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NAHM TRANSFORM FOR INTEGRABLE
CONNECTIONS ON THE RIEMANN SPHERE

Szilárd Szabó

Abstract. – In this text, we define Nahm transform for parabolic integrable connec-
tions with regular singularities and one Poincaré rank 1 irregular singularity on the
Riemann sphere. After a first definition using L2-cohomology, we give an algebraic de-
scription in terms of hypercohomology. Exploiting these different interpretations, we
give the transformed object by explicit analytic formulas as well as geometrically, by
its spectral curve. Finally, we show that this transform is (up to a sign) an involution.

Résumé (Transformée de Nahm pour les connexions intégrables sur la sphère de Riemann)
Dans ce texte, nous définissons la transformée de Nahm pour les connexions inté-

grables paraboliques ayant des singularités régulières et une singularité irrégulière de
rang de Poincaré 1 sur la sphère de Riemann. Après une définition en terme de coho-
mologie L2, nous donnons une description algébrique en terme d’hypercohomologie.
En nous servant de cette double interprétation, nous décrivons l’objet transformé à la
fois par des formules analytiques explicites et géométriquement en utilisant la courbe
spectrale du problème. Finalement, nous démontrons que la correspondance définie
est (à un signe près) une involution.
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INTRODUCTION

Nahm transform is a non-linear analog for instantons of the usual Fourier transform
on functions. It has been extensively studied starting from the beginning of the 1980’s,
inspired by the seminal work of M. F. Atiyah, V. Drinfeld, N. J. Hitchin and Yu. I.
Manin on a correspondence (the ADHM-transform) between finite-energy solutions
of the Yang-Mills equations and some algebraic data (see [1] and Chapter 3 of [12]).
The Yang-Mills equations are the anti-self-duality equations for a unitary connection
on a Hermitian vector bundle defined over R4; their finite-energy solutions are called
instantons.

Since then, it turned out that the general picture concerning this correspondence
is as follows: let X be any manifold obtained as a quotient of R4 by a closed additive
subgroup Λ. The solutions of the Yang-Mills equations invariant by Λ (that are clearly
not of finite energy in the case Λ �= {0}) can be identified in an obvious manner to
solutions of a system of differential equations on X, called the reduction of the Yang-
Mills equations. On the other hand, denoting by (R4)∗ the dual of the vector space
R4, Λ determines a closed additive subgroup Λ∗ called the dual subgroup by saying
that an element ξ ∈ (R4)∗ is in Λ∗ if and only if ξ(λ) ∈ Z for all λ ∈ Λ. Hence, we
can form the dual manifold X∗ = (R4)∗/Λ∗ of X, that also admits a reduction of the
Yang-Mills equations. Nahm transform is then a procedure that maps solutions of the
reduced equations on X to solutions of the reduced equations on X∗ bijectively up
to overall gauge transformations on both sides. One remarks that there is a canonical
isomorphism between ((R4)∗)∗ and R4, as well as between (Λ∗)∗ and Λ. Therefore, if
we start from a solution of the reduced equations on X and iterate Nahm transform
twice, we again get a solution of the reduced equations on X. One important property
analogous to usual Fourier transform is that in some cases the solution we get this
way is, up to a coordinate change x �→ −x, known to be the solution we started with;
that is, Nahm transform is (up to a sign) involutive. Moreover, in some cases one
knows that the moduli spaces of solutions of the reduced equations modulo gauge
transformations on X and on X∗ are smooth hyper-Kähler manifolds with respect
to the metric induced by L2-norm and the complex structures induced by R4; Nahm
transform is then a hyper-Kähler isometry between these moduli spaces. This is to be
compared with Parseval’s theorem which states that usual Fourier transform defines
an isometry between L2-spaces of functions.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



8 INTRODUCTION

Putting Λ = {0}, one gets X = R4 and Λ∗ = R4, so X∗ = {0}. In this case, Nahm
transform reduces to the ADHM-transform. The other examples of Nahm transform
in the literature for different subgroups of R4 are as follows. For Λ = Z4, staring
from an ASD-connection on the four-dimensional torus X = T 4, its transform is an
ASD-connection on the dual torus X∗ = (T 4)∗, see P. Braam and P. van Baal [7],
S. Donaldson and P. Kronheimer [12] and H. Schenck [25]. Notice that [12] also
describes a holomorphic interpretation of this transform, which reproduces Mukai’s
Fourier transform for holomorphic bundles on tori. For X = R3, X∗ = R one gets a
correspondence between monopoles (solutions of Bogomolny’s equation on R3) and
solutions of an ordinary differential equation, called Nahm’s equation, on the open
interval (−1, 1), with fixed singularity behaviour at the end-points. This was first
described by W. Nahm [21], then complemented by others. The case X = R2 ×
S1, X∗ = R × S1 was treated by S. Cherkis and A. Kapustin [10]: here, one gets a
correspondence between periodic monopoles on R2 × S1 with logarithmic growth at
infinity and solutions of Hitchin’s equations on R × S1 with exponential growth at
infinity. When X = R3 × S1, X∗ = S1, the correspondence relates calorons (periodic
instantons) on R3×S1 and solutions of Nahm’s equations on the circle with singularity
in a discrete set of points. This was studied by T. Nye [22] and T. Nye and M. Singer
[23]. In these works invertibility is not yet completely proved; however, J. Hurtubise
and B. Charbonneau recently announced [9] that they completed its proof. In the
case X = R2 × T 2 the works of M. Jardim [16], [17] and O. Biquard and M. Jardim
[6] establish the transform between doubly-periodic instantons (ASD-connections on
R2 × T 2) with fixed behaviour at infinity, and solutions of Hitchin’s equations on
X∗ = T 2 with (at most) two simple poles and fixed singularity data. Finally, for
X = R×T 3, B. Charbonneau described a transform from spatially periodic instantons
to singular monopoles on X∗ = T 3 [8]. For more details on the history of these
examples, see the survey paper [18] of M. Jardim.

In this work, we are concerned with one of the last cases not treated before, namely
Λ = R2. In this case, the base manifold is X = R2, and its dual X∗ is another copy
of the real plane that we shall denote by R̂2. These are non-compact manifolds, with
compactifications the Riemann spheres CP1 and �CP

1
respectively. The reduction of

the original (Yang-Mills) equations can be viewed in two different ways depending on
the complex structure that we choose: they are the equations defining an integrable
connection with harmonic metric, or equivalently, those defining a Higgs bundle with
Hermitian-Einstein metric. Now, it turns out that there are no smooth solutions on the
Riemann sphere of either one of these equations except for the trivial ones (cf. [14]).
However, there are solutions with prescribed singularities in some points, and the
solutions of one equation are still in correspondence with those of the other: this is
proved by O. Biquard and Ph. Boalch in [5]. For this correspondence to work, one
needs to have a parabolic structure in the singular locus on both types of objects.
We establish, under some hypotheses on the singularity behaviour, Nahm transform
for parabolic integrable connections (or equivalently, parabolic Higgs bundles) on the

MÉMOIRES DE LA SMF 110



INTRODUCTION 9

Riemann sphere. On the other hand, using different techniques, B. Malgrange has
defined in [20] a so-called Fourier-Laplace transform for integrable connections with
singularities on the Riemann sphere, behaving in the same manner on the level of
singularity data as the transform we define here. One difference between these works is,
however, the transformation of a parabolic structure and an adapted harmonic metric
at the singularities in our case; for details, see Section 1.3. The author has proved that
Nahm transform for parabolic integrable connections is the natural generalisation of
Fourier-Laplace transform to the parabolic case, see [27].

The construction follows the main ideas of other Nahm transforms found in liter-
ature. Namely, in Section 2.1 we define positive and negative spinor bundles S± over
CP1, as well as a Dirac operator

/∂ : S+ ⊗ E −→ S− ⊗ E.

We then let ξ ∈ Ĉ�P̂ be a parameter, where P̂ is the singular locus of the transformed
objects, and for all ξ twist the operator /∂ by some flat connection to obtain a family of
operators /∂ξ. In Section 2.2 we prove that the kernel of these twisted operators vanish
and that the cokernels form a finite-dimensional space. Furthermore, this dimension is
independent of ξ; we then define the transformed vector bundle Ê on Ĉ as the vector
bundle with fiber over ξ given by coKer(/∂ξ). In Section 2.3 we carry out an analog of
L2-Hodge theory of a compact Kählerian manifold in this case; namely we establish an
isomorphism between this cokernel and the first L2-cohomology of an elliptic complex,
as well as harmonic 1-forms with respect to the Laplacian of the Dirac operator. We
then go on to define the transformed flat bundle and the transformed Hermitian metric
in Section 3.1, and we extend the flat bundle over the singularities – so defining the
transformed parabolic integrable connection – in Section 3.2. The transformed metric
is then shown to be Hermitian-Einstein in Section 4.2. Next, in Section 4.3 we give a
completely explicit description of the fibers of the transformed bundle, first in terms
of hypercohomology of a sheaf map, then in terms of the corresponding spectral set.
Then come the constructions of the extensions of the transformed Higgs bundle to
the singular points (Section 4.4). This allows us to deduce the singularity data of the
transformed Higgs bundle in Sections 4.5 and 4.6, and we complete the transform
by computing the topology of the transformed Higgs bundle in Section 4.7. Finally,
Chapter 5 deals with the involutivity property of the transform.
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CHAPTER 1

NOTATIONS AND STATEMENT OF THE RESULTS

1.1. Integrable connection point of view

Let C be the complex line, with its natural holomorphic coordinate z = x+ iy and
Euclidean metric |dz|2; and let CP1 be the complex projective line. Let E → CP1 be
a rank r holomorphic vector bundle on the Riemann sphere, and D be a meromorphic
integrable connection on it, with first order or logarithmic singularities at the points
of a finite set {p1, . . . , pn} = P ⊂ C and a second order singularity at infinity. In other
words, on a small disk ∆(pj , ε) centered at pj ∈ P in a holomorphic basis {τ j

k
}k=1,...,r

of E, D is of the form Dj + bj where bj is a holomorphic 1-form on the disk and

Dj = d +
Aj

z − pj

dz ∧ .(1.1)

We suppose furthermore that Aj is diagonal:

Aj =





0
. . .

0

µj

rj+1

. . .
µj

r





;

it is called the residue of D at pj , and 1 ≤ r−rj ≤ r is the rank of Aj . For convenience,
we put µj

1 = · · · = µj

rj
= 0, so that Aj = diag(µj

k
)k=1,...r. We will often make use of

the holomorphic local decomposition

Ej = Ej

reg ⊕ Ej

sing,(1.2)

into the regular and singular components of E near pj ; here by definition Ej

reg is
the holomorphic subbundle of Ej = E|∆(pj ,ε) spanned by {τ j

k
}k=1,...,rj

, and Ej

sing is
the one spanned by {τ j

k
}k=rj+1,...,r. Intrinsically, Ej

sing is the sum of the generalised
eigenspaces corresponding to all eigenvalues converging to infinity of the integrable
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12 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

connection, whereas Ej

reg is the sum of the generalised eigenspaces corresponding to
the eigenvalues that remain bounded.

In a similar manner, at infinity D is supposed to be equal (up to a holomor-
phic term) to a meromorphic local model having a second order pole, so that in a
holomorphic basis {τ∞

k
}k=1,...,r on a disk C � ∆(0, R) corresponding to a standard

neighbourhood of infinity in CP1, it is of the form D = D∞ + b∞ where b∞ is now a
holomorphic 1-form in the given neighborhood of infinity, and

D∞ = d +

�
A +

C

z

�
dz∧(1.3)

is the second order model with diagonal leading term

A =





ξ1

. . .
ξ1

. . .
. . .

ξn�

. . .
ξn�





and residue

C =





µ∞1
. . .

µ∞
r



 .

Here {ξl}n
�

l=1 are the distinct eigenvalues of A. Each ξl appears in neighbouring posi-
tions k = 1 + al, . . . , al+1, in particular its multiplicity is ml = al+1 − al. Of course,
we must then have a1 = 0 and an�+1 = r. In line with the above notation, we set
r∞ = 0 and C = diag(µ∞

k
)k=1,...,r. Furthermore, we will write

A = diag({ξl, ml})l=1,...,n�

for the diagonal matrix A as given above, meaning that A is diagonal with ml neigh-
bouring eigenvalues equal to ξl.

Definition 1.1. – The integrable connections having singularities near the points
of P ∪ {∞} as described above will be called meromorphic integrable connections
with logarithmic singularities in P and a second-order singularity at infinity, or for
simplicity meromorphic integrable connections although they are by far not all the
meromorphic integrable connections.
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1.2. THE TRANSFORM OF THE INTEGRABLE CONNECTION 13

1.2. The transform of the meromorphic integrable connection

Let (E,D) be a stable vector bundle with a meromorphic integrable connection
on the sphere. Our aim in this paper is to define another complex bundle Ê with a
meromorphic connection D̂ on the sphere out of (E,D), which we call the transformed
meromorphic integrable connection. Just as the initial connection, the transformed one
will also admit a finite number of simple poles in points of the line and a second-order
pole at infinity.

In order to define the transformed vector bundle Ê, first we need to set some
notation. Let Ĉ be another copy of C. (The importance of distinguishing the two
copies of C is to help us avoid confusions.) For a parameter ξ ∈ Ĉ, consider the
following deformation of D:

Dint
ξ

= D − ξdz∧,(1.4)

where ξ : E → E stands for multiplication by ξ. Since we only change the (1, 0)-
part of D, and by an endomorphism that is independent of z, this is then another
meromorphic integrable connection, with the same underlying holomorphic bundle as
for D. Furthermore, its unitary and self-adjoint parts are given by

D+
ξ

= D+ − ξ

2
dz +

ξ̄

2
dz̄(1.5)

Φint
ξ

= Φ− ξ

2
dz − ξ̄

2
dz̄.(1.6)

Consider the following family in ξ of elliptic complexes C int
ξ

over C � P :

(1.7) Ω0 ⊗ E
D

int
ξ−−−→ Ω1 ⊗ E

D
int
ξ−−−→ Ω2 ⊗ E.

Fix a Hermitian metric h on E for which the holomorphic sections of the extension at
the singularities are bounded (above and below) by a positive constant, and denote
by Êint

ξ
the first L2-cohomology of the complex (1.7) for this metric. In Theorems 2.6

and 2.21 we show that there exists a finite set P̂ ⊂ Ĉ such that for ξ ∈ Ĉ� P̂ the first
L2-cohomologies of this complex are finite-dimensional of the same dimension for all
ξ.

Definition 1.2. – The transformed vector bundle Ê is then the vector bundle over
Ĉ � P̂ whose fiber over ξ ∈ Ĉ � P̂ is the first L2-cohomology L2H1(Dint

ξ
) of C int

ξ
.

Let ξ0 ∈ Ĉ � P̂ , and let f(z) ∈ Êξ0 be a class in the first cohomology of C int
ξ0

.

Definition 1.3. – The transformed flat connection D̂ is by definition the flat con-
nection whose parallel section f(ξ; z) extending f in some neighbourhood of ξ0 is given
by the first L2-cohomology classes in C int

ξ
of

e(ξ−ξ0)zf(z).
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14 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Finally, h induces a natural Hermitian metric ĥ on Ê as follows: in Theorem 2.21
we show that any class in L2H1(Dξ) can be represented by a unique harmonic 1-form
with respect to the Laplacian of the Dirac operator.

Definition 1.4. – The transformed Hermitian metric ĥ on Ê is defined by the L2-
norm of harmonic representatives.

All this will be explained in more detail in Section 3.1 and in Definition 3.1.
When one considers an integrable connection, there exists sometimes a privileged

fiber metric on the bundle, namely a harmonic one. In order to be able to define
harmonicity, decompose as usual D into its unitary and self-adjoint part

(1.8) D = D+ + Φ,

put ∇D+ or simply ∇+ for the covariant derivative associated to the connection D+

(so that ∇+t makes sense for a tensor t of arbitrary type (TCP1)p ⊗ (T ∗CP1)q ⊗
Er ⊗ (E∗)s) and denote by (∇+)∗

h
the adjoint operator of ∇+ with respect to h.

Definition 1.5. – The Hermitian metric h is called harmonic, if it satisfies the equa-
tion

(∇+)∗
h
Φ = 0.(1.9)

This is a second-order non-linear partial differential equation in h.
Here is the main result of this thesis in a special case (the one without parabolic

structures, see Definition 1.8).

Theorem 1.6. – Let (E,D, h) be any meromorphic integrable connection with loga-
rithmic singularities in P as in (1.1), and a double pole (1.3) at infinity, endowed
with a harmonic metric h. Suppose that the eigenvalues of the polar part of D in the
punctures satisfy the following assumptions:

(1) for fixed j ∈ {1, . . . , n}, the complex numbers µj

k
for k = rj + 1, . . . , r are all

different, and �µj

k
/∈ Z

(2) for fixed l ∈ {1, . . . , n�}, the complex numbers µ∞
k

for k = 1 + al, . . . , al+1 are
all different, and �µ∞

k
/∈ Z

Then the set of punctures P̂ ∈ Ĉ of the transformed bundle is the set {ξ1, . . . , ξn�} of
distinct eigenvalues of the leading order term A of D at infinity. For ξ /∈ P̂ , the first
L2-cohomologies of (1.7) are finite dimensional vector spaces of the same dimension.
They match up to define a smooth vector bundle Ê of rank

(1.10) r̂ =
n�

j=1

(r − rj)

over Ĉ � P̂ . D̂ is a flat connection on Ê. It underlies a meromorphic integrable
connection (that we continue to denote (Ê, D̂)) of degree deg(Ê) = deg(E), called
the transformed meromorphic connection. It has logarithmic singularities in P̂ and
a double pole at infinity. The non-vanishing eigenvalues of the residue in ξl ∈ P̂ are
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{−µ∞1+al
, . . . ,−µ∞

al+1
}. The eigenvalues of the second-order term of the transformed

meromorphic connection are {−p1, . . . ,−pn}, the multiplicity of −pj being (r − rj);
the eigenvalues of its residue at infinity on the eigenspace of the second-order term
corresponding to −pj are {−µj

rj+1, . . . ,−µj

r
}. Finally, ĥ is harmonic for D̂.

Remark 1.7. – The assumptions (1) and (2) of the theorem are clearly generic in
the parameter space of all possible eigenvalues.

This theorem actually follows from the more general statement 1.17. In order to
understand the more general setup, one needs to consider meromorphic connections
endowed with a parabolic structure.

1.3. Parabolic structure and adapted harmonic metric

We can suppose more structure on the integrable connection: namely, that it comes
with a parabolic structure on P and at infinity.

Definition 1.8. – A parabolic structure on (E,D) is the data of a strictly decreasing
filtration by vector subspaces

Ep = F0Ep ⊃ F1Ep ⊃ · · · ⊃ Fbp−1Ep ⊃ Fbp
Ep = {0}

(where 1 ≤ bp ≤ r) of the fiber Ep of E in each singular point p ∈ P ∪{∞}, called the
parabolic flag, such that each Fm is spanned by some of the restrictions {τ j

k
(p)}r

k=1

of the holomorphic basis to the singularity p = pj or ∞, together with a sequence of
corresponding real numbers

0 ≤ β̃j

1 < · · · < β̃j

bp
< 1

called the parabolic weights.

Remark 1.9. – All parabolic weights can be assigned a natural multiplicity, namely
the dimension of the corresponding graded of the filtration: more precisely, the multi-
plicity of β̃p

k
for any p ∈ P ∪ {∞} and any k ∈ {1, . . . , bp} is by definition

dim(Fk−1Ep/FkEp).

We will write
0 ≤ βp

1 ≤ · · · ≤ βp

r
< 1

for the parabolic weights repeated according to their multiplicities, and use this num-
bering of the weights throughout the whole paper instead of the one in their definition.
Moreover, we write βj

k
instead of β

pj

k
.

Remark 1.10. – The order of the τ∞
k

spanning FmE∞ in the above definition is not
necessarily the same as the one in which the eigenvalues of the second-order term A
at infinity appear in one group, as supposed in (1.3). However, this will not cause any
confusion in the sequel, because the basis vectors at infinity in this latter order still
have well-defined parabolic weights (which are then not necessarily increasing).
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Definition 1.11. – A meromorphic integrable connection (E,D) with described local
models and parabolic structures at the punctures will be called parabolic integrable
connection. The parabolic degree of E with respect to the given parabolic structure is
the real number

(1.11) degpar(E) = deg(E) +
�

j∈{1,...,n,∞}

r�

k=1

βj

k
,

where deg(E) is the standard (algebraic geometric) degree of E, and the sum is taken
over all parabolic weights for all punctures p. The slope of the parabolic integrable
connection is the real number

(1.12) µpar(E) =
degpar(E)

rk(E)
,

and (E,D) is said to be parabolically stable (resp. semi-stable) if for any subbundle
F invariant with respect to D and endowed with the induced parabolic structure over
the singularities, the inequality

(1.13) µpar(F ) < µpar(E)

(respectively µpar(F ) ≤ µpar(E)) holds. Finally, (E,D) is said to be parabolically
polystable if it is a direct sum of parabolically stable bundles that are all invariant by
D and of the same slope as E.

Remark 1.12. – The notions of stability, semi-stability and polystability make sense
for meromorphic connections without a parabolic structure as well: in the correspond-
ing definitions, one only needs to set all parabolic weights equal to 0. Notice however
that by the residue theorem we have

deg(E) = −�tr(Res(D,∞))−
�

j∈{1,...,n}

�tr(Res(D, pj))

=
r�

k=1

�µ∞
k
−

�

j∈{1,...,n}

r�

k=1

�µj

k
,

(the change of sign coming from the fact that the eigenvalues of the residue at infinity
are −µ∞

k
because in the local coordinate w = 1/z we have dz/z = −dw/w.) Therefore

(1.11) is in fact equal to
r�

k=1

(β∞
k

+ �µ∞
k

) +
�

j∈{1,...,n}

r�

k=1

(βj

k
−�µj

k
) =

�

j∈{1,...,n,∞}

r�

k=1

γj

k
,

where γj

k
are the parabolic weights of the local system at pj (Proposition 11.1, [4]).

On the other hand, the parabolic degree of an integrable connection is always equal
to 0: this follows from the Gauss-Chern formula 2.9 of [3]. Therefore, the case where
the parabolic weights βj

k
of the integrable connection vanish is not the one where

the parabolic weights γj

k
of the representation of the fundamental group vanish, and
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where by Remark 8.2 of [5] stability reduces to irreducibility of the corresponding
representation.

Definition 1.13. – A Hermitian fiber metric h on E is said to be adapted to the
parabolic structure if near the logarithmic punctures in the holomorphic bases τ j

k
it is

mutually bounded with the diagonal model

(1.14) diag(|z − pj |2β
j

k)r

k=1,

and at infinity in the holomorphic basis τ∞
k

it is mutually bounded with

(1.15) diag(|z|−2β
∞
k )r

k=1.

Remark 1.14. – In general, without the hypothesis of semi-simplicity of the residue
in the punctures made in Section 1.1, the local models of the metric near the punctures
are more complicated than in the above definition: e.g. for the regular singularities one
has to take into account an extra filtration induced by the nilpotent part of the residue,
and add a factor | ln(r)|k on the corresponding k-th graded, see the Synopsis of [26].

Here is the important existence result of the theory:

Theorem 1.15 (Thm 1.1, [24]; Section 9, [5]). – Let (E,D) be a parabolically stable
parabolic integrable connection. Then there exists a unique harmonic Hermitian metric
h adapted to the parabolic structure.

Remark 1.16. – Actually, in the above articles this theorem is proved to hold for
parabolic integrable connections having poles of arbitrary order in the punctures. On
the other hand, for integrable connections with only regular singularities, it had already
been shown by C. Simpson, see [26].

We are now ready to describe the more general version of Nahm transform: that
for parabolic integrable connections.

Theorem 1.17. – Let (E,D) be any parabolic integrable connection on the sphere
with logarithmic singularities in P as in (1.1), and a double pole (1.3) at infinity.
Suppose that the eigenvalues of its polar parts µ and the parabolic weights β in the
punctures satisfy the following assumptions:

(1) for fixed j ∈ {1, . . . , n}, the complex numbers µj

k
− βj

k
for k = rj + 1, . . . , r

are distinct and different from 0, the parabolic weights βj

k
for k = 1, . . . , rj are 0 and

finally �µj

k
/∈ Z for k = rj + 1, . . . , r

(2) for fixed l ∈ {1, . . . , n�}, the complex numbers µ∞
k
−β∞

k
for k = 1+al, . . . , al+1

are distinct and different from 0, and �µ∞
k

/∈ Z
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18 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

Then, in addition to the conclusions of Theorem 1.6, the transformed bundle (Ê, D̂)
carries a natural parabolic structure in the punctures (that we will call transformed
parabolic structure), such that the transformed metric of the harmonic metric is
adapted to it. Moreover, the set of its non-vanishing parabolic weights in ξl ∈ P̂
is equal to the set of parabolic weights {β∞1+al

, . . . ,β∞
al+1

} of E at infinity, restricted to
the eigenspace of A corresponding to the eigenvalue ξl; whereas the parabolic weights
of Ê at infinity restricted to the eigenspace of the second-order term of D̂ correspond-
ing to the eigenvalue −pj are equal to the parabolic weights {βj

rj+1, . . . ,β
j

r
} of E at

pj. All these statements are to be understood with multiplicities.

Remark 1.18. – Again, the conditions (1) and (2) of the theorem are generic in the
parameter space of all possible eigenvalues and parabolic weights. They will regularly
appear along this paper, both in analytical and geometric arguments.

This theorem is a consequence of Theorem 1.32.

Definition 1.19. – The map

N : (E,D) �−→ (Ê, D̂)(1.16)

described in Theorems 1.6 and 1.17 will be called Nahm transform.

Finally, as we have already mentioned, Nahm transform has an involutibility prop-
erty:

Theorem 1.20. – Let (E,D) be a parabolic integrable connection on the sphere sat-
isfying the assumptions of Theorem 1.17. Then

N2(E,D) = (−1)∗(E,D),

where −1 : C → C is the map z �→ −z, and (−1)∗ the induced map on fiber bundles
with connection. In particular, Nahm transform is invertible.

This will be proved in Theorem 5.1, using arguments of the same type as Theorem
3.2.17 of S. Donaldson and P. Kronheimer in [12], namely the study of the spectral
sequence of a suitable double complex.

1.4. Local model for parabolic integrable connections

We suppose in this section that near each singularity, h coincides with the diag-
onal models hj and h∞ given in Definition 1.13 (that is, without the extra O(|z −
pj |2(β

j

k
−β

j

k� )) and O(|z|−2(β∞
k
−β

∞
k� )) factors in (1.14) and (1.15); in particular, this

metric is then not harmonic). For computations, it will be useful to express the local
models of the integrable connection near the singularities in some orthonormal bases.
As in Section 1 of [5], we consider the orthonormal basis defined by

(1.17) ej

k
= |z|−β

j

k
−i�µ

j

kτ j

k
k = 1, . . . , r
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around pj . The h-unitary part (D+)j of Dj becomes

(D+)j = d + i�(Aj)dθ(1.18)

where �(Aj) = A
j+(Aj)∗

2 = diag(�µj

k
)k=1,...,r stands for the real part (and �(Aj) =

A
j−(Aj)∗

2i
= diag(�µj

k
)k=1,...,r for the imaginary part) of Aj , and r and θ are local

polar coordinates around pj such that we have z− pj = reiθ. For the self-adjoint part
Φj of Dj in this basis we get:

Φj =
Aj

2

dz

z − pj

+
(Aj)∗

2

dz̄

z̄ − p̄j

− βj
dr

r

= [�(Aj)− βj ]
dr

r
−�(Aj)dθ,(1.19)

where βj = diag(βj

k
)k=1,...,r. These together imply that with respect to this basis, the

model for the operator D in polar coordinates is

Dj = d + iAjdθ + [�(Aj)− βj ]
dr

r
.(1.20)

In an analogous way, in the orthonormal basis {e∞
k

}
k=1,...,r

given by

(1.21) e∞
k

= |z|β
∞
k

+i�µ
∞
k exp [(ξkz − ξ̄kz̄)/2]τ∞

k

near infinity the unitary part of the model connection D∞ is given by

(D+)∞ = d + i�(C)dθ,

where we have put again �(C) = C+C
∗

2 = diag(�µ∞
k

)k=1,...,r and z = reiθ. Moreover,
putting �(zA) = diag�({zξl, ml})l=1,...n� and �(zA) = diag�({zξl, ml})l=1,...n� , the
self-adjoint part of D∞ has the form

Φ∞ =
1

2

�
A +

C

z

�
dz +

1

2

�
A∗ +

C∗

z̄

�
dz̄ + β∞

dr

r

= [�(zA + C) + β∞]
dr

r
+ �(zA + C)dθ(1.22)

(the inversion of the sign of β comes from the fact that if we make a coordinate
change w = 1/z, |w| = ρ = 1/r = 1/|z|, then dρ/ρ = −dr/r). Remark that in
these expressions the terms in dθ,dr/r,dz/z,dz̄/z̄ are of lower order then the ones in
dz,dz̄, zdr/r, zdθ; hence the leading order term of the singular part of D in this basis
is just

d +
A

2
dz +

A∗

2
dz̄.(1.23)
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1.5. Higgs bundle point of view

The idea of the proofs of Theorems 1.6 and 1.17 will be to exploit the correspon-
dence known as nonabelian Hodge theory between parabolic integrable connections
on one side and parabolic Higgs bundles on the other side. Let us recall the definition
of the latter notion:

Definition 1.21. – A parabolic Higgs bundle is given by:

(1) a holomorphic bundle E with holomorphic structure ∂̄ E over CP1 called the
holomorphic bundle underlying the Higgs bundle, and with underlying smooth vector
bundle V ;

(2) in each point p ∈ P ∪ {∞} a strictly decreasing parabolic flag

Vp = F0Vp ⊃ F1Vp ⊃ · · · ⊃ Fcp−1Vp ⊃ Fcp
Vp = {0}

for some 1 ≤ cp ≤ r, with parabolic weights

0 ≤ α̃p

1 < · · · < α̃p

cp
< 1;

(3) a ∂̄ E-meromorphic section θ ∈ Ω1,0(CP1, End(V )) (called the Higgs field),
having a simple pole at the points of P with semi-simple residue respecting the parabolic
flag (that is, such that Res(θ, pj) leaves FkVpj

invariant for each pj ∈ P and all
0 ≤ k ≤ cp), and a second-order pole at infinity, such that there exists a holomorphic
basis of E near infinity compatible with the parabolic structure in which the residue
and second-order term are both diagonal.

Again, we write
0 ≤ αp

1 ≤ · · · ≤ αp

r
< 1

for the parabolic weights repeated according to their multiplicities

dim(Fk−1Vp/FkVp),

and we shorten α
pj

k
to αj

k
. Finally, we set

(1.24) D�� = ∂̄ E + θ,

that we call the D��-operator associated to the Higgs bundle.

The notions of parabolic degree, slope and (poly/semi-)stability of parabolic Higgs
bundles are defined analogously to the case of integrable connections, see Defini-
tion 1.11. O. Biquard and Ph. Boalch in 2004 showed the following.

Theorem 1.22 (Theorem 6.1, [5]). – There exists an isomorphism between the mod-
uli space of parabolically stable rank r s with fixed diagonal polar part and parabolic
structures up to complex holomorphic gauge transformations respecting the parabolic
flags, and the moduli space of parabolically stable rank r Higgs bundles with fixed
diagonal polar part and parabolic structures up to complex holomorphic gauge trans-
formations respecting the parabolic flags.

