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CREATION OF FERMIONS BY
ROTATING CHARGED BLACK HOLES

Dietrich HÄFNER

Abstract. – This work is devoted to the mathematical study of the Hawking effect
for fermions in the setting of the collapse of a rotating charged star. We show that an
observer who is located far away from the star and at rest with respect to the Boyer
Lindquist coordinates observes the emergence of a thermal state when his proper
time goes to infinity. We first introduce a model of the collapse of the star. We
suppose that the space-time outside the star is given by the Kerr-Newman metric.
The assumptions on the asymptotic behavior of the surface of the star are inspired
by the asymptotic behavior of certain timelike geodesics in the Kerr-Newman metric.
The Dirac equation is then written using coordinates and a Newman-Penrose tetrad
which are adapted to the collapse. This coordinate system and tetrad are based on
the so called simple null geodesics. The quantization of Dirac fields in a globally
hyperbolic space-time is described. We formulate and prove a theorem about the
Hawking effect in this setting. The proof of the theorem contains a minimal velocity
estimate for Dirac fields that is slightly stronger than the usual ones and an existence
and uniqueness result for solutions of a characteristic Cauchy problem for Dirac fields
in the Kerr-Newman space-time. In an appendix we construct explicitly a Penrose
compactification of block I of the Kerr-Newman space-time based on simple null
geodesics.

Résumé (Création de fermions par des trous noirs chargés en rotation)
Ce travail est consacré à l’étude mathématique de l’effet Hawking pour des fermions

dans le cadre de l’effondrement d’une étoile chargée en rotation. On démontre qu’un
observateur localisé loin de l’étoile et au repos par rapport aux coordonnées de Boyer-
Lindquist observe l’émergence d’un état thermal quand son temps propre tend vers
l’infini. On introduit d’abord un modèle de l’effondrement de l’étoile. On suppose que
l’espace-temps à l’extérieur de l’étoile est donné par la métrique de Kerr-Newman.
Les hypothèses sur le comportement asymptotique de la surface de l’étoile sont in-
spirées par le comportement asymptotique de certaines géodésiques de type temps
dans la métrique de Kerr-Newman. L’équation de Dirac est alors écrite en utilisant
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des coordonnées et une tétrade de Newman-Penrose adaptées à l’effondrement. Ce
système de coordonnées et cette tétrade sont basés sur des géodésiques qu’on appelle
des géodésiques simples isotropes. La quantification des champs de Dirac dans un
espace-temps globalement hyperbolique est décrite. On formule un théorème sur l’ef-
fet Hawking dans ce cadre. La preuve du théorème contient une estimation de vitesse
minimale pour les champs de Dirac légèrement plus forte que les estimations usuelles
ainsi qu’un résultat d’existence et d’unicité pour les solutions d’un problème carac-
téristique pour les champs de Dirac dans l’espace-temps de Kerr-Newman. Dans un
appendice, nous construisons explicitement la compactification de Penrose du bloc I

de l’espace-temps de Kerr-Newman qui est basée sur les géodésiques simples isotropes.

MÉMOIRES DE LA SMF 117
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CHAPTER 1

INTRODUCTION

It was in 1975 that S.W. Hawking published his famous paper about the creation
of particles by black holes (see [30]). Later this effect was analyzed by other authors
in more detail (see e.g. [47]) and we can say that the effect was well understood from
a physical point of view at the end of the 1970’s. From a mathematical point of view,
however, fundamental questions linked to the Hawking radiation such as scattering
theory for field equations on black hole space-times had not been addressed at that
time.

In the early 1980’s Dimock and Kay started a research programme concerning
scattering theory on curved space-times. They obtained an asymptotic completeness
result for classical and quantum massless scalar fields on the Schwarzschild metric
(see [21]–[20]). Their work was pushed further by Alain Bachelot in the 1990’s. He
showed asymptotic completeness for Maxwell and Klein-Gordon fields (see [1], [2])
and gave a mathematically precise description of the Hawking effect (see [3]–[5]) in
the spherically symmetric case. Meanwhile other authors contributed to the subject
such as Nicolas [38], Jin [33] and Melnyk [36], [37]. All these works deal with the
spherically symmetric case.

The more realistic case of a rotating black hole is more difficult. In the spherically
symmetric case, the study of a field equation can be reduced to the study of a 1 + 1

dimensional equation with potential. In the Kerr case this reduction is no longer
possible and the methods used in the papers cited so far do not apply. A paper by
De Bièvre, Hislop, Sigal using different methods appeared in 1992 (see [10]). By means
of a Mourre estimate they show asymptotic completeness for the wave equation on
non-compact Riemannian manifolds; possible applications are therefore static situa-
tions such as the Schwarzschild case, which they treat, but the Kerr geometry is not
even stationary. In this context we also mention the paper of Daudé about the Dirac
equation in the Reissner-Nordström metric (see [14]). A complete scattering theory
for the wave equation on stationary, asymptotically flat space-times, was obtained by
the author in 2001 (see [27]). To our knowledge the first asymptotic completeness
result in the Kerr case was obtained by the author in [28], for the non superradiant
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modes of the Klein-Gordon field. The first complete scattering theory for a field equa-
tion in the Kerr metric was obtained by Nicolas and the author in [29] for massless
Dirac fields. This result was generalized by Daudé in [15] to the massive charged
Dirac field in the Kerr-Newman metric. All these papers use Mourre theory.

The aim of the present paper is to give a mathematically precise description of the
Hawking effect for spin 1

2
fields in the setting of the collapse of a rotating charged star.

We show that an observer who is located far away from the black hole and at rest with
respect to the Boyer-Lindquist coordinates observes the emergence of a thermal state
when his proper time t goes to infinity. Let us give an idea of the theorem describing
the effect. Let r∗ be the Regge-Wheeler coordinate. We suppose that the boundary
of the star is described by r∗ = z(t, θ). The space-time is then given by

Mcol =

�

t

Σ
col

t
, Σ

col

t
=

�
(t, r∗, ω) ∈ Rt × Rr∗ × S

2
; r∗ ≥ z(t, θ)

�
.

The typical asymptotic behavior of z(t, θ) is (κ+ > 0):

z(t, θ) = −t−A(θ)e
−2κ+t

+ B(θ) + O(e
−4κ+t

), t →∞.

Let H t = L
2((Σcol

t
, dVol); C4). The Dirac equation can be written as

∂tΨ = iD/ t Ψ + boundary condition.(1.1)

We will put a MIT boundary condition on the surface of the star. The evolution of the
Dirac field is then described by an isometric propagator U(t, s) : H s → H t. The Dirac
equation on the whole exterior Kerr-Newman space-time MBH will be written as

∂tΨ = iD/ Ψ.

Here D/ is a selfadjoint operator on H = L
2((Rr∗ × S

2
, dr∗dω); C4). There exists

an asymptotic velocity operator P
± such that for all continuous functions J with

lim|x|→∞ J(x) = 0 we have

J(P
±

) = s− lim
t→±∞

e
−it D/

J

�
r∗
t

�
e
it D/

.

Let Ucol(Mcol) (resp. UBH(MBH)) be the algebras of observables outside the col-
lapsing body (on the space-time describing the eternal black hole) generated by
Ψ∗

col
(Φ1)Ψcol(Φ2) (resp. Ψ∗

BH
(Φ1)ΨBH(Φ2)). Here Ψcol(Φ) (resp. ΨBH(Φ)) are the

quantum spin fields on Mcol (resp. MBH). Let ωcol be a vacuum state on Ucol(Mcol);
ωvac a vacuum state on UBH(MBH) and ω

η,σ

Haw
be a KMS-state on UBH(MBH) with

inverse temperature σ > 0 and chemical potential µ = eση (see Chapter 5 for details).
For a function Φ ∈ C

∞
0

(MBH) we define

Φ
T
(t, r∗, ω) = Φ(t− T, r∗, ω).

The theorem about the Hawking effect is:

Theorem 1.1 (Hawking effect). – Let

Φj ∈
�
C
∞
0

(Mcol)
�4

, j = 1, 2.

MÉMOIRES DE LA SMF 117
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Then we have

lim
T→∞

ωcol

�
Ψ
∗
col

(Φ
T

1
)Ψcol(Φ

T

2
)
�

(1.2)

= ω
η,σ

Haw

�
Ψ
∗
BH

�
1R+(P

−
)Φ1

�
ΨBH

�
1R+(P

−
)Φ2

��

+ ωvac

�
Ψ
∗
BH

�
1R−(P

−
)Φ1

�
ΨBH

�
1R−(P

−
)Φ2

��
,

THaw =
1

σ
=

κ+

2π

, µ = e
ση

, η =
qQr+

r
2
+

+ a2
+

aDϕ

r
2
+

+ a2
·

Here q is the charge of the field, Q the charge of the black hole, a the angular
momentum per unit mass of the black hole, r+ = M +

�
M2 − (a2 + Q2) defines the

outer event horizon and κ+ is the surface gravity of this horizon. The interpretation
of (1.2) is the following. We start with a vacuum state which we evolve in the proper
time of an observer at rest with respect to the Boyer Lindquist coordinates. The limit
when the proper time of this observer goes to infinity is a thermal state coming from
the event horizon in formation and a vacuum state coming from infinity as expressed
on the R.H.S of (1.2). The Hawking effect is often interpreted in terms of particles,
the antiparticle falling into the black hole and the particle escaping to infinity. From
our point of view this interpretation is somewhat misleading. The effect really comes
from an infinite Doppler effect and the mixing of positive and negative frequencies.
To explain this a little bit more we describe the analytic problem behind the effect.
Let f(r∗, ω) ∈ C

∞
0

(R× S
2). The key result about the Hawking effect is

lim
T→∞

��1[0,∞)(D/0)U(0, T )f
��2

0
(1.3)

=
�
1R+(P

−
)f, µe

σ D/
(1 + µe

σ D/
)
−11R+(P

−
)f

�
+

��1[0,∞)(D/)1R−(P
−

)f
��2

,

where µ, η,σ are as in the above theorem. Equation (1.3) implies (1.2).
The term on the L.H.S. comes from the vacuum state we consider. We have to

project on the positive frequency solutions (see Chapter 5 for details). Note that we
consider in (1.3) the time reversed evolution. This comes from the quantization pro-
cedure. When time becomes large the solution hits the surface of the star at a point
closer and closer to the future event horizon. Figure 1 shows the situation for an
asymptotic comparison dynamics, which satisfies Huygens’ principle. For this asymp-
totic comparison dynamics the support of the solution concentrates more and more
when time becomes large, which means that the frequency increases. The consequence
of the change in frequency is that the system does not stay in the vacuum state.

We conclude this introduction with some comments on the boson case which we
do not treat in this paper. This case is more difficult because of the superradiance
phenomenon. There exists no positive conserved energy for the wave equation in
block I of the Kerr metric. This is linked to the fact that the Kerr metric is not
stationary outside the black hole. Because of the difficulty linked to superradiance,
there is at present no complete scattering theory for the wave equation on the Kerr
metric, a necessary prerequisite for the mathematical description of the Hawking
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Figure 1. The collapse of the star

effect. However some progress in this direction has been made by Finster, Kamran,
Smoller and Yau who obtained an integral representation for the propagator of the
wave equation on the Kerr metric (see [22]). We also refer to [7] for scattering results
in a superradiant situation.

Notations

Let (M, g) be a smooth 4-manifold equipped with a lorentzian metric g with sig-
nature (+,−,−,−). We denote by ∇a the Levi-Civita connection on (M, g).

Many of our equations will be expressed using the two-component spinor notations
and abstract index formalism of R. Penrose and W. Rindler [44].

Abstract indices are denoted by light face latin letters, capital for spinor indices
and lower case for tensor indices. Abstract indices are a notational device for keeping
track of the nature of objects in the course of calculations, they do not imply any
reference to a coordinate basis, all expressions and calculations involving them are
perfectly intrinsic. For example, gab will refer to the space-time metric as an intrinsic
symmetric tensor field of valence

�
0

2

�
, i.e. a section of T∗M⊙T∗M and g

ab will refer to
the inverse metric as an intrinsic symmetric tensor field of valence

�
2

0

�
, i.e. a section of

TM ⊙ TM (where ⊙ denotes the symmetric tensor product, TM the tangent bundle
to our space-time manifold M and T∗M its cotangent bundle).

Concrete indices defining components in reference to a basis are represented by bold
face latin letters. Concrete spinor indices, denoted by bold face capital latin letters,
take their values in {0, 1} while concrete tensor indices, denoted by bold face lower
case latin letters, take their values in {0, 1, 2, 3}. Consider for example a basis of TM,
that is a family of four smooth vector fields on M: B = {e0, e1, e2, e3} such that at each
point p of M the four vectors e0(p), e1(p), e2(p), e3(p) are linearly independent, and
the corresponding dual basis of T∗M: B∗ =

�
e
0
, e

1
, e

2
, e

3
�

such that ea(eb) = δ
a
b ,
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where δ
a
b denotes the Kronecker symbol ; gab will refer to the components of the

metric gab in the basis B: gab = g(ea, eb) and g
ab will denote the components of

the inverse metric g
ab in the dual basis B∗, i.e. the 4 × 4 real symmetric matrices

(gab) and
�
g
ab

�
are the inverse of one another. In the abstract index formalism, the

basis vectors ea, a = 0, 1, 2, 3, are denoted ea
a or ga

a. In a coordinate basis, the basis
vectors ea are coordinate vector fields and will also be denoted by ∂a or ∂/∂x

a ; the
dual basis covectors ea are coordinate 1-forms and will be denoted by dx

a.
We adopt Einstein’s convention for the same index appearing twice, once up, once

down, in the same term. For concrete indices, the sum is taken over all the values of
the index. In the case of abstract indices, this signifies the contraction of the index,
i.e. faV

a denotes the action of the 1-form fa on the vector field V
a.

For a manifold Y we denote by C
∞
b

(Y ) the set of all C
∞ functions on Y , that

are bounded together with all their derivatives. We denote by C∞(Y ) the set of all
continuous functions tending to zero at infinity.
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CHAPTER 2

STRATEGY OF THE PROOF AND
ORGANIZATION OF THE ARTICLE

2.1. The analytic problem

Let us consider a model, where the eternal black hole is described by a static space-
time (although the Kerr-Newman space-time is not even stationary, the problem will
be essentially reduced to this kind of situation). Then the problem can be described
as follows. Consider a riemannian manifold Σ0 with one asymptotically euclidean end
and a boundary. The boundary will move when t becomes large asymptotically with
the speed of light. The manifold at time t is denoted Σt. The “limit" manifold Σ is a
manifold with two ends, one asymptotically euclidean and the other asymptotically
hyperbolic (see Figure 1). The problem consists in evaluating the limit

lim
T→∞

��1[0,∞)(D/0)U(0, T )f
��

0
,

where U(0, T ) is the isometric propagator for the Dirac equation on the manifold
with moving boundary and suitable boundary conditions. It is worth noting that the
underlying scattering theory is not the scattering theory for the problem with moving
boundary but the scattering theory on the “limit" manifold. It is largely believed that
the result does not depend on the boundary condition. We will show in this paper
that it does not depend on the chiral angle in the MIT boundary condition. Note also
that the boundary viewed in

�
t
{t}× Σt is only weakly timelike, a problem that has

been rarely considered (but see [4]).
One of the problems for the description of the Hawking effect is to derive a reason-

able model for the collapse of the star. We will suppose that the metric outside the
collapsing star is always given by the Kerr-Newman metric. Whereas this is a gen-
uine assumption in the rotational case, in the spherically symmetric case Birkhoffs
theorem assures that the metric outside the star is the Reissner-Nordström metric.
We will suppose that a point on the surface of the star will move along a curve which
behaves asymptotically like a timelike geodesic with L = Q = �E = 0, where L is the
angular momentum, �E the rotational energy and Q the Carter constant. The choice
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Figure 1. The manifold Σ0 at time t = 0 and the limit manifold Σ

of geodesics is justified by the fact that the collapse creates the space-time, i.e. an-
gular momenta and rotational energy should be zero with respect to the space-time.
We will need an additional asymptotic condition on the collapse. It turns out that
there is a natural coordinate system (t, �r,ω) associated to the collapse. In this coor-
dinate system the surface of the star is described by �r = �z(t, θ). We need to assume
the existence of a constant C such that

���z(t, θ) + t + C
�� −→ 0, t →∞.(2.1)

It can be checked that this asymptotic condition is fulfilled if we use the above
geodesics for some appropriate initial condition. On the one hand we are not able
to compute this initial condition explicitly, on the other hand it seems more natural
to impose a (symmetric) asymptotic condition than an initial condition. If we would
allow in (2.1) a function C(θ) rather than a constant, the problem would become
more difficult. Indeed one of the problems for treating the Hawking radiation in the
rotational case is the high frequencies of the solution. In contrast with the spherically
symmetric case, the difference between the Dirac operator and an operator with con-
stant coefficients is near the horizon always a differential operator of order one(1). This
explains that in the high energy regime we are interested in, the Dirac operator is not
close to a constant coefficient operator. Our method to prove (1.3) is to use scattering
arguments to reduce the problem to a problem with a constant coefficient operator,
for which we can compute the radiation explicitly. If we do not impose a condition
of type (2.1), then in all coordinate systems the solution has high frequencies, in the

(1) In the spherically symmetric case we can diagonalize the operator. After diagonalization the differ-
ence is just a potential.
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radial as well as in the angular directions. With condition (2.1) these high frequencies
only occur in the radial direction. Our asymptotic comparison dynamics will differ
from the real dynamics only by derivatives in angular directions and by potentials.

2.2. Strategy of the proof

In this section we will give some ideas of the proof of (1.3). We want to reduce
the problem to the evaluation of a limit that can be explicitly computed. To do so,
we use the asymptotic completeness results obtained in [29] and [15]. There exists a
constant coefficient operator D/← such that the following limits exist:

W
±
← := s− lim

t→±∞
e
−it D/

e
it D/←1R∓(P

±
←),

Ω
±
← := s− lim

t→±∞
e
−it D/← e

it D/1R∓(P
±

).

Here P
±
← is the asymptotic velocity operator associated to the dynamics eit D/← . Then

the R.H.S. of (1.3) equals
��1[0,∞)(D/)1R−(P

−
)f

��2

+
�
Ω
−
←f, µe

σ D/←(1 + µe
σ D/←)

−1
Ω
−
←f

�
.

The aim is to show that the incoming part is

lim
T→∞

��1[0,∞)(D←,0)U←(0, T )Ω
−
←f

��2

0
=

�
Ω
−
←f, µe

σ D/←(1 + µe
σ D/←)

−1
Ω
−
←f

�
,

where the equality can be shown by explicit calculation. Here D/←,t and U←(s, t) are
the asymptotic operator with boundary condition and the associated propagator. The
outgoing part is easy to treat.

As already mentioned, we have to consider the solution in a high frequency regime.
Using the Regge-Wheeler variable as a position variable and, say, the Newman-Penrose
tetrad used in [29] we find that the modulus of the local velocity

[ir∗,D/ ] = h
2
(r∗, ω)Γ

1

is not equal to 1, whereas the asymptotic dynamics must have constant local velocity.
Here h is a continuous function and Γ1 a constant matrix. Whereas the (r∗, ω) coor-
dinate system and the tetrad used in [29] were well adapted to the time dependent
scattering theory developed in [29], they are no longer well adapted when we consider
large times and high frequencies. We are therefore looking for a variable �r such that

�
(t, �r,ω); �r ± t = Const.

�

are characteristic surfaces. By a separation of variables Ansatz we find a family of
such variables and we choose the one which is well adapted to the collapse of the star
in the sense that along an incoming null geodesic with L = Q = 0 we have

∂�r
∂t

= −1.

This variable turns out to be a generalized Bondi-Sachs variable. The null geodesics
with L = Q = 0 are generated by null vector fields N

± that we choose to be � and n in
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the Newman-Penrose tetrad. If we write down the hamiltonian for the Dirac equation
with this choice of coordinates and tetrad we find that the local velocity now has
modulus 1 everywhere and our initial problem disappears. The new hamiltonian is
again denoted D/. Let D/← be an asymptotic comparison dynamics near the horizon
with constant coefficients. Note that (1.3) is of course independent of the choice of
the coordinate system and the tetrad, i.e. both sides of (1.3) are independent of these
choices. We now proceed as follows:

1) We decouple the problem at infinity from the problem near the horizon by cut-off
functions. The problem at infinity is easy to treat.

2) We consider U(t, T )f on a characteristic hypersurface Λ. The resulting charac-
teristic data is denoted g

T . We will approximate Ω−←f by a function (Ω−←f)R with
compact support and higher regularity in the angular derivatives. Let U←(s, t) be the
isometric propagator associated to the asymptotic hamiltonian D/← with MIT bound-
ary conditions. We also consider U←(t, T )(Ω−←f)R on Λ. The resulting characteristic
data is denoted g

T

←,R
. The situation for the asymptotic comparison dynamics is shown

in Figure 1, Chapter 1.
3) We solve a characteristic Cauchy problem for the Dirac equation with data g

T

←,R
.

The solution at time zero can be written in a region near the boundary as

G(g
T

←,R
) = U

�
0,

1

2
T + c0

�
Φ

�
1

2
T + c0

�
,

where Φ is the solution of a characteristic Cauchy problem in the whole space (without
the star). The solutions of the characteristic problems for the asymptotic hamiltonian
are written in a similar way and denoted respectively G←(gT

←,R
) and Φ←.

4) Using the asymptotic completeness result we show that g
T − g

T

←,R
→ 0 when

T,R →∞. By continuous dependence on the characteristic data we see that

G(g
T
)−G(g

T

←,R
) −→ 0, T,R →∞.

5) We write

G(g
T

←,R
)−G←(g

T

←,R
) = U(0,

1

2
T + c0)

�
Φ(

1

2
T + c0)− Φ←(

1

2
T + c0)

�

+
�
U(0,

1

2
T + c0)− U←(0,

1

2
T + c0)

�
Φ←(

1

2
T + c0).

The first term becomes small near the boundary when T becomes large. We then note
that for all � > 0 there exists t� > 0 such that

��(U(t�,
1

2
T + c0)− U←(t�,

1

2
T + c0))Φ←(

1

2
T + c0)

�� < �

uniformly in T large. The function U←(t�,
1

2
T + c0)Φ←(

1

2
T + c0) will be replaced by

a geometric optics approximation F
T

t�
which has the following properties:

supp F
T

t�
⊂

�
− t� − | O(e

−κ+T
)|,−t�

�
,(2.2)

F
T

t�
� 0, T →∞,(2.3)

∀λ > 0, Op(χ(�ξ� ≤ λ�q�))FT

t�
−→ 0, T →∞.(2.4)

Here ξ and q are the dual coordinates to �r, θ respectively.

MÉMOIRES DE LA SMF 117



2.3. ORGANIZATION OF THE ARTICLE 17

6) We show that for λ sufficiently large possible singularities of

Op
�
χ
�
�ξ� ≥ λ�q�

��
F

T

t�

are transported by the group e−it� D/ in such a way that they always stay away from
the surface of the star.

7) From the points 1) to 5) follows:

lim
T→∞

��1[0,∞)(D/0)j−U(0, T )f
��2

0
= lim

T→∞

��1[0,∞)(D/0)U(0, t�)F
T

t�

��2

0
,

where j− is a smooth cut-off which equals 1 near the boundary and 0 at infinity. Let
φδ be a cut-off outside the surface of the star at time 0. If φδ = 1 sufficiently close to
the surface of the star at time 0 we see by the previous point that

(1− φδ)e
−it� D/

F
T

t�
−→ 0, T →∞.(2.5)

Using (2.5) we show that (modulo a small error term)
�
U(0, t�)− φδ e

−it� D/�
F

T

t�
−→ 0, T →∞.

Therefore it remains to consider

lim
T→∞

��1[0,∞)(D/0)φδ e
−it� D/

F
T

t�

��
0
.

8) We show that we can replace 1[0,∞)(D/0) by 1[0,∞)(D/). This will essentially allow
to commute the energy cut-off and the group. We then show that we can replace the
energy cut-off by 1[0,∞)(D/←). We end up with

lim
T→∞

��1[0,∞)(D/←)e
−it� D/←F

T

t�

��.(2.6)

9) We compute the limit in (2.6) explicitly.

2.3. Organization of the article

The paper is organized as follows:
� In Chapter 3 we present the model of the collapsing star. We first analyze the

geodesics in the Kerr-Newman space-time and explain how the Carter constant can
be understood in terms of the hamiltonian flow. We construct the variable �r and show
that

∂�r
∂t

= ±1 along null geodesics with L = Q = 0.

We then show that in the (t, �r,ω) coordinate system we have along incoming timelike
geodesics with L = Q = �E = 0:

�r = −t− �A(θ, r0)e
−2κ+t

+ �B(θ, r0) + O(e
−4κ+t

)(2.7)

with �A(θ, r0) > 0. Our assumption will be that a point on the surface behaves asymp-
totically like (2.7) with �B(θ0, r0(θ0)) = Const. Here r0(θ0) is a function defining the
surface at time t = 0.
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� In Chapter 4 we describe classical Dirac fields. We introduce a new Newman-
Penrose tetrad and compute the new expression of the equation. New asymptotic
hamiltonians are introduced and classical scattering results are obtained from scat-
tering results in [29] and [15]. The MIT boundary condition is discussed in detail.

� Dirac quantum fields are discussed in Chapter 5. We first present the second
quantization of Dirac fields and then describe the quantization in a globally hyperbolic
space-time. The theorem about the Hawking effect is formulated and discussed in
Section 5.3.

� In Chapter 6 we show additional scattering results that we will need later. A min-
imal velocity estimate slightly stronger than the usual ones is established.

� In Chapter 7 we solve the characteristic problem for the Dirac equation. We
approximate the characteristic surface by smooth spacelike hypersurfaces and recover
the solution in the limit. This method is close to that used by Hörmander in [32] for
the wave equation.

� Chapter 8 contains several reductions of the problem. We show that (1.3) implies
the theorem about the Hawking effect. We use the axial symmetry to fix the angular
momentum. Several technical results are collected.

� Chapter 9 is devoted to the comparison of the dynamics on the interval [t�, T ].
� In Chapter 10 we study the propagation of singularities for the Dirac equation

in the Kerr-Newman metric. We show that “outgoing" singularities located in
�
(�r,ω, ξ, q); �r ≥ −t� − C

−1
, |ξ| ≥ C|q|

�

stay away from the surface of the star for C large.
� The main theorem is proven in Chapter 11.
� Appendix A contains the proof of the existence and uniqueness of solutions of

the Dirac equation in the space-time describing the collapsing star.
� In Appendix B we show that we can compactify the block I of the Kerr-Newman

space-time using null geodesics with L = Q = 0 instead of principal null geodesics.
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CHAPTER 3

THE MODEL OF THE COLLAPSING STAR

The purpose of this chapter is to describe the model of the collapsing star. We will
suppose that the metric outside the star is given by the Kerr-Newman metric, which is
discussed in Section 3.1. Geodesics are discussed in Section 3.1.2. We give a description
of the Carter constant in terms of the associated hamiltonian flow. A new position
variable is introduced. In Section 3.2 we give the precise asymptotic behavior of the
boundary of the star using this new position variable. We require that a point on the
surface behaves asymptotically like incoming timelike geodesics with L = Q = �E = 0,
which are studied in Section 3.2.1. The precise assumptions are given in Section 3.2.2.

3.1. The Kerr-Newman metric

We give a brief description of the Kerr-Newman metric, which describes an eternal
rotating charged black hole. A detailed description can be found e.g. in [48].

3.1.1. Boyer-Lindquist coordinates. – In Boyer-Lindquist coordinates, a Kerr-
Newman black hole is described by a smooth 4-dimensional lorentzian manifold
MBH = Rt × Rr × S

2

ω
, whose space-time metric g and electromagnetic vector

potential Φa are given by

(3.1)






g =

�
1 +

Q
2 − 2Mr

ρ2

�
dt

2
+

2a sin
2
θ(2Mr −Q

2)

ρ2
dtdϕ− ρ

2

∆
dr

2

−ρ
2
dθ

2 − σ
2

ρ2
sin

2
θdϕ

2
,

ρ
2 = r

2 + a
2 cos2 θ, ∆ = r

2 − 2Mr + a
2 + Q

2
,

σ
2 = (r2 + a

2)ρ2 + (2Mr −Q
2)a2 sin

2
θ = (r2 + a

2)2 − a
2∆ sin

2
θ,

Φa dx
a

= −Qr

ρ2
(dt− a sin

2
θdϕ).
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Here M is the mass of the black hole, a its angular momentum per unit mass and Q the
charge of the black hole. If Q = 0, g reduces to the Kerr metric, and if Q = a = 0 we re-
cover the Schwarzschild metric. The expression (3.1) of the Kerr metric has two types
of singularities. While the set of points {ρ2 = 0} (the equatorial ring {r = 0; θ =

1

2
π}

of the {r = 0} sphere) is a true curvature singularity, the spheres where ∆ vanishes,
called horizons, are mere coordinate singularities. We will consider in this paper subex-
tremal Kerr-Newman space-times, that is we suppose Q

2 + a
2

< M
2. In this case ∆

has two real roots:

(3.2) r± = M ±
�

M2 − (a2 + Q2).

The spheres {r = r−} and {r = r+} are called event horizons. The two horizons
separate MBH into three connected components BI , BII , BIII called Boyer-Lindquist
blocks (r+ < r, r− < r < r+, r < r−). No Boyer-Lindquist block is stationary, that is
to say there exists no globally defined timelike Killing vector field on any given block.
In particular, block I contains a toroidal region, called the ergosphere, surrounding
the horizon,

E =

�
(t, r, θ, ϕ); r+ < r < M +

�
M2 −Q2 − a2 cos2 θ

�
,(3.3)

where the vector ∂/∂t is spacelike.
An important feature of the Kerr-Newman space-time is that it has Petrov type D

(see e.g. [42]). This means that the Weyl tensor has two double roots at each point.
These roots, referred to as the principal null directions of the Weyl tensor, are given
by the two vector fields

V
±

=
r
2 + a

2

∆
∂t ± ∂r +

a

∆
∂ϕ.

Since V
+ and V

− are twice repeated null directions of the Weyl tensor, by the
Goldberg-Sachs theorem (see for example [42, Theorem 5.10.1]) their integral curves
define shear-free null geodesic congruences. We shall refer to the integral curves of V

+

(resp. V
−) as the outgoing (resp. incoming) principal null geodesics and write from

now on PNG for principal null geodesic. The plane determined at each point by the
two prinipal null directions is called the principal plane.

We will often use a Regge-Wheeler type coordinate r∗ in BI instead of r (see [13]),
which is given by

r∗ = r +
1

2κ+

ln |r − r+|− 1

2κ−
ln |r − r−| + R0,(3.4)

where R0 is any constant of integration and

κ± =
r+ − r−

2(r2
± + a2)

(3.5)

are the surface gravities at the outer and inner horizons. The variable r∗ satisfies
dr∗
dr

=
r
2 + a

2

∆
·(3.6)
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When r runs from r+ to ∞, r∗ runs from −∞ to ∞. We put

Σ := Rr∗ × S
2
.(3.7)

We conclude this section with a useful identity on the coefficients of the metric:

1 +
Q

2 − 2Mr

ρ2
+

a
2 sin

2
θ(2Mr −Q

2)2

ρ2σ2
=

ρ
2∆

σ2
·(3.8)

3.1.2. Some remarks about geodesics in the Kerr-Newman space-time. –
It is one of the most remarkable facts about the Kerr-Newman metric that there exist
four first integrals for the geodesic equations. If γ is a geodesic in the Kerr-Newman
space-time, then p := �γ�, γ�� is conserved. The two Killing vector fields ∂t, ∂ϕ give two
first integrals, the energy E := �γ�, ∂t� and the angular momentum L := −�γ�, ∂ϕ�.
There exists a fourth constant of motion, the so-called Carter constant K (see [12]).
Even if these facts are well known we shall prove them here. The explicit form of the
Carter constant in terms of the hamiltonian flow appearing in the proof will be useful
in the following. We will also use the Carter constant Q = K − (L − aE)2, which
has a somewhat more geometrical meaning, but gives in general more complicated
formulas. Let

P := (r
2

+ a
2
)E − aL, D := L− aE sin

2
θ.(3.9)

We will consider the hamiltonian flow of the principal symbol of 1

2
�g and then use

the fact that a geodesic can be understood as the projection of the hamiltonian flow
on MBH. The d’Alembert operator associated to the Kerr-Newman metric is given by

�g =
σ

2

ρ2∆
∂

2

t
− 2a(Q2 − 2Mr)

ρ2∆
∂ϕ∂t −

∆− a
2 sin

2
θ

ρ2∆ sin
2
θ

∂
2

ϕ
(3.10)

− 1

ρ2
∂r∆∂r −

1

ρ2

1

sin θ
∂θ sin θ∂θ.

The principal symbol of 1

2
�g is

P :=
1

2ρ2

�
σ

2

∆
τ

2 − 2a(Q2 − 2Mr)

∆
qϕτ − ∆− a

2 sin
2
θ

∆ sin
2
θ

q
2

ϕ
−∆|ξ|2 − q

2

θ

�
.(3.11)

Let
Cp :=

�
(t, r, θ, ϕ; τ, ξ, qθ, qϕ);P (t, r, θ, ϕ; τ, ξ, qθ, qϕ) =

1

2
p
�
.

Here (τ, ξ, qθ, qϕ) is dual to (t, r, θ, ϕ). We have the following:

Theorem 3.1. – (i) Let x0 = (t0, r0, ϕ0, θ0, τ0, ξ0, qθ0
, qϕ0

) ∈ Cp and

x(s) =
�
t(s), r(s), θ(s), ϕ(s); τ(s), ξ(s), qθ(s), qϕ(s)

�
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be the associated hamiltonian flow line. Then we have the following constants of mo-
tion

(3.12)






p = 2P, E = τ, L = −qϕ,

K = q
2

θ
+

D2

sin
2
θ

+ pa
2
cos

2
θ =

P 2

∆
−∆|ξ|2 − pr

2
,

where D,P are defined in (3.9).

It follows:

Corollary 3.1. – Let γ with γ
� = t

�
∂t + r

�
∂r + θ

�
∂θ + ϕ

�
∂ϕ be a geodesic in the

Kerr-Newman space-time. Then there exists a constant K = K γ such that

ρ
4
(r
�
)
2

= R(r) = ∆(−pr
2 − K ) + P 2

,(3.13)

ρ
4
(θ
�
)
2

= Θ(θ) = K − pa
2
cos

2
θ − D2

sin
2
θ

,(3.14)

ρ
2
ϕ
�
=

D

sin
2
θ

+
aP

∆
,(3.15)

ρ
2
t
�
= aD + (r

2
+ a

2
)
P

∆
·(3.16)

Remark 3.1. – Theorem 3.1 explains the link between the Carter constant K and
the separability of the wave equation. Looking for f in the form

f(t, r, θ, ϕ) = e
iωt

e
inϕ

fr(r)fθ(θ)

we find

�gf = 0

⇐⇒
�
− (r2 + a

2)2

∆
ω

2
+

2a(Q2 − 2Mr)

∆
nω +

r
2 + a

2

∆
Dr∗(r

2
+ a

2
)Dr∗ −

a
2
n

2

∆

�
f

+

�
a
2
sin

2
θω

2
+

n
2

sin
2
θ

+
1

sin θ
Dθ sin θDθ

�
f = 0.

For fixed ω

P
ω

S2 := a
2
sin

2
θω

2
+

D
2

ϕ

sin
2
θ

+
1

sin θ
Dθ sin θDθ

is a positive elliptic operator on the sphere with eigenfunctions of the form einϕ
fθ(θ).

This gives the separability of the equation. The Carter constant is the analogue of
the eigenvalue of P

ω

S2 in classical mechanics.

Proof of Theorem 3.1. – The hamiltonian equations are:

ṫ =

�
σ

2

ρ2∆
τ − a

Q
2 − 2Mr

ρ2∆
qϕ

�
,(3.17)

τ̇ = 0,(3.18)
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ṙ = −∆

ρ2
ξ,(3.19)

ξ̇ = −∂rP,(3.20)

θ̇ = − qθ

ρ2
,(3.21)

q̇θ =
a
2 sin θ cos θ

ρ2
τ

2
+

1

2ρ2
∂θ

q
2

ϕ

sin
2
θ
− a

2 cos θ sin θ

ρ2
p,(3.22)

ϕ̇ =

�
a(2Mr −Q

2)

ρ2∆
τ − ∆− a

2 sin
2
θ

ρ2∆ sin
2
θ

qϕ

�
,(3.23)

q̇ϕ = 0,(3.24)

where we have used that (t, r, θ, ϕ, τ, ξ, qθ, qϕ) stays in Cp. The first two constants
of motion follow from (3.18), (3.24). We multiply (3.22) with qθ given by (3.21) and
obtain

q̇θqθ = −a
2
sin θ cos θτ

2
θ̇ − 1

2

d

dt

q
2

ϕ

sin
2
θ

+ a
2
cos θ sin θθ̇p

= −1

2

d

dt

�
a
2
sin

2
θτ

2
+

q
2

ϕ

sin
2
θ

+ a
2
cos

2
θp

�

=⇒ q
2

θ
+ a

2
sin

2
θτ

2
+

q
2

ϕ

sin
2
θ

+ a
2
cos

2
θp = �K = Const.

To obtain the second expression for K we use the fact that the flow stays in Cp.

The case L = 0 is of particular interest. Let γ be a null geodesic with energy E > 0,
Carter constant K , angular momentum L = 0 and given signs of r

�
0
, θ
�
0
. We can as-

sociate a hamiltonian flow line using (3.12) to define the initial data τ0, ξ0, qθ0
, qϕ0

given t0, r0, θ0, ϕ0. The signs of qθ0
and ξ0 are fixed by sign qθ0

= − sign θ
�
0

and
sign ξ0 = − sign r

�
0
. From (3.12) we infer conditions under which ξ, qθ do not change

their signs:

K < min
r∈(r+,∞)

(r2 + a
2)2E2

∆
=⇒ ξ does not change its sign,

Q ≥ 0 =⇒ qθ does not change its sign.

Note that in the case Q = 0 γ is either in the equatorial plane or it does not cross it.
Under the above conditions ξ (resp. qθ) can be understood as a function of r (resp. θ)
alone. In this case let kK ,E and �K ,E such that

dkK ,E(r)

dr
=

ξ(r)

E
, �

�
K ,E

=
qθ(θ)

E

, �r K ,E := kK ,E(r) + �K ,E(θ).(3.25)

It is easy to check that (t, �r K ,E , ω) is a coordinate system on block I. We note that
by (3.16) we have ∂st = Eσ

2
/∆ > 0, thus r, θ,ϕ can be understood as functions of t

along γ.
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Lemma 3.1. – If t is the Boyer-Lindquist time, we have

∂�r K ,E

∂t
= −1 along γ.(3.26)

Proof. – This is an explicit calculation using equations (3.13)–(3.16), (3.17)–(3.24):

∂�r K ,E

∂t
=

∂�r K ,E

∂r
· ∂r

∂s
· ∂s

∂t
+

∂�r K ,E

∂θ
· ∂θ

∂s
· ∂s

∂t

= −
�
|ξ|2∆ + |qθ|2

� 1

E

�
aD + (r

2
+ a

2
)
P

∆

�−1

= − 1

E

�P 2

∆
− D2

sin
2
θ

��
aD + (r

2
+ a

2
)
P

∆

�−1

= −1.

We will suppose from now on r
�
0

< 0, i.e. our construction is based on incoming
null geodesics.

Remark 3.2. – Using the axial symmetry of the Kerr-Newman space-time we can
for many studies of field equations in this background fix the angular momentum
∂ϕ = in in the expression of the operator. The principal symbol of the new operator
is the principal symbol of the old one with qϕ = 0. This explains the importance
of Lemma 3.1.

We will often use the r∗ variable and its dual variable ξ
∗. In this case we have

to replace ξ(r) by ((r2 + a
2)/∆)ξ∗(r∗). The function kK ,E is then a function of r∗

satisfying

k
�
K ,E

(r∗) =
ξ
∗

E

,(3.27)

where the prime denotes derivation with respect to r∗. Using the explicit form of the
Carter constant in Theorem 3.1 we find

(k
�
K ,E

)
2

= 1− ∆K
(r2 + a2)2E2

,(3.28)

(�
�
K ,E

)
2

=
K
E2

− a
2
sin

2
θ.(3.29)

In particular we have

(k
�
K ,E

)
2
(r2 + a

2)2

σ2
+ (�

�
K ,E

)
2

∆

σ2
= 1.(3.30)

We will often consider the case Q = 0 and write in this case simply k, � instead
of ka2E2,E and �a2E2,E .
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Remark 3.3. – The incoming null geodesics with Carter constant K , angular mo-
mentum L = 0, energy E > 0 and given sign of θ

�
0

are the integral curves of the
following vector fields

M
a

K ,E
=

E

ρ2

�
σ

2

∆
∂t − (r

2
+ a

2
)k
�
K ,E

(r∗(r))∂r(3.31)

− �
�
K ,E

(θ)∂θ +
a(2Mr −Q

2)

∆
∂ϕ

�
.

