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COEFFICIENT SYSTEMS AND SUPERSINGULAR
REPRESENTATIONS OF GL2(F )

Vytautas Paskunas

Abstract. — Let F be a non-Archimedean local field with the residual characteristic p.
We construct a “good” number of smooth irreducible Fp-representations of GL2(F ),
which are supersingular in the sense of Barthel and Livné. If F = Qp then results
of Breuil imply that our construction gives all the supersingular representations up
to the twist by an unramified quasi-character. We conjecture that this is true for an
arbitrary F .

Résumé (Systèmes de coefficients et représentations supersingulières de GL2(F ))
Soit F un corps local non archimédien de caractéristique résiduelle p. Nous construi-

sons le « bon » nombre de Fp-représentations lisses et irréductibles de GL2(F ) qui sont
supersingulières au sens de Barthel et Livné. Si F = Qp, les résultats de Breuil im-
pliquent alors que notre construction donne toutes les représentations supersingulières
à la torsion près par un quasi-caractère non ramifié. Nous conjecturons que ceci reste
vrai pour F quelconque.
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CHAPTER 1

INTRODUCTION

Recently Breuil in [4] has determined the isomorphism classes of the irreducible
smooth Fp-representations of GL2(Qp). This allowed him to define a “correspon-
dance semi-simple modulo p pour GL2(Qp)”. Under this correspondence the iso-
morphism classes of irreducible smooth 2-dimensional Fp-representations of the Weil
group of Qp are in bijection with the isomorphism classes of “supersingular” irre-
ducible smooth Fp-representations of GL2(Qp). Moreover, it is conjecturally related
to a p-adic correspondence in [5]. The term“supersingular”was coined by Barthel and
Livné. Roughly speaking a supersingular representation is the Fp-analogue of a su-
percuspidal representation over C, see Definition 1.1.1. Let F be a non-Archimedean
local field, with a residue class field Fq of the characteristic p. All the irreducible
smooth Fp-representations of G = GL2(F ), which are not supersingular, have been
determined by Barthel and Livné in [2] and [1], and also by Vignéras in [18], with no
restrictions on F . However, if F != Qp then the method of Breuil fails and relatively
little is known about the supersingular representations of G.

This paper is an attempt to shed some light on this question. We fix a uni-
formiser !F of F and we construct q(q − 1)/2 pairwise non-isomorphic, irreducible,
supersingular, admissible (in the usual smooth sense) representations of G, which
admit a central character, such that !F acts trivially. If F = Qp then using the
results of Breuil we may show that our construction gives all the supersingular rep-
resentations up to a twist by an unramified quasi-character. We conjecture that this
is true for arbitrary F . If ρ is an irreducible smooth Fp-representation of the Weil
group WF of F , then the wild inertia subgroup of WF acts trivially on ρ, since it is
pro-p and normal in WF . This implies that there are only q(q − 1)/2 isomorphism
classes of irreducible smooth 2-dimensional Fp-representations ρ of the Weil group of
F such that (det ρ)(Fr) = 1. Here, Fr is the Frobenius automorphism corresponding
to !F via the local class field theory. So the conjecture would be true if there was a
Langlands type of correspondence.
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The starting point in this theory is that every pro-p group acting smoothly on
an Fp-vector space has a non-zero invariant vector. Let I1 be the unique maximal
pro-p subgroup of the standard Iwahori subgroup I of G. Given a smooth represen-
tation π of G the Hecke algebra H = EndG(c-IndG

I1 1) acts on the I1-invariants πI1 .
It is expected that this functor induces a bijection between the irreducible smooth
representations of G and the irreducible modules of H. This happens if F = Qp.
Moreover, if F is arbitrary and π is an irreducible smooth representation of G, which
is not supersingular, then πI1 is an irreducible H-module. All the irreducible modules
of H that do not arise this way are called supersingular. They have been determined
by Vignéras and we give a list of them in the Definition 2.1.2. There are q(q − 1)/2
isomorphism classes of irreducible supersingular modules of H up to a twist by an
unramified quasi-character.

Given a supersingular module M of H we construct two G-equivariant coefficient
systems V and I on the Bruhat-Tits tree X of PGL2(F ) and a morphism of G-
equivariant coefficient systems between them. Once we pass to the 0-th homology,
this induces a homomorphism of G-representations. We show that the image of this
homomorphism

π = Im(H0(X,V) −→ H0(X, I))

is a smooth irreducible representation of G, which is supersingular, since πI1 con-
tains a supersingular module M . Moreover, we show that two non-isomorphic irre-
ducible supersingular modules give rise to non-isomorphic representations. However,
the question of determining all smooth irreducible representations π of G, such that
πI1 contains M , remains open.

We will describe the contents of this paper in more detail. In Section 2 we recall
the algebra structure of H and the definition of supersingular modules.

Sections 3 and 4 deal with some aspects of the Fp-representation theory of Γ =
GL2(Fq). In Section 3 we give two different descriptions of the irreducible Fp-
representations of Γ, one of them due to Carter and Lusztig [7] and the other one due
to Brauer and Nesbitt [3], and a dictionary between them. Let U be the subgroup
of unipotent upper-triangular matrices in Γ, then U is a p-Sylow subgroup of Γ. If ρ
is a representation of Γ, then the Hecke algebra HΓ = EndΓ(IndΓ

U 1) acts on the U -
invariants ρU . This functor induces a bijection between the irreducible representations
of Γ and the irreducible right modules of HΓ.

Every representation ρ of Γ has an injective envelope ι : ρ ↪→ inj ρ. By this we
mean, a representation inj ρ of Γ and an injection ι, such that inj ρ is an injective object
in the category of Fp-representations of Γ and every non-zero Γ-invariant subspace of
inj ρ intersects ι(ρ) non-trivially. Injective envelopes are unique up to isomorphism.
In Section 4 we determine the HΓ-module structure of (inj ρ)U , for an irreducible
representation ρ of Γ. This is important to us, so we give two ways of doing it. If
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p = q then the dimension of (inj ρ)U is small and this enables us to give an elemen-
tary argument. In general we use the results of Jeyakumar [10], where he describes
explicitly injective envelopes of irreducible representations of SL2(Fq).

Let oF be the ring of integers of F , let K = GL2(oF ). The reduction modulo
the prime ideal of oF induces a surjection K → Γ, let K1 be the kernel of this map.
The Hecke algebra HK = EndK(IndK

I1 1) is naturally a subalgebra of H. Let M be a
supersingular module of H, then the restriction of M to HK is isomorphic to a direct
sum of two irreducible modules of HK . Since K/K1

∼= Γ we may identify represen-
tations of K on which K1 acts trivially with the representations of Γ. This induces
an identification HK = HΓ. Since the irreducible modules of HΓ are in bijection
with the irreducible representations of Γ, there exists a unique representation ρ = ρM

of Γ, such that ρ is isomorphic to a direct sum of two irreducible representations
of Γ, and ρU ∼= M |HΓ . Let ρ ↪→ inj ρ be an injective envelope of ρ in the category of
Fp-representations of Γ. We consider now both ρ and inj ρ as representations of K.
We have an exact sequence

0 −→ ρI1 −→ (inj ρ)I1

of HK-modules. The main result of Section 4 are Propositions 4.1.9 (p = q), Propo-
sitions 4.2.37 and 4.2.38 (general case), which say that there exists an action of H,
extending the action of HK , on (inj ρ)I1 , such that the above exact sequence yields
an exact sequence

(E) 0 −→ M −→ (inj ρ)I1

of H-modules. The fact that we can extend the action and obtain (E) implies the
existence of a certain G-equivariant coefficient system I on the tree X .

The inspiration to use coefficient systems comes from the works of Schneider and
Stuhler [13] and [14], where the authors work over the complex numbers, and Ro-
nan and Smith [12], where the Fp coefficient systems are studied for finite Chevalley
groups. We introduce coefficient systems in Section 5. Let σ1 be an edge on X contain-
ing a vertex σ0. Since, G acts transitively on the vertices of the tree X , the category
of G-equivariant coefficient systems is equivalent to a category of diagrams DIAG.
The objects of DIAG are triples (ρ0, ρ1, φ), where ρ0 is a smooth representation of
K(σ0), ρ1 is a smooth representation of K(σ1) and φ is a K(σ1)∩K(σ0)-equivariant ho-
momorphism, φ : ρ1 → ρ0, where K(σ0) and K(σ1) are the G-stabilisers of σ0 and σ1.
The proof of equivalence between the two categories is the main result of Section 5.
As a corollary we obtain a nice way of passing from “local” to “global” information,
see Corollary 5.5.5, and we use this in the construction of I.

More precisely, we start with a supersingular H-module M and find the unique
smooth representation ρ = ρM of K, such that ρ is isomorphic to a direct sum of two
irreducible representations of K, and ρI1 ∼= M |HK , as above. We then consider an
injective envelope ρ ↪→ Inj ρ of ρ in the category of smooth Fp-representations of K.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



4 CHAPTER 1. INTRODUCTION

Let σ1 be an edge on X fixed by I and let σ0 be a vertex fixed by K. We extend the
action of K on Inj ρ to the action of F×K = K(σ0), so that a fixed uniformiser acts
trivially. We denote this representation by Y0. Let us assume that we may extend
the action of F×I = K(σ1) ∩ K(σ0) on Y0|F×I to the action of K(σ1). We denote the
corresponding representation of K(σ1) by Y1. The triple Y = (Y0, Y1, id) is an object
in a category DIAG, which is equivalent to the category of G-equivariant coefficient
systems on the tree X , by the main result of Section 5. So Y gives us a G-equivariant
coefficient system I. Moreover, the restriction maps of I are all isomorphisms. This
implies that

H0(X, I)|K ∼= Inj ρ.

In particular, we have an injection

ρ ↪−→ Inj ρ ∼= H0(X, Iγ)|K ,

which gives us an exact sequence of vector spaces

0 −→ ρI1 −→ H0(X, I)I1 .

We show in Subsection 6.4 that using (E) we may extend the action of F×I on Y0|F×I

to the action of K(σ1), so that the image of ρI1 in H0(X, I)I1 is an H-invariant
subspace, isomorphic to M as an H-module. We let π be the G-invariant subspace
of H0(X, I) generated by the image of ρ. In Theorem 6.5.2 we prove that π is
irreducible and supersingular. We also show that π is the socle of H0(X, I). The
space H0(X, I)I1 is always finite dimensional, we determine the H-module structure
in Proposition 6.4.5. The proofs rely on some general properties of injective envelopes,
which we recall in Subsection 6.2. Using injective envelopes we also give a new proof
of the criterion for admissibility of a smooth representation of G, which works in a
very general context, see Subsection 6.3.

