⌫((E��+)
�1) = 1/sN+1�⌫(E��+) and 1  N +1� ⌫  N � [(1� e✓)N ], or

in other terms,

t⌫(P�,out) �
⌧0h

N2

O(1)
·

This is (16.5) apart from the factor 1/O(1), which can be eliminated by in-
creasing N2 slightly.

WhenN = O(1) we consider the cases s1(E�+) � ⌧0h
N2 and s1(E�+) < ⌧0h

N2 .
In the first case we take the perturbation 0 as before. In the second case, we
repeat the proof above with k = ` = 1 and reach first (16.18) with k = 1 and
finally (16.5) with ⌫ = N .

Remark 16.2. — 1) In the proof we have seen that �k⇥qkL1  1
2⌧0 and

(16.6) shows that

t⌫(P�,out) � t⌫(Pout)�
⌧0
2

� ⌧0
2
, ⌫ � N + 1.
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2) From (16.10), (15.17), we get

k�⇥qkHs

h

 O(1)⌧0h
1
2n.

3) Let es > 1
2n + 2N , where N is the smallest integer in ]12(n� 1),+1[. If

we choose ↵ in (2.9) su�ciently large, then

k�⇥qkHes
h

 O(h
1
2n).

We see that the perturbed operator P� satisfies the general assumptions of
our discussion, including (11.54), (13.31), (14.10) for W = �⇥q.

The last remark shows that we can apply Proposition 16.1 to P�,out with ⌧0
replaced by ⌧0hN2 and N replaced by an Nnew  [(1 � e✓)N ]. The procedure
can be iterated at most O(1) ln 1

h times until we get a perturbation Pfinal ,�,out

with t1(Pfinal ,�,out) � ⌧0h
O(1) ln 1

h . Thus in the end we get:

Proposition 16.3. — Let 0 < ✓ < 1
2 be the parameter in (2.8) and let ⌧0

in ]0, h
4
3 ]. Then there exists an admissible potential q as in (2.7) with L = Lmin

and R = Rmin (as introduced in and after (2.8)) such that if

(16.19) P� = P + �⇥q, � = C�1h↵⌧0,

C � 1, ↵ � ↵(n, v0, s, ✏, ✓) large enough, then

(16.20) t1(P�,out) � ⌧0h
O(1) ln 1

h .

From (14.22) we get for the special perturbation above

(16.21) s1
�
(Nin �Next)

�1
�
 O(1)

h
2
3 t1(Pout)

 O(1)

⌧0h
O(1) ln 1

h

,

and (14.23) then gives

(16.22) s1
�
(1 + bC(z))�1

�
 O(1)

⌧0h
O(1) ln 1

h

·

Recall from Proposition 13.3 and (13.36)–(13.37) that

(16.23) bC(z) = O(1) : H
3
2 �! H

3
2 , |=z| � h

2
3 c,

in addition to the fact that the trace class norm of the same operator

is O(h1�n). We now work with H
3
2 (@O) as the underlying Hilbert space and

let bC⇤ denote the adjoint of bC. Consider,

(16.24)
��det(1 + bC)

��2 = det(1 + bC⇤)(1 + bC) = det(1 +D),
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where D = bC + bC⇤ + bC⇤ bC is self-adjoint, O(1) in operator norm and O(h1�n)
in trace class norm. Let �1, �2, . . . denote the non-vanishing eigenvalues of D,
so that

(16.25) 1 + �j �
⌧20

O(1)
h2O(1) ln 1

n

by (16.22) (which is a bound on the norm of (1 + bC)�1). We also know thatP
|�j | = O(h1�n), so there are at most O(h1�n) values j for which |�j | � 1

2 .
Thus we get from (16.24):

��det(1 + bC)
��2 =

Y
(1 + �j) =

Y

j; |�
j

|� 1
2

(1 + �j)
Y

j; |�
j

|< 1
2

(1 + �j)

�
⇣ ⌧20
O(1)

h2O(1) ln 1
h

⌘O(h1�n) Y

j; |�
j

| 1
2

e�O(1)|�
j

|.

Since
P

|�j | = O(h1�n), we get

(16.26) ln
��det(1 + bC)

�� � �O(h1�n)
⇣⇣

ln
1

h

⌘2
+ ln

1

⌧0

⌘
.