Let us put

V
a

1
∂a =

�
σ2/ρ2∆

�
∂t +

a(2Mr −Q
2)

σ2
∂ϕ

�
,

V
a

2
∂a =

�
∆/ρ2σ2

�
(r

2
+ a

2
)k
�
K ,E

(r∗(r))∂r + �
�
K ,E

(θ)∂θ

�
,

W
a

1
∂a =

�
ρ2/σ2

sin θ
∂ϕ,

W
a

2
∂a =

r
2 + a

2

�
ρ2σ2

�
∆

r2 + a2
�
�
K ,E

∂r − k
�
K ,E

∂θ

�
.

Note that

V
a

1
V1a = 1, V

a

2
V2a = W

a

1
W1a = W

a

2
W2a = −1,

L
a
Na = 0 ∀Na

, L
a ∈ {V a

1
, V

a

2
, W

a

1
, W

a

2
}, L

a �= N
a
.

Clearly the considered null geodesics lie in Π = span{V a

1
, V

a

2
}. Using the Frobenius

theorem (see e.g. [42, Theorem 1.7.4]) we see that, in contrast to the PNG case, in
our case the distribution of planes Π⊥ = span{W a

1
, W

a

2
} is integrable.

Corollary 3.2. – For given Carter constant K , energy E > 0 and sign of θ
�
0

the
following surfaces are characteristic:

C c,±
K ,E

=
�
(t, r∗, θ, ϕ); ±t = �r K ,E(r∗, θ) + c

�
.

Proof. – By Lemma 3.1 the incoming null geodesic γ with Carter constant K , en-
ergy E, angular momentum L = 0 and the correct sign of θ

�
0

lies entirely in C c,−
K ,E

if
the starting point lies in it. The geodesic γ(−s) lies in C c,+

K ,E
.

Remark 3.4. – (i) The variable �r K ,E is a Bondi-Sachs type coordinate. This coordi-
nate system is discussed in some detail in [23]. As in [23] we will call the null geodesics
with L = Q = 0 simple null geodesics (SNG’s).

(ii) A natural way of finding the variable �r K ,E is to start with Corollary 3.2. Look
for functions kK ,E(r∗) and �K ,E(θ) such that C c,±

K ,E
= {±t = kK ,E(r∗) + �K ,E(θ)} is

characteristic. The condition that the normal is null is equivalent to (3.30). The curve
generated by the normal lies entirely in C c,±

K ,E
.
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Remark 3.5. – From the explicit form of the Carter constant in Theorem 3.1 follows:

q
2

θ
+ (p− E

2
)a

2
cos

2
θ +

q
2

ϕ

sin
2
θ

= Q.(3.32)

This is the equation of the θ motion and it is interpreted as conservation of the
mechanical energy with V (θ) = (p−E

2)a2 cos2 θ + q
2

ϕ
/sin

2
θ as potential energy and

q
2

θ
in the role of kinetic energy. The quantity �E = (E2 − p)a2 is usually called the

rotational energy.

3.2. The model of the collapsing star

Let S
0

be the surface of the star at time t = 0. We suppose that elements x0 ∈ S
0

will move along curves which behave asymptotically like certain incoming timelike
geodesics γp. All these geodesics should have the same energy E, angular momen-
tum L, Carter constant K (resp. Q = K − (L − aE)2) and “mass" p := �γ�

p
, γ
�
p
�.

We will suppose:

(A) The angular momentum L vanishes: L = 0.

(B) The rotational energy vanishes: �E = a
2(E2 − p) = 0.

(C) The total angular momentum about the axis of symmetry vanishes: Q = 0.

Conditions (A)–(C) are imposed by the fact that the collapse itself creates the
space-time, thus momenta and rotational energy should be zero with respect to the
space-time.

3.2.1. Timelike geodesics with L = Q = �E = 0. – We study the above family of
geodesics. The starting point of the geodesic is denoted (0, r0, θ0, ϕ0). Given a point
in the space-time, the conditions (A)-(C) define a unique cotangent vector provided
you add the condition that the corresponding tangent vector is incoming. The choice
of p is irrelevant because it just corresponds to a normalization of the proper time.

Lemma 3.2. – Along the geodesic γp we have:
∂θ

∂t
= 0,(3.33)

∂ϕ

∂t
=

a(2Mr −Q
2)

σ2
,(3.34)

where t is the Boyer-Lindquist time.

Proof. – Equation (3.33) follows directly from (3.14). We have

∂ϕ

∂t
=

∂ϕ

∂s

∂s

∂t
=

1

ρ2

�
− aE +

a(r2 + a
2)E

∆

�
ρ
2

�
− a

2
E sin

2
θ +

(r2 + a
2)2

∆
E

�−1

=
∆a

σ2∆
(r

2
+ a

2 −∆) =
a(2Mr −Q

2)

σ2
·
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The function ∂ϕ/∂t = a(2Mr −Q
2)/σ

2 is usually called the local angular velocity
of the space-time. Our next aim is to adapt our coordinate system to the collapse of
the star. The most natural way of doing this is to choose an incoming null geodesic γ

with L = Q = 0 and then use the Bondi-Sachs type coordinate as in the previous
section. In addition we want that k(r∗) behaves like r∗ when r∗ → −∞. We therefore
put

k(r∗) = r∗ +

�
r∗

−∞

��

1− a2∆(s)

(r(s)2 + a2)2
− 1

�
ds,(3.35)

�(θ) = a sin θ.(3.36)

The choice of the sign of �
� is not important, the opposite sign would have been pos-

sible. Recall that cos θ does not change its sign along a null geodesic with L = Q = 0.
We fix the notation for the null vector fields generating γ and the corresponding
outgoing vector field (see Remark 3.3):

N
±,a

∂a =
Eσ

2

ρ2∆

�
∂t ±

(r2 + a
2)2

σ2
k
�
(r∗)∂r∗(3.37)

± ∆

σ2
a cos θ∂θ +

a(2Mr −Q
2)

σ2
∂ϕ

�
.

These vector fields will be important for the construction of the Newman-Penrose
tetrad. We put

�r = k(r∗) + �(θ)(3.38)

and by Lemma 3.1 we have

∂�r
∂t

= −1 along γ.(3.39)

Note that in the (t, �r,ω) coordinate system the metric is given by

g =

�
1 +

Q
2 − 2Mr

ρ2

�
dt

2
+

2a sin
2
θ(2Mr −Q

2)

ρ2
dtdϕ(3.40)

− ρ
2∆

(r2 + a2)2

(d�r − �
�(θ)dθ)2

k�(r∗)2
− ρ

2
dθ

2 − σ
2

ρ2
sin

2
θdϕ

2
.

In order to describe the model of the collapsing star we have to evaluate ∂�r/∂t

along γp. We start by studying r(t, θ). Recall that θ(t) = θ0 = Const. along γp and
that κ+ =

1

2
(r+ − r−)/(r2

+
+ a

2) is the surface gravity of the outer horizon. In what
follows a dot will denote derivation in t.

Lemma 3.3. – There exist smooth functions �C1(θ, r0) and �C2(θ, r0) such that along γp

we have uniformly in θ, r0 ∈ [r1, r2] ⊂ (r+,∞):
1

2κ+

ln |r − r+| = −t− �C1(θ, r0)e
−2κ+t

+ �C2(θ, r0) + O(e
−4κ+t

), t →∞.
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Proof. – Note that (r2 +a
2) > ∆ on [r+,∞). Therefore ∂r/∂t cannot change its sign.

As γp is incoming, the minus sign has to be chosen. From (3.13), (3.16) we find with
p = E

2:
∂r

∂t
= −

�
(r

2
+ a

2
)(2Mr −Q

2
)
� 1

2
∆

σ2
·(3.41)

We can consider θ as a parameter. Equation (3.41) gives

t = −
�

r

r0

σ
2

((s2 + a2)(2Ms−Q2))
1

2 ∆
ds(3.42)

= − 1

2κ+

ln |r − r+| + �C2 −
�

r

r+

P (s)ds

with

P (r) :=

�
σ

2

((r2 + a2)(2Mr −Q2))
1

2 (r − r−)
− 1

2κ+

�
1

r − r+

=

�
P1(r)

P2(r)
− 1

2κ+

�
1

r − r+

=

P
2

1
(r)− 1

4κ
2

+

P
2

2
(r)

P2(r)(P1(r) +
1

2κ+

P2(r))

1

r − r+

,

�C2 :=
1

2κ+

ln |r0 − r+| +
�

r0

r+

P (s)ds.

Note that P
2

1
(r+) − (1/4κ

2

+
)P 2

2
(r+) = 0. As P

2

1
(r) − (1/4κ

2

+
)P 2

2
(r) is a polynomial

we infer that P (r) is smooth at r+. Let

F (r) :=
1

r − r+

�
r

r+

P (s)ds.

Clearly F is smooth and limr→r+
F (r) = P (r+) =: F (r+). From (3.42) we infer:

r − r+ = e
−2κ+t

e
2κ+

�
�C2−(r−r+)F (r)

�
,(3.43)

r − r+ = e
−2κ+t

e
2κ+

�C2 e
f(t)(3.44)

with f(t) = O(e−2κ+t). Putting (3.44) into (3.43) we obtain

r − r+ = e
−2κ+t

e
2κ+

�
�C2−e

−2κ+t
e
2κ+

�C2 e
f(t)

F (r)

�

so that
1

2κ+

ln |r − r+| = −t + �C2 − e
−2κ+t

e
2κ+

�C2 e
f(t)

F (r)

= −t + �C2 − e
−2κ+t

e
2κ+

�C2F (r+)

+ e
2κ+( �C2−t)

(F (r+)− e
f(t)

F (r)
�

and it remains to show

F (r+)− e
f(t)

F (r) = O(e
−2κ+t

).(3.45)
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We write

F (r+)− e
f(t)

F (r) = F (r+)− F (r) +
�
1− e

f(t)
�
F (r).(3.46)

Noting that ef(t) = 1 + O(e−2κ+t) we obtain the required estimate for the second
term in (3.46). To estimate the first term we write

F (r+)− F (r) =

�
r

r+

P (r+)− P (s)

r − r+

ds.

As |P (s)− P (r+)| � |s− r+| we have

|F (r+)− F (r)| �
�

r

r+

���
s− r+

r − r+

���ds � |r − r+| = O(e
−2κ+t

).

Equality (3.45) follows. From the explicit form of the equations it is clear that every-
thing is uniform in θ, r0 ∈ [r1, r2].

Lemma 3.4. – (i) There exist smooth functions A(θ, r0), B(θ, r0) such that along γp

we have uniformly in θ, r0 ∈ [r1, r2] ⊂ (r+,∞) :

r∗ = −t−A(θ, r0)e
−2κ+t

+ B(θ, r0) + O(e
−4κ+t

), t →∞.

(ii) There exist smooth functions �A(θ, r0) > 0, �B(θ, r0) such that along γp we have
uniformly in θ, r0 ∈ [r1, r2] ⊂ (r+,∞) :

�r = −t− �A(θ, r0)e
−2κ+t

+ �B(θ, r0) + O(e
−4κ+t

), t →∞.(3.47)

Furthermore there exists k0 > 0 such that for all t > 0, θ ∈ [0, π] we have

�
(r2 + a

2)2

σ2
k
�2 − �̇r

2
�
≥ k0 e

−2κ+t
.
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Proof. – (i) Recall that

r∗ = r +
1

2κ+

ln |r − r+|− 1

2κ−
ln |r − r−|

= r − t− �C1(θ, r0)e
−2κ+t

+ �C2(θ, r0)−
1

2κ−
ln |r − r−| + O(e

−4κ+t
)

= r+ + e
−2κ+t

e
−2κ+

�C1(θ,r0)e
−2κ+t

e
2κ+

�C2(θ,r0) e
O(e−4κ+t

)

− 1

2κ−
ln

���e−2κ+t
e
2κ+

�C1(θ,r0)e
−2κ+t

− e
2κ+

�C2(θ,r0) e
O(e−4κ+t

)
+ r+ − r−

���

− t− �C1(θ, r0)e
−2κ+t

+ �C2(θ, r0) + O(e
−4κ+t

)

= −t + e
−2κ+

�C1(θ,r0) e
2κ+

�C2(θ,r0) e
−2κ+t

− 1

2κ−(r+ − r−)
e
−2κ+

�C1(θ,r0) e
2κ+

�C2(θ,r0) e
−2κ+t

+ �C2(θ, r0)− �C1(θ, r0)e
−2κ+t

+ r+

− 1

2κ−
ln |r+ − r−| + O(e

−4κ+t
)

= −t−A(θ, r0)e
−2κ+t

+ B(θ, r0) + O(e
−4κ+t

),

where we have used the Taylor expansions of the functions ex and ln(1 + x).

(ii) By part (i) of the lemma we have

∂�r
∂t

=

�

1− a2∆

(r2 + a2)2

∂r∗
∂t

=

�

1− a2∆

(r2 + a2)2

�
−1 + 2κ+A(θ, r0)e

−2κ+t
+ O(e

−4κ+t
)
�
.(3.48)

By Lemma 3.3 we find

a
2∆

(r2 + a2)2
= G(r0, θ)e

−2κ+t
+ O(e

−4κ+t
),(3.49)

and thus
�

1− a2∆

(r2 + a2)2
= 1− 1

2

a
2∆

(r2 + a2)2
+ O(e

−4κ+t
)

= 1− 1

2
G(r0, θ)e

−2κ+t
+ O(e

−4κ+t
).

Putting this into (3.48) gives

∂�r
∂t

= −1 + 2κ+
�A(θ, r0)e

−2κ+t
+ O(e

−4κ+t
), t →∞.
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It remains to show that �A(θ, r0) > 0. The curve t �→ (t, �r(t), θ(t), ϕ(t)) has to be
timelike. Using (3.40) and (3.8) we find

E
2

= p = �γ�
p
, γ
�
p
� =

ρ
2∆

(r2 + a2)2k�2

�
(r2 + a

2)2

σ2
k
�2 − �̇r

2
�
(∂st)

2

=
E

2
σ

4

(r2 + a2)2k�2ρ2∆

�
(r2 + a

2)2

σ2
k
�2 − �̇r

2
�
.

It follows that
�

(r2 + a
2)2

σ2
k
�2 − �̇r

2
�
≥ c0∆ ≥ k0 e

−2κ+t
.

In particular we have �A(θ, r0) > 0.

3.2.2. Precise assumptions. – Let us now make the precise assumptions on the
collapse. We will suppose that the surface at time t = 0 is given in the (t, �r, θ, ϕ)

coordinate system by S
0

= {(�r0(θ0), θ0, ϕ0); (θ0, ϕ0) ∈ S
2}, where �r0(θ0) is a smooth

function. As �r0 does not depend on ϕ0, we will suppose that �z(t, θ0, ϕ0) will be
independent of ϕ0 : �z(t, θ0, ϕ0) = �z(t, θ0) = �z(t, θ) as this is the case for �r(t) describing
the geodesic. Thus the surface of the star is given by

S = {(t, �z(t, θ), ω); t ∈ R, ω ∈ S
2}.(3.50)

The function �z(t, θ) satisfies
�
∀ t ≤ 0, ∀ θ ∈ [0, π],

�z(t, θ) = �z(0, θ) < 0,

(3.51)

�
∀ t > 0, ∀ θ ∈ [0, π],

�̇z(t, θ) < 0,

(3.52)






∃ k0 > 0, ∀ t > 0, ∀ θ ∈ [0, π],

�
(r2 + a

2)2

σ2
k
�2

��
�z(t, θ), θ)− �̇z

2

(t, θ)
�
≥ k0 e

−2κ+t
,

(3.53)






∃ �A ∈ C
∞([0, π]), ∃ ξ̂ ∈ C

∞�
R× [0, π]

�
,

�z(t, θ) = −t− �A(θ)e−2κ+t + ξ̂(t, θ), �A(θ) > 0,

∀α,β, 0 ≤ α,β ≤ 2, ∀ θ ∈ [0, π], ∃Cα,β , ∀ t > 0,
��∂α

t
∂

β

θ
ξ̂(t, θ)

�� ≤ Cα,β e−4κ+t
.

(3.54)

As already explained these assumptions are motivated by the preceding analysis.
We do not suppose that a point on the surface moves exactly on a geodesic. Note
that (3.52), (3.53) imply

∀ t > 0, ∀ θ ∈ [0, π], −1 < �̇z(t, θ) < 0.
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Equations (3.51)–(3.54) summarize our assumptions on the collapse. The space-time
of the collapsing star is given by

Mcol =
�
(t, �r, θ, ϕ); �r ≥ �z(t, θ)

�
.

We will also note
Σ

col

t
=

�
(�r, θ, ϕ); �r ≥ �z(t, θ)

�
.

Thus
Mcol =

�

t

Σ
col

t
.

Note that in the (t, r∗, θ,ϕ) coordinate system Mcol and Σcol

t
are given by

Mcol =
�
(t, r∗, θ, ϕ); r∗ ≥ z(t, θ)

�
, Σ

col

t
=

�
(r∗, θ, ϕ); r∗ ≥ z(t, θ)

�

with
z(t, θ) = −t−A(θ)e

−2κ+t
+ B(θ) + O(e

−4κ+t
)

for some appropriate A(θ), B(θ).

Remark 3.6. – (i) Let us compare assumptions (3.50)–(3.54) to the preceding discus-
sion on geodesics. Assumption (3.54) contains with respect to the previous discussion
an additional asymptotic assumption. Comparing to Lemma 3.4 this condition can
be expressed as �B(θ, r0(θ)) = Const. (r0(θ) = r(�r0(θ), θ)). Using the freedom of the
constant of integration in (3.4) we can suppose

�B
�
θ, r0(θ)

�
= 0.(3.55)

(ii) The Penrose compactification of block I can be constructed based on the SNG’s
rather than on the principal null geodesics (PNG’s). This construction is explained
in Appendix B. Starting from this compactification we could establish a model of the
collapsing star that is similar to the one established by Bachelot for the Schwarzschild
case (see [6]). In this model the function �z would be independent of θ.

We finish this chapter with a lemma which shows that the asymptotic form (3.54)
can be accomplished by incoming timelike geodesics with L = Q = �E = 0.

Lemma 3.5. – There exists a smooth function �r0(θ) with the following property.
Let γ be a timelike incoming geodesic with Q = L = �E = 0 and starting point
(0, �r0(θ0), θ0, ϕ0). Then we have along γ:

�r + t −→ 0, t →∞.

Proof. – Let Mθ(r) = �C2(θ, r) with �C2(θ, r) as in Lemma 3.3. We have (see the
explicit form of �C2(θ, r) in the proof of Lemma 3.3):

lim
r→r+

Mθ(r) = −∞, lim
r→∞

Mθ(r) = ∞,
∂Mθ

∂r
≥ � > 0, ∀ r ∈ (r+,∞), ∀ θ ∈ [0, π].

Therefore M
−1

θ
exists and we put

r0(θ) = M
−1

θ

�
− a sin θ − r+ +

1

2κ−
ln |r+ − r−|

�
, �r0(θ) = �r(r0(θ), θ).
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Clearly �C2(θ, r0(θ)) = −a sin θ−r++
1

2κ−
ln |r+−r−|. Following the proof of Lemma 3.4

we see that

B(θ, r0) = �C2(θ, r0) + r+ −
1

2κ−
ln |r+ − r−| = −a sin θ.

Using (3.35), (3.36), (3.38) and (3.47) we see that
�B
�
θ0, r0(θ0)

�
= lim

t→∞
�r + t = B

�
θ0, r0(θ0)

�
+ a sin θ0 = 0.





CHAPTER 4

CLASSICAL DIRAC FIELDS

In this chapter we describe classical Dirac fields on BI as well as on Mcol. The
main results of this chapter are collected in Section 4.1. Sections 4.2 and 4.3 contain
a discussion about spin structures and Dirac fields which is valid in general globally
hyperbolic space-times. In Section 4.4 we introduce a new Newman-Penrose tetrad
which is adapted to our problem and we discuss scattering results as far as they
are needed for the formulation and discussion of the main theorem. Other scattering
results are collected in Chapter 6. The boundary condition is discussed in Section 4.5.
The constructions in this chapter are crucial for what follows. However the reader
who wishes to get a first idea of the main theorem can in a first reading accept the
results of Section 4.1 and skip the rest of this chapter before coming back to it later.

4.1. Main results

Let H = L
2((R�r × S

2
, d�r dω); C4), Γ1 = Diag(1,−1,−1, 1).

Proposition 4.1. – There exists a Newman-Penrose tetrad such that the Dirac equa-
tion in the Kerr-Newman space-time can be written as

∂tψ = iHψ, H = Γ
1
D�r + Pω + W,

where W is a real potential and Pω is a differential operator of order one with deriva-
tives only in the angular directions. The operator H is selfadjoint with domain

D(H) =
�
v ∈ H ; Hv ∈ H

�
.

Proposition 4.2. – There exist selfadjoint operators P
± such that for all g ∈ C∞(R):

g(P
±

) = s− lim
t→±∞

e
−itH

g

��r
t

�
e
itH

.(4.1)
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Let

H← = Γ
1
D�r −

a

r
2
+

+ a2
Dϕ −

qQr+

r
2
+

+ a2
,

H +
=

�
v = (v1, v2, v3, v4) ∈ H ; v1 = v4 = 0

�
,

H − =
�
v = (v1, v2, v3, v4) ∈ H ; v2 = v3 = 0

�
.

The operator H← is selfadjoint on H with domain D(H←) = {v ∈ H ;H←v ∈ H }.

Theorem 4.1. – The following wave operators exist:

W
±
← = s− lim

t→±∞
e
−itH

e
itH←P H∓ ,

Ω
±
← = s− lim

t→±∞
e
−itH← e

itH1R∓(P
±

).

There exist similar wave operators at infinity using a modified asymptotic dynamics
UD(t). Using the above tetrad the Dirac equation with MIT boundary condition
(chiral angle ν) can be written in the form






∂tΨ = iHΨ, �z(t, θ) < �r,
� �

µ̂∈{t,�r,θ,ϕ}

N µ̂�γ µ̂

�
Ψ

�
t, �z(t, θ), ω

�
= −ie

−iνγ
5

Ψ
�
t, �z(t, θ), ω

�
,

Ψ(t = s, .) = Ψs(.).

(4.2)

Here N µ̂ are the coordinates of the conormal, �γ µ̂ are some appropriate Dirac matrices
and γ

5 = Diag(1, 1,−1,−1). Let H t = L
2(({(�r, ω) ∈ R×S

2; �r ≥ �z(t, θ)}, d�r dω); C4).

Proposition 4.3. – Equation (4.2) can be solved by a unitary propagator

U(t, s) : H s −→ H t.

4.2. Spin structures

Let (M, g) be a smooth 4-manifold with a lorentzian metric g with signature
(+,−,−,−) which is assumed to be oriented, time oriented and globally hyperbolic.
Global hyperbolicity implies:

1) (M, g) admits a spin structure (see R.P. Geroch [24], [25], [26] and E. Stiefel
[45]) and we choose one. We denote by S (or SA in the abstract index formalism)
the spin bundle over M and S (or SA

�
) the same bundle with the complex structure

replaced by its opposite. The dual bundles S∗ and S∗ will be denoted respectively SA

and SA� . The complexified tangent bundle to M is recovered as the tensor product of
S and S, i.e.

T M ⊗ C = S⊗ S or T
a M ⊗ C = SA ⊗ SA

�

and similarly
T
∗M ⊗ C = S∗ ⊗ S∗ or Ta M ⊗ C = SA ⊗ SA� .
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An abstract tensor index a is thus understood as an unprimed spinor index A and a
primed spinor index A

� clumped together: a = AA
�. The symplectic forms on S and S

are denoted �AB , �A�B� and are referred to as the Levi-Civita symbols. The form �AB

can be seen as an isomorphism from S to S∗ which to κ
A associates κA = κ

B
�BA.

Similarly, �A�B� and the corresponding �
A
�
B
�
can be regarded as lowering and raising

devices for primed indices. The metric g is expressed in terms of the Levi-Civita
symbols as gab = �AB�A�B� .

2) There exists a global time function t on M. The level surfaces Σt, t ∈ R, of the
function t define a foliation of M, all Σt being Cauchy surfaces and homeomorphic
to a given smooth 3-manifold Σ (see Geroch [26]). Geroch’s theorem does not say
anything about the regularity of the leaves Σt; the time function is only proved to be
continuous and they are thus simply understood as topological submanifolds of M.
A regularization procedure for the time function can be found in [8], [9]. In the
concrete cases which we consider in this paper the time function is smooth and all the
leaves are diffeomorphic to Σ. The function t is then a smooth time coordinate on M
and it is increasing along any non space-like future oriented curve. Its gradient ∇a

t

is everywhere orthogonal to the level surfaces Σt of t and it is therefore everywhere
timelike; it is also future oriented. We identify M with the smooth manifold R × Σ

and consider g as a tensor valued function on R× Σ.

Let T
a be the future-pointing timelike vector field normal to Σt, normalized for

later convenience to satisfy T
a
Ta = 2, i.e.

T
a

=

√
2

|∇t|∇
a
t, where |∇t| = (gab∇a

t∇b
t)

1

2 .

4.3. The Dirac equation and the Newman-Penrose formalism

In terms of two component spinors (sections of the bundles SA, SA, SA
�

or SA�),
the charged Dirac equation takes the form (see [44], page 418):

(4.3)





(∇A

A� − iqΦA

A�)φA = µχA� ,

(∇A
�

A
− iqΦA

�

A
)χA� = µφA, µ = m/

√
2,

where m ≥ 0 is the mass of the field. The Dirac equation (4.3) possesses a conserved
current (see for example [40]) on general curved space-times, defined by the future
oriented non-spacelike vector field, sum of two future oriented null vector fields

V
a

= φ
A
φ̄

A
�
+ χ̄

A
χ

A
�
.

The vector field V
a is divergence free, i.e. ∇a

Va = 0. Consequently the 3-form ω =

∗Va dx
a is closed. Let Σ be a spacelike or characteristic hypersurface, dΩ the volume
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form on M induced by the metric (dΩ = ρ
2 dt∧ dr∧ dω for the Kerr-Newman metric),

N a the (future pointing) normal to Σ and La transverse to Σ with N a La = 1. Then
�

Σ

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
)

=

�

Σ

N BB� LBB
�
∗ (φAφ̄A� dx

AA
�
+ χ̄AχA� dx

AA
�
)

=

�

Σ

LCC
�
∂CC� �

�
N BB� dx

BB
�
∧ ∗(φAφ̄A� dx

AA
�
+ χ̄AχA� dx

AA
�
)
�

=

�

Σ

N AA
�
(φAφ̄A� + χ̄AχA�)( LBB

�
∂BB�) � dΩ.

If Σ is spacelike we can take LAA
�
= N AA

�
and the integral defines a norm and by

this norm the space L
2(Σ; SA⊕SA

�
) as completion of C

∞
0

(Σ; SA⊕SA
�
). Note that if Σ

is characteristic
�
Σ
∗φAφ̄A� dx

AA
�
= 0 does not entail φA = 0 on Σ (see Remark 4.1).

If Σt are the level surfaces of t, then we see by Stokes’ theorem that the total charge

C(t) =
1√
2

�

Σt

VaT
a
dσΣt

(4.4)

is constant throughout time. Here dσΣt
= (1/

√
2)T a � dΩ.

Using the Newman-Penrose formalism, equation (4.3) can be expressed as a system
of partial differential equations with respect to a coordinate basis. This formalism is
based on the choice of a null tetrad, i.e. a set of four vector fields �

a, n
a, m

a and m
a,

the first two being real and future oriented, m
a being the complex conjugate of m

a,
such that all four vector fields are null and m

a is orthogonal to �
a and n

a, that is
to say

(4.5) �a�
a

= nan
a

= mam
a

= �am
a

= nam
a

= 0.

The tetrad is said to be normalized if in addition

(4.6) �an
a

= 1, mam
a

= −1.

The vectors �
a and n

a usually describe “dynamic" or scattering directions, i.e. direc-
tions along which light rays may escape towards infinity (or more generally asymp-
totic regions corresponding to scattering channels). The vector m

a tends to have, at
least spatially, bounded integral curves, typically m

a and m
a generate rotations. The

principle of the Newman-Penrose formalism is to decompose the covariant derivative
into directional covariant derivatives along the frame vectors. We introduce a spin-
frame {oA

, ι
A}, defined uniquely up to an overall sign factor by the requirements

that

(4.7) o
A
ō

A
�
= �

a
, ι

A
ῑ
A
�
= n

a
, o

A
ῑ
A
�
= m

a
, ι

A
ō

A
�
= m

a
, oAι

A
= 1.

We will also denote the spin frame by {�A

0
, �

A

1
}. The dual basis of SA is {�0

A
, �

1

A
}, where

�
0

A
= −ιA, �

1

A
= oA. Let φ0 and φ1 be the components of φA in {oA

, ι
A}, and χ0� , χ1�
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the components of χA� in (ōA
�
, ῑ

A
�
):

φ0 = φAo
A

, φ1 = φAι
A

, χ0� = χA� ō
A
�
, χ1� = χA� ῑ

A
�
.

The Dirac equation then takes the form (see for example [13])





n
a
(∂a− iqΦa)φ0−m

a
(∂a − iqΦa)φ1 + (µ− γ)φ0 + (τ −β)φ1 =

m√
2
χ1� ,

�
a
(∂a− iqΦa)φ1 −m

a
(∂a − iqΦa)φ0 + (α− π)φ0 + (ε− ρ̃)φ1 = − m√

2
χ0� ,

n
a
(∂a− iqΦa)χ0� −m

a
(∂a − iqΦa)χ1� + (µ̄− γ̄)χ0� + (τ̄ − β̄)χ1� =

m√
2
φ1,

�
a
(∂a− iqΦa)χ1� −m

a
(∂a−iqΦa)χ0� + (ᾱ− π̄)χ0� + (ε̄− ¯̃ρ)χ1� = − m√

2
φ0.

(4.8)

The µ, γ, etc. are the so called spin coefficients, for example µ = −m
a
δna and δ =

m
a∇a. For the formulas of the spin coefficients and details about the Newman-Penrose

formalism see e.g. [44].
It is often useful to allow simultaneous consideration of bases of T

a M and SA,
which are completely unrelated to one another. Let {e0, e1, e2, e3} be such a basis
of T

a M, which is not related to the Newman-Penrose tetrad.
We define the Infeld-Van der Waerden symbols as the spinor components of the

frame vectors in the spin frame {�A

0
, �

A

1
}:

g
AA�

a = e
AA�

a = g
a

a�
A
A

�
A�

A� =

�
na −ma

−ma �a

�

(recall that g
a

a = e
a

a denotes the vector field ea). We use these quantities to ex-
press (4.3) in terms of spinor components:






−i�
A�

A� (∇AA
� − iqΦAA

�
)φA = −ig

aAA�
�
A

A(∇a − iqΦa)φA = −iµχ
A�

,

−i�
A

A(∇AA� − iqΦAA�)χ
A
�

= −ig
a
AA��

A�

A� (∇a − iqΦa)χ
A
�
= iµφA,

(4.9)

where ∇a denotes ∇ea . For a = 0, 1, 2, 3, we introduce the 2× 2 matrices

A
a

=
t
g
aAA�

, B
a

= g
a
AA� ,

and the 4× 4 matrices

γ
a

=




0 i

√
2B
a

−i
√

2A
a 0



 .(4.10)

We find

γ
a

= i

√
2





0 0 �
a

m
a

0 0 m
a

n
a

−n
a

m
a 0 0

m
a −�

a 0 0




.(4.11)
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Putting Ψ = φA ⊕ χ
A
�
, the components of Ψ in the spin frame are

Ψ =
t
(φ0, φ1, χ

0
�
, χ

1
�
)

and (4.9) becomes

3�

a=0

γ
a P(∇ea − iqΦa)Ψ + imΨ = 0,(4.12)

where P is the mapping that to a Dirac spinor associates its components in the spin
frame:

Ψ = φA ⊕ χ
A
�
�→ Ψ = φA ⊕ χ

A�
.

Remark 4.1. – We have

φA = −φ0ιA + φ1oA, χA� = −χ0� ῑA� + χ1� ōA� .

Thus

φAφ̄A� = (−φ0ιA + φ1oA)(−φ̄0ῑA� + φ̄1ōA�)

= |φ0|2na − φ0φ̄1ma − φ1φ̄0ma + |φ1|2�a,

χ̄AχA� = |χ0� |2na − χ̄0�χ1�ma − χ̄1�χ0�ma + |χ1� |2�a.

Putting Ψ = (φ0, φ1, χ1� ,−χ0�) we obtain

φAφ̄A� + χ̄AχA� = |Ψ1|2na −Ψ1Ψ̄2ma −Ψ2Ψ̄1ma + |Ψ2|2�a

+ |Ψ4|2na + Ψ̄4Ψ3ma + Ψ̄3Ψ4ma + |Ψ3|2�a.

Thus for a vector field X
a we have

X
AA

�
(φAφ̄A� + χ̄AχA�) = �XΨ,Ψ�C4 ,(4.13)

X =





naX
a −maX

a 0 0

−maX
a

�aX
a 0 0

0 0 �aX
a

maX
a

0 0 maX
a

naX
a




.(4.14)

If Σ is a characteristic hypersurface with conormal na, then
�

Σ

∗
�
(φAφ̄A� + χ̄AχA�)dx

AA
��

(4.15)

=

�

Σ

n
a
�
φAφ̄A� + χ̄AχA�

�
dσΣ =

�

Σ

�
|Ψ2|2 + |Ψ3|2

�
dσΣ,

where dσΣ = (�a
∂a) � dΩ.
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4.4. The Dirac equation on block I

4.4.1. A new Newman-Penrose tetrad. – The tetrad normally used to describe
the Dirac equation on the Kerr-Newman background is Kinnersley’s tetrad (see [34]).
Kinnersley uses the type D structure of the space-time and chooses the vectors n

a,
�
a to be V

±. In [29] it is argued that this tetrad is not adapted to time dependent
scattering problems. We introduce a new tetrad L

a
, N

a
, M

a
,M

a which is adapted to
the foliation in the sense that

L
a

+ N
a

= T
a
.

One advantage of a tetrad adapted to the foliation is that the conserved current simply
reads

1√
2

�

Σt

�
|φ0|2 + |φ1|2 + |χ0� |2 + |χ1� |2

�
dσΣt

.

This follows from the formulas (4.4) and (4.13). We choose L
a and N

a in the plane
spanned by T

a and ∂r and L
a to be outgoing, N

a to be incoming. The choice of M
a

is then imposed, except for the freedom of a constant factor of modulus 1. In [29]
this construction is done for the Kerr metric, the corresponding tetrad for the Kerr-
Newman metric is calculated in [15]:






L
a =

1

2
T

a
+

�
∆

2ρ2
∂r =

�
σ2

2∆ρ2

�
∂t +

a(2Mr −Q
2)

σ2
∂ϕ

�
+

�
∆

2ρ2
∂r,

N
a =

1

2
T

a −

�
∆

2ρ2
∂r =

�
σ2

2∆ρ2

�
∂t +

a(2Mr −Q
2)

σ2
∂ϕ

�
−

�
∆

2ρ2
∂r,

M
a =

1�
2ρ2

�
∂θ +

ρ
2

√
σ2

i

sin θ
∂ϕ

�
.

(4.16)

The Dirac equation in the Kerr-Newman metric is then described in the following
way. Let

DS2 =
1

i




0 ∂θ +

cot θ

2
+

i

sin θ
∂ϕ

∂θ +
cot θ

2
− i

sin θ
∂ϕ 0



 , D/S2 =




DS2 0

0 −DS2



 .

We define the Pauli matrices

σ
0

=

�
1 0

0 1

�
, σ

1
=

�
1 0

0 −1

�
, σ

2
=

�
0 1

1 0

�
, σ

3
= i

�
0 −1

1 0

�

and the Dirac matrices

γ
0

= i

�
0 σ

0

−σ
0 0

�
, γ

k
= i

�
0 σ

k

σ
k 0

�
, k = 1, 2, 3,

which satisfy the anticommutation relations

γ
µ
γ

ν
+ γ

ν
γ

µ
= 2η

µν
IR4 , µ, ν = 0, . . . , 3, η

µν
= Diag(1,−1,−1,−1).
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Let

γ
5

:= −iγ
0
γ

1
γ

2
γ

3
= Diag(1, 1,−1,−1).

We will also need the matrices Γj (j = 1, . . . , 4) defined by

Γ
k

=

�
σ

k 0

0 −σ
k

�
(1 ≤ k ≤ 3), Γ

4
= i

�
0 −σ

0

σ
0 0

�
.

Note that

Γ
1

= Diag(1,−1,−1, 1).

Let now Φ be the bi-spinor t(φ0, φ1, χ1� ,−χ0�) and

Ψ =

� √
∆σρ

r2 + a2
Φ.

Then the equation satisfied by Ψ is (see [15]):

∂tΨ = iD/ Ψ,(4.17)

D/ = h D/s h + VϕDϕ + V1,(4.18)

D/s = Γ
1
Dr∗ + a0(r∗) D/S2 +b0(r∗)Γ

4
+ c1(r∗) + c

ϕ

2
(r∗)Dϕ,(4.19)

a0(r∗) =

√
∆

r2 + a2
, b0(r∗) =

m
√

∆√
r2 + a2

, c1(r∗) = − qQr

r2 + a2
,(4.20)

c
ϕ

2
(r∗) = −a(2Mr −Q

2)

(r2 + a2)2
,(4.21)

h(r∗, θ) =

�
r2 + a2

σ
,(4.22)

Vϕ = −
√

∆

σ sin θ

�
ρ
2

σ
− 1

�
Γ

3 − a(2Mr −Q
2)

(r2 + a2)σ2
(r

2
+ a

2 − σ),(4.23)

V1 = V0 +
m
√

∆

σ
(ρ−

�
r2 + a2)Γ

4 − qQr

σ2
(r

2
+ a

2 − σ),(4.24)

V0 =





v0 v1 0 0

v̄1 −v0 0 0

0 0 v0 v̄1

0 0 v1 −v0




,(4.25)
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v0 = −a
3(2Mr −Q

2)∆ sin
2
θ cos θ

2ρ2σ3
,(4.26)

v1 = −aM
√

∆ sin θ

2ρ2σ

+
a
√

∆ sin θ(2Mr −Q
2)(2r(r2 + a

2)− (r −M)a2 sin
2
θ)

2ρ2σ3

− i
qQ
√

∆ra sin θ

σ2
·(4.27)

Recall from [15] that D/s, D/ are selfadjoint on

H ∗ := L
2
�
(R× S

2
; dr∗dω); C4

�

with domain

H 1

∗ := D(D/s) = D(D/) =
�
u ∈ H ∗; D/ u ∈ H ∗

�

and that their spectrum is purely absolutely continuous. We also define the asymptotic
dynamics

D/H = Γ
1
Dr∗ −

a

r
2
+

+ a2
Dϕ −

qQr+

r
2
+

+ a2
, D(D/H) =

�
u ∈ H ∗; D/H u ∈ H ∗

�
,(4.28)

D/→ = Γ
1
Dr∗ + mΓ

4
, D(D/→) =

�
u ∈ H ∗; D/→ u ∈ H ∗

�
.(4.29)

Even if the above tetrad was successfully used for the proof of the asymptotic com-
pleteness result, it has a major drawback for the treatment of the Hawking effect.
In fact in this representation and using the Regge-Wheeler type coordinate r∗ the
modulus of the local velocity

v := [r∗,D/ ] = h
2
Γ

1 �= Γ
1

is not equal to 1. The consequence is that in the high energy regime which is char-
acteristic of the Hawking effect the full dynamics D/ and the free dynamics D/H or D/s
are no longer close to each other. Now recall that ∂t�r = −1 along incoming null
geodesics with the correct sign of θ

�
0
. This means that the observable �r should in-

crease (resp. decrease) exactly like t along the evolution if we focus on scattering
directions on which �r increases (decreases) in this way. We therefore choose

�
a

= λN
+,a

, n
a

= λN
−,a(4.30)
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for some normalization constant λ. The choice of m
a is now imposed except for a

factor of modulus 1. We find





�
a =

�
σ2

2ρ2∆

�
∂t +

(r2 + a
2)2

σ2
k
�
(r∗)∂r∗ +

∆

σ2
a cos θ∂θ +

a(2Mr −Q
2)

σ2
∂ϕ

�
,

n
a =

�
σ2

2ρ2∆

�
∂t −

(r2 + a
2)2

σ2
k
�
(r∗)∂r∗ −

∆

σ2
a cos θ∂θ +

a(2Mr −Q
2)

σ2
∂ϕ

�
,

m
a =

�
ρ2

2σ2

�
i
r
2 + a

2

ρ2
(a cos θ∂r∗ − k

�
(r∗)∂θ) +

1

sin θ
∂ϕ

�
.