We would like to explain the thinking behind the construction of the coefficient
system V in Subsection 6.1. Let π be a smooth representation of G, generated by
its I1-invariant vectors. We may associate to π a G-equivariant coefficient system
Fπ as follows. Given a simplex σ on X , we let U1

σ be the maximal normal pro-p
subgroup of the G-stabiliser of σ. With this notation U1

σ1
= I1 and U1

σ0
= K1. We

may consider the coefficient system of invariants Fπ = (πU1
σ )σ, where the restriction

maps are inclusions. Since π is generated by its I1-invariants the natural map

H0(X,Fπ) −→ π

is surjective. If we are working over the complex numbers then a theorem of Schneider
and Stuhler in [13], says that the above homomorphism is in fact an isomorphism. If
we are working over Fp, then H0(X,Fπ) can be much bigger than π.

The construction of V is motivated by the following question. Let M be a su-
persingular module of H and suppose that there exists a smooth irreducible Fp-
representation π of G such that πI1 ∼= M . What can be said about the corresponding
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coefficient system Fπ? It is enough to understand the action of K on πK1 . This
reduces the question to the representation theory of GL2(Fq). In Corollary 6.1.10 we
show that there exists an injection V ↪→ Fπ and hence every π as above is a quotient
of H0(X,V). We would like to point out that although in most cases we do not know
whether such π exists, the coefficient system V is always well defined. Moreover, if π
is any non-zero irreducible quotient of H0(X,V), then we show that π is supersingu-
lar, since πI1 contains a supersingular H-module M . This implies that H0(X,V) is a
quotient of one of the spaces considered by Barthel and Livné in [1]. Corollary 6.1.8
implies that at least in some cases the quotient map is an isomorphism. Now the Re-
marque 4.2.6 in [4] shows that in general dim H0(X,V)I1 is infinite. The irreducible
representation π, which we construct in this paper, is a quotient of H0(X,V), more-
over the space πI1 is finite dimensional. Hence, in contrast to the situation over C, in
general H0(X,V) is very far away from being irreducible.

We believe that our construction of irreducible representations will work for other
groups. Our strategy could be applied most directly to the group G = GLN (F ), where
N is a prime number. If N is prime then the maximal open, compact-mod-centre
subgroups of G are the G-stabilisers of chambers (simplices of maximal dimension)
and vertices in the Bruhat-Tits building of G and if we had the equivalent of (E)
then the construction of the coefficient system I and our proofs would carry through.
However, in order to do this one needs to understand the HΓ-module structure of
(inj ρ)U , (or at least the action of B on (inj ρ)U , at the cost of not knowing H-module
structure of H0(X, I)I1), where ρ is an irreducible Fp-representation of Γ = GLN (Fq),
B is the subgroup of upper-triangular matrices, and U is the subgroup of unipotent
upper-triangular matrices of Γ. This might be quite a difficult problem, since already
for N = 2 the dimension of (inj ρ)U can be as big as 2n − 1, if q = pn.

Acknowledgements. — I would like to thank Michael Spiess and Thomas Zink for a
number of useful discussions and for looking after me in general. I would like to thank
Marie-France Vignéras for her encouragement and her comments on this work.

1.1. Notation

Let F be a non-Archimedean local field, oF its ring of integers, pF the maximal
ideal of oF . Let p be the characteristic and let q be the number of elements of the
residue class field of F . We fix a uniformiser !F of F .

Let G = GL2(F ) and K = GL2(oF ). Reduction modulo pF induces a surjective
homomorphism

red : K −→ Γ = GL2(Fq).

Let K1 be the kernel of red. Let B be the subgroup of Γ of upper triangular matrices.
Then

B = HU

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004



6 CHAPTER 1. INTRODUCTION

where H is the subgroup of diagonal matrices and U is the subgroup of unipotent
matrices in B. It is of importance, that the order of H is prime to p and U is a
p-Sylow subgroup of Γ. Let I and I1 be the subgroups of K, given by

I = red−1(B), I1 = red−1(U).

Then I is the Iwahori subgroup of G and I1 is the unique maximal pro-p subgroup of
I. Let T be the subgroup of diagonal matrices in K, and let T1 = T ∩ K1 = T ∩ I1.
Let N be the normaliser of T in G. We introduce some special elements of N . Let

Π =
(

0 1
!F 0

)
, ns =

(
0 −1
1 0

)
, s =

(
0 1
1 0

)
.

The images of Π and ns in N/T , generate it as a group. The normaliser N acts on T
by conjugation, and hence it acts on the group of characters of T . This action factors
through T , so if w ∈ N/T and χ is a character of T , we will write χw for the character,
given by

χw(t) = χ(w−1tw), ∀ t ∈ T.

Let B̃ be the group of upper-triangular matrices in G, then B̃ = T̃ Ũ where T̃ is the
group of diagonal matrices in G and Ũ is the group of unipotent matrices in B̃.

Definition 1.1.1. — Let π be a smooth irreducible Fp-representation of G, such
that π admits a central character, then π is called supersingular if π is not a subquo-
tient of IndG

eB χ, for any smooth quasi-character χ : B̃ → B̃/Ũ ∼= T̃ → F
×
p .

All the representations considered in this paper are over Fp, unless it is stated
otherwise.

MÉMOIRES DE LA SMF 99
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HECKE ALGEBRA

Lemma 2.0.2. — Let P be a pro-p group and let π be a smooth non-zero representa-
tion of P, then the space πP of P-invariants is non-zero.

Proof. — We choose a non-zero vector v in π. Let ρ = 〈Pv〉Fp
be a subspace of π

generated by P and v. Since the action of P on π is smooth, the stabiliser StabP(v)
has finite index in P , hence ρ is finite dimensional. Let v1, . . . , vd be an Fp basis of ρ.
The group P acts on ρ and the kernel of this action is given by

Ker ρ =
d⋂

i=1
StabP(vi).

In particular, Kerρ is an open subgroup of P . Hence, P/ Kerρ is a finite group, whose
order is a power of p. Now,

ρP = ρP/ Ker ρ != 0

since P/ Kerρ is a finite p-group, see [15], §8, Proposition 26.

Let π be a smooth representation of G, then

πI1 ∼= HomI1(1, π) ∼= HomG(c-IndG
I1 1, π)

by Frobenius reciprocity. Let H be the Hecke algebra

H = EndG(c-IndG
I1 1)

then via the above isomorphism πI1 becomes naturally a right H-module. We obtain
a functor

RepG −→ Mod -H, π *−→ πI1 ,

where RepG is a category of smooth Fp-representations of G and Mod -H is the
category of right H-modules. Since I1 is an open pro-p subgroup of G, Lemma 2.0.2
implies that πI1 = 0 if and only if π = 0. This functor is our basic tool. The algebra
structure of H is well understood, in a general context of split reductive groups over F ,
see [17]. We recall some of the results below. Since we deal only with GL2 we can
be very explicit. Our notation follows [7], where finite groups with split BN -pair are
treated.
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Definition 2.0.3. — Let g ∈ G and f ∈ c-IndG
I1 1 we define Tg ∈ H by

(Tgf)(I1g1) =
∑

I1g2⊆I1g−1I1g1

f(I1g2).

Lemma 2.0.4. — We may write G as a disjoint union

G =
⋃̇

n∈N/T1

I1nI1

of double cosets.

Proof. — This follows from the Iwahori decomposition.

It is immediate that the definition of Tg depends only on the double coset I1gI1.
The Lemma above implies that it is enough to consider Tn, where n ∈ N is a repre-
sentative of a coset in N/T1.

Definition 2.0.5. — Let ϕ ∈ c-IndG
I1 1 be the unique function such that

Suppϕ = I1 and ϕ(u) = 1, ∀u ∈ I1.

Lemma 2.0.6

(i) The function ϕ generates c-IndG
I1 1 as a G-representation.

(ii) SuppTnϕ = I1nI1 and (Tnϕ)(g) = 1, for every g ∈ I1nI1. In particular,

Tnϕ =
∑

u∈I1/(I1∩n−1I1n)

un−1ϕ.

(iii) The set {Tnϕ : n ∈ N/T1} is an Fp-basis of (c-IndG
I1 1)I1 .

(iv) The set {Tn : n ∈ N/T1} is an Fp-basis of H.

Proof. — Let g ∈ G, then Supp(g−1ϕ) = I1g and (g−1ϕ)(I1g) = 1. Part (i) follows
immediately.

Let f ∈ c-IndG
I1 1, then by examining the definition of Tn, one obtains that

Supp(Tnf) ⊆ I1n Supp f . Hence, Supp(Tnϕ) ⊆ I1nI1. Since Tn is a G-equivariant
homomorphism and I1 acts trivially on ϕ, it is enough to prove that (Tnϕ)(n) = 1.
Since Supp ϕ = I1, it is immediate from Definition 2.0.3 that (Tnϕ)(I1n) = ϕ(I1) = 1.
The last part follows from decomposing I1nI1 into right cosets and applying the
argument used in Part (i).

Let n, n′ ∈ N , and suppose that nT1 != n′T1, then Lemma 2.0.4 implies that
I1nI1 != I1n′I1. By Part (ii) the functions Tnϕ and Tn′ϕ have disjoint support. This
implies that the set {Tnϕ : n ∈ N/T1} is linearly independent. Any f ∈ (c-IndG

I1 1)I1 ,
is constant on the double cosets I1nI1, for n ∈ N , and since Supp f is compact, f is
supported only on finitely many such, hence Lemma 2.0.4 and Part (ii) imply that
{Tnϕ : n ∈ N/T1} is also a spanning set. Hence we get Part (iii).

Let ψ ∈ H, Part (i) implies that ψ = 0 if and only if ψ(ϕ) = 0. This observation
coupled with Part (iii) implies Part (iv).
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Corollary 2.0.7. — Let π be a smooth representation of G and let v ∈ πI1 , then
the action of Tn on πI1 is given by

vTn =
∑

u∈I1/(I1∩n−1I1n)

un−1v.

Proof. — The isomorphism HomG(c-IndG
I1 1, π) ∼= πI1 is given explicitly by ψ *→ ψ(ϕ).

Let ψ be the unique G-invariant homomorphism, such that ψ(ϕ) = v, then

vTns = (ψ ◦ Tns)(ϕ) = ψ(Tnsϕ) = ψ

( ∑

u∈I1/(I1∩n−1I1n)

un−1ϕ

)
.

The last equality follows from Lemma 2.0.6 (ii). Since, ψ is G-invariant, we obtain
the Lemma.

Lemma 2.0.8. — Let n′, n ∈ N and suppose that n normalises I1, then

Tn′Tn = Tn′n, TnTn′ = Tnn′ .

Proof. — Lemma 2.0.6 (i) implies that it is enough to show that the homomorphisms
map ϕ to the same function. Let f ∈ c-IndG

I1 1 then since n normalises I1 we have
(Tn(f))(g) = f(ng) and Tnϕ = n−1ϕ. Now the Lemma follows from Lemma 2.0.6
(ii).

Let t ∈ T and let h be the image of t in H , via T/T1
∼= H , we will write Th for the

homomorphism Tt.

Definition 2.0.9. — Let χ : H → F
×
p be a character, we define

eχ =
1
|H |

∑

h∈H

χ(h)Th.