MÉMOIRES DE LA SMF 110



1.5. HIGGS BUNDLE POINT OF VIEW 21

Remark 1.23. – Actually, this is a consequence of the existence of a harmonic metric
(Theorem 1.15), and hence also proved for parabolic integrable connections with poles
of arbitrary fixed order and diagonal polar part in the punctures and parabolic Higgs
bundles with poles of the same order with diagonal polar part.

The transition from integrable connections to Higgs bundles is given as follows:
first, the underlying smooth vector bundle of the integrable connection and the Higgs
bundle are the same. Furthermore, suppose h is the harmonic metric, consider the
decomposition (1.8) of the integrable connection into its unitary and self-adjoint part,
and decompose the terms further according to bidegree

D+ = (D+)1,0 + (D+)0,1(1.25)

Φ = Φ1,0 + Φ0,1.

The partial connection (D+)0,1 defines then the holomorphic structure of E, and Φ1,0

will be the Higgs field θ. The D��-operator is of course (D+)0,1 + Φ1,0. Harmonicity
of the metric implies that θ is holomorphic.

The transition in the other direction is also established using a privileged metric.

Definition 1.24. – Let ( E, θ) be a Higgs bundle. We say that h is a Hermitian-
Einstein metric for ( E, θ) if, denoting by D+

h
the Chern connection (the unique h-

unitary connection compatible with ∂̄ E), by F
D

+
h

its curvature, and by θ∗
h

the adjoint
of θ with respect to h, then these objects satisfy the real Hitchin equation

F
D

+
h

+ [θ, θ∗
h
] = 0,

where [., .] stands for graded commutator of forms.

Let ( E, θ) be a parabolically stable parabolic Higgs bundle. By Section 9 of [5],
there exists a unique Hermitian-Einstein metric h adapted to the parabolic structure.
The connection

(1.26) D = D+
h

+ (θ + θ∗
h
)

on V is then integrable, and h is the corresponding harmonic metric adapted to the
parabolic structure. In what follows, in order to simplify notations, we are often going
to omit the subscript h in the notation of the Chern connection and adjoints.

Let now (E,D) be a parabolically stable parabolic integrable connection and ( E, θ)
the associated parabolic Higgs bundle. One important application of the Weitzenböck
formula for connections we will be constantly using is the following

Theorem 1.25 (Thm. 5.4, [4]). – Suppose the metric h is harmonic. Then, with the
previous notations, the Laplace operators ∆D = DD∗+ D∗D and ∆D�� = D��(D��)∗+
(D��)∗D�� satisfy

∆D = 2∆D�� .

In particular, their domain and kernel coincide.
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1.6. Local model for Higgs bundles

In this section, we give the eigenvalues of the residue of the Higgs field and the
parabolic weights of the Higgs bundle in the punctures that correspond to those
of the integrable connection via the Theorem 1.22. To obtain local models for the
operators in this setup, suppose again that near pj the metric h coincides with the
diagonal model hj given by (1.14) (without the correcting O(|z − pj |2(β

j

k
−β

j

k� )) term;
in particular, it does not satisfy Hitchin’s equation). Then, according to formulae
(1.7)-(1.11) of [5], in the local ∂̄ E-holomorphic trivialisation

σj

k
= |z − pj |�µ

j

k

ej

k

(z − pj)[�µ
j

k
]

(k = 1, . . . , r)(1.27)

around pj , the Higgs field is equal up to a perturbation term to the model Higgs field
given by

θj =
Aj − βj

2

dz

z − pj

= diag

�
µj

k
− βj

k

2

dz

z − pj

�

k=1,...,r

= diag

�
λj

k

dz

z − pj

�

k=1,...,r

,(1.28)

where we have put λj

k
= (µj

k
−βj

k
)/2. Moreover, in the same trivialisation, the parabolic

weights are

(1.29) αj

k
= �(µj

k
)− [�(µj

k
)],

where [.] denotes integer part.

Remark 1.26. – In fact, this formula is not completely correct, because the αj

k
defined

by it are not necessarily in increasing order, although they should be by definition. One
should instead write the same formula for αj

s(k), where s is a permutation of {1, . . . , r}.
However, in the sequel we discard this minor technical detail for the sake of simplicity
of the notation.

Remark 1.27. – Since the gauge transformations between the bases {τ j

k
}k=1,...,r and

{σj

k
}k=1,...,r are just multiplications by some functions (in particular diagonal matri-

ces), it follows that the smooth subbundle spanned by the sections {σj

k
}k=rj+1,...,r is

the same as the one spanned by {τ j

k
}k=rj+1,...,r, which is by definition the underlying

smooth vector bundle of Ej

sing; and similarly, the subbundle spanned by {σj

k
}k=1,...,rj

is equal to the underlying smooth bundle of Ej

reg. The same remark also holds for the
bases {ej

k
} instead of {σj

k
}. In particular, the residue of the model Higgs field θj in

the point pj ∈ P belongs to End(Ej

sing|pj
).
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Near infinity, the situation is slightly different: for h = h∞ the diagonal model, in
the local ∂̄ E-holomorphic frame

σ∞
k

= |z|−�µ
∞
k z[�µ

∞
k

]e∞
k

(k = 1, . . . , r)(1.30)

the Higgs field is equal up to a perturbation term to the model Higgs field given by

θ∞ =
1

2
Adz +

µ∞ − β∞

2

dz

z

=

�
1

2
diag({ξl, ml})l=1,...,n� +

1

z
diag(λ∞

k
)k=1,...,r

�
dz,(1.31)

where we have put again λ∞
k

= (µ∞
k
−β∞

k
)/2, with parabolic weights being, as in the

case of simple poles,

(1.32) α∞
k

= �(µ∞
k

)− [�(µ∞
k

)].

From these data, as above, one can form the model D��-operator

(1.33) (D��)j = ∂̄ E + θj (j ∈ {1, . . . n,∞}).

Notice that since we considered holomorphic trivialisations of Ej , the partial connec-
tion part of the model coincides with the usual ∂̄-operator.

We are now ready to write out the assumptions made in Theorem 1.17 on the
parameters of the integrable connection, translated to those of the Higgs bundle:

Hypothesis 1.28. – We suppose that ( E, θ) is a parabolically stable Higgs bundle
with diagonal polar part of the Higgs field in some local holomorphic frame near each
puncture, satisfying the properties

(1) for fixed j ∈ {1, . . . , n} the residues λj

k
for k ∈ {rj +1, . . . , r} are non-vanishing

and distinct, λj

k
vanish for k = 1, . . . , rj and finally αj

k
�= 0 if and only if λj

k
�= 0;

(2) for fixed l ∈ {1, . . . , n�} the complex numbers λ∞
k

for k ∈ {1 + al, . . . al+1} are
non-vanishing and distinct, and α∞

k
�= 0.

Diagonality of the polar parts has already been assumed when writing the local
models (1.28) and (1.31). The first condition says that no parabolic weight and no
eigenvalue of the residue of θ vanishes on the singular component at any singularity,
and that on the singular component near a puncture all eigenvalues are different;
whereas the eigenvalues of the residue and parabolic weights vanish on the regular
component. One more way to say the same thing is: for all j ∈ {1, . . . n}, the residue
of θ defines an automorphism of Ej

sing|pj
, and the parabolic weights corresponding

to the holomorphic trivialisation (1.27) are non-vanishing exactly on this subspace.
The second one imposes that on the eigenspace corresponding to a fixed eigenvalue of
the second-order term at infinity, all the eigenvalues of the residue be non-vanishing
and distinct, furthermore that no parabolic weight vanish at infinity. Note that these
conditions are generic among all possible choices of singularity parameters.
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1.7. The transformation of the Higgs bundle

Let ( E, θ) be a parabolic Higgs bundle and ξ ∈ Ĉ � P̂ a parameter. The natural
deformation of the Higgs field is

θξ = θ − ξ

2
dz(1.34)

with fixed underlying holomorphic bundle E. It is clear that θξ is then also holomorphic
with respect to ∂̄ E with the same local models at the logarithmic punctures as θ, but
its local model near infinity is different. If moreover a Hermitian metric is fixed, then
we also have

θ∗
ξ

= θ∗ − ξ̄

2
dz̄.

Therefore, the integrable connection corresponding to the deformed Higgs bundle is
given by

DH

ξ
= D − ξ

2
dz − ξ̄

2
dz̄,(1.35)

and the crucial observation is that via the unitary gauge transformation

(1.36) exp[(ξ̄z̄ − ξz)/2]

on C this is equivalent to the deformation (1.4). The self-dual part of this deformation
is

ΦH

ξ
= Φ− ξ

2
dz − ξ̄

2
dz̄,(1.37)

the same deformation as in (1.6). Therefore it will not make any confusion to re-
fer to Φξ without mentioning the adopted point of view; consequently, we drop the
corresponding upper indices. The connection defined by (1.35) is still flat, but the
underlying holomorphic structure is different from the one of D (because of the term
in dz̄). Notice also that the gauge transformation (1.36) between these deformations
has an exponential singularity at infinity. Denote by CH

ξ
the elliptic complex

(1.38) Ω0 ⊗ E
D

H

ξ−−→ Ω1 ⊗ E
D

H

ξ−−→ Ω2 ⊗ E.

Definition 1.29. – The smooth vector bundle V̂ underlying the transformed Higgs
bundle is the vector bundle whose fiber over ξ ∈ Ĉ � P̂ is the first L2-cohomology
L2H1( CH

ξ
) of CH

ξ
.

In Proposition 4.2 we prove that these vector spaces indeed define a finite rank
smooth bundle. Furthermore, by Theorem 2.21, any class in L2H1( CH

ξ
) admits a

unique DH

ξ
-harmonic representative.

Definition 1.30. – The transformed holomorphic structure on V̂ is the one induced
by the orthogonal projection ∂̄ E of the trivial partial connection with respect to the
variable ξ on the trivial L2-bundle over �CP

1
to DH

ξ
-harmonic 1-forms. The trans-

formed Higgs field is multiplication by −zdξ/2 followed by projection onto harmonic
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1-forms. Finally, the transformed Hermitian metric is the L2-metric of the harmonic
representative.

By virtue of Theorems 2.21 and 1.25, the transformed smooth bundle V̂ can also
be computed in this case as the first cohomology of the elliptic complex C ��

ξ
given by:

Ω0 ⊗ E
D
��
ξ−−→ Ω1 ⊗ E

D
��
ξ−−→ Ω2 ⊗ E,

where the maps are the corresponding deformations of (1.24) in the Higgs-bundle
point of view. Explicitly, D��

ξ
reads

(DH

ξ
)�� = ∂̄ E + θξ.

We use this description of the transformed bundle in Section 4.2 to show the statement
of Theorem 1.6 on the transformed metric:

Theorem 1.31. – If the original metric is harmonic then the same thing holds for
the transformed metric.

For this purpose, we prove in fact that the candidate Higgs field θ̂ corresponding
to D̂ and ĥ is meromorphic with respect to the transformed holomorphic structure.

Furthermore, in this interpretation, the remaining part of Theorems 1.6 and 1.17
can be written:

Theorem 1.32. – Suppose ( E, θ) is a parabolic Higgs bundle with logarithmic singu-
larities in the points of P and a double pole at infinity, as described in Section 1.5,
such that its singularity parameters satisfy Hypothesis 1.28. Then the transformed
Higgs bundle (∂̄ Ê, θ̂) is of the same type (that is, it has a finite number of logarithmic
singularities in points of Ĉ and a double pole at infinity, with a parabolic structure in
these points). Furthermore, its topological and singularity parameters are as follows:

(1) the rank of Ê is the sum (1.10) of the ranks of the residues of θ in P
(2) its degree is the same as that of E
(3) the logarithmic singularities are located in the set P̂ , and for all l ∈ {1, . . . , n�}

the rank of the transformed Higgs field in the point ξl is equal to the multiplicity ml

of the eigenvalue ξl of A
(4) the set of non-vanishing eigenvalues of the residue of θ̂ in the point ξl is

{−λ∞1+al
, . . . ,−λ∞

al+1
}, where {λ∞

al+1, . . . ,λ
∞
al+1

} are the eigenvalues of the residue of
the original Higgs field θ at infinity, restricted to the eigenspace of A corresponding
to the eigenvalue ξl

(5) the non-vanishing parabolic weights of Ê in ξl is the set of parabolic weights
{α∞1+al

, . . . ,α∞
al+1

} of E at infinity, restricted to the same subspace
(6) the eigenvalues of the second-order term of θ̂ at infinity are {−p1/2, . . . ,−pn/2},

and the multiplicity of −pj/2 is equal to the rank r − rj of the residue of θ in pj

(7) on the eigenspace corresponding to −pj/2 of the second-order term at infinity,
the eigenvalues of the residue of θ̂ are
{−λj

rj+1, . . . ,−λj

r
}

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



26 CHAPTER 1. NOTATIONS AND STATEMENT OF THE RESULTS

(8) the parabolic weights on the same eigenspace at infinity are the parabolic weights
{αj

rj+1, . . . ,α
j

r
} of E at pj

The proof of this theorem is the object of Chapter 4.
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CHAPTER 2

ANALYSIS OF THE DIRAC OPERATOR

In this chapter, we study the analytical theory needed for our construction along the
lines of Jardim [17] (Section 3) and others. First, in Section 2.1 we define spinor spaces
and Dirac operators that permit us to study the problem. We also define a suitable
functional space H1 and state a Fredholm theorem valid for all deformations of the
initial connection. Then it is natural to define the fibers of the transformed bundle as
the cokernel of the deformed Dirac operator. The Fredholm theorem is then proved
in Section 2.2. In Section 2.3, we carry out an identification of this cokernel with the
first L2-cohomology L2H1(Dint

ξ
) of the complex C int

ξ
given in (1.7), similar in vein to

the Hodge isomorphism between the cokernel of the operator d + d∗ on a compact
manifold and the L2-cohomology of the operator d. However, since the manifold we
are working on is non-compact, in proving these results we need a careful study of
the singularities.

In all what follows, we fix a parabolic integrable connection with adapted metric
(E,D, h) and choose to study the analytic properties of the deformation from the
point of view of integrable connections, hence we set for simplicity Dξ = Dint

ξ
until

further notification.

2.1. Statement of the Fredholm theorem

Definition 2.1. – The positive and negative spinor bundles are the vector bundles
over C � P given by

S+ = Λ0T ∗(C � P )⊕ Λ2T ∗(C � P ) S− = Λ1T ∗(C � P )

Recall that we have defined P̂ as the set {ξ1, . . . , ξr} of all eigenvalues of the second
order term of D at infinity.

Definition 2.2. – For ξ ∈ Ĉ � P̂ the twisted Dirac operator is the first-order
differential operator

/∂ξ = Dξ −D∗
ξ

: Γ(S+ ⊗ E) −→ Γ(S− ⊗ E)
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where Γ is used to denote smooth sections with compact support in C � P . Its formal
adjoint

/∂∗
ξ

= D∗
ξ
−Dξ : Γ(S− ⊗ E) −→ Γ(S+ ⊗ E),

is called the adjoint twisted Dirac operator.

For any ξ ∈ Ĉ let us introduce the following norm on sections f of S+ ⊗ E:

�f�2
H

1
ξ

=

�

C
|f |2 + |∇+

ξ
f |2 + |Φξ ⊗ f |2,(2.1)

where ∇+
ξ

and Φξ are defined in (1.5) and (1.6). Here and in all what follows, we
integrate with respect to the Euclidean volume form |dz|2, and |x|2 denotes h(x, x),
unless the contrary is explicitly stated. Our convention is furthermore to write (x, y)
for h(x, y), and for sections x and y, we write �x, y� instead of

�
C(x, y).

Define the space of sections

(2.2) H1
ξ
(S+ ⊗ E) = {f ∈ L2

loc
(S+ ⊗ E) : �f�H

1
ξ

< ∞},

where in L2 we refer to the metric h on the fibers. We will often write H1
ξ

instead of
H1

ξ
(S+ ⊗ E). As we will see by the end of this chapter, this is the appropriate space

to regard the Dirac operators. First we establish the simple

Lemma 2.3. – The norm �.�H
1
ξ

depends (up to equivalence of norms) neither on ξ ∈
Ĉ, nor on the particular connection D having behaviour as in (1.1) and (1.3).

Proof. – We begin by showing that the norm is independent of ξ. In order to simplify
notations, we let H1 stand for H1

0 from now on. It is obviously sufficient to prove
that for an arbitrary ξ ∈ Ĉ, the H1

ξ
-norm is equivalent to the H1-norm. From the

point-wise identity
|Φξ ⊗ f | = 2|θξ ⊗ f | = 2|θ∗

ξ
⊗ f |,

and the point-wise estimation

|∇+
ξ
f | ≤ |∇+f | + 2|ξ||f |,(2.3)

one sees that for any section f = (f0, f2) ∈ Γ(S+ ⊗ E) the estimates

�f�2
H

1
ξ

≤ (1 + 8|ξ|2)�f�2
H1

and
�f�2

H1 ≤ (1 + 8|ξ|2)�f�2
H

1
ξ

hold; the first statement of the Lemma follows at once.
Now we show independence of the particular connection D with right singularity

behaviour. Introduce the model norm

�f�2
H

1
mod(∆(pj ,ε)) =

�

∆(pj ,ε)
|f |2 + |(D+)jf |2 + |Φjf |2(2.4)
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around points of P and the model norm

�f�2
H

1
mod(C�∆(0,R)) =

�

C�∆(0,R)
|f |2 + |(D+)∞f |2 + |Φ∞f |2(2.5)

near infinity. Then it is sufficient to prove the following:

Claim 2.4. – If ε > 0 is chosen sufficiently small and R > 0 sufficiently large, then
for any smooth section f ∈ H1 we have

c�f j�2
H1(∆(pj ,ε)) < �f j�2

H
1
mod(∆(pj ,ε)) < C�f j�2

H1(∆(pj ,ε))(2.6)

and similarly

c�f j�2
H1(C�∆(0,R)) < �f j�2

H
1
mod(C�∆(0,R)) < C�f j�2

H1(C�∆(0,R))(2.7)

with some constants 0 < c < C independent of f .

Proof. – Consider first the case of pj ∈ P . Decompose f j = f j

reg +f j

sing corresponding
to the splitting (1.2). Write also

f j

reg =

rj�

k=1

φj

k
ej

k
(2.8)

f j

sing =
r�

k=rj+1

φj

k
ej

k
(2.9)

with respect to the orthonormal basis {ej

k
} introduced in (1.17), where the φj

k
are

functions. Formulas (1.18) and (1.19) and Hypothesis 1.28 imply that (2.4) is equiv-
alent to the weighted Sobolev space of sections satisfying

rj�

k=1

�

∆(pj ,ε)
|φj

k
|2 + |dφj

k
|2(2.10)

+
r�

k=rj+1

�

∆(pj ,ε)


φj

k

r



2

+ |dφj

k
|2 < ∞,

where d stands for the trivial connection on functions. Notice that we only add weights
on the singular component. By [26], Theorem 1 it follows that in ∆(pj , ε) the difference
between (D+)j and D+ is

(2.11) aj = O(r−1+δ)

for some δ > 0, and the same estimation holds for the difference between Φj and Φ.
It is then immediate that for any c > 0, the estimation

�

∆(pj ,ε)


φj

k

r



2

> c

�

∆(pj ,ε)
|ajφj

k
|2
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holds for k = rj +1, . . . , r and for ε > 0 sufficiently small. We therefore have (2.6) for
fsing. On the other hand, for a function g defined in ∆(0, 1) and for δ > 0 fixed, from
the claim in the proof of Theorem 5.4 in [5] we have

�

∆(pj ,1)
|r−1+δg|2 ≤ c

��

∆(pj ,1)
|dg|2 +

�

∆(pj ,1)�∆(pj ,1/2)
|g|2

�
.

Rescaling this inequality to the disk ∆(pj , ε) one easily checks that it implies

ε−2δ

�

∆(pj ,ε)
|r−1+δg|2

≤ c

��

∆(pj ,ε)
|dg|2 + ε−2

�

∆(pj ,ε)�∆(pj ,ε/2)
|g|2

�
.(2.12)

Choosing ε sufficiently small, applying this to φj

k
for k = 1, . . . , rj , and recalling that

on the regular component (D+)j is the trivial connection d and Φj = 0, we obtain
(2.6) for freg as well. This establishes the equivalence of the norms �.�2

H
1
mod

and �.�2
H1

around a finite singularity.
Around infinity, by [5] Lemma 4.6 the difference between (D+)∞ and D+ is

bounded above by a term

(2.13) a∞ = O(r−1−δ)

for some δ > 0, and again the same holds for Φ∞ − Φ. The equivalence (2.7) follows
immediately from the estimation

|r−1−δf | ≤ c|f |

for any c > 0, whenever r > R with R sufficiently large.

This then finishes the proof of Lemma 2.3 as well.

From the previous discussion, we bring out as consequence:

Corollary 2.5. – The Hilbert space H1(E) is the set of sections f ∈ L2,1
loc

(E) such
that near a logarithmic singularity pj, in the decompositions (2.8) and (2.9) we have
φj

k
∈ L2,1 for k = 1, . . . , rj and φj

k
/r, dφj

k
∈ L2 for k = rj + 1, . . . , r; whereas at

infinity, the coordinates φ∞
k

of f in the basis (1.21) are L2,1; equipped with the norm
�

C�∪j∆(pj ,ε)
|f |2 + |∇f |2

+
n�

j=1






rj�

k=1

�

∆(pj ,ε)
|φj

k
|2 + |dφj

k
|2 +

r�

k=rj+1

�

∆(pj ,ε)


φj

k

r



2

+ |dφj

k
|2






The same result holds for sections of Ω2⊗E, coordinates being expressed in the basis
dz ∧ dz̄.
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Proof. – For sections of Ω0, this follows from Claim 2.4, (2.10) and

|Φ⊗ f | ≤ K|f |.

We then obtain the case of Ω2 by duality.

We now come back to the analysis of the Dirac operator. From the definitions of
H1(S+ ⊗ E) and /∂ξ we see that this latter admits a bounded extension

/∂ξ : H1(S+ ⊗ E) −→ L2(S− ⊗ E).(2.14)

We are now able to announce the first main result of this chapter:

Theorem 2.6. – The operator (2.14) is Fredholm; if h is harmonic, its kernel van-
ishes.

Corollary 2.7. – The bundle over Ĉ�P̂ whose fiber over ξ is the cokernel of (2.14)
is a smooth vector bundle.

Proof. – We recall the well-known fact that the index of a continuous family of Fred-
holm operators is constant. On the other hand, if the kernel of a Fredholm operator
vanishes, then its index is equal to the opposite of the dimension of its cokernel. It
then follows immediately from the Fredholm theorem that if the metric is harmonic,
then the dimension of the cokernel of the operator /∂ξ is a finite constant independent
of ξ. Moreover, by standard implicit function theorem arguments in Hilbert space
it follows that the cokernels of these Dirac operators in L2(S− ⊗ E) vary smoothly
with ξ.

Therefore, we may set the following.

Definition 2.8. – The Ê of (E,D, h) of a singular with harmonic metric is the
smooth vector bundle over Ĉ � P̂ whose fiber over ξ is the finite-dimensional vector
space Êξ = coKer(/∂ξ) ⊂ L2(S− ⊗ E).

In the remaining of this section, we prove vanishing of the kernel. The proof of the
first statement of Theorem 2.6 is left for the next section. For the rest of the discussion
in this section, we drop the index ξ.

Lemma 2.9. – The subspaces Im(/∂|H1(Ω0)) and Im(/∂|H1(Ω2)) of L2(Ω1) are orthogo-
nal.

Proof. – Let f0 ∈ H1(Ω0) and f2 = gdz ∧ dz̄ ∈ H1(Ω2). Suppose first that f0 is
smooth and supported on a compact subset of C, and such that near any singularity
pj ∈ P its singular part is supported away from pj . Then in a neighbourhood of any
pj in a holomorphic basis Df0 = (d+a)f for some bounded section a ∈ Ω1(End( E)),
and so we have by partial integration

(2.15)
�

C�P

(Df0, D
∗f2) =

�

C�P

(D2f0, f2) = 0,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



32 CHAPTER 2. ANALYSIS OF THE DIRAC OPERATOR

since D is flat. Therefore, in order to finish the proof it is sufficient to show the
following:

Claim 2.10. – The set of compactly supported smooth sections of S+ ⊗E on C with
singular part compactly supported away from any singularity is dense in H1.

Proof. – It is sufficient to show the statement for Ω0, the case of Ω2 being analogous.
First we concentrate on infinity. Let f ∈ H1(E), and define cut-off functions ρR(r)
supported in [0, 2R] and equal to 1 on [0, R], such that ρ�

R
is supported in [R, 2R]

with
max|ρ�

R
| ≤ 2/R.

Then we need to check that
ρR(r)f −→ f

in H1(E) as R →∞. In view of Corollary 2.5, this boils down to the classical calcu-
lations

�(1− ρR(r))f� ≤
�

R≤r

|f |2

and

�∇+((1− ρR(r))f)� ≤
�

R≤r≤2R

|ρ�
R
(r)|2|f |2 + K

�

R≤r

|∇+f |2

≤ K �
�

R≤r≤2R

|f |2 + K

�

R≤r

|∇+f |2,

where K, K � are constants independent of R and f .
Next, let us consider a logarithmic singularity pj , and define cut-off functions ρε

supported in [0, ε], equal to 1 on [0, ε/2], and such that

max |ρ�
ε
| ≤ 4

ε
.

We need to show that
(1− ρε)f

sing −→ f sing

in H1(E) as ε → 0. One sees that
�

C
|ρεf

sing|2 ≤
�

r<ε

|f sing|2 → 0,

since f sing ∈ L2. In the same way,
�

C

|ρεf sing|2

r2
≤

�

r<ε

|f sing|2

r2
→ 0,

since f sing/r ∈ L2. Finally, we also see that
�

C
|∇+(ρεf

sing)|2 ≤ 16

ε2

�

ε/2<r<ε

|f sing|2 +

�

r<ε

|∇+f sing|2

≤
�

ε/2<r<ε

16|f sing|2

r2
+

�

r<ε

|∇+f sing|2
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and all of these expressions converge to zero as well.

Applying the claim to approximate f0 and f2 in H1 by sections with compactly
supported singular component combined with (2.15), we immediately get the lemma.

Now we can come to vanishing of the kernel of (2.14): by Lemma 2.9, we have

Ker(/∂ξ) = Ker(Dξ|H1(Ω0))⊕Ker(D∗
ξ
|H1(Ω2)),

it is therefore sufficient to prove vanishing of the kernels of D and of D∗. By duality, we
only need to treat the case of D. Harmonicity of the metric implies the Weitzenböck
formula:

(2.16) /∂∗
ξ
/∂ξ = (∇+

ξ
)∗(∇+

ξ
) + (Φξ⊗)∗Φξ⊗

(see [4], Thm 5.4.), which then gives by partial integration and Claim 2.10 the identity

�/∂ξf�2L2 = �D+
ξ

f�2
L2 + �Φξf�2L2(2.17)

for any f ∈ H1(Ω0). Suppose now that f is in the kernel of /∂ξ. Then (2.17) implies
Φξf = 0, and since Φξ is an isomorphism near infinity because of the choice ξ /∈ P̂ , we
also have there f = 0. Again by (2.17), f is covariant constant. This gives the result,
since a covariant constant section vanishing on an open set vanishes everywhere.

2.2. Proof of the Fredholm Theorem

A modification of the usual gluing argument of Fredholm-type theorems works in
this case as well. One lets φ1 be a cut-off function supported in a compact region
R outside a neighbourhood of the singularities, and puts φ2 = 1 − φ1. Since /∂ is a
non-singular first-order elliptic operator in R, elliptic theory of a compact manifold
implies that a parametrix P1 exists for /∂ in this region. Next, one considers the
problem in neighbourhoods of the singularities. First, one studies the model operators
/∂j = Dj + (Dj)∗ instead of the Dirac operator itself. There are two different ways of
treating these:

(1) either one extends the functional spaces and the model Dirac operator onto a
natural completion of the neighbourhood, which can be either a conformal cylinder
or a complex line (depending on the form of the metric and the functional spaces),
and defines a two-sided inverse of /∂j on this completion

(2) or one finds directly a two-sided inverse of /∂j on a small disk around the
singularity, with a boundary condition verified by any section supported outside a
neighbourhood of the boundary.
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Let us see how these allow to deduce the Fredholm theorem: if we take R sufficiently
large, then on the support of φ2 all of these inverses (/∂j)−1 are defined. One then
sets

P : L2(S− ⊗ E) −→ H1(S+ ⊗ E)

P (u) = φ1P1(φ1u) +
�

j

φ2(/∂j)−1(φ2u),

and shows that this operator is a two-sided parametrix of /∂ on all C. This can be
done along classical lines, the only difference being that near the singularities we have
inverses of the local models of the operator and not inverses of the operator itself.
Therefore, we proceed as follows: first, we study the local models of the Dirac operator
around the singularities, and establish the isomorphisms as in (1) or in (2). Then we
prove that the effect of passing to the model operators from the global ones at the
singularities only amounts to adding a compact operator H1(S+⊗E) → L2(S−⊗E),
which then gives the theorem.

2.2.1. Logarithmic singularities. – Let ∆(p, ε) be a small neighbourhood of p ∈
P . Up to a change of coordinates, we may suppose ε = 1. Identify ∆(p, 1) � {p} =
S1×]0, 1] via polar coordinates (r, θ). Since the local model (1.20) is diagonal in the
basis {ej

k
}, we see that the model Dirac operator on this disk

/∂j

0 = Dj − (Dj)∗ : (Ω0 ⊕ Ω2)⊗ E|∆(p,1) −→ Ω1 ⊗ E|∆(p,1)

splits into the direct sum of its restrictions to the rank-one components generated
by one of the {ej

k
}. Again, we have two cases: first, k ∈ {1, . . . rj} (regular case) and

secondly k ∈ {rj + 1, . . . r} (singular case).
In the regular case, by definition the model Dirac operator on a rank-one component

is just the operator

/∂ = d− d∗ : S+ = Ω0 ⊕ Ω2 −→ Ω1 = S−,

which identifies to a projection of the real part of the usual Dirac operator on a
product of two disks in C2 given by

∂̄ − ∂̄∗ : Ω0,0 ⊕ Ω0,2 −→ Ω0,1.

Since this is known to have an inverse for the Atiyah-Patodi-Singer boundary condi-
tion, the case of the regular part at a finite singularity follows.

On the singular component near a finite singularity, consider again the coordinate
change t = − ln r ∈ R+. The local model of D with respect to t is given by

Dj = d + iµ̄j

k
dθ + [�µj

k
− βj

k
]
dr

r

(see (1.20)). Notice that the rank of S+ and that of S− are both equal to 2: we trivialise
them using the unit-norm sections (1, r dr ∧ dθ) and (dr, rdθ) respectively, so that
both S+ ⊗ Esing and S− ⊗ Esing become isomorphic to Esing ⊕ Esing as Hermitian
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bundles. As we have seen in Lemma 2.3, the space H1(∆(p, 1), Esing) is equal to the
model space of all sections φ having

�

∆(p,1)

�
|∇φ|2 +


φ

r


2
�

rdrdθ < ∞.

By conformal invariance of the norm of 1-forms and dt = dr/r, this is
�

S1×R+

�
|∇φ|2 + |φ|2

�
dtdθ < ∞,

with the norm of the 1-form ∇φ measured with respect to the volume form dtdθ. This
latter is just the definition of the weighted Sobolev space L2,1

0 (S1 ×R+, Esing) with
one derivative in L2and weight 0. In a similar way, the usual L2-space of sections of
Esing on the disk is identified with the space L2

−1(S
1×R+, Esing) of L2-sections with

weight −1 on the half cylinder, for
�

∆(p,1)
|φ|2 rdrdθ =

�

S1×R+

|φe−t|2dtdθ.