(4.31)

Note that in the (t, �r,ω) coordinate system we have

�
a =

�
σ2

2ρ2∆

�
∂t + ∂�r +

∆

σ2
a cos θ∂θ +

a(2Mr −Q
2)

σ2
∂ϕ

�
,

n
a =

�
σ2

2ρ2∆

�
∂t − ∂�r −

∆

σ2
a cos θ∂θ +

a(2Mr −Q
2)

σ2
∂ϕ

�
,

m
a =

�
ρ2

2σ2

�
− ik

� r
2 + a

2

ρ2
∂θ +

1

sin θ
∂ϕ

�

and that the tetrad �
a
, n

a
, m

a is adapted to the foliation.

4.4.2. The new expression of the Dirac equation. – Let us put

e
a

1 = L
a
, e

a

2 = N
a
, e

a

3 = M
a
, e

a

4 = M
a

,

e1
a

= La, e2
a

= Na, e3
a

= Ma, e4
a

= M a.

In order to find the new expression of the Dirac equation we express �
a
, n

a
, m

a
,m

a in
terms of L

a
, N

a
, M

a
,M

a and find the Lorentz transformation

L
b
a = L

b

a
e
a

ae
b
b

=
1

2





1 + α 1− α β β

1− α 1 + α −β −β

iβ −iβ −i(1 + α) i(1− α)

−iβ iβ −i(1− α) i(1 + α)




,(4.32)

where α = k
�
h

2 and β =
�

∆/σ2 a cos θ, in particular

α
2

+ β
2

= 1.(4.33)

We associate to the Newman-Penrose tetrads L
a
, N

a
, M

a
,M

a (resp. �
a
, n

a
, m

a
,m

a)
the spin frames {�̃A

0
, �̃

A

1
} (resp. {�A

0
, �

A

1
}) as explained in Section 4.3. The matrix S

B
A

of the corresponding spin transformation S
B

A
in the spin frame {�̃A

0
, �̃

A

1
} is uniquely

determined, modulo sign, by

L
b

a
= S

B

A
S

B
�

A� and det(S
B
A ) = 1.
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The first condition can be expressed in terms of coordinates as

L
b
a =





|S0

0
|2 |S1

0
|2 S

0

0
S

1
�

0� S
1

0
S

0
�

0�

|S0

1
|2 |S1

1
|2 S

0

1
S

1
�

1� S
1

1
S

0
�

1�

S
0

0
S

0
�

1� S
1

0
S

1
�

1� S
0

0
S

1
�

1� S
1

0
S

0
�

1�

S
0

1
S

0
�

0� S
1

1
S

1
�

0� S
0

1
S

1
�

0� S
1

1
S

0
�

0�





.

We find

S
B
A =

� S
0

0
S

1

0

S
0

1
S

1

1

�
=

1�
2(1 + α)

e
− 1

4
iπ

� 1 + α β

−iβ i(1 + α)

�
=: U.(4.34)

Let φC (resp. �φC) be the components of φA in the spin frame {�A

0
, �

A

1
} (resp. {�̃A

0
, �̃

A

1
})

and χ
C� (resp. �χC�) the components of χ

A
�
in the spin frames {�A

�

0� , �
A
�

1� } (resp. {�̃A
�

0� , �̃
A
�

1� }).
We have

φC = φA�
A

C = φA S
A

B
�̃
B

C = �φA �̃
A
A

S
A

B
�̃

B

C = �φA S
A
C ,

�χC
�
= χ

A
�
�̃
C�

A� = χ
A�

�
A
�

A� �̃
C�

A� = χ
A�

S
A
�

B� �̃
B
�

A� �̃
C�

A� = χ
A�

S
C�

A� .

Noting that the matrix S
C�

A� is the inverse of S
A
C it follows(1)

χ
C�

=

1�

A=0

S
A
C �χA

�
.

We put

U :=

�
U 0

0 U

�
.(4.35)

Our aim is to calculate
�
D/ := U D/ U∗.(4.36)

We define
�Γj

:= U Γ
j U∗, 1 ≤ j ≤ 4,

and find

�Γj
=

� �σj 0

0 −�σj

�
, 1 ≤ j ≤ 3, �Γ4

= Γ
4
,

�σ1
:=

�
α iβ

−iβ −α

�
, �σ2

:=

�
β −iα

iα −β

�
, �σ3

:=

�
0 −1

−1 0

�
.

(1) We make the usual convention that A = A� numerically.
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The Dirac operator �
D/ can be written in the form

�
D/ =

�
Mr∗ 0

0 −Mr∗

�
+

�
Mθ 0

0 −Mθ

�
+

a0h
2

sin θ

�Γ3
Dϕ

+ h
2
c1 + h

2
c
ϕ

2
Dϕ + �VϕDϕ + �V1,

�Vϕ = −
√

∆

σ sin θ

�
ρ
2

σ
− 1

�
�Γ3 − a(2Mr −Q

2)

(r2 + a2)σ2
(r

2
+ a

2 − σ),
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�V1 = �V0 +
m
√

∆

σ
(ρ−

�
r2 + a2)�Γ4 − qQr

σ2
(r

2
+ a

2 − σ),

�V0 =

� �V1 0

0 �̄V1

�
, �V1 = U

�
v0 v1

v̄1 −v0

�
U
∗
,

Mr∗ =
1

2

�
m

1

r∗ im
2

r∗

−im
2

r∗ −m
1

r∗

�
,

m
1

r∗ =
√

α + 1 hDr∗h
√

α + 1− βh√
α + 1

Dr∗

βh√
α + 1

,

m
2

r∗ =
√

α + 1 hDr∗

βh√
α + 1

+
βh√
α + 1

Dr∗h
√

α + 1,

Mθ =
1

2

�
m

1

θ
im

2

θ

−im
2

θ
−m

1

θ

�
,

m
1

θ
=

βh
√

a0√
α + 1

�
Dθ +

cot θ

2i

�√
a0 h

√
α + 1 +

√
α + 1 h

√
a0

�
Dθ +

cot θ

2i

�
βh
√

a0√
α + 1

,

m
2

θ
=

βh
√

a0√
α + 1

�
Dθ +

cot θ

2i

�
hβ
√

a0√
α + 1

−
√

α + 1 h
√

a0

�
Dθ +

cot θ

2i

�√
a0 h

√
α + 1.

We now want to use the variable introduced in (3.38). Let

H := L
2
�
(R× S

2
, d�r dω); C4

�
.

We define

V : H ∗ −→ H , u(r∗, ω) �−→ u
�
r∗(�r, θ), ω

�
k
�− 1

2

�
r∗(�r, θ)

�
.

The map V is a unitary transformation whose inverse is

V ∗ : H −→ H ∗, v(�r,ω) �−→ v
�
�r(r∗, θ), ω

�
k
� 1
2 (r∗).

The hamiltonian we want to work with is

H := V �
D/ V ∗,(4.37)

which acts on H . The operator H is selfadjoint with domain

D(H) =
�
u ∈ H ; U∗ V ∗u ∈ D(D/)

�

and its spectrum is purely absolutely continuous. This follows from the corresponding
results for D/. In order to calculate H we first observe that

V Dr∗ V ∗ = (k
�
)

1

2 D�r(k
�
)

1

2 , V Dθ V ∗ = a cos θD�r + Dθ.
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Now observe that

1

2

�
h

2
(α + 1)k

� − β
2
h

2

(α + 1)
k
�
+ 2βh

2
a0a cos θ

�
= αh

2
k
�
+ βh

2
a0a cos θ

= α
2

+ β
2

= 1,

i

�
2h

2
βk
�
+

β
2
h

2

α + 1
a0a cos θ − (α + 1)h

2
a0a cos θ

�
= i

�
2αβ + (1− α)β − (1 + α)β

�

= 0

and that
√

α + 1 h(k
�
)

1

2 ∂�r
�
(k
�
)

1

2 h
√

α + 1
�
− βh√

α + 1
(k
�
)

1

2 ∂�r

�
βh√
α + 1

(k
�
)

1

2

�

+
βh
√

a0√
α + 1

a cos θ∂�r
�
h
√

a0

√
α + 1

�
+
√

α + 1 h
√

a0 a cos θ∂�r

�√
a0 βh√
α + 1

�

=
1

2
∂�r

�
k
�
h

2
(α + 1)

�
− 1

2
∂�r

�
k
� β

2
h

2

α + 1

�
+ ∂�r(βh

2
a0a cos θ) = ∂�r(α

2
+ β

2
) = 0,

√
α + 1 h(k

�
)

1

2 ∂�r

�
(k
�
)

1

2

βh√
α + 1

�
+

βh√
α + 1

(k
�
)

1

2 ∂�r((k
�
)

1

2 h
√

α + 1 )

+
βh
√

a0√
α + 1

∂�r

�
a cos θ

√
a0 hβ√
α + 1

�
−
√

α + 1 h
√

a0 ∂�r
�
a cos θ

√
a0 h

√
α + 1

�

= ∂�r(αβ) +
1

2
∂�r

�
β

3

α + 1
− β(α + 1)

�
= 0.

Therefore we obtain

H = Γ
1
D�r +

�
Mθ 0

0 −Mθ

�
+ h

2
a0

�Γ3
Dϕ

sin θ
+ h

2
c1 + h

2
c
ϕ

2
Dϕ + �VϕDϕ + �V1(4.38)

= Γ
1
D�r + (m

1

θ
Γ

1 −m
2

θ
Γ

3
)− h

2
a0Γ

2
Dϕ

sin θ
+ h

2
c1 + h

2
c
ϕ

2
Dϕ + �VϕDϕ + �V1.

Recalling that

Pω :=

�
Mθ 0

0 −Mθ

�
+ �Γ3

h
2
a0

Dϕ

sin θ
= Uh

√
a0 D/S2

√
a0 h U∗,(4.39)

where all functions have to be evaluated at (r∗(�r, θ), θ), we see that the angular part
is regular. Let us also define

W := H − Γ
1
D�r − Pω.(4.40)

We put
H 1

:= D(H), �u�2H 1 = �Hu�2 + �u�2.
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Lemma 4.1. – (i) For all u ∈ D(D/),

�Dr∗u� H ∗ � �D/u� H ∗ + �u� H ∗ ,(4.41)

�a0D/S2u� H ∗ � �D/u� H ∗ + �u� H ∗ .(4.42)

(ii) For all v ∈ D(H),

�D�rv� H � �Hv� H + �v� H ,(4.43)

�a0 D/S2 v� H � �Hv� H + �v� H .(4.44)

Proof. – For part (i) see [15]. Let us show (ii). From (4.41) we infer for v ∈ D(H):

−� V U ∂
2

r∗ U∗ V ∗v, v� �
�
�Hv�+ �v�

�2

.

But we have

− V U ∂
2

r∗ U∗ V ∗ = −
�
U(k

�
)

1

2 , ∂�r
�
k
�
∂�r(k

�
)

1

2 U∗

− ∂�r U(k
�
)

3

2

�
∂�r , (k

�
)

1

2 U∗
�
− ∂�r(k

�
)
2
∂�r

≥ (�− δ)∂
2

�r − C�

with δ = min(k�2) > 0. This gives (4.43). Inequality (4.44) can be established in a
similar way. We use

V D
2

θ
V ∗ = �

�2
D

2

�r + 2�
�
D�rDθ + D

2

θ

as well as (4.43).

Remark 4.2. – A precise analysis of the constants in [15] shows that

∀� > 0, ∃C� > 0, ∀u ∈ D(D/), �Dr∗u� H ∗ ≤ (1 + �)�D/ u� H ∗ + C��u� H ∗ ,

∀� > 0, ∃C� > 0, ∀u ∈ D(H), �D�ru� H ≤ (1 + �)�Hu� H + C��u� H .

4.4.3. Scattering results. – A complete scattering theory for massless Dirac fields
in the Kerr metric was obtained in [29]. This result has been generalized to the case of
massive charged Dirac fields in [15]. In both works the comparison dynamics are the
dynamics which are natural in the (t, r∗, ω) coordinate system and the L

a
, N

a
, M

a

Newman-Penrose tetrad. We will need comparison dynamics which are natural with
respect to the (t, �r, θ, ϕ) coordinate system and the �

a
, n

a
, m

a tetrad. To this purpose
we define

H← = Γ
1
D�r −

a

r
2
+

+ a2
Dϕ −

qQr+

r
2
+

+ a2
,

H→ = V U D/→ U∗ V ∗,

where D→ is defined in (4.29). These operators are selfadjoint on H with domains

D(H←) =
�
v ∈ H ; H←v ∈ H

�
, D(H→) =

�
v ∈ H ; U∗ V ∗v ∈ D(D/→)

�
.
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Let

H +
=

�
v = (v1, v2, v3, v4) ∈ H ; v1 = v4 = 0

�
,

H − =
�
v = (v1, v2, v3, v4) ∈ H ; v2 = v3 = 0

�
.

We note that
1R±(−Γ

1
) = P H± ,

where P H± is the projection from H to H ±. We also define the projections

P2,3 : H −→
�
L

2
(R× S

2
)
�2

, (v1, v2, v3, v4) �−→ (v2, v3),

P1,4 : H −→
�
L

2
(R× S

2
)
�2

, (v1, v2, v3, v4) �−→ (v1, v4).

Let

v := Dr∗ D/−1

→ , �v = V U v U∗ V ∗(4.45)

be the “classical velocity operators" associated to D/→ and H→. The following propo-
sition gives the existence of the asymptotic velocity:

Proposition 4.4. – There exist selfadjoint operators P
± such that for all g in

C∞(R) we have

g(P
±

) = s− lim
t→±∞

e
−itH

g

��r
t

�
e
itH

.(4.46)

The operators P
± commute with H. Furthermore we have

g(P
±

)1R±(P
±

) = s− lim
t→±∞

e
−itH

g(v̂)e
itH1R±(P

±
),(4.47)

g(P
±

)1R∓(P
±

) = s− lim
t→±∞

e
−itH

g(−Γ
1
)e

itH1R∓(P
±

),(4.48)

σ(P
±

) = {−1} ∪ [0, 1],(4.49)

σpp(H) = 1{0}(P
±

) = ∅.(4.50)

Remark 4.3. – a) For limits of the form (4.46) we will write

P
±

= s− C∞ − lim
t→±∞

e
−itH

�r
t

e
itH

.

b) We can construct in the same way

P
±
→ = s− C∞ − lim

t→±∞
e
−itH→

�r
t

e
itH→ .

Proof. – Using the definition of H we see that it is sufficient to show the existence of

s− lim
t→±∞

e
−it D/

g

��r(r∗, θ)

t

�
e
it D/

.

By [15, Theorem 5.2] we know that

g( �P±
) = s− lim

t→±∞
e
−it D/

g

�
r∗
t

�
e
it D/ exists.(4.51)
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As g is uniformly continuous and |�r(r∗, θ)− r∗| � 1 we have

s− lim
t→±∞

e
−it D/

�
g

��r(r∗, θ)

t

�
− g

�
r∗
t

��
e
it D/

= 0.

This gives the existence. Equalities (4.47), (4.49), (4.50) follow directly from the defi-
nitions and the corresponding equalities in [15], so does (4.48) if we replace Γ1 by �Γ1.
In order to replace �Γ1 again by Γ1 it is sufficient by a density argument to show

∀� > 0, ∀J ∈ C∞(R), supp J ⊂ (−∞,−�)(4.52)

s− lim
t→∞

e
−it D/

�
g

�
− �Γ1

�
− g

�
− Γ

1

��
J

�
r∗
t

�
e
it D/

= 0.

We then note that it is sufficient to show (4.52) for smooth g. Indeed as g is uniformly
continuous we can approximate it in L

∞ norm by smooth functions. Equation (4.52)
follows for smooth g from the observation that

�Γ1 − Γ
1

= (Γij), Γij = O(e
κ+r∗), r∗ → −∞.

At infinity we define the Dollard modification

UD(t) =

�
eitH→T

�
e
i
�

t

0
((m−b0)(ŝv)mH

−1

→ +c1(sv̂))ds
�

m �= 0,

eitH→T
�
e
i
�

t

0
c1(sv̂)ds

�
m = 0,

(4.53)

where T denotes time ordering

T
�
e

�
t

s
W (u)du

�
:=

∞�

n=0

�

t≥un≥···≥u1≥s

· · ·
�

W (un) · · ·W (u1)dun · · · du1

and v̂ is the classical velocity operator (see (4.45)).

Theorem 4.2. – The wave operators

W
±
→ = s− lim

t→±∞
e
−itH

UD(t)1R±(P
±
→),(4.54)

Ω
±
→ = s− lim

t→±∞
UD(−t)e

itH1R±(P
±

),(4.55)

W
±
← = s− lim

t→±∞
e
−itH

e
itH←P H∓ ,(4.56)

Ω
±
← = s− lim

t→±∞
e
−itH← e

itH1R∓(P
±

)(4.57)

exist and satisfy

(W
±
←)

∗
= Ω

±
←, (Ω

±
←)

∗
= W

±
←, (W

±
→)

∗
= Ω

±
→, (Ω

±
→)

∗
= W

±
→.(4.58)

Remark 4.4. – For the proof of the theorem about the Hawking effect we only need
the asymptotic completeness result near the horizon.
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Proof. – Let
D/← := U∗ V ∗H← V U, �P± := U∗ V ∗P H± V U.

It is sufficient to show that the following limits exist:
�W±
→ = s− lim

t→±∞
e
−it D/ �UD(t)1R±( �P±

→),(4.59)

�Ω±
→ = s− lim

t→±∞
�UD(−t)e

it D/ 1R±( �P±
),(4.60)

�W±
← = s− lim

t→±∞
e
−it D/

e
it D/← �P∓,(4.61)

�Ω±
← = s− lim

t→±∞
e
−it D/← e

it D/ 1R∓( �P±
)(4.62)

with
�UD(t) = U∗ V ∗UD(t) V U,

�P±
= s− C∞ − lim

t→±∞
e
−it D/ r∗

t
e
it D/

,

�P±
→ = s− C∞ − lim

t→±∞
e
−it D/→ r∗

t
e
it D/→ .

The existence of the first two limits is contained in [15, Theorem 5.5]. We have

D/← =

�
A 0

0 −A

�
− a

r
2
+

+ a2
Dϕ −

qQr+

r
2
+

+ a2

with A =
1

2

�
a11 a12

a21 a22

�
,

a11 =
√

α + 1 (k
�
)
− 1

2 Dr∗(k
�
)
− 1

2

√
α + 1

− β√
α + 1

(k
�
)
− 1

2 Dr∗(k
�
)
− 1

2

β√
α + 1

= −a22,

a12 =
√

α + 1 (k
�
)
− 1

2 Dr∗(k
�
)
− 1

2

β√
α + 1

+ hc = a21.

By [15, Theorem 5.4] we know that the limits
�W±

H
= s− lim

t→±∞
e
−it D/

e
it D/

H P H∓∗
, �Ω±

H
= s− lim

t→±∞
e
−it D/

H e
it D/ 1R∓( �P±

)

exist. Here H ∓∗ denote

H +

∗ =
�
u = (u1, u2, u3, u4); u1 = u4 = 0

�
,

H −∗ =
�
u = (u1, u2, u3, u4); u2 = u3 = 0

�
.

It is therefore sufficient to show the existence of

W
±
c

= s− lim
t→±∞

e
−it D/← e

it D/
H P H∓∗

, Ω
±
c

= s− lim
t→±∞

e
−it D/

H e
it D/← �P∓.

and that

P H∓∗
Ω
±
c

= Ω
±
c

.(4.63)
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The existence of the first limit follows from Cook’s method and the fact that

k
�
= 1 + O(e

κ+r∗), α = 1 + O(e
κ+r∗), β = O(e

κ+r∗), r∗ → −∞.

The existence of Ω±
c

follows from the existence of
�Ω±

c
= s− lim

t→±∞
e
−itHH e

itH← P H∓ ,

where HH = V U D/H U∗ V ∗. This allows us to apply Cook’s method also in this
case. We omit the details. It remains to check (4.63). We note that �P∓ = 1R∓( �P±

←),
where �P±

← is the asymptotic velocity associated to D/←. This follows from the argument
used in the proof of Proposition 4.4. Thus

Ω
±
c

= Ω
±
c
1R∓( �P±

←) = 1R∓( �P±
H

)Ω
±
c

= P H∓∗
Ω
±
c

,

where �P±
H

= −Γ1 is the asymptotic velocity associated to D/H .

4.5. The Dirac equation on Mcol

We want to impose a boundary condition on the surface of the star such that the
evolution can be described by a unitary propagator. We will use the conserved current

Va = φAφ̄A� + χ̄AχA� .

Integrating over the domain indicated in Figure 1(2) and supposing that the field is 0
in a neighborhood of i

0 gives by Stokes’ theorem
�

Σs

VaT
a
dσΣs

−
�

Σt

VaT
a
dσΣt

+

�

S
I

Va N a
dσ S

I
= 0,

where N a is the normal to the surface of the star. Therefore the necessary condition
for charge conservation outside the collapsing body is

Va N a
= 0 on S.(4.64)

We will impose

N AA
�
φA =

1√
2

e
−iν

χ
A
�

and N AA
�
χA� =

1√
2

e
iν

φ
A on S.(4.65)

Here ν is the so called chiral angle. We note that (4.65) implies (4.64):
√

2 N a
Va =

√
2 (N AA

�
φAφ̄A� + N AA

�
χ̄AχA�)

= e
−iν

χ
A
�
φ̄A� + e

−iν
φ̄

A
�
χA� = 0.

From (4.65) we obtain

N BA� N AA
�
φA = − 1

2
φB .

(2) The Penrose compactification of block I shown in Figure 1 is performed in Appendix B.
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H
+

H−

Figure 1. The surface of the star and the domain of integration.

We have

�AC N BA� N AA
�
= N BA� N A

�

C
=: κBC , κCB = N CA� N A

�

B
= −κBC .

From the antisymmetry of κBC follows

κBC =
1

2
κ

A

A
�BC =

1

2
N a N a�BC .

Thus (4.65) implies
N a N aφB = −φB .

We therefore impose
N a N a = −1.

This avoids that the boundary condition imposes (φA, χ
A
�
) = 0 on S. We will from

now on suppose N a to be past directed, but the opposite choice would of course be
possible. Let us now rewrite condition (4.65) using a coordinate system and a spin
frame. We have

N AA
�
= g

aAA� N a =
t
A
a N a, N AA� = g

a
AA� N a = B

a N a.

The boundary condition (4.65) implies

√
2

�
0 B

a

A
a 0

�
N a

�
φA

χ
A�

�
=

�−eiν 0

0 e−iν

��
φA

χ
A�

�
(4.66)

⇐⇒
�

1/i 0

0 −1/i

�
γ
a N a

�
φA

χ
A�

�
=

�−eiν 0

0 e−iν

��
φA

χ
A�

�

⇐⇒ γ
a N a

�
φA

χ
A�

�
= −iB

�
φA

χ
A�

�
,

where B = e−iνγ
5

, γ
5 = −iγ

0
γ

1
γ

2
γ

3 = Diag(1, 1,−1,−1), ν ∈ R. The boundary
condition (4.66) is usually called a MIT boundary condition. Using formula (4.11) we
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find(3)

γ
t
= κ0γ

0
, γ

r∗ = κ0h
2
γ

1
, γ

θ
= κ0a0h

2
γ

2
, κ0 =

σ

ρ
√

∆
.

In the (t, r∗, θ, ϕ) coordinate system and the L
a
, N

a
, M

a
,M

a tetrad the boundary
condition that we impose reads

�

µ∈{t,r∗,θ,ϕ}

N µγ
µ
Φ = −i BΦ on S,(4.67)

where N µ are the coordinates of the conormal of the surface of the star in the
(t, r∗, θ,ϕ) coordinate system. Let us now consider the (t, �r, θ, ϕ) coordinate system
and the �

a
, n

a
, m

a
,m

a tetrad. We denote �γt
, �γ�r , �γθ

, �γϕ the Dirac matrices with re-
spect to these choices. We find

�γt
= κ0γ

0
, �γ�r = κ0γ

1
, �γθ

= κ0a0h
2�γ2

, �γ2
= i

�
0 �σ2

�σ2 0

�
.

Putting Ψ = V UΦ we find the following boundary condition for Ψ:
�

µ̂∈{t,�r,θ,ϕ}

N µ̂�γ µ̂
Ψ = −iBΨ on S.(4.68)

Here N µ̂ are the coordinates of the conormal in the (t, �r, θ, ϕ) coordinate system. We
will use in the following the (t, �r, θ, ϕ) coordinate system.

We introduce the Hilbert spaces

H t =
��

L
2
(Σ

col

t
, d�r dω

�
)
4
, �.�t

�
,(4.69)

where the norm �.�t is defined by

�Ψ�t =
�� [Ψ]L

��, [Ψ]L(�r,ω) =

�
Ψ(�r,ω) �r ≥ �z(t, θ),

0 �r ≤ �z(t, θ).
(4.70)

Let

H 1

t
=

�
u ∈ H t; Hu ∈ H t

�
, �u�2H 1

t

= �u�2
t

+ �Hu�2
t
.

We also need an extension from H 1

t
to H 1. To this purpose we put for φ ∈ H 1

t
:

[φ]H(�r, ω) =





φ(�r,ω) �r ≥ �z(t, θ),

φ
�
2�z(t, θ)− �r,ω

�
�r ≤ �z(t, θ).

It is easy to check that [φ]H is in H 1. The operator D/ t, the spaces H ∗t, H 1

∗t as well
as the extension [.]∗

H
are defined in an analogous way using the (t, r∗, θ, ϕ) coordinate

(3) As we will see we do not need the explicit form of γϕ, �γϕ.
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system and the (La
, N

a
, M

a) tetrad. On Mcol we consider the mixed problem





∂tΨ = iHtΨ, �z(t, θ) < �r,
� �

µ̂∈{t,�r,θ,ϕ}

N µ̂�γ µ̂

�
Ψ

�
t, �z(t, θ), ω

�
= −iBΨ

�
t, �z(t, θ), ω

�
,

Ψ(t = s, .) = Ψs(.).

(4.71)

Here the operator Ht is given by Ht = H and

D(Ht) =

�
Ψ ∈ H 1

t
;

� �

µ̂∈{t,�r,θ,ϕ}

N µ̂�γ µ̂
Ψ

��
t, �z(t, θ), ω

�
= −iBΨ

�
t, �z(t, θ), ω

��
.

Remark 4.5 (Explicit calculation). – It will be helpful in the following to have a
more explicit form of the boundary condition. We choose the (t, r∗, θ, ϕ) coordinate
system and the L

a
, N

a
, M

a
,M

a tetrad. The conormal of the surface of the star is

N a = w(t, θ)ρ a0h
2
�
żdt− dr∗ + (∂θz)dθ

�

and the boundary condition reads

w(t, θ)





0 0 ż − h
2 (∂θz)a0h

2

0 0 (∂θz)a0h
2

ż + h
2

−(ż + h
2) a0h

2(∂θz) 0 0

a0h
2(∂θz) −ż + h

2 0 0




Φ = −BΦ(4.72)

⇐⇒ w(t, θ)Γ
4
�
− ż − h

2
Γ

1
+ (∂θz)a0h

2
Γ

2
�
Φ = −iBΦ.

Here w(t, θ) is a smooth function. We compute

N a
= ρ

−1
a
−1

0
h
−2

w

�
ż ∂t + h

4
∂r∗ + ż

a(2Mr −Q
2)

σ2
∂ϕ − a

2

0
h

4
(∂θz) ∂θ

�
.

Normalization N a N a = −1 gives

w(t, θ) =
�
h

4 − ż
2

+ a
2

0
h

4
(∂θz)

2
�− 1

2
.

In an analogous way we find in the (t, �r, θ, ϕ) coordinate system and using the
(�a

, n
a
, m

a
,m

a
) tetrad

N a = �wρ a0 h
2
�
�̇z dt− d�r + (∂θ�z)dθ

�
.

Therefore the boundary condition reads

�w(t, θ) �Γ4
�
− �̇z − Γ

1
+ (∂θ�z)a0 h

2 �Γ2
�
Ψ = −iBΨ.

We compute

N a
= ρ

−1
a
−1

0
h
−2 �w

�
�̇z∂t+�̇z a(2Mr −Q

2)

σ2
∂ϕ+

�
1−(∂θ�z)

∆

σ2
�
�
�
∂�r+

�
�
�−(∂θ�z)

�
∆

σ2
∂θ

�
.

Normalization gives

�w(t, θ) =
�
h

4
k
�2 − �̇z

2

+ a
2

0
h

4
((∂θ�z)− �

�
)
2
�− 1

2
.
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Note that by assumption (3.53) h
4
k
�2

> �̇z
2

and thus h
4

> ż
2. We also note that by

the previous considerations we have

Rank

�
− �̇z − Γ

1
+ (∂θ�z)a0 h

2 �Γ2
+

i

�w
�Γ4 B

�
= 2.

Let ˇ
D/ t = D/ t +żDr∗ and Ȟt = Ht + �̇zD�r . We argue that Ȟtv ∈ H is equivalent

to Htv ∈ H . Let Ȟ = H + �̇zD�r . From Ȟtu ∈ H t we infer Ȟ[u]H ∈ H . But for
0 < δ < �1 and �2 > 0:

��Ȟ[u]H

�� ≥
��H[u]H

��− (1− �1)
��D�r [u]H

��

≥ (�1 − δ)
��D�r [u]H

�� + �2

��a0 D/S2 [u]H

��− C1

��[u]H

��

≥ �̃
��H[u]H

��− �C
��[u]H

��, �̃ > 0.

Here we have used Remark 4.2 and (3.53). The implication Htu ∈ H ⇒ Ȟtu ∈ H is
shown in a similar way. We therefore put D(

ˇ
D/ t) = D(D/ t) and D(Ȟt) = D(Ht). Note

that ˇ
D/0 = D/0 and Ȟ0 = H0.

Lemma 4.2. – The operators (
ˇ
D/ t, D(

ˇ
D/ t)) and (Ȟt, D(Ȟt)) are selfadjoint.

Proof. – The selfadjointness of (Ȟt, D(Ȟt)) follows from the selfadjointness of
(
ˇ
D/ t, D(

ˇ
D/ t)), which we show in the following. We calculate for u, v ∈ D(

ˇ
D/ t)

�ˇD/ tu, v� = �u,
ˇ
D/ tv�+

1

i

�

S2

�
(−ż − Γ

1
h

2
+ (∂θz)a0h

2
Γ

2
)u, v

��
z(t, θ), ω

�
dω

= −i

�

S2

�
− (h

2
+ ż)u1v̄1 + (∂θz)a0h

2
u2v̄1 + (∂θz)a0h

2
u1v̄2

��
z(t, θ), ω

�
dω

− i

�

S2

�
(h

2 − ż)u2v̄2 + (h
2 − ż)u3v̄3 − a0h

2
(∂θz)u4v̄3

��
z(t, θ), ω

�
dω

− i

�

S2

�
− a0h

2
(∂θz)u3v̄4 − (h

2
+ ż)u4v̄4

��
z(t, θ), ω

�
dω

= −i

�

S2

eiν

w

�
− u3v̄1 − u4v̄2 + u3v̄1 + u4v̄2

��
z(t, θ), ω

�
dω = 0.

Therefore ˇ
D/ t is symmetric. We have to show that D(

ˇ
D/
∗
t
) = D(

ˇ
D/ t). We have

v ∈ D(
ˇ
D/
∗
t
) ⇐⇒ ∀u ∈ D(

ˇ
D/ t),

���ˇD/ tu, v�
�� ≤ C�u�.(4.73)
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Taking u ∈ C
∞
0

(Σcol

t
; C4) in (4.73) we find that ˇ

D/ tv ∈ H ∗, thus v(z(t, θ), ω) is well
defined. For u ∈ D(

ˇ
D/ t) and v ∈ D(

ˇ
D/
∗
t
) we compute

�ˇD/ tu, v� = �u,
ˇ
D/ tv�+ i

�

S2

�
(−ż − h

2
Γ

1
+ (∂θz)a0h

2
Γ

2
)u, v

��
z(t, θ), ω

�
dω

= −i

�

S2

�
− e

iν
u3v̄1 − e

iν
u4v̄2 + (h

2 − ż)u3v̄3 − a0h
2
(∂θz)u4v̄3 dω

+ i

�

S2

a0h
2
(∂θz)u3v̄4 − (h

2
+ ż)u4v̄4

��
z(t, θ), ω

�
dω + �u,

ˇ
D/ tv�

= −i

�

S2

u3(−e−iνv1 + (h2 − ż)v3 − a0h
2(∂θz)v4)

�
z(t, θ), ω

�
dω

− i

�

S2

u4(−e−iνv2 − (∂θz)a0h
2v3 − (h2 + ż)v4)

�
z(t, θ), ω

�
dω + �u,

ˇ
D/ tv�.

It follows from (4.73):
���
�

S2

u3(−e−iνv1 + (h2 − ż)v3 − a0h
2(∂θz)v4)

�
z(t, θ), ω

�
dω(4.74)

+

�

S2

u4(−e−iνv2 − (∂θz)a0h
2v3 − (h2 + ż)v4)

�
z(t, θ), ω

�
dω

��� ≤ C�u�.

Let φ ∈ C
∞
0

(R), φ(0) = 1, u�(r∗, ω) = φ((r∗ − z(t, θ))/�)u(r∗, ω). Clearly

u�(z(t, θ), ω) = u
�
z(t, θ), ω

�
and u� ∈ D(

ˇ
D/ t).

We estimate:

�u�2 =

�

S2

� ∞

z(t,θ)

|u�|2 dr∗dω � �
��[u]

∗
H

��2

L∞(R;(L2(S2))4)

� �
��[u]

∗
H

��
H1(R;(L2(S2))4)

� �
��[u]

∗
H

��2

H 1

∗
.

Thus if we replace u by u� in (4.74), then the term on the R.H.S. goes to zero
when � → 0, whereas the term on the L.H.S. remains unchanged. It follows that,
for all u ∈ D(

ˇ
D/ t),

�

S2

u3(−e−iνv1 + (h2 − ż)v3 − a0h
2(∂θz)v4)

�
z(t, θ), ω

�
dω(4.75)

+

�

S2

u4(−e−iνv2 − (∂θz)a0h
2v3 − (h2 + ż)v4)

�
z(t, θ), ω

�
dω = 0.

Let R = {(z(t, θ), ω); ω ∈ S
2}. We claim:

∀f ∈ L
2
(R; C2

), ∃u ∈ D(
ˇ
D/ t), u3,4|R = f.(4.76)

From (4.75), (4.76) follows that v satisfies the boundary condition. Therefore it re-
mains to show (4.76). Let

Ker

�
wΓ

4

�
− ż − h

2
Γ

1
+ (∂θz)a0h

2
Γ

2
+

i

w
Γ

4 B
��

= span{w1, w2}
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with w1 = t(w11, . . . , w14) and w2 = t(w21, . . . , w24). The vectors t(w13, w14) and
t(w23, w34) are linearly independent. Indeed supposing

�
w13

w14

�
= α

�
w23

w24

�
we find M

�
w11

w12

�
= αM

�
w21

w22

�

with

M =

�−(ż + h
2) a0h

2(∂θz)

a0h
2(∂θz) h

2 − ż

�
.

The matrix M being invertible we find
�

w11

w12

�
= α

�
w21

w22

�

which is a contradiction. If f ∈ L
2(R; C2), define g ∈ L

2(R; C4) in the following way:

∃α,β α

�
w13

w14

�
+ β

�
w23

w24

�
= f.

We put g := αw1 +βw2. By the surjectivity of the trace operator there exists u ∈ H 1

∗t
such that u|R = g. By construction of g, u ∈ D(

�
D/ t).

The problem (4.71) is solved by the following proposition.

Proposition 4.5. – Let Ψs ∈ D(Hs). Then there exists a unique solution
�
Ψ(.)

�
H

=
�
U(., s)Ψs

�
H
∈ C

1
(Rt; H ) ∩ C(Rt; H 1

)

of (4.71) such that for all t ∈ R Ψ(t) ∈ D(Ht). Furthermore we have �Ψ(t)� = �Ψs�
and U(t, s) possesses an extension to an isometric and strongly continuous propagator
from H s to H t such that for all Ψs ∈ D(Hs) we have

d

dt
U(t, s)Ψs = iHtU(t, s)Ψs.

The proposition follows from Proposition 8.2, which is proven in the appendix.





CHAPTER 5

DIRAC QUANTUM FIELDS

We adopt the approach of Dirac quantum fields in the spirit of [16] and [17]. This
approach is explained in Section 5.2. In Section 5.1 we recall the second quantization of
Dirac fields (see e.g. [11] for a detailed discussion of the second quantization procedure
and [46] for the special case of the Dirac equation). In Section 5.3 we present the
theorem about the Hawking effect.

5.1. Second Quantization of Dirac Fields

We first explain the construction in the case of one kind of noninteracting fermions.
The one fermion space is a complex Hilbert space H with scalar product �. , .� that
we suppose linear with respect to the first argument. The space of n fermions is the
antisymmetric n-tensor product of H:

F (0)
(H) := C, 1 ≤ n =⇒ F (n)

(H) :=

n�

ν=1

H.

The Fermi-Fock space is defined as

F (H) :=

∞�

n=0

F (n)
(H).

For f ∈ H we construct the fermion annihilation operator aH(f), and the fermion
creation operator a

∗
H
(f) by putting

aH(f) : F (0)
(H) −→ {0}, 1 ≤ n, aH(f) : F (n)

(H) −→ F (n−1)
(H),

aH(f)(f1 ∧ · · · ∧ fn) =

√
n

n!

�

σ

�(σ)�fσ(1), f�fσ(2) ∧ · · · ∧ fσ(n),

0 ≤ n, a
∗
H(f) : F (n)

(H) −→ F (n+1)
(H),

a
∗
H(f)(f1 ∧ · · · ∧ fn) =

√
n + 1

n!

�

σ

�(σ)f ∧ fσ(1) ∧ · · · ∧ fσ(n),
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where the sum runs over all permutations σ of {1, . . . , n} and �(σ) is one if σ is even
and −1 if σ is odd. In contrast to the boson case, aH(f) and a

∗
H
(f) have bounded

extensions on F (H), which we still denote aH(f), a∗
H
(f). They satisfy:

��aH(f)
�� =

��a
∗
H(f)

�� = �f�,(5.1)

a
∗
H(f) = (aH(f))

∗
.(5.2)

Another important feature of the creation and annihilation operators is that they
satisfy the canonical anti-commutation relations (CAR’s):

aH(f)aH(g) + aH(g)aH(f) = 0,(5.3)
a
∗
H(f)a

∗
H(g) + a

∗
H(g)a

∗
H(f) = 0,(5.4)

a
∗
H(f)aH(g) + aH(g)a

∗
H(f) = �f, g�1.(5.5)

The CAR algebra on H is the C
∗-algebra U(H) generated by the identity and the

aH(f), f ∈ H.

Let us now consider a situation where the classical fields obey the Schrödinger type
equation (H selfadjoint on H):

∂tΨ = iHΨ.

A gauge invariant quasi-free state ω on U(H) satisfies the (β, µ)-KMS condition, 0 < β,
if it is characterized by the two point function

ω
�
a
∗
H(f)aH(f)

�
=

�
z e

βH
(1 + z e

βH
)
−1

f, g
�
,

where z is the activity given by z = eβµ. This state is a model for the ideal Fermi gas
with temperature 0 < T = β

−1 and chemical potential µ.

In the case of charged spinor fields we have to consider both kinds of fermions,
the particles and the antiparticles. The space of the classical charged spinor fields is
given by a complex Hilbert space H together with an anti-unitary operator Υ on H
(the charge conjugation). We assume H is split into two orthogonal subspaces:

H = H+ ⊕ H−.

We define the one particle space

h+ = H+

and the one antiparticle space

h− = ΥH−.

The space of n particles and m antiparticles is given by the tensor product of the
previous spaces:

F (n,m)
:= F (n)

(h+)⊗ F (m)
(h−).
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The Dirac-Fermi-Fock space is given by

F (H) :=

∞�

n,m=0

F (n,m)
.