Let
ϕχ = eχϕ,

then ϕχ is the unique function in c-IndG
I1 1 such that

Suppϕχ = I, ϕχ(g) = χ(gI1), ∀ g ∈ I,

via the isomorphism I/I1
∼= H .

Lemma 2.0.10

(i) e2
χ = eχ and eχeχ′ = 0, if χ != χ′.

(ii) id =
∑

χ eχ, where the sum is taken over all characters χ : H → F
×
p .

(iii) eχ(c-IndG
I1 1) ∼= c-IndG

I χ.

Proof. — We note that H is abelian and the order of H is prime to p. Parts (i) and
(ii) follow from the orthogonality relations of characters. Lemma 2.0.6 (i) implies that
eχ(c-IndG

I1 1) is generated by ϕχ and this implies Part (iii).
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Corollary 2.0.11. — Let π be a smooth representation of G, then I acts on (πI1)eχ

by a character χ. Moreover,
πI1 ∼= ⊕χ(πI1)eχ.

Proof. — The group I acts on πI1 . Since I1 acts trivially and I/I1
∼= H , which

is abelian and of order prime to p, the space πI1 decomposes into one dimensional I
invariant subspaces. Corollary 2.0.7 implies that eχ cuts out the χ-isotypical subspace.
The last part follows from Lemma 2.0.10 (ii).

Lemma 2.0.12

(i) Tnseχ = eχsTns, TΠeχ = eχsTΠ.
(ii) If χ = χs then T 2

ns
eχ = −Tnseχ.

(iii) If χ != χs then T 2
ns

eχ = 0.

Proof. — Part (i) follows from Lemma 2.0.8. Lemma 2.0.6 (i) implies that it is
enough to calculate T 2

ns
eχϕ = T 2

ns
ϕχ. Applying Lemma 2.0.6 (ii) twice we obtain

SuppT 2
ns

ϕχ ⊆ K. Hence it is enough to do the calculation in the space IndK
I1 1. Since

K1 acts trivially on this space, it is enough to do the calculation in the space IndΓ
U 1.

Then the Lemma is a special case of [7] Theorem 4.4.

Lemma 2.0.13. — Let m ! 0 and let w = Πns then the following hold:
(i) I1wI1wmI1 = I1wm+1I1,
(ii) I1w−1I1wm+1 ∩ I1wmI1 = I1wm,
(iii) Twm = (Tw)m = (TΠTns)m.

Proof. — The first two parts can be checked by a direct calculation. For Part (iii) we
observe that

SuppTwTwmϕ ⊆ I1w Supp Twmϕ = I1wI1w
mI1 = I1w

m+1I1,

where the last equality is Part (i). Part (ii) and Lemma 2.0.6 (ii) imply that

(TwTwmϕ)(wm+1) = 1.

Since I1 acts trivially on ϕ and all the homomorphisms are G-equivariant, we may
apply Lemma 2.0.6 (ii) again to obtain

TwTwmϕ = Twm+1ϕ.

Lemma 2.0.6 (i) implies that TwTwm = Twm+1 . Induction and Lemma 2.0.8 gives us
Part (iii).

Lemma 2.0.14

(i) Let n ∈ N , then there exists h ∈ H and integers a ∈ {0, 1}, m ! 0 and b ∈ Z
such that

Tn = T a
Π(TΠTns)

mT b
ΠTh

where T−1
Π = TΠ−1 .
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(ii) The elements Tns , TΠ, TΠ−1 and eχ, for every character χ : H → F
×
p , generate

H as an algebra.

Proof. — We note that Lemma 2.0.8 implies that TΠ is invertible with T−1
Π = TΠ−1

and T 2
Π is central in H. Every n ∈ N maybe written as n = Πa(Πns)mΠbt, where

t ∈ T . Lemma 2.0.8 and Lemma 2.0.13(iii) imply Part (i). Hence Tns , TΠ, TΠ−1 and
Th, for h ∈ H generate H as an algebra. Lemma 2.0.8 implies that Theχ = χ(h−1)eχ

and hence Lemma 2.0.10 (ii) implies that Th can be expressed as a linear combination
of idempotents eχ. This gives us Part (ii).

Lemma 2.0.15

(i) The set {eχTnϕ : n ∈ N/T, χ : H → F
×
p } is an Fp-basis of (c-IndG

I1 1)I1 .
(ii) The set {eχTn : n ∈ N/T, χ : H → F

×
p } is an Fp-basis of H.

Proof. — Since eχTh = χ(h−1)eχ Lemma 2.0.6 (iii) implies that the set

{eχTnϕ : n ∈ N/T, χ : H −→ F
×
p }

is a spanning set. Since the elements eχ are orthogonal idempotents it is enough to
show that the set {eχTnϕ : n ∈ N/T } is linearly independent for a fixed charac-
ter χ. Lemma 2.0.6 (ii) implies that Supp eχTnϕ = InI. Lemma 2.0.4 implies that if
nT != n′T , then eχTnϕ and eχTn′ϕ have disjoint support and hence the set is linearly
independent. Part (ii) follows from Part (i) and Lemma 2.0.6 (i).

2.1. Supersingular modules

All the irreducible modules of H have been determined by Vignéras in [18]. They
naturally split up into two classes.

Proposition 2.1.1. — Let π be a smooth irreducible representation of G, which ad-
mits a central character. Suppose that π is not supersingular, then πI1 is an irreducible
H-module.

Proof. — See [18] E.5.1.

The modules as above could be called non-supersingular, we are interested in all
the rest.

Definition 2.1.2. — Let χ : H → F
×
p be a character, let γ = {χ, χs} and let

λ ∈ F
×
p . We define a standard supersingular module Mλ

γ to be a right H-module such
that its underlying vector space is 2 dimensional

Mλ
γ = 〈v1, v2〉Fp

and the action of H is determined by the following:
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(i) If χ = χs then

v1eχ = v1, v1Tns = −v1, v1TΠ = v2

and

v2eχ = v2, v2Tns = 0, v2TΠ = λv1.

(ii) If χ != χs then

v1eχ = v1, v1Tns = 0, v1TΠ = v2

and

v2eχs = v2, v2Tns = 0, v2TΠ = λv1.

To show that these relations define an action of H requires some work, this is done
in [18].

Lemma 2.1.3. — The modules Mλ
γ are irreducible and

Mλ′

γ′ ∼= Mλ
γ

if and only if γ′ = γ and λ′ = λ.

Proof. — The definition immediately gives that Mλ
γ does not have a 1 dimensional

submodule, hence it is irreducible. If χ′ : H → F
×
p is a character, such that χ′ !∈ γ

then

Mλ
γ eχ′ = 0.

Hence, γ = γ′. The element T 2
Π acts on Mλ

γ by a scalar λ. Hence, λ = λ′.

The following Proposition explains why Mλ
γ are called supersingular.

Proposition 2.1.4. — Let M be an irreducible H module, such that M !∼= πI1 for
any non-supersingular irreducible representation π, then

M ∼= Mλ
γ

for some γ and λ.

Proof. — See [18] C.2 and E.5.1.

Corollary 2.1.5. — Let π be a smooth irreducible representation of G, admitting
a central character. Suppose that πI1 contains a submodule isomorphic to Mλ

γ for
some γ and λ, then π is supersingular.

We will also need to consider the following extension of supersingular modules.
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Definition 2.1.6. — Let χ : H → F
×
p be a character, such that χ != χs, let γ =

{χ, χs} and let λ ∈ F
×
p . Let

Hλ = H/(T 2
Π − λ)H

then we define a right H-module Lλ
γ to be

Lλ
γ = eχHλ/eχ(TΠTns − TnsTΠ)Hλ.

The definition seems to be asymmetric in χ and χs, however the multiplication
from the left by TΠ induces an isomorphism

eχHλ/eχ(TΠTns − TnsTΠ)Hλ ∼= eχsHλ/eχs(TΠTns − TnsTΠ)Hλ,

since TΠ is a unit in Hλ.

Lemma 2.1.7. — The images of eχ, eχTΠ, eχTns and eχTnsTΠ in Lλ
γ form an Fp-

basis of Lλ
γ .

Proof. — This follows from Lemma 2.0.15 (ii) and Lemma 2.0.12 (ii).

Lemma 2.1.8. — There exists a short exact sequence

0 −→ Mλ
γ −→ Lλ

γ −→ Mλ
γ −→ 0

of H-modules.

Proof. — Let v1 be the image of eχTns in Lλ
γ and let v2 be be image of eχTnsTΠ in

Lλ
γ . The subspace 〈v1, v2〉Fp

is stable under the action of Tns , TΠ and eχ′ , for every

χ′ : H → F
×
p . Hence, by Lemma 2.0.14 (ii) the subspace is stable under the action

of H. From Lemma 2.0.12 (ii) and Definition 2.1.2 (ii) it follows that 〈v1, v2〉Fp

∼= Mλ
γ .

An easy check shows that Lλ
γ/Mλ

γ
∼= Mλ

γ .

Lemma 2.1.9. — Let (π,V) be a smooth representation of G and let ξ ∈ F
×
p . Let µξ

be an unramified quasi-character:

µξ : F× −→ F
×
p , x *−→ ξvalF (x)

where valF is the valuation of F . Suppose that πI1 contains Mλ
γ , where γ = {χ, χs}

and let V be the underlying vector space of Mλ
γ in V. If we consider the representation

(π ⊗ µξ ◦ det, V) of G, then the action of H on V is isomorphic to Mλξ−2

γ .

Proof. — Let
V = 〈v1, v2〉Fp

as in Definition 2.1.2. Since µξ is unramified, Corollary 2.0.7 implies that the action
of Tns and the idempotents eχ on V does not change. Lemma 2.0.14 (ii) implies that
it is enough to check how TΠ acts. Since detΠ = −!F , twisting by µξ ◦ det gives us

v1TΠ = Π−1v1 = ξ−1v2 and v2TΠ = Π−1v2 = ξ−1λv1.

Once we replace v1 by ξv1 the isomorphism follows from Definition 2.1.2.
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Since, by twisting by an unramified character we may vary λ as we wish, we might
as well work with λ = 1.

Definition 2.1.10. — Let γ = {χ, χs} then we define H-modules

Mγ = M1
γ and Lγ = L1

γ .

2.2. Restriction to HK

Let HK = EndK(IndK
I1 1). The natural isomorphism of K representations

IndK
I1 1 ∼= {f ∈ c-IndG

I1 1 : Supp f ⊆ K}

gives an embedding of algebras

HK ↪−→ HomK(IndK
I1 1, c-IndG

I1 1) ∼= HomG(c-IndG
I1 1, c-IndG

I1 1) = H.

As an algebra HK is generated by Tns and eχ, for all characters χ.