Hence in the trivialisation (dr, rdθ) of S−, the usual L2-space of 1-forms on the disk
is identified with the weighted space

L2
−1(S

1 ×R+, Esing ⊕ Esing).

Claim 2.11. – Let (r, θ) be polar coordinates around p = pj as above. Let k ∈ {rj +
1, . . . , r} and

(f, g(rdr ∧ dθ))⊗ ej

k
∈ C∞(∆ � {0}, S+ ⊗ Esing).

Then the value of the model Dirac operator /∂j on this section is
�

∂rf +
�µj

k
− βj

k

r
f −

∂θ + iµj

k

r
g

�
dr

+

�
∂θ + iµ̄j

k

r
f + ∂rg −

�µj

k
− βj

k

r
g

�
rdθ.

In particular, in the unitary trivialisations (1, r dr ∧ dθ) and (dr, rdθ) of S+ and S−,
the operator

r/∂j = e−t/∂j

is translation-invariant with respect to the cylindrical coordinate t.

Proof. – This is a direct computation: for f ⊗ ej

k
it follows immediately from (1.20).

For the image of g(rdr ∧ dθ)⊗ ej

k
, consider first the smooth form ϕdr⊗ ej

k
supported
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in a compact region of ∆ � {0}; then by the same formula we have

�ϕdr ⊗ ej

k
, (Dj)∗g(rdr ∧ dθ)⊗ ej

k
� = �Dj(ϕdr), g(rdr ∧ dθ)�

= −�(∂θ + iµ̄j

k
)ϕdr ∧ dθ, g(rdr ∧ dθ)�

= −1

r
�(∂θ + iµ̄j

k
)ϕ, g�

=
1

r
�ϕ, (∂θ + iµj

k
)g�

and thus the projection of (Dj)∗g(rdr∧dθ)⊗ej

k
on the dr-component is (∂θ+iµj

k
)gdr⊗

ej

k
. The other component is obtained taking a compactly supported smooth form

ψrdθ ⊗ ej

k
:

�ψrdθ ⊗ ej

k
, (Dj)∗g(rdr ∧ dθ)⊗ ej

k
� = �Dj(ψrdθ), g(rdr ∧ dθ)�

=

��
∂r +

�µj

k
− βj

k

r

�
ψ, g

�

=

�
ψ,

�
−∂r +

�µj

k
− βj

k

r

�
g

�
,

and the formula of the claim follows. It implies that r/∂j is translation-invariant be-
cause ∂r = −∂t/r.

By definition, the weight 0 is critical for r/∂j if and only if there exists a non-trivial
solution of

e−t/∂j(Ae−νt+inθ, Be−νt+inθ(r dr ∧ dθ)) = 0

with some constants A, B ∈ C and a constant ν ∈ C such that �ν = 0. Turning back
to the coordinate r again, this is equivalent to having

r/∂j(Arνeinθ, Brνeinθ(r dr ∧ dθ)) = 0.(2.18)

By formula (2.3) of [19], if 0 is not a critical weight, then the translation-invariant
elliptic differential operator

e−t/∂j : L2,1
0 (S1 ×R+, S+) −→ L2

0(S
1 ×R+, S−)

is invertible, and thus so is

/∂j : L2,1
0 (S1 ×R+, S+) −→ L2

−1(S
1 ×R+, S−)

since
et : L2

0 −→ L2
−1

is an isomorphism. Therefore, in order to establish the desired isomorphism in the
singular case, we only need to check the weight 0 is not critical for r/∂j .
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Applying the claim to the equation (2.18), we see that 0 is a critical weight if and
only if the system of linear equations

(ν + �µ− β)A− i(n + µ)B = 0

i(n + µ̄)A + (ν + β −�µ)B = 0

has a non-trivial solution (A, B) ∈ C2 for some ν ∈ C with �ν = 0 (here we have
omitted indices j and k of µ and β for simplicity). This system has a non-trivial
solution if and only if the determinant formed by the coefficients is equal to 0:

ν2 − (�µ− β)2 − |n + µ|2 = 0.

Since �ν must be 0, this can only be the case if ν = �µ − β = n + µ = 0. By
assumption 0 ≤ β < 1, and n is an integer, therefore the only case this can hold is
when β = µ = 0, which is impossible, since we are looking at the singular component
of the bundle. Therefore, there are no non-trivial solutions to (2.18), and 0 is not a
critical weight.

2.2.2. Singularity at infinity. – In this section the importance of the condition ξ /∈
P̂ will come out; therefore we write out the index ξ of our operators. A neighbourhood
of infinity in C�P is given by the complementary C�∆(R) of a large disk around 0.
A natural choice of completion of this manifold is of course C, with its standard metric
|dz|2. We choose to study the local model in the orthonormal basis {e∞

k
} defined in

(1.21). This allows us to think of E as the trivial bundle Cr over C � ∆(R), with
standard hermitian metric on the fibers. By (1.30) this basis (up to a polynomial
scaling factor) is a natural one for the Higgs-bundle point of view, so the deformation
is that considered in (1.35), and the operator Dξ near infinity is given (up to terms
of order r−1) by

D∞
ξ

= d +
A− ξId

2
dz +

(A− ξId)∗

2
dz̄

(see (1.23)), and a natural extension of it to all of C can be given by the same formula.
This implies immediately that

Φ∞
ξ

=
A− ξId

2
dz +

A∗ − ξ̄Id
2

dz̄

and (D∞)+ = ∇ (the trivial connection) on all of C. For a section φ ∈ L2(Ω0)
supported in C � ∆(R), the condition Φξφ ∈ L2(Ω0) then automatically holds, and
(D∞

ξ
)+φ ∈ L2 is equivalent to ∇φ ∈ L2. Therefore, on sections of Ω0 supported on the

complementary of ∆(R), the H1-norm is equivalent to the usual Sobolev L2,1-norm.
A similar argument shows that for sections of Ω2, the H1-norm is also equivalent to
the usual L2,1-norm. Therefore, on all of C, we must consider a natural extension of
these functional spaces, namely L2,1(C,Ω0⊕Ω2). In an analogous manner, on S− we
consider the extension L2(C,Ω1) of L2(C � ∆(R),Ω1). Therefore, we need to prove
the
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Lemma 2.12. – On C, the Dirac operator

/∂∞
ξ

= D∞
ξ
− (D∞

ξ
)∗ : L2,1(Ω0 ⊕ Ω2) −→ L2(Ω1)(2.19)

is an isomorphism.

Proof. – Since A is supposed to be diagonal in this basis with eigenvalues ξl (l =
1, . . . , n�), we may restrict ourselves to the study of the operator D∞ = d + (ξl −
ξ)/2dz + (ξ̄l − ξ̄)/2dz̄. We need the following:

Claim 2.13. – Denote by ∆ the plain Laplace operator ∇∗∇ on forms. Then we have

/∂∞
ξ

(/∂∞
ξ

)∗ = −∆− |ξl − ξ|2

4
.(2.20)

Proof. – This is an easy computation.

Now recall that by the classical theory of the Laplace operator, ∆ + λ2 with λ > 0
is an isomorphism

(2.21) L2,2(C,Ωj) −→ L2(C,Ωj).

This statement can be for example obtained passing to the Fourier transform |x̂|2+λ2

of this operator.
Coming back to our situation, the condition ξ /∈ P̂ means exactly that ξl−ξ �= 0 for

any l = 1, . . . , n�. This immediately implies that (2.19) is surjective: indeed, clearly
Im((/∂∞

ξ
)∗) ⊂ L2,1(Ω0 ⊕ Ω2), and /∂∞

ξ
(/∂∞

ξ
)∗ is surjective by the isomorphism (2.21).

For injectivity, note that a formula similar to (2.20) holds for the Laplace operator
(/∂∞

ξ
)∗/∂∞

ξ
as well. This in turn implies that the L2,2-kernel of /∂∞

ξ
vanishes. Elliptic

regularity then shows that the L2,1-kernel vanishes as well.

2.2.3. Compact perturbation. – We wish to prove that near each one of the
singularities the effect of passing from the global operator to its local model, i.e.,
subtracting the perturbation term only amounts to a compact operator H1(S+⊗E) →
L2(S− ⊗ E). This then finishes the proof of the Fredholm theorem, because the sum
of a Fredholm operator and a finite number of compact operators is Fredholm.

Consider first the case of a singularity at a finite point. Recall from Lemma 2.3
that near pj the space H1(S+ ⊗ E) is equal to the sum

L2,1
eucl(S

+ ⊗ Ereg)⊕ L2,1
0 (S+ ⊗ Esing),

where L2,1
eucl is the usual Sobolev space on the disk of L2-functions with one derivative

in L2 with respect to Euclidean metric, whereas L2,1
0 is the weighted Sobolev space

defined by
�

∆(pj ,ε)

�
φ

r


2

+ |∇φ|2
�

|dz|2 ≤ ∞.
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Also, the order of growth of the 1-form perturbation term aj with respect to Euclidean
metric is by (2.11) at most O(r−1+δ), with δ > 0. We need to prove that we have
compact Sobolev multiplications for functions on the disk

(2.22) L2,1
eucl

a
j

−→ L2
eucl

and

(2.23) L2,1
0

a
j

−→ L2
eucl.

Consider first (2.22): since the disk is a compact manifold, for any 2 < p < ∞ the
inclusion L2,1

eucl �→ Lp

eucl is compact. On the other hand, O(r−1+δ)dr +O(r−1+δ)rdθ is
in L2+ε

eucl for some ε > 0. Choose p such that 1/2 = 1/(2+ ε)+ 1/p; (2.22) then follows
immediately from the continuous multiplication L2+ε

eucl ×Lp

eucl → L2
eucl. Now, we come

to (2.23): this is an immediate consequence of the previous, for the weighted norm
L2,1

0 is stronger then L2,1
eucl.

Next, let us treat the case of the singularity at infinity. In the coordinate w = 1/z
we have a second-order singularity on the disk ∆(0, 1/R). Let w = ρeiϑ; by (2.13) the
perturbation is O(ρ−1−δ), and the H1-norm of a function φ supported near infinity
is given by

�

C�∆(0,R)

�
|φ|2 + |∇φ|2

�
|dz|2 =

�

∆(0,1/R)

�
φ

ρ2


2

+ |∇φ|2
�

|dw|2.

In particular, in the coordinate w this norm is also stronger then L2,1
eucl, so we conclude

from (2.22).

2.3. L2
-cohomology and Hodge theory

In this section we keep on supposing that we have on one side an integrable con-
nection D with singularities in P ∪ {∞}, with prescribed behaviours at these points,
given in regular singularities by (2.11) and at infinity by (2.13). In Theorem 2.6 we
proved that the deformed operators /∂ξ are Fredholm between the spaces H1 and L2;
in particular their indices agree. We also showed that if the metric is harmonic then
the kernel of the Dirac operator vanishes, hence the index of /∂ξ is equal to the opposite
of the dimension of the cokernel Coker(/∂ξ), this operator being considered between
functional spaces as in (2.14). This dimension is therefore a constant independent of
ξ, and it follows from the implicit function theorem that the spaces Êξ = Coker(/∂ξ)

define a finite-rank smooth vector bundle Ê over Ĉ � P̂ , the rank being equal to the
opposite of the index of (2.14). Here we wish to interpret this cokernel as the first
cohomology of the elliptic complex

L2(Ω0 ⊗ E)
Dξ−−→ L2(Ω1 ⊗ E)

Dξ−−→ L2(Ω2 ⊗ E),(2.24)

(see Theorem 2.16), and also as the space of harmonic sections with respect to the
Laplace operator of the adjoint Dirac operator /∂∗

ξ
(Theorem 2.21).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



40 CHAPTER 2. ANALYSIS OF THE DIRAC OPERATOR

Since the operators in (2.24) are unbounded, we need to define their domains. In
this chapter C∞0 stands for smooth sections supported in a compact subset of C� P .

Definition 2.14. – The maximal domain of D|Ωi is

Dommax(D|Ωi) = {u ∈ L2(Ωi) : Du ∈ L2(Ωi+1)},
where Du ∈ L2 is understood in the sense of currents, i.e., the functional v ∈
C∞0 (Ωi+1) �→ �u,D∗v� is continuous in the L2-topology.

By local elliptic regularity, this amounts to the same thing as Du being an L2-
section. When it does not cause any confusion, we will simply write Dommax(Ωi) for
Dommax(D|Ωi). It is easy to see that if we consider D on its maximal domain, then
the kernel is a closed subspace of L2, and the image of D on Ωi−1 is contained in the
kernel of D on Ωi. The image of a general differential operator is however not always
a closed subspace of the kernel.

Definition 2.15. – For i ∈ {0, 1, 2}, the ith L2-cohomology of D is Ker(D|Ωi⊗E)/
Im(D|Ωi−1⊗E), where both of these operators are considered with maximal domain,
and the operators not shown in (2.24) are trivial. It is denoted by L2H1(D).

Our aim is to obtain the following:

Theorem 2.16. – The cokernel of /∂ defined on H1(S+ ⊗ E) is equal to the first
L2-cohomology of D.

Proof. – Recall that by definition

Coker(/∂|H1(S+⊗E)) = (Im(/∂|H1(S+⊗E)))
⊥

= (Im(D|H1(Ω0⊗E)))
⊥ ∩ (Im(D∗|H1(Ω2⊗E)))

⊥,(2.25)

where A⊥ stands for the L2-orthogonal of the subspace A ⊂ L2. Therefore, it is
sufficient to prove the following lemmas:

Lemma 2.17. – The maximal domain of

D : L2(Ω0 ⊗ E) −→ L2(Ω1 ⊗ E)

is H1(Ω0 ⊗ E). Similarly, the maximal domain of

D∗ : L2(Ω2 ⊗ E) −→ L2(Ω1 ⊗ E)

is H1(Ω2 ⊗ E). In particular, the maximal domain of
/∂ : L2(S+ ⊗ E) −→ L2(S− ⊗ E)

is H1(S+⊗E). Moreover, if this latter space is equipped with the norm �.�H1 defined
in (2.1), then /∂ is a bounded operator from H1(S+ ⊗ E) to L2(S− ⊗ E).

Lemma 2.18. – We have

(Im(D∗|H1(Ω2⊗E)))
⊥ = Ker(D|Dommax(Ω1⊗E)).

Lemma 2.19. – The image of D : H1(Ω0 ⊗ E) → L2(Ω1 ⊗ E) is closed.
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Indeed, Lemmas 2.17 and 2.18 together with (2.25) imply that the cokernel is equal
to

(Im(D|Dommax(Ω0⊗E)))
⊥ ∩Ker(D|Dommax(Ω1⊗E)),

which in turn is identified to the first reduced L2-cohomology of (2.24), i.e., to

Ker(D|Dommax(Ω1⊗E))/Im(D|Dommax(Ω0⊗E)),

where the bar over the image stands for the L2-closure of that space. Lemma 2.19
now concludes the proof of Theorem 2.16.

Proof (Lemma 2.18). – We first show the

Claim 2.20. – The adjoint of the unbounded operator

D∗ : L2(Ω2 ⊗ E) −→ L2(Ω1 ⊗ E)(2.26)

with domain H1(Ω2 ⊗ E) is the unbounded operator

D : L2(Ω1 ⊗ E) −→ L2(Ω2 ⊗ E)(2.27)

with domain Dommax(Ω1 ⊗ E).

Proof (Claim). – It is clear that the formal adjoint of (2.26) is (2.27), we only need
to prove its domain is Dommax. By definition, a section u ∈ L2(Ω1) is in the do-
main of the adjoint operator Dom((D∗)∗) if and only if for all v ∈ H1(Ω2 ⊗ E) we
have

|�u, D∗v�| ≤ K�v�
with a constant K only depending on u. Now, since v ∈ H1 and u ∈ L2, by
Claim 2.10 we can perform partial integration to the left-hand side of this for-
mula. Therefore, u is in the domain of the adjoint operator if and only if the func-
tional

v �−→ �Du, v�
is bounded in L2(Ω2 ⊗E). But this condition is equivalent to Du ∈ L2(Ω2 ⊗E), and
the claim follows.

Lemma 2.18 now directly follows from the claim and the general fact that the
cokernel of an unbounded operator is equal to the kernel of its adjoint.

Proof (Lemma 2.17). – First we need to prove that for a section u of L2(Ω0 ⊗E) we
have Du ∈ L2 if and only if both D+u ∈ L2 and Φu ∈ L2. The “if ” direction being
obvious, we concentrate ourselves on the opposite statement, and suppose in what
follows that u is an L2-function with Du ∈ L2.

We first study the singularity at infinity. For |u| sufficiently large, we have the
point-wise estimate

|Φu| ≤ 2K|u|,
where K is the maximal modulus of the eigenvalues of the matrix A. Therefore, u ∈ L2

at infinity implies Φu ∈ L2 at infinity, and consequently D+u = Du − Φu ∈ L2 at
infinity, and we are done.
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Next, consider the case of a singularity at a finite point. In the orthonormal basis
(1.17), the operators we study are equal, up to a perturbation term, to the local
models (see (1.18), (1.19), (1.20))

(D+)jφ = (d + i�µj

k
dθ)φ

Φjφ = [(�µj

k
− βj

k
)
dr

r
+ �µj

k
dθ]φ

Djφ = [d + iµ̄j

k
dθ + (�µj

k
− βj

k
)
dr

r
]φ

To simplify notation, from now on we drop the indices j and k. Note that because
of Lemma 2.3, it is sufficient to prove that Φjφ and (D+)jφ are in L2. Notice also
that since the perturbation aj may mix the regular and singular components, a pri-
ori it is not sufficient to prove for example that φreg ∈ L2 and Dφreg ∈ L2 im-
ply (D+)jφreg ∈ L2, because Dφ ∈ L2 does not imply directly Dφreg ∈ L2 in the
presence of a mixing perturbation term. However, remark that denoting by aj

r,r
the

part of the endomorphism aj that takes the regular component into the regular one,
and aj

r,s
, aj

s,r
, aj

s,s
the other parts, we have

�

∆(pj ,ε)
|(Dj + aj)φ|2 =

�

∆(pj ,ε)
|(Dj + aj

r,r
)φreg + aj

s,r
φsing|2

+

�

∆(pj ,ε)
|(Dj + aj

s,s
)φsing + aj

r,s
φreg|2(2.28)

≥
�

∆(pj ,ε)
|Djφreg|2 + |Djφsing|2

− |ajφreg|2 − |ajφsing|2,
and this estimate shows that we can treat the two components separately: the left-
hand side is finite by hypothesis, whereas the integrals of |ajφreg|2 and |ajφsing|2 by
Kato’s inequality and (2.12); hence the same thing holds for the integrals of |Djφreg|2
and |Djφreg|2.

On the regular component, the above expressions simplify to Dj = (D+)j = ∇
(the trivial connection), and Φj = 0. What we need to show is that φreg, Dφreg ∈ L2

implies ∇φreg ∈ L2, if D = ∇ + aj with aj = O(r−1+δ). Recall that by Kato’s
inequality and (2.12) with ε > 0 chosen sufficiently small we have

�

∆(pj ,ε)
|ajφreg|2 ≤

�

∆(pj ,ε)
|Dφreg|2 +

�

∆(pj ,ε)�∆(pj ,ε/2)
|φreg|2.

It follows that�

∆(pj ,ε)
|∇φreg|2 ≤

�

∆(pj ,ε)
|Dφreg|2 +

�

∆(pj ,ε)
|ajφreg|2

< 2

�

∆(pj ,ε)
|Dφreg|2 + 2

�

∆(pj ,ε)
|φreg|2.
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Now by the hypothesis φ, Dφ ∈ L2, the right-hand side is finite. Therefore ∇φ ∈ L2

as we wished to show.
Consider now the singular case: again, we need to show that if we have a section

φ ∈ L2 such that Dφ ∈ L2, then D+φsing,Φφsing ∈ L2. Here, usual elliptic regularity
does not give the claim, because we need to deduce that φsing/r ∈ L2. From now on,
we write φ = φsing to lighten notation. Decompose φ into its Fourier-series near pj :

φ(r, θ) =
∞�

n=−∞
φn(r)einθ

Choosing ε sufficiently small, we can make the perturbation term aj be smaller on
∆(pj , ε) then ν/r for any ν > 0. Write first the dθ-term of Djφ:

Dj

θ
φ = (∂θ + iµ̄)φdθ = idθ

∞�

n=−∞
(n + µ̄)φn(r)einθ.

By this and the estimate on the perturbation, we infer that

�(Dj

θ
+ aj)φ�2

L2(∆(pj ,ε)) ≥ �D
j

θ
φ�2

L2(∆(pj ,ε)) − �νφ/r�2
L2(∆(pj ,ε))

=

�

∆(p,ε)

∞�

n=−∞
(|n + µ̄|2 − ν2)

|φn(r)|2

r2
(2.29)

=

�

∆(p,ε)

∞�

n=−∞
(|n + �µ|2 − ν2 + |�µ|2) |φn(r)|2

r2
.

By Hypothesis 1.28 we have �µ /∈ Z, and so if ν is sufficiently small, then the last
expression can be bounded from below by

1

2

�

∆(p,ε)

∞�

n=−∞
(|n + �µ|2 + |�µ|2) |φn(r)|2

r2
(2.30)

=
1

2

�

∆(p,ε)
|(D+

θ
)jφ|2 + |Φj

θ
φ|2.

As in the regular case, by (2.12) the left-hand side of (2.29) is finite, so we see that
(D+

θ
)jφ ∈ L2 and Φj

θ
φ ∈ L2. The dr-part Φj

r
φ of Φjφ is in L2 if and only if

�

∆(p,ε)
|�µ− β|2 |φ(r)|2

r2
< ∞.

Again by our main hypothesis �µ /∈ Z there exists a constant K > 0 such that
∞�

n=−∞
|�µ− β|2 |φn(r)|2

r2
≤ K

∞�

n=−∞
|n + �µ|2 |φn(r)|2

r2
.

As we have already seen, this last expression is integrable, therefore Φjφ ∈ L2. Since
the perturbation is negligible compared to the behaviour O(r−1) of (2.30), we then
also have Φφ ∈ L2. We conclude using D+φ = Dφ− Φφ.
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By duality, the case of a 2-form vdz ∧ dz̄ is settled the same way. The general case
(that of S+ ⊗ E) then follows from Lemma 2.9. The fact that

/∂ : H1(S+ ⊗ E) −→ L2(S− ⊗ E)

is bounded, is then immediate (and has already been pointed out, see (2.14)).

Proof (Lemma 2.19). – This is immediate from Theorem 1 and Claim 2.9.

We have established lemmata 2.18, 2.19 and 2.17, hence we finished the proof of
Theorem 2.16.

Theorem 2.21. – The first L2-cohomology of the complex (2.24) is canonically iso-
morphic to the kernel of the adjoint Dirac operator

(2.31) /∂∗
ξ

: L2(S− ⊗ E) −→ L2(S+ ⊗ E)

on its domain, or alternatively to the kernel of the Laplace operator

(2.32) ∆ξ = /∂ξ/∂∗ξ = −DξD
∗
ξ
−D∗

ξ
Dξ : L2(S− ⊗ E) −→ L2(S− ⊗ E)

on its domain.

Proof. – By duality, we get from Lemma 2.18 that

(Im(D|H1(Ω0⊗E)))
⊥ = ker(D∗|Dommax(Ω1⊗E)),

and this implies

coKer(/∂|H1(S+ ⊗ E)) = ker(D∗|Dommax(Ω1⊗E)) ∩ ker(D|Dommax(Ω1⊗E))

= ker(/∂∗|Dommax(Ω1⊗E)).

It remains to show that this latter is equal to ker(/∂/∂∗|Dommax(Ω1⊗E)). It is clear that

ker(/∂/∂∗|Dommax(Ω1⊗E)) ⊇ ker(/∂∗|Dommax(Ω1⊗E)).

Suppose now u ∈ L2(Ω1 ⊗ E) satisfies /∂/∂∗u = 0. This means that

/∂∗u ∈ Ker(/∂) ⊂ Dommax(/∂) = H1(S+ ⊗ E)

by Lemma 2.17. Vanishing of the L2-kernel of /∂ on H1(S+ ⊗ E) (cf. Theorem 2.6)
gives /∂∗u = 0, that is u ∈ Ker(/∂∗), whence

ker(/∂/∂∗|Dommax(Ω1⊗E)) ⊆ ker(/∂∗|Dommax(Ω1⊗E)).

Finally, let us introduce the norm

�f�H2(S+⊗E) =

�

C
|f |2 + |(∇+)∗∇+f |2 + |(Φ⊗)∗Φ⊗ f |2

and the corresponding function space

H2(S+ ⊗ E) = {f : �f�H2(S+⊗E) < ∞}

Then we have the following.
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Theorem 2.22. – The domain of the Laplace operator ∆ξ = /∂∗
ξ
/∂ξ is H2(S+⊗E). It

defines a Hilbert-space isomorphism

H2(S+ ⊗ E) −→ L2(S+ ⊗ E).

Proof. – The fact that ∆ξ is a well-defined bounded operator on H2(S+⊗E) follows
from the Weitzenböck formula (2.16). Its is the set of u ∈ L2(S+⊗E) such that /∂ξu ∈
Dommax(/∂∗ξ ). This latter is, by computations similar to Lemma 2.17, the Sobolev space
H1(S−⊗E) is with 1 derivative in L2, and weight −1 on the irregular component near
logarithmic singularities like in Corollary 2.5. We deduce that the maximal domain
of ∆ξ is H2(S+ ⊗ E), and that it splits as

H2(S+ ⊗ E)
/∂ξ−→ H1(S− ⊗ E)

/∂∗
ξ−→ L2(S+ ⊗ E).

Exactly as in Theorem 2.6, the first map is Fredholm with vanishing kernel from the
Sobolev space H2(S+⊗E) into H1(S−⊗E), both space being endowed with the L2-
inner product. This with the identity Im(/∂ξ)⊥ = Ker(/∂∗

ξ
) implies that Ker(∆ξ) = {0}

and that Im(∆ξ) = Im(/∂∗
ξ
) = Ker(/∂ξ)⊥ = L2(S+ ⊗ E). Therefore, ∆ξ is a bounded

bijective operator from H2(S+⊗E) to L2(S+⊗E). By the closed graph theorem, we
conclude that its inverse is also bounded.

2.4. Properties of the Green’s operator

Definition 2.23. – Let us call the bounded linear inverse of /∂∗
ξ
/∂ξ provided by Theo-

rem 2.22 the Green’s operator of the Dirac-Laplace operator, and denote it by

Gξ : L2(S+ ⊗ E) −→ H2(S+ ⊗ E).

In this section we list the properties of this operator that we will need in later
chapters.

Lemma 2.24. – Gξ is diagonal with respect to the decomposition S+ ⊗ E = (Ω0 ⊗
E)⊕ (Ω2 ⊗ E).

Proof. – Since Gξ is the inverse of ∆ξ, it is sufficient to prove the statement for this
latter operator. This comes from the identity

∆ξ = /∂∗
ξ
/∂ξ = (D∗

ξ
−Dξ)(Dξ −D∗

ξ
) = −D∗

ξ
Dξ −DξD

∗
ξ
,

which is satisfied since Dξ is flat.

Lemma 2.25. – There exist K, K � > 0 such that for |ξ| sufficiently large and for any
positive spinor ψ ∈ H1(S+ ⊗ E), the following estimates hold:

�Gξψ�L2(C) ≤ K|ξ|−2�ψ�L2(C)(2.33)

�Gξψ�H1(C) ≤ K �|ξ|−1�ψ�L2(C)(2.34)
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Proof. – Since by definition, for any ψ the positive spinor Gξψ is the solution ϕ of

∆ξϕ = ψ,

the estimates (2.33) and (2.34) can be rewritten respectively as

�ϕ�
L2(C) ≤ K|ξ|−2�∆ξϕ�L2(C)(2.35)

�ϕ�
H1(C) ≤ K �|ξ|−1�∆ξϕ�L2(C).(2.36)

Call ξ-energy of ϕ over all C the quantity

(2.37) E(ξ;ϕ) =

�

C
|∇+

ξ
ϕ|2 + |Φξ ⊗ ϕ|2|dz|2.

By partial integration, the Weitzenböck formula (2.16) and Cauchy’s inequality we
have

E(ξ;ϕ) =

�

C
�ϕ,∆ξϕ�|dz|2(2.38)

≤ �ϕ�L2�∆ξϕ�L2 .

Now, as we will see from (4.46), on the complementary of a finite union of disks
∆(qk(ξ), ε0|ξ|−1) we have the point-wise lower bound

(2.39) |Φξ ⊗ ϕ|2 ≥ c|ξ|2|ϕ|2

for some c > 0. Furthermore, we can choose ε0 sufficiently small so that the balls
∆(q(ξ), 2ε0|ξ|−1) are disjoint and do not meet P for |ξ| large. Setting

Bξ :=
�

q(ξ)∈Σξ

∆(q(ξ), ε0|ξ|−1)

we then deduce the estimation

(2.40)
�

C�Bξ

|Φξ ⊗ ϕ|2 |dz|2 ≥ c|ξ|2
�

C�Bξ

|ϕ|2 |dz|2.

Of course, extending this inequality over the disks ∆(q(ξ), ε0|ξ|−1) is not possible,
since Φξ has a zero in q(ξ). However, the integral of |Φξ ⊗ ϕ|2 + |∇+

ξ
ϕ|2 does control

|ξ|2 times that of |ϕ|2 on the whole plane; that is, we have:

Claim 2.26. – There exists c > 0 such that for |ξ| sufficiently large and for any
spinor ϕ we have

(2.41) E(ξ;ϕ) ≥ c|ξ|2
�

C
|ϕ|2 |dz|2

Proof. – By Kato’s inequality E(ξ;ϕ) can be bounded from below by
�

C
|Φξ ⊗ ϕ|2 + |d|ϕ||2 |dz|2.
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By (2.40), it only remains to show that for any q(ξ) ∈ Σξ this integral bounds from
above c|ξ|2

�
∆(q(ξ),ε0|ξ|−1) |ϕ|2|dz|2, for some c > 0 (not necessarily the same as before).

But since on the annulus

∆(q(ξ), 2ε0|ξ|−1) � ∆(q(ξ), ε0|ξ|−1)

we already have the estimation (2.39), this is just a consequence of (2.12) applied at
the point q(ξ) instead of pj to the function g = |ϕ|, with ε = ε0|ξ|−1 and δ = 1.

By the claim and (2.38), we have

c|ξ|2�ϕ�2
L2(C) ≤ �ϕ�L2(C)�∆ξϕ�L2(C),

and after dividing both sides by �ϕ�L2(C), we get (2.35).
Plugging (2.35) into (2.38), we obtain

(2.42) E(ξ;ϕ) ≤ K|ξ|−2�∆ξϕ�2L2(C).

On the other hand, by the definitions

∇+
ξ

=∇+ − ξ

2
dz +

ξ̄

2
dz̄

Φξ =Φ− ξ

2
dz − ξ̄

2
dz̄

we obtain the point-wise bounds
1

2
|Φ⊗ ϕ|2 − 3

2
|ξ|2|ϕ|2 ≤ |Φξ ⊗ ϕ|2 ≤ 2 |Φ⊗ ϕ|2 + |ξ|2|ϕ|2

1

2

∇+ϕ
2 − 3

2
|ξ|2|ϕ|2 ≤

∇+
ξ
⊗ ϕ


2
≤ 2

∇+ϕ
2

+ |ξ|2|ϕ|2

and therefore

(2.43)
1

2
�ϕ�2

H1(C)−(3|ξ|2+1)�ϕ�2
L2(C) ≤ E(ξ;ϕ) ≤ 2�ϕ�2

H1(C)+(2|ξ|2+1)�ϕ�2
L2(C).