We will denote the elements Ψ of F (H) by sequences

Ψ = (Ψ
(n,m)

)n,m∈N, Ψ
(n,m) ∈ F (n,m)

,

the vacuum vector is the vector Ωvac defined by

Ω
(0,0)

vac
= 1, (n, m) �= (0, 0) =⇒ Ω

(n,m)

vac
= 0.

For φ± ∈ h± we define the particle annihilation operator, a(φ+), the particle creation
operator, a

∗(φ+), the antiparticle annihilation operator, b(φ−), and the antiparticle
creation operator, b

∗(φ−), by putting for Ψ
(n)

+
⊗Ψ

(m)

− ∈ F (n,m):

a(φ+)(Ψ
(n)

+
⊗Ψ

(m)

− ) =
�
ah+(φ+)(Ψ

(n)

+
)
�
⊗Ψ

(m)

− ∈ F (n−1,m)
,(5.6)

a
∗
(φ+)(Ψ

(n)

+
⊗Ψ

(m)

− ) =
�
a
∗
h+

(φ+)(Ψ
(n)

+
)
�
⊗Ψ

(m)

− ∈ F (n+1,m)
,(5.7)

b(φ−)(Ψ
(n)

+
⊗Ψ

(m)

− ) = Ψ
(n)

+
⊗

�
bh−(φ−)(Ψ

(m)

− )
�
∈ F (n,m−1)

,(5.8)

b
∗
(φ−)(Ψ

(n)

+
⊗Ψ

(m)

− ) = Ψ
(n)

+
⊗

�
b
∗
h−(φ−)(Ψ

(m)

− )
�
∈ F (n,m+1)

.(5.9)

All these operators have bounded extensions on F (H) and satisfy the CAR’s. The
main object of the theory is the quantized Dirac field operator Ψ:

f ∈ H �−→ Ψ(f) := a(Π+f) + b
∗
(ΥΠ−f) ∈ L

�
F (H)

�
,

where we have denoted by Π± the orthogonal projector from H to H±. The mapping
f �→ Ψ(f) is antilinear and bounded:

��Ψ(f)
�� = �f�.(5.10)

Its adjoint denoted by Ψ∗(f) is given by

Ψ
∗
(f) = a

∗
(Π+f) + b(ΥΠ−f)(5.11)

and the CAR’s are satisfied:

Ψ(f)Ψ(g) + Ψ(g)Ψ(f) = 0,(5.12)
Ψ
∗
(f)Ψ

∗
(g) + Ψ

∗
(g)Ψ

∗
(f) = 0,(5.13)

Ψ
∗
(f)Ψ(g) + Ψ(g)Ψ

∗
(f) = �f, g�1.(5.14)

The Field Algebra is the C
∗-algebra generated by 1 and the Ψ(f), f ∈ H. If we take

f only in H+(−) we get a subalgebra isometric to U(h+(−)). The vacuum state ωvac is
defined by

A ∈ U(H), ωvac(A) := �AΩvac,Ωvac�,(5.15)

or by the two point function

ωvac

�
Ψ
∗
(f)Ψ(g)

�
= �Π−f, Π−g�.(5.16)
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Now assume that the classical fields satisfy a Dirac type equation:

∂tΨ = iHΨ,

where H is selfadjoint on H and leaves H+,H− invariant. Then

H
+

:= H|h+ , H
−

:= −ΥH|H−Υ
−1

,(5.17)

are respectively selfadjoint on h+ and h−, and the classical fields of one particle, φ+,
and of one antiparticle, φ−, are solutions to a Schrödinger type equation on h+(−):

∂tφ+(−) = iH
+(−)

φ+(−).(5.18)

A usual splitting of H is the choice

H+ = 1(−∞,0)(H), H− = 1[0,∞)(H).(5.19)

We say that a state ωβ,µ on U(H) satisfies the (β, µ)-KMS condition, 0 < β if it is
characterized by the two-point function

ωβ,µ

�
Ψ
∗
(f)Ψ(g)

�
= �z e

βH
(1 + z e

βH
)
−1

f, g�, z = e
βµ

.(5.20)

We want to apply this procedure to several states at time t = 0 and in the future. We
first describe the quantization at time t = 0. Let H = H 0, H = H0. We will emphasize
the importance of the charge of the field by denoting the hamiltonian H0 = H0(q).
A charge conjugation for H0(q) is given by

Υφ = UΥφ̄ with UΥ = γ
3

=





0 0 0 1

0 0 −1 0

0 1 0 0

−1 0 0 0




.

We note that H
− = H0(−q) and that ψ = Υφ satisfies the boundary condition (4.68)

if φ satisfies it.
As we do not know whether H0 has the eigenvalue 0 or not, there is a slight

ambiguity in the definition of particles and antiparticles. We will put

(Π+,Π−) =
�
1(−∞,0)(H0),1[0,∞)(H0)

�
,(5.21)

but the choice (1(−∞,0](H0),1(0,∞)(H0)) would also have been possible. We denote
Ψ0 the quantum field at time t = 0 constructed in the previous way. We define the
Boulware quantum state ω0 on the field algebra U(H 0) as the vacuum state

Φ
j

0
∈ H 0 ω0

�
Ψ
∗
0
(Φ

1

0
)Ψ0(Φ

2

0
)
�

= �Π−Φ
1

0
,Π−Φ

2

0
�.

At time t = ∞ we will take

H = H ,(5.22)

H the Dirac hamiltonian in the Kerr-Newman space-time and the same charge con-
jugation. We put

(Π+,Π−) =
�
1(−∞,0)(H),1[0,∞)(H)

�
.(5.23)
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The fields obtained in this way are denoted Ψ(f). From this we obtain the definitions
of vacuum and KMS states with respect to H.

5.2. Quantization in a globally hyperbolic space-time

Following J. Dimock [17] we construct the local algebra of observables in the space-
time outside the collapsing star. This construction does not depend on the choice of
the representation of the CAR’s, or on the spin structure of the Dirac field, or on
the choice of the hypersurface. In particular we can consider the Fermi-Dirac-Fock
representation and the following foliation of our space-time (see Section 3.2):

Mcol =

�

t∈R
Σ

col

t
, Σ

col

t
=

�
(t, �r, θ, ϕ); �r ≥ �z(t, θ)

�
.

We construct the Dirac field Ψ0 and the C
∗-algebra U(H 0) as explained in Section 5.1.

We define the operator

Scol : Φ ∈
�
C
∞
0

(Mcol)
�4 �−→ ScolΦ :=

�

R
U(0, t)Φ(t)dt ∈ H 0,(5.24)

where U(0, t) is the propagator defined in Proposition 4.5. The quantum spin field is
defined by

Ψcol : Φ ∈
�
C
∞
0

(Mcol)
�4 �−→ Ψcol(Φ) := Ψ0(ScolΦ) ∈ L(H 0)

and for an arbitrary set O ⊂ Mcol, we introduce Ucol( O), the C
∗-algebra generated

by ψ
∗
col

(Φ1)Ψcol(Φ2), suppΦj ⊂ O, j = 1, 2. Eventually, we have

Ucol(Mcol) =

�

O⊂Mcol

Ucol( O).

Then we define the fundamental state on Ucol(Mcol) as follows:

ωcol

�
Ψ
∗
col

(Φ1)Ψcol(Φ2)
�

:= ωvac

�
Ψ
∗
0
(ScolΦ1)Ψ0(ScolΦ2)

�
=

�
1[0,∞)(H0)ScolΦ1, ScolΦ2

�
.

Let us now consider the future black hole. We consider the space-time MBH with
the Dirac hamiltonian H for a field with one particle. Let Ψ(Φ) be the Dirac field as
constructed in Section 5.1 and

S : Φ ∈
�
C
∞
0

(MBH)
�4 �−→ SΦ :=

�

R
e
−itH

Φ(t)dt.

We also introduce:

ΨBH : Φ ∈ (C
∞
0

(MBH))
4 �→ ΨBH(Φ) := Ψ(SΦ)

and the C
∗-algebra UBH( O) generated by ΨBH(Φ1)Ψ

∗
BH

(Φ2),Φ1,Φ2 ∈ (C∞
0

( O))4,
O ⊂ MBH. As before we put

UBH(MBH) =

�

O⊂MBH

UBH( O).
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We also define the thermal Hawking state

ω
η,σ

Haw

�
Ψ
∗
BH

(Φ1)ΨBH(Φ2)
�

=
�
µe

σH
(1 + µe

σH
)
−1

SΦ1, SΦ2

�
H(5.25)

=: ω
η,σ

KMS

�
Ψ
∗
(SΦ1)Ψ(SΦ2)

�

with
THaw = σ

−1
, µ = e

ση
, σ > 0,

where THaw is the Hawking temperature and µ is the chemical potential. We will also
need a vacuum state which is given by

ωvac

�
Ψ
∗
BH

(Φ1)ΨBH(φ2)
�

=
�
1[0,∞)(H)Sφ1, Sφ2

�
.

5.3. The Hawking effect

In this section we formulate the main result of this paper.

Let Φ ∈ (C∞
0

(Mcol))
4. We put

Φ
T
(t, �r,ω) = Φ(t− T, �r, ω).(5.26)

Theorem 5.1 (Hawking effect). – Let

Φj ∈
�
C
∞
0

(Mcol)
�4

, j = 1, 2.

Then we have

lim
T→∞

ωcol

�
Ψ
∗
col

(Φ
T

1
)Ψcol(Φ

T

2
)
�

(5.27)

= ω
η,σ

Haw

�
Ψ
∗
BH

(1R+(P
−

)Φ1)ΨBH(1R+(P
−

)Φ2)
�

+ ωvac

�
Ψ
∗
BH

(1R−(P
−

)Φ1)ΨBH(1R−(P
−

)Φ2)
�
,

THaw =
1

σ
=

κ+

2π

, µ = e
ση

, η =
qQr+

r
2
+

+ a2
+

aDϕ

r
2
+

+ a2
·(5.28)

In the above theorem P
± is the asymptotic velocity introduced in Chapter 4. The

projections 1R±(P±) separate outgoing and incoming solutions.

Remark 5.1. – The result is independent of the choices of coordinate system and
tetrad, i.e. both sides of (5.27) are independent of these choices. Indeed a change of
coordinate system or a change of tetrad is equivalent to a conjugation of the operators
by a unitary transformation. We also note that the result is independent of the chiral
angle ν in the boundary condition. Let

S←φ =

�

R
e
−itH←φ(t)dt.

It is easy to check

ω
η,σ

Haw

�
Ψ
∗
BH

(1R+(P
−

)φ1)ΨBH(1R+(P
−

)φ2)
�

=
�
µe

σH←(1 + e
σH←)

−1
S←Ω

−
←φ1, S←Ω

−
←φ2

�
.
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We define S→ in an analogous way to S← using the Dollard modified dynamics:

S→φ =

�

R
UD(−t)φ(t)dt.

We find

ωvac(Ψ
∗
BH

�
1R−(P

−
)φ1

�
ΨBH

�
1R−(P

−
)φ2

�
=

�
1[0,∞)(H→)S→Ω

−
→φ1, S→Ω

−
→φ2

�
.

In particular our result coincides with the result of Melnyk [37] in the case of a
Reissner-Nordström black hole.





CHAPTER 6

ADDITIONAL SCATTERING RESULTS

In this chapter we state some scattering results that we shall need in what follows.

6.1. Spin weighted spherical harmonics

We will now introduce spin weighted spherical harmonics Y
l

sn
(for a complete defi-

nition, see e.g. [39]). For each spinorial weight s, 2s ∈ Z, the family
�
Y

�

sn
(ϕ, θ) = e

inϕ
u

�

sn
(θ); �− |s| ∈ N, �− |n| ∈ N

�

forms a Hilbert basis of L
2(S2

ω
, dω) and we have the relations

du
�

sn

dθ
− n− s cos θ

sin θ
u

�

sn
= −i

�
(� + s)(�− s + 1)

� 1

2
u

�

s−1,n
,

du
�

sn

dθ
+

n− s cos θ

sin θ
u

�

sn
= −i

�
(� + s + 1)(�− s)

� 1

2
u

�

s+1,n
.

We define ⊗4 as the following operation between two vectors of C4

∀v = (v1, v2, v3, v4), u = (u1, u2, u3, u4), v ⊗4 u = (u1v1, u2v2, u3v3, u4v4).

Since the families
�
Y

�
1

2
,n

; (n, �) ∈ I
�
,

�
Y

�

− 1

2
,n

; (n, �) ∈ I
�
, I =

�
(n, �); �− 1

2
∈ N, �− |n| ∈ N

�

form a Hilbert basis of L
2(S2

ω
, dω), we express H ∗ as a direct sum

H ∗ =

�

(n,�)∈ I

H n�

∗ , H n�

∗ = L
2
�
(R; dr∗); C4

�
⊗4 Yn�,

Yn� = (Y
�

− 1

2
,n

, Y
�
1

2
,n

, Y
�

− 1

2
,n

, Y
�
1

2
,n

).

We shall henceforth identify H n�

∗ and L
2((R; dr); C4) as well as ψn� ⊗4 Yn� and ψn�.

We see that

D/s =

�

(n,�)∈ I

D/n�

s with D/n�

s := Γ
1
Dr∗ + a0(r∗)Γ

2
�
� +

1

2

�
+ b0(r∗)Γ

ν
+ c

n
.
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In a similar way we find the decompositions

D/H =

�

(n,�)∈ I

D/n�

H
, D/→ =

�

(n,�)∈ I

D/n�

→.

Note that the operator D/n�

s is selfadjoint on H n� with domain (H1(R))4⊗4 Yn�. This
leads to a useful characterization of the domain D(D/) (see[15]):

H 1

∗ = D(D/) = D(D/s) =

�
u =

�

n�

un�; ∀n, �, un� ∈ H
1
(R),

�

n,l

�D/n�

s un��2 < ∞
�

.

Remark 6.1. – Note that n ∈ Z +
1

2
. Indeed we are working with quantities of

spin weight 1

2
. Such quantities are multiplied by e

1

2
iϕ under rotation of angle ϕ. In

particular Y
�
1

2
,n

are not smooth on S
2

ω
, but they are smooth on [0, 2π]ϕ× [0, π]θ. Using

the axial symmetry of our equations we will often fix the angular momentum Dϕ = n.
When we do so we will always suppose n ∈ Z +

1

2
.

6.2. Velocity estimates

We start with the maximal velocity estimate:

Lemma 6.1. – Let J ∈ C
∞
b

(R), supp J ⊂ ]−∞,−1 − �] ∪ [1 + �,∞[ for some � > 0.
Then we have

� ∞

1

�J
��r

t

�
e
itH

φ�2 dt

t
� �φ�2 and s− lim

t→±∞
J

��r
t

�
e
itH

= 0.

The lemma can be easily deduced from the equivalent statement for the dynamics D/
in [15, Proposition 4.4]. The minimal velocity estimate is given by the following
lemma:

Lemma 6.2. – Let χ ∈ C
∞
0

(R) such that supp χ ⊂ R \ {−m, m}. Then there exists a
strictly positive constant �χ such that we have

� ∞

1

�1[0,�χ]

� |�r|
t

�
e
itH

χ(H)Φ�2 dt

t
≤ Cχ�Φ�2.

Furthermore

s− lim
t→∞

1[0,�χ]

� |�r|
t

�
e
itH

χ(H) = 0.

The lemma follows from [15, Proposition 4.3]. The change of variables and tetrads
is treated in the usual way. It turns out that we need a stronger minimal velocity
estimate near the horizon:
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Lemma 6.3. – Let m ∈ C(R+), 0 < � < 1, limt→∞m(t) = ∞, 0 ≤ m(|t|) ≤ �|t| for
all |t| ≥ 1. Then

s− lim
t→±∞

1[0,1]

� |�r|
|t|−m(|t|)

�
e
itH1R∓(P

±
) = 0.(6.1)

An analogous result holds if we replace eitH1R∓(P±) by eitH← .

Proof. – By the asymptotic completeness result and a density argument it is sufficient
to show:

∀f ∈
�
C
∞
0

(R× S
2
)
�4

, s− lim
t→±∞

1[0,1]

� |�r|
|t|−m(|t|)

�
e
itH←f = 0.(6.2)

Let supp f ⊂ [R1, R2]× S
2. We define �H← = Γ1

D�r . Using
�

�H←,
a

r
2
+

+ a2
Dϕ +

qQr+

r
2
+

+ a2

�
= 0

we see that it is sufficient to show

s− lim
t→±∞

1[0,1]

� |�r|
|t|−m(|t|)

�
e
it �H←f = 0.

We only treat the case t →∞, the case t → −∞ being analogous. We have

(e
it �H←f)(�r,ω) =





f1(�r + t, ω)

f2(�r − t, ω)

f3(�r − t, ω)

f4(�r + t, ω)




.

On supp(1[0,1](
|�r|

|t|−m(t)
)eitH←f)2,3 we have for t ≥ −R1:

t−m(t) ≥ |�r| ≥ t + R1, which is impossible for t sufficiently large.

In the same way we find on supp(1[0,1](
|�r|

|t|−m(t)
)eitH←f)1,4 for t ≥ R2:

t−m(t) ≥ |�r| ≥ t−R2, which is impossible for t sufficiently large.

Thus for t sufficiently large we have

1[0,1]

� |�r|
|t|−m(t)

�
e
itH←f = 0.
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6.3. Wave operators

We shall need a characterization of the wave operators in terms of cut-off functions.
Let J ∈ C

∞(R) such that

∃ b, c ∈ R, 0 < b < c, J(�r) =

�
1 �r < b,

0 �r > c.
(6.3)

Proposition 6.1. – We have

W
±
→ = s− lim

t→±∞
e
−itH

(1− J)UD(t),

Ω
±
→ = s− lim

t→±∞
UD(−t)(1− J)e

itH
,

W
±
← = s− lim

t→±∞
e
−itH

J e
itH← ,

Ω
±
← = s− lim

t→±∞
e
−itH←J e

itH
.

We refer to [29] for the link between the wave operators in terms of cut-off functions
and the wave operators using the asymptotic velocity. The operator D/ is a short range
perturbation of D/s. More precisely we have the following ([15, Theorem 5.1]):

Proposition 6.2. – The wave operators
�W±
s = s− lim

t→±∞
e
−itD/

e
itD/s , �Ω±

s = s− lim
t→±∞

e
−itD/s e

itD/

exist and we have
�Ω±
s = (�W±

s )
∗
, �W±

s
�Ω±
s = �Ω±

s
�W±
s = 1 H ∗ .

We define Sρ
(R) as a subspace of C

∞(R) by

f ∈ Sρ
(R) ⇐⇒ ∀α ∈ N,

��f (α)
(x)

�� ≤ Cα�x�ρ−α
, �x� :=

�
1 + x2.

We shall need (see [15, Corollary 3.2]):

Lemma 6.4. – (i) Let χ ∈ S0
(R). Then

�
χ(D/)− χ(D/s)

�
(D/ + i)

−1 is compact.

(ii) If χ ∈ C
∞
0

(R), then

(D/ −D/s)χ(D/) and (D/ −D/s)χ(D/s) are compact.

Lemma 6.5. – The following wave operator exists:

W
±
0

:= s− lim
t→±∞

e
−itH0(1− J)e

itH
.

Furthermore we have

W
±
0

1[0,∞)(H) = 1[0,∞)(H0)W
±
0

,(6.4)

∀f ∈ H , �W±
0

f� =
��1R±(P

±
)f

��.(6.5)
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Proof. – We only treat the case t → ∞, the case t → −∞ being analogous. By a
density argument it is sufficient to show for χ ∈ C

∞
0

(R), supp χ ⊂ R \ {−m, m} the
existence of

s− lim
t→∞

e
−itH0(1− J)e

itH
χ(H).

Let �χ as in Lemma 6.2. Let J0 ∈ C
∞
0

(R), J0 ≥ 0, supp J0 ⊂ (
1

4
�χ, 1 + 2�χ), J0 = 1 on

[
1

2
�χ, 1 + �χ]. We first show that

s− lim
t→∞

e
−itH0(1− J)e

itH
χ(H) = s− lim

t→∞
e
−itH0J0

��r
t

�
e
itH

χ(H)(6.6)

if the R.H.S. exists. For this purpose let J0, J± be a partition of unity with J± ≥ 0,
supp J− ⊂ (−∞,

1

2
�χ), supp J+ ⊂ (1 + �χ,∞), J− + J0 + J+ = 1. We have

s− lim
t→−∞

e
−itH0(1− J)J+

��r
t

�
e
itH

χ(H) = 0

by Lemma 6.1. We write J− = J
1

− + J
2

−, where J
1

−, J
2

− ≥ 0 and J
2

− equals one in a
small neighborhood of −1 and is supported in a slightly larger neighborhood I of −1.
We have

s− lim
t→∞

e
−itH0(1− J)J

1

−

��r
t

�
e
itH

χ(H) = 0

by the maximal and minimal velocity estimates. Obviously we have for I sufficiently
small and t sufficiently large:

e
−itH0(1− J)J

2

−

��r
t

�
e
itH

χ(H) = 0.

Let

J0

��r
t

�
= 1

[
1

2
�χ,1+�χ]

��r
t

�
+ J

1

0

��r
t

�
.

Clearly

(1− J)(�r)1
[
1

2
�χ,1+�χ]

��r
t

�
= 1

[
1

2
�χ,1+�χ]

��r
t

�

for t sufficiently large and

s− lim
t→∞

e
−itH0(1− J)J

1

0

��r
t

�
e
itH

χ(H) = 0

by the maximal and minimal velocity estimates. Again by the maximal and minimal
velocity estimates we obtain (6.6):

s− lim
t→∞

e
−itH01[�χ,1+�χ]

��r
t

�
e
itH

χ(H) = s− lim
t→∞

e
−itH0J0

��r
t

�
e
itH

χ(H).

It remains to show that the limit on the R.H.S. of (6.6) exists:

d

dt
e
−itH0J0

��r
t

�
e
itH

χ(H) = e
−itH0(H0J0

��r
t

�
− J0

��r
t

�
H)e

itH
χ(H)

= e
−itH0J

�
0

��r
t

�
1

t
Γ

1
e
itH

χ(H)
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and this last expression is integrable in t by the maximal and minimal velocity esti-
mates. Let us now prove (6.4). Let χn ∈ C

∞
0

(R) with

χn(x) =

�
1 0 ≤ x ≤ n,

0 x ≤ −1/n, x ≥ n + 1

We have

χn(H) =

�
e
−itH �χn(t)dt,

where �χn stands for the Fourier transform of χn. Using W
±
0

e−itH = e−itH0W
±
0

we
see that

W
±
0

χn(H) = χn(H0)W
±
0

.(6.7)

Taking the strong limit in (6.7) gives (6.4). Let us now prove (6.5). By a density
argument we see that it is sufficient to establish (6.5) for χ(H)f , χ ∈ C

∞
0

(R), supp χ ⊂
R \ {−m, m}. But by (6.6) we see that

��W
+

0
χ(H)f

�� = lim
t→∞

���e
−itH0J0

��r
t

�
e
itH

χ(H)f

���

= �J0(P
+
)χ(H)f

�� = �1R+(P
+
)χ(H)f

��,

where we have used the minimal and maximal velocity estimates.

6.4. Regularity results

We first need a result on suppΩ−←f :

Lemma 6.6. – We have

1(−∞,R)(�r)Ω
−
←1[R,∞)(�r) = 0, ∀R.(6.8)

Proof. – We have

Ω
−
← = s− lim

t→−∞
e
−itH←J e

itH
, P H +Ω

−
← = Ω

−
←.

It follows

Ω
−
← = s− lim

t→−∞
e
−itH←P H +J e

itH
.(6.9)

Let f ∈ H , supp f ⊂ [R,∞)× S
2. By the finite propagation speed we have for t ≤ 0:

supp e
itH

f ⊂ [R + t,∞)× S
2
.

Therefore:

supp e
−itH←P H +J e

itH
f ⊂ [R,∞)× S

2
.(6.10)

The equations (6.9), (6.10) prove the lemma.

For Ω−← we need the convergence in H
1(R; (L2(S2))4):
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Lemma 6.7. – We have for all f ∈ H 1:

lim
t→−∞

��J(�r)e
itH

f − e
itH←Ω

−
←f

��
(H1(R;(L2(S2))4)

= 0.(6.11)

Proof. – The wave operators acting on H ∗ will be denoted with a tilde. By conjuga-
tion with V U we obtain wave operators acting on H , e.g.

Ω
−
s = V U �Ω−s U∗ V ∗ = s− lim

t→−∞
e
−itHs e

itH

with Hs = V U D/s U∗ V ∗. We note that

V U : H 1

∗ −→ H 1
; V U : H

1
�
Rr∗ ; (L

2
(S

2
))

4
�
−→ H

1
�
R�r ; (L2

(S
2
)
�4

),

U∗ V ∗ : H 1 −→ H 1

∗; U∗ V ∗ : H
1
�
R�r ; (L2

(S
2
))

4
�
−→ H

1
�
Rr∗ ; (L

2
(S

2
))

4
�

are continuous. This follows from the definition of the spaces H 1
, H 1

∗ and from the
estimate 0 < δ ≤ k

� ≤ 1. We show:

∀f ∈ H 1

∗, lim
t→−∞

�e
itD/

f − e
itD/s �Ω−s f� H 1

∗
= 0,(6.12)

∀f ∈ H 1

∗, lim
t→−∞

��J(�r(r∗, θ))e
itD/sf − e

itD/
H �Ω−

H,s
f
��

H1(R;(L2(S2))4)
= 0,(6.13)

∀f ∈ H
1
�
R�r ; (L2

(S
2
))

4
�

(6.14)

lim
t→−∞

��e
itHH 1R+(P

−
H

)f − e
itH←Ω

−
H,←f

��
(H1(R;(L2(S2))4)

= 0,

where

�Ω−
H,s

= s− lim
t→−∞

e
−it D/

H e
it D/s1R+( �P−s ), �P−s = s− C∞ − lim

t→−∞
e
−it D/s r∗

t
e
it D/s ,

HH = V U D/H U∗ V ∗,

Ω
−
H,← = s− lim

t→−∞
e
−itH← e

itHH1R+(P
−
H

), P
−
H

= s− C∞ − lim
t→−∞

e
−itHH

�r
t

e
itHH .

We refer to [14] for the existence of �Ω−
H,s

and �P−s (1). The existence of P
−
H

follows from
the existence of

�P−
H

= s− C∞ − lim
t→−∞

e
−it D/

H

r∗
t

e
it D/

H

and the existence of Ω
−
H,← follows from the existence of W

±
c

(see proof of Theorem 4.2).
Let us first argue that (6.12)-(6.14) imply (6.11). Let

Ω
−
H

= s− lim
t→−∞

e
−itHH e

itH1R+(P
−

).

(1) Note that D/s can be understood as the Dirac operator in a “Reissner-Nordström type" space-time,
see [15] for details.
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The existence of Ω
−
H

follows from the existence of �Ω−
H

(see proof of Theorem 4.2). We
have

��(J(�r)e
itH − e

itH←Ω
−
←)f

��
H1(R;(L2(S2))4)

≤
��J(�r)(e

itH − e
itHsΩ

−
s )f

��
H1(R;(L2(S2))4)

+
��(J(�r)e

itHsΩ
−
s − e

itHH Ω
−
H

)f
��

H1(R;(L2(S2))4)

+
��(e

itHH Ω
−
H
− e

itH←Ω
−
←)f

��
H1(R;(L2(S2))4)

=: I1 + I2 + I3.

We first estimate I1. We have, thanks to (4.41) and (6.12):

I1 ≤
��(e

it D/ − e
it D/s �Ω−s ) V ∗ U∗f

��
H1(R;(L2(S2))4)

�
��(e

it D/ − e
it D/s �Ω−s ) V ∗ U∗f

��
H 1

∗
−→ 0, t → −∞.

In order to estimate I2 we observe that �Ω−s : H 1

∗ → H 1

∗ and that �Ω−
H

(�Ω−s )∗ = �Ω−
H,s

.
We obtain using (6.13):

I2 �
��(J(�r(r∗, θ))e

it D/s �Ω−s − e
it D/

H �Ω−
H

) V ∗ U∗f
��

H1(R;(L2(S2))4)

=
��(J(�r(r∗, θ))e

it D/s − e
it D/

H �Ω−
H,s

)�Ω−s V ∗ U∗f
��

H1(R;(L2(S2))4)
−→ 0, t → −∞.

We now estimate I3. We observe that D(HH) = H
1(R; (L2(S2))4) and that the graph

norm of HH is equivalent to the norm of H
1(R; (L2(S2))4). This entails Ω

−
H

f ∈
H

1(R; (L2(S2))4). Observe also that

Ω
−
← = Ω

−
H,←Ω

−
H

.

We obtain using (6.14):

I3 =
��(e

itHH 1R+(P
−
H

)− e
itH←Ω

−
H,←)Ω

−
H

f
��

H1(R;(L2(S2))4)
−→ 0, t → −∞.

The proof of (6.13) is analogous to the proof of [37, Lemma 6.3] and we therefore
omit it.

Let us show (6.12). Using the uniform estimates

�e
itD/

f� H 1

∗
� �f� H 1

∗
and �e

itD/sf� H 1

∗
� �f� H 1

∗

we argue that we can replace f by χ(D/)f, χ ∈ C
∞
0

(R). We then write

D/(e
itD/ − e

itD/s �Ω−s )χ(D/)f = (e
itD/ − e

itD/s �Ω−s )D/χ(D/)f + (D/s −D/)χ(D/s)e
it D/s �Ω−s f.

When t → −∞ the first term goes to zero by Proposition 6.2 and the second term
goes to zero because (D/s −D/)χ(D/s) is compact by Lemma 6.4 (ii).

Let us show (6.14). By a density argument we can replace f by χ(HH)f with
χ ∈ C

∞
0

(R). Then we have

H←
�
e
itHH1R+(P

−
H

)− e
itH←Ω

−
H,←

�
χ(HH)f(6.15)

=
�
H← −HH

�
χ(HH)e

itHH1R+(P
−
H

)f

+ (e
itHH1R+(P

−
H

)− e
itH←Ω

−
H,←)HHχ(HH)f.
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The second term in (6.15) goes to zero by definition of Ω
−
H,←. In order to show that

the first term in (6.15) goes to zero it is sufficient to show

(D/←−D/H)χ(D/H)e
it D/

H 1R+( �P−
H

)f → 0, t → −∞.

We have
��(D/←−D/H)χ(D/H)e

it D/
H1R+( �P−

H
)f

��
H ∗

(6.16)

≤
��m(r∗) D/H χ(D/H)e

it D/
H 1R+( �P−

H
)f

��
H ∗

with m(r∗) → 0, |r∗| → ∞. We then use the spherical symmetry of the expression
on the R.H.S. of (6.16) and the fact that m(r∗) D/n�

H
χ(D/n�

H
) is compact on H n�

∗ to
conclude that the R.H.S. of (6.16) goes to zero when t → −∞.





CHAPTER 7

THE CHARACTERISTIC CAUCHY PROBLEM

The aim of this chapter is to solve a characteristic Cauchy problem in a space-time
region near the collapsing star. The results of this chapter will be used later in the
proof of the main theorem. We start by studying a characteristic Cauchy problem for
the Dirac equation in the whole exterior Kerr-Newman space-time. In Section 7.1 we
formulate the main result of this chapter. Section 7.2 is devoted to the usual Cauchy
problem with data on a lipschitz space-like surface. The main theorem is proven
in Section 7.3. In Section 7.4 we use these results to solve the characteristic Cauchy
problem near the collapsing star. Our strategy is similar to that of Hörmander in [32]
for the characteristic Cauchy problem for the wave equation (see also [41] for weaker
assumptions on the metric). A characteristic Cauchy problem for the Dirac equation
has been considered in [35] in a somewhat different setting.

7.1. Main results

Let (see Figure 1):

Λ
±
T

:=
�
(±�r, �r,ω); 0 ≤ ±�r ≤ T,ω ∈ S

2
�
, ΛT := Λ

+

T
∪ Λ

−
T

,

KT :=
�
(t, �r,ω); |�r| ≤ T, |�r| ≤ t ≤ T,ω ∈ S

2
�
,

ΣT :=
�
(T, �r,ω); |�r| ≤ T,ω ∈ S

2
�
.

We need the spaces

H T := L
2
�
([−T, T ]× S

2
, d�r dω); C4

�
,

H 1

T
:=

�
u ∈ H T ;Hu ∈ H T

�
, �u�2H 1

T

= �u�2H T
+ �Hu�2H T

,

L
2

T,− := L
2
�
([−T, 0]× S

2
, d�r dω); C2

�
,

L
2

T,+
:= L

2
�
([0, T ]× S

2
, d�r dω); C2

�
.

Let ΦT ∈ C
∞(ΣT ; SA ⊕ SA

�
). By the usual theorems for hyperbolic equations we can

associate to ΦT a smooth solution φA⊕χ
A
� ∈ C

∞(KT ; SA⊕SA
�
) (see [40] for details).



80 CHAPTER 7. THE CHARACTERISTIC CAUCHY PROBLEM

Figure 1. The characteristic Cauchy problem

We use the �
a
, n

a
, m

a tetrad and the (t, �r,ω) coordinate system. Let

Ψ =

4
�

ρ2∆σ2

(r2 + a2)2k�2
(φ0, φ1, χ1� ,−χ0�)

be the associated density spinor. The spinor fields o
A and ι

A are smooth and non
vanishing on Λ

±
T

, therefore we can associate to this solution the smooth trace of Ψ:

T : ΦT �−→ (Ψ2,Ψ3)(−�r, �r, ω)⊕ (Ψ1,Ψ4)(�r, �r,ω)

∈ C
∞�

[−T, 0]× S
2
; C2

�
⊕ C

∞�
[0, T ]× S

2
; C2

�
.

Using the conserved current we obtain by Stokes’ theorem
�

ΣT

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
) =

�

ΛT

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
).(7.1)

Let ϕ(�r) = |�r|. The normal to Λ
−
T

is n
a, the normal to Λ

+

T
is �

a. We compute:

(�
a
∂a � dΩ)|

Λ
+

T

= (n
a
∂a � dΩ)|

Λ
−
T

=

�
2ρ2∆σ2

(r2 + a2)2k�2
d�r ∧ dω.

Following (4.15) we find:
�

ΛT

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
)(7.2)

=
√

2

�
0

−T

�

S2

�
|Ψ2|2 + |Ψ3|2

�
(−�r, �r,ω)d�r dω

+
√

2

�
T

0

�

S2

�
|Ψ1|2 + |Ψ4|2

�
(�r, �r,ω)d�r dω,
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where Ψ = (Ψ1,Ψ2,Ψ3,Ψ4). It follows:
�

ΣT

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
)(7.3)

=
√

2

�
0

−T

�

S2

�
|Ψ2|2 + |Ψ3|2

�
(−�r, �r,ω)d�r dω

+
√

2

�
T

0

�

S2

(|Ψ1|2 + |Ψ4|2)(�r, �r,ω)d�r dω.

Therefore the operator T possesses an extension to a bounded operator

T ∈ L
�
L

2
(ΣT ; SA ⊕ SA

�
);L

2
([−T, 0]× S

2
; C2

)⊕ L
2
([0, T ]× S

2
; C2

)
�
.

Our first result is:

Theorem 7.1. – 1
4
√

2
T is an isometry.

The proof of this theorem will be given in Section 7.3.

The characteristic data T (ΦT ) contains information only about φ1, χ1� on Λ
−
T

and
φ0, χ0� on Λ

+

T
. The functions φ0, χ0� on Λ

−
T

resp. φ1, χ1� on Λ
+

T
are obtained from the

given data by restriction of the equation to Λ
±
T

. On Λ
−
T

we have (see (4.8)):

n
a
(∂a − iqΦa)φ0 −m

a
(∂a − iqΦa)φ1 + (µ− γ)φ0 + (τ − β)φ1 =

m√
2
χ1� ,

n
a
(∂a − iqΦa)χ0� −m

a
(∂a − iqΦa)χ1� + (µ̄− γ̄)χ0� + (τ̄ − β̄)χ1� =

m√
2
φ1,

where φ1, χ1� have to be considered as source terms. Putting g(�r,ω) = Ψ(−�r, �r, ω),

�g(�r,ω) = Ψ(�r, �r,ω) we find

−D�rg1,4 =
�
(Pω + W )g

�
1,4

, g1,4(0, ω) = �g
1,4

(0, ω),(7.4)

D�r�g
2,3

=
�
(Pω + W )�g

�
2,3

, �g
2,3

(0, ω) = g2,3(0, ω).(7.5)

Here Pω, W are defined in (4.39), (4.40). We understand �r as a time parameter which
goes from 0 to −T for (7.4) and from 0 to T for (7.5). We write (7.4) as

∂�rg1,4 = iA(�r)g1,4 + S(�r), g1,4(0, ω) = �g
1,4

(0, ω)(7.6)

with

A(�r) = −
�

m
1

θ

2
+

�
W11 W14

W41 W44

��
,

S(�r) = −
��

m
2

θ

2
+

a0h
2

sin θ
Dϕ

�−1 0

0 1

�
+

�
W12 W13

W42 W43

���
g2

g3

��
.
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We want to show that (7.6) has a unique solution and to this purpose we must
analyze A(�r). We have

m
1

θ

2
=

1

2

βh
√

a0√
α + 1

�
Dθ +

cot θ

2i

�√
a0 h

√
α + 1 + hc.

We want to show that the operator

dθ := Dθ +
cot θ

2i

is selfadjoint with some suitable domain. To this purpose we introduce the unitary
transformation

U : L
2
(S

2
, dω) −→ L

2
(S

2
, dθdϕ), u(θ,ϕ) �−→ u(θ,ϕ)

√
sin θ.

Clearly
�dθ = U dθU

∗
= Dθ,

which is selfadjoint on L
2(S2

, dθdϕ) with domain

D(Dθ) =
�
u ∈ L

2
(S

2
, dθdϕ); Dθu ∈ L

2
(S

2
, dθdϕ), u(0, .) = u(π, .)

�
.

Then dθ is selfadjoint with domain D(dθ) = U
∗
D(Dθ). It is easy to check that

�r �→ A(�r)v is continuously differentiable for v ∈ Y := (D(dθ))
2. We can apply [43,

Theorem 5.4.8] and associate a unitary evolution system V (�r, �r �). For smooth g2,3, �g1,4

we have S(�r) ∈ C([−T, 0];Y ) and �g(0, ω) ∈ Y . By [43, Theorem 5.5.2] (7.6) possesses
a unique Y -valued solution given by

g1,4(�r,ω) = V (�r, 0)�g
1,4

(0, ω) +

� �r

0

V (�r, �r �)S(�r �)d�r �.(7.7)

For given g2,3, �g1,4
we define g1,4, �g2,3

as the solutions of the partial differential equa-
tions (7.4), (7.5) and put

g
H

2,3
(�r,ω) :=

1

2

�
−D�rg2,3 + ((Pω + W )g)2,3

�
,(7.8)

�gH

1,4
(�r,ω) :=

1

2

�
D�r�g

1,4
+ ((Pω + W )�g)1,4

�
.(7.9)

As g1,4 is a Y -valued solution we have (the argument for �g
2,3

is analogous):

g
H

2,3
∈ L

2
�
([−T, 0]× S

2
, d�r dω); C2

�
, �gH

1,4
∈ L

2
�
([0, T ]× S

2
, d�r dω); C2

�
.

We define �H1 as the completion of C
∞([−T, 0]×S

2; C2)⊕C
∞([0, T ]×S

2; C2) in the
norm

��(g2,3, �g1,4
)
��2

�H1
= 2

�
�g2,3�2L2

T,−
+ ��g

1,4
�2

L
2

T,+

+ �gH

2,3
�2

L
2

T,−
+ ��gH

1,4
�2

L
2

T,+

�
.(7.10)

We now start with ΨT ∈ C
∞(ΣT ; C4). Then we can associate a classical solution

Ψ ∈ C
∞(KT ; C4) and the traces

g2,3(�r, ω) = Ψ2,3(−�r, �r, ω), −T ≤ �r ≤ 0 and �g
1,4

(�r,ω) = Ψ1,4(�r, �r, ω), 0 ≤ �r ≤ T

are well defined. By the previous discussion

g1,4(�r, ω) = Ψ1,4(−�r, �r, ω), −T ≤ �r ≤ 0 and �g
2,3

(�r,ω) = Ψ2,3(�r, �r, ω), 0 ≤ �r ≤ T
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are solutions of equations (7.4), (7.5). As Ψ is a solution of the Dirac equation, so is
HΨ ∈ C

∞(KT ; C4). We want to calculate HΨ|
Λ
±
T

in terms of g2,3, �g1,4
and to this

purpose we introduce characteristic coordinates

X = t− �r, T = t + �r ⇐⇒ t =
1

2
(X + T ), �r =

1

2
(T −X).