Now return to the function f(z) that was (re)defined in (13.75). From
(13.76), (16.26) and (13.78) we get for our special perturbation V = V0 +W

(where W depends on z with ch
2
3  |=z|  c0h

2
3 ):

(16.27) �in(z)�O(h1�n)
⇣⇣

ln
1

h

⌘2
+ ln

1

⌧0
)  ln

��f(z)
��  �in(z) +O(h1�n).

Here the upper bound is valid for all perturbations V of V0 in our class in-

dependently of z with |=z| ⇣ h
2
3 /C, while the lower bound is valid for our

special z-dependent perturbation.
�in (cf. (13.69)) is defined in terms of the interior Dirichlet problem for the

perturbed potential V0 + W where W also depends on z, and we would like
to replace this function by one which is independent of the perturbation W .
To emphasize the presence of the perturbation we write

��in(z) =
X

�(��j) ln |z � ��j |

for the function in (16.27), and

�0in(z) =
X

�(�0j ) ln |z � �0j |

for the corresponding function, associated to the unperturbed operator P in
0 .

From the mini-max principle, we get

|��j � �0j |  kWk1.
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For |=z| � r, 0 < r  1, we see that
���
@

@�

�
�(�) ln |z � �|

����  O(
1

r
),

so ���(��j) ln |z � ��j |� �(�0j ) ln |z � �0j |
��  O(1)

kWk1
r

·

The number of eigenvalues of P �
in and of P 0

in in supp� is O(h�n) and it follows
that

|��in(z)� �0in(z)|  O(1)
kWk1
rhn

·

Here we take r ⇣ h
2
3 as in (16.27). From the second part of Remark 16.2 we

know that W = �⇥q satisfies

kWk1  O(1)h�
1
2nkWkHs

h

 O(1)⌧0

and thus ����in(z)� �0in(z)
��  O(1)⌧0h

� 2
3�n.

In Proposition 16.3 we have assumed that 0 < ⌧0  h
4
3 . We now strengthen

that assumption to

(16.28) ⌧0 2 ]0, h
5
3 ].

Then,

(16.29)
����in(z)� �0in(z)

��  O(1)h1�n

and we obtain

Proposition 16.4. — In (16.27) we can replace �in = ��in by the function

�0in, defined for the unperturbed operator P 0
in as in (13.69).
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Let �0in be defined in (13.69) with respect to the unperturbated operator

P 0
in. With r = 1

4h
2
3 c, let h0 = h0r be the harmonic majorant in ⌦r and define

�0
r = �0 as in (13.71). Recall that f is defined in (13.75) (for the perturbed

operator P�). Since ��in��0in = O(h1�n) by (16.29), we have the same estimate
for hr � h0r and hence for �r � �0

r . Then by (13.81) we conclude that

(17.1) ln
��f(z)

��  �0
r(z) +O(h1�n) in the rectangle (13.1).

For each z as in (13.12) we have constructed a perturbation W = �⇥q as in
and after (2.8) with L = Lmin, R = Rmin such that (cf. Proposition 16.4)

(17.2) �0
r �O(h1�n)

⇣⇣
ln

1

h

⌘2
+ ln

1

⌧0

⌘
 ln

��f(z)
��.

Let

(17.3) ✏0(h) = Ch
⇣⇣

ln
1

h

⌘2
+ ln

1

⌧0

⌘

so that

(17.4) ln
��f(z)

��  �0
r(z) + h�n✏0(h)

for all z in the rectangle (13.1) and so that for every z as in (13.12), there is
a perturbation as in (17.2) such that

(17.5) ln
��f(z)

�� � �0
r � h�n✏0(h).

If we fix such a value of z and work in the ↵-variables, we are in the same
situation as in Section 8 in [25] and we can apply Proposition 8.2 and Re-
mark 8.3 of that paper to obtain
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Proposition 17.1. — Let ✏ > 0 be small enough so that ✏ exp(O(✏0)h�n)  1.
For each z as in (13.12), we have

(17.6) P
���f(z)

��  e�
0
r✏
�
 O(1)

✏0(h)

hn+N6
exp

⇣ hn

O(1)✏0(h)
ln ✏

⌘
.

Here N6 = max(N3, N5), where N3 = n(M + 1), N5 = N4 + fM (cf. (2.11)).