Putting together this with (2.42) and (2.35), we get

�ϕ�2
H1(C) ≤2E(ξ;ϕ) + (6|ξ|2 + 2)�ϕ�2

L2(C)

≤2E(ξ;ϕ) + 7|ξ|2�ϕ�2
L2(C)

≤(2K + 7K2)|ξ|−2�∆ξϕ�2L2(C),

whence (2.36).

We now investigate what happens to the Green’s operator when ξ is close to one
of the points of P̂ .

Lemma 2.27. – There exist K, K � > 0 such that for |ξ− ξl| sufficiently small and for
any positive spinor ψ ∈ H1(S+ ⊗ E), the following estimates hold:

�Gξψ�L2(C) ≤ K|ξ − ξl|−2�ψ�L2(C)(2.44)

�/∂ξGξψ�L2(C) ≤ K ��|ξ − ξl|−1�ψ�L2(C)(2.45)
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Proof. – Analogous to Lemma 2.25. Notice that by partial integration and the
Weitzenböck formula (2.16) one has

�/∂ξϕ�2L2(C) = E(ξ;ϕ)

for any positive spinor ϕ. Using this and setting Gξψ = ϕ the inequalities to prove
can be rewritten as

�ϕ�
L2(C) ≤ K|ξ − ξl|−2�∆ξϕ�L2(C)(2.46)

E(ξ;ϕ) ≤ K ��|ξ − ξl|−2�∆ξϕ�2L2(C).(2.47)

The behaviour (4.62) of the Higgs field shows that outside of a finite union of disks
∆(qk(ξ), ε0|ξ− ξl|−1) there exists c > 0 for which we have the point-wise lower bound

(2.48) |Φξ ⊗ ϕ|2 ≥ c|ξ − ξl|2|ϕ|2.
It follows that denoting by Bξ the union of all the above mentioned disks where this
estimate may fail, we have the inequality

(2.49)
�

C�Bξ

|Φξ ⊗ ϕ|2 |dz|2 ≥ c|ξ − ξl|2
�

C�Bξ

|ϕ|2 |dz|2.

It is not possible to extend this inequality to the whole plane; however, we have again

Claim 2.28. – There exists c > 0 such that for |ξ− ξl| sufficiently small and for any
spinor ϕ we have

(2.50) E(ξ;ϕ) ≥ c|ξ − ξl|2
�

C
|ϕ|2 |dz|2

Proof. – Similar to Claim 2.26, using Kato’s inequality and (2.12) rescaled conve-
niently by the homothety w = (ξ − ξl)z.

This together with (2.38) then shows

c|ξ − ξl|2�ϕ�2L2(C) ≤ �ϕ�L2(C)�∆ξϕ�L2(C),

which gives us (2.46). Plugging this back into (2.38), we obtain (2.47).

2.5. Exponential decay results for harmonic spinors

In this section we give some analytic properties of ∆ξ-harmonic spinors. They
will be needed in Section 3.1, where we study the transformed flat connection. More
precisely, they will allow us to multiply any L2 harmonic section by exponential factor
so that the result remains in L2. They will also be of use in the computation of the
parabolic weights of the transform in Section 4.6.

First we set some further notation. Fix ξ ∈ Ĉ�P̂ , and let ϕ be a harmonic negative
spinor with respect to /∂ξ/∂∗ξ and p ∈ C � P any point of the plane. Finally, for any
spinor ψ (not necessarily harmonic), call ξ-energy of ψ in the disk ∆(p, ε) the quantity

(2.51) E(p, ε, ξ;ψ) =

�

∆(p,ε)
|∇+

ξ
ψ|2 + |Φξ ⊗ ψ|2.
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Lemma 2.29. – Suppose that there exists ε0 > 0, R > 0 and c > 0 such that the disk
∆(p, (R + 1)ε0) is disjoint from P , and all of the eigenvalues of θξ in any point of
this disk are bounded below in absolute value by c > 0. Under these assumptions, we
have the inequality

(2.52) E(p, ε0, ξ;ϕ) ≤ e−2cRε0

�
2�ϕ�2

H1(C) + (2|ξ|2 + 1)�ϕ�2
L2(C)

�
.

Proof. – Denote by C(p, r) the boundary of ∆(p, r), and by ∂

∂n
an outward-pointing

unit normal vector to it. Stokes’ formula gives

E(p, r, ξ;ϕ) =

�

∆(p,r)

�
(∇+

ξ
)∗∇+

ξ
ϕ + (Φξ⊗)∗Φξ ⊗ ϕ, ϕ

�

+

�

C(p,r)

��
∇+

ξ

�
∂

∂n

ϕ, ϕ

�
rdθ.

Since ϕ is ∆ξ-harmonic, the Weitzenböck formula (2.16) implies that the first term
on the right-hand side vanishes. Therefore, by the tic-tac-toe inequality, we have

E(p, r, ξ;ϕ) ≤ 1

2

�

C(p,r)

1

c

∇+ϕ
2

+ c|ϕ|2rdθ.

On the other hand, we have

dE(p, r, ξ;ϕ)

dr
=

�

C(p,r)

∇+
ξ
ϕ


2
+ |Φξ ⊗ ϕ|2rdθ.

By assumption, for r ≤ (R + 1)ε0 we have the estimate
�

C(p,r)
|Φξ ⊗ ϕ|2rdθ ≥ c2

�

C(p,r)
|ϕ|2rdθ.

Putting together these estimates, we see that

dE(p, r, ξ;ϕ)

dr
≥ 2cE(p, r, ξ;ϕ),

whence
d log E(p, r, ξ;ϕ)

dr
≥ 2c.

Integrating this inequality from r = ε0 to r = (R + 1)ε0, we obtain

log E(p, ε0, ξ;ϕ) ≤ 2c[ε0 − (R + 1)ε0] + log E(p, (R + 1)ε0, ξ;ϕ).

Taking exponential of both sides, we get

E(p, ε0, ξ;ϕ) ≤ e−2cRε0E(p, (R + 1)ε0, ξ;ϕ)

≤ e−2cRε0E(ξ;ϕ),

and we conclude using (2.43).
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Next, we use the above lemma to obtain exponential decay results in terms of ξ
for the energy of harmonic spinors when ξ is large, first in a fixed disk of C away
from the singularities P , then near infinity in C. In the first case, the statement is as
follows.

Lemma 2.30. – Let p ∈ C � P be arbitrary, and let ε0 > 0 be such that the distance
between p and P is at least 3ε0. Then for |ξ| sufficiently large we have the estimate

�ϕ�2
H1(∆(p,ε0)) ≤ e−ε0|ξ|/3�ϕ�2

H1(C)

for any ∆ξ-harmonic spinor ϕ.

Proof. – Since p is away from P , in the Higgs field θξ = θ − ξdz/2 the term θ is
bounded on ∆(p, 2ε0). Therefore, if |ξ| is sufficiently large, then the eigenvalues of θξ

on this disk are bounded below in absolute value by |ξ|/4. Apply Lemma 2.29 with
R = 1 and c = |ξ|/4 to get

E(p, ε0, ξ;ϕ) ≤ e−ε0|ξ|/2
�
2�ϕ�2

H1(C) + (2|ξ|2 + 1)�ϕ�2
L2(C)

�

≤ 5e−ε0|ξ|/2|ξ|2�ϕ�2
H1(C)

≤ 1

33
e−ε0|ξ|/3�ϕ�2

H1(C)

for ξ sufficiently large. On the other hand, we have

�ϕ�2
H1(∆(p,ε0)) =

�

∆(p,ε0)
|ϕ|2 +

∇+ϕ
2

+ |Φ⊗ ϕ|2

≤
�

∆(p,ε0)
2|ξ|2|ϕ|2 +

∇+
ξ
ϕ


2
+ |Φξ ⊗ ϕ|2(2.53)

≤33 E(p, ε0, ξ;ϕ),

where the last line is a consequence of |Φξ ⊗ ϕ|2 ≥ |ξ|2|ϕ|2/16 in ∆(p, ε0). Putting
together these two estimates, we get the lemma.

In the second case, we have the following statement.

Lemma 2.31. – For any ξ /∈ P̂ there exists R0 = R0(ξ) > 0, K = K(ξ) > 0 and
c = c(ξ) > 0 such that for any ∆ξ-harmonic spinor ϕ and all R > R0 the following
estimate holds:

�ϕ�2
H1(C�∆(0,2R)) ≤ Ke−Rc�ϕ�2

H1(C).

Furthermore, if |ξ| is sufficiently large, we can choose c = |ξ|/3 and R0, K constants
independent of ξ.

Proof. – The proof is an amalgam of that of Lemmata 2.29 and 2.30. Define the
ξ-energy at infinity of a spinor by the integral

(2.54) E(∞, R, ξ;ϕ) =

�

C�∆(0,R)
|∇+

ξ
ϕ|2 + |Φξ ⊗ ϕ|2.
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Choose R0 > 0 and c0 such that for |z| > R0 the eigenvalues of θξ(z) are all bigger
in absolute value then c0. Clearly, such a choice is possible because ξ /∈ P̂ . Moreover,
for |ξ| sufficiently large one can put c0 = |ξ|/4 and R0 a constant only depending on
the initial data θ. For r ≥ R0, we have the estimate

−E(∞, r, ξ;ϕ) ≥ −1

2

�

C(0,r)

1

c0

∇+
ξ
ϕ


2
+ c0|ϕ|2rdθ.

On the other hand, we have
dE(∞, r, ξ;ϕ)

dr
= −

�

C(0,r)

∇+
ξ
ϕ


2
+ |Φξ ⊗ ϕ|2rdθ.

By assumption, we have also
�

C(0,r)
|Φξ ⊗ ϕ|2rdθ ≥ c2

0

�

C(0,r)
|ϕ|2rdθ.

Putting together these estimates, we see that for r ≥ R0

dE(∞, r, ξ;ϕ)

dr
≤ −2c0E(∞, r, ξ;ϕ),

whence
d log E(∞, r, ξ;ϕ)

dr
≤ −2c0.

Integrating this inequality from R to 2R and using (2.43), we obtain

E(∞, 2R, ξ;ϕ) ≤E(ξ;ϕ)e−Rc0

≤(|ξ|2 + 3)e−Rc0�ϕ�2
H1(C).

On the other hand,

E(∞, 2R, ξ;ϕ) ≥
�

C�∆(0,2R)
|Φξ ⊗ ϕ|2

≥ c2
0

�

C�∆(0,2R)
|ϕ|2

implies
K0E(∞, 2R, ξ;ϕ) ≥ �ϕ�2

H1(C�∆(0,2R))

for some K0 > 0. This gives the lemma for ξ in a finite region. The case of |ξ| large
also follows noting that K depends at most polynomially on ξ.

Since a ∆ξ-harmonic spinor is subharmonic in the usual sense, the above results
also imply point-wise exponential decay on harmonic spinors:

Lemma 2.32. – Suppose R > R0. Then there exists K, c > 0 such that for any |z| >
2R + 1 and any ∆ξ-harmonic spinor ϕ we have

|ϕ(z)| ≤ Ke−Rc�ϕ�2
H1(C).
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Proof. – Because of the condition |z| > 2R + 1, the disk ∆(z, 1) centered at z of
radius 1 is contained in C � ∆(0, 2R). On the other hand, by subharmonicity of ϕ
with respect to the usual Laplace operator, we have

|ϕ(z)| ≤ K0

�

∆(z,1)
|ϕ(w)||dw|2

≤ K1

��

∆(z,1)
|ϕ(w)|2|dw|2

�1/2

≤ K1

��

C�∆(0,2R)
|ϕ(w)|2|dw|2

�1/2

We conclude using Lemma 2.31.
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CHAPTER 3

THE TRANSFORM OF THE
INTEGRABLE CONNECTION

In this chapter, we define the transformed parabolic integrable connection induced
by the deformation Dξ. First, in Section 3.1, we define the underlying flat bundle; then
in Section 3.2 we show that its behaviour at infinity verifies appropriate asymptotic
conditions. This then allows us to apply the results of [5] in order to define an extension
into a parabolic integrable connection over the singularity at infinity; the same thing
for other singularities follows from [26].

Before starting these points, we need however to introduce some notation. Recall
first that P̂ was defined as the set {ξ1, . . . , ξn�} of eigenvalues of the second-order
term of D at infinity. Let Ĥ → Ĉ � P̂ denote the trivial Hilbert bundle with fibers
L2(C, S−⊗E). By Theorem 2.21, the transformed bundle Ê can be given as the vector
bundle whose fiber over ξ ∈ C � P̂ is the kernel of the adjoint Dirac operator (/∂ξ)∗.
By the same theorem, such an element is also ∆ξ-harmonic. Now remark that on the
bundle Ĥ there exists a hermitian metric �., .� which is canonical once a hermitian
metric h(., .) is fixed on E: for any two elements f̂1, f̂2 ∈ Ĥξ = L2(C, S− ⊗ E), it is
defined by the L2 inner product

�f̂1, f̂2� =

�

C
h(f̂1, f̂2)|dz|2.

Moreover, the trivial connection d̂ on the bundle Ĥ is unitary with respect to this
metric. Let π̂ξ denote orthogonal projection of Ĥξ onto the subspace Êξ, and i the
inclusion Ê �→ Ĥ.

Definition 3.1. – We call transformed Hermitian metric the fiber metric ĥ on Ê
which is equal on the fiber Êξ to the restriction of the above defined L2 scalar product
�., .� to the subspace Êξ ⊂ L2(C, S− ⊗ E).
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3.1. Construction of the transformed flat connection

In this section we show that the transformed bundle admits an integrable connec-
tion, which is determined only by the deformation Dξ. First, we describe its intrinsic
construction, then we give it in terms of an explicit formula.

3.1.1. Intrinsic definition. – Defining a flat connection is equivalent to giving a
basis of parallel sections on a disk B0 around each point ξ0 ∈ Ĉ � P̂ . Given this, in
order to see that it defines indeed a flat connection, one only needs to prove that the
transition matrices on B0 ∩ B1 between two such bases (corresponding to points ξ0

and ξ1) are constant.
So suppose ξ0 ∈ Ĉ � P̂ , and let f̂1(z), . . . , f̂r̂(z) be a basis of the vector space Êξ0 .

On the basis of Lemma 2.32, for ε0 = ε0(ξ0) > 0 sufficiently small, the expressions

f̂j(ξ; z) = π̂ξ(e
(ξ−ξ0)z f̂j(z)) ∈ Êξ(3.1)

make sense for ξ on the ball B0 = B(ξ0, ε0) of radius ε0 centered at ξ0. Therefore,
(restricting ε0 if necessary), they define an extension of the basis f̂1, . . . , f̂r̂ of the
vector space Êξ0 to a trivialisation of the bundle Ê over B0.

Proposition 3.2. – The family of sections (3.1) for all ξ0 ∈ Ĉ � P̂ , for j ∈
{1, . . . , r̂}, and for all ξ ∈ B0 define a local system for a flat connection D̂ on
Ê → Ĉ � P̂ .

Definition 3.3. – We will call D̂ the transformed flat connection on Ĉ � P̂ .

proof (Proposition). – Let ξ̃0 �= ξ0 be another point of Ĉ� P̂ , and ĝ1(z), . . . , ĝr̂(z) be
a basis for the vector space Ê

ξ̃0
. According to (3.1), the local trivialisation of Ê near

ξ̃0 we need to consider is then ĝ1(ξ), . . . , ĝr̂(ξ), with

ĝl(ξ; z) = π̂ξ(e
(ξ−ξ̃0)z ĝl(z))(3.2)

for ξ in a small disk B̃0 around ξ̃0. In order to show that the local bases (3.1) and
(3.2) define indeed a local system, we need to show that the transition matrices m(ξ)
between them are independent of the point ξ ∈ B0 ∩ B̃0. We will make use of the
following:

Lemma 3.4. – For any ξ, ξ� ∈ B0, and any k0 ∈ ker(Dξ0 |S− ⊗ E) we have

π̂ξ�

�
e(ξ�−ξ)zπ̂ξ(e

(ξ−ξ0)zk0(z))
�

= π̂ξ�(e
(ξ�−ξ0)zk0(z)).

Proof (Lemma). – Set kξ(z) = e(ξ−ξ0)zk0(z); we need to prove that

π̂ξ� [e
(ξ�−ξ)zπ̂ξ(kξ(z))] = π̂ξ�(e

(ξ�−ξ)zkξ(z)),

or equivalently that
π̂ξ� [e

(ξ�−ξ)z(Id− π̂ξ)(kξ)] = 0,
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which is still equivalent to

(3.3) e(ξ�−ξ)z(Id− π̂ξ)(kξ)⊥Êξ� .

Since π̂ξ is orthogonal projection to Êξ, we have

(3.4) (Id− π̂ξ)(kξ) ∈ Ê⊥
ξ

.

Moreover, observe that for ξ0 and ξ fixed, the relation

(3.5) e(ξ−ξ0)z.Dξ0 = Dξ0 − (ξ − ξ0)dz∧ = Dξ,

holds, and so

(3.6) kξ = e(ξ−ξ0)zk0 ∈ e(ξ−ξ0)zker(Dξ0) ⊂ ker(Dξ) = Im(D∗
ξ
)⊥ = Im(Dξ)⊕ Êξ.

From (3.4) and (3.6) it follows that (Id− π̂ξ)kξ ∈ Im(Dξ). Now using (3.5) for (ξ�− ξ)
instead of (ξ − ξ0), we deduce that e(ξ�−ξ)z(Id− π̂ξ)kξ ∈ Im(Dξ�), whence (3.3). This
finishes the proof of the lemma.

Let us now come back to the study of the transition matrix: let ξ, ξ� ∈ B0 ∩ B̃0,
and suppose we have

(3.7) f̂j(ξ) =
r̂�

l=1

mjlĝl(ξ),

where (mjl) is the transition matrix between the two bases at the point ξ. Lemma 3.4
means that for |ξ − ξ�| sufficiently small, we have

f̂j(ξ
�) = π̂ξ�(e

(ξ�−ξ)z f̂j(ξ))(3.8)

ĝl(ξ
�) = π̂ξ�(e

(ξ�−ξ)z ĝl(ξ)).(3.9)

Now plugging (3.7) into (3.8), then using (3.9) we obtain

f̂j(ξ
�) = π̂ξ�

�
e(ξ�−ξ)z

r̂�

l=1

mjlĝl(ξ)

�

=
r̂�

l=1

mjlπ̂ξ�(e
(ξ�−ξ)z ĝl(ξ))

=
r̂�

l=1

mjlĝl(ξ
�),

so the transition matrix at the point ξ� is the same as the one at ξ, whence we obtain
the Proposition.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



56 CHAPTER 3. THE TRANSFORM OF THE INTEGRABLE CONNECTION

3.1.2. Explicit description. – We now give an explicit formula for the flat con-
nection constructed above, following page 13 of [16]. First define a unitary connection
on Ê with respect to the transformed Hermitian metric by

(3.10) ∇̂ = π̂ξ ◦ d̂ ◦ i.

The fact that this connection is indeed ĥ-unitary can be seen as follows: let f, g ∈ Γ(Ê)
be local sections around ξ0, then from orthogonality of π̂ξ to Ê with respect to the
norm �., .� we have in ξ0

d̂(ĥ(f̂ , ĝ)) = d̂�f̂ , ĝ� = �d̂f̂ , ĝ�+ �f̂ , d̂ĝ�

= �∇̂f̂ , ĝ�+ �f̂ , ∇̂ĝ� = ĥ(∇̂f̂ , ĝ) + ĥ(f̂ , ∇̂ĝ),

where d̂ stands for exterior differentiation of functions along the coordinate ξ as well
as for the trivial connection with respect to ξ on the trivial Hilbert bundle Ĥ. Finally,
we define an endomorphism-valued (1, 0)-form (a candidate to be a transformed Higgs
field) by mapping a ∆ξ-harmonic section f̂(ξ; z) to

(3.11) θ̂ξ(f̂(ξ; z)) = −1

2
π̂ξ(zf̂(ξ; z))dξ,

where dξ stands for the standard generator of the holomorphic (1, 0)-forms on Ĉ. This
field will indeed be holomorphic provided that the original metric h is harmonic (see
Section 4.2).

Proposition 3.5. – The connection ∇̂+2θ̂ is equal to the transformed flat connection
D̂ defined above.

Proof. – We need to show that for all ξ0 and all f(z) ∈ Êξ0 , the local D̂-parallel
section in ξ ∈ B0 given by

(3.12) f̂(ξ; z) = π̂ξ(e
(ξ−ξ0)z f̂(z))

is parallel in B0 with respect to ∇̂+ 2θ̂. First, let us check it in ξ0:

((∇̂+ 2θ̂)f̂)(ξ0) = π̂ξ0 [(d̂f̂)(ξ0)− zf̂(ξ0)dξ].

We observe that by (3.12) we have

(d̂f̂)(ξ0) = (d̂π̂ξ)ξ0 f̂(ξ0) + π̂ξ0(zf̂(ξ0)dξ),

hence
((∇̂+ 2θ̂)f̂)(ξ0) = π̂ξ0 [(d̂π̂ξ)ξ0 f̂(ξ0)].

Now π̂ξ ◦ π̂ξ = π̂ξ implies

d̂π̂ξ ◦ π̂ξ + π̂ξ ◦ d̂π̂ξ = d̂π̂ξ,

therefore
π̂ξ0 [(d̂π̂ξ)ξ0 f̂(ξ0)] = (d̂π̂ξ)ξ0 ◦ (Id− π̂ξ0)f̂(ξ0) = 0,

since π̂ξ0 is the projection to Êξ0 and f̂(ξ0) ∈ Êξ0 .
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Next, fix an arbitrary ξ ∈ B0. Then, as we have just shown, the local section defined
for |ξ� − ξ| sufficiently small by

f̂ �(ξ�) = π̂ξ�(e
(ξ�−ξ)z f̂(ξ; z))

is parallel in ξ (compare with (3.12), setting ξ0 = ξ, ξ = ξ�). But Lemma 3.4 tells us
that the local sections f̂ � and f̂ coincide in a neighbourhood of ξ; in particular f̂ is
parallel in ξ.

The following is now immediate:

Proposition 3.6. – The unitary part of the transformed flat connection D̂ is

D̂+ = ∇̂+ θ̂ − θ̂∗ = π̂ξ ◦
�

d̂− 1

2
zdξ ∧+

1

2
z̄dξ̄∧

�
.

Definition 3.7. – We will call the above unitary connection D̂+ the transformed
unitary connection. The covariant derivative associated to it will be denoted ∇̂+.

Remark 3.8. – The fact that the formula for the transformed unitary connection
involves extra multiplication terms by z and z̄ compared to the usual formulae of
other Nahm transforms is an artifact: as we will see in the next chapter, the transform
admits an interpretation from the point of view of Higgs bundles, in which the formula
for the transformed unitary connection agrees with the usual one.

3.2. Extension over the singularities

At this point, it should be pointed out that a priori we have no guarantee that
the constructed flat connection is indeed of the form required by Section 2 of [5]
(and therefore extends nicely over the singularities); that is, in an orthonormal basis
with respect to its harmonic metric it is not necessarily the model (1.20) up to a
perturbation described in (2.11) and (2.13). However, there is a theorem of O. Biquard
and M. Jardim which allows us to show that this is the case. Namely, Theorem 0.1 of
[6] states the following:

Theorem 3.9. – Let Ã be an SU(2)-instanton on R4, invariant with respect to the
additive subgroup Z ∂

∂x3
⊕Z ∂

∂x4
, and suppose that its curvature F

Ã
has quadratic decay

at infinity (that is, |F
Ã
| = O(r−2), where r2 = x2

1 + x2
2). Then there exists a gauge

near infinity in which Ã is asymptotic to the following model:

Ã0 = d + i
�
λ1dx3+λ2dx4 + (µ1 cos θ − µ2 sin θ)

dx3

r

+ (µ1 sin θ + µ2 cos θ)
dx4

r
+ αdθ

�
,

where z = reiθ are coordinates for the (x1, x2)-plane. Moreover, the difference a be-
tween Ã and this model satisfies

|a| = O(r−1−δ),
∇

Ã0
a
 = O(r−2−δ).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



58 CHAPTER 3. THE TRANSFORM OF THE INTEGRABLE CONNECTION

In order to be able to apply this result to our case, consider the Euclidean space
(R4)∗ spanned by orthonormal vectors ∂

∂x
∗
j

for j = 1, 2, 3, 4, and identify the subspace

spanned by ∂

∂x
∗
1

and ∂

∂x
∗
2

with the line Ĉ with complex coordinate ξ underlying D̂. By
Section 1 of [14], D̂ then induces an instanton Ã on (R4)∗ with singularities, invariant
with respect to the subspace R ∂

∂x
∗
3
⊕R ∂

∂x
∗
4
. In particular, Ã is invariant with respect

to Z ∂

∂x
∗
3
⊕ Z ∂

∂x
∗
4
, so Theorem 3.9 can be applied to it, provided that its curvature

has quadratic decay. In order to have an explicit description of Ã and its curvature,
remember that D̂ decomposes as

D̂ = ∇̂+ + θ̂ + θ̂∗,

where ∇̂+ is the transformed unitary connection, θ̂ the field defined in (3.11) and θ̂∗ its
adjoint with respect to the harmonic metric of D̂. Now as we will see in Section 4.2, this
harmonic metric is in fact the transformed Hermitian metric ĥ given in Definition 3.1.
The unitary part of D̂ decomposes further into its (1, 0)- and (0, 1)-part:

∇̂+ = (∇̂+)1,0 + (∇̂+)0,1.

Finally, we write ϑ̂ for the endomorphism-part of θ̂:

θ̂ = ϑ̂dξ.

The instanton over (R4)∗ corresponding to D̂ is then given by the formula

Ã = ∇̂+ + �ϑ̂dx∗3 + �ϑ̂dx∗4,

where we recall that
∂

∂ξ
=

1

2

�
∂

∂x∗1
− ∂

∂x∗2

�

is the natural complex coordinate of Ĉ, and the connection ∇̂+ on (R4)∗ acts as ∇̂+

along Ĉ and as the trivial connection along R ∂

∂x
∗
3
⊕R ∂

∂x
∗
4
. Furthermore, as it can be

seen from the results in Section 1 of [14], we then have the formula

F
Ã

= −[ϑ̂, ϑ̂∗](dx∗1 ∧ dx∗2 + dx∗3 ∧ dx∗4)

+ (∇̂+)x
∗
1
�ϑ̂(dx∗1 ∧ dx∗3 − dx∗2 ∧ dx∗4)(3.13)

+ (∇̂+)x
∗
1
�ϑ̂(dx∗1 ∧ dx∗4 + dx∗2 ∧ dx∗3),

where we have written (∇̂+)x∗ to denote the action of the unitary connection in the
∂

∂x∗ -direction. Hence, before we can apply Theorem 3.9 we need to check the following:

Theorem 3.10. – There exists a constant K > 0 such that the commutator [ϑ̂, ϑ̂∗] is
bounded by K|ξ|−2 as ξ →∞. The same estimation holds for ∇̂+ϑ̂.

Proof. – We start with the case of the commutator. Let f̂(ξ; z) ∈ Êξ = Ker(/∂ξ)∗ be
arbitrary; we wish to show the estimate

[ϑ̂, ϑ̂∗]f̂(ξ)


ĥ

≤ K|ξ|−2|f̂(ξ)|
ĥ
,

MÉMOIRES DE LA SMF 110



3.2. EXTENSION OVER THE SINGULARITIES 59

with K independent of f̂ and of ξ. Recall the well-known formula from Hodge theory:

(3.14) π̂ξ = Id− /∂ξGξ/∂∗ξ .

Using this, we obtain

[ϑ̂, ϑ̂∗]f̂(ξ) = −1

2
π̂ξ(zπ̂ξ(z̄f̂(ξ))− z̄π̂ξ(zf̂(ξ)))

=
1

2
π̂ξ(z/∂ξGξ/∂∗ξ (z̄f̂(ξ))− z̄/∂ξGξ/∂∗ξ (zf̂(ξ))).(3.15)

Since Dξ is a connection, the following commutation relations hold:

[Dξ, z] = dz∧ [Dξ, z̄] = dz̄∧

[D∗
ξ
, z] =

∂

∂z̄
� [D∗

ξ
, z̄] =

∂

∂z
�,

where � stands for contraction of a differential form by a vector field. It follows
immediately

[/∂ξ, z] = −[/∂∗
ξ
, z] = dz ∧ − ∂

∂z̄
�= dz·(3.16)

[/∂ξ, z̄] = −[/∂∗
ξ
, z̄] = dz̄ ∧ − ∂

∂z
�= dz̄·(3.17)

where the Clifford multiplication · is defined by these formulae. Plugging these in the
expression (3.15), using /∂∗

ξ
f̂(ξ; z) = 0 and π̂ξ|Im/∂∗

ξ
= 0 together with the definition of

ĥ, we get

[ϑ̂, ϑ̂∗]f̂(ξ)


ĥ

=
1

2

���π̂ξ

�
dz · Gξdz̄ · f̂(ξ)− dz̄ · Gξdz · f̂(ξ)

����
L2(C)

≤ 1

2

���Gξdz̄ · f̂(ξ)
���

L2(C)
+

1

2

���Gξdz · f̂(ξ)
���

L2(C)
,(3.18)

since the norm of the orthogonal projection of a vector to a subspace is at most the
norm of the vector and the action of Clifford multiplication by dz and dz̄ is point-wise
bounded. We conclude by the first statement of Lemma 2.25.
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Next, let us come to ∇̂+ϑ̂. Similarly to the above, using (3.14) and the commutation
formulae (3.16)-(3.17) we obtain

�
∇̂+ϑ̂

�
f̂(ξ) =

�
D̂+ ◦ ϑ̂− ϑ̂ ◦ D̂+

�
f̂(ξ)

=π̂ξ

�
d̂− z

2
dξ +

z̄

2
dξ̄

�
π̂ξ

�
−z

2

�
f̂(ξ)

− π̂ξ

�
−z

2

�
π̂ξ

�
d̂− z

2
dξ +

z̄

2
dξ̄

�
f̂(ξ)

=π̂ξ

� �
d̂− z

2
dξ +

z̄

2
dξ̄

�
/∂ξGξ/∂∗ξ

�z

2
f̂(ξ)

�

− z

2
/∂ξGξ/∂∗ξ

�
d̂− z

2
dξ +

z̄

2
dξ̄

�
f̂(ξ)

�

=π̂ξ

� �
1

2
dξ ∧ dz − 1

2
dξ̄ ∧ dz̄

�
· Gξ

dz

2
· f̂(ξ)

− dz

2
· Gξ

�
1

2
dξ ∧ dz − 1

2
dξ̄ ∧ dz̄

�
· f̂(ξ)

�

+ π̂ξ

�
d̂/∂ξGξ

dz

2
· f̂(ξ)− dz

2
· Gξ/∂∗ξ d̂f̂(ξ)

�

(here dz and dz̄ act on the spinors by Clifford multiplication, whereas dξ and dξ̄ by
wedge product). Noticing that |dξ| = |dξ̄| = 2, the first term in the last expression
can be treated exactly as in (3.18). For the second term, one only needs to remark
that the commutation relations

�
d̂, Dξ

�
=

�
d̂, D − ξ

2
dz +

ξ̄

2
dz̄

�

=− dξ ∧ dz∧
2

+
dξ̄ ∧ dz̄∧

2
and

�
d̂, D∗

ξ

�
=− dξ∧

2

∂

∂z̄
�+

dξ̄∧
2

∂

∂z
�

show that
�
d̂, /∂ξ

�
= −

�
d̂, /∂∗

ξ

�
= −1

2
dξ ∧ dz · +1

2
dξ̄ ∧ dz̄·

holds. Therefore we can proceed again as in (3.18).