Then we have

(HΨ)2,3 = (DX −DT )Ψ2,3 +
�
(Pω + W )Ψ

�
2,3

= DXΨ2,3 +
1

2

�
(Pω + W )Ψ

�
2,3

⇒ (HΨ)2,3(−�r, �r,ω) =
1

2

�
−D�rg2,3 + ((Pω + W )g)2,3

�
.

In a similar manner we find

(HΨ)1,4(�r, �r, ω) =
1

2
(D�r�g

1,4
+

�
(Pω + W )�g)1,4

�
.

Using the identity (7.3) we find

�HΨT �2H T
= 2

�
�gH

2,3
�2

L
2

T,−
+ ��gH

1,4
�2

L
2

T,+

�

and therefore

�ΨT �2H 1

T

=
��(g2,3, �g1,4

)
��2

�H1
.(7.11)

This means that the trace operator

T : C
∞

(ΣT ; C4
) −→ C

∞�
[−T, 0]× S

2
; C2

�
⊕ C

∞�
[0, T ]× S

2
; C2

�
,

ΨT �−→
�
Ψ2,3(−�r, �r, ω),Ψ1,4(�r, �r,ω)

�

extends to a bounded operator T H ∈ L(H 1

T
; �H1).

Our second result is

Theorem 7.2. – T H is an isometry.

The proof of this theorem will be given in Section 7.3.

Remark 7.1. – If ΨT ∈ H 1

T
, then the trace (Ψ2,3(−�r, �r,ω),Ψ1,4(�r, �r,ω)) exists in

the usual sense and it is in �H1 by (7.11). This means that the operator T H is defined
as the usual trace and that T is an extension of T H .

7.2. The Cauchy problem with data on a lipschitz space-like hypersurface

Let ϕ : [−Tϕ, Tϕ] → R be lipschitz continuous, Tϕ ≥ T ,
��ϕ�(�r)

�� ≤ �α < 1 a.e.(7.12)
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Thanks to (7.12) the hypersurface Λϕ := {(ϕ(�r), �r,ω); |�r| ≤ Tϕ, ω ∈ S
2} is space-like.

Indeed we have

g
�
ϕ
�
(�r)∂t + ∂�r , ϕ

�
(�r)∂t + ∂�r

�
=

�
1 +

Q
2 − 2Mr

ρ2

�
ϕ
�2 − ρ

2∆

(r2 + a2)2k�2

<

�
1 +

Q
2 − 2Mr

ρ2

�
− ρ

2∆

σ2

= −a
2 sin

2
θ(2Mr −Q

2)2

ρ2σ2
≤ 0,

g(∂ϕ, ∂ϕ) < 0, g(∂θ, ∂θ) < 0.

Let for 0 ≤ t ≤ T

Σ
ϕ

t
:=

�
(t, �r,ω) ∈ {t}× [−Tϕ, Tϕ]× S

2
; t > ϕ(�r)

�
,

K
ϕ

T
:=

�

0≤t≤T

Σ
ϕ

t
,

Rϕ

t
:=

�
�r ∈ (−Tϕ, Tϕ); t > ϕ(�r)

�
.

We will suppose Rϕ

T
= (−Tϕ, Tϕ), ϕ(−Tϕ) = ϕ(Tϕ) = T. We also define the spaces

H t,ϕ = L
2
((Σ

ϕ

t
, d�r dω); C4

),

H 1

t,ϕ
= {u ∈ H t,ϕ;Hu ∈ H t,ϕ}, �u�2H 1

t,ϕ

= �u�2H t,ϕ
+ �Hu�2H t,ϕ

.

The aim of this section is to solve the Cauchy problem
�

∂tΨ = iHΨ, (t, �r,ω) ∈ K
ϕ

T
,

Ψ(ϕ(�r), �r,ω) = g(�r, ω), (�r, ω) ∈ [−Tϕ, Tϕ]× S
2
.

(7.13)

We first define the space of data. For g ∈ C
∞([−Tϕ, Tϕ]; C4) we define

g
H

ϕ
(�r, ω) :=

�
Diag

�
1

1 + ϕ�
,− 1

1− ϕ�
,− 1

1− ϕ�
,

1

1 + ϕ�

�
D�rg

�
(�r,ω)(7.14)

+

�
Diag

�
1

1 + ϕ�
,

1

1− ϕ�
,

1

1− ϕ�
,

1

1 + ϕ�

�
(Pω + W )g

�
(�r,ω).

We define �H1

ϕ
as the completion of C

∞([−Tϕ, Tϕ]× S
2; C4) in the norm

�g�2�H1
ϕ

:=
��(1− ϕ

�
)

1

2 g2,3

��2

L2([−Tϕ,Tϕ]×S2;C2)
(7.15)

+
��(1− ϕ

�
)

1

2 (g
H

ϕ
)2,3

��2

L2([−Tϕ,Tϕ]×S2;C2)

+
��(1 + ϕ

�
)

1

2 g1,4

��2

L2([−Tϕ,Tϕ]×S2;C2)

+
��(1 + ϕ

�
)

1

2 (g
H

ϕ
)1,4

��2

L2([−Tϕ,Tϕ]×S2;C2)
.

Let ΨT ∈ C
∞(Σ

ϕ

T
; C4) and Ψ ∈ C

∞(K
ϕ

T
; C4) be the associated solution of the Dirac

equation. Then Ψ(ϕ(�r), �r, ω) ∈ H
1([−Tϕ, Tϕ]; (H∞(S2))4) and as in Section 7.1 we
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find using Stokes’ theorem:
�

Tϕ

−Tϕ

�

S2

|Ψ|2 d�r dω(7.16)

=

�
Tϕ

−Tϕ

�

S2

�
(1− ϕ

�
)
�
|Ψ2|2 + |Ψ3|2

�
+ (1 + ϕ

�
)
�
|Ψ1|2 + |Ψ4|4

��

(ϕ(�r), �r,ω)d�r dω.

We want to estimate
�

Tϕ

−Tϕ

�
S2 |HΨ|2 d�r dω. To this purpose we introduce a sequence

of smooth functions ϕ� : [−T
1

ϕ�
, T

2

ϕ�
] → R such that






[−Tϕ, Tϕ] ⊆ [−T
1

ϕ�
, T

2

ϕ�
],

��ϕ�
�
(�r)

�� ≤ �̃α < 1,

ϕ� −→ ϕ L
∞�

[−Tϕ, Tϕ]
�
,

ϕ
�
�
−→ ϕ

� a.e.[−Tϕ, Tϕ],

ϕ�(�r) ≤ ϕ(�r), ∀�r ∈ [−Tϕ, Tϕ],

ϕ�(−T
1

ϕ�
) = T = ϕ�(T

2

ϕ�
).

(7.17)

This approximation can be achieved by convolution with smooth functions (see [32,
Lemma 3]). Note that we may have to replace the approximation by ϕ� − |ϕ−ϕ�|L∞
to achieve (7.17). In order to compute (HΨ)(ϕ�(�r), �r,ω) we introduce the change of
variables

τ = t− ϕ�(�r), x = �r =⇒ ∂t = ∂τ , ∂�r = ∂x − ϕ
�
�
(�r)∂τ .

We have

∂tΨ = iHΨ ⇐⇒ ∂τΨ =
�
1 + Γ

1
ϕ
�
�

�−1 �
Γ

1
∂xΨ + i(Pω + W )Ψ

�
.(7.18)

Using (7.18) we calculate

HΨ = Diag

�
1

1 + ϕ�
�

,− 1

1− ϕ�
�

,− 1

1− ϕ�
�

, 1

1 + ϕ�
�

�
DxΨ

+ Diag

�
1

1 + ϕ�
�

, 1

1− ϕ�
�

, 1

1− ϕ�
�

, 1

1 + ϕ�
�

�
(Pω + W )Ψ

Putting g�(�r,ω) = Ψ(ϕ�(�r), �r, ω) we find

(HΨ)(ϕ�(�r), �r,ω) =

�
Diag

�
1

1 + ϕ�
�

,− 1

1− ϕ�
�

,− 1

1− ϕ�
�

, 1

1 + ϕ�
�

�
D�rg�)(�r,ω)

+

�
Diag

�
1

1 + ϕ�
�

, 1

1− ϕ�
�

, 1

1− ϕ�
�

, 1

1 + ϕ�
�

�
(Pω + W )g�

�
(�r, ω)

=: g
H

�
.(7.19)
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Using Stokes’ theorem we obtain
�

T
2

ϕ�

−T 1
ϕ�

�

S2

|HΨ|2 d�r dω =
��(1− ϕ

�
�
)

1

2 (g
H

�
)2,3

��2

L2([−T 1
ϕ�

,T 2
ϕ�

]×S2;C2)
(7.20)

+
��(1 + ϕ

�
�
)

1

2 (g
H

�
)1,4

��2

L2([−T 1
ϕ�

,T 2
ϕ�

]×S2;C2)
.

Using T
j

ϕ�
→ Tϕ, j = 1, 2 as well as the fact that Ψ is smooth we can take the limit

in (7.20) and find
�

Tϕ

−Tϕ

�

S2

|HΨ|2 d�r dω =
��(1− ϕ

�
)

1

2 (g
H

ϕ
)2,3

��2

L2([−Tϕ,Tϕ]×S2;C2)
(7.21)

+
��(1 + ϕ

�
)

1

2 (g
H

ϕ
)1,4

��2

L2([−Tϕ,Tϕ]×S2;C2)
.

Putting (7.16) and (7.21) together we find

�Ψ�2H 1

T,ϕ

= �g�2�H1
ϕ

.(7.22)

The equality (7.22) shows that the trace operator

ΨT ∈ C
∞

(Σ
ϕ

T
; C4

) �−→ Ψ
�
ϕ(�r), �r,ω

�

possesses an extension to a bounded operator
�T ∈ L(H 1

T,ϕ
, �H1

ϕ
).

The result of this section is:

Theorem 7.3. – �T is an isometry.

Proof. – Because of (7.22) we only need to prove surjectivity. We have to construct
for g ∈ �H1

ϕ
a solution of

∂tΨ = iHΨ, Ψ
�
ϕ(�r), �r,ω

�
= g(�r,ω).(7.23)

We first suppose g ∈ C
∞([−Tϕ, Tϕ]× S

2; C2) and consider the approximate problem

∂tΨ
�
= iHΨ

�
, Ψ

�
�
ϕ�(�r), �r, ω

�
= g(�r,ω),(7.24)

where ϕ� is as before and g(�r, ω) is identified with a smooth extension on
[−T

1

ϕ�
, T

2

ϕ�
]× S

2. As ϕ� is smooth it is well known that (7.24) possesses a smooth
solution and we have the estimate

�Ψ��2H 1

T,ϕ

≤ �Ψ��2H 1

T,ϕ�

= �g�2�H1
ϕ�

.(7.25)

Similar estimates hold on H 1

t,ϕ
,min ϕ ≤ t ≤ T = max ϕ. As the R.H.S. of (7.25) is

uniformly bounded we find uniform bounds (here we also use ϕ� ≤ ϕ):

�Ψ��(H1(K
ϕ

T
))4 � 1, �Ψ�� H 1

T,ϕ

� 1.

We can therefore extract a subsequence which we denote again Ψ� such that

Ψ
�
� Ψ H 1

T,ϕ
, Ψ

�
� Ψ

�
H

1
(K

ϕ

T
)
�4

, Ψ
� → Ψ

�
H

s
(K

ϕ

T
)
�4

,
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for 1

2
< s < 1. The limit Ψ is a solution of the Dirac equation. We have to check that

Ψ(ϕ(�r), �r,ω) = g(�r, ω). To this aim we estimate for � small:
�

Tϕ

−Tϕ

�

S2

��Ψ�
(ϕ(�r), �r, ω)− g(�r,ω)

��2 d�r dω

=

�
Tϕ

−Tϕ

�

S2

��Ψ�
(ϕ(�r), �r,ω)−Ψ

�
(ϕ�(�r), �r,ω)

��2 d�r dω

=

�
Tϕ

−Tϕ

�

S2

���
�

ϕ(�r)

ϕ�(�r)

∂tΨ
�
(t, �r,ω)

���
2

dtd�r dω

≤
�

Tϕ

−Tϕ

�

S2

�
ϕ(�r)

ϕ�(�r)

��∂tΨ
�
(t, �r,ω)

��2 dt|ϕ(�r)− ϕ�(�r)|d�r dω

≤ |ϕ− ϕ�|L∞
�

max ϕ

1

2
min ϕ

�
Tϕ

−Tϕ

�

S2

��HΨ
�
(t, �r, ω)

��2 d�r dωdt

� |ϕ� − ϕ|L∞ · �HΨ
��2H T,ϕ

� |ϕ� − ϕ|L∞ −→ 0, � → 0.

Here we have used the Cauchy-Schwarz inequality. On the other hand we know that
��Ψ

�
(ϕ(�r), �r,ω)−Ψ(ϕ(�r), �r, ω)

��
L2(([−Tϕ,Tϕ]×S2,d�r dω);C4)

≤ �Ψ� −Ψ�(Hs(K
ϕ

T
))4 → 0.

It follows that Ψ(ϕ(�r), �r,ω) = g(�r,ω). The solution Ψ satisfies

�Ψ� H 1

T,ϕ

≤ �g� �H1
ϕ

, �Ψ�(H1(K
ϕ

T
))4 � �g� �H1

ϕ

.(7.26)

If g ∈ �H1

ϕ
, then we approximate it by a sequence g

n of C
∞ functions. Then by

(7.26) the associated sequence Ψn of solutions converges to some Ψ in the norms
H 1

T,ϕ
, (H1(K

ϕ

T
))4. As Ψ ∈ (H1(K

ϕ

T
))4, the trace Ψ|Λϕ

exists and we have
�

Tϕ

−Tϕ

�

S2

��Ψ(ϕ(�r), �r,ω)− g(�r, ω)
��2 d�r dω ≤ �Ψ−Ψ

n�2
(Hs(K

ϕ

T
))4

+

�
Tϕ

−Tϕ

�

S2

|gn − g|2 d�r dω −→ 0

and thus �T Ψ = g. This concludes the proof of the theorem.

7.3. Proof of Theorems 7.1 and 7.2

Because of (7.3) and (7.11) we only have to show surjectivity. Let λ < 1 and
ϕλ = λ|�r|. Then the hypersurface Λϕλ

= {(ϕλ(�r), �r, ω); |�r| ≤ T,ω ∈ S
2} is a lipschitz

space-like hypersurface. We first suppose

g2,3 ∈ C
∞�

[−T, 0]× S
2
; C2

�
and �g

1,4
∈ C

∞�
[0, T ]× S

2
; C2

�
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(which we extend to smooth functions on [−T/λ, 0] × S
2 resp. [0, T/λ] × S

2). Let
g1,4(�r,ω) and �g

2,3
(�r,ω) be the solutions of (7.4) and (7.5). We consider the approxi-

mate problem:





∂tΨ
λ = iHΨλ

,

Ψλ(−λ�r, �r,ω) = g(�r,ω), −T/λ ≤ �r ≤ 0,

Ψλ(λ�r, �r, ω) = �g(�r, ω), 0 ≤ �r ≤ T/λ.

(7.27)

We put

�g(�r,ω) :=

�
g(�r,ω) −T/λ ≤ �r ≤ 0,

�g(�r, ω) 0 ≤ �r ≤ T/λ.

Starting with �g we define �gH

ϕλ
as in (7.14). For −T/λ ≤ �r ≤ 0 we have

�gH

ϕλ
(�r,ω) :=

�
Diag

�
1

1− λ

,− 1

1 + λ

,− 1

1 + λ

, 1

1− λ

�
D�rg

�
(�r,ω)

+

�
Diag

�
1

1− λ

, 1

1 + λ

, 1

1 + λ

, 1

1− λ

�
(Pω + W )g

�
(�r, ω).

Note that the first and fourth components are zero because g is a solution of (7.4).
In a similar way we find for 0 ≤ �r ≤ T

λ
:

�gH

ϕλ
(�r,ω) :=

�
Diag

�
1

1 + λ

,− 1

1− λ

,− 1

1− λ

, 1

1 + λ

�
D�r�g

�
(�r,ω)

+

�
Diag

�
1

1 + λ

, 1

1− λ

, 1

1− λ

, 1

1 + λ

�
(Pω + W )�g

�
(�r, ω).

Here the second and third components are zero because �g is a solution of (7.5). As
(g2,3, �g1,4

) ∈ �H1 we see that �g ∈ �H1

ϕλ
. Therefore (7.27) possesses by Theorem 7.3

a unique solution Ψλ satisfying the energy estimate

�Ψλ�2H 1

T

≤ �Ψλ�2H 1

ϕ
λ

,T

= �g�2�H 1

ϕ
λ

.(7.28)

As

(�gH

ϕλ
)1,4 = 0, ∀ − T/λ ≤ �r ≤ 0, (�gH

ϕλ
)2,3 = 0, ∀ 0 ≤ �r ≤ T/λ,

we see that the R.H.S. of (7.28) is uniformly bounded. Repeating the argument for the
spaces H 1

ϕλ,t
, min ϕλ ≤ t ≤ T = maxϕλ we see that we can extract a subsequence,

still denoted Ψλ, such that

Ψ
λ

� Ψ H 1

T
, Ψ

λ
� Ψ

�
H

1
(KT )

�4

, Ψ
λ → Ψ

�
H

s
(KT )

�4

,

for 1

2
< s < 1. Ψ is a solution of the Dirac equation and we have

�Ψ� H 1

T

≤ �g� �H1 , �Ψ�(H1(KT ))4 � �g� �H1 .(7.29)
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We want to check that

Ψ2,3(−�r, �r,ω) = g2,3(�r,ω), ∀ − T ≤ �r ≤ 0,

Ψ1,4(�r, �r, ω) = �g
1,4

(�r,ω), ∀ 0 ≤ �r ≤ T.

In fact we can even show
Ψ

�
|�r|, �r,ω) = �g(�r, ω).

As in Section 7.2 we estimate
�

T

−T

�

S2

���g(�r,ω)−Ψ
λ
(|�r|, �r,ω)

��2 d�r dω

=

�
T

−T

�

S2

��Ψλ
(λ|�r|, �r, ω)−Ψ

λ
(|�r|, �r, ω)

��2 d�r dω

=

�
T

−T

�

S2

���
�

λ|�r|

|�r|
∂tΨ

λ
(t, �r, ω)dt

���
2

d�r dωdt

≤ |λ− 1| · T
�

T

−T

�

S2

� |�r|

λ|�r|

��∂tΨ
λ
(t, �r,ω)

��2 d�r dωdt

� T |λ− 1| · �HΨ
λ�2H T

� T |λ− 1| −→ 0.

On the other hand
�

T

−T

�

S2

��Ψλ
(|�r|, �r, ω)−Ψ(|�r|, �r,ω)

��2 d�r dω ≤ �Ψλ −Ψ�2
(Hs(KT ))4

−→ 0.

Thus Ψ(|�r|, �r, ω) = �g(�r,ω). If (g2,3, �g1,4
) ∈ �H1

, we approach it by a sequence
(gn

2,3
, �gn

1,4
) of smooth data and the corresponding solutions converge to a solution Ψ.

The trace of Ψ on ΛT exists and we show as in the proof of Theorem 7.3 that

Ψ2,3(−�r, �r,ω) = g2,3(�r,ω), Ψ1,4(�r,ω) = g1,4(�r,ω).

If (g2,3, �g1,4
) ∈ L

2

T,− ⊕ L
2

T,+
we again approach it by a sequence of smooth data

(gn

2,3
, �gn

1,4
). The corresponding solutions are in H 1

T
and converge to some Ψ in H T .

By definition of the extension we have T Ψ = g (see Remark 7.1). This concludes the
proofs of Theorem 7.1 and Theorem 7.2.

7.4. The characteristic Cauchy problem on Mcol

In this section we want to solve a characteristic Cauchy problem outside the col-
lapsing star. The data will be a function g2,3(t, ω) for which we suppose

∃ tg, ∀t ≥ tg, g2,3(t, ω) = 0.(7.30)
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X

Figure 2. The characteristic Cauchy problem outside the collapsing star

We want to solve the characteristic Cauchy problem





∂tΨ = iHΨ, �z(t, θ) ≤ �r ≤ −t + 1, t ≥ 0,

Ψ2,3(t,−t + 1, ω) = g2,3(t, ω),

�
µ∈{t,�r,θ,ϕ}(N µ�γµΨ)

�
�z(t, θ), ω

�
= −iΨ(�z(t, θ), ω),

t > tg, �r ∈ [�z(t, θ),−t + 1] =⇒ Ψ(t, �r, ω) = 0

(7.31)

and write the solution as
Ψ(t) = U(t, tg)ΨK(tg),

where ΨK(tg) is the solution at time tg of a characteristic problem in K, K as in
Figure 2.

We first have to specify the regularity of the data. If g1,4(t, ω) = Ψ1,4(t,−t + 1, ω),
then g1,4 is solution of the equation

Dtg1,4 =
�
(Pω + W )g

�
1,4

, g1,4(tg, ω) = 0,(7.32)

which we can write as

g1,4(t, ω) =

�
t

tg

V (t, s)S(s)ds

with a propagator V (t, s) and a source term S(s) associated to (7.32) as in Section 7.1.
We then put

g
H

2,3
(t, ω) :=

1

2

�
Dtg2,3 + ((Pω + W )g)2,3

�
.(7.33)

Let Ĥ
1([0, tg]× S

2; C2) be the completion of

C0 =
�
u ∈ C

∞
([0, tg]× S

2
; C2

); u(tg, ω) = 0, ∀ω ∈ S
2
�

in the norm

�g2,3�2
Ĥ1

= 2
�
�g2,3�2L2([0,tg]×S2;C2)

+ �gH

2,3
�2

L2([0,tg]×S2;C2)

�
.

The result of this section is:
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Theorem 7.4. – Let g2,3 ∈ Ĥ
1. Then (7.31) possesses a unique solution Ψ with

�Ψ ∈ C
1(R; H ) ∩ C(R; H 1

) and

t ≥ 0, �r ∈
�
�z(t, θ),−t + 1

�
=⇒ Ψ(t, �r,ω) = �Ψ(t, �r, ω).

Furthermore, for all 0 ≤ t0 ≤ tg, we have
�

S2

� −t0+1

�z(t0,θ)

|Ψ|2(t0, �r,ω)d�r dω = 2

�
tg

t0

�

S2

|g2,3|2(t, ω)dtdω.(7.34)

Proof. – We first show uniqueness. Let 0 ≤ t0 ≤ tg,

B1 :=
�
(t0, �r,ω); �z(t0, ω) ≤ �r ≤ −t0 + 1

�
,

B2 :=
�
(tg, �r, ω); �z(tg, θ) ≤ �r ≤ −tg + 1

�
,

B3 :=
�
(t, �z(t, θ), ω); t0 ≤ t ≤ tg, ω ∈ S

2
�
,

B4 :=
�
(t,−t + 1, ω); t0 ≤ t ≤ tg, ω ∈ S

2
�
,

B := B1 ∪B2 ∪B3 ∪B4.

By Stokes’ theorem we have
�

B

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
) = 0(7.35)

⇐⇒
�

S2

� −t0+1

�z(t0,θ)

|Ψ|2(t0, �r,ω)d�r dω = 2

�
tg

t0

�

S2

|g2,3|2(t, ω)dtdω.

Indeed �

B2

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
) = 0

because the solution is zero on B2 and
�

B3

∗(φAφ̄A� dx
AA

�
+ χ̄AχA� dx

AA
�
) = 0

because N AA
�
(φAφ̄A� + χ̄AχA�) = 0. The equality (7.35) gives the uniqueness result.

Let us now prove existence. Let

K :=
�
(t, �r,ω); −1 ≤ t ≤ tg,−t + 1 ≤ �r ≤ t + 3

�
.

We put

�g
1,4

(t, ω) = �g
1,4

(0, ω) = g1,4(0, ω) =

�
0

tg

V (0, s)S(s)ds.(7.36)

The characteristic Cauchy problem





∂tΨ = iHΨ, (t, �r,ω) ∈ K,

Ψ2,3(t,−t + 1, ω) = g2,3(t, ω),

Ψ1,4(t, t + 3, ω) = �g
1,4

(t, ω)

(7.37)
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has, by the results of the previous sections, a unique solution Ψ�g . We now choose a
smooth cut-off χ ∈ C

∞(R) with

χ(x) =

�
1 x ≤ tg + 2,

0 x ≥ tg +
5

2

and put

Ψ(tg, �r,ω) =

�
χΨ�g(tg, �r,ω) �r ≥ −tg + 1,

0 �r ≤ −tg + 1.

(7.38)

This defines Ψ(tg, �r,ω) for all �r ≥ �z(tg, θ). Note that because of the finite prop-
agation speed the solution in the domain we are interested in is independent of
Ψ(tg, �r,ω)|[tg+2,∞)×S2 . Because of (7.36) we have Ψ�g(tg,−tg + 1, ω) = 0. Therefore
Ψ(tg, �r,ω) ∈ H 1

. The restriction of
�Ψ(t) =

�
U(t, tg)Ψ(tg)

�
H

(7.39)

to {(t, �r,ω); 0 ≤ t ≤ tg, �z(t, θ) ≤ �r ≤ −t + 1, ω ∈ S
2} solves the problem.

Remark 7.2. – (a) We could of course permit data which do not vanish on B2 and
proceed as in the preceding sections. However in the next sections, we shall need a
description of the solutions as in (7.38).

(b) Let Ψ ∈ C
1(R; H ) ∩ C(R; H 1

) be a solution of the characteristic problem

∂tΨ = iHΨ,

Ψ2,3(t,−t + 1, ω) = g2,3(t, ω).

�

Then we have the following energy estimate:

2

�

R

�

S2

|g2,3|2(s, ω)dsdω ≤ �Ψ(t)�2H , ∀ t.(7.40)

Indeed Stokes’ theorem gives for T > 0:
�

2T+1

1

�

S2

|Ψ|2(0, �r,ω)d�r dω

= 2

��
0

−T

�

S2

|g2,3|2(t, ω)dtdω +

�
0

−T

�

S2

|Ψ1,4|2(t, t + 2T + 1, ω)dtdω

�

=⇒ 2

�
0

−∞

�

S2

|g2,3|2(t, ω)dtdω ≤
� ∞

1

�

S2

|Ψ|2(0, �r,ω)d�r dω.

In the same way we can show

2

� ∞

0

�

S2

|g2,3|2(t, ω)dtdω ≤
�

1

−∞

�

S2

|Ψ|2(0, �r, ω)d�r dω.

Thanks to inequality (7.40) we can extend the trace operator T : ΨT �→ Ψ(t,−t+1, ω)

to a bounded operator T ∈ L(H ;L2((R× S
2 dtdω); C2)).
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CHAPTER 8

REDUCTIONS

In this chapter we present the basic analytic problem that we have to solve in order
to prove the main theorem.

8.1. The key theorem

Let n ∈ Z +
1

2
, �Σ = R× [0, 2π]ϕ × [0, π]θ,

η
n

=
qQr+

r
2
+

+ a2
+

an

r
2
+

+ a2
, µ

n
= e

ση
n

(see (5.28) and Remark 6.1). Theorem 5.1 will follow from

Theorem 8.1 (Key theorem). – Let f(�r, ω) = einϕ
f

n(�r, θ) ∈ (C∞
0

(�Σ))4. Then

lim
T→∞

��1[0,∞)(H0)U(0, T )f
��2

0
=

��1[0,∞)(H)1R−(P
−

)f
��2(8.1)

+
�
Ω
−
←f, µ

n
e
σH←(1 + µ

n
e
σH←)

−1
Ω
−
←f

�
.

Proof of Theorem 5.1 (using the result of Theorem 8.1). – Using the axial symme-
try of the problem it is clear that it is sufficient to show (5.27) for Φj(t, �r,ω) =

einϕ�Φj(t, �r, θ) with η replaced by η
n and µ by µ

n. We then use the polarization identity
to see that it is sufficient to evaluate for Φ(t, �r, ω) = einϕ�Φ(t, �r, θ) ∈ (C∞

0
(Mcol))

4:

lim
T→∞

ωcol

�
Ψ
∗
col

(Φ
T
)Ψcol(Φ

T
)
�

= lim
T→∞

��1[0,∞)(H0)ScolΦ
T
��2

0
(8.2)

= lim
T→∞

��1[0,∞)(H0)U(0, T )SΦ
��2

0
.

Here we have used that for T > 0 sufficiently large we have

ScolΦ
T

= U(0, T )SΦ.

By a change of variables and using the compact support of Φ we have indeed

ScolΦ
T

=

�
b

a

U(0, T )U(T, s + T )Φ(s)ds, −∞ < a < b < ∞.
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There exist �r1, �r2 such that

∀a ≤ s ≤ b, supp e
−isH

Φ(s, �r,ω) ⊂ [�r1, �r2]× S
2
.

In order to replace U(T, s+T ) by e−isH it is sufficient to choose T large enough such
that

�z(t, θ) < �r1, ∀ t ≥ min{a + T, T}, θ ∈ [0, π].

Now using (8.2) and Theorem 8.1 we obtain

lim
T→∞

ωcol

�
Ψ
∗
col

(Φ
T
)Ψcol(Φ

T
)
�

=
��1[0,∞)(H)1R−(P

−
)SΦ

��2

+
�
Ω
−
←SΦ, µ

n
e
σH←(1 + µ

n
e
σH←)

−1
Ω
−
←SΦ

�

=
��1[0,∞)(H)S1R−(P

−
)Φ

��2

+
�
S1R+(P

−
)Φ, µ

n
e
σH

(1 + µ
n
e
σH

)
−1

S1R+(P
−

)Φ
�
.

From now on we will always suppose f(�r, ω) = einϕ
f

n(�r, θ). The proof of Theo-
rem 8.1 (resp. Theorem 8.2) below will be the purpose of the rest of this paper. It will
be accomplished in Chapter 11.

8.2. Fixing the angular momentum

Thanks to the cylindrical symmetry of the Kerr-Newman space-time the angular
momentum of the solution is preserved. More precisely let for n ∈ Z +

1

2
:

H n
:=

�
e
inϕ

u ∈ H ; u ∈ (L
2
(R× [0, π]; d�r sin θdθ))

4
�
,

H n

∗ :=
�

e
inϕ

u ∈ H ∗; u ∈ (L
2
(R× [0, π]; dr∗ sin θdθ))

4
�
.

Then all the dynamics which were introduced so far preserve these spaces. Note that

H =

�

n

H n
.

We also define

H n1
:= H 1 ∩ H n

, H n1

∗ := H 1

∗ ∩ H n

∗ .
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Let us put

D/n

s := Γ
1
Dr∗ + a0(r∗)D/S2 + b0(r∗)Γ

4
+ c

n
,(8.3)

D/n
:= hD/n

sh + V
n
,(8.4)

D/n

H
:= Γ

1
Dr∗ −

a

r
2
+

+ a2
n− qQr+

r
2
+

+ a2
,(8.5)

D/n

→ := Γ
1
Dr∗ + mΓ

4
,(8.6)

c
n

:= nc
ϕ

2
+ c1, V

n
:= nVϕ + V1, η

n
:=

an

r
2
+

+ a2
+

qQr+

r
2
+

+ a2
,(8.7)

V
n

0
:= nVϕ + V1 = (V

n

0ij
)ij ,(8.8)

W
n

:= h
2
c1 + h

2
c
ϕ

2
n + �Vϕn + �V1.(8.9)

The operators D/n, etc. will be understood as operators acting on H n

∗ with domain
D(D/n

) = {u ∈ H n

∗ ; D/n
u ∈ H n

∗}, etc. They are selfadjoint with these domains (see
[15, Corollary 3.1]), the graph norms of D/n and D/n

s are equivalent. We define the
operators �

D/
n

and H
n by

�
D/

n

= U D/n U∗, H
n

= V �
D/

n

V ∗.

Clearly �
D/

n

and H
n are selfadjoint with domains

D(
�
D/

n

) = UD(D/n
), D(H

n
) = V D(

�
D/

n

) = V UD(D/n
).

We will also need the operator

H
n

← := Γ
1
D�r − η

n
.

In order to describe the precise asymptotic behavior of all coefficients we introduce
the following symbol classes as subsets of C

∞(Σ):

f ∈ Sm,n iff ∀α,β ∈ N, ∂
α

r∗∂
β

θ
f =

�
O(�r∗�m−α), r∗ → +∞,

O(enκ+|r∗|), r∗ → −∞,

f ∈ Sm iff ∀α,β ∈ N, ∂
α

r∗∂
β

θ
f = O(�r∗�m−α

), |r∗|→∞.

We shall denote f
� the derivative of f with respect to r∗ even for functions which

depend also on ω. We recall [15, Proposition 3.1, Lemma 3.2]:

Proposition 8.1. – We have

a0 ∈ S−1,−1
, b0 ∈ S0,−1

, b
�
0
∈ S−2,−1

,

(c
n
)
� ∈ S−2,−2

, h
2 − 1 ∈ S−2,−2

, V
n

0ij
∈ S−2,−1

.
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Furthermore there exist two constants C3 > 0 and � > 0 such that
�
a0(r∗)−

1

r∗

�(i)

= O
�
�r∗�−1−�−i

�
, r∗ →∞, i = 1, 2,(8.10)

�
a0(r∗)− C3 e

κ+r∗
�(i)

= O
�
e
(κ++�)r∗

�
, r∗ → −∞, i = 1, 2,(8.11)

b0 −m = O
�
�r∗�−1

�
, r∗ →∞,(8.12)

c
n

+ η
n

= O(e
2κ+r∗), r∗ → −∞.(8.13)

Remark 8.1. – (i) Properties (8.10), (8.11) imply the existence of two constants
R0 > 0 and C0 > 0 such that

∀r∗ ≥ R0,
C
−1

0

r∗
≤ a0(r∗) ≤

C0

r∗
,

∀r∗ ≤ −R0, C
−1

0
e
κ+r∗ ≤ a0(r∗) ≤ C0 e

κ+r∗ .

(ii) From the definition of �r it is clear that we obtain equivalent statements for
ĥ(�r, θ) = h(r∗(�r, θ), θ), etc. if we define the symbol classes with respect to �r.

8.3. The basic problem

For ν ∈ R we put

Γ
ν

:=

�
0 āν

aν 0

�
, aν = ie

iν12,

D/ν,n
:= hD/ν,n

s h + V
n
, D/ν,n

s := Γ
1
Dr∗ + a0D/S2 + b0Γ

ν
+ c

n
,

V
n

:= V
ν

1
+ nVϕ, V

ν

1
= V0 +

m
√

∆

σ

�
ρ−

�
r2 + a2

�
Γ

ν − qQr

σ2
(r

2
+ a

2 − σ),

i.e. D/ν,n is obtained from D/n by replacing Γ4 by Γν . We define D/ν,n

→ in the same way.
The operators H

ν,n and H
ν,n

→ are defined by

H
ν,n

= V U D/ν,n U∗ V ∗, H
ν,n

→ = V U D/ν,n

→ U∗ V ∗.

We also define

H n

t
:=

�
u = e

inϕ
v ∈ H t; v ∈ (L

2
(Σ

col,ϕ

t
, d�r sin θdθ))

4
�

with Σ
col,ϕ

t
= {(�r, θ) ∈ R× [0, π]; �r ≥ �z(t, θ)}.

Let us consider the problem





∂tΦ = iH
ν,n

t
Φ, �r > �z(t, θ),

�
µ∈{t,�r,θ,ϕ}(N µ�γµΦ)(t, �z(t, θ), ω) = −iΦ(t, �z(t, θ), ω),

Φ(t = s, .) = Φs(.) ∈ D(Hν,n

s
)

(8.14)
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with

D(H
ν,n

s
) =

�
u ∈ H ; H

ν,n

s
u ∈ H n

s
,�

µ∈{t,�r,θ,ϕ}

N µ�γµ
u(t, �z(t, θ), ω) = −iu(t, �z(t, θ), ω)

�
.

Proposition 8.2. – Let Ψs ∈ D(Hν,n

s
). Then there exists a unique solution

�
Ψ(.)

�
H

= [U
ν,n

(., s)Ψs]H ∈ C
1
(Rt; H n

) ∩ C(Rt; H n1
)

of (8.14) such that Ψ(t) ∈ D(H
ν,n

t
) for all t ∈ R. Furthermore we have �Ψ(t)� =

�Ψs� and U
ν,n(t, s) possesses an extension to an isometric and strongly continuous

propagator from H n

s
to H n

t
such that for all Φs ∈ D(Hs) we have

d

dt
U

ν,n
(t, s)Φs = iHtU

ν,n
(t, s)Φs

and if R > �z(s, θ) for all θ we have
�
�r > R ⇒ Φs(�r,ω) = 0

�
=⇒

�
�r > R + |t− s|⇒ (U

ν,n
(t, s)Φs)(�r, ω) = 0

�
.

Proposition 8.2 is proven in Appendix A. Let us for the moment just note that
Proposition 8.2 implies Proposition 4.5. Indeed if we define

U(t, s) = ⊕n e
iν/2γ

5

U
ν,n

(t, s)e
−iν/2γ

5

,(8.15)

then U(t, s) has the required properties. Let us now consider H
ν,n

ηn = H
ν,n + η

n
,

H
ν,n

ηn,t
:= H

ν,n

t
+ η

n. Clearly

1[0,∞)(H
ν,n

0
) = 1[ηn,∞)(H

ν,n

ηn,0
)

and an equivalent equation for H
ν,n

ηn . If U
ν,n

ηn (t, s) is the evolution system associated
to H

ν,n

ηn,t
, then we have the relation

U
ν,n

ηn (t, s) = e
i(t−s)η

n

U
ν,n

(t, s).

Let also

H←,ηn = H
n

← + η
n
, H

ν,n

→,ηn = H
ν,n

→ + η
n
, W

n

ηn = W
n

+ η
n
.

Thus if f(�r, ω) =
�

n
einϕ

f
n(�r, θ), then

��1[0,∞)(H0)U(0, T )f
��2

H =

�

n

��1[ηn,∞)(H
ν,n

ηn,0
)U

ν,n

ηn (0, T )e
iν/2γ

5

f
n
��2

H n

and therefore the key theorem will follow from the following

Theorem 8.2 (Key theorem 2). – Let f(�r,ω) = einϕ
f

n(�r, θ) ∈ (C∞
0

(�Σ))4. Then

lim
T→∞

��1[ηn,∞)(H
ν,n

ηn,0
)U

ν,n

ηn (0, T )f
��2

0
(8.16)

=
��1[ηn,∞)(H

ν,n

ηn )1R−(P
ν−
n

)f
��2

+
�
Ω
−,ν,n

← f, e
σH

n

←,ηn (1 + e
σH

n

←,ηn )
−1

Ω
−,ν,n

← f
�
,

where σ is as in Theorem 5.1.
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Here Ω−,ν,n

← and P
ν−
n

denote

Ω
−,ν,n

← = s− lim
t→−∞

e
−itH

ν,n

← e
itH

ν,n

1R+(P
ν,−
n

),

P
ν,−
n

= s− C∞ − lim
t→−∞

e
−itH

ν,n �r
t

e
itH

ν,n

.

8.4. The mixed problem for the asymptotic dynamics

In this section we give an explicit formula for the mixed problem for the asymptotic
dynamics near the horizon. We consider the problem






∂tΦ = iH←,ηn,tΦ, (�r,ω) ∈ Σcol

t
,

Φ2

�
t, �z(t, θ), ω

�
= −Ẑ(t, θ)Φ4

�
t, �z(t, θ), ω

�
,

Φ3

�
t, �z(t, θ), ω

�
= Ẑ

�
t, θ)Φ1(t, �z(t, θ), ω

�
,

Φ(t = s, .) = Φs(.),

(8.17)

where Ẑ(t, θ) =

�
(1 + �̇z(t, θ))/(1− �̇z(t, θ)). We note that the boundary condition is

the MIT condition with a0 = 0 and put

�w0(t, θ) := (1− �̇z
2

)
− 1

2 .

For 0 > x0 > �z(0, θ) we define �τ (x0, θ) by

�z
�
�τ (x0, θ), θ

�
+ �τ (x0, θ) = x0.

We obtain

�τ (x0, θ) = − 1

2κ+

ln(−x0) +
1

2κ+

ln( �A(θ)) + O(x0), x0 → 0
−

,(8.18)

1 + �̇z(�τ (x0, θ)) = −2κ+x0 + O(x
2

0
), x0 → 0

−
.(8.19)

We denote U←(t, s) the isometric propagator associated to (8.17).