If we write ✏ = e�e✏/hn

, then the condition on ✏ is fulfilled when

(17.7) e✏ � Const. ✏0

and (17.6) becomes

(17.8) P
���f(z)

��  e�
0
r

(z)�e✏/hn

�
 O(1)

✏0(h)

hn+N6
exp

⇣
� e✏

O(1)✏0(h)

⌘
.

Let 1
2  a < b  2 and put � = [a, b] + ih

2
3 c[�1, 1], r = 1

4h
2
3 c. We shall

apply Theorem 1.2 in [26] to the function u = f , with h there replaced by hn

and with � = hn�r. Let

⇢(t) = max
�
4ch

2
3 � 1

2(t� a), 12h
2
3 c, 4ch

2
3 � 1

2(b� t)
�
, a  t  b,

and define the function er : @� ! ]0,1[ by

er(z) = ⇢(<t).

Then er has Lipschitz modulus  1
2 and this will be our function “r” in [26].

Choose points z01 , . . . , z
0
N 2 @� as in the introduction of [26]. This can be done

in a such a way that |=z0j | = h
2
3 c for all j. Moreover, we see that N ⇣ h�

2
3

and further ��r = 0 in D(z0j , r(z
0
j )) except for at most O(1) values of j . Let

ezj 2 D(z0j , r(z
0
j )/(2C1)) be as in Theorem 1.2 in [26], where we recall that

these points depend on �r,�, er but not on the function f . Moreover we notice
that C1 can be chosen arbitrarily large. Then according to (17.8) we have

(17.9)
��f(ezj)

�� � e�r

(ez
j

)�e✏/hn

, j = 1, 2, . . . , N

with probability

(17.10) � 1�O(1)
N✏0(h)

hn+N6
e
� e✏

O(1)✏0(h) = 1�O(1)
✏0(h)

hn+N6+
2
3

e
� e✏

O(1)✏0(h) .

Here we recall that (17.7) holds and that |f |  e�r

+e✏/hn

in a neighborhood
of �. Theorem 1.2 in [26] then shows that with �(P�) denoting the set of
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resonances of P�,
���#

�
�(P�) \

�
[a, b] + ih

2
3 c[�1, 0]

��
� 1

2⇡

Z

[a,b]+ih
2
3 c[�1,1]

��0
rL(dz)

���(17.11)

 C2

⇣ X

w=a,b

Z

[w�Ch
2
3 ,w+Ch

2
3 ]+ih

2
3 c[�1,1]

��0
rL(dz) + h�n

NX

1

e✏
⌘
,

with a probability as in (17.10). Here we assume for simplicity that c ⌧ c0,
otherwise we have to slightly modify the choice of ⇢, r, z0j above.

Now recall (13.74) where gr(t) = r�1g1(t/r), 0  g1 2 S(R),
R
g1dt = 1.

With N0 denoting the eigenvalue counting function for P 0
in, we get with prob-

ability as in (17.10),

#
���
�
�(P�) \

�
[a, b] + ih

2
3 c[�1, 0]

��
�
Z b

a
gr ⇤ (�dN0)(t)dt

���(17.12)

 C2

⇣ X

w=a,b

Z w+Ch
2
3

w�Ch
2
3

gr ⇤ (�dN0)(t)dt+O(h�
2
3�ne✏ )

⌘
.

This is a slightly stronger version of the main result (2.16) as we shall see
next. Consider

J :=

Z b

a
gr ⇤ (�dN0)(t)dt =

Z b

a

Z

R
gr(t� s)�(s)dN0(s)dt,

where we recall that r = 1
4h

2
3 c. We split the integral into I + II, where I is

obtained by retricting the s integration to the interval [a � ⇢, b + ⇢] and II is

obtained from integration in s over R \ [a� ⇢, b+ ⇢]. Here we take ⇢ = h��+
2
3 ,

where � > 0 can be arbitrarily small but independent of h.

Carrying out first the t integration, we see that

I 
Z

[a�⇢,b+⇢]
�(s)dN0(s) = N0(b+ ⇢)�N0(a� ⇢).