Definition 2.2.1. — Let χ : H → F
×
p be a character. Let J0(χ) be a set, such that

J0(χ) = ∅ if χ != χs, and J0(χ) = {s}, if χ = χs. Let J be a subset of J0(χ), we define
Mχ,J to be a right HK-module, whose underlying vector space is one dimensional,
Mχ,J = 〈v〉Fp

and the action of HK is determined by the following:

veχ = v,

vTns = 0 if s ∈ J or s !∈ J0(χ), vTns = −v, if s !∈ J and s ∈ J0(χ).

Given χ and J as above, we will denote

J = J0(χ)\J.

Lemma 2.2.2. — Let χ : H → F
×
p be a character and let γ = {χ, χs}, then

Mγ |HK
∼= Mχ,J ⊕ Mχs,J

as HK-modules, where J is a subset of J0(χ). Moreover, if χ != χs, then

Lγ |HK
∼= (IndK

I χ ⊕ IndK
I χs)I1

as HK-modules.

Proof. — The first isomorphism follows directly from Definition 2.1.2. Since J0(χ)
has at most two subsets, it doesn’t matter which subset we take. For the second
isomorphism we observe that the space (IndK

I χ)I1 is two dimensional, with the basis
{ϕχ, Tnsϕχs}. Moreover, I acts on the basis vectors by characters χ and χs respec-
tively. Now

ϕχTns =
∑

u∈I1/K1

un−1
s ϕχ = eχ

( ∑

u∈I1/K1

un−1
s ϕ

)
= eχTnsϕ = Tnseχsϕ = Tnsϕχs

MÉMOIRES DE LA SMF 99



2.2. RESTRICTION TO HK 15

and

(Tnsϕχs)Tns =
∑

u∈I1/K1

un−1
s Tnseχsϕ = Tnseχs

( ∑

u∈I1/K1

un−1
s ϕ

)
= eχT 2

ns
ϕ = 0

and Lemma 2.1.7 allows us to define the obvious isomorphism on the basis.
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CHAPTER 3

IRREDUCIBLE REPRESENTATIONS OF GL2(Fq)

3.1. Carter and Lusztig theory

In [7] Carter and Lusztig have constructed all irreducible Fp-representations of a
finite group Γ, which has a ’split BN -pair of characteristic p’. Since GL2(Fq) is a
special case of this, we will recall their results. Let Γ be a finite group with a BN -pair
(Γ, B, N, S). Let H = B ∩ N , then H is normal in N , and S is the set of Coxeter
generators of W = N/H . We additionally require that B = HU , where U is a normal
subgroup of B, which is a p-group, and H is abelian of order prime to p. Moreover,
we assume that H = ∩n∈NBn.

Theorem 3.1.1 ([7]). — Let ρ be an irreducible representation of Γ then
(i) the space of U invariants ρU is one dimensional;
(ii) suppose that the action of B on ρU is given by a character χ : H → F

×
p , via

B → B/U ∼= H and let J = {s ∈ S : s " ρU = ρU} then the pair (χ, J) determines ρ
up to an isomorphism;

(iii) conversely, given a character χ : H → F
×
p , let J0(χ) = {s ∈ S : χs = χ} and

let J be a subset of J0(χ) then there exists an irreducible representation ρχ,J of Γ with
the pair (χ, J) as above.

Proof. — This is [7] Corollary 7.5, written out in detail, see also [11] Theorem 3.9
and [8] Theorem 4.3. and [6] §3.4.

Let HΓ = EndΓ(IndΓ
U 1). We would like to rephrase Theorem 3.1.1 in terms of

HΓ-modules. For each s ∈ S we may choose a representative ns ∈ N . Moreover,
according to [7] Lemma 2.2, we can choose ns in a nice way. The obvious equivalent
of Definition 2.0.3 gives an endomorphism Tn ∈ HΓ for each n ∈ N . Definition 2.0.9
for each character χ : H → F

×
p gives an idempotent eχ ∈ HΓ.

Definition 3.1.2. — Let χ : H → F
×
p be a character, and let J be a subset of

J0(χ) we define Mχ,J to be a right HΓ-module, whose underlying vector space is one
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dimensional, Mχ,J = 〈v〉Fp
and the action of HΓ is determined by the following:

veχ = v

and for every s ∈ S we have

vTns =






0 if s ∈ J ,
−v if s ∈ J0(χ), s !∈ J ,
0 if s !∈ J0(χ).

Corollary 3.1.3. — The functor of U invariants

RepΓ −→ Mod -HΓ, ρ *−→ ρU

induces a bijection between the irreducible representations of Γ and the irreducible
right HΓ-modules. Moreover, if an irreducible representation ρχ,J corresponds to the
pair (χ, J), in the sense of Theorem 3.1.1 (iii), then

ρU
χ,J

∼= Mχ,J

as an HΓ-module.

Proof. — See, [6] Theorem 3.32.

Remark 3.1.4. — Ideally, we would like to have an analogue of the Corollary above
for G or more generally for any group of F -points of a reductive group, split over F .

Carter and Lusztig, in [7] construct all the irreducible representations ρχ,J in a
very elegant way. For each pair (χ, J) they define a Γ-equivariant homomorphism

ΘJ
w0

: IndΓ
B χ −→ IndΓ

B χw0

which depends on the geometry of the Coxeter group W , so that

ρχ,J
∼= Im ΘJ

w0

where w0 is the unique element of maximal length in W .
From now onwards we specialise to our situation, so that Γ = GL2(Fq), B is

the subgroup of upper-triangular matrices, U is the subgroup of unipotent upper-
triangular matrices, H is the diagonal matrices, N is the normaliser of H in Γ, that
is the monomial matrices and W = N/H is isomorphic to the symmetric group on
two letters, W = {1, s}. Let

ns =
(

0 −1
1 0

)

be a fixed representative of s in N . In particular, s is the element of the maximal
length in W and also the single Coxeter generator, so that S = {s}. Hence, if
χ : H → F

×
p , then either J0(χ) = ∅ or J0(χ) = S. Since

K/K1
∼= Γ, I/K1

∼= B, I1/K1
∼= U

to ease the notation, we will often identify the spaces

{f : Γ −→ Fp : f(ug) = f(g), ∀ g ∈ Γ, ∀u ∈ U}
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and
{f ∈ c-IndG

I1 1 : Supp f ⊆ K}
in the natural way. In particular, we will use the same notation for the elements of
HK and HΓ and we note that the Definitions 2.2.1 and 3.1.2 coincide.

Proposition 3.1.5. — For each character χ : H → F
×
p , such that χ = χs, let

ρχ,S = Im
(
(1 + Tns) : IndΓ

B χ → IndΓ
B χ

)

and let
ρχ,∅ = Im

(
Tns : IndΓ

B χ → IndΓ
B χ

)

then the representations ρχ,S and ρχ,∅ are irreducible. Moreover,

ρU
χ,S = 〈(1 + Tns)ϕχ〉Fp

∼= Mχ,S and ρU
χ,∅ = 〈Tnsϕχ〉Fp

∼= Mχ,∅

as HΓ-modules. For each character χ : H → F
×
p , such that χ != χs, let

ρχ,∅ = Im
(
Tns : IndΓ

B χ → IndΓ
B χs

)

then the representation ρχ,∅ is irreducible. Moreover,

ρU
χ,∅ = 〈Tnsϕχ〉Fp

∼= Mχ,∅

as an HΓ-module. Further, these representations are pairwise non-isomorphic, and
every irreducible representation of Γ is isomorphic to ρχ,J , for some character χ and
a subset J of J0(χ).

Proof. — This is a special case of [7] Theorem 7.1 and Corollary 7.5. The isomor-
phisms of HΓ-modules are given by the Corollary 3.1.3.

Remark 3.1.6. — Although we do not use this, we note that Frobenius reciprocity
gives us

c-IndG
K ρχ,∅ ∼= Tns(c-IndG

I χ) # c-IndG
I χs

and if χ = χs then

c-IndG
K ρχ,S

∼= (1 + Tns)(c-IndG
I χ) # c-IndG

I χ.

Using this, one can relate the central elements of Vignéras in [18] to the ‘standard ’
endomorphisms Tσ of Barthel and Livné in [1].

Lemma 3.1.7. — Let χ : H → F
×
p be a character, such that χ = χs. Then the homo-

morphisms eχ(1 + Tns)eχ and −eχTnseχ are orthogonal idempotents. In particular,

IndΓ
B χ ∼= ρχ,∅ ⊕ ρχ,S .

Moreover, let χ′ : F×
q → F

×
p be a character such that χ = χ′ ◦ det, then

ρχ,S
∼= χ′ ◦ det and ρχ,∅ ∼= St⊗χ′ ◦ det

where St is the Steinberg representation.
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Proof. — Since χ = χs we have

eχTns = Tnseχ and eχT 2
ns

= −eχTns .

So the elements above are orthogonal idempotents as claimed. By Proposition 3.1.5,
the summands they split off are ρχ,S and ρχ,∅.

Since χ = χs, the character χ must factor through the determinant. So χ extends
to a character of Γ and hence

IndΓ
B χ ∼= IndΓ

B 1⊗ χ′ ◦ det .

So we may assume that χ is the trivial character. The Bruhat decomposition says that
Γ = BsB ∪ B and hence by Theorem 3.1.1 (ii) ρ1,S = 1, the trivial representations
of G. This implies that ρ1,∅ is the Steinberg representation.

Corollary 3.1.8. — Let χ : H → F
×
p be a character, such that χ = χs. Let ρ be

any representation of Γ, such that for some v ∈ ρU we have

〈v〉Fp

∼= Mχ,J

as an HΓ-module. Then
〈Γv〉Fp

∼= ρχ,J

as a Γ-representation.

Proof. — Since v is fixed by U there exists a homomorphism ψ ∈ HomΓ(IndΓ
U 1, ρ)

such that ψ(ϕ) = v. The isomorphism of HΓ-modules implies that

v = veχ = ψ(eχϕ) = ψ(ϕχ).

Hence, H acts on v by a character χ and

ψ(IndΓ
U 1) = ψ(eχ(IndΓ

U 1)) = ψ(IndΓ
B χ).

If J = ∅ then
ψ((1 + Tns)ϕχ) = v(1 + Tns)eχ = 0.

Hence, ρχ,S is contained in the kernel of ψ. By Lemma 3.1.7

Im ψ ∼= ρχ,∅.

Since, the image is irreducible and contains v we get the result. The proof for J = S
is analogous.

The Corollary has a nice application, which complements [18] E.7.1.

Corollary 3.1.9. — Let π be a smooth representation of G and suppose that there
exists a non-zero vector v ∈ πI1 such that

ve1 = v, vTns = 0, vTΠ = v

then G acts trivially on v.
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Proof. — As an HK module
〈v〉Fp

∼= M1,S .

By Corollary 3.1.8 K acts trivially on v. On the other hand

v = vTΠ = Π−1v.

Iwahori decomposition implies that Π and K generate G as a group. Hence G acts
trivially on v.

Remark 3.1.10. — There is a version of this twisted by a character. This example
will lead us to better things. See Remark 5.5.6.