Lemma 8.1. – For t ≤ s, given f ∈ H s, u(t) = U←(t, s)f is given by

� if �r > �z(t, θ) then

u2(t, �r,ω) = f2(�r − t + s, ω), u3(t, �r, ω) = f3(�r − t + s, ω),

� if �r > s + �z(s, θ)− t then

u1(t, �r, ω) = f1(�r + t− s, ω), u4(t, �r, ω) = f4(�r + t− s, ω),

� if �z(t, θ) < �r < s + �z(s, θ)− t then

u1(t, �r,ω) = Ẑ
−1

(�τ (�r + t, θ), θ)f3(�r + t + s− 2�τ (�r + t, θ), ω),

u4(t, �r,ω) = −Ẑ
−1

(�τ (�r + t, θ), θ)f2(�r + t + s− 2�τ (�r + t, θ), ω).
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8.5. The new hamiltonians

In the remaining chapters we consider the operators H
ν,n

ηn etc. acting on the Hilbert
space H n. It is clear that all the results of the preceding chapters hold also for these
operators. We define the angular part P

ν,n

ω
of H

ν,n

ηn by

P
ν,n

ω
:= H

ν,n

ηn − Γ
1
D�r −W

n

ηn .

The indices ν, n, η
n will be suppressed from now on. In particular we have a new hamil-

tonian which is slightly different from the hamiltonian considered in Chapters 4-8.





CHAPTER 9

COMPARISON OF THE DYNAMICS

Let J ∈ C
∞
b

(R), 0 < a < b < 1 and

J (�r) =

�
1 �r ≤ a,

0 �r > b.

The aim of this chapter is to prove the following

Proposition 9.1. – Let f(�r,ω) = einϕ
f

n(�r, θ) ∈ (C∞
0

(�Σ))4, n ∈ Z +
1

2
. Then

∀� > 0, ∃ t0 > 0, ∀ t� ≥ t0, ∃T0 > 0, ∀T ≥ T0,

�� J (�r + t�)(U(t�, T )f − U←(t�, T )Ω
−
←)f

�� < �.

Proposition 9.1 compares the dynamics U(t�, T ) and U←(t�, T )Ω← (see Figure 1).
The function J (�r + t�) is a cut-off in the region we are interested in. The proposi-
tion states that in this region the above dynamics are close to each other when t�

becomes large and this uniformly in T . To prove Proposition 9.1 we understand both
U(t�, T )f and U←(t�, T )Ω−←f as solutions of a characteristic problem. In Section 9.1
we compare the characteristic data, in Section 9.2 we compare the solutions of the
characteristic problems for the operators H and H←. Proposition 9.1 is proven in Sec-
tion 9.3. We suppose for the whole chapter that f(�r,ω) = einϕ

f
n(�r, θ) ∈ (C∞

0
(�Σ))4,

supp f ⊂ [R1, R2]× [0, 2π]× [0, π].

9.1. Comparison of the characteristic data

Let

g
T
(t, ω) :=

�
P2,3U(t, T )f

�
(−t + 1, ω), g

T

←(t, ω) :=
�
P2,3U←(t, T )Ω

−
←f

�
(−t + 1, ω).

Note that it is a priori not clear that U←(t, T )Ω−←f is regular enough to take the
trace �

U←(t, T )Ω
−
←f

�
(−t + 1, ω)

in the usual sense, but it can be taken in the sense of Remark 7.2 (b).
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Figure 1. Comparison of the dynamics

Lemma 9.1. – We have
� ∞

0

�

S2

��gT
(t, ω)− g

T

←(t, ω)
��2 dtdω −→ 0, T →∞.

Proof. – First observe that

g
T
(t, ω) = P2,3(e

i(t−T )H
f)(−t + 1, ω),(9.1)

g
T

←(t, ω) = P2,3(e
i(t−T )H←Ω

−
←f)(−t + 1, ω).(9.2)

Using Lemma 6.6 we see that

supp f, suppΩ
−
←f ⊂ [R1,∞)× [0, 2π]× [0, π].(9.3)

By the finite propagation speed this entails

supp
�
e
i(t−T )H

f
�
, supp

�
e
i(t−T )H←Ω

−
←f

�
⊂ [R1 − |T − t|,∞)× [0, 2π]× [0, π].

If t > T , the condition −t+1 ≥ R1− |T − t| implies 1 ≥ R1 +T and if t < T the same
condition implies t ≤ 1

2
(1 + T − R1). Let m(T ) satisfy the conditions of Lemma 6.3.

For T sufficiently large we have

I :=

� ∞

0

�

S2

��gT
(t, ω)− g

T

←(t, ω)
��2 dtdω

�
� 1

2
(1+T−R1)

0

�

S2

���P2,3 e
itH1(−1,∞)

� �r
T −m(T )

�
e
−iTH

f

���
2

(−t + 1, ω)dtdω

+

� 1

2
(1+T−R1)

0

�

S2

���P2,3 e
itH←1(−1,∞)

� �r
T −m(T )

�
e
−iTH←Ω

−
←f

���
2

(−t + 1, ω)dtdω

+

� 1

2
(1+T−R1)

0

�

S2

���P2,3

�
e
itH1(−∞,−1)

� �r
T −m(T )

�
e
−iTH

− e
itH←1(−∞,−1)

� �r
T −m(T )

�
e
−iTH←Ω

−
←

�
f

���
2

(−t + 1, ω)dtdω

=: I1 + I2 + I3.
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We want to show that

lim
T→∞

I1 = 0.(9.4)

By the energy estimate (7.40) we see that we can replace f by χ(H)f, χ ∈ C
∞
0

(R),

supp χ ⊂ R \ {−m + η
n
, m + η

n}. Let 0 < �χ < 1 be as in Lemma 6.2. Then

I1 �
� 1

2
(1+T−R1)

0

�

S2

���P2,3 e
itH1

(−1,
1

2
�χ)

� �r
T −m(T )

�
e
−iTH

χ(H)f

���
2

(−t + 1, ω)dtdω

+

� 1

2
(1+T−R1)

0

�

S2

���P2,3 e
itH←1

(
1

2
�χ,∞)

� �r
T −m(T )

�
e
−iTH

χ(H)f |2(−t + 1, ω)dtdω

=: I11 + I12

Let us first estimate I12. We have

supp

�
e
itH1

(
1

2
�χ,∞)

� �r
T −m(T )

�
e
−iTH

χ(H)f

�

⊂
�

1

2
�χ

�
T −m(T )

�
− t,∞

�
× [0, 2π]× [0, π].

But −t + 1 ≥ 1

2
�χ (T −m(T )) − t implies 1 ≥ 1

2
�χ (T −m(T )) . Thus I12 = 0 for T

sufficiently large. We now estimate I11. By the energy estimate (7.40) we have

I11 ≤
���1(−1,

1

2
�χ)

� �r
T −m(T )

�
e
−iTH1R+(P

−
)χ(H)f

���

+

���1(−1,
1

2
�χ)

� �r
T −m(T )

�
e
−iTH1R−(P

−
)χ(H)f

���

= I
a

11
+ I

b

11
.

We have

lim
T→∞

I
b

11
= lim

T→∞

���1(−1,
1

2
�χ)

� �r
T −m(T )

�
1

(
3

4
�χ,∞)

� �r
T

�
e
−iTH

χ(H)f

���
2

= 0.

By Lemma 6.3 we have limT→∞ I
a

11
= 0. (9.4) follows. In the same manner we can

show

lim
T→∞

I2 = 0.

Let us now estimate I3. We have (t ≥ 0)

supp

�
e
itH←1(−∞,−1)

� �r
T −m(T )

�
e
−iTH←Ω

−
←f

�
,

supp

�
e
itH1(−∞,−1)

� �r
T −m(T )

�
e
−iTH

f

�

⊂ (−∞, m(T )− T + t)× [0, 2π]× [0, π].
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The condition −t + 1 ≤ m(T ) − T + t implies t ≥ 1

2
(T − m(T ) + 1). In particular

1− J (−t + 1) = 0 for T sufficiently large. Therefore we obtain

I3 ≤
� 1

2
(1+T−R1)

1

2
(T−m(T )+1)

�

S2

���P2,3

�
J (�r)e

itH1(−∞,−1)

� �r
T −m(T )

�
e
−iTH

− e
itH←1(−∞,−1)

� �r
T −m(T )

�
e
−iTH←Ω

−
←

�
f

���
2

(−t + 1, ω)dtdω

�
� 1

2
(1+T−R1)

1

2
(T−m(T )+1)

�

S2

���P2,3 e
itH1(−1,∞)

� �r
T −m(T )

�
e
−iTH

f

���
2

(−t + 1, ω)dtdω

+

� 1

2
(1+T−R1)

1

2
(T−m(T )+1)

�

S2

���P2,3 e
itH←1(−1,∞)

� �r
T −m(T )

�
e
−iTH←Ω

−
←f

���
2

(−t + 1, ω)dtdω

+

� 1

2
(1+T−R1)

1

2
(T−m(T )+1)

�

S2

���P2,3

�
J (�r)e

i(t−T )H
f − e

i(t−T )H←Ω
−
←

�
f

���
2

(−t + 1, ω)dtdω

=: L1 + L2 + L3.

We have for j = 1, 2

0 ≤ Lj ≤ Ij −→ 0, T →∞.

We estimate:

L3 ≤
1

2

�
m(T )−R1

�
sup

σ≤ 1

2
(1−(T+R1))

�� J (�r)e
iσH

f − e
iσH←Ω

−
←f

��2

L∞(R;(L2(S2))4)
(9.5)

� 1

2
(m(T )−R1) sup

σ≤ 1

2
(1−(T+R1))

�� J (�r)e
iσH

f − e
iσH←Ω

−
←f

��2

H1(R;(L2(S2))4)
.

We can choose

m(T ) = min

�
1

2
T,

�
sup

σ≤ 1

2
(1−(T+R1))

� J (�r)e
iσH

f − e
iσH←Ω

−
←f�2

H1(R;(L2(S2))4)

�− 1

2

�
.

Then by Lemma 6.7 the R.H.S. of (9.5) goes to zero when T →∞.

9.2. Comparison with the asymptotic dynamics

In the region �z(t�, θ) ≤ �r ≤ a− t� we understand J (�r + t�)U(t�, T )f as the solution
of the characteristic problem on Mcol for the operator H with data g

T and

J (�r + t�)U←(t�, T )Ω
−
←f

as solution of the characteristic problem for the operator H← with data g
T

←. We would
like to solve the characteristic problem for H with data g

T

← and write the solution as

Gt�
(g

T

←) = U
�
t,

1

2
T + c0

�
φ
�

1

2
T + c0

�
,
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where φ is constructed as in (7.38) with tg =
1

2
T + c0 for some c0 > 0. Unfortunately

g
T

← will in general not be regular enough to assure that Gt�
(gT

←) is a strong solution.
We shall therefore regularize Ω−←f . Let χR ∈ C

∞
0

(R) with (R � R1)

χR =

�
1 R− 1 ≥ �r ≥ R1,

0 �r ≤ R1 − 1, �r ≥ R.

Let
I n =

�
�; �− 1

2
∈ N, �− |n| ∈ N

�
, I N

n
=

�
� ∈ I n; |(�, n)| ≤ N

�
.

and

Ω
−
←f =

�

�∈ I n

(Ω
−
←f)

n�
, (Ω

−
←f)

n� ∈ H n�
= L

2
�
(R, d�r); C4

�
⊗4 Yn�, ∀�.

We put
(Ω
−
←f)

N
=

�

�∈ I N

n

(Ω
−
←f)

n�
, (Ω

−
←f)

N

R
= χR(Ω

−
←f)

N
.

Let
�f := (Ω

−
←f)

N

R
.

Clearly we have

∀� > 0, ∃N� > 0, R� > 0, ∀R ≥ R�, N ≥ N�,
��Ω

−
←f − (Ω

−
←f)

N

R

�� < �.

We put
g

T,N

←,R
=

�
P23U←(t, T )(Ω

−
←f)

N

R

�
(t,−t + 1, ω).

The functions (g
T,N

←,R
)23 are compactly supported. The necessary regularity of g

T,N

←,R

follows from the regularity of ei(t−T )H←(Ω−←f)N

R
by classical trace theorems(1). We

put c0 :=
1

2
(1 − R0) and R0 = R1 − 1. Let ΦR,N (

1

2
T + c0) be the solution of the

characteristic problem in the whole exterior Kerr-Newman space-time with data g
T,N

←,R

on {(t, �r,ω); 0 ≤ t, �r = −t + 1} as constructed in (7.38) and

Φ
R,N

←
�

1

2
T + c0

�
= e

−i(
1

2
T−c0)H←(Ω

−
←f)

N

R
.

Lemma 9.2. – We have uniformly in t� ≥ 0:
�� J (�r + t�)U(t�,

1

2
T + c0)

�
Φ

R,N
(
1

2
T + c0, .)− Φ

R,N

← (
1

2
T + c0, .)

���
H t�

−→ 0, T →∞.

Proof. – Let

I :=
�� J (�r + t�)U(t�,

1

2
T + c0)

�
Φ

R,N
(
1

2
T + c0, .)− Φ

R,N

← (
1

2
T + c0, .)

���2

H t�

.

First observe that by (7.34) we have

I ≤ 2

� 1

2
T+c0

t�

�

S2

|�gT,N

R
− g

T,N

←,R
|2 dtdω

(1) Recall that (U←(t, T )(Ω−←f)N

R
)(−t + 1, ω) = (ei(t−T )H← (Ω−←f)N

R
)(−t + 1, ω).



106 CHAPTER 9. COMPARISON OF THE DYNAMICS

with

�gT,N

R
=

�
P2,3 e

i(t−(
1

2
T+c0))H e

−i(
1

2
T−c0)H← �f

�
(−t + 1, ω).

We proceed as in the proof of Lemma 9.1. Let m(T ) satisfy the conditions of
Lemma 6.3. Then we have

I ≤
� 1

2
T+c0

t�

�

S2

���P2,3 e
itH1(−1,∞)

� �r
T −m(T )

�
e
−i(

1

2
T+c0)H e

−i(
1

2
T−c0)H← �f

���
2

(−t + 1, ω)dtdω

+

� 1

2
T+c0

t�

�

S2

���P2,3 e
itH←1(−1,∞)

� �r
T −m(T )

�
e
−iTH← �f

���
2

(−t + 1, ω)dtdω

+

� 1

2
T+c0

t�

�

S2

���P2,3

�
e
itH1(−∞,−1)

� �r
T −m(T )

�
e
−i(

1

2
T+c0)H e

−i(
1

2
T−c0)H←

− e
itH←1(−∞,−1)

� �r
T −m(T )

�
e
−iTH←

�
�f
���
2

(−t + 1, ω)dtdω

=: I1 + I2 + I3.

Let us first estimate I1. We have

I1 ≤
� 1

2
T+c0

t�

�

S2

|P2,3 e
itH1(−1,1)

� �r
T −m(T )

�
e
−i(

1

2
T+c0)H e

−i(
1

2
T−c0)H← �f

���
2

(−t + 1, ω)dtdω

+

� 1

2
T+c0

t�

�

S2

���P2,3 e
itH1(1,∞)

� �r
T −m(T )

�
e
−i(

1

2
T+c0)H e

−i(
1

2
T−c0)H← �f

���
2

(−t + 1, ω)dtdω

=: I11 + I12.

Using a finite propagation speed argument we see that I12 = 0 for T sufficiently large.
We estimate

I11 ≤
���1(−1,1)

� �r
T −m(T )

�
e
−i(

1

2
T+c0)H e

−i(
1

2
T−c0)H← �f

���
2

≤
���1(−1,1)

� �r
T −m(T )

�
e
−iTH1R+(P

−
)W

−
←

�f
���

2

+

���
�
e
i(

1

2
T−c0)H e

−i(
1

2
T+c0)H←

P H + −W
−
←

� �f
���

2

−→ 0, T →∞,

where we have used Lemma 6.3. In the same way we can show

lim
T→∞

I2 = 0.
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By the same arguments as in the proof of Lemma 9.1 we see that

I3 ≤
� 1

2
T+c0

1

2
(T−m(T )+1)

�

S2

���
�

e
i(t−(

1

2
T+c0)H − e

i(t−(
1

2
T+c0))H←

�
e
−i(

1

2
T−c0)H← �f

���
2

(9.6)

(−t + 1, ω)dtdω

�
�
c0 − 1

2
+

1

2
m(T )

�

× sup
1

2
(1−m(T ))−c0≤σ≤0

��(e
iσH − e

iσH←)e
−i(

1

2
T−c0)H← �f

��
H1(R,(L2(S2))4)

.

We estimate

�(e
iσH − e

iσH←)e
−i(

1

2
T−c0)H← �f �H1(R,(L2(S2))4)

≤
�

0

σ

��e
isH

(H −H←)e
i(σ−s− 1

2
T+c0)H← �f

��
H1(R,(L2(S2))4)

ds =: Iσ.

We have

Iσ ≤
�

0

σ

(�D�r(Pω + W )e
i(σ−s− 1

2
T+c0)H← �f �(9.7)

+
���

Pω + W )e
i(σ−s− 1

2
T+c0)H← �f

���
ds.

We have

Γ
1
D�r(Pω + W )e

i(σ−s− 1

2
T+c0)H← �f = [Γ

1
D�r , Pω + W ] e

i(σ−s− 1

2
T+c0)H← �f

(9.8)

+ (Pω + W )e
i(σ−s− 1

2
T+c0)H←Γ

1
D�r �f .

The last term equals

(Pω + W )e
i(σ−s− 1

2
T+c0)H←Γ

1
(χR)

�
(Ω
−
←f)

N(9.9)

+ (Pω + W )e
i(σ−s− 1

2
T+c0)H←(Ω

−
←Hf)

N

R
.

The first term can be treated in a similar manner. Using (9.8), (9.9) as well as

supp e
i(σ−s− 1

2
T+c0)H← �f ⊂ (−∞, R + σ − s− 1

2
T + c0)× [0, 2π]× [0, π],

we can push further the estimate (9.7) (0 ≥ σ ≥ 1

2
(1−m(T ))− c0):

Iσ �
�

0

σ

e
κ+(R+σ−s− 1

2
T )

(N + 1)
�
�Ω−←f�+ �Ω−←Hf�

�
ds

≤ 1

κ+

e
κ+(R+c0−

1

2
T )

(N + 1)
�
�Ω−←f�+ �Ω−←Hf�

�
=: E(T ) −→ 0, T →∞.

Choosing m(T ) = min(
1

2
T,E(T )−

1

2 ) in (9.6) we find I3 → 0, T →∞. This concludes
the proof of the lemma.
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9.3. Proof of Proposition 9.1

We start with the following lemma which analyzes the frequencies in D/S2 and D�r
of U←(t, s)f, f ∈ H 1:

Lemma 9.3. – Let f ∈ H 1, supp f ⊂ [R1, R2] × [0, 2π] × [0, π]. Then we have uni-
formly in 0 ≤ t ≤ s:

(i)
��D/S2 U←(t, s)f

��
H t

≤ C(R1, R2)�f� H 1 ,

(ii)
��D�rU←(t, s)f

��
H t

≤ C(R1, R2)e
κ+s�f� H 1 .

Proof. – Let u = U←(t, s)f . Recall the explicit formula for u from Section 8.4. We
first show (i). We note:

1− �̇z(t, θ) ≥ 1, 1 + �̇z(t, θ) � e
−2κ+t

.(9.10)

This follows from (3.53). We then claim that
���
∂�τ
∂θ

(�r, θ)

��� � 1 uniformly in �r, θ.(9.11)

Indeed from

�z
�
�τ (�r, θ), θ

�
+ �τ (�r, θ) = �r follows with (9.10),

���
∂�τ
∂θ

(�r, θ)

��� =

���
∂�z/∂θ

1 + �̇z

��� �
���e2κ+�τ (�r,θ)

∂�z
∂θ

��� � 1.

It follows (j = 2, 3):
��∂θfj(�r + t + s− 2�τ (�r + t, θ), ω)

��(9.12)

�
��(∂θfj)(�r + t + s− 2�τ (�r + t, θ), ω)

��

+
��(∂�rfj)(�r + t + s− 2�τ (�r + t, θ), ω)

��.

We next claim:
�����∂θ

�
1− �̇z(�τ (�r + t, θ), θ)

1 + �̇z(�τ (�r + t, θ), θ)

����� �
�

1− �̇z(�τ (�r + t, θ), θ)

1 + �̇z(�τ (�r + t, θ), θ)
·

Indeed
�����∂θ

�
1− �̇z(�τ (�r + t, θ), θ)

1 + �̇z(�τ (�r + t, θ), θ)

����� =

�����
1

1− �̇z
(�̈z ∂�τ/∂θ + ∂ �̇z/∂θ)

1 + �̇z

�
1− �̇z(�τ (�r + t, θ), θ)

1 + �̇z(�τ (�r + t, θ), θ)

�����

�
�

1− �̇z(�τ (�r + t, θ), θ)

1 + �̇z(�τ (�r + t, θ), θ)

,
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where we have used (9.10) and the uniform boundedness of �̈z/(1 + �̇z), ∂�τ/∂θ and
∂ �̇z/∂θ/(1 + �̇z). It follows

��D/S2 U←(t, s)f
��

H t

�
��U←(t, s)(∂θf)

�� +

���U←(t, s)
1

sin θ
(∂ϕf)

���

+
��U←(t, s)(∂�rf)�+ �f

��

≤ C(R1, R2)�f� H 1 .

Let us now show (ii). We first claim that on supp fj(�r + t + s − 2�τ (�r + t, θ), ω) we
have for s sufficiently large

���
∂�τ
∂�r (�r + t, θ)

��� � 1

|�r + t| ·

Indeed from

�z
�
�τ (�r + t, θ), θ

�
+ �τ (�r + t, θ) = �r + t

follows
���
∂�τ
∂�r

��� ≤
1

|�̇z(�τ (�r + t, θ), θ) + 1|
� 1

|�r + t|
,

where we have used (8.19) and the fact that

�r + t → 0, s →∞ on supp fj(�r + t + s− 2�τ (�r + t, θ), ω).

We next note that on supp fj(�r + t + s− 2�τ (�r + t, θ), ω) we have

|�r + t| � e
−κ+s

.

This follows from (8.18). We now estimate on supp fj(�r + t + s− 2�τ (�r + t, θ), ω):

���∂�r
��

1− �̇z
1 + �̇z

� 1

2

(�τ (�r + t, θ), θ)

����(9.13)

=

���
�

1− �̇z
1 + �̇z

(�τ (�r + t, θ), θ)

� 1

2 �̈z(�τ (�r + t, θ), θ) ∂�r �τ (�r + t, θ)

(1 + �̇z)(1− �̇z)

���

� e
κ+s

�
1− �̇z
1 + �̇z

� 1

2 �
�τ (�r + t, θ), θ

�
.

In the same way we estimate

|∂�rfj(�r + t + s− 2�τ (�r + t, θ), ω)|(9.14)

≤
��(∂�rfj)(�r + t + s− 2�τ (�r + t, θ), ω)(1− 2∂�r �τ )

��

� e
κ+s

��(∂�rfj)(�r + t + s− 2�τ (�r + t, θ), ω)
��.

The estimates (9.13) and (9.14) give (ii).
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Proof of Proposition 9.1. – Let � > 0. We first note that

J (�r + t�)U(t�, T )f = J (�r + t�) Gt�
(g

T
),

where Gt�
(gT ) is the solution at time t� of the characteristic problem (7.31) with

data g
T . In the same way we denote Gt�

(g
T,N

←,R
) the solution at time t� of the charac-

teristic Cauchy problem (7.31) with data g
T,N

←,R
. We estimate:

�� J (�r + t�)(U(t�, T )f − U←(t�, T )Ω
−
←f)

��
H t�

(9.15)

≤
�� J (�r + t�)(Gt�

(g
T
)−Gt�

(g
T,N

←,R
))

��
H t�

+
�� J (�r + t�)(Gt�

(g
T,N

←,R
)− U←(t�, T )(Ω

−
←f)

N

R
)
��

H t�

+
��(Ω

−
←f)

N

R
− Ω

−
←f

��

≤
� � ∞

0

�

S2

|gT − g
T

←|2 dtdω

� 1

2

+

� � ∞

0

�

S2

|gT

← − g
T,N

←,R
|2 dtdω

� 1

2

+
�� J (�r + t�)U(t�,

1

2
T + c0)(Φ

R,N
(
1

2
T + c0, .)− Φ

R,N

← (
1

2
T + c0, .))

��
H t�

+
��(U(t�,

1

2
T + c0)− U←(

1

2
T + c0, .))Φ

R,N

← (
1

2
T + c0, .)

��
H t�

+
��(Ω

−
←f)

N

R
− Ω

−
←f

��

≤
� � ∞

0

�

S2

|gT − g
T

←|2 dtdω

� 1

2

+ 2
��(Ω

−
←f)

N

R
− Ω

−
←f

��

+
�� J (�r + t�)U(t�,

1

2
T + c0)(Φ

R,N
(
1

2
T + c0, .)− Φ

R,N

← (
1

2
T + c0, .))

��
H t�

+
��(U(t�,

1

2
T + c0)− U←(t�,

1

2
T + c0))Φ

R,N

← (
1

2
T + c0, .)

��
H t�

.

We now fix R,N such that

2
��(Ω

−
←f)

N

R
− Ω

−
←f

�� <
1

4
�.

In order to estimate the last term in (9.15) we want to use the Duhamel formula.
Let τT and τ

1

T
be defined by

τT − T + R = �z(τT , θ) =⇒ τT =
1

2
T − 1

2
R + O(e

−κ+T
)

(resp. an analogous definition for τ
1

T
with R replaced by R1). For the above implication

we have used (3.54). We now observe that (see Figure 2)
� if s ≥ τ

1

T
then

supp U←(s, T )(Ω
−
←f)

N

R
⊂ [�z(s, θ), s + R− T ],

� if τ
1

T
≥ s ≥ τT then

supp U←(s, T )(Ω
−
←f)

N

R
⊂

�
�z(s, θ),max(s + R− T,−s + 2τ

1

T
− T + R1)

�
,

� if τT ≥ s then

supp U←(s, T )(Ω
−
←f)

N

R
⊂ [−s + 2τT − T + R,−s + 2τ

1

T
− T + R1].
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Figure 2. The support of (Ω−←f)N

R transported by the asymptotic prop-
agator U←(s, T ).

We have to distinguish the cases s ∈ [τT , τ
1

T
] and s ∈ [0, T ] \ [τT , τ

1

T
].

If s ∈ [0, T ] \ [τT , τ
1

T
], then U←(s, T )(Ω−←f)N

R
is zero on the boundary, in particular

U←(s, T )(Ω
−
←f)

N

R
∈ D(Hs), ∀s ∈ [0, T ] \ [τT , τ

1

T
].(9.16)

Here we have used Lemma 9.3 to establish the necessary regularity of U←(s, T )(Ω−←f)N

R
.

But we have

U←(s, T )(Ω
−
←f)

N

R
/∈ D(Hs), ∀s ∈ [τT , τ

1

T
].(9.17)

Let
M(t, θ) = �w(t, θ)�w0(t, θ)

�Γ4

�
�w−1�Γ4

+
Z1

i
− Z2

i

�Γ2

�
�Γ4

�
�w−1

0
�Γ4 − Z1

i

�

with Z1 = �̇z(t, θ) + 1 and Z2 = (∂θ�z)(t, θ)a0(�z(t, θ), θ)h2(�z(t, θ), θ). The coefficients
in �Γ2 have to be evaluated at (�z(t, θ), θ). We first note that a matrix of type

V = �Γ4

�
�w−1�Γ4 − Z1

i
+

Z2

i

�Γ2

�

is invertible. Indeed an elementary calculation using the anticommutation relations
for Dirac matrices gives

V �Γ4

�
�w−1�Γ4

+
Z1

i
− Z2

i

�Γ2

�
= �w−2

+ Z
2

1
− Z

2

2
.

Let
A = �Γ4

(−�̇z − Γ
1

+ i�w−1�Γ4
+ Z2

�Γ2
).

Then V is an isomorphism from KerA to K = {(Ψ1, 0, 0,Ψ4) ∈ C4}. For dimensional
reasons we only have to show V KerA ⊂ K , which follows from

P2,3V Ψ = P2,3
�Γ4

�
�w−1�Γ4 − �̇z

i
− Γ1

i
+

Z2

i

�Γ2

�
Ψ = 0
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for Ψ ∈ KerA. This shows that M(s, θ)U←(s, T )(Ω−←f)N

R
fulfills the boundary condi-

tions for Hs. We have

M = 1 +
Z2 �w

i

�Γ2�Γ4
+ Z2Z1 �w �w0

�Γ2
+

Z1

i
(�w − �w0)

�Γ4
+ Z

2

1
�w �w0.(9.18)

By (3.53) we have

�w � e
κ+t

, �w0 � e
κ+t

.

We estimate:

|�w − �w0| ≤ �w �w0(1− �̇z
2

)
1

2

���
�
1 +

(∂θ�z)2a2

0
h

4 − 2(∂θ�z)��a2

0
h

4

1− �̇z
2

� 1

2 − 1

���.

As ���
(∂θ�z)2a2

0
h

4 − 2(∂θ�z)��a2

0
h

4

1− �̇z
2

��� � e
−2κ+t

we obtain
|�w − �w0| � e

−κ+t
.

This entails

M(t) = 1 + O(e
−2κ+t

),
d

dt
M(t) = O(e

−2κ+t
).(9.19)

We write

I :=
�
U

�
t�,

1

2
T + c0

�
− U←

�
t�,

1

2
T + c0

��
Φ

R,N

←
�

1

2
T + c0

�

= U
�
t�, τT

��
U

�
τT ,

1

2
T + c0

�
− U←

�
τT ,

1

2
T + c0

��
Φ

R,N

←
�

1

2
T + c0)

+
�
U(t�, τT )− U←(t�, τT )

�
U←

�
τT ,

1

2
T + c0

�
Φ

R,N

←
�

1

2
T + c0

�

=: I1 + I2.

Recalling that U←(s,
1

2
T +c0)Φ

R,N

← (
1

2
T +c0) = U←(s, T )(Ω−←f)N

R
and using (9.16) we

can estimate the second term using the Duhamel formula:

�I2� ≤
�

τT

t�

��(Pω + W )U←(s, T )(Ω
−
←f)

N

R

��
H s

ds(9.20)

≤ C(R1, R)

�
τT

t�

e
−κ+s

ds
��(Ω

−
←f)

N

R

��
H 1

≤ C(R1, R)(N + 1)
�
�Ω−←f�+ �Ω−←Hf�

� 1

κ+

(e
−κ+t� − e

−κ+τT ).

Here we have used Lemma 9.3. To estimate the first term we write
�
U

�
τT ,

1

2
T + c0

�
− U←

�
τT ,

1

2
T + c0

��
Φ

R,N

←
�

1

2
T + c0

�

=
�
U

�
τT ,

1

2
T + c0

�
M(T )−M(τT )U←

�
τT ,

1

2
T + c0

��
Φ

R,N

←
�

1

2
T + c0

�

+ O(e
−κ+T

),
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where we have used (9.19). Now we can use the Duhamel formula:
�� �

U
�
τT ,

1

2
T + c0

�
M(T )−M(τT )U←

�
τT ,

1

2
T + c0

��
Φ

R,N

← (
1

2
T + c0)

��

≤
� 1

2
T+c0

τT

��U(τT , s)(HM(s)−M(s)H←)U←(s, T )(Ω
−
←f)

N

R

��ds

+

� 1

2
T+c0

τT

���U(τT , s)
dM(s)

ds
U←(s, T )(Ω

−
←f)

N

R

���ds =: I
1

2
+ I

2

2
.

To be more precise we should have used the operators Hs and H←,s in the above
formula. But as U←(s, T )(Ω−←f)N

R
is a smooth function we have:

M(s)H←,sU←,s(s, T )(Ω
−
←f)

N

R
= Γ

1
D�rMU←(s, T )(Ω

−
←f)

N

R

+ [M,Γ
1
D�r ]U←(s, T )(Ω

−
←f)

N

R
.

This will be used below. By (9.19) we have

I
2

2
� e

−κ+T �Ω−←f�.(9.21)

Let us now estimate I
1

2
:

I
1

2
≤

� 1

2
T+c0

τT

��U(τT , s)(H −H←)MU←(s, T )(Ω
−
←f)

N

R

��ds

+

� 1

2
T+c0

τT

��U(τT , s)[M, H←]U←(s, T )(Ω
−
←f)

N

R

��ds =: Ia + Ib.

We have [M, H←] = [M, Γ1]D�r . Recalling that Γ1 = (α�Γ1
+ β�Γ2

)(�z(s, θ), θ) we find

[Z2 �w �Γ2 �Γ4
,Γ

1
] = Z2 �wβ[ �Γ2 �Γ4

, �Γ2
].

It follows �
M(s),Γ

1
�

= O(e
−3κ+s

).

Therefore we can estimate Ib using Lemma 9.3 (ii):

Ib ≤ C(R1, R)

� 1

2
T+c0

τT

e
−3κ+s

e
κ+T

(N + 1)
�
�Ω−←f�+ �Ω−←Hf�

�
ds(9.22)

≤ C(R1, R)e
−κ+

2
T
(N + 1)

�
�Ω−←f�+ �Ω−←Hf�

�
.

We now estimate Ia using Lemma 9.3 (i):

Ia ≤
� 1

2
T+c0

τT

��(Pω + W )MU←(s, T )(Ω
−
←f)

N

R

��ds(9.23)

≤ C(R1, R)

� 1

2
T+c0

τT

e
−κ+s

��(Ω
−
←f)

N

R

��
H 1 ds

≤ C(R1, R)e
−κ+

1

2
T
(N + 1)

�
�Ω−←f�+ �Ω−←Hf�

�
.
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Here we have used that DθM = O(e−2κ+t). Putting everything together we find:

�I� ≤ C(R1, R)e
−κ+t�(N + 1)

�
�Ω−←f�+ �Ω−←Hf�

�
uniformly in T large.(9.24)

We fix t� large enough such that the term on the R.H.S. of (9.24) is controlled by �/4

uniformly in T large. For T sufficiently large we can estimate the first and the third
terms in (9.15) using Lemmas 9.1 and 9.2:

� � ∞

0

�

S2

|gT − g
T

←|2 dtdω

� 1

2

<
1

4
�,

�� J (�r + t�)U(t�,
1

2
T + c0)(Φ

R,N
(
1

2
T + c0, .)− Φ

R,N

← (
1

2
T + c0, .))

��
H t�

<
1

4
�.

This concludes the proof of the proposition.
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CHAPTER 10

PROPAGATION OF SINGULARITIES

So far we have compared the full dynamics U(s, T )f to the dynamics U←(s, t)Ω−←f

on the interval [t�, T ]. We will now replace the dynamics U←(t�, T )Ω−←f by the so
called geometric optics approximation. We suppose for the whole chapter that

f(�r, ω) = e
inϕ

f
n
(�r, θ), f

n ∈ C
∞
0

(R× [0, π]), n ∈ Z +
1

2
.

Let

F
T

t0
(�r,ω) :=

1�
−κ+(�r + t0)

( �f
3
, 0, 0,− �f

2
)(10.1)

×
�
T +

1

κ+

ln
�
− (�r + t0)

�
− 1

κ+

ln �A(θ), ω

�
,

where �f = (Ω−←f)N

R
(see Section 9.2). Note that

supp F
T

t0
⊂

�
− t0 − | O(e

−κ+T
)|,−t0

�
× [0, 2π]× [0, π](10.2)

and that F
T

t0
depends on N,R. All functions involved have fixed angular momentum,

e.g. F
T

t0
(�r,ω) = F

T

t0,n
(�r, θ)einϕ. The functions F

T

t0
and F

T

t0,n
will often be identified.

We therefore fix now the angular momentum ∂ϕ = in everywhere in the expression
of H:

H = Γ
1
D�r +

�
Mθ 0

0 −Mθ

�
+

h
2
a0

sin θ

�Γ3
n+h

2
c1+h

2
c
ϕ

2
n+ �Vϕn+ �V ν

1
+

qQr+

r
2
+

+ a2
+

an

r
2
+

+ a2
·

Here �V ν

1
is obtained from �V1 by replacing �Γ4 by Γν . Recall that

�
Mθ 0

0 −Mθ

�
+

h
2
a0

sin θ

�Γ3
n = Uh

√
a0 D/n

S2

√
a0 h U∗,

where D/n

S2 is the restriction of D/S2 to {u = einϕ�u(θ); �u(θ) ∈ L
2(([0, π]; sin θdθ); C4)}.

Therefore H is a regular operator and the singularities in the expression of H are
coordinate singularities. We put

�H =
�
L

2
(R× [0, π]; d�r sin θdθ)

�4

.
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Clearly
�H =

�

�

�H
�

, �H
�

=
�
L

2
(R)

�4 ⊗4 Y�, Y� = (span{e
2ilθ}

�4

.

For δ > 0 let φδ ∈ C
∞(R) with

φδ(�r) =

�
1 �r ≥ δ,

0 �r ≤ 1

2
δ.

The aim of this chapter is to prove the following:

Proposition 10.1. – We have

∀� > 0, ∃N0 > 0, R0 > 0, ∀N ≥ N0, R ≥ R0, ∃ t0 > 0,

∀t� ≥ t0, ∃ δ = δ(t�, N, R), T0 = T0(t�, δ, N, R), ∀T ≥ T0,

�� JU(0, T )f − φδ(.− �z(0, θ))e
−it�H

F
T

t�

�� ≤ �.

Note that we can consider JU(0, T )f−φδ(.− �z(0, θ))e−it�H
F

T

t�
as an element of �H

and it is sufficient to show
�� JU(0, T )f − φδ(.− �z(0, θ))e

−it�H
F

T

t�

���H ≤ �.

We will use the pseudodifferential calculus on Σ1 = R�r × (0, π). We note ξ the dual
variable to �r and q the dual variable to θ. Let S

m(Σ1) be the space of symbols of
order m and Ψm(Σ1) be the space of pseudodifferential operators of order m (see [31,
Chapter XVIII]):

a(�r, θ, ξ, q) ∈ S
m

(Σ1) ⇐⇒ ∀α = (α1, α2), β = (β1, β2),

��∂α1

ξ
∂

α2

q
∂

β1

�r ∂
β2

θ
a(�r, θ, ξ, q)

�� ≤ Cα,β

�
(ξ, q)

�m−|α|
.

For a matrix M = (mij) of operators we shall write

M ∈ Ψ
m

(Σ1) ⇐⇒ ∀i, j, mij ∈ Ψ
m

(Σ1).

We use an analogous notation for a matrix of symbols. The matrix Op(M) is the
matrix of operators (Op(mij)). Recall that Sρ is defined as a subspace of C

∞(R) by

f ∈ S
ρ ⇐⇒ ∀α ∈ N,

��f (α)
(x)

�� ≤ Cα�x�ρ−α
.

We will study U(0, t�)F
T

t�
microlocally. We first observe that F

T

t�
has high frequencies

in ξ. We show that for L0 > 0 we have (see Lemma 10.3):

Op

�
χ

� �ξ�
�q� ≤ L0

��
F

T

t�
→ 0, T →∞,(10.3)

F
T

t�
� 0, T →∞.(10.4)

We then study the propagation of singularities of e−it�H . Because of (10.2), (10.3) we
are interested in the propagation of “outgoing" singularities located in

�
(�r,ω; ξ, q); �r ≥ −t� − | O(e

−κ+T
)|, �ξ� ≥ L0�q�

�
.
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We will show that these singularities stay away from the surface of the star. Because
of (10.4) it follows (modulo a small error term):

(1− φδ)
�
.− �z(0, θ)

�
e
−it�H

F
T

t�
−→ 0(10.5)

for an appropriate choice of δ > 0. Using (10.5) we show that
��(U(0, t�)− φδ(.− �z(0, θ))e

−it�H
F

T

t�

��

is small for t�, T large.

This will prove Proposition 10.1.

10.1. The geometric optics approximation and its properties

We need the following lemmas:

Lemma 10.1. – We have

�FT

t0
�L1(R;(L2(S2))4) −→ 0, T →∞.

Proof. – The lemma follows from the following calculation:

�FT

t0
�L1(R;(L2(S2))4)

=

� −t0

−t0−| O(e−κ+T
)|

1�
−κ+(�r + t0)

×
� �

S2

(| �f
3
|2 + | �f

2
|2)

�
T +

1

κ+

ln(−(�r + t0))−
1

κ+

ln �A(θ), ω

�
dω

� 1

2

d�r

=

�

I

−√κ+ e
κ+

1

2
(y−T )

� �

S2

�
| �f

3
|2 + | �f

2
|2

��
y − 1

κ+

ln �A(θ), ω

�
dω

� 1

2

dy → 0.

Here I is a compact interval depending on the support of �f .

Lemma 10.2. – We have
��U←(t0, T ) �f − F

T

t0

�� −→ 0, T →∞.