As for II, we have uniformly for t 2 [a, b] that
Z

R\[a�⇢,b+⇢]
gr(t� s)�(s)dN(s) 

Z

|t�s|�⇢
1

r
g1

⇣ t� s

r

⌘
�(s)dN(s) = O(h1),

since ⇢/r � 1
4h

��c so that g1((t � s)/r)/r = O(h1) and
R
�(s)dN(s) =

O(h�n). Thus,

J  N0(b+ ⇢)�N0(a� ⇢) +O(h1).
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To get a corresponding lower bound, assume b�a � 2⇢ (in order to exclude
a trivial case), and write

J �
Z b

a

Z b�⇢

a+⇢
gr(t� s)�(s)dN0(s)dt.

For a+ ⇢  s  b� ⇢, we have 1 �
R b
a gr(t� s)dt � 1�O(h1), so

J �
Z b�⇢

a+⇢

�
1�O(h1)

�
dN0(s)

�
�
1�O(h1)

��
N0(b� ⇢)�N0(a+ ⇢)

�

� N0(b� ⇢)�N0(a+ ⇢)�O(h1).

In conclusion, for r = 1
4h

2
3 c and⇢ = h��+

2
3 , we get from (17.12),

N0(b� ⇢)�N0(a+ ⇢)�O(h1)(17.13)


Z b

a
gr ⇤ (�dN0)(t)dt  N0(b+ ⇢)�N0(a� ⇢) +O(h1).

Applying this to (17.12), we get with a probability as in (17.10)
���#

�
�(P�) \

�
[a, b] + ih

2
3 c[�1, 0]

��
�
�
N0(b)�N0(a)

����(17.14)

 O(1)
⇣ X

w=a,b

�
N0(w + ⇢)�N0(w � ⇢)

�
+ h�

2
3�ne✏

⌘
.

This concludes the proof of Theorem 2.2.

Proof of Proposition 2.4. — Let V0 be as in Theorem 2.2 and let W0 satisfy
the assumptions of the proposition. Our unperturbed operator is now

(17.15) P0 = �h2�+ V0 +W0 = P V0+W0 .

rather than the right hand side of (2.3) that we now denote by P 0
0 . The proof

will consist in checking the proof of Theorem 2.2 with this new operator P0.
Nothing changes until Chapter 11. Here Proposition 11.5 can be used in-

stead of Proposition 11.4 to see that the conclusion of Proposition 11.1 is valid
for (the new) unperturbed operator P0 as well as for the perturbed operator
P V in (12.2), where now V = V0 +W0 +W and as before W = O(h) in L1.

The discussion in Chapter 12 remains valid.
In Chapter 13 the first change appears after (13.6), where we now take

V = V0 +W0 +W with kWkL1 = O(1). Then we still have (13.7) provided
that we modify the definition of eP prior to (13.2) by taking eP = P + Ci1O
with C large enough. We obtain Proposition 13.1 as before.
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In the subsequent discussion, P0 is the same operator but with the new
notation P 0

0 = P V0 , while P = P V with V = V0 + W0 + W with the initial
assumption that W = O(h) in L1. After (13.15) we just have to invoke
Proposition 11.5 instead of Proposition 11.4.

In the expression for eK after (13.17) we have to replace W by W0 + W

and as in the proof of Proposition 11.5, we have ( eP � z)�1W0
eK0 = O(h2) :

H
3
2 ! H2. Thus instead of (13.18) we get

(17.16) eN = eN0 +O(1)kWkL1 +O(h2) : H
3
2 �! H

1
2 .

Lemma 13.2 remains valid since W0 also satisfies (13.21). Since W0 satis-
fies (13.31), the following discussion goes through without any changes until
Proposition 13.3, where we just have to add a term O(h2) to the estimate
of eN � eN0 after (13.32). The remainder of Chapter 13 goes through without
any changes.

After that, there are no changes. P 0
in in Proposition 16.4 is the Dirichlet

realization of (the new) P0 = P V0+W0 .
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APPENDIX A

WKB ESTIMATES ON AN INTERVAL

We follow [11], [36]. See also [2]. Let V 2 C2([a, b]), �1 < a < b < +1
and assume that V (x) 6= 0 for all x 2 [a, b]. Choose a branch of lnV (x) and
put V (x)✓ = exp(✓ lnV (x)). Put

y±(x) = V (x)�
1
4 e±�(x)/h = e ±(x)/h,

 ± = ±�� 1
4
h lnV (x), �0(x) = V (x)

1
2 .