Lemma 3.1.11. — Let χ : H → F
×
p be a character, let J be a subset of J0(χ), and

let J = J0(χ)\J . The sequence of HΓ-modules

0 −→ Mχ,J −→ (IndΓ
B χs)U −→ Mχs,J −→ 0

is exact. Moreover, it splits if and only if χ = χs.

Proof. — The space (IndΓ
B χs)U is two dimensional, with the basis {Tnsϕχ, ϕχs}.

If χ = χs then eχ(1 + Tns)eχ and −eχTnseχ are orthogonal idempotents, which
split the sequence.

If χ != χs then J0(χ) = J = ∅ and for every λ, µ ∈ Fp we have

(λTnsϕχ + µϕχs)eχ = λTnsϕχ, (λTnsϕχ + µϕχs)eχs = µϕχs

and
(λTnsϕχ + µϕχs)Tns = µTnsϕχ.

Hence Mχ,∅ is the only proper submodule, so the sequence cannot split.

3.2. Alternative description of irreducible representations

Let Vd,F be an F vector space of homogeneous polynomials in two variables X
and Y of the degree d. The group K acts on Vd,F via

(
a b
c d

)
(Xd−iY i) = (aX + cY )d−i(bX + dY )i.

For 0 # i # d, let

mi =
(

d
i

)
Xd−iY i

where
(

d
i

)
denotes the binomial coefficient. Vectors mi, for 0 # i # d, form a basis of

Vd,F . Let Vd,oF be the oF -lattice in Vd,F spanned by the mi, for 0 # i # d. An easy
check shows that Vd,oF is K invariant. Let

Vd,Fq = Vd,oF ⊗oF oF /pF .
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The vectors mi ⊗ 1, for 0 # i # d, form an Fq-basis of Vd,Fq . The subgroup K1

acts trivially on Vd,Fq , so we consider Vd,Fq as a representation of Γ. Let Fr be the
automorphism of Γ, given by

Fr :
(

a b
c d

)
*−→

(
ap bp

cp dp

)
.

Let ρ be a representation of Γ. We will denote by ρFr the representation of Γ given
by

ρFr(g) = ρ(Fr(g)).

Theorem 3.2.1. — Let Γ = GL2(Fq) and suppose that q = pn. The isomorphism
classes of irreducible Fp-representations of Γ are parameterised by pairs (a, r), where

– a is an integer 1 # a # q − 1 and
– r is an ordered n-tuple r = (r0, r1, . . . , rn−1), where 0 # ri # p − 1, for every i.

Moreover, the irreducible representations of Γ can be realized over Fq and the irre-
ducible representation corresponding to (a, r) is given by

Vr,Fq ⊗ (det)a ∼= Vr0,Fq ⊗ V Fr
r1,Fq

⊗ · · ·⊗ V Fri

ri,Fq
⊗ · · ·⊗ V Frn−1

rn−1,Fq
⊗ (det)a.

Proof. — This is shown in [3], see also [1] Proposition 1 and [18] Ap. 6. We remark
that since

(
r
i

)
is a unit in Fq if r # p − 1, our spaces really coincide with the ones

considered in [1].

We fix some embedding ι : Fq ↪→ Fp and we will assume that every character
χ : H → F

×
p factors through ι. Once we have done that, we will omit ι from our

notation. We will denote
Vr,Fp

= Vr,Fq ⊗Fq Fp.

We need a dictionary between the two descriptions.

Proposition 3.2.2. — Let χ : H → F
×
p and let a be the unique integer, such that

1 # a # q − 1 and
χ
((

1 0
0 λ

))
= λa ∀λ ∈ F×

q

and let r be the unique integer, such that 1 # r # q − 1 and

χ
((

λ 0
0 λ−1

))
= λr ∀λ ∈ F×

q .

Suppose that r != q − 1, and let r = (r0, . . . , rn−1) be the digits of a p-adic expansion
of r

r = r0 + r1p + · · · + rn−1p
n−1

then χ != χs and ρχ,∅ corresponds to the pair (a, r). More precisely

ρχ,∅ ∼= Vr0,Fp
⊗ · · ·⊗ V Frn−1

rn−1,Fp
⊗ (det)a.

Suppose that r = q − 1, then χ = χs,

ρχ,∅ ∼= Vp−1,Fp
⊗ · · ·⊗ V Frn−1

p−1,Fp
⊗ (det)a ∼= St⊗(det)a
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and
ρχ,S

∼= V0,Fp
⊗ · · ·⊗ V Frn−1

0,Fp
⊗ (det)a ∼= (det)a

where St denotes the Steinberg representation.

Proof. — Every character χ : H → F
×
p is of the form

χ :
(

λ 0
0 µ

)
*−→ λcµd

for some integers c and d. Moreover, χ = χs if and only if

c − d ≡ 0 (mod q − 1).

The integers a and r are uniquely determined by the congruences

d ≡ a (mod q − 1) and c − d ≡ r (mod q − 1).

By Theorem 3.1.1 if ρ is an irreducible representation of Γ, then dim ρU = 1, and
by Corollary 3.1.3 the irreducible representations of Γ correspond to the irreducible
modules of the Hecke algebra HΓ. Since we have two complete lists of irreducible
representations, it is enough to match up the corresponding irreducible modules. We
recall that

ρU
χ,J

∼= Mχ,J

as HΓ-modules.
We observe that the action of U on Vd,Fp

fixes the vector m0 ⊗ 1. Moreover,
(

λ 0
0 µ

)
m0 ⊗ 1 = λdm0 ⊗ 1.

Let (a, r) be any pair parameterising an irreducible representation of Γ and let

r = r0 + r1p + · · · + rn−1p
n−1.

By picking such (m0 ⊗ 1)ri in every component of the tensor product we obtain a
non-zero vector

(m0 ⊗ 1)r = (m0 ⊗ 1)r0 ⊗ · · ·⊗ (m0 ⊗ 1)rn−1

fixed by U . The vector (m0 ⊗ 1)r spans the space of U invariants, since it is one
dimensional. Moreover, since the action on the components of the tensor product is
twisted by Fr we obtain

(
λ 0
0 µ

)
(m0 ⊗ 1)r = (λµ)aλr(m0 ⊗ 1)r.

Suppose that we start with an arbitrary character χ : H → F
×
p and obtain the

integers a and r as in the statement of the proposition.
If r != q−1, then by above χ != χs. Let r be the n-tuple corresponding to r. Since,

χ != χs, the module Mχ,∅ is the only irreducible module of HΓ, which is not killed by
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the idempotent eχ. Let (m0 ⊗ 1)r be the vector constructed above. Since, H acts on
(m0 ⊗ 1)r via the character χ, we obtain

Mχ,∅ ∼= (Vr0,Fp
⊗ · · ·⊗ V Frn−1

rn−1,Fp
⊗ (det)a)U

as HΓ-modules and that implies the isomorphism between representations.
If r = q − 1, then χ = χs, and the only HΓ-modules, which are not killed by eχ,

are Mχ,S and Mχ,∅. We observe that V0,Fp
is just the trivial representation. Let 0 =

(0, . . . , 0), then the representation corresponding to the pair (a,0) is just 1⊗ (det)a,
which is isomorphic to ρχ,S , by Proposition 3.1.7. The only case left is r = p − 1 =
(p − 1, . . . , p − 1), hence

Mχ,∅ ∼= (Vp−1,Fp
⊗ · · ·⊗ V Frn−1

p−1,Fp
⊗ (det)a)U

as HΓ-modules, since the module Mχ,S is already taken. This implies that

ρχ,∅ ∼= Vp−1,Fp
⊗ (det)a ∼= St⊗(det)a

where the last isomorphism follows from Proposition 3.1.7.

Corollary 3.2.3. — Suppose that q = pn and the representation ρχ,J corresponds
to the pair (a, r). Let r = r0 + r1p + · · · + rn−1pn−1 and let J = J0(χ)\J , where
J0(χ) = {s ∈ S : χs = χ}. Then

ρχs,J
∼= Vp−1−r0,Fp

⊗ · · ·⊗ V Frn−1

p−1−rn−1,Fp
⊗ (det)a+r.

Proof. — If r = 0 or r = q−1, then r is of a special form and the isomorphism follows
from Proposition 3.2.2.

If r != 0 and r != q − 1, we observe that

χs
((

1 0
0 λ

))
= χ

((
λ 0
0 λ−1

))
χ
((

1 0
0 λ

))
= λa+r ∀λ ∈ F×

q

and
χs

((
λ 0
0 λ−1

))
= χ

((
λ−1 0
0 λ

))
= λ−r ∀λ ∈ F×

q .

The claim follows from Proposition 3.2.2.
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CHAPTER 4

PRINCIPAL INDECOMPOSABLE REPRESENTATIONS

We will recall some facts from the modular representation theory of finite groups.
Let Γ be any finite group. We denote by RepΓ the category of Fp-representations of
Γ and by IrrΓ the set of isomorphism classes of irreducible representations in RepΓ.
We note that RepΓ is equivalent to the module category of the ring Fp[Γ].

Proposition 4.0.4. — A representation inj is an injective object in RepΓ if and only
if it is a projective object in RepΓ.

The isomorphism classes of indecomposable injective (and hence projective) objects
in RepΓ are parameterised by IrrΓ.

More precisely, if inj is indecomposable and injective, then the maximal semi-simple
submodule soc(inj) and the maximal semi-simple quotient inj / rad(inj) are both irre-
ducible. Moreover,

soc(inj) ∼= inj / rad(inj).

Conversely, given ρ ∈ IrrΓ, there exists a unique up to isomorphism indecomposable,
injective object inj ρ in RepΓ, such that

ρ ∼= soc(inj ρ).

Proof. — See [15], Exercises 14.1 and 14.6.

We will call indecomposable representations of Γ, which are injective objects in
RepΓ, principal indecomposable representations.

Remark 4.0.5. — We note that a monomorphism ρ ↪→ inj ρ is an injective envelope
of ρ in RepΓ.

Corollary 4.0.6. — We have the following decomposition:

Fp[Γ] ∼=
⊕

ρ∈IrrΓ

(dim ρ) inj ρ.
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Proof. — Since Fp[Γ] is an injective and projective object it must decompose into a
direct sum of indecomposable injective objects. Since

dimHomΓ(ρ,Fp[Γ]) = dimHom{1}(ρ,1) = dim ρ

the representation inj ρ occurs in the decomposition with the multiplicity dim ρ.

Proposition 4.0.7. — Let U be a p-Sylow subgroup of Γ. Then a representation ρ
is an injective object in RepΓ if and only if ρ|U is an injective object in RepU .

Proof. — This follows easily from [15], §14.4, Lemma 20.

Proposition 4.0.8. — Suppose that U is a p-group, then the only irreducible repre-
sentation is 1 and hence the only principal indecomposable representation is Fp[U ].

Proof. — The first part is [15], §8 , Proposition 26, the last part follows from Corol-
lary 4.0.6.