Proof. – Let u = U←(t0, T ) �f . Recall that for T sufficiently large we have

u1(�r, ω) =

�
1− �̇z
1 + �̇z

�
�τ (�r + t0, θ), θ

� �f
3

�
�r + t0 + T − 2�τ (�r + t0, θ), ω

�
,

u4(�r, ω) = −

�
1− �̇z
1 + �̇z

�
�τ (�r + t0, θ), θ

� �f
2

�
�r + t0 + T − 2�τ (�r + t0, θ), ω

�
,

u2 = u3 = 0.
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We will also use

�τ (x0, θ) = − 1

2κ+

ln(−x0) +
1

2κ+

ln �A(θ) + O(x0), x0 → 0
−

,

1 + �̇z
�
�τ (x0, θ)

�
= −2κ+x0 + O(x

2

0
), x0 → 0

−
.

We have

�̂(�r, θ) :=
�
−κ+�r

�
1− �̇z
1 + �̇z

�
�τ (�r, θ), θ

�
=

�
−2κ+�r + O(�r2

)

−2κ+�r + O(�r2
)

, �r → 0
−

.

We calculate
��(U←(t0, T ) �f − F

T

t0
)1

��2

=

�

S2

�

R

��(u1 − F
T

1
)
��2 d�r dω

=

�

S2

�

I

���̂(− �A(θ)e
κ+(y−T )

) �f
3

�
y + O(− �A(θ)e

κ+(y−T )
), ω

�
− �f

3
(y, ω)

��2 dydω

−→ 0, T →∞.

Here I is a compact interval depending on the support of �f .

Let G
T = e−it0H

F
T

t0
.

Corollary 10.1. – We have

F
T

t0
� 0, G

T
� 0, U(t0, T ) �f � 0.

Lemma 10.3. – Let χ ∈ S−ρ and ρ > 0. Then we have for all M > 0 and uniformly
in t�:

Op

�
χ

� �ξ�
�q�

�
�q�M

�
F

T

t�,n
−→ 0, T →∞ �H ,(10.6)

Op(χ(�(ξ, q)��q�M )F
T

t�,n
−→ 0, T →∞ �H .(10.7)

Proof. – We only show (10.6), the proof of (10.7) being analogous. Let us write

F
T

0,n
= KT �g,

�g(�r, θ) =
1�
−κ+�r

( �f
3
, 0, 0,− �f

2
)

�
1

κ+

ln(−�r)− 1

κ+

ln �A(θ), θ

�
,

(KT �g)(�r, θ) = e
1

2
κ+T �g

�
(�r + t�)e

κ+T
, θ

�

and we shall also consider KT as an operator on �H
�

(rather than on �H ). Let us write

�g =

�

�

�g�
, �g� ∈ �H

�

for all �.

Thus

χ

� �D�r�
�Dθ�

�
�Dθ�MKT �g =

�

�

χ

� �D�r�
���

�
���MKT �g�

.
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We have
F (KT �g�

)(ξ) = F (�g�
)(ξ e

−κ+T
)e
− 1

2
κ+T

e
it�ξ

,

where F denotes the Fourier transform in �r. Note that
���χ

� �D�r�
�Dθ�

�
�Dθ�MKT �g

���
2

=

�

�

���χ

� �ξ�
���

�
���M F (�g�

)(ξ e
−κ+T

)e
− 1

2
(κ+T )�2,

∀T,

���χ

� �ξ�
���

�
���M F (�g�

)(ξ e
−κ+T

)e
− 1

2
κ+T �2 ≤ ���2M��g��2,

�

�

���2M��g��2 < ∞.

It is therefore sufficient to show

∀�,
���χ

� �ξ�
�l�

�
���M F (�g�

)(ξ e
−κ+T

)e
− 1

2
(κ+T )

��� −→ 0, T →∞.

But, by the Lebesgue Theorem,
���χ

� �ξ�
���

�
���M F (�g�

)(ξ e
−κ+T

)e
− 1

2
κ+T

���
2

=

� ���χ
� �ξ eκ+T �

���

�
���M F (�g�

)(ξ)

���
2

dξ −→ 0.

This proves (10.6).

10.2. Diagonalization

Let ν1 > 0, ν2 > 0, j±, χ ∈ C
∞(R), supp χ ⊂ R\ [−ν2, ν2], χ ≡ 1 on R\ [−2ν2, 2ν2],

j+(x) =

�
1 x ≥ 2ν1,

0 x ≤ ν1,

j−(x) =

�
1 x ≤ −2ν1,

0 x ≥ −ν1,

j
2
(x) = j

2

−(x) + j
2

+
(x).

We put

�W±(x) = c̃±




a0(x ± �

�) ±k
� −

�
k�2 + a

2

0
(x ± ��)2

�
k�2 + a

2

0
(x ± ��)2 ∓ k

�
a0(x ± �

�)



 ,

c̃± =
e±(x + �

�)
√

2
4

�
k�2 + a

2

0
(x ± ��)2

��
k�2 + a

2

0
(x ± ��)2 ∓ k�

,

e+(x) = signx, e−(x) = 1,(10.8)

W
0

± = �W±

�
q

|ξ|

�
j±

�
ξ

|q|

�
χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
,

W± = U
�

W
0

± 0

0 W
0

±

�
,

W (�r, θ, ξ, q) = W+(�r, θ, ξ, q) + W−(�r, θ, ξ, q).(10.9)
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By (10.8) W (�r, θ, ξ, q) is only defined for q �= 0 and ξ �= 0. We note that for �q > 0

small enough and |q| < �q we have

W (�r, θ, ξ, q) = U

��
�W+ (q/|ξ|) 0

0 �W+ (q/|ξ|)

�
+

�
�W− (q/|ξ|) 0

0 �W− (q/|ξ|)

��

× χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
.(10.10)

Indeed if |q| < �q we have on supp χ
�
h

2
�

k�2ξ2 + a
2

0
(��ξ + q)2

�

C
�
|ξ|2 + |q|2

�
≥ ν

2

2
=⇒ |ξ|2 ≥ 1

C
ν

2

2
− �

2

q
.(10.11)

But if |ξ|2 ≥ 4ν
2

1
|q|2 we have j± (ξ/|q|) = 1. Using (10.11) we see that this is fulfilled

if �q is small enough. Therefore we define W (�r, θ, ξ, q) for q = 0 by (10.10). Similarly
there exists �ξ > 0 such that if |ξ| < �ξ then

W (�r, θ, ξ, q) = 0.(10.12)

Indeed on supp j± (ξ/|q|) we have |q| ≤ |ξ|/ν1. If |ξ| ≤ �ξ, then

h
2

�
k�2ξ2 + a

2

0
(��ξ + q)2 ≤ C�ξ < ν2

for �ξ small enough and thus χ(h2
�

k�2ξ2 + a
2

0
(��ξ + q)2) = 0. Therefore we define

W (�r, θ, 0, q) = 0. W (�r, θ, ξ, q) with these definitions is a matrix of smooth functions.
We want to check that W (�r, θ; ξ, q) ∈ S

0(Σ1). To this purpose we apply the symplectic
change of coordinates

r∗ = r∗(�r, θ), θ
∗

= θ, q
∗

= �
�
ξ + q, ξ

∗
= k

�
ξ.(10.13)

Under this change of coordinates we obtain the symbol

�W (r∗, θ
∗
, ξ
∗
, q
∗
) = U

��
�W+ (q∗/|ξ∗|) 0

0 �W+ (q∗/|ξ∗|)

�
j+

�
ξ
∗
/|k�q∗ − �

�
ξ
∗|

�

+

�
�W− (q∗/|ξ∗|) 0

0 �W− (q∗/|ξ∗|)

�
j−

�
ξ
∗
/|k�q∗ − �

�
ξ
∗|

�
�

× χ
�
h

2

�
|ξ∗|2 + a

2

0
|q∗|2

�
,

�W±(x) = ĉ±




a0x ±1−

�
1 + a

2

0
x2

�
1 + a

2

0
x2 ∓ 1 a0x



 ,

ĉ± =
e±(x)

√
2

4

�
1 + a

2

0
x2

��
1 + a

2

0
x2 ∓ 1

·

It is sufficient to check
�W (r∗, θ

∗
, ξ
∗
, q
∗
) ∈ S

0
.
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On supp j± (ξ∗/|k�q∗ − �
�
ξ
∗|), |q∗|/|ξ∗| remains bounded. The functions

f
±

(x) =
|x|

√
2

4
√

x2 + 1

�√
x2 + 1∓ 1

, g
±

= ±
�√

x2 + 1∓ 1√
2

4
√

x2 + 1

are C
∞(R) functions with

��∂α
f
±

(x)
�� ≤ Cα,

��∂α
g
±

(x)
�� ≤ Cα.(10.14)

In order to see that the estimate holds for f
+ we note that f̌(x) = (

�√
x2 + 1− 1)/|x|

can be extended to an analytic function in a neighborhood of zero with f̌(0) = 1/
√

2.
We obtain ���∂q∗

�W±

�
q
∗

ξ∗

���� ≤ C
1

|ξ∗|
,

���∂ξ∗
�W±

�
q
∗

ξ∗

���� ≤ C
|q∗|
|ξ∗|2 ·

But on supp j±(ξ∗/|k�q∗ − �
�
ξ
∗|) ∩ supp χ(h2

�
|ξ∗|2 + a

2

0
|q∗|2) we have

1

|ξ∗| � 1

�ξ∗�
, 1

|ξ∗| � 1

�q∗� ·(10.15)

We now have to estimate derivatives on

j±

�
ξ
∗

|k�q∗ − ��ξ∗|

�
χ

�
h

2

�
|ξ∗|2 + a

2

0
|q∗|2

�
.

In the region k
�
q
∗ − �

�
ξ
∗

> 0 we find
���∂ξ∗j±

�
ξ
∗

|k�q∗ − ��ξ∗|

����

=

���j�±
�

ξ
∗

|k�q∗ − ��ξ∗|

��
1

k�q∗ − ��ξ∗
+

ξ
∗
�
�

(k�q∗ − ��ξ∗)2

���� � 1

|ξ∗|
,

���∂q∗j
�
±

�
ξ
∗

|k�q∗ − ��ξ∗|

���� � 1

|ξ∗| ·

We then use (10.15). Derivatives in r∗, θ
∗, derivatives on χ(h2

�
|ξ∗|2 + a

2

0
|q∗|2), U as

well as higher order derivatives can be controlled in a similar way. Let �χ ∈ C
∞(R),

supp �χ ⊂ R \ [− 1

2
ν2,

1

2
ν2] with �χχ = χ. We next put

λ = h
2

�
k�2ξ2 + a

2

0
(��ξ + q)2 �χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
,

Ȟd = λΓ
1
, �Hd = Op(Ȟd).

We have

H Op(W±) = Op(W±) �Hd + Op(R±) + Op( �R±)(10.16)

with

R± = R
1

± + R
2

±, R
k

± = (r
k±
ij

),(10.17)

supp r
1±
ij
⊂ supp j±(ξ/|q|) ∩ supp χ

�
h

2

�
k�2ξ2 + a

2

0
|��ξ + q|2

�
,(10.18)



122 CHAPTER 10. PROPAGATION OF SINGULARITIES

r
1±
ij
∈ S

0
(Σ1), r

2±
ij
∈ S

−∞
(Σ1),(10.19)

�
r

k±
13

r
k±
14

r
k±
23

r
k±
24

�
=

�
r

k±
31

r
k±
32

r
k±
41

r
k±
42

�
= 0,(10.20)

�R± = �R1

± + �R2

±, �R2

± ∈ Ψ
−1

(Σ1),(10.21)

�R1

± = UpΓ
4

�
W

0

± 0

0 W
0

±

�
,(10.22)

p(�r, θ) =
m
√

∆

σ
(ρ−

�
r2 + a2) + b0.(10.23)

We need a better estimate on the remainder.

Lemma 10.4. – There exists M = (mij) such that for all j, mjj = 1 and for all
i �= j, mij ∈ Ψ−1(Σ1) as well as rj ∈ S

0(Σ1), j = 1, . . . , 4 such that for

Hd = �Hd + Op(Diag(r1, r2, r3, r4))

we have:

H Op(W )M −Op(W )MHd ∈ Ψ
−1

(Σ1).(10.24)

Proof. – We can construct independently M± and r
±
j

such that (10.24) is fulfilled
for M replaced by M±, rj by r

±
j

and W by W±. We then put M =
1

2
(M+ + M−),

rj =
1

2
(r

+

j
+ r

−
j

). We only consider the + case and drop the index +. We are looking
for M in the form

M =

�
A B

C D

�
, B,C ∈ Ψ

−1
(Σ1),

A =

�
1 Op(α1)

Op(α2) 1

�
, D =

�
1 Op(δ1)

Op(δ2) 1

�
,

αj , δj ∈ S
−1

(Σ1), j = 1, 2.

If M is of this form it is sufficient that

Op(R) + Op( �R)−Op(W )[M, �Hd] = Op(W ) Op
�
Diag(r1, . . . , r4)

�
(10.25)

+ �R, �R ∈ Ψ
−1

(Σ1).

Here we have used that

M = Id + R1, R1 ∈ Ψ
−1

(Σ1).(10.26)

Therefore

M Op
�
Diag(r1, . . . , r4)

�
= Op

�
Diag(r1, . . . , r4)

�
+ R2, R2 ∈ Ψ

−1
(Σ1).
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Recalling that �Hd = ΛDiag(1d,−1d) and Λ := Op(λ) Diag(1,−1) we find

[M, �Hd] =

�
[A,Λ] −{B, Λ}

{C,Λ} −[D,Λ]

�
.

If U∗R1 =

�
R11 0

0 R22

�
and U∗ �R1 =

�
0 R12

R21 0

�
we have to find A, B,C, D, rj such

that

−W
0
[A,Λ] + R11 = W

0
Diag(r1, r2) + �R11,

�R11 ∈ Ψ
−1

(Σ1),(10.27)

W
0
[D,Λ] + R22 = W

0
Diag(r3, r4) + �R22,

�R22 ∈ Ψ
−1

(Σ1),(10.28)

W
0{B, Λ} + R12 ∈ Ψ

−1
(Σ1),(10.29)

−W
0{C,Λ} + R21 ∈ Ψ

−1
(Σ1).(10.30)

We consider equations (10.27), (10.30). On

supp j+(ξ/|q|) ∩ supp χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�

the matrix W
0 is invertible. Let

(W
0
)
−1

R11 =

�
ř11 ř12

ř21 ř22

�
.

As

[A,Λ] =

�
0 −2 Op(α1λ)

2 Op(α2λ) 0

�
+ R3, R3 ∈ S

−1
(Σ1)

we have to solve on supp(j+(ξ/|q|)) ∩ supp(χ(h2
�

k�2ξ2 + a
2

0
(��ξ + q)2)):

2α1λ + ř12 ∈ S
−1

(Σ1),(10.31)

−2α2λ + ř21 ∈ S
−1

(Σ1),(10.32)

which can be achieved by

α1 = − ř12

2λ

, α2 =
ř21

2λ
·

In order to solve (10.30) we have to use the special structure of R21. Indeed we have
R21 = ipW

0. We try

C = i

�
Op(γ1) 0

0 Op(γ2)

�
, γ1, γ2 ∈ S

−1
(Σ1).

Then

−W
0{C,Λ} + R21 = iW

0

�−2 Op(γ1λ) 0

0 2Op(γ2λ)

�
+ iW

0
p
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and therefore we can take on supp j+(ξ/|q|) ∩ supp χ
�
h

2
�

k�2ξ2 + a
2

0
(��ξ + q)2

�
:

γ1 = −γ2 =
p

2λ
·

This concludes the proof of the lemma.

Lemma 10.5. – We have for all t� > 0 and all s such that 0 ≤ s ≤ t�,
�
e
−isH −Op(W )M e

−isHdM
−1

Op(W
∗
)
�
F

T

t�
−→ 0, T →∞.

Proof. – We have
�
e
−isH −Op(W )M e

−isHdM
−1

Op(W
∗
)
�
F

T

t�

=

�
s

0

e
−iτH

�
H Op(W )M −Op(W )MHd

�
e
−i(s−τ)HdM

−1
Op(W

∗
)F

T

t�
dτ

+ e
−isH

�
1−Op(W ) Op(W

∗
)
�
F

T

t�

=: I1(s, T ) + I2(s, T ).

By Lemma 10.3 we have
I2(s, T ) −→ 0, T →∞.

Using Lemmas 10.4 and 10.3 we see that the first term can be estimated by
��I1(s, T )� �

���Hd�−1
M
−1

Op(W
∗
)F

T

t�

�� −→ 0, T →∞.

Let �N± = �W±(0) and

N = U
�� �N+ 0

0 �N+

�
j+

�
ξ

|q|

�
+

� �N− 0

0 �N−

�
j−

�
ξ

|q|

��
χ
�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
.

We have

�N+ =
1√
2

� √
1 + α −

√
1− α sign(cos θ)

√
1− α sign(cos θ)

√
1 + α

�
j+

�
ξ

|q|

�

× χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
,

�N− =
1√
2

�
− sign(cos θ)

√
1− α −

√
1 + α

√
1 + α − sign(cos θ)

√
1− α

�
j−

�
ξ

|q|

�

× χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
.

with α as in Chapter 4. Note that the matrices �N± are smooth (α(�r,
1

2
π) = 1). From

the lipschitz continuity of f
±, g

± we infer

(W −N)
�ξ�
�q� ∈ S

0
(Σ1).(10.33)
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Therefore by Lemma 10.3
�
Op(W

∗
)−Op(N

∗
)
�
F

T

t�
−→ 0.

Let us put

N← =



 j+

�
ξ

|q|

�
+





0 −1 0 0

1 0 0 0

0 0 0 −1

0 0 1 0




j−

�
ξ

|q|

�


 χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�

=

�
j+

�
ξ

|q|

�
+ N

−
←j−

�
ξ

|q|

��
χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
.

Note that we have uniformly in T large

Op(N
∗
)F

T

t�
= Op(N

∗
←)F

T

t�
+ ON,R(e

−κ+t�).(10.34)

Here we have used that the commutators
�√

1− α,Op

�
j+

�
ξ

|q|

�
χ(h

2

�
k�2ξ2 + a

2

0
q2)

��
,

etc. are all in Ψ−1(Σ1).

10.3. Study of the hamiltonian flow

In this section we study the hamiltonian flow of

P = h
2

�
k�2ξ2 + a

2

0
(��ξ + q)2.(10.35)

We denote φt the hamiltonian flow of P . Let for L > 0

EL :=
�
(�r, θ; ξ, q); ξ/|q| ≥ L

�
,

I t0

L
:=

�
(�r, θ; ξ, q); �r ≥ −t0 − L

−1
�
.

Lemma 10.6. – For t0 > 0 sufficiently large there exist δ > 0 and L0 > 0 such that
for all L ≥ L0 we have

∀ 0 ≤ s ≤ t0, φs( I t0

L
∩ EL) ⊂

�
(�r, θ; ξ, q); �r ≥ �z(t0 − s, θ) + δ

�
.

Proof. – We use the coordinates (r∗, θ
∗
, ξ
∗
, q
∗) given by (10.13) and drop the star for

θ: θ = θ
∗. Under this change of coordinates the hamiltonian becomes

P
∗

= h
2

�
|ξ∗|2 + a

2

0
|q∗|2 = E = Const.
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The hamiltonian equations are:

ṙ∗ =
h

4
ξ
∗

E

,(10.36)

ξ̇∗ = −∂r∗P
∗,(10.37)

θ̇ =
h

4
a
2

0
q
∗

E

,(10.38)

q̇
∗

= −(∂θh
2
)h
−2

E.(10.39)

Multiplying (10.39) by q
∗ given by (10.38) we obtain

1

2

d

dt
(q
∗
)
2

= q
∗
q̇∗ = −(∂θh

2
)h
−6

a
−2

0
E

2
θ̇ = −1

2
(∂θh

4
)h
−8

a
−2

0
E

2
θ̇

=
1

2

(r2 + a
2)2

σ4
(∂θa

2
∆ cos

2
θ)

(r2 + a
2)2

∆

σ
4

(r2 + a2)4
E

2
θ̇

=
1

2

d

dt
a
2
E

2
cos

2
θ

=⇒ |q∗|2 = |q∗
0
|2 + a

2
E

2
(cos

2
θ − cos

2
θ0),(10.40)

in particular K = |q∗|2 + a
2
E

2 sin
2
θ = Const. We have

E
2

= h
4
(ξ

2
h
−4

+ 2a
2

0
�
�
ξq + a

2

0
q
2
) =⇒ ξ

2

E2
= 1− 2h

4
a
2

0
�
�
ξq

E2
− a

2

0
h

4
q
2

E2
,

in particular
ξ
2

0

E2
= 1 + O(L

−1
).(10.41)

Using (10.41) we see that
q
∗
0

E
=

q0

E
+ a cos θ0

ξ0

E
= a cos θ0 + O(L

−1
).(10.42)

Therefore
K
E2

= a
2

+ O(L
−1

).(10.43)

These estimates are uniform for (�r0, θ0, ξ0, qθ0) ∈ EL ∩ I t0

L
. We note that

|ξ∗|2 = E
2

�
1− ∆K

(r2 + a2)2E2

�
, |q∗|2 = K − a

2
E

2
sin

2
θ.(10.44)

Using (10.43) and (10.44) we see that for L sufficiently large ξ
∗ does not change its

sign. We now claim that there exists a constant C(t0) such that

�̇r ≥ 1− C(t0)L
− 1

2(10.45)

uniformly in (�r0, θ0, ξ0, qθ0) ∈ I t0

L
∩ EL. We first argue that (10.45) proves the lemma.

By (3.54) we see that for t0 sufficiently large we have

�z(t0, θ) < −t0, ∀ θ ∈ [0, π].
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If t0 is fixed in this way, then there exists δ > 0 such that

�̇z(τ, θ) > −1 +
2δ

t0
, ∀ 0 ≤ τ ≤ t0.

We have
�r(0)− �z(t0, θ) ≥ −L

−1 − t0 − �z(t0, θ) > 0, ∀ θ ∈ [0, π]

for L sufficiently large and
d

ds

�
�r(s)− �z(t0 − s, θ)

�
≥ 2δ

t0
− C(t0)L

− 1

2 >
δ

t0

for L sufficiently large. It follows

�r(s) ≥ �z(t0 − s, θ) + δ, ∀ 0 ≤ s ≤ t0.

It remains to show (10.45). We have

�̇r = h
4

�

1− a2∆

(r2 + a2)2

�

1− K∆

(r2 + a2)2E2
+ a cos θ

h
4
a
2

0

E
q
∗

= 1 +

�

1− a2∆

(r2 + a2)2

��

1− K∆

(r2 + a2)2E2
−

�

1− a2∆

(r2 + a2)2

�
h

4

+ a cos θh
4
a
2

0

�
q
∗

E
− a cos θ

�

≥ 1− O(L
−1

) + a cos θh
4
a
2

0

�
q
∗

E
− a cos θ

�
,

where we have used (10.43). It is therefore sufficient to show
���a cos θ

�
q
∗

E
− a cos θ

���� = O(L
− 1

2 ).(10.46)

We distinguish two cases:

1) ∀ 0 ≤ s ≤ t0, cos
2
θ(s) > L

− 1

2 ;(10.47)

2) ∃ 0 ≤ s0 ≤ t0, cos
2
θ(s0) ≤ L

− 1

2 ,(10.48)

s0 �= 0 =⇒ cos
2
θ(s) > L

− 1

2 , ∀ 0 ≤ s < s0.(10.49)

We will treat only the second case. The first case can be considered in some sense as
a special case of the second one with s0 = t0. We first suppose s0 > 0. From (10.42),
(10.49) we infer

sign q
∗
0

= sign(cos θ0)

for L sufficiently large and from (10.49) we infer, using also (10.43) and (10.44), that

|q∗|2 ≥ a
2
E

2
L
− 1

2

�
1− O(L

− 1

2 )
�

> 0

if L sufficiently large. Therefore

sign
�
q
∗
(s)

�
= sign cos θ(s), ∀ 0 ≤ s ≤ s0
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because neither q
∗(s) nor cos θ(s) can change its sign on [0, s0]. We find with (10.43)

and (10.44):

∀ 0 ≤ s ≤ s0,
q
∗

E
= sign(cos θ)

�
a2 cos2 θ + O(L−1)

=⇒
���
q
∗

E
− a cos θ

��� = O(L
− 1

2 ), ∀ 0 ≤ s ≤ s0.

We now claim that

∀s0 ≤ s ≤ t0, cos
2
θ(s) ≤ C(t0)L

− 1

2 .(10.50)

Indeed using (10.38), (10.43) and (10.44) we can estimate

d

dt
a
2
cos

2
θ = −2a

2
cos θ sin θ θ̇ ≤ 2aA1| cos θ|

�
K
E2

− a2 sin
2
θ

≤ 2a
2
A1 cos

2
θ + O(L

− 1

2 ),

where A1 := maxr≥r+
h

4
a
2

0
a. By the Gronwall lemma we obtain

cos
2
θ ≤

�
s

s0

e
2A1(s−τ) O(L

− 1

2 )dτ + e
2A1(s−s0) cos

2
θ(s0) ≤ �C(t0)L

− 1

2 .

Inequality (10.50) follows and therefore

|a cos θ| = O(L
− 1

4 ),

���
q
∗

E

��� = O(L
− 1

4 ),

i.e. (10.46). If s0 = 0 we can start with (10.50).

10.4. Proof of Proposition 10.1

Let us first show the following lemma:

Lemma 10.7. – We have

∀N,R > 0, ∃CN,R > 0, t0 > 0

∀ t� ≥ t0, ∃ δ = δ(t�, N, R) > 0, T0 = T0(N,R, t�) > 0, ∀ 0 ≤ s ≤ t�, T ≥ T0

��(1− φδ)(.− �z(t� − s, θ))e
−isH

F
T

t�

�� ≤ CN,R e
−κ+t� .

Proof. – Because of the finite propagation speed we can replace 1−φδ(.− �z(t�−s, θ))

by χ�(1− φδ(.− �z(t� − s, θ))) with χ� ∈ C
∞(R) such that

χ�(�r) =

�
0 �r ≤ −4t�,

1 �r ≥ −3t�.

By the results of the preceding sections it is sufficient to show

χ�(1− φδ)
�
.− �z(t� − s, θ)

�
e
−isHd Op(N

∗
←)F

T

t�
−→∞, T →∞.

Here we have used (10.34) and that
�
χ�(1− φδ)(.− �z(t� − s, θ)),Op(W )M

�
∈ Ψ

−1
(Σ1).
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Using Lemma 10.3 we can replace Op(N∗
←)FT

t�
by Op(N∗

←χL(|ξ/q|))FT

t�

(1) with χL ∈
C
∞(R),

χL(x) =

�
1 |x| ≥ 2L,

0 |x| ≤ L.

Let �χ� ∈ C
∞
0

(R) and

�χ� = 1 on supp F
T

t�
,

�χ� = 0 on (−∞,−t� − L
−1

)

for all T ≥ T0. By [31, Proposition 18.1.26] we have for all f ∈ L
2(R× [0, π]):

WF
�
Op

�
j+(ξ/|q|)χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
χL

�
|ξ/q|

��
�χ�f

�

⊂
�
(�r,ω; ξ, q); �r ≥ −t� − L

−1
, |ξ| ≥ L|q|, ξ > 0

�
,

WF

�
Op

�
j−(ξ/|q|)χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
χL

�
|ξ/q|

��
�χ�f)

⊂
�
(�r,ω; ξ, q); �r ≥ −t� − L

−1
, |ξ| ≥ L|q|, ξ < 0

�
,

where WF denotes the wave front set (see [31, Chapter VIII]). Then by the clas-
sical results of propagation of singularities (see e.g. [31, Theorem 26.1.1]), Sobolev
embeddings and Lemma 10.6, we find that the operators

χ�(1− φδ)
�
.− �z(s, θ)

�
e
−isHd

×Op

�
j+

�
ξ/|q|

�
χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
χL

�
|ξ/q|

��
�χ�P14,

χ�(1− φδ)
�
.− �z(s, θ)

�
e
−isHd

×Op

�
j−

�
ξ/|q|

�
χ

�
h

2

�
k�2ξ2 + a

2

0
(��ξ + q)2

�
χL

�
|ξ/q|

��
�χ�P23

are compact for L, t� sufficiently large. The lemma now follows from Corollary 10.1
and the observation that

(F
T

t�
)2,3 = 0,

�
Op((N

−
←)

∗
)F

T

t�

�
1,4

= 0, �χ�F
T

t�
= F

T

t�
,

for T sufficiently large.

Proof of Proposition 10.1. – We first show that
��(U(0, t�)− φδ(.− �z(0, θ)))e

−it�H
)F

T

t�

�� ≤ CN,Rt� e
−κ+t�(10.51)

uniformly in T large for δ sufficiently small. Let φδ(. , t) = φδ(. − �z(t, θ)). We define
for g = P1,4g ∈ H :

v(t, �r, ω) =
�
U(t, t�)− φδ(t)e

i(t−t�)H
�
g.

(1) As in the definition of W (�r, θ, ξ, q), χ
�
h2
�

k�2ξ2 + a2
0(��ξ + q)2

�
χL(|ξ/q|) can be extended to a

smooth function.
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If supp g ⊂ (�z(t�, θ) + δ,∞)× S
2, then v is a solution of






v(t�, �r,ω) = 0,

∂tv = iHtv + h(t), �r > �z(t, θ),
�

µ∈{t,�r,ω}

N µ�γµ
v(t, �z(t, θ), ω) = −iv(t, �z(t, θ), ω),

where
h(t) = −

��
d

dt
φδ(t)

�
+ [φδ, H]

�
e
i(t−t�)Hg = B(t)g.

Thus

v(0) =

�
0

t�

U(0, s)B(s)gds.

We obtain by Lemma 10.7 for δ small enough
��(U(0, t�)− φδ(0)e

−it�H
)F

T

�

�� ≤
�

t�

0

��B(s)F
T

t�

��ds ≤ CN,Rt� e
−κ+t�

uniformly in T large. We now estimate for � > 0 given
�� J (�r)U(0, T )f − φδ(.− �z(0, θ))e

−it�H
F

T

t�

��(10.52)

≤
�� J (�r)U(0, t�)(U(t�, T )f − U←(t�, T )Ω

−
←f)

��

+
�� J (�r)U(0, t�)(U←(t�, T )(Ω

−
←f)

N

R
− F

T

t�
)
�� +

��(Ω
−
←f)

N

R
− Ω

−
←f

��

+
�� J (�r)(U(0, t�)− φδ(.− �z(0, θ))e

−it�H
)F

T

t�

��

<
�� J (�r)U(0, t�)(1− J (�r + t�))U(t�, T )f

��

+
�� J (�r)U(0, t�)(1− J (�r + t�))U←(t�, T )Ω

−
←f

�� +
1

3
�

fixing first N,R and choosing then t�, T sufficiently large and δ = δ(t�, N, R) suffi-
ciently small. Here we have used Proposition 9.1, Lemma 10.2 and (10.51). We now
claim that for t� fixed the first two terms in (10.52) go to zero when T goes to infinity.
Indeed

J (�r)U(0, t�)
�
1− J (�r + t�)

�
U(t�, T )f

= J (�r)U(0, t�)
�
1− J (�r + t�)

�
e
i(t�−T )H

f

= J (�r)U(0, t�)
�
1− J (�r + t�)

�
e
i(t�−T )H1(−∞,0](P

−
)f

+ J (�r)U(0, t�)
�
1− J (�r + t�)

�
e
i(t�−T )H1[0,∞)(P

−
)f.

We can suppose f = χ(H)f , χ ∈ C
∞
0

(R), supp χ ⊂ {−m+η
n
, m+η

n}. By the minimal
velocity estimate we can replace 1(−∞,0)(P

−) by 1(−∞,−�χ)(P
−) and 1[0,∞)(P

−) by
1[1−�̃,∞)(P

−), where �̃ > 0 and �χ is given by Lemma 6.2. But,

lim
T→∞

J (�r)U(0, t�)
�
1− J (�r + t�)

�
e
i(t�−T )H1(−∞,−�χ](P

−
)f

= lim
T→∞

J (�r)U(0, t�)
�
1− J (�r + t�)

�
1(−∞,−�χ]

� �r
t� − T

�
e
i(t�−T )H

f = 0
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by the finite propagation speed for U(0, t�). In a similar way we find

lim
T→∞

J (�r)U(0, t�)
�
1− J (�r + t�)

�
e
i(t�−T )H1[1−�̃,∞)(P

−
)f

= lim
T→∞

J (�r)U(0, t�)
�
1− J (�r + t�)

�
1[1−�̃,∞)

� �r
t� − T

�
e
i(t�−T )H

= 0

because (1 − J (�r + t�))1[1−�̃,∞)(�r/(t� − T )) = 0 for T sufficiently large. The second
term can be treated in a similar way. This concludes the proof of the proposition.





CHAPTER 11

PROOF OF THE MAIN THEOREM

In this chapter we put the results of the previous chapters together to prove the
main theorem. Recall that we are working with the operators H

ν,n

ηn , etc. and that the
indices are suppressed. All operators are considered as acting on H n.

11.1. The energy cut-off

In this section N,R > 0 will be fixed. Let

Σ
−
0

=
�
(�r,ω); �r ≤ �z(0, θ)

�
, H −

0
=

�
L

2
(Σ
−
0

, d�r dω)
�4

.

On H −
0

we define

H
−
0

= H,

D(H
−
0

) =
�
u ∈ H −

0
; Hu ∈ H −

0
,

�

µ̂∈{(t,�r,θ,ϕ)}

N µ̂�γ µ̂
Ψ(�z(0, θ), ω) = −iΨ(0, �z(0, θ), ω)

�
.

We need the following:

Lemma 11.1. – (i) Let φ ∈ C
∞(R × S

2), ∂�rφ ∈ C
∞
0

(R × S
2), φ ≡ 0 on Σ

−
0

and
χ ∈ S0

(R). Then (χ(H
−
0
⊕H0)− χ(H))φ is compact.

(ii) Let φ ∈ C
∞
0

(Σ0), χ ∈ S−1
(R). Then χ(H

−
0
⊕H0)φ, χ(H)φ are compact.

Proof. – (i) We write χ(x) = �χ(x)(x + i), �χ ∈ S−1. We have as an identity between
bounded operators

χ(H
−
0
⊕H0)φ = �χ(H

−
0
⊕H0)(H + i)φ.(11.1)

Therefore
�
χ(H

−
0
⊕H0)− χ(H)

�
φ =

�
�χ(H

−
0
⊕H0)− �χ(H)

�
(H + i)φ

=
�
�χ(H

−
0
⊕H0)− �χ(H)

��φ(H + i)φ

+
�
�χ(H

−
0
⊕H0)− �χ(H)

�
[H, �φ]φ,
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where �φ ∈ C
∞(R × S

2), �φφ = φ, �φ ≡ 0 on Σ
−
0

. We only show that the first term is
compact, the second term can be treated in a similar manner. Let �χ be an almost
analytic extension of �χ with

�χ|R = �χ,(11.2)

∀N,
��∂̄�χ(z)

�� ≤ CN |�z|N
�
�z�−2−N

, supp �χ ⊂
�
x + iy; |y| ≤ C�x�

�
.

By the Helffer-Sjöstrand formula we can write

(�χ(H
−
0
⊕H0)− �χ(H))�φ(H + i)(11.3)

=

�
∂̄�χ(z)

�
(z −H

−
0
⊕H0)

−1 − (z −H)
−1

��φ(H + i)dz ∧ dz̄.

This identity is first understood as an identity between operators D(H) → H . Now,

∂̄�χ(z)
�
(z −H

−
0
⊕H0)

−1 − (z −H)
−1

��φ(H + i)

= ∂̄�χ(z)

�
(z −H

−
0
⊕H0)

−1
(z −H)�φ(z −H)

−1

+ (z −H
−
0
⊕H0)

−1
[H, �φ](z −H)

−1

− �φ(z −H)
−1 − (z −H)

−1
[H, �φ](z −H)

−1

�
(H + i)

= ∂̄�χ(z)

�
(z −H

−
0
⊕H0)

−1
[H, �φ](z −H)

−1

− (z −H)
−1

[H, �φ](z −H)
−1

�
(H + i).

Both terms are compact and can be estimated by C�x�−3 according to (11.2). This
shows first that the identity (11.3) can be extended to an identity between bounded
operators and then that the operator is compact.

(ii) The fact that χ(H)φ is compact follows from the estimates (4.43), (4.44) and the
same arguments as in [29, Corollary 4.2]. This entails that χ(H

−
0
⊕H0)φ is compact

by part (i) of the lemma.

Let now δ = δ(t�) and φδ be as in Proposition 10.1, �φδ(�r, θ) = φδ(�r − �z(0, θ)) and
χ1, χ2 ∈ C

∞(R) such that

χ1(x) =

�
1 |x| ≤ 1 + η,

0 |x| ≥ 2 + η,

χ2(x) =

�
0 x ≤ 1 + η,

1 x ≥ 2 + η,

and such that χ1(x)+χ2(x) = 1 for all x ≥ 0. Here and in the following η = η
n. Then

we have by Lemma 11.1 and Corollary 10.1:

lim
T→∞

��χ1(H0)
�φδ e

−it�H
F

T

t�

��2

0
= 0.(11.4)
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Indeed we can replace �φδ by a compactly supported function using the support prop-
erty (10.2) of F

T

t�
. Furthermore we have

��χ2(H0)
�φδ e

−it�H
F

T

t�
�0 − �χ1(H0)

�φδ e
−it�H

F
T

t�

��
0

(11.5)

≤
��1[η,∞)(H0)

�φδ e
−it�H

F
T

t�

��
0

≤
��χ1(H0)

�φδ e
−it�H

F
T

t�

��
0

+
��χ2(H0)

�φδ e
−it�H

F
T

t�

��
0
.

Using (11.4), (11.5) and Lemma 11.1 we obtain

lim
T→∞

��1[η,∞)(H0)
�φδ e

−it�H
F

T

t�

��
0

= lim
T→∞

��χ2(H0)
�φδ e

−it�H
F

T

t�

��
0

= lim
T→∞

��χ2(H
−
0
⊕H0)

�φδ e
−it�H

(0⊕ F
T

t�
)
��

= lim
T→∞

��χ2(H)�φδ e
−it�H

F
T

t�

��.(11.6)

Lemma 11.2. – Let χ ∈ S0
(R), f ∈ D(�D/S2�). Let �χ be an almost analytic extension

of χ with

�χ|R = χ, ∀N,
��∂̄�χ(z)

�� ≤ CN |�z|N ��z�−1−N
, supp �χ ⊂

�
x + iy; |y| ≤ C��z�

�
.

Then we have
�
χ(H)− χ(H←)

�
f =

�
∂̄�χ(z)(z −H)

−1
(H −H←)(z −H←)

−1
f dz ∧ dz̄.(11.7)

Remark 11.1. – Note that neither
�

∂̄�χ(z)(z −H)
−1

f dz ∧ dz̄ nor
�

∂̄�χ(z)(z −H←)
−1

f dz ∧ dz̄

is convergent in H , but the R.H.S. of (11.7) is.

Proof. – Let χ0 ∈ C
∞
0

(R) with χ0 = 1 in a neighborhood of 0 and χ
m

0
(x) = χ0(x/m).

Let �χ0 ∈ C
∞
0

(C) be an almost analytic extension of χ0 with
��∂̄�χ0

�� ≤ CN |�z|N , ∀N.

Then �χ0(z/m) is an almost analytic extension of χ
m

0
. Clearly

lim
m→∞

χ(H)χ
m

0
(H)f = χ(H)f, lim

m→∞
χ(H←)χ

m

0
(H←)f = χ(H←)f.

We have

χ(H)χ
m

0
(H) =

�
∂̄

�
�χ(z)�χ0

�
z

m

��
(z −H)

−1
dz ∧ dz̄(11.8)
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and the R.H.S. of (11.8) is convergent in norm for all m. Therefore
�
χ(H)χ

m

0
(H)− χ(H←)χ

m

0
(H←)

�
f

=

�
∂̄

�
�χ(z)�χ0

�
z

m

��
(z −H)

−1
(H −H←)(z −H←)

−1
f dz ∧ dz̄

=

�
(∂̄�χ(z))�χ0

�
z

m

�
(z −H)

−1
(H −H←)(z −H←)

−1
f dz ∧ dz̄

+

�
�χ(z)(∂̄�χ0)

�
z

m

�
1

m
(z −H)

−1
(H −H←)(z −H←)

−1
f dz ∧ dz̄

=: I1 + I2.