Then

e� ±/h �
�
V (x)� (h@)2

�
� e ±/h = �(h@)2 � 2 0

± � h@ + h2r,

r =
1

4
· V

00

V
� 5

16

⇣V 0

V

⌘2
,

so �
V � (h@)2

�
y± = h2ry±.

The equation (V � (h@)2)y = 0 can be written

(A.1)
⇣
h@ �

⇣ 0 1
V 0

⌘⌘⇣ y

h@y

⌘
= 0.

Put

e± =
⇣ 1
h@y±/y±

⌘
=
⇣ 1
@ ±

⌘
.

From the identity
⇣
h@ �

⇣ 0 1
V 0

⌘⌘⇣ y±
h@y±

⌘
+ h2ry±

⇣ 0
1

⌘
= 0

we get

(A.2)
⇣
h@ +  0

± �
⇣ 0 1
V 0

⌘⌘
e± + h2r

⇣ 0
1

⌘
= 0.
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If u± is a scalar C1-function, we get

(A.3)
⇣
h@ �

⇣ 0 1
V 0

⌘⌘
u±e± = h@(u±)e± � u± 0

±e± � u±h2r
⇣ 0
1

⌘
.

Here,
⇣ 0
1

⌘
=

1

2
V � 1

2 (e+ � e�)

and with the substitution

(A.4)
⇣ y

h@y

⌘
= u+e+ + u�e� ()

(
y = u+ + u�,

h@y = u+@ + + u�@ �,

we find after some calculation that (A.1) is equivalent to

(A.5)
⇣
h@ �

⇣ 0
+ 0
0  0�

⌘
� h2r

1

2
V � 1

2

⇣ 1 1
�1 �1

⌘⌘⇣u+
u�

⌘
= 0.

Here,

(A.6)
r

V
1
2

=
1

4

V 00

V
3
2

� 5

16

(V 0)2

V
5
2

·

Let E(x, y) be the forward fundamental solution of the di↵erential operator
in (A.5), i.e. the one which vanishes for x < y. Then for a  y  x  b:

(A.7)
��E(x, y)

��  1

h
exp

1

h

Z x

y

�
max(< 0

+,< 0
�)(t) + Ch2|rV � 1

2 |(t)
�
dt.

Assume from now on that

(A.8) <V (x)
1
2 � 0, x 2 [a, b].

Then (A.7) simplifies to

(A.9)
��E(x, y)

��  1

h
e

1
h

(< +(x)�< +(y)) eCh
R
x

y

|rV � 1
2 |(t)dt.

Let us consider the situation of a simple turning point:

(A.10)

(
|V (x)| ⇣ |x� z0|, V 0, V 00 = O(1),

|x� z0| � h
2
3 /C for x 2 [a, b],

where z0 2 C. Then from (A.6) we have
R x
y |r/V 1

2 |dz = O(1/h) and the last

exponential in (A.9) is O(1). We get

(A.11)
��E(x, y)

��  O
⇣1
h

⌘
e

1
h

(< +(x)�< +(y)), a  y  x  b.
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Apply the operator in (A.5) to

u0 =
⇣u0+
u0�

⌘
=
⇣ y+

0

⌘
.

We get

⇣
h@ �

⇣ 0
+ 0
0  0�

⌘
� h2

r

2V
1
2

⇣ 1 1
�1 �1

⌘⌘
u0 = �h2

r

2V
1
2

⇣ y+
�y+

⌘
,

and we have the solution
⇣u+
u�

⌘
= u0 +

⇣ f+
f�

⌘

of (A.5), where

⇣ f+
f�

⌘
=

Z x

a
E(x, y)h2

r

2V
1
2

(y)
⇣ y+
�y+

⌘
(y)dy.

Here
r

V
1
2

(y) =
O(1)

|y � z0|
5
2

and using (A.11), we get

(A.12)
���
⇣ f+
f�

⌘���  Che
 +(x)

h

Z x

a

1

|y � z0|
5
2

dy  O(1)e +(x)/h.

Thus we have the exact solution of (A.5):

(A.13)
⇣u+
u�

⌘
= e +/hO(1).

If we make the substitution (A.4), we see that y is an exact solution of

(A.14) (V � (h@)2)y = 0,

which satisfies

(A.15) y = O(1)e +/h,

(A.16) h@y = O(1)e +/h.