Corollary 4.0.9. — Let inj be an injective object in RepΓ and let U be a p-Sylow
subgroup of Γ, then

dim inj = dim injU |U |.

Proof. — The restriction inj |U is an injective object in RepU . By the above Propo-
sition

inj |U∼= mFp[U ].

The multiplicity m is given by: m = dim HomU (1, inj) = dim injU .

In the rest of the section Γ = GL2(Fq) and U is the subgroup of unipotent upper
triangular matrices. Given ρ ∈ IrrΓ we are going to compute (inj ρ)U as an HΓ-
module. Once we know the modules we are going to show that if we consider inj ρχ,J

and inj ρχs,J as representations of K, then the action of HK on

(inj ρχ,J ⊕ inj ρχs,J)I1

extends to the action of H, so that if χ = χs then it is isomorphic to a direct sum of
supersingular modules and if χ != χs then it is isomorphic to a direct sum of Lγ and
supersingular modules. See Propositions 4.2.37 and 4.2.38 for the precise statement.
This calculation, becomes of importance in Section 6.4. Although, the general case
includes the case q = p, if q = p we give a different, easier way of doing this. When
q = p, the main result is Proposition 4.1.9.
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4.1. The case q = p

We start off with no assumption on q.

Lemma 4.1.1. — Suppose that χ != χs, then there exists an exact sequence

0 −→ IndΓ
B χs ψ−−→ inj ρχ,∅

of Γ-representations.

Proof. — Since inj ρχ,∅ is an injective module, there exists ψ such that the diagram

0 !! ρχ,∅ !!

""

IndΓ
B χs

ψ##

inj ρχ,∅

commutes. If Ker ψ != 0, then (Kerψ)U is a non-zero proper submodule of (IndΓ
B χs)U

not containing Mχ,∅. By Lemma 3.1.11 this cannot happen.

Corollary 4.1.2. — Suppose that χ != χs then

dim inj ρχ,∅ ! 2q.

Proof. — Corollary 4.0.9 implies that

dim inj ρχ,∅ = dim(inj ρχ,∅)U |U |.

The order of U is q and since by Lemma 4.1.1 IndΓ
B χs is a subspace of inj ρχ,∅, we

obtain
dim(inj ρχ,∅)U ! 2.

Lemma 4.1.3. — Suppose that q = p and χ != χs then the sequence of Γ representa-
tions

0 −→ ρχ,∅ −→ IndΓ
B χs −→ ρχs,∅ −→ 0

is exact.

Remark 4.1.4. — This fails if q != p.

Proof. — The argument below is taken from [18] Ap. 6. We know that

ρχs,∅ ∼= Tns(IndΓ
B χs)

and ρχ,∅ is isomorphic to the subspace of IndΓ
B χs generated by Tnsϕχ. Since, T 2

ns
ϕχ =

0 we always have
ρχ,∅ # KerTns .

If q = p, then by Proposition 3.2.2 and Corollary 3.2.3 there exists an integer r such
that

dim ρχ,∅ + dim ρχs,∅ = (r + 1) + (p − 1 − r + 1) = p + 1 = dim IndΓ
B χs.

Hence the sequence is exact.
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Corollary 4.1.5. — Suppose that q = p and let χ : H → F
×
p be a character, such

that χ != χs. Let ρ be any representation of Γ, such that for some v ∈ ρU

〈v〉Fp

∼= Mχ,∅

as an HΓ-module. Then
〈Γv〉Fp

∼= ρχ,∅

as a Γ-representation.

Remark 4.1.6. — This fails if p != q, by Remark 4.1.4, it is enough to look at
IndΓ

B χ/ρχs,∅.

Proof. — Since v is fixed by U , there exists a homomorphism ψ ∈ HomΓ(IndΓ
U 1, ρ)

such that ψ(ϕ) = v. The isomorphism of HΓ-modules implies that

v = veχ = ψ(eχϕ) = ψ(ϕχ).

Hence H acts on v by a character χ and

ψ(IndΓ
U 1) = ψ(eχ(IndΓ

U 1)) = ψ(IndΓ
B χ).

Now
ψ(Tnsϕχs) = vTnseχs = 0.

Hence, ρχs,∅ is contained in the kernel of ψ. By Lemma 4.1.3

Im ψ ∼= ρχ,∅.

Since, the image is irreducible and contains v we get the result.

Lemma 4.1.7. — Suppose that q = p. If χ = χs then

dim inj ρχ,J = p.

If χ != χs then
dim inj ρχ,∅ = 2p.

Proof. — Corollary 4.0.6 implies that

dimFp[Γ] =
∑

ρ∈IrrΓ

(dim ρ)(dim inj ρ)

=
∑

χ,χ=χs

(dim ρχ,∅)(dim inj ρχ,∅) + (dim ρχ,S)(dim inj ρχ,S)

+
1
2

∑

χ,χ'=χs

(dim ρχ,∅)(dim inj ρχ,∅) + (dim ρχs,∅)(dim inj ρχs,∅).

If χ = χs then Corollary 4.0.9 implies that

dim inj ρχ,J ! p.

If χ != χs then Corollary 4.1.2 implies that

dim inj ρχ,∅ ! 2p.
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Lemma 4.1.3 and Lemma 3.1.7 imply that

dim ρχ,J + dim ρχs,J = p + 1.

We put these inequalities together and we obtain

dimFp[Γ] !
∑

χ

(p + 1)p = dimFp[Γ]

So all the inequalities must be equalities and we obtain the lemma.

Corollary 4.1.8. — Suppose that q = p. If χ = χs then

〈Γ(inj ρχ,J )U 〉Fp

∼= ρχ,J .

In particular,
(inj ρχ,J )U ∼= Mχ,J

as an HΓ-module.
If χ != χs then

〈Γ(inj ρχ,∅)U 〉Fp
∼= IndΓ

B χs.

In particular,
(inj ρχ,J)U ∼= (IndΓ

B χs)U

as an HΓ-module.

Proof. — If χ = χs then we have an exact sequence

0 −→ ρχ,J −→ inj ρχ,J

of Γ-representations. Since, by Lemma 4.1.7

dim ρU
χ,J = dim(inj ρχ,J )U

we obtain the Corollary. Similarly, if χ != χs then by Lemma 4.1.1 there exists an
exact sequence

0 −→ IndΓ
B χs −→ inj ρχ,∅

of Γ-representations. Since, by Lemma 4.1.7

dim(IndΓ
B χs)U = dim(inj ρχ,∅)U

we obtain the Corollary.

Proposition 4.1.9. — Suppose that q = p, let χ : H → F
×
p be a character and

let γ = {χ, χs}. We consider representations inj ρχ,J and inj ρχ,J as representations
of K, via

K −→ K/K1
∼= Γ.

If χ = χs then the action of HK on (inj ρχ,∅ ⊕ inj ρχ,S)I1 extends to the action of H
so that

(inj ρχ,∅ ⊕ inj ρχ,S)I1 ∼= Mγ .
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If χ != χs then the action of HK on (inj ρχ,∅ ⊕ inj ρχs,∅)I1 extends to the action of H
so that

(inj ρχ,∅ ⊕ inj ρχs,∅)I1 ∼= Lγ .

Proof. — Suppose that χ = χs then Corollary 4.1.8 says that

(inj ρχ,∅ ⊕ inj ρχ,S)I1 ∼= 〈Tnsϕχ〉Fp
⊕ 〈(1 + Tns)ϕχ〉Fp

∼= Mχ,∅ ⊕ Mχ,S
∼= Mγ |HK

as HK-modules, where the last isomorphism follows from Lemma 2.2.2. It is enough
to define the action of TΠ. If we let

(Tnsϕχ)TΠ = (1 + Tns)ϕχ and ((1 + Tns)ϕχ)TΠ = Tnsϕχ

then this gives us the required action. Suppose that χ != χs, then Corollary 4.1.8 and
Lemma 2.2.2 imply that

(inj ρχ,∅ ⊕ inj ρχs,∅)I1 ∼= (IndK
I χs ⊕ IndK

I χ)I1 ∼= Lγ |HK

as HK-modules. The space (IndK
I χs)I1 has basis {Tnsϕχ, ϕχs} and the space

(IndK
I χ)I1 has basis {Tnsϕχs , ϕχ}. It is enough to define the action of TΠ on the

basis. If we set
ϕχTΠ = ϕχs , ϕχsTΠ = ϕχ

and
(Tnsϕχ)TΠ = Tnsϕχs , (Tnsϕχs)TΠ = Tnsϕχ

then this gives us the required action.

4.2. The general case

Our counting argument breaks down if p != q. The strategy is to restrict to SL2(Fq),
where the principal indecomposable representations have been worked out by Jeyaku-
mar in [10]. Let

Γ′ = SL2(Fq), B′ = B ∩ Γ′, H ′ = H ∩ Γ′.

We note that U is a subgroup of Γ′ and ns ∈ Γ′.

4.2.1. Modular representations of SL2(Fq). — The irreducible Fp-representa-
tions of SL2(Fq) were determined by Brauer and Nesbitt.

Theorem 4.2.1 ([3]). — Suppose that q = pn. The isomorphism classes of irre-
ducible Fp-representations of Γ′ are parameterised by n-tuples r = (r0, . . . , rn−1),
where 0 # ri # p − 1, for every i. Moreover, every irreducible representation can be
realized over Fq and the representation corresponding to an n-tuple r is given by

Vr,Fq
∼= Vr0,Fq ⊗ V Fr

r1,Fq
⊗ · · ·⊗ V Fri

ri,Fq
⊗ · · ·⊗ V Frn−1

rn−1,Fq

where Vri,Fq are the spaces of Section 3.2.
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Corollary 4.2.2. — Let ρ be an irreducible representation of Γ, then ρ |Γ′ is irre-
ducible. Moreover, given an irreducible representation ρ′ of Γ′ there exist, precisely
q − 1 isomorphism classes of irreducible representations of Γ, given by ρ ⊗ (det)a,
where 0 # a < q − 1, such that

(ρ ⊗ (det)a) |Γ′∼= ρ′.

Proof. — This is immediate from Theorem 4.2.1 and Theorem 3.2.1.

Remark 4.2.3. — By counting dimensions, we may show that

(inj(Vr,Fp
⊗ (det)a)) |Γ′∼= inj Vr,Fp

as Γ′-representations. However, we will obtain this directly later on.

We recall the construction of the indecomposable principal representations for
SL2(Fq) as it is done in [10]. The idea is to go from the Lie algebra to the uni-
versal enveloping algebra and then to the group.

Let g be the Lie algebra of SL2(C). It has a C-basis

e =
(

0 1
0 0

)
, h =

(
1 0
0 −1

)
, f =

(
0 0
1 0

)
.