On the basis of Theorem 3.9, the behaviour of the transformed flat connection
at infinity satisfies the hypothesis considered in [5]. Namely, in a suitable gauge its
difference from a model with second-order pole is in the weighted Sobolev space
L1,2
−2+δ

(Ω1⊗E) considered in Section 2 of that article. Indeed, passing to a coordinate
w = z−1, |w| = ρ in which the double pole is in 0, the norm of the perturbation
is O(ρ1+δ), whereas that of its derivative is also O(ρ1+δ) (because the norm of 1-
forms near infinity is |dz| = |dw|/|w| = 1), and we conclude since ρ1+δ/ρ2 ∈ L2

δ−2.
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It follows from the results of its Sections 7 and 8 that the analytic flat connection D̂
defined outside infinity extends to an algebraic integrable connection with a parabolic
structure on the singular fiber at infinity. On the other hand, such an extension
over logarithmic singularities (that is, singularities in which the eigenvalues of D̂ or
equivalently those of ϑ̂ have at most first-order poles) is ensured by Theorem 2 of
[26]. Therefore, by Theorem 4.30 the flat connection D̂ on Ĉ � P̂ can be extended
into a meromorphic integrable connection on �CP

1
with parabolic structures at the

singularities.

Definition 3.11. – The transformed meromorphic integrable connection is the
meromorphic integrable connection with parabolic structure in the singularities in-
duced by the above extension procedures, subject to local changes of holomorphic
trivialisations near the singularities to take all weights between 0 and 1. We will
continue to denote it by (Ê, D̂). The underlying extension will be called transformed
extension of the transformed bundle.

Remark 3.12. – We will see in Section 4.6 that the parabolic structures are adapted
to the harmonic metric; namely, the weight 0 ≤ α̂k < 1 of a subspace FkÊ|p of a
singular fiber corresponds in local coordinate z vanishing at the puncture to a decay
bounded above by |z|2α̂k of the norm of a parallel section extending an element of
FkÊ|p, as measured by the harmonic metric. However, in Sections 4.4.1 and 4.4.2
we will construct a different extension over the punctures – more suited to analytical
study –, where the behaviour of the norm of parallel sections near the singular points
will no longer be bounded. We then pass back to the transformed extension in Corol-
lary 4.39, where we remark that it is the one that establishes a "good" correspondence.
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CHAPTER 4

INTERPRETATION FROM THE POINT OF VIEW
OF HIGGS BUNDLES

Let (E,D, h) be a Hermitian bundle with integrable connection. Throughout this
chapter, we suppose that the original metric h is harmonic. This metric then defines
a Higgs bundle ( E, θ) starting from the integrable connection, via the procedure de-
scribed in Section 1.5. We first prove that the transformed metric ĥ is then harmonic
for D̂. Next, we give an interpretation of the transformed Higgs bundle of ( E, θ) in
terms of the hypercohomology of a sheaf map over CP1. These results will then be
used to define the induced extension i Ê of the transformed bundle over the punctures
P̂ ∪ {∞}, and to compute the topology and the singularity parameters of this ex-
tension of the transformed Higgs bundle. This will enable us to eventually compute
the topology and the singularity parameters of the transformed Higgs bundle with
respect to its transformed extension given in Definition 3.11.

4.1. The link with the transformed integrable connection

Recall that we have defined the deformation of the Higgs bundle by the formula
(1.35), and we write D��

ξ
for the D��-operator of this deformation. Explicitly, we have

D��
ξ

= ∂̄ E + θξ,

where θξ = θ− ξ/2dz. Moreover, as we have noticed in Section 1.7, nonabelian Hodge
theory identifies the deformation of the Higgs bundle structure (1.35) and that of the
integrable connection via the unitary gauge transformation

g(z, ξ) = e[ξ̄z̄−ξz]/2.

In other words, writing gξ = g(., ξ) for the gauge transformation restricted to the fiber
Ĥξ, we have

(4.1) gξ.Dξ = DH

ξ
= D − ξ

2
dz ∧ − ξ̄

2
dz̄ ∧ .
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Since the gauge transformation gξ is unitary, in addition to (4.1) we have as well

(4.2) gξ.D
∗
ξ

= (DH

ξ
)∗.

Definition 4.1. – The operator /∂H

ξ
= DH

ξ
− (DH

ξ
)∗ will be referred to as the Higgs

Dirac operator. In the same way, we let /∂��
ξ

stand for the Dirac operator D��
ξ
− (D��

ξ
)∗.

The transformed smooth bundle underlying the Higgs bundle is the bundle V̂ over Ĉ�

P̂ whose fiber over ξ is the first L2-cohomology space L2H1( CH

ξ
) of the operator DH

ξ
.

Proposition 4.2. – This way we define a smooth vector bundle V̂ . Furthermore,
there exists a canonical bundle isomorphism between the smooth bundle Ê underly-
ing the transformed integrable connection and the smooth bundle V̂ underlying the
transformed Higgs bundle.

Proof. – Theorem 2.16 tells us that the transformed bundle underlying the integrable
connection is the bundle of first L2-cohomologies of Dint

ξ
. For any ξ, the gauge trans-

formation gξ of E induces a natural isomorphism between the L2-cohomology spaces
of the complexes (1.7) and

(4.3) Ω0 ⊗ E
gξ.D

int
ξ−−−−→ Ω1 ⊗ E

gξ.D
int
ξ−−−−→ Ω2 ⊗ E.

which is just CH

ξ
. In Theorem 2.6 we have shown that the 0-th and 2-nd cohomology

of C ξ vanishes for all ξ ∈ Ĉ � P̂ , whereas Corollary 2.7 implies that the cohomology
spaces L2H1( C ξ) define a smooth vector bundle over Ĉ � P̂ . This then implies the
same thing for CH

ξ
, whence the bundle isomorphism between the bundles over Ĉ � P̂

in question.

Theorem 2.21 has the following interpretation:

Theorem 4.3. – The first L2-cohomology V̂ξ = L2H1( CH

ξ
) of the operator DH

ξ
is

canonically isomorphic to the kernel of the adjoint Dirac operator

(4.4) (/∂H

ξ
)∗ : L2(S− ⊗ E) −→ L2(S+ ⊗ E)

on its domain, or alternatively to the kernel of the Laplace operator

(4.5) ∆H

ξ
= /∂H

ξ
(/∂H

ξ
)∗ : L2(S− ⊗ E) −→ L2(S− ⊗ E)

on its domain.

Proof. – Apply the gauge transformation g to Theorem 2.21 and notice that (4.1) and
(4.2) imply

(4.6) gξ./∂∗ξ = (/∂H

ξ
)∗

and

(4.7) gξ.∆ξ = ∆H

ξ
;

and in particular that

(4.8) gξ(Ker(/∂∗
ξ
)) = Ker((/∂H

ξ
)∗)
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and

(4.9) gξ(Ker(∆ξ)) = Ker(∆H

ξ
).

This result enables us to put similar definitions as in the integrable deformation
case.

Definition 4.4. – The hermitian bundle metric on V̂ given by L2 scalar product of
the (/∂H

ξ
)∗-harmonic representative will be called the transformed Hermitian metric,

and will be denoted by ĥ. Also, π̂H

ξ
will stand for ĥ-orthogonal projection of L2(S−⊗E)

onto V̂ .

Remark 4.5. – Starting from a Higgs bundle with any Hermitian metric (not nec-
essary harmonic), we can define in the same way its transform on the transformed
bundle V̂ .

Next, we recollect the above considerations in terms of the transformed bundles.

Proposition 4.6. – The family of gauge transformations g induce a Hermitian bun-
dle isomorphism between Ê and V̂ . Furthermore, the fiber V̂ξ can be identified with the
first L2-cohomology of the single complex associated to the following double complex,
denoted by Dξ:

Ω0,1 ⊗ E
θξ∧ �� Ω2 ⊗ E

Ω0 ⊗ E
θξ∧ ��

∂̄
E

��

Ω1,0 ⊗ E.

∂̄
E

��

Remark 4.7. – Notice that commutativity of this diagram follows from the hypothesis
∂̄ Eθ = 0, which is just the definition of the harmonicity of h.

Proof. – By (4.9),the Dξ-harmonic representative of a class is mapped by g into a
DH

ξ
-harmonic class. Since the transformed metric from both points of view is induced

by L2-norm of the harmonic representatives, and g is unitary, this gives the first
statement. For the second, remark that by Theorem 1.25, the Laplace operator ∆H

ξ

is equal (up to a factor of 2) to the Laplace operator ∆��
ξ

= /∂��
ξ
(/∂��

ξ
)∗, therefore their

kernels coincide. This then identifies V̂ with the first L2-cohomology of the complex

(4.10) Ω0 ⊗ E
D
��
ξ−−→ Ω1 ⊗ E

D
��
ξ−−→ Ω2 ⊗ E.

Finally, recall that the formula
D��

ξ
= ∂̄ E + θξ

gives the decomposition of D��
ξ

into its (0, 1)- and (1, 0)-part respectively. This means
that the complex (4.10) is the single complex associated to the double complex Dξ.
However, it is not necessarily true that the domain of D��

ξ
is the sum of the domain of

∂̄ E and that of θξ, it could in principle be larger. Still, the two L2-cohomologies are

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2007



66 CHAPTER 4. HIGGS BUNDLE INTERPRETATION

the same. Indeed, suppose f = f1,0dz + f0,1dz̄ ∈ L2(Ω1 ⊗ E) is in the kernel of D��
ξ
,

that is

(4.11) ∂̄ Ef1,0dz + θξ ∧ f0,1dz̄ = 0.

We wish to represent the D��
ξ
-cohomology class of f by a class f̃1,0dz + f̃0,1dz̄ such

that ∂̄f̃1,0 ∈ L2 and θξ f̃0,1 ∈ L2. Away from logarithmic singularities, one can simply
choose f itself, for there locally f0,1 ∈ L2 implies θξf0,1 ∈ L2 and by (4.11) then
∂̄ Ef1,0 ∈ L2 as well. Thus we only need to modify f in a neighbourhood of the
logarithmic punctures. By Claim 4.11 near any such puncture we can find g ∈ L2(E)
such that θξg ∈ L2(Ω1,0 ⊗ E) and

f0,1dz̄ + ∂̄ Eg = 0.

Using ∂̄ Eθξ = 0, the last two identities then also imply

∂̄ E(f1,0dz + θξg) = 0.

Put f̃1,0dz = f1,0dz+θξg; as both f1,0 and θξg are supposed to be in L2, so is f̃1,0dz.
This then shows that f is cohomologous in the L2 complex of (4.10) to a class locally
represented by a section f̃1,0dz, where f̃1,0 ∈ L2 and ∂̄ Ef̃1,0 ∈ L2. In different terms
f̃1,0dz ∈ Dommax(∂̄ E), and this shows that the first L2-cohomology of (4.10) is indeed
equal to that of Dξ.

Next, let us investigate what the transformed integrable connection D̂ and its
unitary part D̂+ become under this gauge transformation. Notice that since the gauge
transformation g is unitary, the orthogonal projection π̂ onto Ê is transformed into the
orthogonal projection π̂H onto V̂ , with respect to the same L2-metric on the fibers;
in different terms gξ.π̂ξ = π̂H

ξ
. The image of the transformed integrable connection D̂

under the gauge transformation g in the point ξ is given by

D̂H = g.D̂

= g.(π̂ξ ◦ (d̂− zdξ∧))(4.12)

= π̂H

ξ

�
d̂− 1

2
(zdξ ∧+z̄dξ̄∧)

�
,

(see (3.10), (3.11) and Proposition 3.5), and that of the candidate Higgs field is the
endomorphism

θ̂H = g.θ̂

= g.(π̂ξ ◦ (−z/2dξ∧))(4.13)

= −1

2
π̂H

ξ
(zdξ∧).

Therefore, if we decompose the transformed flat connection in the point of view of
Higgs bundles into its unitary and self-adjoint part, we obtain

(D̂H)+ = π̂H

ξ
(d̂) (D̂H)sa = θ̂H + (θ̂H)∗(4.14)
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(these formulae can also be deduced directly from Proposition 3.6). This then gives
the desired interpretation of the transformed unitary connection D̂+ in this point of
view.

Definition 4.8. – We let ∂̄ Ê stand for the (0, 1)-part of (D̂H)+. Moreover, we call
the holomorphic bundle V̂ with partial connection ∂̄ Ê the transformed holomorphic
bundle and we denote it by Ê.

4.2. Harmonicity of the transformed metric

In this section we prove the following result:

Theorem 4.9. – If the original metric h is harmonic, then the same thing is true for
ĥ.

Proof. – First remark that by (4.14), the formula for ∂̄ Ê is π̂H

ξ
(d̂

0,1
). Also, the (1, 0)-

part of (D̂H)sa is just θ̂H . By definition, harmonicity of the transformed metric ĥ
resumes then in the equation

(4.15) ∂̄ Êθ̂H = 0.

By Proposition 4.6 we have V̂ξ = L2H1(D��
ξ
), with D��

ξ
= D�� − ξ/2dz. From this

formula it is clear that D��
ξ

depends holomorphically on ξ, so we are in the situation
described in part 3.1.3 of [12] of chain complexes

Ω0 ⊗ E
D
��
ξ−−→ Ω1 ⊗ E

D
��
ξ−−→ Ω2 ⊗ E

varying holomorphically with ξ. There it is shown that if the first cohomology spaces
V̂ξ of these complexes are all finite dimensional, of the same dimension, then the
bundle V̂ constructed out of them over the parameter space of ξ carries a natural
holomorphic structure. Explicitly, this is given by by saying that a section f ∈ Γ(V̂ ) in
a neighbourhood of ξ0 is holomorphic if and only if it admits a lift f̃ ∈ Γ(Ker(D��

ξ
|Ω1))

which is itself holomorphic with respect to the holomorphic structure induced by the
(0, 1)-part d̂

0,1
of the trivial connection d̂ on the Hilbert bundle Ĥ. This holomorphic

structure is the same as the one defined by the operator ∂̄ Ê, since both are induced by
d̂

0,1
and π̂H . The section θ̂H ∈ End(V̂ )⊗Ω1,0

Ĉ
is then holomorphic for this holomorphic

structure if and only if it maps each holomorphic section f into a holomorphic section.
In particular, this is the case if it admits a lift

Ker(D��
ξ
|Ω1)

Θ �� Ker(D��
ξ
|Ω1)⊗ Ω1,0

Ĉ

V̂ξ

��

θ̂
H

�� V̂ξ ⊗ Ω1,0

Ĉ
,

��

such that
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(1) Θ passes to the quotient Ker(D��
ξ
|Ω1) → Ker(D��

ξ
|Ω1)/Im(D��

ξ
|Ω0) = V̂ξ, the

quotient being θ̂H , and
(2) Θ is holomorphic with respect to the holomorphic structure induced by d̂

0,1
.

Recall from Section 2.3 that Ker(D��
ξ
|Ω1) is a closed Hilbert subspace of Ĥξ; call

πKer(D��
ξ
) orthogonal projection of Ĥξ to it. We now claim that the map

Θ : Ker(D��
ξ
|Ω1) −→ Ker(D��

ξ
|Ω1)⊗ Ω1,0

Ĉ

f̃ξ �−→ −1

2
πKer(D��

ξ
)(zf̃ξ(z))dξ

verifies the hypotheses needed.
For (1), we need to show Θ(Im(D��

ξ
|Ω0)) ⊆ Im(D��

ξ
|Ω0). Let gξ be a local section of

the trivial Hilbert bundle L2(E) → Ĉ. Then we have

Θ(D��
ξ
g) = −1

2
πKer(D��

ξ
)(zD��

ξ
gξ)dξ

= −1

2
πKer(D��

ξ
)(D

��
ξ
(zgξ(z)))dξ

= −1

2
D��

ξ
(zgξ(z))dξ,

because the operator D��
ξ

= ∂̄ E + θξ commutes with multiplication by z, and
Im(D��

ξ
|Ω0) ⊆ Ker(D��

ξ
|Ω1). This shows that Im(D��

ξ
|Ω0) is invariant by Θ; the quotient

is clearly θ̂H .
Next come to (2): we remark that the formula defining Θ only depends on ξ via

the projection πKer(D��
ξ
). But since the operator D��

ξ
depends holomorphically in ξ, so

do the subspaces Ker(D��
ξ
), and since the metric is independent of ξ, the same thing

is true for the projections πKer(D��
ξ
). This shows that Θ, and so θ̂H is holomorphic

in ξ.

4.3. Identification with hypercohomology

In this section we will often use basic properties of hypercohomology; for an intro-
duction to this topic, we refer to Section 3.5 of [13] and Section IV.12 of [11].

Before we start, we need to define the functional spaces

L̃2
ξ
(E) = Dommax(D

��
ξ
|Ω0⊗E)

= {u ∈ L2(E) : θξ ∧ u, ∂̄ Eu ∈ L2}

L̃2
ξ
(Ω0,1 ⊗ E) = Dommax(D

��
ξ
|Ω0,1⊗E)

= {vdz̄ ∈ L2(Ω0,1 ⊗ E) : θξ ∧ vdz̄ ∈ L2}

L̃2(Ω1,0 ⊗ E) = Dommax(D
��
ξ
|Ω1,0⊗E)

= {udz ∈ L2(Ω1,0 ⊗ E) : ∂̄ E(udz) ∈ L2},
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for the Euclidean metric |dz|2 on C and the hermitian metric h on the fibers, adapted
to the parabolic structure with weights {αj

1, . . . ,α
j

r
}. Notice that we may drop the

index ξ of these spaces, since they all coincide: indeed, in a logarithmic singularity
the deformation ξdz is bounded, and at infinity the condition ξ /∈ P̂ implies that
no eigenvalues of θξ vanish, and this gives equivalence of the corresponding norms
exactly as in Lemma 2.3. We identify these functional spaces to the sheaves of their
local sections. In what follows, we are going to define sheaves E and F of sections of
Ω0⊗E and Ω1,0⊗E respectively on CP1 with the property that the L2-cohomology
L2H•(D��

ξ
) of (4.10) identifies to the hypercohomology H

•( E
θξ∧−−→ F ) of the sheaf map

E
θξ∧−−→ F . This latter is then explicitly given in terms of a sky-scraper sheaf over the

zero set Σξ of det(θξ) by a simple use of the spectral sequence of the double complex.

4.3.1. Definition and resolution of the sheaves. – Recall that the parabolic
structure on E with adapted Hermitian fiber metric means that the holomorphic
bundle E on C� P has a natural extension to all CP1: the holomorphic sections at a
singular point are the holomorphic sections outside the singularity which are bounded
with respect to the metric. By an abuse of language, for U ⊂ CP1 an open set let E|U
be the set of holomorphic sections of the bundle E in U. In other words, we denote
by E the sheaf of local holomorphic sections of E (extended over the punctures as
above).

Next, let us define F : for an open set U ⊂ CP1 containing no singular point, let
F |U be the set of ∂̄ E-holomorphic sections of Ω1,0 ⊗ E. If U contains exactly one
singular point pj ∈ P (and does not contain the infinity), then let F |U be the set of
∂̄ E-meromorphic sections σdz of Ω1,0 ⊗E such that σ be ∂̄ E-meromorphic in U with
only one simple pole at pj , and such that its residue in this point be contained in
the subspace Im(Res(θ, pj)). Finally, if U contains the infinity (but no other singular
points), then let F |U be the set of all ∂̄ E-meromorphic sections σdz of Ω1,0 ⊗E with
a double pole at infinity, and no other poles in U . Notice that since in the coordinate
w = 1/z of CP1 the section dz has a double pole at infinity, this amounts to say that
σ is a ∂̄ E-holomorphic section of E in U . Writing σ =

�
k
f∞

k
σ∞

k
in the holomorphic

basis (1.30) at infinity, it is still the same thing to say that f∞
k

be a holomorphic
function in U for all k (in particular bounded at infinity). It is easy to check that this
way we defined a sheaf.

We introduce some further notation: set r̃ =
�

1 + |z|2 on C; then for a ∈ {0, 1}
we denote by r̃L̃2(Ωa,0 ⊗E) the space of sections u of Ωa,0 ⊗E such that r̃−1u ∈ L̃2.
This way we only loosen the condition on the behaviour of u at infinity with respect
to L̃2, namely that r−1u be in L̃2 in a neighbourhood of infinity. It is immediate that
there exist an inclusion of vector spaces

(4.16) L̃2(Ωa,0 ⊗ E) �−→ r̃L̃2(Ωa,0 ⊗ E).
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Lemma 4.10. – The sequence

E �−→ r̃L̃2(E)
∂̄

E

−→ L̃2(Ω0,1 ⊗ E)(4.17)

is a resolution of E.

Proof. – It is known that away from the singularities, the sequence of usual L2-sections
with respect to Euclidean metric gives a resolution of the sheaf of holomorphic sec-
tions. Therefore, we only need to show that (4.17) is a resolution at the singularities.

Consider first pj ∈ P . We first prove that (4.17) is locally exact in r̃L̃2(E). Let
E be trivialised in ∆(pj , ε) by the local sections {σj

k
} given in (1.27). As we have

seen in (1.28), in this trivialisation up to a perturbation term θ = diag(λj

k
)dz/z, with

λj

k
= (µj

k
− βj

k
)/2, and the parabolic weights are given by αj

k
= �(µj

k
)− [�(µj

k
)]. By

definition, any holomorphic section σ of Ej can be given as a sum
�

k
φj

k
σj

k
, where φj

k

are holomorphic functions defined in ∆(pj , ε), in particular bounded by a constant K.
This implies that σ ∈ L2(E), so that σ ∈ L̃2(E) if and only if θ ∧ σ ∈ L2. Recall that
L2 is defined with respect to the parabolic structure {αj

k
}, and that the perturbation

term in θ behaves as O(r−1+δ) with δ > 0, where r = |z − pj |. This implies that
�

∆(pj ,ε)
|θσ|2 ≤ K �

� rj�

k=1

|r−1+δσj

k
|2 + K �

� r�

k=rj+1

|r−1σj

k
|2

≤ K ��
� rj�

k=1

|r−1+δ|2 + K ��
� r�

k=rj+1

|r−1+α
j

k |2.

By Hypothesis 1.28, αj

k
> 0 for all j ∈ {rj + 1, . . . , r}. It then follows that this last

expression is finite, which proves that any holomorphic section of E is in L̃2. On
the other hand, if a section σ =

�
k
φj

k
σj

k
of E is meromorphic in pj , then there is

at least one k ∈ {1, . . . , r} such that φj

k
has a pole in pj . Suppose k ∈ {1, . . . , rj}:

then |φj

k
σj

k
| ∼ 1/r, and σ is clearly not in L2. Suppose now k ∈ {rj + 1, . . . , r}: then

again by Hypothesis 1.28 we have λj

k
�= 0, and therefore |θ ∧ φj

k
σj

k
| ∼ r−2+δ, and so

θ ∧ σ /∈ L2. Hence, the sections of L̃2(∆(pj , ε), E) in the kernel of ∂̄ E are exactly the
local holomorphic sections of E, in other words the local sections of E. This shows
local exactness in L̃2(E).

The next thing we show is that in ∆(pj , ε) the complex (4.17) is exact at L̃2(Ω0,1⊗
E): let vdz̄ ∈ L̃2(∆(pj , ε),Ω0,1 ⊗ E) be an arbitrary section; for ε > 0 sufficiently
small we wish to find u ∈ L̃2(∆(pj , ε), E) such that

(4.18) ∂̄ Eu = vdz̄

We can suppose without restricting generality that v = fσj

k
, with f a function defined

in ∆(pj , ε). Since σj

k
is a holomorphic section of E, solving (4.18) boils down to solving

the usual Cauchy-Riemann equation on the disk

(4.19)
∂g

∂z̄
= f
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with u = gσj

k
∈ L̃2(∆(pj , ε), E). Exactness near a singularity at a finite point is given

by the following claim:

Claim 4.11. – For f ∈ L2 the equation (4.19) has a solution g such that gr−1+δ ∈ L2

for any δ > 0. For f such that frα ∈ L2 with 0 < α < 1, (4.19) has a solution g such
that gr−1+α ∈ L2.

Proof. – The first statement is established combining the usual resolution of the
Cauchy-Riemann equation for f ∈ L2 by an L2,1-function g and the estimation (2.12).

The second one is a direct consequence of Proposition I.3 of [3]. One might also
prove it by direct estimations on the solution given by the Cauchy kernel, as in
Proposition 2.5 of [2].

Now let us come back to exactness at a singularity in a finite point: for the regular
case k ∈ {1, . . . , rj} we have f ∈ L2 and |θ∧gσj

k
| ≤ |g|r−1+δ, so we can apply directly

the first statement of the claim; for the singular case k ∈ {rj + 1, . . . , r} by definition
|θ∧fσj

k
dz̄| ∼ |f |r−1+α is in L2 with α > 0 by Hypothesis 1.28, therefore we can apply

the second statement of the claim. Remark that in this case even a stronger condition
then the assumption frα ∈ L2 of the claim holds. However, we will need the claim in
its full generality to show exactness at infinity.

We now come to exactness at infinity. Recall that ξ /∈ P̂ implies θξ is an isomor-
phism L2(Ω0,b) → L2(Ω1,b) for b ∈ {0, 1}. Therefore, the sections at infinity of the
sheaves L̃2(Ω0,b) and L2(Ω0,b) coincide. First, we consider exactness in r̃L̃2(E) =
r̃L2(E): by the definition of E, its local sections are the holomorphic linear com-
binations σ =

�
k
φ∞

k
σ∞

k
. First we check that these sections verify r−1σ ∈ L2:

since |φ∞
k

| ≤ K and |σ∞
k

| ∼ r−α
∞
k with α∞

k
> 0 by Hypothesis 1.28, we see that

r−1φ∞
k

σ∞
k
∈ L2. On the other hand, if we have a section σ =

�
k
φ∞

k
σ∞

k
in the kernel

of ∂̄ E, then for all k the function φ∞
k

is either holomorphic or meromorphic; but if
r−1σ ∈ L2, then it implies that φ∞

k
is holomorphic for all k. This proves exactness in

the first term.
Next we come to the term L2(Ω0,1⊗E): for a section vdz̄ ∈ L2(C�∆(R),Ω0,1⊗E)

we search u ∈ rL2(C � ∆(R), E) such that ∂̄ Eu = v. Suppose v = fσ∞
k

and u = gσ∞
k

again. In the coordinate w = 1/z = ρe−θ on ∆(0, 1/R) we find (for simplicity we took
R = 1 and wrote ∆ = ∆(0, 1/R) ):

�

∆
|f |2ρ2α−4|dw|2 =

�

C�∆
|f |2r−2α|dz|2 < ∞

�

∆
|g|2ρ2α−2|dw|2 =

�

C�∆
|g|2r−2−2α|dz|2 < ∞.

On the other hand, the Cauchy-Riemann equation
∂g

∂z̄
= f

transforms into
∂g

∂w̄
= − f

w̄2
.
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and we conclude applying Claim 4.11 to −f/w̄2.

We can also show the counterpart of Lemma 4.10 for F :

Lemma 4.12. – The complex

(4.20) F �−→ r̃L̃2(Ω1,0 ⊗ E)
∂̄

E

−→ L2(Ω1,1 ⊗ E)

is a resolution of F .

Proof. – Away from the singularities this is also given by classical elliptic theory,
therefore we focus our attention on a neighbourhood of a singular point.

Let us first treat the case of a singularity at a finite point pj ∈ P . A local section
of F is then by definition a section σ =

�
k
φj

k
σj

k
dz such that φj

k
is holomorphic for

k ∈ {1, . . . rj} and has a pole of order at most one in pj for k ∈ {rj +1, . . . r}. From the
form of the parabolic structure, it follows that |φj

k
σj

k
| ∼ O(1) for k ∈ {1, . . . rj} and

|φj

k
σj

k
| ∼ O(r−1+α

j

k) for k ∈ {rj + 1, . . . r}. By Hypothesis 1.28 we have αj

k
> 0, thus

σ ∈ L2(Ω1,0⊗E). On the other hand, if a section σ =
�

k
φj

k
σj

k
dz of Ω1,0⊗E satisfies

∂̄ Eσ = 0, but σ /∈ L2(Ω1,0 ⊗ E) then either φj

k
has a pole for some k ∈ {1, . . . rj} or

φj

k
has an at least double pole for some k ∈ {rj + 1, . . . r}, and therefore σ is not a

local section of F . This shows exactness in the first term.
Consider now exactness at the second term in ∆(pj , ε): here we need to solve

(4.19), for f ∈ L2 with the solution g in L2 in the regular case; and for f such that
frα ∈ L2 with the solution g such that grα ∈ L2 in the singular case. Both follow
from Claim 4.11.

There now remains to show exactness at infinity: this is done similarly to the case
of E.

4.3.2. Hypercohomology and L2
-cohomology. – We can use the results of the

last section in order to deduce the following:

Proposition 4.13. – The first L2-cohomology V̂ξ = L2H1(D��
ξ
) of (4.10) is isomor-

phic to the hypercohomology H
1( E

θξ∧−−→ F ).

Proof. – By Lemmas 4.10 and 4.12, θξ defines a morphism of resolutions

(4.21) L̃2(Ω0,1 ⊗ E)
θξ∧ �� L2(Ω1,1 ⊗ E)

r̃L̃2(E)
θξ∧ ��

∂̄
E

��

r̃L̃2(Ω1,0 ⊗ E)

∂̄
E

��

E
θξ∧ ��

��

��

F
��

��
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Therefore, by general theory, the hypercohomology of the sheaf map E
θξ∧−−→ F iden-

tifies to the cohomology of the single complex formed by the double complex Dr

ξ
:

L̃2(Ω0,1 ⊗ E)
θξ∧ �� L2(Ω1,1 ⊗ E)

r̃L̃2(E)
θξ∧ ��

∂̄
E

��

r̃L̃2(Ω1,0 ⊗ E).

∂̄
E

��
(4.22)

We show that the first cohomology of the single complex of this double complex is
isomorphic to the first cohomology of the single complex associated to the double
complex Dξ:

L̃2(Ω0,1 ⊗ E)
θξ∧ �� L2(Ω1,1 ⊗ E)

L̃2(E)
θξ∧ ��

∂̄
E

��

L̃2(Ω1,0 ⊗ E).

∂̄
E

��
(4.23)

We define a map
ι : H1(Dξ) −→ H1(Dr

ξ
)

as follows: represent a cohomology class of H1(Dξ) by a couple

(κdz̄, νdz) ∈ L̃2(Ω0,1 ⊗ E)⊕ L̃2(Ω1,0 ⊗ E),

and use the inclusion (4.16) to map it into the cohomology class represented by the
same couple (κ, ν) in H1(Dr

ξ
). This is well defined, since if (κdz̄ + ∂̄ Eλ, νdz + θξλ) is

a couple in H1(Dξ) representing the same class as (κdz̄, νdz), for λ ∈ L̃2(E), then in
particular λ ∈ r̃L̃2(E), and so the two couples are cohomologous in H1(Dr

ξ
) as well.