We have���∂̄�χ(z)�χ0

�
z

m

�
(z −H)

−1
(H −H←)(z −H←)

−1
f

��� � �x�−3
���DS2�f

��

uniformly in m and for all z ∈ C \ (σ(H) ∪ σ(H←)):
�
∂̄�χ(z)

�
�χ0

�
z

m

�
(z −H)

−1
(H −H←)(z −H←)

−1
f

−→ (∂̄�χ(z))(z −H)
−1

(H −H←)(z −H←)
−1

f.

Then by the Lebesgue Theorem I1 converges to the R.H.S. of (11.7). The change of
coordinates u = z/m gives

I2 =

�
m�χ(um)∂̄�χ0(u)(um−H)

−1
(H −H←)(um−H←)

−1
fdu ∧ dū.

As �χ(z) is bounded we can estimate
��m�χ(um)∂̄�χ0(u)(um−H)

−1
(H −H←)(um−H←)

−1
f
��

� |�u|2 m

m2|�u|2
���DS2�f

�� =
��D/S2�f�

m
−→ 0, m →∞.

Thus I2 → 0 as m →∞.

Lemma 11.3. – We have

∀� > 0, ∃ t0 > 0, ∀ t� ≥ t0, ∃T0 = T0(t�), ∀T ≥ T0,

���χ2(H)�φδ(t�)
e
−it�H

F
T

t�

��−
��1[0,∞)(H←)F

T

t0
�
�� < �.

Here δ(t�) is chosen as in Proposition 10.1.

Proof. – Using Lemma 10.7 we see that

∀� > 0, ∃ t0 > 0, ∀ t� ≥ t0,∃T0 = T0(t�), ∀T ≥ T0,

���χ2(H)�φδ(t�)
e
−it�H

F
T

t�

��−
��χ2(H)e

−it�H
F

T

t�
�
�� < �.

We then have to show that
�
χ2(H)− χ2(H←)

�
F

T

t�
−→ 0, T → 0.(11.9)
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To this purpose let �χ2 be an almost analytic extension of χ2 with

�χ2|R = χ, ∀N,
��∂̄�χ2(z)| ≤ CN

���z|N ��z�−1−N
, supp �χ2 ⊂

�
x + iy; |y| ≤ C�x�

�
.

Then we have by Lemma 11.2
�
χ2(H)− χ2(H←)

�
F

T

t�

=

�
∂̄�χ2(z)(z −H)

−1
(H −H←)(z −H←)

−1
F

T

t�
dz ∧ dz̄

=

�
∂̄�χ2(z)(z −H)

−1
(Pω + W )�D/S2�−1

(z −H←)
−1�D/S2�FT

t�
dz ∧ dz̄.

By Lemma 10.3 we find

(z −H←)
−1�D/S2�FT

t�
−→ 0, T →∞(11.10)

and we have
��∂̄�χ2(z)(z −H)

−1
(Pω + W )(z −H←)

−1
F

T

t�

�� � �x�−3
���D/S2�FT

t�

��.(11.11)

Equations (11.10), (11.11) give (11.9). Therefore we have

lim
T→∞

��χ2(H)e
−it�H

F
T

t�

�� = lim
T→∞

��χ2(H←)e
−it�H←F

T

t�

��

= lim
T→∞

��χ2(H←)F
T

0

�� = lim
T→∞

��1[0,∞)(H←)F
T

0

��.

In order to replace χ2(H←) by 1[0,∞)(H←) we use the same arguments as before.

11.2. The term near the horizon

We first compute the radiation explicitly for the asymptotic dynamics:

Lemma 11.4. – We have

lim
T→∞

��1[0,∞)(H←)F
T

0

��2

=

�
�f , e

(2π/κ+)H←
�
1 + e

(2π/κ+)H←
�−1 �f

�
.

Proof. – The proof is analogous to the proof of [6, Lemma VI.6]. We repeat it here
for the convenience of the reader. Let F be the Fourier transform with respect to �r.
We have

��1[0,∞)(H←)F
T

0

��2

=

�

S2

� ∞

0

�� F (F
T

0
)(ξ)

��2 dξdω

=

2�

j=1

lim
�→0+

�

S2

�A(θ)κ+

� ∞

0

���
�

R
e
i( �A(θ)+i�)ξ e

κ+y

e
1

2
κ+y �f

j
dy

���
2

dξdω



138 CHAPTER 11. PROOF OF THE MAIN THEOREM

=

2�

j=1

lim
�→0+

�

S2

1

2

�A(θ)κ+

×
�

R×R

�f
j
(y1)

�f j(y2)dy1 dy2

� cosh
�

1

2
κ+(y1 − y2)

�
− i �A(θ) sinh

�
1

2
κ+(y1 − y2)

�

=

2�

j=1

lim
�→0+

�

S2

�A(θ)κ+

4π

�

R

�� F ( �f
j
)(ξ, ω)

��2

× F
�

1

� cosh
�

1

2
κ+x

�
− i �A(θ) sinh

�
1

2
κ+x

�
�
(−ξ)dξdω.

Now given � �= 0, ξ < 0 and N,M > 0, we evaluate

�
�(x)dx, �(x) :=

e−ixξ

� cosh
�

1

2
κ+x

�
− i �A(θ) sinh

�
1

2
κ+x

� ,

along the path

�
−N ≤ �x ≤ N, �x = 0, M

�
∪

�
0 ≤ �x ≤ M, �x = ±N

�
.

First we have

���
� ±N+iM

±N

�(x)dx

��� � e
− 1

2
κ+N

� ∞

0

e
xξ

dx −→ 0, N →∞,

���
�

N+iM

−N+iM

�(x)dx

��� � e
Mξ

� ∞

−∞
e
− 1

2
κ+|x|

dx −→ 0, M →∞.

We deduce that
� ∞

−∞
�(x)dx = 2iπ

∞�

n=1

ρn(�),

where ρn(�) are the residues of �(x) at the poles zn(�) ∈ {z ∈ C; �z > 0}. We easily
check that

zn(�) =
2i

κ+

�
nπ − arctan

�
�

�A(θ)

��
, sup

1≤n

���ρn(�)− 2i

�A(θ)κ+

(−1)
n
e
(2nπ/κ+)ξ

��� � �,

hence we get that for ξ < 0 we have

��� F
�

1

� cosh
�

1

2
κ+x

�
− i �A(θ) sinh

�
1

2
κ+x

�
�
(ξ)− 4π

�A(θ)κ+

e
(2π/κ+)ξ

�
1 + e

2π

κ+
ξ�−1

��� � �.

MÉMOIRES DE LA SMF 117



11.2. THE TERM NEAR THE HORIZON 139

In the same manner, for ξ > 0, choosing M < 0 and considering the poles zn(�) ∈
{z ∈ C; �z < 0} we obtain

� ∞

−∞
�(x)dx = 2iπ

−∞�

n=0

ρn(�),

sup
n≤0

���ρn(�)− 2i

�A(θ)κ+

(−1)
n
e
− 2nπ

κ+
ξ
��� � �,

��� F
�

1

� cosh
�

1

2
κ+x

�
− i �A(θ) sinh

�
1

2
κ+x

�
�
(ξ)− 4π

�A(θ)κ+

�
1 + e

− 2π

κ+
ξ�−1

��� � �.

Eventually we conclude that

F
�

1

0− i �A(θ) sinh
�

1

2
κ+x

�
�
(ξ) =

4π

κ+

e
2π

κ+
ξ�

1 + e
2π

κ+
ξ�−1

,

and
��1[0,∞)(H←)F

T

0

��2

=

�

S2

�

R
e
− 2π

κ+
ξ�

1 + e
− 2π

κ+
ξ�−1| F ( �f

j
)(ξ,ω)|2dξdω

=
� �f , e

2π

κ+
H←�

1 + e
2π

κ+
H←�−1 �f

�
.

Proposition 11.1. – We have

lim
T→∞

��1[η,∞)(H0) JU(0, T )f
��2

0
=

�
Ω
−
←f, e

2π

κ+
H←�

1 + e
2π

κ+
H←�−1

Ω
−
←f

�
.

Proof. – For � > 0 given we estimate
���1[η,∞)(H0) JU(0, T )f�2

0
− �Ω−←f, e

σH←(1 + e
σH←)

−1
Ω
−
←f�

��

�
��(Ω

−
←f)

N

R
− Ω

−
←f

�� · �Ω−←f�

+
���1[η,∞)(H0) JU(0, T )f�2

0
− �1[η,∞)(H0)

�φδ e
it�H

F
T

t�
�2

��

+
���1[η,∞)(H0)

�φδ e
it�H

F
T

t�
�2 − �1[0,∞)(H←)F

T

0
�2

��

+
���1[0,∞)(H←)F

T

0
�2 − � �f , e

σH←(1 + e
σH←)

−1 �f �
��

=: I1 + I2 + I3 + I4.

Here δ = δ(t�) as in Proposition 10.1. We first choose R0, N0 > 0 such that

∀N ≥ N0, R ≥ R0, I1 <
1

4
�.

Using Proposition 10.1 we can fix N ≥ N0, R ≥ R0, t� > 0, δ = δ(t�) > 0 and T0 > 0

such that
∀T ≥ T0, I2 <

1

4
�.

By choosing T0 possibly larger we have:

∀T ≥ T0, I3 <
1

4
�.
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Here we have used Lemma 11.3 and (11.6). Note that the same t� can be chosen
for the estimate of I2, I3. Indeed in both cases we use Lemma 10.7. The parameters
N,R, t�, δ being fixed in this way we conclude by noting that I4 → 0, T →∞.

11.3. Proof of Theorem 8.2

We start with the identity
��1[η,∞)(H0)U(0, T )f

��2

0
(11.12)

=
��1[η,∞)(H0) JU(0, T )f

��2

0
+

��1[η,∞)(H0)(1− J )U(0, T )f
��2

0

+ 2�
�
1[η,∞)(H0)(1− J )U(0, T )f,1[η,∞)(H0) JU(0, T )f

�
.

In order to prove that
�
1[η,∞)(H0)(1− J )U(0, T )f,1[η,∞)(H0) JU(0, T )f

�
−→ 0, T →∞

it is enough, by the results of the preceding chapters, to prove
�
1[η,∞)(H0)(1− J )U(0, T )f,1[η,∞)(H0)

�φδ e
−it�H

F
T

t�

�
−→ 0, T →∞.

Note that
1[η,∞)(H0)(H0 + i)

−1 �φδ e
−it�H

F
T

t�
−→ 0, T →∞.

Indeed

1[η,∞)(H0)(H0 + i)
−1 �φδ e

−it�H
F

T

t�

= 1[η,∞)(H0)(H0 + i)
−1 �φδ(H + i)e

−it�H
(H + i)

−1
F

T

t�
−→ 0, T →∞.

It is therefore sufficient to show that for all f ∈ H 1 the following limit exists:

lim
T→∞

(H0 + i)e
iTH0(1− J )e

−iTH
f.

But,

(H0 + i)e
iTH0(1− J )e

−iTH
f

= −e
−iTH0 [H, J ] e

−iTH
f + e

iTH0(1− J )e
−iTH

(H + i)f

= −e
iTH0Γ

1 J � e−iTH
f + e

iTH0(1− J )e
−iTH

(H + i)f.

The first term goes to zero because σsc(H) = ∅ and the second term possesses a limit
by Lemma 6.5. By the same lemma we find

lim
T→∞

��1[η,∞)(H0)(1− J )U(0, T )f
�� =

��1[η,∞)(H0)W
−
0

f
�� =

��W
−
0

1[η,∞)(H)f
��

=
��1R−(P

−
)1[η,∞)(H)f

��

=
��1[η,∞)(H)1R−(P

−
)f

��.

This concludes the proof of the theorem.
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APPENDIX A

PROOF OF PROPOSITION 8.2

We will work with the (r∗, ω) coordinate system. For technical reasons we need to
fix the angular momentum Dϕ = n. Let d�ω = sin θdθ,

�H
n

=
�
u = e

inϕ
v; v ∈ (L

2
(R× [0, π], dr∗d�ω))

4
�
,

�H
n

t
=

�
u = e

inϕ
v; v ∈ (L

2
(�Σcol,ϕ

t
, dr∗d�ω))

4
�
,

�Σcol,ϕ

t
=

�
(r∗, θ) ∈ R× [0, π]; r∗ ≥ z(t, θ)

�
.

We define:
�
D/ ν,n

:= h
�
D/

ν,n

s h + V
n
,(A.1)

�
D/ ν,n

s := Γ
1
Dr∗ + a0Γ

2
�
Dθ +

1

2
cot θ

�
+ a0Γ

3
n

sin θ
+ b0Γ

ν
+ c

n
,(A.2)

�H
n1

= D(
�
D/ ν,n

) =
�
u ∈ �H

n

;
�
D/ ν,n

u ∈ �H
n�

.

Recall that the singularity sin θ = 0 appearing in the expression for �
D/ ν,n

s is a co-
ordinate singularity. The operator �

D/ ν,n

t
is the operator acting on �H

n

t
with formal

expression �
D/ ν,n and domain

�H
n1

t
:= D(

�
D/

ν,n

t
)

=

�
u ∈ �H

n

t
;

�
D/

ν,n

t
u ∈ �H

n

t
,

�

µ∈{t,r∗,θ,ϕ}

N µγ
µ
u(z(t, θ), θ) = −iu(z(t, θ), θ)

�
.

The extension [ . ]∗
H

is defined in an analogous way to Section 4.5 as an extension
from �H

n1

t
to �H

n1

. We consider the problem





∂tΨ = i
�
D/ ν,n

t
Ψ, r∗ > z(t, θ)

�
µ∈{t,r∗,θ,ϕ} N µγ

µΨ(t, z(t, θ), θ) = −iΨ(t, z(t, θ), θ),

Ψ(t = s, .) = Ψs(.) ∈ D(
�
D/ ν,n

s
).

(A.3)

Proposition 8.2 follows from:
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Proposition A.1. – Let Ψs ∈ D(
�
D/

ν,n

s
). Then there exists a unique solution

�
Ψ(.)

�∗
H

=
��Uν,n

(., s)Ψs

�∗
H
∈ C

1
(R; �H

n

) ∩ C(R; �H
n1

)

of (A.3) such that for all t ∈ R Ψ(t) ∈ D(
�
D/ ν,n

t
). Furthermore we have

��Ψ(t)
�� = �Ψs�

and �Uν,n(t, s) possesses an extension to an isometric and strongly continuous propa-
gator from �H

n

s
to �H

n

t
such that for all Ψs ∈ D(

�
D/

ν,n

s
) we have

d

dt

�Uν,n
(t, s)Ψs = i

�
D/ ν,n

t
�Uν,n

(t, s)Ψs.

Note that in Proposition 8.2, there is an additional statement about the finite
propagation speed which follows from (Ψ is supposed to be a solution of (8.14))

d

dt

�

S2

� ∞

R+|t−s|

��Ψ(t, �r,ω)
��2 d�r dω = 21R+(s− t)

�

S2

�
|Ψ2|2 + |Ψ3|2

�
dω

− 21R+(t− s)

�

S2

�
|Ψ1|2 + |Ψ4|2

�
dω.

Proof of Proposition A.1. – We will drop the indices ν, n in what follows.

� Let us first show uniqueness. If Ψ is solution of (A.3), then we have

d

dt

�
π

0

� ∞

z(t,θ)

|Ψ|2 dr∗d�ω

= −
�

π

0

ż(t, θ)|Ψ|2
�
z(t, θ), θ

�
dω + 2��i�D/ tΨ,Ψ�

= 2��iˇD/ tΨ,Ψ� = 0.

Here ˇ
D/ t := żDr∗ +

�
D/ t is selfadjoint with domain �H

n1

t
(see Lemma 4.2).

� Let us now prove existence. We introduce the operators

R(t) = (N
2

+ Z
2

1
− Z

2

2
)
− 1

2





N 0 −Z1 −Z2

0 N −Z2 −Z1

Z1 −Z2 N 0

−Z2 Z1 0 N




,

N = w
−1

, Z1 = h
2

+ ż, Z2 = a0h
2
∂θz,

T : H 0 � f �−→ T (t)f ∈ H t,
�
T (t)f

�
(r∗, ω) = f(r∗ − z(t, θ) + z(0, θ), ω).
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We remark that

R
−1

(t) = (N
2

+ Z
2

1
− Z

2

2
)
− 1

2





N 0 Z1 Z2

0 N Z2 Z1

−Z1 Z2 N 0

Z2 −Z1 0 N




.

Furthermore we notice that

T ∈ C
1
�
Rt; L((C

1

0
(Rr∗ × [0, π]))

4
, (C

0

0
(Rr∗ × [0, π]))

4
�
, Ṫ (t) = −ż(t, θ) T (t)∂r∗ .

Then u is a solution of our problem iff w(t) = R
−1(t) T −1

(t)u is solution of
�

∂tw = iA(t)w, r∗ > z(0, θ),

w2

�
t, z(0, θ), ω

�
= w3

�
t, z(0, θ), ω

�
= 0,

(A.4)

where A(t) = R
−1(t) T −1

(t)(D/ +żDr∗)R(t) T (t)−R
−1(t)Ṙ(t). We first need to analyze

A(t) for fixed t. We put

D
�
A(t)

�
=

�
u ∈ �H 0; A(t)u ∈ �H 0, u2(z(0, θ), ω) = u3(z(0, θ), ω) = 0

�
.

We equip D(A(t)) with the graph norm of A(t). The operator (A(t), D(A(t)) is self-
adjoint (see Lemma 4.2). Let

dθ := Dθ +
cot θ

2i
·

We first note that the domain is independent of t:

∀ t, D
�
A(t)

�
= D

:=
�
u ∈ �H 0; Dr∗u ∈ �H 0, dθu ∈ �H 0, u2(z(0, θ), θ) = u3(z(0, θ), θ) = 0

�

and the graph norm of A(t) is equivalent to the norm

�u�D = �Dr∗u�+ �a0 dθu�+ �u�.

This follows from the estimates

∀u ∈ D
�
A(t)

�
, �Dr∗u� �

��A(t)u
�� + �u�,(A.5)

∀u ∈ D
�
A(t)

�
, �a0 dθu� �

��A(t)u
�� + �u�.(A.6)

To show (A.5) and (A.6) we introduce the operator �
D/ t which is obtained from �

D/ by
evaluating all functions in the definition of �

D/ at (r∗ + z(t, θ) − z(0, θ), θ). Then we
have

A(t) = R
−1

(t)(
�
D/ t

+ żDr∗)R(t)−R
−1

(t)Ṙ(t).

For u regular enough we estimate
��A(t)u

�� �
���
D/ t

R(t)u
��−max

θ

��ż(t, θ)
�� · �Dr∗R(t)u

��− C�u�

≥ ��D/ t
R(t)u� − (1− δ)

��Dr∗R(t)u
��− C�u�
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for some 0 < δ < 1. We henceforth drop the subscript t. Let

v := R(t)u.

The first term on the R.H.S. in the above inequality can be estimated in the following
way:

��D/ t
v�2 ≥ �h2

Dr∗v�2 +
��h

2
a0(Dθ +

1

2
cot θ)v

��2

+ 2�I − C�v�2

with

I =

�
π

0

� ∞

z(t,θ)

�
ha0Γ

2
(Dθ +

1

2
cot θ)hv, hΓ

1
Dr∗hv

�
dr∗d�ω.

We have:

2I = −
�

π

0

�
ha0Γ

2
(∂θ +

1

2
cot θ)hv,Γ

1
h

2
v
��

z(t, θ), θ
�
d�ω

−
�

π

0

� ∞

z(t,θ)

�
Γ

1
∂r∗h

2
a0Γ

2
(∂θ +

1

2
cot θ)hv, hv

�
dr∗d�ω

+

�
π

0

(∂θz)
�
hv, ha0Γ

2
hΓ

1
∂r∗hv

��
z(t, θ), θ

�
d�ω

−
�

π

0

� ∞

z(t,θ)

�
hv, a0Γ

2
(∂θ +

1

2
cot θ)h

2
Γ

1
∂r∗hv

�
dr∗d�ω.

Therefore

2�I = −�
�

π

0

�
ha0Γ

2
(∂θ +

1

2
cot θ)hv,Γ

1
h

2
v
��

z(t, θ), θ
�
d�ω

+ �
�

π

0

(∂θz)
�
hv, h

2
a0Γ

2
Γ

1
∂r∗hv

��
z(t, θ), θ

�
d�ω

− 2�
�

π

0

� ∞

z(t,θ)

��
hΓ

1
Dr∗h, ha0Γ

2
(Dθ +

1

2i
cot θ)h

�
v, hv

�
dr∗d�ω

=: B + AC.

We first estimate the boundary term. We have

B = �
�

π

0

�
ha0Γ

2
hv,Γ

1
∂̃θ((hv)(z(t, θ), θ))

��
z(t, θ), θ

�
d�ω,

where ∂̃θ = ∂θ +
1

2
cot θ. Recalling that

hv(z(t, θ), θ) =




�Nh





Nu1 − Z2u4

−Z1u4

Z1u1

−Z2u1 + Nu4









�
z(t, θ), θ

�
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with �N = (N2 + Z
2

1
− Z

2

2
)−

1

2 we find

B ≥ −C�u�(L2([0,π])4

+

�
π

0

�N2

�
h





Nu1 − Z2u4

−Z1u4

Z1u1

−Z2u1 + Nu4




, h

3
a0Γ

2
Γ

1





N ∂̃θ(u1)− Z2∂̃θ(u4)

−Z1∂̃θ(u4)

Z1∂̃θ(u1)

−Z2∂̃θ(u1) + N ∂̃θ(u4)





�
sin θdθ.

Here ∂̃θ(uj) stands for ∂̃θ(uj(z(t, θ), θ)). The term under the second integral in the
above inequality equals

�N2

�
h

4
a0





Nu1 − Z2u4

−Z1u4

Z1u1

−Z2u1 + Nu4




,





Z1∂̃θ(u4)

N ∂̃θ(u1)− Z2∂̃θ(u4)

Z2∂̃θ(u1)−N ∂̃θ(u4)

Z1∂̃θ(u1)





�

= �N2

�
h

4
a0

�
NZ1u1∂̃θ(ū4)− Z2u4Z1∂̃θ(ū4)− Z1u4N ∂̃θ(ū1) + Z1Z2u4∂̃θ(ū4)

+ Z1Z2u1∂̃θ(ū1)− Z1u1N ∂̃θ(ū4)− Z2Z1u1∂̃θ(ū1) + NZ1u4∂̃θ(ū1)
��

= 0.

Thus B ≥ −C�u(z(t, θ), θ)�(L2([0,π]))4 . By the usual trace theorems we find

B ≥ −C�u�
H

1

2 (Σ
col,ϕ

t
)
≥ −�

�
�Dr∗R(t)u�+ �a0 dθR(t)u�

�
− C��u�.

Let us now consider the anticommutator
�
hΓ

1
Dr∗h, ha0Γ

2
dθh

�
= h

�
[Dr∗ , h

2
a0]Γ

1
Γ

2
dθ + a0[dθ, h

2
]Γ

2
Γ

1
Dr∗

�
h.

Thus
AC ≥ −�

�
�a0 dθv�+ �Dr∗v�

�
− C��v�, � > 0.

Gathering everything together and using h
2 ≥ 1 we find

��A(t)u
�� ≥ (1− �̃)

�
�Dr∗R(t)u�+ �a0 dθR(t)u�

�

− (1− δ)
��Dr∗R(t)u

��− C��u�

≥ (δ − �̃)�Dr∗u�+ (1− �)�a0 dθu� − C��u�, �̃ < δ.

Recall that we have dropped the index t. But a0 � a
t

0
� a0. The above inequal-

ity proves (A.5), (A.6). The operators (A(t), D) are selfadjoint and the family
{(iA(t), D)}t∈R is a stable family in the sense of [43, Definition 5.2.1]. We want to
check that for v ∈ D, t �→ A(t)v is continuously differentiable. We have

A(t + δ)−A(t)

δ
v

=
1

δ

�
R
−1

(t + δ)(
�
D/ t+δ

+ żDr∗)R(t + δ)

−R
−1

(t)(
�
D/ t

+ żDr∗)R(t)

�
v − (R

−1
(t)Ṙ(t))

�
v + o(δ)
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=
R
−1(t + δ)−R

−1(t)

δ
(
�
D/ t+δ

+ żDr∗)R(t + δ)v

+
1

δ
R
−1

(t)(
�
D/ t+δ

+ żDr∗)R(t + δ)v

− 1

δ
R
−1

(t)(
�
D/ t

+ żDr∗)R(t)v −
�
R
−1

(t)Ṙ(t)
��

v + o(δ)

=
R
−1(t + δ)−R

−1(t)

δ
(
�
D/ t+δ

+ żDr∗)R(t + δ)v

+ R
−1

(t)

�
D/ t+δ − �

D/ t

δ
R(t + δ)v

+ R
−1

(t)(
�
D/ t

+ żDr∗)
R(t + δ)−R(t)

δ
v −

�
R
−1

(t)Ṙ(t)
��

v + o(δ)

=: I
δ

1
+ I

δ

2
+ I

δ

3
−

�
R
−1

(t)Ṙ(t)
��

v + o(δ).

Here and henceforth a prime denotes a derivative with respect to t. Let

I1 :=
�
R
−1

(t)
��

(
�
D/ t

+ żDr∗)R(t)v,

I2 := R
−1

(t)(
�
D/ t

)
�
R(t)v,

I3 := R
−1

(t)(
�
D/ t

+ żDr∗)(R)
�
(t)v.

The operator (
�
D/ t)� is defined by differentiating �

D/ t formally with respect to t. Let us
first consider the second term. We have

���(R
−1

(t)

�
D/ t+δ − �

D/ t

δ
R(t + δ)−R

−1
(t)(

�
D/ t

)
�
R(t))v

���

≤
��R

−1
(t)(

�
D/ t

)
�
(R(t + δ)−R(t))v

��

+

���R
−1

(t)

� �
D/

t+δ

− �
D/ t

δ
− (

�
D/ t

)
�
�
R(t + δ)v

���

≤
��Dr∗(R(t + δ)−R(t))v

�� +
��a
�
0
dθ(R(t + δ)−R(t))v

��

+ o(δ)
��R

−1
(t)dθR(t + δ)v

�� + o(δ)
��R

−1
(t)Dr∗R(t + δ)v

��

≤ o(δ)�v�D.

Here we have used that a0 ≥ � on [0,∞)× [0, π] as well as the estimates (A.5), (A.6).
The other terms can be treated in a similar way. We find:

�Iδ

j
− Ij� ≤ o(δ)�v�D, 1 ≤ j ≤ 3.

This shows that t �→ A(t)v is continuously differentiable. We can therefore use [43,
Theorem 5.4.8] to find a strongly continuous propagator S(s, t) on �H

n

0
such that for

f ∈ D,S(t, s)f ∈ D is a strongly continuous differentiable map from Rt × Rs to �H
n

0

satisfying
d

dt
S(t, s)f = A(t)S(t, s)f,

d

ds
S(t, s)f = −S(t, s)A(s)f.
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The propagator
�U(t, s) = R(t) T (t)S(t, s)R

−1
(s) T −1

(s)

has the required properties.





APPENDIX B

PENROSE COMPACTIFICATION OF BLOCK I

The Penrose compactification is usually obtained by a construction based on the
PNG’s. We present here an analogous construction based on the SNG’s. In order to
emphasize the analogy with the PNG construction we name the different coordinate
systems that we introduce as in the PNG case. We will suppose a > 0. The PNG
construction is explained in detail in [42].

B.1. Kerr-star and star-Kerr coordinates

A part of the construction of this section can be found in [23] for the Kerr case.
We will suppose E = 1. Let �r be as in Chapter 3. The star-Kerr coordinate system
(∗t, r, ∗θ, ∗ϕ) is based on outgoing simple null geodesics. The new coordinates ∗t, ∗θ and
∗
ϕ are of the form

∗
t = t− �r(r, θ),

∗
ϕ = ϕ− Λ(r),

∗
θ = θ

�
(r, θ),

where the function Λ is required to satisfy

Λ
�
(r) =

a(2Mr −Q
2)

B(r)∆
, B(r) = (r

2
+ a

2
)k
��

r∗(r)
�
.

The function θ
� is defined in the following way. Let

α(r) = −
� ∞

r

a

B(ν)
dν.

For later simplicity we define

F = 1 + tanh(α) sin θ
�
, G = tanh(α) + sin θ

�
.

Then the function θ
� is defined by

sin θ =
G

F
·(B.1)

We note that

cos
2
θ =

cos2 ∗θ

cosh
2
αF 2

·(B.2)
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The important property of the coordinate system (∗t, r, ∗θ, ∗ϕ) is that
∗̇t = ∗̇ϕ = ∗̇θ = 0

along outgoing SNG’s with the correct sign of θ
�
0
. Therefore we have

N
a,+

=
r
2 + a

2

ρ2
k
�
∂r

in this coordinate system. We find





dθ = α
�
cos θdr +

cos θ

cos ∗θ
d
∗
θ,

dt = d
∗
t +

σ
2

∆B
dr +

a cos2 θ

cos ∗θ
d
∗
θ,

dϕ = d
∗
ϕ + Λ

�
(r)dr.

(B.3)

Using (B.3) we can rewrite the metric as

g =

�
1 +

Q
2 − 2Mr

ρ2

�
d
∗
t
2

+ 2
ρ
2

B
d
∗
tdr(B.4)

+ 2

�
1 +

Q
2 − 2Mr

ρ2

�
a cos ∗θ

F 2 cosh
2
α

d
∗
td
∗
θ + 2a

(2Mr −Q
2)G2

ρ2F 2
d
∗
td
∗
ϕ

− r
2
ρ
2
F

2 cosh
2
α + a

2(2Mr −Q
2) cos2 ∗θ

ρ2F 4 cosh
4
α

d
∗
θ
2

+ 2
a
2(2Mr −Q

2)G2 cos∗ θ

ρ2F 4 cosh
2
α

d
∗
θd
∗
ϕ− σ

2
G

2

ρ2F 2
d
∗
ϕ

2
.

The expression (B.4) shows that g can be extended smoothly across the horizon
{r = r+}. Besides, it does not degenerate there since its determinant is given by

det(g) = − ρ
4 sin

2
θ

F 2 cosh
2
α

and does not vanish for r = r+
(1). Thus, we can add the horizon to block I as a

smooth boundary. It is called the past event horizon and given by

H
−

:= R∗t × {r = r+}
r
× S

2
∗θ,∗ϕ.

The metric induced by g on hypersurfaces of constant r, gr, has determinant

det(gr) = − ρ
2 sin

2
θ∆

cosh
2
αF 2

and thus degenerates for ∆ = 0, i.e. at H−. Since g does not degenerate, it follows
that one of the generators of H− is zero, i.e. H− is a null hypersurface. Kerr-star
coordinates (t∗, r, θ∗, ϕ∗) are constructed using the incoming SNG’s:

t
∗

= t + �r(r, θ), ϕ
∗

= ϕ + Λ(r), θ
∗

= θ
�
(r, θ).

(1) Note however that there is the usual coordinate singularity at sin θ = 0.
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This coordinate system allows to add the future event horizon

H
+

= Rt∗ × {r = r+}× S
2

θ∗,ϕ∗

as a smooth null boundary to block I.

B.2. Kruskal-Boyer-Lindquist coordinates

The Kruskal-Boyer-Lindquist coordinate system is a combination of the two Kerr
coordinate systems, modified in such a way that it is regular on both the future and
the past horizons. The time and radial variables are replaced by

(B.5) U = e
−κ+

∗
t
, V = e

κ+t
∗
,

where κ+ is the surface gravity at the outer horizon, see (3.5). The coordinate θ
� =

∗
θ = θ

∗ is kept unchanged. The longitude function is defined by

(B.6) ϕ
�
= ϕ− a

r
2
+

+ a2
t.

The functions (U, V, θ,ϕ
�) form an analytic coordinate system on BI∪H+∪H−−(axes).

In this coordinate system, we have

BI =]0,+∞[U×]0,+∞[V×S
2

θ�,ϕ� ,

H
+

= {0}U × [0,+∞[V×S
2

θ�,ϕ� , H
−

= [0,+∞[U×{0}V × S
2

θ�,ϕ� ,

simply because t
∗ (resp. ∗t) is regular at H+ (resp. H−), takes all real values on H+

(resp. H−), and tends to −∞ (resp. +∞) at H− (resp. H+). We want to build the
crossing sphere S

2

c
= {U = V = 0}. To this purpose we introduce the function

L :=
r − r+

UV
·

Lemma B.1. – (i) The functions r and sin θ are well defined analytic functions on

[0,∞)U × [0,∞)V × S
2

θ�,ϕ� .

(ii) The function L extends to a nonvanishing analytic function on

[0,∞)U × [0,∞)V × S
2

θ�,ϕ� .

Proof. – (i) We have

�
UV

sin θ
�

�
=




e2κ+�r(r,θ)

tanh(α)− sin θ

tanh(α) sin θ − 1



 = H(r, sin θ) =

�
HUV (r, sin θ)

Hθ�(r, sin θ)

�
.

Using

e
2κ+�r = (r−r+)(r−r−)

κ+

κ− exp

�
2κ+

�
r

r+

��

1− a2∆

(r2 + a2)2
−1

�
τ

2 + a
2

∆
dτ

�
e
2κ+a sin θ
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we easily check that
�

∂1HUV ∂2HUV

∂1Hθ� ∂2Hθ�

�
(r+, sin θ)

is invertible. Thus (r, sin θ) = H
−1(UV, sin θ

�) is well defined in a neighborhood of
the crossing sphere.

(ii) We have

L = (r − r−)
− κ+

κ− exp

�
− 2κ+

�
r

r+

��

1− a2∆

(r2 + a2)2
− 1

�
τ

2 + a
2

∆
dτ

�
e
−2κ+a sin θ

.

This and the result of (i) give (ii).

We have





dt =
L

2κ+(r − r+)
(U dV − V dU),

dr =
(r − r−)LB

2κ+σ2
(U dV + V dU)− B∆

σ2

a cos2 θ

cos θ�
dθ

�
,

dϕ = dϕ
�
+

a

r
2
+

+ a2

L

2κ+(r − r+)
(U dV − V dU),

dθ =
a(r − r−) cos θL

2κ+σ2
(U dV + V dU) +

cos θB
2

cos θ�σ2
dθ

�
.

(B.7)

Using (B.7) we find that the Kerr-Newman metric in these coordinates takes the form

g = −2L(r − r−)

4κ
2
+
ρ2

�
ρ
4

+

(r2
+

+ a2)2
+

ρ
4
B

2

σ4

�
dU dV(B.8)

+
L

2(r − r−)

4κ
2
+
ρ2(r − r+)

�
ρ
4

+

(r2
+

+ a2)2
− ρ

4
B

2

σ4

�
(V

2
dU

2
+ U

2
dV

2
)

− ρ
2
a
2(r − r−)2 cos2 θL

2

4κ
2
+
σ4

(U dV + V dU)
2

− sin
2
θ

ρ2

(r + r+)2a2
L

2

(r+ − r−)2
(U dV − V dU)

2

− sin
2
θaL

κ+ρ2(r2
+

+ a2)

�
(r − r−)ρ

2

+
+ (r

2
+ a

2
)(r + r+)

�
(U dV − V dU)dϕ

�

− ρ
2
B

2

σ2 cosh
2
αF 2

(dθ
�
)
2 − σ

2 sin
2
θ

ρ2
(dϕ

�
)
2
,

where ρ
2

+
= r

2

+
+ a

2. Clearly 1/(r − r+)(ρ4

+
/(r2

+
+ a

2)2 − ρ
4
B

2
/σ

4) extends to
an analytic function on [0,∞)U × [0,∞)V × S

2

θ�,ϕ� . The expression (B.8) then
shows that g is smooth on BI ∪ H+ ∪ H− and can be extended smoothly on
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[0,+∞[U×[0,+∞[V×S
2

θ�,ϕ� . The crossing sphere S
2

c
= {U = V = 0} is a regular

surface in the extended space-time
�
BKBL

I
:= [0,+∞[U×[0,+∞[V×S

2

θ�,ϕ� , g
�
.

Hence, the Kruskal-Boyer-Lindquist coordinates give us a global description of the
horizon

H = H
− ∪ S

2

c
∪ H+

=
�
[0,+∞[U×{0}V × S

2

θ�,ϕ�

�
∪

�
{0}U × [0,+∞[V×S

2

θ�,ϕ�

�

as a union of two smooth null boundaries H+ ∪ S
2

c
and S

2

c
∪ H−.

B.3. Penrose compactification of Block I

The Penrose compactification of the exterior of a Kerr-Newman black hole is per-
formed using two independent and symmetric constructions, one based on star-Kerr,
the other on Kerr-star coordinates. We describe explicitly only the first of these two
constructions.

Future null infinity is defined as the set of limit points of outgoing simple null
geodesics as r → +∞. This rather abstract definition of a 3-surface, describing the
congruence of outgoing simple null geodesics, can be given a precise meaning using
star-Kerr coordinates. We consider the expression (B.4) of the Kerr-Newman metric
in star-Kerr coordinates and replace the variable r by w = 1/r. In these new variables,
the exterior of the black hole is described as

BI = R∗t ×
�
0,

1

r+

�

w

× S
2
∗θ,∗ϕ.

The conformally rescaled metric

(B.9) �g = Ω
2
g, Ω = w =

1

r

takes the form

�g =

�
w

2
+

Q
2
w

4 − 2Mw
3

1 + a2w2 cos2 θ

�
d
∗
t
2

− 2
1 + a

2
w

2 cos2 θ�
(1 + a2w2)2 − a2w2(1 + (a2 + Q2)w2 − 2Mw)

d
∗
tdw

+ 2w
2

�
1 +

Q
2
w

2 − 2Mw

1 + a2w2 cos2 θ

�
a cos ∗θ

F 2 cosh
2
α

d
∗
td
∗
θ

+ 2aw
3

(2M −Q
2
w)G2

(1 + a2 cos2 θw2)F 2
d
∗
td
∗
ϕ
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− (1 + a
2 cos2 θw

2)F 2 cosh
2
α + a

2(2Mw
3 −Q

2
w

4) cos2 ∗θ

(1 + a2 cos2 θw2)F 4 cosh
4
α

d
∗
θ
2

+ 2aw
3

(2M −Q
2
w)G2 cos ∗θ

(1 + a2 cos2 θw2) cosh
2
αF 4

d
∗
θd
∗
ϕ

− ((1 + a
2
w

2)2 − a
2
w

2(1 + (a2 + Q
2)w2 − 2Mw) sin

2
θ)G2

(1 + a2 cos2 θw2)F 2
sin

2
θd
∗
ϕ

2
.

The functions sin θ, cos θ, F , G, α have to be understood as functions of 1/w,
∗
θ.

It is clear from the formulas in Section B.1 that they possess analytic extensions
to [0, 1/r+]× S

2
∗θ. The expression above shows that �g can be extended smoothly on

the domain

R∗t ×
�
0,

1

r+

�

w

× S
2
∗θ,∗ϕ.

The hypersurface

I+ := R∗t ×
�
w = 0

�
× S

2
∗θ,∗ϕ

can thus be added to the rescaled space-time as a smooth hypersurface, describing
future null infinity as defined above. This hypersurface is indeed null since

�g|w=0
= −d

∗
θ
2 − sin

2
θd
∗
ϕ

2

is degenerate (recall that I+ is a 3-surface) and

det(�g) = − (1 + a
2
w

2 cos2 θ)2

F 2 cosh
2
α

sin
2
θ

does not vanish for w = 0.

Similarly, using Kerr-star instead of star-Kerr coordinates, we define past null in-
finity, the set of limit points as r → +∞ of incoming simple null geodesics, as

I− := Rt∗ ×
�
w = 0

�
× S

2

θ∗,ϕ∗ .

The Penrose compactification of block I is then the space-time

�
BI , �g

�
, BI = BI ∪ H+ ∪ S

2

c
∪ H− ∪ I+ ∪ I−,

�g being defined by (B.9). In spite of the terminology used, the compactified space-
time is not compact. There are three “points” missing to the boundary: i+, or future
timelike infinity, defined as the limit point of uniformly timelike curves as t → +∞, i−,
past timelike infinity, symmetric of i+ in the distant past, and i0, spacelike infinity, the
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H
+

H−

Figure 1. The Penrose compactification of block I, with two hypersur-
faces Σs and Σt, t > s.

limit point of uniformly spacelike curves as r → +∞. These “points” are singularities
of the rescaled metric. See Figure 1 for a representation of the compactified block I.

Writing
U = e

−κ+(t−�z(t,θ))
, V = e

κ+(t+�z(t,θ))

and suppressing two dimensions gives the picture of the collapse of Figure 1, Sec-
tion 4.5.
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