Let U be the universal enveloping algebra of g. Let UZ be a subring of U generated
by the elements

ek

k!
,

fk

k!
, ∀ k ∈ Z+

over Z. The ring UZ has a Z-basis, which is also a C-basis for U . Let d be a non-
negative integer and let Vd be the irreducible module of g of highest weight d. The
space Vd has a C-basis of weight vectors mi, for 0 # i # d, and the action of g is given
by

em0 = 0, emi = (d − i + 1)mi−1, 1 # i # d,

fmd = 0, fmi = (i + 1)mi+1, 0 # i # d − 1,

hmi = (d − 2i)mi, 0 # i # d.

Let Vd,Z be a Z-lattice in Vd spanned by mi, for 0 # i # d. We adopt the convention
that mi = 0 if i < 0 or i > d. Since,

ek

k!
mi =

(
d − i + k

d − i

)
mi−k

and
fk

k!
mi =

(
i + k

i

)
mi+k

for all k ∈ Z+, the lattice Vd,Z is a UZ-module. Let

Ṽd,Fq = Vd,Z ⊗Z Fq.
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For every λ ∈ Fq we define x(λ), y(λ) ∈ End(Ṽd,Fq), by

x(λ)(v ⊗ 1) =
∑

k!0

λk
(ek

k!
v ⊗ 1

)

and

y(λ)(v ⊗ 1) =
∑

k!0

λk
(fk

k!
v ⊗ 1

)
.

Since e and f act nilpotently on Vd this sum is well defined. There exists a unique
homomorphism

SL2(Fq) −→ End(Ṽd,Fq)
such that (

1 λ
0 1

)
*−→ x(λ) and

(
1 0
λ 1

)
*−→ y(λ).

This gives us a representation of Γ′. To ease the notation, we denote

mi,Fq = mi ⊗ 1.

We will refer to {mi,Fq : 0 # i # d} as the standard basis of Ṽd,Fq . The action of Γ′

is determined by
(

1 λ
0 1

)
mi,Fq =

i∑

k=0

(
d − k
d − i

)
λi−kmk,Fq ,

(
1 0
λ 1

)
mi,Fq =

d∑

k=i

(
k
i

)
λk−imk,Fq .

This gives (
λ 0
0 λ−1

)
mi,Fq = λd−2imi,Fq .

At first we resolve the ambiguities in our notation.

Lemma 4.2.4. — Let Vd,Fq be a representation of Γ constructed in Section 3.2. Then

Vd,Fq |Γ′ ∼= Ṽd,Fq .

Proof. — The isomorphism is given by

mi ⊗ 1 *−→ mi,Fq .

An easy check shows that the isomorphism respects the action of matrices
(

1 λ
0 1

)
and(

1 0
λ 1

)
, for all λ ∈ Fq. Since, these matrices generate Γ′ we are done.

The Lemma above is the reason, why we wanted to work over Fq. We drop the
tilde from our notation and go to Fp.

For each r, such that 0 # r < p− 1, Jeyakumar finds a Γ′-invariant subspace Rr of
the representation Vp−1−r,Fp

⊗ Vp−1,Fp
, such that dim Rr = 2p. Let Rp−1 = Vp−1,Fp

,
then dimRp−1 = p. The main result of [10] can be stated as follows.
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Theorem 4.2.5 ([10]). — Suppose that q = pn. Let r = (r0, . . . , rn−1) be an n-tuple,
such that 0 # ri # p − 1, for every i. Let

Rr = Rr0 ⊗ RFr
r1

⊗ · · ·⊗ RFrn−1

rn−1
.

If r != 0, then
Rr

∼= inj Vr,Fp
.

And
R0

∼= inj V0,Fp
⊕ injVp−1,Fp

where p − 1 = (p − 1, . . . , p − 1) and 0 = (0, . . . , 0).

Remark 4.2.6. — Our indices differ slightly from [10].

4.2.2. Going from SL2(Fq) to GL2(Fq). — We will recall how the subspaces Rr

are constructed and show that they are in fact Γ-invariant. That this should be the
case is indicated by Remark 4.2.3. The twisted tensor product will give us principal
indecomposable representations of Γ. Since the spaces Rr have a rather concrete
description, this will enable us to work out the corresponding HΓ-modules.

Lemma 4.2.7. — Let V be a representation of Γ and let W be a Γ′-invariant subspace
of V . If W is invariant under the action of H, then W is Γ-invariant.

Proof. — Let v ∈ W and g ∈ Γ. We may write g = g′g1, for some g′ ∈ Γ′ and g1 ∈ H .
Then

gv = g′(g1v) ∈ W.

Hence W is Γ-invariant.

Let r be an integer such that 0 # r # p− 1. Let {vi}, for 0 # i # p− 1 − r be the
standard basis of Vp−1−r,Fp

and let {wj}, for 0 # j # p − 1 be the standard basis of
Vp−1,Fp

.

Definition 4.2.8. — For 0 # i # 2p − r − 2, we define vectors Ei in Vp−1−r,Fp
⊗

Vp−1,Fp
, by

Ei =
∑

k+l=i

vk ⊗ wl.

It is convenient to extend the indexing set to Z by setting Ei = 0, if i < 0 or
i > 2p − 2p − r.

Lemma 4.2.9. — The sequence of Γ-representations

0 −→ V2p−r−2,Fp
−→ Vp−1−r,Fp

⊗ Vp−1,Fp

mi,Fp
*−→ Ei

is exact.
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Proof. — If r = p − 1 then this is true trivially. If r != p − 1 then the map is Γ′-
equivariant by [10] Lemma 4.2. So by Lemma 4.2.7 it is enough to show that it is
H-equivariant. Since (

λ 0
0 µ

)
mi,Fp

= λ2p−r−2−iµimi,Fp

and (
λ 0
0 µ

)
Ei = λ2p−r−2−iµiEi

we are done.

Definition 4.2.10 ([10]). — Let r be an integer, such that 0 # r < p − 1. For
0 # i # p − r − 1, let ai be integers defined by the following relation:

a0 = 0 and a1 = (p − r − 2)!

and

ai+1 = ai +
(−1)i(r + 1) . . . (r + i)

(p − r − 2) . . . (p − r − i − 1)
(a1 − a0).

Let Z be a vector in Vp−1−r,Fp
⊗ Vp−1,Fp

given by

Z = a0(v0 ⊗ wp−r−1) + a1(v1 ⊗ wp−r−2) + · · · + ap−r−1(vp−r−1 ⊗ w0),

and let Rr be a subspace of Vp−1−r,Fp
⊗ Vp−1,Fp

given by

Rr =
〈
E0, . . . , E2p−r−2, Z,

f

1!
Z, . . . ,

f r

r!
Z

〉

Fp

.

Moreover, for r = p − 1 we define

Rp−1 = Vp−1,Fp
.

Proposition 4.2.11. — Let r be an integer, such that 0 # r # p − 1, then Rr is a
Γ-invariant subspace of Vp−r−1,Fp

⊗ Vp−1,Fp
. Moreover, if r != p − 1, then

dim Rr = 2p

and if r = p − 1, then
dim Rp−1 = p.

Proof. — If r = p−1 then there is nothing to prove, since Rp−1 = Vp−1,Fp
. If r != p−1

then by [10] Theorem 4.7 Rr is Γ′-invariant and dimRr = 2p. So by Lemma 4.2.7
it is enough to show that Rr is H-invariant. For v ∈ Vp−r−1,Fp

and w ∈ Vp−1,Fp
we

have
f(v ⊗ w) = fv ⊗ w + v ⊗ fw.

Hence, for 0 # k # r we have

fk

k!
Z ∈

〈
vl+i ⊗ wp−r−1−l+j | i + j = k, 0 # l # p − r − 1

〉
Fp
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with the usual ’vanishing when not defined’ convention. Since
(

λ 0
0 µ

)
vl+i ⊗ wp−r−1−l+j = λp−r−1−l−iµl+iλr+l−jµp−r−1−l+jvl+i ⊗ wp−r−1−l+j

= λp−k−1µp−r−1+kvl+i ⊗ wp−r−1−l+j

the group H acts on each fk

k! Z, for 0 # k # r by a character. We combine this with
Lemma 4.2.9 and obtain that Rr is H invariant.

Lemma 4.2.12. — We have
fk

k!
Ep−r−1 = 0

if and only if k ! r + 1. For k ! 1 we have
ek

k!
Ep−r−1 = 0.

In particular, U fixes Ep−r−1 and the action of H is given by
(

λ 0
0 µ

)
Ep−r−1 = λr(λµ)p−r−1Ep−r−1.

Proof. — If r = p − 1, then this is trivial. If r != p − 1 then for k ! 0 we have

fk

k!
Ep−r−1 =

(
p − r − 1 + k

p − r − 1

)
Ep−r−1+k.

We observe that Ep−r−1+k vanishes trivially, if k ! p. If r + 1 # k # p − 1, then we
write k = r + 1 + j, where 0 # j # p − r − 2. The binomial coefficient becomes

(
j + p

p − r − 1

)
.

Since 0 # r < p − 1, we have 1 # p − r − 1 # p − 1, and since 0 # j < p − r − 1, p
divides the binomial coefficient. Hence

fk

k!
Ep−r−1 = 0

for k ! r + 1. If 0 # k # r, then p − r − 1 # p − r − 1 + k # p − 1 and the binomial
coefficient does not vanish. Hence

fk

k!
Ep−r−1 != 0

for 0 # k # r. Let k ! 0, then
ek

k!
Ep−r−1 =

(
p − 1 + k

p − 1

)
Ep−r−1−k.

We observe that Ep−r−1−k vanishes trivially, if k > p − r − 1. Suppose that 1 # k #
p− r−1, then we may write k = j−1, where 0 # j # p− r−2 < p−1. The binomial
coefficient becomes (

j + p
p − 1

)
.
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Since j < p − 1, p divides the binomial coefficient, and hence

ek

k!
Ep−r−1 = 0

for all k ! 1. Since the action of U is given in terms of ek/k! this implies that U fixes
Ep−r−1. An easy verification gives us the action of H .

Proposition 4.2.13. — Let Wr be a subspace of Rr given by

Wr = 〈Ep−r−1, . . . , Ep−1〉Fp
.

Then Wr is Γ-invariant. Moreover,

WU
r = 〈Ep−r−1〉Fp

and
Wr = 〈ΓEp−r−1〉Fp

∼= Vr,Fp
⊗ (det)p−r−1.

Proof. — If r = p − 1 then Wp−1
∼= Vp−1,Fp

and we are done. Otherwise, since Wr

has a basis of eigenvectors for the action of H , it is enough to show that Wr is Γ′-
invariant. Since the action of Γ′ is given in terms of the action of UZ it is enough to
show that Wr is invariant under the action of UZ. Lemma 4.2.12 implies that Wr has
a basis fk

k! Ep−r−1, for 0 # k # r. We observe that Lemma 4.2.12 also implies that

f l

l!
(
fk

k!
Ep−r−1) =

(
k + l

k

)
fk+l

(k + l)!
Ep−r−1 ∈ Wr

for 0 # k # r and l ! 0. Suppose that 0 # k # r and l ! k + 1 then

el

l!
(
fk

k!
Ep−r−1) = 0.