This also shows that ι is injective.
We only need to prove surjectivity: suppose we have a couple (κdz̄, νdz) ∈ L̃2(Ω0,1⊗

E)⊕ r̃L̃2(Ω1,0⊗E) representing a class in H1(Dr

ξ
). It is clearly sufficient to prove that

this class can be represented by a couple vanishing in a neighbourhood of infinity. Since
θξ is an isomorphism at infinity, we can put (restricting to a smaller neighbourhood of
infinity if necessary) λ = θ−1

ξ
(νdz). This is then a section in r̃L̃2(E), and the couple

(κdz̄ − ∂̄ Eλ, νdz − θξλ) is cohomologous to (κdz̄, νdz) in H1(Dr

ξ
). By definition, the

(1, 0)-term of this couple vanishes at infinity. The same thing is true for the (0, 1)-part,
because θξ(κdz̄ − ∂̄ Eλ) = −∂̄ E(νdz − θξλ) = 0 near infinity and θξ is an isomorphism
there. This finishes the proof of the proposition, for the L2-cohomology of (4.10) is
by Proposition 4.6 the cohomology of the single complex associated to Dξ.

4.3.3. The spectral curve. – In the explicit identification of the hypercohomology,
the following notions will be of much importance. Recall that (up to wedge product
by dz) θξ is a meromorphic section of End(E) over CP1.
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Definition 4.14. – For ξ ∈ Ĉ � P̂ , the set of zeros of det(θξ) is called the spectral
set corresponding to ξ. We denote it by Σξ.

Lemma 4.15. – For each ξ ∈ Ĉ � P̂ , the spectral set is an effective divisor of CP1,
in other words a finite set of points with multiplicities in N.

Proof. – The section det(θξ) of End(V ) is holomorphic with respect to ∂̄ E. We only
need to check it does not vanish identically for any ξ. Suppose there exists ξ such that

det(θξ(q)) = 0

for all q ∈ C � P . In different terms, θ has a constant eigenvalue over C � P ; in
particular, the residue of this eigenvalue at infinity is 0. This contradicts λ∞

k
�= 0 for

all k ∈ {1, . . . , n} (see (2) of Hypothesis 1.28).

A basic property is the following.

Claim 4.16. – The points of Σξ define a multi-valued meromorphic function of ξ ∈
Ĉ.

Proof. – By assumption, det(θξ(z)) depends holomorphically on ξ ∈ Ĉ and mero-
morphically on z. We conclude using the implicit function theorem, namely that the
solutions of a meromorphic equation depending holomorphically on a variable are
meromorphic in this variable.

Definition 4.17. – The graph of the multi-valued meromorphic function

Ĉ � P̂ −→ CP1

ξ �−→ Σξ

is called the spectral curve of the Higgs bundle. It is denoted by Σ.

This object was first studied by N. Hitchin in Section 5 of [15]. By Claim 4.16 the
spectral curve is an analytic subvariety

Σ
−→ (Ĉ � P̂ )×CP1,

of (complex) dimension one. (Here  stands for inclusion.) Moreover, by construction
it is naturally a branched cover of Ĉ via projection to the first factor.

Here is an important property.

Proposition 4.18. – The spectral curve Σ is reduced; in other words, det(θξ) van-
ishes only up to the first order except for a finite set of points of Σ.
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Proof. – Suppose Σ has infinitely many points (q, ξ) where det(θξ) vanishes up to
order higher than one. Since Σ has a natural extension into a compact curve in
CP1×�CP

1
(see Section 4.4), this means that for any ξ some zero q(ξ) ∈ Σξ of θξ has

multiplicity higher than one; in different terms, some irreducible component of Σ has
multiplicity higher than one. In particular, as ξ →∞, at least two of the qk(ξ) must
have the same Laurent expansions. This is impossible by (4.37) and the assumption
λj

k
�= λj

k� for k �= k� made in (1) of Hypothesis 1.28.

4.3.4. Explicit computation of the hypercohomology. – Let us now compute
the hypercohomology of

(4.24) E
θξ∧−−→ F

Consider arbitrary algebraic resolutions of the sheaves E and F such that θξ∧ induce
a morphism of resolutions

(4.25) K0,1
θξ∧ �� K1,1

K0,0
θξ∧ ��

δ

��

K1,0

δ

��

E
θξ∧ ��

��

��

F .
��

��

For example, one might take resolutions by Čech cochains. By definition, the first
filtration Kp of the single complex associated to (4.25) is given by

K0 = (K0,1 ⊕K0,0)⊕ (K1,1 ⊕K1,0)

K1 = K1,1 ⊕K1,0.

The first page of the spectral sequence corresponding to this filtration is given by

(4.26) (H 0)[1](CP1) (H 1)[1](CP1)

(H 0)[0](CP1)

δ

��

(H 1)[0](CP1)

δ

��

where H j is the j-th cohomology sheaf of the map (4.24), and the vertical sequences
come from resolutions

H 0 �−→ (H 0)[0]
δ−→ (H 0)[1]

H 1 �−→ (H 1)[0]
δ−→ (H 1)[1]

by taking global sections. Let us now describe explicitly the cohomology sheaves. Re-
call from definition 4.14 that q ∈ Σξ are exactly the points where the map θξ(q) :
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E(q) → E(q) is not surjective. After all this preparation, we have the following char-
acterisation:

Lemma 4.19. – The cohomology sheaf H 0 of order 0 of the sheaf map (4.24) is 0. If
det(θξ) has a zero of order 1 in all points of q ∈ Σξ, then the first cohomology sheaf H 1

is the sky-scraper sheaf Rξ whose stalk over a point q ∈ Σξ is the finite-dimensional
subspace coKer(θξ(q)) ⊂ E(q), and all other stalks are 0.

Remark 4.20. – The cokernel of θξ(q) is naturally identified with the orthogonal of
the image with respect to the fiber metric, or, which is the same thing, with the kernel
of θ∗

ξ
(q). This allows us to think of coKer(θξ(q)) as a subspace of E(q).

Proof. – Let us start with H 0: suppose we have a section φ ∈ E|U on an open set
U ⊂ CP1 such that θξφ = 0. Since on the open subset U � Σξ the map θξ : E(q) →
E(q) is an isomorphism, we deduce that φ = 0 on this set. But a holomorphic section
vanishing on an open set vanishes everywhere, thus φ = 0 on all of U . This gives the
first statement of the lemma.

We now come to H 1: let U ⊂ CP1 be an open subset. If U ∩Σξ = ∅ then θξ is an
invertible holomorphic endomorphism of E on U , therefore H 1|U = 0. Suppose now U
contains exactly one point q ∈ Σξ. Then, for any section φ ∈ E|U the vector (θξφ)(q)
lies by definition in the image of θξ(q), which is just the orthogonal of coKer(θξ(q)).
Therefore, this latter is contained in H 1|U . On the other hand, the condition that θξ

has a zero of order 1 in q means that any section ψ ∈ E|U such that ψ(q)⊥coKer(θξ(q))
is in Im(θξ). This proves the second statement.

Remark 4.21. – By Proposition 4.18, the condition of det(θξ) having a first-order
zero in all points of Σξ is generic in ξ: it is verified for all ξ except for twice the
eigenvalues of θ(q) for the finite number of points q of Σ of multiplicity higher than
one. For the discrete set of ξ where there exists a q ∈ Σξ with a multiple zero, one
introduces the flag

E(q) = F0E(q) ⊇ coKer(θξ(q)) = F1E(q) ⊇ · · · ⊃ Frq
E(q) = {0},

the subscript of F being the order of zero of θ∗
ξ
(q) along the given subspace, and proves

that the cohomology sheaf H 1|U over an open set containing q as the only element of
Σξ is in this case equal to the jet space

rq−1�

m=1

FmE(q).

The assumptions that for fixed j ∈ {1, . . . , n} all the λj

k
be different for k ∈ {rj +

1, . . . , r} and for fixed l ∈ {1, . . . , n�} all the λ∞
k

be different for k ∈ {1 + al, . . . al+1}
(see (1) and (2), Hypothesis 1.28), mean that in the punctures of �CP

1
the limit states

have first-order zeros.
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Now since a resolution of the sky-scraper sheaf Rξ is given by

Rξ �−→ Rξ → 0,

the first page of the hypercohomology spectral sequence (4.26) becomes

0 0

0

δ

��

�
q∈Σξ

coKer(θξ(q)).

δ

��

All this implies the following:

Proposition 4.22. – The hypercohomology spectral sequence corresponding to the
first filtration collapses in its first page, and we have a natural isomorphism

H
1( E

θξ∧−−→ F ) �
�

q∈Σξ

coKer(θξ(q)).

Proof. – This is a consequence of the standard fact that a spectral sequence collapses
as soon as non-zero elements only appear in one of its rows. Furthermore, an explicit
isomorphism can be given as follows: fix a radially invariant bump-function χ on the
unit disk ∆ ⊂ C, equal to 0 on the boundary of ∆ and to 1 in 0, and such that
dχ is supported on the annulus 1/3 < r < 2/3. For any complex number a �= 0
set χa(z) = χ(z/a). Now choose ε0 > 0 so that the distance in C between any two
distinct points of the finite set P∪Σξ is at least 3ε0. For any (vq)q∈Σξ

∈ ⊕coKer(θξ(q))
consider the section vε0 =

�
q∈Σξ

vqχε(z − q). Because dχε0 is supported on the
annulus ε0/3 < r < 2ε0/3, the section ∂̄ E(vε0dz) ∈ Ω1,1 ⊗ E is supported outside a
neighbourhood of Σξ. Since this latter is the zero set of det(θξ), it then follows that
there exists a section tε0dz̄ ∈ Ω0,1 ⊗ E such that θξ ∧ (tε0dz̄) + ∂̄ E(vε0dz) = 0, and
tε0 is supported on the support of ∂̄ Evε0 , that is outside a neighbourhood of Σξ and
of infinity. The couple (vε0dz, tε0dz̄) therefore defines a cocycle in the single complex
associated to Dξ, and using Proposition 4.13 we can define a map

Ψξ :
�

q∈Σξ

coKer(θξ(q)) −→ H1(Dξ) = H
1( E

θξ∧−−→ F )

(vq)q∈Σξ
�−→ [(vε0dz, tε0dz̄)],(4.27)

where [(vε0dz, tε0dz̄)] stands for the cohomology class in H1(Dξ) of this couple.
We need to show that this map does not depend on ε0 > 0 chosen, provided

that it is sufficiently small as explained above. Consider therefore the section vε1 for
ε1 < ε. Since in the union of the disks of radius ε1/3 around the elements of Σξ we
have vε1 = vε0 , and θξ is invertible outside this set, there exists a section u ∈ Γ(E)
such that θξu + vε1dz = vε0dz. Then, as in the proof of Proposition 4.13, the couple
(vε0dz, tε0dz̄) is equal to (vε1dz + θξu, tε1dz̄ + ∂̄ Eu), and the two couples define the
same cohomology class in H1(D). This then allows us to fix ε0 > 0 sufficiently small
once and for all.
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In a similar way, one can prove that Ψξ is independent of the actual cut-off function
χ as well.

Finally, the inverse of Ψξ can be obtained as follows: let the cohomology class
η ∈ H1(Dξ) be represented by a 1-form η1,0dz + η0,1dz̄, where η1,0 and η0,1 are
sections of E. Then we have

(4.28) Ψ−1
ξ

η = (evalqη
1,0)q∈Σξ

,

where evalqη1,0 stands for evaluation of the section η1,0 in the point q.

Remark 4.23. – Notice that the formula (4.28) is independent of the 1-form rep-
resentative of η; in particular, the (1, 0)-part of the harmonic representative of a
cohomology class Ψξ(vq)q∈Σξ

vanishes in the q ∈ Σξ where vq = 0.

4.4. Extension of the Higgs bundle over the singularities

The interpretation of the holomorphic bundle underlying the transformed Higgs
bundle in terms of hypercohomology established in the previous section allows us to
extend it over the singular points P̂ ∪ {∞} in the parameter space �CP

1
. At each

puncture, we need to do two things: first, define the fiber of the over it. This then
extends the holomorphic structure induced by ∂̄ Ê over the puncture in a natural way:
a holomorphic section through the singular point will be a continuous section in a
neighbourhood of it, that is holomorphic in the punctured neighbourhood. (Continuity
is defined at the same time as the exceptional fiber.) The second thing to do then
is to give an explicit basis of holomorphic sections with respect to this extended
holomorphic structure. It is important to note that the extensions i Ê we define here
are not the transformed extensions given in Definition 3.11, but rather ones induced
by the original Higgs bundle, and for which computations are more comfortable. This
is why we will call i Ê the induced extension. We study the link between these two
extensions in Section 4.7.

4.4.1. Extension to logarithmic singularities. – First, we consider the case of
points of the set P̂ . We shall now describe the extension i Ê over such a point. Notice
first that as the deformation θξ has a well-defined extension over these points, its
hypercohomology spaces are also well-defined there. In particular, in view of Propo-
sition 4.13, we may extend the V̂ by putting

V̂ξl
= H

1( E
θξ

l
∧

−−−→ F )

This is the definition of the fiber over such a point.
In order to give explicit representatives of holomorphic sections, let us examine

what happens to the fiber V̂ξ when ξ approaches one of the points of P̂ = {ξ1, . . . , ξn�},
say ξl. First, let us find the spectral points.
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Claim 4.24. – As ξ → ξl, exactly ml = al+1− al branches of the meromorphic func-
tions qk ∈ Σξ converge to infinity, while all others remain in a bounded region of C.
Moreover, labelling the spectral points converging to infinity by q1+al

(ξ), . . . , qal+1(ξ),
they admit the asymptotic behaviour

(4.29) qk(ξ) =
2λ∞

k

(ξ − ξl)
+ O(|ξ − ξl|−δ),

where δ > 0 can be chosen arbitrarily small. In particular, the branches converging to
∞ ∈ CP1 of the spectral curve are not ramified over the point ξl.

Proof. – As it can be seen from (1.31), exactly ml of the eigenvalues of the leading
order term near infinity of the Higgs field θξ converges to 0. Recall from Definition 4.14
that Σξ is the vanishing set of det(θξ). This implies that (counted with multiplicities)
exactly ml of the points q(ξ) ∈ Σξ converge to infinity; label these by 1+al, . . . , al+1.
All the other spectral points remain therefore bounded. By assumption (see (1.31))
in a holomorphic trivialisation of the bundle E in a neighbourhood of ∞ ∈ CP1,
ignoring the factor dz the field θξ is of the form

1

2
(A− ξId) +

C

z
+ O(z−2),

where O(z−2) stands for holomorphic terms independent of ξ. Suppose first that the
field is exactly equal to the polar part in this formula, in other words the O(z−2) term
is equal to 0. Then the solutions q̃1(ξ), . . . , q̃r(ξ) are clearly given by

q̃k(ξ) =
2λ∞

k

(ξ − ξl)
.

In general, since det(θξ) is holomorphic in z, we can apply Rouché’s theorem to
compare the position of the zeros of det(θξ) with those of the polar part studied
above. This yields that the solutions qk(ξ) ∈ C of det(θξ)(q(ξ)) = 0 near infinity are
close to q̃k(ξ); more precisely for any δ > 0, there exists K > 0 such that for all |ξ−ξl|
sufficiently small we have

|qk(ξ)− q̃k(ξ)| < K|ξ − ξl|−δ.

Remark here that as ξ → ξl the behaviour of |ξ− ξl|−δ is small compared to |q̃k(ξ)| =
c|ξ − ξl|−1. In other words, we have the expansion (4.29) so that qk(ξ) converges
indeed to infinity asymptotically proportionally to (ξ− ξl)−1 for al < k ≤ al+1, while
all other holomorphic families of zeros of det(θξ) remain bounded.

The condition that the λ1+al
, . . . ,λal+1 are all distinct (see (2), Hypothesis 1.28)

now implies that there is no splitting of the solutions at infinity, that is to say locally
near ξ = ξl any qk(ξ) with al < k ≤ al+1 itself forms a meromorphic function without
branching. Indeed, the occurrence of a branching at infinity implies that the Puiseux
series of the corresponding solutions agree, which is not the case here because of the
asymptotic behaviours (4.29) with different leading coefficients.
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Now, recall that for fixed ξ ∈ Ĉ � P̂ , in the explicit description of V̂ξ given in the
proof of Proposition 4.22, we considered the zeros qk(ξ) for k = 1, . . . , r of det(θξ)(q),
and for each qk(ξ) an element vk(ξ) of the subspace coKer(θξ)qk(ξ) ⊂ Eqk(ξ). Then we
extended each vk(ξ) holomorphically into a neighbourhood of qk(ξ), and multiplied
the section we obtained by a bump-function equal to 1 in a small disk around qk(ξ)
and to 0 on the boundary of a slightly larger disk. This section of F constituted the
(1, 0)-part of the element in H

1( E
θξ−→ F ) � V̂ξ, and we chose the (0, 1)-part in such

a way that the couple be in Ker(D��
ξ
). In what follows, we wish to do the same thing,

but for all ξ in a neighbourhood of ξl at the same time.
Let us consider one meromorphic family of zeros qk(ξ) with al < k ≤ al+1. We

have just seen that qk(ξ) converges to ∞ as ξ → ξl; therefore, we need to take a
holomorphic section of E at infinity, extending an element of the cokernel of θξl

. One
can check from formula (1.31) that this cokernel is equal to the vector subspace of
the fiber F∞ = E∞ ⊗ dz generated by {σ∞

m
(∞)dz}al+1

m=1+al
, where {σ∞

m
}r

m=1 is the
holomorphic trivialisation of E at infinity considered in (1.30). Furthermore, since the
metric h is mutually bounded with the diagonal model

diag(|z|−2α
∞
k ),

the orthogonal of the image of θξ in E(qk(ξ)) converges to σ∞
k

(∞) as ξ → ξl. Let ςk(z)
be a holomorphic extension of σ∞

k
(∞) to a neighbourhood of infinity such that for any

ξ ∈ Ĉ sufficiently close to ξl, the vector ςk(qk(ξ))dz be in the cokernel of θξ(qk(ξ)).
Such an extension exists because θξ varies holomorphically with ξ and by Claim 4.24
qk(ξ) is a genuine (single-valued) meromorphic function of ξ. A holomorphic section
σ̂k of Ê around ξl is then given by the section constructed as follows: for ξ sufficiently
close to ξl such that ςk is defined in qk(ξ), set

(4.30) vk(z, ξ) = χε0(ξ−ξl)−1(z − qk(ξ))ςk(z),

where we recall from the proof of Proposition 4.22 that χε0(ξ−ξl)−1 is a bump-function
on a disk centered at 0 and of diameter ε0|ξ − ξl|−1 with ε0 sufficiently small only
depending on the parameters of the initial connection, fixed once and for all. (The
importance of this choice will become clear in Theorem 4.35.) Also, let tk(z, ξ)dz̄ ∈
Γ(C, E ⊗ Ω0,1) be the unique solution of the equation

(4.31) ∂̄ Evk(z, ξ)dz = −θξtk(z, ξ)dz̄.

Then consider the cohomology class σ̂l

k
(ξ) in H

1( E
θξ∧−−→ F ) � V̂ξ of the couple

(vk(z, ξ)dz, tk(z, ξ)dz̄) defined as above. Since the choice of ςk is independent of ξ

and moreover θξ and qk(ξ) depend holomorphically on ξ, it follows that σ̂l

k
is ∂̄ Ê-

holomorphic in ξ outside of ξl.

Definition 4.25. – Let the extension i Ê of Ê to ξl be defined by the holomorphic
trivialisation given by the sections σ̂l

k
for all choice of k ∈ {1 + al, . . . , al+1} and for

some holomorphic extension ςk of σ∞
k

(∞) such that for any ξ ∈ Ĉ sufficiently close
to ξl, we have ςk(qk(ξ))dz ∈ coKer(θξ(qk(ξ))).
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4.4.2. Extension to infinity. – In order to define the fiber over infinity, we first
rephrase what we have done until now to obtain the holomorphic bundle Ê = (V̂ , ∂̄ Ê)
underlying the transformed Higgs bundle: we considered the sheaves E and F over
CP1, we pulled them back to CP1 × Ĉ by the projection map π1 on the first factor,
and formed the sheaf map

π∗1 E θ•−→ π∗1 F
equal to θξ on the fiber CP1 × {ξ}. We then defined the vector bundle

V̂• = H
1(π∗1 E θ•−→ π∗1 F ),

over Ĉ � P̂ and we let ∂̄ Ê be the partial connection induced by d̂
0,1

. In what follows,
we keep on writing E and F for their pull-back to the product, whenever this does not
cause confusion. Notice that θ• is holomorphic in both coordinates. We wish to extend
the hypercohomology of this sheaf map over infinity; we will be done if we can extend
the map θ• over infinity in a holomorphic manner. Indeed, the hypercohomology of a
holomorphic family of sheaf morphisms is a holomorphic vector bundle over the base
space of the deformations, in our case �CP

1
. Notice that by definition θξ = θ−ξ/2dz∧,

so it becomes singular as we let ξ converge to infinity. However, we can slightly change
the sheaf F in such a way that there exist a natural extension of θ•. Again, we follow
[16] (Section 4).

Consider the projections πj to the j-th coordinate in the product manifold CP1×
�CP

1
, and set F̃ = π∗2 O�CP

1(1)⊗ F . Recall that O�CP
1(1) admits two global holomor-

phic sections s0 and s∞, characterised by the fact that if Û0 and Û∞ are the standard
neighbourhoods of 0 ∈ �CP

1
and ∞ ∈ �CP

1
with coordinates ξ and ζ = ξ−1 vanishing

in 0 and ∞ respectively, then we have

s0(ξ) = ξ s∞(ξ) = 1 in Û0(4.32)

s0(ζ) = 1 s∞(ζ) = ζ in Û∞.(4.33)

Notice that here ξ is the standard coordinate of C we used to define θξ. Therefore for
η ∈ �CP

1
we put

θ̃η : E −→ F̃(4.34)

θ̃η = s∞(η)⊗ θ − 1

2
s0(η)⊗ dz∧,(4.35)

We remark that by (4.32), on Û0 = C we have θ̃ξ = θ − ξ/2dz∧ = θξ, so θ̃• is indeed
an extension of the deformation θ• to infinity. Therefore, in what follows we keep on
writing θ for θ̃ whenever this does not cause any confusion. In the same manner, we
see that

θ∞ = −1

2
s0(ξ)ξ=∞ ⊗ dz∧ : E −→ F ⊗ O�CP

1(1)ξ=∞.

From the definition of the sheaves E and F one can see that the cohomology sheaves
of this map are H 0(dz∧) = 0 and H 1(dz∧) = R∞, the sky-scraper sheaf supported in
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points of P and having stalk equal to s0(ξ)ξ=∞⊗coKer(Res(θ, p)) in p ∈ P . Therefore,
as in Proposition 4.22, we obtain that the first hypercohomology space of this map
equals s0(ξ)ξ=∞⊗ (⊕p∈P coKer(Res(θ, p))), and all its other hypercohomology spaces
vanish. The extension of the vector bundle V̂ to infinity is then given by setting
V̂η = H

1( E
θη−→ F̃ ) for all η ∈ �CP

1
� P̂ . In particular, any local section at ζ = 0 of Ê

is a family of sections of the sheaf F̃ , and therefore can be written

(4.36) s0(ζ)⊗ ψ(z, ζ),

where ψ(z, ζ) are sections of F depending on the parameter ζ.

Definition 4.26. – The extension i Ê of the holomorphic structure of Ê to infinity is
the extension whose holomorphic sections at infinity can be written as in (4.36), with
ψ(z, ζ) holomorphic in ζ.

We come to the explicit description of a holomorphic section of i Ê at ξ = ∞ with
respect to this extension. We make a similar construction as in the case of logarithmic
singularities: first, we make a basic remark.

Claim 4.27. – As ξ → ∞, all zeros of det(θξ) converge to one of the points of P .
Moreover, supposing q(ξ) → pj, we have the asymptotic behaviour

(4.37) q(ξ) = pj + 2
λj

k

ξ
+ O(ξ−2+δ),

where λj

k
is a non-vanishing eigenvalue of the residue of θ at pj and δ > 0 can be

chosen arbitrarily small. In particular, the spectral curve is not branched over the
point ξ = ∞.

Proof. – Let us consider the deformation of the Higgs field in terms of the coordinate
ζ = ξ−1 in Û∞. As we see from (4.33) and (4.35), it is given by

θζ = ζθ − 1

2
dz ∧ .

Notice that as ζ → 0, the first term on the right-hand side in a fixed point z ∈ CP1
�P

becomes insignificant, and θζ(z) converges to −1/2dz∧. Therefore, for |ζ| sufficiently
small, all zeros of det(θξ) are in a neighbourhood of P . In order to determine the
asymptotic of this convergence, remember that in a holomorphic trivialisation of E
in some neighbourhood of pj the Higgs field is equal to the model (1.28) up to terms
in O(z − pj). As in the case ξ → ξl, the solutions are close to those of the diagonal
model det(diag(θζ(q̃))) = 0 (see Claim 4.24). This equation is

Πr

k=1

�
ζλj

k

q̃ − pj

− 1

2

�
= 0.
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The solutions q̃j

k
(ζ) are clearly given by

q̃j

k
(ζ) = pj + 2ζλj

k
= pj + 2

λj

k

ξ
.

Here the upper index of the solution stands for the point pj ∈ P it converges to, and
the lower index k ∈ {rj + 1, . . . , r} is determined by the extension of the cokernel of
θζ at the point. An application of Rouché’s theorem gives again the claim.

Finally, Σ is not ramified at ξ = ∞ because this would imply that at least two of
the qk(ξ) admit the same Puiseux expansion, which is impossible because of (4.37)
and (1) of Hypothesis 1.28.

Furthermore, by Claim 4.16 the points of Σξ define a multi-valued meromorphic
function in the variable ξ near infinity. Let qj

k
(ξ) ∈ Σξ be such a holomorphically

varying zero of det(θξ), and suppose it converges to pj ∈ P as ξ →∞. We can let the
index k to vary from rj + 1 to r. Consider the diagram

Σ� �


��

CP1 × �CP
1

π1

��

π2

��
CP1 �CP

1

where  is inclusion and the two other arrows are canonical projections. In order
to define a local holomorphic section of the transformed bundle, we need to choose
elements of coKer(θξ(q

j

k
(ξ))) for all ξ, such that they depend holomorphically with ξ.

It is clear that this is equivalent to choose a local holomorphic section ψ of ∗π∗1 F over
the branch (qj

k
(ξ), ξ) near the point (pj ,∞) such that for all ξ, we have ψ(qj

k
(ξ), ξ) ∈

coKer(θξ(q
j

k
)). Since any local section of F near pj multiplied by (z − pj) is a local

section of the sheaf E⊗ dz, the section (qj

k
(ξ)− pj)ψ of ∗π∗1 F near (pj ,∞) is in fact

a local holomorphic section of ∗π∗1( E ⊗ dz) on the branch (qj

k
(ξ), ξ) of the spectral

curve Σ ⊂ CP1 × �CP
1
. Furthermore, because of Claim 4.27, (qj

k
(ξ), ξ) �→ qj

k
(ξ) is a

simple cover near pj without branching. In particular, for all q sufficiently close to pj

there exists a unique ξ(q) such that q = qj

k
(ξ(q)). Therefore, (qj

k
(ξ)− pj)ψ(qj

k
(ξ), ξ) is

the lift from CP1 of a section ςj

k
(z)dz of E⊗Ω1 in a neighbourhood of pj , such that

for all q we have

(4.38) ςj

k
(q)dz ∈ coKer(θξ(q)(q)).

In particular, ςj

k
(pj)dz ∈ coKer(θ∞(pj)) = Esing ⊗ dz, as it can easily be checked

using formula (4.35). Conversely, we may consider any section ςj

k
(z) satisfying (4.38),

lift ςj

k
(z)dz to a section of ∗π∗1( E⊗ dz), and divide the result by q − pj to obtain ψ.
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Fix now for all k = {rj +1, . . . , r} a section ςj

k
satisfying (4.38). All that we have said

above motivates the definition:

(4.39) vj

k
(z, ξ) = χε0ξ−1(z − qj

k
(ξ))

ςj

k
(z)

z − pj

⊗ s0(ξ),

where we recall again from the proof of Proposition 4.22 that χε0ξ−1 is a bump-function
over the disk of radius ε0/|ξ|. Remark that evaluation of vj

k
(z, ξ)dz in z = qk(ξ) is by

definition in the cokernel of θξ. Also, as in the case of logarithmic singularities, for
all ξ close to infinity, let tj

k
(z, ξ) be the unique section of E satisfying the equation

(4.31) for all z, in other words such that D��
ξ
(vj

k
(z, ξ)dz, tj

k
(z, ξ)dz̄) = 0. A holomorphic

trivialisation of i Ê at infinity is then given by the D��
ξ
-harmonic representatives σ̂∞

k
(ξ)

of the couples (vj

k
(z, ξ)dz, tj

k
(z, ξ)dz̄) for all k = {rj +1, . . . , r} and all j = {1, . . . , n}.

4.5. Singularities of the transformed Higgs field

In this part, we describe the eigenvalues of the singular parts of the transformed
Higgs field θ̂H at the singularities. This establishes points (4), (6) and (7) of Theo-
rem 1.32.

4.5.1. The case of a logarithmic singularity. – Recall from (4.13) that the trans-
formed Higgs field is defined as multiplication by the coordinate −z/2 of a harmonic
spinor, followed by projection onto harmonic forms.

Lemma 4.28. – The set of eigenvalues of the transformed Higgs field θ̂H on the fiber
ÊH

ξ
(with multiplicities) is equal to −Σξ/2 (with multiplicities), where Σξ is the set

of zeros of det(θξ).

Proof. – Let a cohomology class in the space ÊH

ξ
= H1(Dξ) (see 4.23) be represented

by 1-forms (v(ξ)dz, t(ξ)dz̄) ∈ (Ω1,0 ⊕ Ω1,0) ⊗ E. Since this spinor is not necessarily
harmonic, first of all we need a technical result:

Claim 4.29. – Let (v(ξ)dz, t(ξ)dz̄) ∈ (Ω1,0 ⊕ Ω1,0) ⊗ E be annihilated by D��
ξ
. Then

we have
π̂H

ξ
(zπ̂H

ξ
(v(ξ)dz, t(ξ)dz̄)) = π̂H

ξ
(z(v(ξ)dz, t(ξ)dz̄)).

In words, the action of the Higgs field can be computed on any representative section
in Ker(D��

ξ
).

Proof. – This is straightforward: we need to show

π̂H

ξ
(z(Id− π̂H

ξ
)(v(ξ)dz, t(ξ)dz̄)) = 0,

which is equivalent to

z/∂��
ξ
Gξ(/∂��ξ )∗(v(ξ)dz, t(ξ)dz̄)⊥ÊH

ξ
.
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Now the only thing to remark is that if (v(ξ)dz, t(ξ)dz̄) ∈ Ker(D��
ξ
), then this implies

that
(/∂��

ξ
)∗(v(ξ)dz, t(ξ)dz̄) = (D��

ξ
)∗(v(ξ)dz, t(ξ)dz̄) ∈ Ω0 ⊗ E,

and by diagonality of Gξ with respect to the decomposition S+ ⊗ E = (Ω0 ⊗ E) ⊕
(Ω2 ⊗ E) (see Lemma 2.24), also

Gξ(/∂��ξ )∗(v(ξ)dz, t(ξ)dz̄) ∈ Ω0 ⊗ E.

Therefore we have

/∂��
ξ
Gξ(/∂��ξ )∗(v(ξ)dz, t(ξ)dz̄) = D��

ξ
Gξ(D

��
ξ
)∗(v(ξ)dz, t(ξ)dz̄),

and we conclude using the commutation relation

[z, D��
ξ
] = 0

combined with Im(D��
ξ
)⊥ÊH

ξ
.

The proof of the lemma is now immediate: via the map (4.28),

Ψ−1
ξ

(z(v(ξ)dz, t(ξ)dz̄)) = (q · evalqv(ξ))q∈Σξ

multiplication by z goes over to multiplication by q in the point q ∈ Σξ, and via (4.27)
this is then re-transformed into multiplication by the constant q on the component of
v(ξ) localised near q.