Using this with (A.14), we get similar approximations for the higher derivatives
of y.

The inhomogeneous equation

(A.17)
�
V � (h@)2

�
y = z,
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can be transformed into a system

(A.18)
⇣
h@ �

⇣ 0 1
V 0

⌘⌘⇣ y

h@y

⌘
=
⇣ 0
�z

⌘
,

where the right hand side can be written z+e++z�e�, z+ = �z� = �z/(2V
1
2 ).

The substitution (A.4) gives

(A.19)
⇣
h@ �

⇣ 0
+ 0
0  0�

⌘
� 1

2
h2rV � 1

2

⇣ 1 1
�1 �1

⌘⌘⇣u+
u�

⌘
= � z

2V
1
2

⇣ 1
�1

⌘
,

which has the solution

(A.20)
⇣u+
u�

⌘
= �

Z x

a
E(x, y)

z(y)

2V (y)
1
2

dy
⇣ 1
�1

⌘
.

Writing

E(x, y) =
⇣E++ E+�
E�+ E��

⌘
,

we get (cf. (A.4))

(A.21)

8
>>>><

>>>>:

u+(x) =

Z x

a

�
� E++(x, y) + E+�(x, y)

� z(y)

2V (y)
1
2

dy,

u�(x) =
Z x

a

�
� E�+(x, y) + E��(x, y)

� z(y)

2V (y)
1
2

dy.

Now we add the assumption that V 2 C1([a, b]). Assume for simplicity
that <z0 = 0 and assume that b  0. It is standard that we have exact
solutions to

(A.22)
�
V � (h@)2

��
a(x;h)e (x)/h

�
= 0,  =  +

for which a has a complete asymptotic expansion in C1([a, c]) of the form

(A.23) a ⇠
1X

j=0

aj(x)h
j ,

where c is any fixed number in ]a, b� 1/O(1)[.

By solving the usual sequence of transport equations, we have a unique
continuation of the aj to the full interval [a, b] so that e /h

P1
0 ajh

j is a
formal asymptotic solution of (A.22) and as we have seen in Section 8.2, we
have

(A.24) @↵aj(x) = O
�
|x� z0|�

3j
2 �↵�.

The power |x � z0|�
1
4 in Section 8.2 corresponds to the factor V (x)�

1
4 which

is no longer counted in a but in the exponential factor e /h = V � 1
4 e�/h.
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On the other hand ae /h has a unique extension to the full interval [a, b]
as a solution of (A.21) that we can still write on the same form and we shall
show that the asymptotic expansion (A.23) still holds in sup norm and with
the natural remainder estimates. Write a =

PN
0 ajh

j + rN = aN + rN , so that

(V � (h@)2)(rN e /h) =
�
(h@)2 � V )(aN e /h

�
.

We know that rN = O(hN+1) with all its derivatives on [a, c].
Let � 2 C1([a, b]; [0, 1]) vanish near a and be equal to one in a neighborhood

of [c, b]. Write
�
V � (h@)2

�
(�rN e /h)(A.25)

=
�
(h@)2 � V

�
(aN e /h) +

�
(h@)2 � V

��
(1� �)rN e /h

�
.

Here ((h@)2 � V )((1��)rN e /h) = bN e /h, where bN = O(hN+2) with all its
derivatives. On the other hand, using that e /h

P1
0 ajh

j is a formal asymp-
totic solution, we get

e� /h
�
(h@)2 � V

�
(aN e /h) = hN+2cN ,

where @↵cN = O(|x� z0|�
3
2N�2�↵), so

(V � (h@)2)(�rN e /h) = hN+2dN e /h,

where @↵dN = O(|x� z0|�
3
2N�2�↵).

We conclude that

(A.26) �rN = O
✓
1

h

◆Z x

a

hN+2

|y � z0|
3
2N+2+ 1

2

dy = O(1)
hN+1

|x� z0|
3
2 (N+1)

·

Thus rN satisfies the same estimate.
In principle we could also show that @↵rN = O(1)hN+1/|x � z0|

3
2 (N+1)+↵,

but content ourselves with the observation that this is the case in the situa-
tion of Section 8.2, since the holomorphy then allows us to use the Cauchy
inequalities.
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