Theorem 4.30. – The eigenvalues of the transformed Higgs field θ̂H have first-order
poles in the points of P̂ . Furthermore, the non-vanishing eigenvalues of its residue in
the puncture ξl are equal to {−λ∞1+al

, . . . ,−λ∞
al+1

}, where {λ∞1+al
, . . . ,λ∞

al+1
} are the

eigenvalues of the residue of the original Higgs field θ at infinity, restricted to the
eigenspace of A corresponding to the eigenvalue ξl.

Proof. – As we have seen in (4.29), the point qk(ξ) ∈ Σξ converges to infinity at the
first order with 2λ∞

k
(ξ− ξl)−1 as ξ → ξl, where k ∈ {1+al, . . . , al+1} is an index such

that the eigenvalue λ∞
k

of the residue term of θ at infinity appears in the eigenspace
of the second order term A corresponding to the eigenvalue ξl. By Lemma 4.28, the
transformed Higgs field has a logarithmic singularity at ξl, and the corresponding
residue is −λ∞

k
.

4.5.2. The case of infinity. – We wish to show the following.

Theorem 4.31. – The transformed Higgs field has a second order singularity at in-
finity. The set of eigenvalues of its leading order term is {−p1/2, . . . ,−pn/2}, where
{p1, . . . , pn} = P is the set of punctures of the original Higgs bundle. The multiplicity
of the eigenvalue −pj/2 is equal to r−rj = rk(Res(θ, pj)). The set of eigenvalues of the
residue of the transformed Higgs field restricted to the eigenspace of the second-order
term corresponding to the eigenvalue −pj/2 is {−λj

k
}k∈{rj+1,...,r}.
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Proof. – In Claim 4.27 we have proved that as ζ → 0, all zeros of det(θζ) must
converge to one of the points of P . Furthermore, the expansion of a spectral point
qk converging to pj is (4.37). By Lemma 4.28, on the corresponding components θ̂H

is just multiplication by −Σξdξ/2. Hence, we see that the eigenvalues of the leading-
order term of the transformed Higgs field are equal to {−pj/2}j=1,...,n, while those of
its first-order term are {−λj

k
}j=1,...,n;k=rj+1,...,r.

4.6. Parabolic weights

Here we compute the parabolic weights of the transformed Higgs bundle with
respect to the induced extension.

4.6.1. The case of infinity

Theorem 4.32. – The parabolic weight of the extension i Ê of the transformed Higgs
bundle at infinity described in Subsection 4.4.2, restricted to the eigenspace of θ̂ corre-
sponding to the eigenvalue −pj/2 of its second order term and the eigenvalue −λj

k
of

its residue is equal to −1 + αj

k
, where αj

k
is the parabolic weight on the λj

k
-eigenspace

of the residue of the original Higgs bundle at pj.

Proof. – We prove the statement in two steps. In the first one, we show that it is true
supposing the original Higgs bundle only has one logarithmic point of a precise form.
In the second one, we show how the case with only one logarithmic point and the
exponential decay results of Section 2.5 imply the general case.

Step 1.– Let us first suppose that the set of logarithmic singularities is reduced to a
single point p1, that we may take to be 0 without restricting generality. Furthermore,
we suppose that E is a holomorphically trivial bundle over C and that in a global
holomorphic trivialisation {σk} the Higgs field is equal to

θ = diag

�
λk

z

�

k=1,...,r

dz

and the metric is just

(4.40) h(σk, σk) = |z|2αk .

This defines a parabolic Higgs bundle with weights αk at 0 and −αk at infinity, the
field having deformation

(4.41) θξ = diag

�
λk

z
− ξ

2

�

k=1,...,r

dz

and the D��-operator

(4.42) D��
ξ

= ∂̄ + diag

�
λk

dz

z
− ξ

2
dz

�

k=1,...,r

.
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Recall from Subsection 4.4.2 that a representative (vξdz, tξdz̄) of any spinor ψξ is
supported in the finite collection of disks ∪q(ξ)∈Σξ

∆(q(ξ), ε0|ξ|−1). By Claim 4.27, the
points q(ξ) are given by

(4.43) qk(ξ) =
2λk

ξ
.

Define a family of homotheties indexed by ξ ∈ Ĉ � P̂

hξ : C −→ C

w �−→ z =
w

ξ
;(4.44)

in such a way that

h−1
ξ

(0) = 0

h−1
ξ

(qk(ξ)) = 2λk for k = r1, . . . , r.(4.45)

Therefore, this corresponds to a family of coordinate changes z ↔ w in the plane, such
that the position of the zeros of the Higgs field θξ after applying h−1

ξ
is constant (the

2λk for k = r1, . . . , r), as well as that of the poles (0 and ∞). Moreover, dz = ξ−1dw
implies

h∗
ξ
θξ = diag

�
λk

dw

w
− 1

2
dw

�

k=1,...,r

,(4.46)

and so

h∗
ξ
D��

ξ
= ∂̄ + diag

�
λk

dw

w
− 1

2
dw

�

k=1,...,r

,(4.47)

where ∂̄ stands this time for the Dolbeault operator with respect to the w-coordinate.
The crucial observation is that this operator is independent of ξ. On the other hand,
remark that the Euclidean metric on the base space and the fiber metric (4.40) behave
under these coordinate changes as

(hξ)∗|dw|2 = |ξ|2|dz|2(4.48)

|σk(z)|2 = |ξ|−2αk |w|2αk .(4.49)

In other words, if we denote by h(w) the model hermitian metric on h∗
ξ
E equal in the

basis h∗
ξ
σk to

h(w) = diag(|w|2αk),

then the homotheties hξ induce a family of tautological isomorphisms of Hermitian
fiber bundles

(h∗
ξ
E, h(w)) −→ (E, h)(4.50)

(h∗
ξ
σk)(w) �−→ |ξ|αkσk(z).
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We deduce from (4.48) that in the basis h∗
ξ
σk the pull-back h∗

ξ
∆ξ of the Laplacian of

the Dirac operator /∂��
ξ

has the form

(4.51) |ξ|2
�
∆ + diag


λk

w
− 1

2


2

k=1,...,r

�
,

where ∆ stands for the usual Laplace operator on functions with respect to the metric
|dw|2. The operator ∆(w) between brackets in this formula is a bounded operator from
the weighted Sobolev space H2(S+ ⊗ E, |dw|2) to L2(S+ ⊗ E, |dw|2). The weight at
0 is determined by the condition that for a section u ∈ H2 we have u/|w|2 ∈ L2,
and this gives therefore exactly the of ∆(w) (see Theorem 2.22). We infer that the
pull-back h∗

ξ
Gξ of the Green’s operator of ∆ξ is

(4.52) |ξ|−2G(w),

where G(w) is the inverse of ∆(w). It also follows from Theorem 2.22 that G(w) is
a bounded linear operator from L2(S+ ⊗ E, |dw|2) to H2(S+ ⊗ E, |dw|2). Because
∆(w) is diagonal in the basis σk, the same is true for G(w). Remark that the pull-
backs h∗

ξ
π̂ξ of the orthogonal projections onto ∆ξ-harmonic spinors are all equal to

the orthogonal projection π̂(w) onto ∆(w)-harmonic spinors: indeed, the conformal
factor |ξ|2 in (4.51) changes neither the space of harmonic spinors nor the orthogonal
projection operator onto them. In particular, since ∆(w), G(w) and h are diagonal in
the basis σk, the same thing is true for all π̂ξ.

Now notice that by the definition of the ∂̄ Ê-holomorphic extension to infinity of
the transformed bundle given in (4.39) and via the identification (4.50), the sections
|ξ|αkh∗

ξ
(vk(z, ξ)dz) (modulo the value of the section s0 of O�CP

1(1)) coincide: indeed,

|ξ|αkχε0/ξ(z − qk(ξ))σk(z)
dz

z
= χε0 (w − 2λk) (h∗

ξ
σk)(w)

dw

w
.

It then follows from formula (4.47) together with the definition (4.36) that the co-
efficient of s0 in |ξ|αkh∗

ξ
tk(z, ξ)dz̄ is also independent of ξ. From the fact that the

projections π̂ξ are also constant, we deduce that the coefficient of s0 in the pull-back

(4.53) (h∗
ξ
σ̂k)(w, ξ) = |ξ|αk σ̂∞

k
(z, ξ)

of the spinors |ξ|αk σ̂∞
k

(z, ξ) representing |ξ|αk(vk(z, ξ)dz, tk(z, ξ)dz̄) does not de-
pend on ξ. Therefore, denoting by fk(z, ξ) the coefficient of s0 in σ̂∞

k
(z, ξ) and by

(h∗
ξ
fk)(w, ξ) the coefficient of s0 in (h∗

ξ
σ̂∞

k
)(w, ξ), we see by invariance of the L2-norm

of 1-forms by conformal coordinate change that
�

C
|fk(z, ξ)|2

h,|dz|2 |dz|2 = |ξ|−2αk

�

C
|(h∗

ξ
fk)(w, ξ)|2

h(w),|dw|2 |dw|2,

for all ξ, with the integral on the right-hand side a constant independent of ξ. On the
other hand, recall from (4.32) that on the affine chart Û0 of CP1 we have s0(ξ) = ξ.
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Observe also that the transformed Hermitian metric ĥ is defined in the chart Û0, and
that for any harmonic spinor f we have

ĥ(ξf, ξf) = |ξ|2ĥ(f, f) = |ζ|−2ĥ(f, f)

with ζ = ξ−1 the local coordinate centered at 0 of the singularity at infinity. This
means that the effect on the parabolic weights of multiplying by s0 is adding −1. On
the other hand, the −λk-eigenspace of the residue of the transformed Higgs bundle
at infinity is spanned by σ̂∞

k
. From all that has been said above, we deduce

(4.54) ĥ(σ̂∞
k

, σ̂∞
k

) = M |ζ|−2+2αk ,

where M is independent of ξ; in different terms, that the parabolic weight of the
transformed Higgs bundle at infinity on the −λk-eigenspace of the residue is equal to
−1 + αk.

Step 2.– Starting from now, we drop the assumption that the set of logarithmic
singularities is reduced to a point. In this part, we patch together solutions to local
problems provided by Step 1, and use the results of Section 2.5 to estimate the defect
of these patched sections to be solutions of the global problem. We find that the
interaction between solutions to local problems near different punctures is small as
|ξ| gets large.

Let (∂̄ E, θ) be a Higgs bundle with some logarithmic singularities P = {p1, . . . , pn}.
In a holomorphic trivialisation {σj

k
}r

k=1 near each one of these points, up to terms in
O(1)dz, the Higgs field has the form

(4.55) θj =
Aj

z − pj

dz,

where the Aj are some diagonal matrices as in (1.1). The deformation of these local
models is

θj

ξ
=

�
Aj

z − pj

− ξ

2

�
dz,

and similarly the deformation of the local D��-operators (D��)j is

(D��
ξ
)j = ∂̄ E + θξ

= ∂̄ E +

�
Aj

z − pj

− ξ

2

�
dz,

Finally, that of the Dirac operator /∂j = (D��)j − ((D��)j)∗ is

/∂j

ξ
= (D��

ξ
)j − ((D��

ξ
)j)∗,

adjoint being taken relative to the harmonic metric corresponding to (D��)j . Now for
all j we can consider the extension of θj to a trivial bundle Ej over the whole plane
by keeping the same formula (4.55) for it, endowed with the model metric

hj = diag(|z − pj |2α
j

k)r

k=1.
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It is clear that this extension only has one regular singularity (in pj) and an irregular
one at infinity, so all the results of Step 1 hold for them. In particular, for represen-
tatives

(vj

k
(z, ξ)dz, tj

k
(z, ξ)dz̄)

as described in Subsection 4.4.2 we have a harmonic representative

σ̂∞
k

(z, ξ) ∈ Ker(/∂j

ξ
)∗ ⊂ H1(C, S− ⊗ Ej)

with �

C
|σ̂∞

k
(z, ξ)|2

hj ,|dz|2 |dz|2 = |ξ|2−2α
j

k .

This growth is measured with respect to the diagonal model metric hj ; however, since
the spinor σ̂∞

k
is exponentially concentrated near pj and here hj is mutually bounded

with the harmonic metric h of ( E, θ), this implies

(4.56) c|ξ|2−2α
j

k ≤
�

C
|σ̂∞

k
(z, ξ)|2

h,|dz|2 |dz|2 ≤ C|ξ|2−2α
j

k

for some 0 < c < C. Let χj be a cut-off function supported in a disk ∆(pj , 3ε0), equal
to 1 on ∆(pj , 2ε0), such that |∇χj | ≤ K. Then for ε0 > 0 fixed sufficiently small, the
global section of S− ⊗ E defined by

σ̂(z, ξ) = χj(z)σ̂∞
k

(z, ξ)

has a meaning, for the holomorphic trivialisation {σj

k
} is defined in ∆(pj , 3ε0) provided

ε0 is sufficiently small. Now notice that if q(ξ) → pj as ξ →∞ and more precisely

q(ξ) = pj +
2λj

k

ξ
+ O(|ξ|−2),

in other words on the component of the transformed bundle with eigenvalue of the
second-order part of θ̂ at infinity equal to −pj/2 and eigenvalue of the residue of θ̂ at
infinity equal to −λj

k
, the holomorphic extension ςj

k
of the cokernel has as parabolic

weight the αj

k
corresponding to the eigenspace of the eigenvalue λj

k
of the residue

of θ. Recall that the harmonic metric on the transformed side is just L2-metric of
the ∆ξ-harmonic representative with respect to the harmonic metric h of the original
Higgs bundle. The statement of the theorem will therefore follow once we prove that
the harmonic representative of σ̂(z, ξ) satisfies the inequality

(4.57) c|ξ|2−2α
j

k ≤
�

C
|π̂ξσ̂(z, ξ)|2

h,|dz|2 |dz|2 ≤ C|ξ|2−2α
j

k .

for some 0 < c < C. Our first aim is to prove the following.

Lemma 4.33. – There exists δ > 0 and K > 0 such that for |ξ| sufficiently large the
inequality ��/∂∗

ξ
σ̂(ξ)

��2

L2(C)
≤ K|ξ|2−2δ �σ̂(ξ)�2

L2(C)

holds.
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Proof. – Covering the annulus centered at pj of radii 2ε0 and 2R0 by a finite number
of disks of radius ε0, we deduce from Lemmas 2.30 and 2.31 that the /∂j

ξ
-harmonic

spinor σ̂∞
k

(z, ξ) is concentrated in H1-norm, up to a factor decreasing exponentially
with |ξ|, in the disk ∆(pj , 2ε0). In particular, it is concentrated up to an exponen-
tially decreasing factor in the same disk in L2-norm as well. Denoting by · Clifford
multiplication (3.16)-(3.17), we have the estimation

�

C

/∂∗
ξ
(χj(z)σ̂∞

k
(z, ξ))

2 |dz|2 ≤
�

C

χj(z)/∂∗
ξ
σ̂∞

k
(z, ξ)

2 |dz|2

+

�

C

(∇χj)(z) · σ̂∞
k

(z, ξ)
2 |dz|2

≤
�

∆(pj ,3ε0)

/∂∗
ξ
σ̂∞

k
(z, ξ)

2 |dz|2

+ K

�

∆(pj ,3ε0)�∆(pj ,2ε0)
|σ̂∞

k
(z, ξ)|2 |dz|2.

Again, by Lemma 2.30 the second integral on the right-hand side is bounded by an
exponentially decreasing multiple of �σ̂∞

k
(z, ξ)�2

L2(C) as |ξ| →∞. Therefore, we only
need to treat

��/∂∗
ξ
σ̂∞

k
(z, ξ)

��2

L2(∆(pj ,3ε0))
.

Remark that by hypothesis,

(/∂j

ξ
)∗σ̂∞

k
(z, ξ) = 0,

so we have

/∂∗
ξ
σ̂∞

k
(z, ξ) =

�
/∂∗

ξ
− (/∂j

ξ
)∗

�
σ̂∞

k
(z, ξ).

This is then bounded by

σ̂∞
k

(z, ξ)O(|z − pj |−1+δ),

where O(|z−pj |−1+δ) stands for a term bounded from above by a constant (indepen-
dent of ξ) times |z − pj |−1+δ, because /∂∗

ξ
and (/∂j

ξ
)∗ are Dirac operators having the

same local model at the puncture and their difference is clearly independent of ξ. In
order to study this quantity, we make use of the coordinate w = ξ(z−pj) analogously
to that introduced in (4.44). Under this coordinate change, the disk ∆(pj , 3ε0) goes
into the (varying) disk ∆(0, 3ε0|ξ|). Hence, we need to prove

�

∆(0,3ε0|ξ|)
|w|−2+2δ|ξ|2−2δ

(h∗
ξ
σ̂∞

k
)(w, ξ)

2

|dz|2,h
|ξ|−2|dw|2

≤ K|ξ|2−2δ

�

C

(h∗
ξ
σ̂∞

k
)(w, ξ)

2

|dz|2,h
|ξ|−2|dw|2
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Recall from (4.53) that in the coordinate w the spinors |ξ|−α
j

kh∗
ξ
σ̂∞

k
are independent

of ξ. Therefore this boils down to
�

∆(0,3ε0|ξ|)
|w|−2+2δ

(h∗
ξ
σ̂∞

k
)(w)

2

|dz|2 |dw|2

≤ K

�

C

(h∗
ξ
σ̂∞

k
)(w)

2

|dz|2 |dw|2(4.58)

for a suitable constant K > 0. Because

(h∗
ξ
σ̂∞

k
)(w) ∈ H1(C),

in particular we have
(h∗

ξ
σ̂∞

k
)(w) ∈ L2(C),

and also
1

w
(h∗

ξ
σ̂∞

k
)(w) ∈ L2

loc
.

near the origin. This implies |w|−1+δ(h∗
ξ
σ̂∞

k
)(w) ∈ L2(C). Therefore,

K = 2

���|w|−1+δ(h∗
ξ
σ̂∞

k
)(w)

���
2

L2(C)���(h∗
ξ
σ̂∞

k
)(w)

���
2

L2(C)

has the desired property.

The lemma has the following consequence.

Lemma 4.34. – As |ξ|→∞, we have the estimate
����σ̂(ξ)�2

L2 −
��π̂H

ξ
σ̂(ξ)

��2

L2

��� ≤ K|ξ|−2δ �σ̂(ξ)�2
L2

with K > 0 independent of ξ.

Proof. – It is sufficient to bound
��σ̂(ξ)− π̂H

ξ
σ̂(ξ)

��2

L2

as in the lemma. The /∂∗
ξ
-harmonic representative π̂H

ξ
σ̂(ξ) of σ̂(ξ) is given by the

formula
(Id− /∂ξGξ/∂∗ξ )σ̂(ξ),

so the difference with σ̂(ξ) itself is

/∂ξGξ/∂∗ξ σ̂(ξ).

Since for any positive spinor ϕ the estimation

�/∂ξϕ�2L2(C) ≤ K �ϕ�2
H1(C) + K|ξ|2 �ϕ�2

L2(C)

holds, we deduce that
��/∂ξGξ/∂∗ξ σ̂(ξ)

��2

L2(C)
≤ K

��Gξ/∂∗ξ σ̂(ξ)
��2

H1(C)
+ K|ξ|2

��Gξ/∂∗ξ σ̂(ξ)
��2

L2(C)
.
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Lemma 2.25 implies that both terms on the right-hand side are bounded from above
by

K|ξ|−2
��/∂∗

ξ
σ̂(ξ)

��2

L2(C)
.

We conclude by Lemma 4.33.

We can now finish the proof of Theorem 4.32: as |ξ| goes to infinity, by Lemma 4.34,
we have ���π̂H

ξ
σ̂(ξ)

���
2

L2

�σ̂(ξ)�2
L2

−→ 1.

In words, the norm of the harmonic representative of the spinor σ̂(z, ξ) is asymptot-
ically equal to the norm of σ̂(z, ξ) itself. On the other hand, as it has already been
remarked in the proof of Lemma 4.33, we have

�σ̂(z, ξ)�2
L2(C,h)

�σ̂∞
k

(z, ξ)�2
L2(C,h)

−→ 1

exponentially as ξ → ∞. Finally, by (4.56) the L2-norm of the spinors σ̂∞
k

(z, ξ) as
measured by the harmonic metric h satisfy

(4.59) c|ξ|2−2α
j

k ≤ �σ̂∞
k

(z, ξ)�2
L2 ≤ C|ξ|2−2α

j

k

for some 0 < c < C, where αj

k
is a parabolic weight of the original Higgs bundle at

the point pj . All this then implies (4.57), so it follows that the parabolic weight of
the transformed Higgs bundle on the given component is equal to αj

k
− 1, as it was

stated in the theorem.

4.6.2. The case of logarithmic singularities. – Next we compute the parabolic
weights at a puncture ξl corresponding to the extension of the holomorphic structure
of Ê given in Subsection 4.4.1.

Explicitly, here is the result we wish to show.

Theorem 4.35. – The parabolic weight of the extension i Ê of the transformed Higgs
bundle at the puncture ξl, restricted to the −λ∞

k
-eigenspace of the residue of the trans-

formed Higgs field (here k ∈ {1 + al, . . . , al+1}) is equal to −1 + α∞
k

, where α∞
k

is the
parabolic weight of the original Higgs field at infinity, restricted to the ξl-eigenspace
of the second-order term and the λ∞

k
-eigenspace of the first-order term of the polar

part of the Higgs field.

Proof. – We follow the proof of Theorem 4.32. Again, we divide the proof into two
steps according to the number of distinct eigenvalues ξl of the second order term of
D at infinity. Recall that some of the spectral points qk ∈ Σξ converge to infinity as
ξ → ξl, whereas others remain bounded.
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Step 1.– First we suppose that n� = 1, that is to say A is a simple diagonal matrix,
and that in a global holomorphic basis {σ∞

k
} the Higgs field has is of the form

θ =
ξ1

2
dz + diag(λ∞

k
)
dz

z
with one regular singularity in 0 and an irregular one at infinity, and finally the
harmonic metric is

(4.60) h∞ = diag(|z|−2α
∞
k )r

k=1.

This induces a parabolic structure on E with weights −2α∞
k

at 0 and 2α∞
k

at infinity.
The deformed field is

θξ =
ξ1 − ξ

2
dz + diag(λ∞

k
)
dz

z
,

and the spectral points are
2λk

ξ − ξ1
.

Making the coordinate change

hξ : C −→ C

w �−→ z =
w

ξ − ξ1
(4.61)

the field writes

(4.62) θξ = −1

2
dw + diag(λ∞

k
)
dw

w
.

The Euclidean metric |dz|2 on the base and the fiber metric h∞ are transformed into

|ξ − ξ1|−2|dw|2(4.63)

diag(|ξ − ξ1|2α
∞
k |w|−2α

∞
k )r

k=1(4.64)

and the position of the spectral points become simply

2λk,

independent of ξ. As in the case of the singularity at infinity, writing h(w) for the
diagonal model metric

diag(|w|−2α
∞
k )r

k=1

the coordinate changes induce tautological isomorphisms of Hermitian fiber bundles

(h∗
ξ
E, h(w)) −→ (E, h∞)(4.65)

(h∗
ξ
σk)(w) �−→ |ξ − ξ1|−αkσk(z).

Via this isomorphism the representatives vk(z, ξ) given in (4.30) behave as follows:

|ξ − ξ1|−αkvk(z, ξ) = vk(w),

which is independent of ξ, or equivalently

|ξ − ξ1|−αkvk(z, ξ)(ξ − ξ1)dz = vk(w)dw,
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independent of ξ. By the equation (4.31), this implies

|ξ − ξ1|−αktk(z, ξ)(ξ̄ − ξ̄1)dz̄ = tk(w)dw̄,

independently of ξ. Exactly as in the case of the singularity at infinity, the Laplacian
and the Green’s operator of /∂∗

ξ
in the coordinate w only depend on ξ through a

conformal factor |ξ − ξ1|−2 and |ξ − ξ1|2 respectively, so the pull-back h∗
ξ
π̂ξ of the

projection onto /∂∗
ξ
-harmonic spinors is independent of ξ. We deduce using invariance

of the L2-norm of 1-forms by conformal coordinate change that for the /∂∗
ξ
-harmonic

spinor σ̂k(z, ξ) representing the cohomology class of (vk(z, ξ)dz, tk(z, ξ)dz̄) we have
�

C
|σ̂k(z, ξ)|2

h∞,|dz|2 |dz|2 = |ξ − ξ1|2αk−2

�

C
|σ̂k(w)|2

h(w),|dw|2 |dw|2,

where σ̂k(w) is the harmonic spinor representing (vk(w)dw, tk(w)dw̄). We see also
that the integral on the right-hand side is independent of ξ, hence we have the desired
behaviour giving parabolic weight −1 + αk on this component.

Step 2.– We drop the assumption that the second-order term A of the original Higgs
field is a simple matrix. Let χ be a fixed cut-off function supported on the complemen-
tary C � ∆(0, 1/ε0) of a large disk, equal to 1 on C � ∆(0, 2/ε0). In C � ∆(0, 1/ε0),
the Higgs field is up to a perturbation

θ∞ =
1

2
Adz + C

dz

z

with A and C diagonal matrices as in (1.31), therefore decomposes into a direct
sum of problems studied in Step 1. In particular, for each such model problem with
eigenvalue of the second-order term ξl we have harmonic spinors σ̂l

k
(z, ξ) where k ∈

{1 + al, . . . , al+1}, such that
�

C

��σ̂l

k
(z, ξ)

��
|dz|2,h∞

|dz|2 = |ξ − ξl|−2+2α
∞
k .

Again, since the harmonic metric h of the Higgs bundle ( E, θ) is mutually bounded
with h∞ in a neighbourhood of infinity and σ̂l

k
is supported there, this implies

(4.66) c|ξ − ξl|−2+2α
∞
k ≤

�

C

��σ̂l

k
(z, ξ)

��
|dz|2,h

|dz|2 ≤ C|ξ − ξl|−2+2α
∞
k

for some 0 < c < C. The section

σ̂(z, ξ) = χ(z)σ̂l

k
(z, ξ)

is well-defined because the local holomorphic trivialisation σ∞
k

of E is defined in
C � ∆(0, 1/ε0) for ε0 > 0 sufficiently small. The statement of the theorem will again
follow if we prove

(4.67) c|ξ − ξl|−2+2α
∞
k ≤

�

C

��π̂ξH σ̂(z, ξ)
��
|dz|2,h

|dz|2 ≤ C|ξ − ξl|−2+2α
∞
k

where π̂H

ξ
σ̂(z, ξ) is the harmonic representative of σ̂(z, ξ). As a first step in this

direction, we prove:
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Lemma 4.36. – There exists δ > 0 and K > 0 such that for |ξ| sufficiently large the
inequality

��/∂∗
ξ
σ̂(z, ξ)

��2

L2(C)
≤ K|ξ − ξl|2+2δ �σ̂(z, ξ)�2

L2(C)

holds.

Proof. – We follow the proof of Lemma 4.33. We set (D��
ξ
)∞ = ∂̄ E + θ∞ and let

/∂∞
ξ

(respectively (/∂∞
ξ

)∗) stand for its Dirac operator (respectively its adjoint). By
Lemma 2.30, σ̂l

k
is supported in L2-norm up to an exponentially decreasing factor

in ξ in C � ∆(0, 1/ε0). Therefore, the lemma reduces to the same estimation for σ̂l

k
.

Moreover, by assumption we have

(/∂∞
ξ

)∗σ̂l

k
(z, ξ) = 0,

so
/∂∗

ξ
σ̂l

k
(z, ξ) = [/∂∗

ξ
− (/∂∞

ξ
)∗]σ̂l

k
(z, ξ).

The difference on the right-hand side of this formula is bounded above by K|z|−1−δ

for some K > 0 independent of ξ, because the two Dirac operators depend on ξ in
the same way, hence their difference does not depend on it at all. Introducing the
coordinate w = z(ξ− ξl), this becomes K|w|−1−δ|ξ− ξl|1+δ. Therefore, it is sufficient
to prove

�

C�∆(0,|ξ−ξl|/ε0)
|w|−2−2δ|ξ − ξl|2+2δ

σ̂l

k
(z, ξ)

2

|dz|2,h
|ξ − ξl|−2|dw|2

≤K|ξ − ξl|2+2δ

�

C

σ̂l

k
(z, ξ)

2

|dz|2,h
|ξ − ξl|−2|dw|2,

for a suitable K > 0, or more simply
�

C�∆(0,|ξ−ξl|/ε0)
|w|−2−2δ

σ̂l

k
(z, ξ)

2

|dz|2,h
|dw|2

≤ K

�

C

σ̂l

k
(z, ξ)

2

|dz|2,h
|dw|2.(4.68)

This goes similarly to (4.58): because in the coordinate w = h−1
ξ

z the spinor |ξ −
ξl|2−2α

∞
k σ̂l

k
(z, ξ) is independent of ξ (see Step 1) and h and h∞ are mutually bounded,

it boils down to
�

C�∆(0,|ξ−ξl|/ε0)
|w|−2−2δ

(h∗
ξ
σ̂l

k
)(w)

2

|dz|2,h∞
|dw|2

≤ K

�

C

(h∗
ξ
σ̂l

k
)(w)

2

|dz|2,h∞
|dw|2.

Now remark that h∗
ξ
σ̂l

k
∈ H1(C, |dw|2, h∞) implies in particular that h∗

ξ
σ̂l

k
∈

L2(C, |dw|2, h∞). Furthermore, near the origin |w|−1−δh∗
ξ
σ̂l

k
∈ L2

loc
(|dw|2, h∞)
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provided that δ < α∞
k

. Hence |w|−1−δh∗
ξ
σ̂l

k
∈ L2(C, |dw|2, h∞), and

K = 2

���|w|−1−δh∗
ξ
σ̂l

k

���
2

L2(C,|dw|2,h∞)���h∗
ξ
σ̂l

k

���
2

L2(C,|dw|2,h∞)

has the desired property (4.68).

This has the following consequence.

Lemma 4.37. – As ξ → ξl, we have the estimate
����σ̂(z, ξ)�2

L2 −
��π̂H

ξ
σ̂(z, ξ)

��2

L2

��� ≤ K|ξ − ξl|2δ �σ̂(z, ξ)�2
L2

for some K > 0 independent of ξ.

Proof. – Again as in Lemma 4.34, it is sufficient to bound
��σ̂(z, ξ)− π̂H

ξ
σ̂(z, ξ)

��2

L2

as in the lemma, where

π̂H

ξ
σ̂(z, ξ) = (Id− /∂ξGξ/∂∗ξ )σ̂(z, ξ)

is the /∂∗
ξ
-harmonic representative of σ̂(ξ). Thus by Lemma 2.27 we have for the norm

of the difference
��/∂ξGξ/∂∗ξ σ̂(z, ξ)

��2

L2 ≤ K|ξ − ξl|−2
��/∂∗

ξ
σ̂(z, ξ)

��2

L2

and we conclude using Lemma 4.36.

We are now ready to finish the proof of Theorem 4.35: by Lemma 4.37, as ξ → ξl

the norm of the harmonic representative of the spinor σ̂(z, ξ) verifies
���π̂H

ξ
σ̂(ξ)

���
2

L2

�σ̂(ξ)�2
L2

−→ 1.

On the other hand, since the support of χ in the coordinate w is C�∆(0, |ξ− ξl|/ε0),
and these sets exhaust C as ξ → ξl, we have that

�σ̂(ξ)�2
L2��σ̂l

k
(ξ)

��2

L2

−→ 1.

By (4.66) the L2-norm of σ̂l

k
(z, ξ) as measured by the harmonic metric h satisfies

c|ξ − ξl|−2+2α
∞
k ≤

�

C

��σ̂l

k
(z, ξ)

��2
|dz|2,h

|dz|2 ≤ C|ξ − ξl|−2+2α
∞
k .

Putting together all this, we obtain (4.67), so that on the component of Ê near ξl on
which the transformed Higgs field has eigenvalue −λ∞

k
, the parabolic weight of the

induced extension is −1 + α∞
k

.
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4.7. The topology of the transformed bundle

In this section, we compute the topology of the underlying holomorphic bundle i Ê
of the transformed Higgs bundle (see (4.8)) relative to its extension over the punctures
given in Section 4.4. We then deduce the topology of the transformed Higgs bundle
relative to its transformed extension given by Definition 3.11. We recall that we have
denoted

(4.69) r̂ =
�

p∈P

rk(Res(θ, p))).

The result we wish to show is the following:

Theorem 4.38. – The rank of i Ê is equal to r̂, whereas its degree is equal to r̂ +
deg( E) + r, where r and deg( E) are the rank and degree of E, respectively.

Notice that it gives in particular (1) of Theorem 1.32.

Proof. – Recall that we have denoted by E the sheaf of holomorphic sections of the
bundle E underlying the original Higgs bundle; F was defined as a sheaf of mero-
morphic sections of E ⊗ Ω1,0 having singularities at P ∪ {∞} with singular parts
in prescribed spaces (see Subsection 4.3.1); and finally F̃ = π∗1 F ⊗ π∗2 O�CP

1(1). By
hypothesis, θ (and so θη for any η) is holomorphic with respect to the holomorphic
structure ∂̄ E. Thus we may consider the holomorphic chain complex

E ��

Id
��

0

��

E
θη ��

��

F̃

Id
��

0 �� F̃

in η ∈ �CP
1
. The hypercohomology long exact sequence associated to it yields the

exact sequence of cohomology spaces

0 −→ H0(CP1, E)
θη−→ H0(CP1, F̃ ) −→ H

1( E
θη−→ F̃ )

−→ H1(CP1, E)
θη−→ H1(CP1, F ) −→ 0,(4.70)

since we have seen that H
0( E

θη−→ F̃ ) = H
2( E

θη−→ F̃ ) = 0. All of the spaces in this
exact sequence come with a natural holomorphic structure over �CP

1
:

– the cohomology spaces of E because this latter is trivial over �CP
1

– those of F̃ because this latter is the tensor product of a trivial vector bundle
over �CP

1
and O�CP

1(1)
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– finally, H
1( E θ•−→ F̃ ) = V̂• has its holomorphic structure ∂̄ Ê induced by d̂

0,1
,

extended to the singularities in Section 4.4 by the induced extension i Ê.

Moreover, all of the maps in the exact sequence (4.70) vary holomorphically in η ∈
�CP

1
with respect to these structures and extensions: this follows from the definition

of F̃ and that of the induced extension. Therefore, it induces an exact sequence of the
sheaves over �CP

1
of holomorphic sections of the corresponding cohomology spaces:

0 −→ O(H0( E))
θη−→ O(H0( F̃ )) −→ O(i Ê)

−→ O(H1( E)) −→ O(H1( F )) −→ 0,

where O stands to denote the sheaf of regular sections on �CP
1

with respect to
the above mentioned holomorphic structures. By additivity of the Chern character,
we deduce the equality

ch(i Ê) =ch( O(�CP
1
, H0( F̃ )))− ch( O(�CP

1
, H1( F̃ )))(4.71)

− ch( O(�CP
1
, H0( E))) + ch( O(�CP

1
, H1( E)))(4.72)

in H∗(�CP
1
). Put π = π2, the projection onto the second factor in CP1 × �CP

1
. One

has direct image sheaves π∗ E and π∗ F̃ on �CP
1

defined by

π∗ E|U = O(U, H0(CP1, E))

π∗ F̃ |U = O(U, H0(CP1, F̃ ))) = O(U, H0(CP1, F ))⊗ O�CP
1(1)(U),

for any open set U ∈ CP1, and one can form the “virtual” sheaves

π! E|U = O(U,H0(CP1, E))− O(U, H1(CP1, E))

π! F̃ |U = O(U,H0(CP1, F̃ ))− O(U, H1(CP1, F̃ )).

Again by additivity of the Chern character, the right-hand-side of (4.71) is equal to
ch(π! F̃ ), which is in turn equal to

π∗(ch( F̃ ) ∪ Td(Tπ)),

by the Grothendieck-Riemann-Roch theorem, where

Tπ = T (CP1 × �CP
1
)− π∗T �CP

1
= π∗1TCP1

is the relative tangent bundle of π, and Td stands for its Todd class. Moreover, π∗ is
just evaluation on the fundamental cycle of CP1. Similarly, we see that (4.72) is just

−ch(π! E) = −π∗(ch( E) ∪ Td(Tπ)),

and thus we obtain

(4.73) ch(i Ê) = [(ch( F̃ )− ch( E)) ∪ Td(π∗1TCP1)]/[CP1].
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Now we have

ch( E) = r + c1( E)

ch( F̃ ) =



r + c1( E) + h
�

p∈P

rk(Res(θ, p))



 (1 + ĥ)

Td(TCP1) = Td( OCP1(2)) = 1 + h,

where r is the rank of the bundle E, c1( E) is its first Chern class, and h and ĥ are
the hyper-plane classes of CP1 and �CP

1
respectively. Putting all this together, we

obtain
ch( F̃ )− ch( E) = r̂h + [r + c1( E) + r̂]ĥ,

and plugging this into (4.73),

(4.74) ch(i Ê) = r̂ + [r + deg( E) + r̂]ĥ,

as we wished.

We are now ready to pass back to the transformed extension of the Higgs bundle in-
troduced in Definition 3.11, hence establishing points (2), (5) and (8) of Theorem 1.32.

Corollary 4.39. – The parabolic weights of the transformed Higgs bundle endowed
with its transformed extension are α∞

k
at the logarithmic punctures (on the same

subspace as in Theorem 4.35) and αj

k
at infinity (on the subspace in Theorem 4.32).

The degree of the transformed Higgs bundle Ê with respect to its transformed extension
is equal to the degree of E.

Proof. – Recall from Theorems 4.35 and 4.32 that the parabolic weights of the trans-
formed Higgs bundle relative to the induced extensions considered in Subsections 4.4.1
and 4.4.2 are equal to −1+α∞

k
at the logarithmic punctures and to −1+αj

k
at infin-

ity. On the other hand, by Definition 3.11, the parabolic weights of the transformed
Higgs bundle with respect to its transformed extension are required to have parabolic
weights between 0 and 1. This means that a local holomorphic trivialisation of the
singular component of the transformed extension Ê near the puncture ξl is

(ξ − ξl)σ̂
l

k
(ξ),

where σ̂l

k
(ξ) is the local holomorphic section of the extension i Ê at ξl defined in

Subsection 4.4.1 and k ∈ {1 + al, . . . , al+1}. On the regular component of Ê|ξl
the

harmonic representatives have bounded norm, which gives 0 parabolic weight. There-
fore on this component one does not need to change the trivialisation. Similarly, a
local holomorphic frame of Ê near infinity can be expressed by

ξ−1σ̂∞
k

(ξ),

where σ̂∞
k

is the local holomorphic section of the extension i Ê at infinity defined in
Subsection 4.4.2 localised near pj for some j ∈ {1, . . . , n}, and k ∈ {rj + 1, . . . , r}.
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Clearly, this way we increased all non-vanishing parabolic weights by 1. On the other
hand, by Remark 1.12 even if the algebraic geometric degree of the bundle depends
on the choice of extensions, the parabolic degree with respect to a fixed metric is
independent of them, because it is always 0. Recall from Definition 1.11 that

degpar(
i Ê) = deg(i Ê) +

�

j∈{1,...,n,∞}

r�

k=rj+1

(−1 + αj

k
).

This quantity is therefore equal to

(4.75) degpar( Ê) = deg( Ê) +
�

j∈{1,...,n,∞}

r�

k=rj+1

αj

k
.

Putting these expressions together, we deduce that

deg( Ê) = deg(i Ê)− r̂ − r,

where we recall again that we have defined

r̂ =
n�

j=1

rk(Res(θ, pj)).

Using formula (4.74) we get

(4.76) deg( Ê) = deg( E).
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CHAPTER 5

THE INVERSE TRANSFORM

In this chapter we construct the inverse of the transform introduced in the previous
chapters. In line with the properties of the ordinary Fourier transform and its algebraic
counterparts, the inverse is defined by a formula which only differs from the transform
in a sign.

Recall from Section 3.1 that the transformed flat connection on Ê• = L2H1(D•) is
defined by the L2-orthogonal projection of d̂− zdξ∧. For any parabolic vector bundle
with integrable connection (F,DF , hF ) on Ĉ satisfying the conditions of Section 1.1
(i.e., having a finite number of simple poles in finite points and a second-order pole at
infinity, such that the eigenvalues and parabolic weights meet the conditions imposed
in Theorem 1.17), one can define the inverse transformed bundle with integrable
connection (F̌ , ĎF , ȟF ) on C by a procedure similar to the one defining (Ê, D̂, ĥ)
starting from (E,D, h): namely, consider the deformation

(5.1) DF

z
= DF + zdξ∧

of the connection parametrised by z in C minus a finite set, and let F̌z be the first
L2-cohomology of

F
D

F

z−−→ Ω1
Ĉ
⊗ F

D
F

z−−→ Ω2
Ĉ
⊗ F.

These vector spaces are of the same dimension and form a smooth vector bundle
over C minus a finite number of points. The critical points are easily seen to be
the opposites of the eigenvalues of the second-order term of DF at infinity. The proof
goes similarly to the case of the direct transform. We also define the Hilbert bundle Ȟ
over C, the L2-metric ȟ and the orthogonal projection π̌z : Ȟz → F̌z in an analogous
manner as in Section 3.1. Next, let the inverse transformed integrable connection
ĎF be defined by the parallel sections π̌z(e(z0−z)ξφz0(ξ)) for any harmonic section
φz0(ξ) ∈ F̌z0 . Equivalently, denoting by ď the trivial connection with respect to w in
the trivial Hilbert bundle Ȟ, the inverse transformed flat connection can be given by
the formula

(5.2) ĎF = π̌z(ď + zdξ),
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as it can be seen by the argument given in Section 3.1, changing signs. Finally, we
define the inverse transformed metric ȟF on the fiber F̌z0 again as the L2-norm on Ĉ
of a DF

z0
-harmonic representative. We can now state the

Theorem 5.1. – The inverse transform of N : (E,D, h) �→ (Ê, D̂, ĥ) is N−1 :
(F,DF , hF ) �→ (F̌ , ĎF , ȟF ). In different terms, for any bundle with integrable
connection and harmonic metric (E,D, h) satisfying the conditions of Section 1.1
and the ones imposed in Theorem 1.17, there exists a canonical Hermitian bundle
isomorphism ω between ˇ̂E and E such that ω∗D = ˇ̂D.

Remark 5.2. – As one can check using the transform on the level of singularity pa-
rameters described in Theorem 1.17, the assumptions (1) and (2) of that theorem are
symmetric, in the sense that if they are fulfilled by (E,D) than the same is true for
(Ê, D̂). Therefore, the transformˇ can be applied to this latter, so the affirmation of
the theorem has a meaning.

Proof. – The proof is done in four steps: first, we prove that the fibers over 0 ∈ C

of E and ˇ̂E are canonically isomorphic. Next we show the same thing for the other
fibers. Then we prove that the integrable connections are the same, and finally we
establish equality of the harmonic metrics and parabolic structures.

Step 1.– Consider the product manifold C× Ĉ, and let π1 and π2 be the projection
to the first and second factor, respectively. Denote by E the pull-back vector bundle
π∗1E on the product, and define the connection D = π∗1D− ξdz− zdξ. Notice that on
the fiber C× {ξ0} this just gives the deformation Dξ0 . Now form the double complex

Dp,q = Ωp

C ⊗ Ωq

Ĉ
(E),

where Ωp

C (respectively Ωq

Ĉ
) denote smooth p-forms (smooth q-forms) on C (Ĉ); and

with differentials d1 = Dξ,d2 = d̂ − zdξ∧. Remark that these differentials commute
(in the graded sense), and their sum is just D. The desired isomorphism will result
from the study of the spectral sequences corresponding to the two different filtrations
of this double complex.

Namely, consider the first filtration of D: the first page of the corresponding spectral
sequence E•,•

1 is

0 Ω2
Ĉ
⊗ Ê 0

0 Ω1
Ĉ
⊗ Ê

d�

2

��

0

0 Ê

d�

2

��

0

(5.3)
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where d�

2 stands for the operator induced by d2. More precisely, this operator is
obtained as follows. Consider for example a local section of Ê: if B(ξ0) is an open
ball in Ĉ, it is given by cohomology classes [φξ] in L2H1(Dξ) changing smoothly
with ξ ∈ B(ξ0). Here φξ = φξ(z) is a global L2-section of E over C, in the kernel of
/∂∗

ξ
. In particular, Dξφξ = 0, and since the two differentials commute, we then have

Dξ ◦d2φξ = 0. In other words, d2φξ is a d1-closed section of D1,1 on C×B(ξ0); hence
we may consider its cohomology class with respect to d1, and letting ξ vary these give a
section of Ω1⊗Ê over B(ξ0), which is by definition d�

2[φξ]. Now remark that under the
isomorphism of the first L2-cohomology of the elliptic complex (2.24) and the space of
/∂ξ-harmonic sections given in Theorem 2.21, this induced connection goes over to D̂

defined in Section 3.1; in other words, under these identifications d�

2 = D̂. Moreover,
the connection D̂ also satisfies the conditions of Section 1.1. Therefore, by Chapter 2
and Section 2.3 the L2-cohomology of D̂ = D̂0 is non-trivial only in degree 1, and so
when passing to the second page E•,•

2 of the spectral sequence, we obtain by definition
E1,1

2 = ˇ̂E0 and all other terms equal to 0. In particular, the spectral sequence collapses
at the second page, and the total cohomology of the double complex is canonically
isomorphic to ˇ̂E0 in degree 2 and vanishes in all other degrees.

Consider now the second filtration of D: in order to form the first page Ẽ•,•
1 of

the corresponding spectral sequence, we first take cohomology on each column of the
double complex with respect to d2 = d̂− zdξ, and so it is equal to

0 0 0

0 0 0

L2(C, E)ezξ
d�

1 �� L2(C,Ω1
C ⊗ E)ezξ

d�

1 �� L2(C,Ω2
C ⊗ E)ezξ.

(5.4)

In words: for example, the (0, 0)-term consists of L2-sections of E on C × Ĉ which
are a product of an arbitrary section of E on C and the function ezξ. Now notice
that the only possibility for a non-zero section of this form to be in L2 on {z} × Ĉ
is for z = 0. Put another way, the cohomology along the slices {z} × Ĉ vanishes for
all z �= 0. Hence we may replace the double complex D without changing the spectral
sequence associated with this filtration (and so the total cohomology), by the double
complex (germ D) whose component of bidegree (p, q) is the space of L2-forms with
values in E of bidegree (p, q) defined on V0 × Ĉ for any neighbourhood V0 of 0 ∈ C,
and where we identify such forms if they coincide on an arbitrary neighbourhood of
{0}× Ĉ. Of course, the differentials of this new double complex are induced by those
of D in a trivial way.

The idea now is to consider the spectral sequence (germ E) corresponding to the
first filtration of (germ D): by the general theory of spectral sequences, this will
then abut to the total cohomology of (germ D), which is, as we saw in the previous
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paragraph, equal to that of D, that is to ˇ̂E0. First trivialise E in V0: this just
means that we identify the total space of the bundle with V0 × E0. Since the vector
bundle E on C× Ĉ is just the pull-back of E on C, this also gives an identification of

E → V0 × Ĉ with the trivial bundle (V0 × Ĉ) × E0. Without loss of generality we
may assume 0 /∈ P , so for V0 sufficiently small the connection D can also be taken by
a gauge transformation g̃ to the trivial one. Thus in this trivialisation and gauge we
have d1 = d − ξdz where d stands for the trivial connection in the z direction. The
first page (germ E)•,•

1 is then equal to the cohomology spaces with respect to this
differential:

Ω2
Ĉ
⊗ L2(Ĉ, E0)ezξ 0 0

Ω1
Ĉ
⊗ L2(Ĉ, E0)ezξ

d�

2

��

0 0

L2(Ĉ, E0)ezξ

d�

2

��

0 0,

(5.5)

where, as before, L2(Ĉ, E0)ezξ stands to denote functions with values in E0 of the
form γ(ξ)ezξ but this time on V0 × Ĉ, and the L2 condition now only implies that
γ must be rapidly decreasing as |ξ| → ∞. The next remark is that since we only
have terms in degree p = 0, the differential induced by d2 is just itself: indeed, it is by
definition d2 modulo the image of d1, but this latter vanishes for p = 0. Thus, in order
to obtain the second page (germ E)•,•

2 of the spectral sequence, we take cohomology
with respect to d2 = d̂ − zdξ∧. Notice that via the gauge transformation e−zξ the
whole picture can be rephrased as the de Rham cohomology of rapidly decreasing
sections σ on Ĉ with values in E0, which is similar to compactly supported de Rham
cohomology. Therefore in (germ E)•,•

2 all elements except for the one corresponding
to bidegree (0, 2) vanish, and this latter is canonically isomorphic to E0 via mapping
an element γ0 ∈ E0 into the germ

[γ0χ(ξ)ezξdξ ∧ dξ̄],

where χ is a fixed exponentially decreasing bump-function on Ĉ with integral (with
respect to the volume form |dξ|2) equal to 1, and [.] stands to denote the de Rham co-
homology class of exponentially decreasing forms on Ĉ with values in E0. Conversely,
for an arbitrary class [γ0(ξ)ezξdξ ∧ dξ̄] where γ0(ξ)ezξ is a germ of exponentially de-
creasing functions on Ĉ with values in E0 and in the kernel of d1 = (d − ξdz), we
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may define

[γ0(ξ)e
zξdξ ∧ dξ̄] �−→evalz=0

�

Ĉ
γ0(ξ)e

zξ|dξ|2

=

�

Ĉ
γ0(ξ)|dξ|2 ∈ E0(5.6)

and verify readily that it is independent of the section representing a cohomology class.
The fact that E0 and ˇ̂E0 are canonically isomorphic now follows from the fact that

they are both canonically isomorphic to (different gradings of) the total cohomology
of the double complex D.

Step 2.– The first thing to do is to describe explicitly the isomorphism obtained
above. Let

�
ˇ̂δ0

�
be an element in ˇ̂E0: it is a class in the cohomology space E1,1

2 in the
spectral sequence corresponding to the first filtration of D. Hence it is represented by
a (1, 1)-form ˇ̂δ0(z; ξ) over C× Ĉ such that

(1) (D − ξdz∧)ˇ̂δ0(z; ξ) = 0

(2) (d̂− zdξ∧)� ˇ̂δ0(z; ξ) = 0; in other words, there exists a (0, 2)-form γ0(z; ξ) over
C× Ĉ satisfying

Dξγ0(z; ξ) = (d̂− zdξ∧)ˇ̂δ0.

Concatenating the map �
ˇ̂δ0

�
�−→ γ0(z; ξ)

with an analog of (5.6), namely

(5.7) [γ0(z; ξ)] �−→ evalz=0

�

Ĉ
γ0(z; ξ)

we get the canonical isomorphism

ω0 :
�
ˇ̂δ0

�
�−→ δ0 = evalz=0

�

Ĉ
γ0(z; ξ)

between ˇ̂E0 and E0 provided by the previous step.
Fix now an arbitrary z0 ∈ C, and consider the double complex Dz0 having the

same (p, q)-components as D, but with differentials d1 = Dξ,d2 = d̂ − (z − z0)dξ∧.
In order to obtain the components of the first page (Ez0)

•,•
1 of the spectral sequence

corresponding to the first filtration of Dz0 , we need to take cohomology with respect
to d1, hence these will be the same as those of D in (5.3), and the differentials will
be induced by d2. Now since z0 is a constant, observe that for any local section
φξ(z) ∈ Ker/∂∗

ξ
in ξ of harmonic sections over C the relation

d�

2φξ = [(d̂− (z − z0)dξ∧)φξ] = [(d̂− zdξ∧)φξ] + z0dξ ∧ φξ = D̂z0(φξ),

holds, where D̂z0 is the deformation of D̂ introduced in (5.1). To get the second page
of the spectral sequence, we take cohomology with respect to d�

2 = D̂z0 , and therefore
if z0 does not belong to the set of opposites of eigenvalues of the leading term of D̂
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then this is a finite-dimensional space, equal by definition to ˇ̂Ez0 . Notice that by the
results of Subsection 4.5, the set of z0 where this does not hold is exactly P , the set
of singularities (at finite points) of E. Similarly, the second filtration of Dz0 gives rise
to a spectral sequence whose first page is (analogously to (5.4))

0 0 0

0 0 0

L2(C, E)e(z−z0)ξ
d�

1 �� L2(C,Ω1
C ⊗ E)e(z−z0)ξ

d�

1 �� L2(C,Ω2
C ⊗ E)e(z−z0)ξ.

Hence the only fiber {z} × Ĉ over which these spaces are non-trivial is for z = z0,
so we may consider the double complex (germ Dz0) whose components are germs
of forms in a neighbourhood Vz0 × Ĉ of the fiber {z0} × Ĉ, two such germs being
identified if they coincide in any such neighbourhood, and with differentials coming
from those of Dz0 . As before, the spectral sequences corresponding to the second
filtration of these double complexes agree starting from the first page, so in particular
their total cohomologies are the same. Now, we pass back again to the first filtration
and compute the spectral sequence of (germ Dz0) with respect to it: in a convenient
trivialisation of E in V0 and gauge, the first page is equal to

Ω2
Ĉ
⊗ L2(Ĉ, Ez0)e

zξ 0 0

Ω1
Ĉ
⊗ L2(Ĉ, Ez0)e

zξ

d�

2

��

0 0

L2(Ĉ, Ez0)e
zξ

d�

2

��

0 0,

(5.8)

with differentials given by d2 = d̂−(z−z0)dξ∧. As in step 1, the second page therefore
contains only one non-vanishing component: the one corresponding to bidegree (0, 2),
and it is canonically isomorphic to the vector space Ez0 ; this proves that the vector
spaces Ez0 and ˇ̂Ez0 are canonically isomorphic to each other. Again, an element�
ˇ̂δz0

�
of ˇ̂Ez0 is represented by a (1, 1)-form ˇ̂δz0(z; ξ) over C× Ĉ satisfying (d̂ − (z −

z0)dξ)� ˇ̂δz0(z; ξ) = 0, i.e., there exists a (0, 2)-form γz0(z; ξ) over C× Ĉ with

Dξ(γz0(z; ξ)) = (d̂− (z − z0)dξ∧)ˇ̂δz0(z; ξ),

and an explicit way of describing the obtained isomorphism is given by

(5.9) ωz0 :
�
ˇ̂δz0

�
�−→ δz0 = evalz=z0

�

Ĉ
γz0(z; ξ)
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Step 3.– By the previous points, we have that the bundle ˇ̂E is isomorphic to E via
the isomorphisms ω•. Now we prove that the integrable connection ˇ̂D on ˇ̂E is carried
into D on E by this bundle isomorphism: for this, it is clearly sufficient to prove that
any local parallel section for ˇ̂D is carried into a parallel section for D. For simplicity,
we shall consider a local section near w = 0, but we will see that the proof does not
use this.

For this purpose, we need to work on the product C × Ĉ × C, parametrised by
(z, ξ, w); we keep on writing the variable w in lower index. We shall consider E as
being a bundle over this space by pull-back, without writing it out explicitly. Let�
ˇ̂δw

�
be a ˇ̂D-parallel local section of ˇ̂E. As in Step 2, such a section is represented by

giving a global (1, 1)-form ˇ̂δw(z; ξ) of E on C× Ĉ for each w in a neighbourhood V0

of 0 ∈ C, verifying

(1) Dξ0

ˇ̂δw(z; ξ) = 0 for all fixed w0 ∈ V0 and ξ0 ∈ Ĉ

(2) (d2 − (z − w0)dξ∧)� ˇ̂δw(z; ξ) = 0 for all fixed w0 ∈ V0

(3) the section in w of the cohomology classes of the above elements is ˇ̂D-parallel.

By Hodge theory, we may suppose that ˇ̂δw0(z; ξ0) is the Dξ0-harmonic representative
of

�
ˇ̂δw0 |C×{ξ0}

�
and also that ˇ̂δw0(z; ξ) is the D̂w0-harmonic representative of

�
ˇ̂δw0

�
.

This way we rephrase the above conditions as

(1) for all fixed w0 ∈ V0 and ξ0 ∈ Ĉ its restriction to the fiber C× {ξ0}× {w0} is
in Êξ0 , that is /∂∗

ξ0

ˇ̂δw0(z; ξ0) = 0

(2) for all fixed w0 ∈ V0 the global section in ξ of the above elements of Êξ is in
ˇ̂Ew0 , in different terms /̂∂

∗
w0

ˇ̂δw0(z; ξ) = 0

(3) and for all w0 ∈ V0, π̌w ◦ (ď + ξdw∧)ˇ̂δw(z; ξ)|w=w0 = 0.

As before, (2) means that for all w ∈ V0 there exists γw(z; ξ) ∈ Γ(C × Ĉ,Ω2,0 ⊗ E)
such that

(5.10) Dξγw(z; ξ) = (d̂− (z − w)dξ∧)ˇ̂δw(z; ξ);

and by Hodge theory, such a section can be defined by the formula

(5.11) γw(z; ξ) = GξD
∗
ξ
(d̂− (z − w)dξ∧)ˇ̂δw(z; ξ),

where Gξ is the Green’s operator of /∂∗
ξ
/∂ξ. (Here we used that Gξ is diagonal with

respect to the decomposition Ω0
C ⊕Ω2

C, a standard consequence of the fact that /∂∗
ξ
/∂ξ

is diagonal with respect to the same decomposition, which comes immediately from
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harmonicity of the metric.) Now by (5.9) and (5.10) we have

Dδ(w)|w=w0 =D

�
evalz=w

�

Ĉ
γw(z; ξ)

�

|w=w0

=

�

Ĉ
Dγw0(z; ξ)|z=w0 + ďγw(w0; ξ)|w=w0

=

�

Ĉ
ξdz ∧ γw0(w0; ξ)

+ (d̂− (w0 − w0)dξ∧)ˇ̂δw0(w0; ξ) + ďγw(w0; ξ)|w=w0

(remember that ď stands for the trivial connection with respect to w in the trivial
Hilbert bundle Ȟ, whereas d̂ is the trivial connection with respect to ξ in the trivial
Hilbert bundle Ĥ). The integral of the middle term in this last formula vanishes by
Stokes’s theorem. Furthermore, on the diagonal z = w of C×C we have dz = dw, so
we are left with �

Ĉ
(ď + ξdw∧)γw0(w0; ξ).

Applying to this quantity (5.11) and the commutation relations

[ď + ξdw∧, d̂− (z − w)dξ∧] = 0 [ď + ξdw∧, Dξ] = 0(5.12)

we obtain

(5.13)
�

Ĉ
GξD

∗
ξ
(d̂− (z − w)dξ∧)(ď + ξdw∧)ˇ̂δw0(w0; ξ).

Consider now condition (3) above: denoting by /̂∂w and /̂∂
∗
w

the positive and negative
Dirac operators of the deformation D̂ + wdξ, moreover by Ĝw the Green’s operator
of /̂∂

∗
w
/̂∂w, it can be rewritten as

(Id− /̂∂wĜw/̂∂
∗
w
)(ď + ξdw∧)ˇ̂δw(z; ξ) = 0.

In order to finish the proof, it is sufficient to prove the commutation relation

(5.14) [ď + ξdw∧, /̂∂w] = 0.

Indeed, this then implies

[ď + ξdw∧, /̂∂
∗
w
] = 0 [ď + ξdw∧, Ĝw] = 0,

and interchanging ď + ξdw∧ turn by turn with /̂∂
∗
w0

, Ĝw0 and /̂∂w0 using each time
condition (2), we get

(ď + ξdw∧)ˇ̂δw0(w0; ξ) = (ď + ξdw∧)(Id− /̂∂w0Ĝw0
/̂∂
∗
w0

)ˇ̂δw0(w0; ξ)

= (Id− /̂∂w0Ĝw0
/̂∂
∗
w0

)(ď + ξdw∧)ˇ̂δw0(w0; ξ)

= 0,
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and so (5.13) is equal to 0; but on the other hand it is just the expression for
Dδ(w)|w=w0 , and this shows that δ(w) is parallel in w0. There remains to show (5.14):
recall that /̂∂w = D̂w − D̂∗

w
, with

D̂w = π̂ξ(d̂− (z − w)dξ).

Now the first relation in (5.12) and π̂ξ = (Id − /∂ξGξ/∂∗ξ ) combined with the second
relation in (5.12) show that

[ď + ξdw∧, D̂w] = 0,

and we conclude.

Step 4.– Here we wish to show that the double transformed metric ˇ̂h is equal to
h. In Step 3 we have already shown that the flat connections D and ˇ̂D agree. On
the other hand, using the results of Section 4.2 twice, we see that ˇ̂h is a harmonic
metric for ˇ̂D = D. Therefore by uniqueness (up to a constant) of the harmonic metric
corresponding to an integrable connection, we get that ˇ̂h = h.

An equivalent way of deducing the same assertion would be as follows: using again
the already proved equality ˇ̂D = D and uniqueness of the harmonic metric, we will
be done if we can prove that the unitary part ˇ̂D+ (with respect to ˇ̂h) of the double
transformed flat connection ˇ̂D is equal to D+, the unitary part of D with respect
to h. This can be done in a completely analogous way to Steps 1-3. The changes we
have to make are the following: consider the double complex DH

z0
having the same

components as Dz0 , but with differentials d1 = DH

ξ
and d2 = d̂− z/2dξ ∧ −z̄/2dξ̄∧.

One establishes that these operators commute, therefore DH

z0
really forms a double

complex. We then see from (4.14) that the deformation

D̂H

w
= D̂H +

1

2
wdξ ∧+

1

2
w̄dξ̄∧

induced from the differential

d̂− 1

2
(z − w)dξ ∧ −1

2
(z̄ − w̄)dξ̄∧

is the natural deformation of the Higgs-bundle structure induced by the deformation
D̂w. In concrete terms, they are related by the gauge transformation g−1. Therefore
the double transformed bundle ˇ̂EH is isomorphic to g−1gE = E, and the unitary
connection

ˇ̂D+ = π̌w ◦
�

ď +
ξ

2
dw ∧+

ξ̄

2
dw̄∧

�

is identified to D+ just as ˇ̂D with D, using the commutation relations
�
ď +

ξ

2
dw ∧+

ξ̄

2
dw̄∧, d̂− 1

2
(z − w)dξ ∧ −1

2
(z̄ − z̄)dξ̄∧

�
= 0,

�
ď +

ξ

2
dw ∧+

ξ̄

2
dw̄∧, DH

ξ

�
= 0
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instead of (5.12), which together imply the analog
�
ď +

ξ

2
dw ∧+

ξ̄

2
dw̄∧, /̂∂

H

w

�
= 0

of (5.14) for the deformed Dirac operator

/̂∂
H

w
= DH

w
− (DH

w
)∗.

This then allows us to conclude equality of the unitary connections.
Since the Hermitian bundles ( ˇ̂E, ˇ̂h) and (E, h) coincide, so do the flags of their

parabolic structures in the singular points; as well as the parabolic weights, because
they are supposed to be between 0 and 1, and there is a unique way of choosing
holomorphic sections with such behaviours.
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