This follows from the multiplication in UZ, see [9] §26.2, and Lemma 4.2.12. If
0 # l # k # r, then

el

l!
(
fk

k!
Ep−r−1) =

(
p − r − 1 + k

p − r − 1

)
el

l!
Ep−r−1+k

=
(

p − r − 1 + k
p − r − 1

) (
p − 1 − k + l

p − 1 − k

)
Ep−r−1+k−l ∈ Wr .

Hence Wr is invariant under the action of UZ and hence under the action of Γ.
We know from Lemma 4.2.12 that Ep−r−1 is fixed by U . The action of H splits

WU
r into a direct sum of one dimensional subspaces. Suppose that dim WU

r ! 2. Since
H acts on each vector Ep−r−1+k by a distinct character for 0 # k # r, we must have
Ep−r−1+j ∈ WU

r , for some 1 # j # r. This implies that

eEp−r−1+j = (p − j)Ep−r−2+j = 0.

Hence p must divide j and this is impossible. Hence, dim WU
r = 1.
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Since Wr is Γ-invariant, we have

〈ΓEp−r−1〉Fp
# Wr .

We may choose r + 1 distinct elements λi in Fq. Then
(

1 0
λi 1

)
Ep−r−1 =

r∑

k=0

λk
i
fk

k!
Ep−r−1.

Let A be an (r + 1) × (r + 1) matrix, given by Aki = λk
i , for 0 # i, k # r, with

the convention that 00 = 1. Then detA is the Vandermonde determinant, which is
non-zero, since all the λi are distinct. Hence, A is invertible and

fk

k!
Ep−r−1 ∈ 〈ΓEp−r−1〉Fp

for all 0 # k # r. Hence, Wr = 〈ΓEp−r−1〉Fp
.

Since dim WU
r = 1 and Wr = 〈ΓWU

r 〉Fp
, the representation Wr is irreducible. To

decide, which one it is, we may proceed as in the proof of Proposition 3.2.2. Since
r < p − 1, the action of B on WU

r implies that Wr
∼= Vr,Fp

⊗ (det)p−r−1.

Lemma 4.2.14. — The vector E0 is fixed by the action of U . Moreover, H acts on
E0 by (

λ 0
0 µ

)
E0 = λr(λµ)p−r−1(λµ−1)p−r−1E0.

Proof. — Since E0 = v0 ⊗ w0 this is immediate.

Definition 4.2.15. — Suppose that q = pn and let r = (r0, . . . , rn−1) be the n-tuple
such that 0 # ri # p − 1, then we define a representation Rr of Γ, given by

Rr = Rr0 ⊗ RFr
r1

⊗ · · ·⊗ RFrn−1

rn−1

where Rri are Γ-representations of Definition 4.2.10.

Definition 4.2.16. — Suppose that q = pn and let r = (r0, . . . , rn−1) be an n-tuple,
such that 0 # ri # p − 1, for every i. Let ε = (ε0, . . . , εn−1) be an n-tuple, such that
εi ∈ {0, 1} for every i. We define a vector

bε = E(1−ε0)(p−1−r0) ⊗ · · ·⊗ E(1−εn−1)(p−1−rn−1)

in Rr, where E(1−εi)(p−1−ri) is a vector in Rri , for each 0 # i # n − 1.

Definition 4.2.17. — Suppose that q = pn and let r = (r0, . . . , rn−1) be an n-tuple,
such that 0 # ri # p − 1, for 0 # i # n − 1. We define Σr to be the set of n-tuples
(ε0, . . . , εn−1), such that

εi = 0, if ri = p − 1 and εi ∈ {0, 1}, otherwise.

We will write 0 = (0, . . . , 0) and 1 = (1, . . . , 1).
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Remark 4.2.18. — We hope to prevent some notational confusion. Since we want
Lemma 4.2.19 to hold and since dimRU

p−1,Fp
= 1, if ri = p − 1, we have to make a

choice for εi, between 0 and 1. We choose 0, since then we can state Lemma 4.2.21
in a nice way. However, if ri = p − 1, then

(1 − 0)(p − ri − 1) = (1 − 1)(p − ri − 1) = 0

so it does not matter, whether εi = 0 or εi = 1, and we will exploit this in our
notation. We note that the definition of bε is independent of the set Σr and we might
have ε ∈ Σr, ε′ !∈ Σr, but bε = bε′ .

Lemma 4.2.19. — The set {bε : ε ∈ Σr} is a basis of RU
r .

Proof. — Let r be an integer, such that 0 # r # p− 1. If r = p− 1 , then dim Rr = p
and E0 is in RU

r . If 0 # r < p − 1, then dimRr = 2p and E0 and Ep−1−r are two
linearly independent vectors in RU

r .
Let r be an n-tuple. Then by above vectors bε, for ε ∈ Σr, span a linear subspace

of RU
r of dimension |Σr|. Also by above, dimRr = |Σr|q. Since, U is a p-Sylow

subgroup of Γ′ of order q and by Theorem 4.2.5 Rr is an injective object in RepΓ′ ,
Corollary 4.0.9 implies that

dim RU
r = |Σr|.

Hence, the set {bε : ε ∈ Σr} is a basis of RU
r .

Lemma 4.2.20. — Let r = (r0, . . . , rn−1) be an n-tuple, with 0 # ri # p − 1, let
ε = (ε0, . . . , εn−1) be an n-tuple such that εi ∈ {0, 1}, for every i, and let bε be a
vector in RU

r , then the action of H is given by
(

λ 0
0 µ

)
bε = λr(λµ)q−1−r(λµ−1)ε"(p−r−1)bε

where r = r0 + r1p + · · · + rn−1pn−1 and

ε " (p − r − 1) = ε0(p − r0 − 1) + ε1(p − r1 − 1)p + · · · + εn−1(p − rn−1 − 1)pn−1.

Proof. — This follows from Proposition 4.2.12 and Lemma 4.2.14. We note that the
action on each tensor component is twisted by Fr.

Lemma 4.2.21. — Suppose that q = pn and let r = (r0, . . . , rn−1) be an n-tuple, such
that 0 # ri # p − 1, for each i. Let b0 be a vector in Rr. Let

r = r0 + r1p + · · · + rn−1p
n−1.

Then
〈Γb0〉Fp

∼= Vr,Fp
⊗ (det)q−1−r

as a Γ-representation.
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Proof. — Let Wr be the subspace of Rr given by

Wr = Wr0 ⊗ · · ·⊗ Wrn−1

with the notation of the Proposition 4.2.13. We have

0 != 〈Γb0〉Fp
# Wr.

Proposition 4.2.13 applied to every tensor component implies that

Wr
∼= Vr,Fp

⊗ (det)q−1−r

which is irreducible. Hence, we must get the whole of Wr.

Corollary 4.2.22. — Let χ : H → F
×
p and let a and r be unique integers, such

that 1 # a, r # q − 1 and

χ
((

1 0
0 λ

))
= λa ∀λ ∈ F×

q , χ
((

λ 0
0 λ−1

))
= λr ∀λ ∈ F×

q .

Let r = r0 + r1p + · · · + rn−1pn−1, where 0 # ri # p − 1 for each i, and let r =
(r0, . . . , rn−1). If χ != χs then

inj ρχ,∅ ∼= Rr ⊗ (det)a+r.

If χ = χs then
inj ρχ,∅ ∼= Rp−1 ⊗ (det)a ∼= Vp−1,Fp

⊗ (det)a.

Proof. — Lemma 4.2.21 implies the existence of an exact sequence

0 −→ Vr,Fp
−→ Rr ⊗ (det)r

of Γ-representations. It is enough to show that Rr is an indecomposable injective
object in RepΓ. The rest follows from Propositions 3.2.2 and 4.0.4.

Theorem 4.2.5 says that the restriction of Rr to Γ′ is indecomposable. In particular,
Rr must be indecomposable as a Γ-representation. Moreover, Theorem 4.2.5 says
that the restrictions of Rr to Γ′ is an injective object in RepΓ′ . Since U is a p-Sylow
subgroup of both Γ and Γ′, Proposition 4.0.7 implies that Rr is an injective object in
RepΓ. Finally, the last isomorphism follows directly from the definition of Rp−1.

4.2.3. Computation of HΓ-modules. — We will compute the action of Tns

on RU
r .

Proposition 4.2.23. — Let q = pn and let r = (r0, . . . , rn−1) be the n-tuple, such
that 0 # ri # p − 1, for every i. Let ε ∈ Σr and let bε be a vector in Rr.

(i) Suppose that for some index j, εj = 0 and rj != p − 1 then
∑

u∈U

un−1
s bε = 0.
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(ii) Suppose that r != 0. Moreover, suppose that for every i, if εi = 0 then ri = p−1
then bε = b1 and ∑

u∈U

un−1
s b1 = (−1)1+|r|b0

where |r| = r0 + r1p + · · · + rn−1pn−1.
(iii) Suppose that r = 0 and ε = 1, then

∑

u∈U

un−1
s b1 = −(b0 + b1).

This covers all the possible pairs (r, ε), such that ε ∈ Σr.

Remark 4.2.24. — We note that b1 is well defined even if 1 !∈ Σr. See Definitions
4.2.16 and 4.2.17.

Proof. — Let r be an integer such that 0 # r # p − 1 and let ε ∈ {0, 1} such that
ε = 0, if r = p − 1. Let E(1−ε)(p−r−1) be a vector in Rr. We observe that

n−1
s E(1−ε)(p−r−1) = (−1)p−1+ε(p−r−1)Ep−1+ε(p−r−1).

If r != p − 1 this follows from Lemma 4.2.9, and if r = p − 1, this follows from the
isomorphism Rp−1

∼= Vp−1,Fp
. Moreover, if ε = 0 then Proposition 4.2.13 implies that

ek

k!
Ep−1 = 0 ∀ k > r

and if ε = 1 then Lemma 4.2.9 implies that

ek

k!
E2p−2−r = 0 ∀ k > 2p − 2 − r.

Let r be an n-tuple, r = (r0, . . . , rn−1), with 0 # ri # p − 1, let ε ∈ Σr. We recall
that

bε = E(1−ε0)(p−1−r0) ⊗ · · ·⊗ E(1−εn−1)(p−1−rn−1).

Hence we may write ∑

u∈U

un−1
s bε = sgnr,ε

∑

k

ΛkAk

where the sum is taken over all the n-tuples k = (k0, . . . , kn−1) of non-negative
integers, moreover

Λk =
∑

λ∈Fq

λk0+k1p+···+kn−1pn−1

and

Ak =
ek0

k0!
Ep−1+ε0(p−r0−1) ⊗ · · ·⊗ ekn−1

kn−1!
Ep−1+εn−1(p−rn−1−1)

and
sgnr,ε = (−1)q−1−ε"(p−1−r)

where ε " (p − 1 − r) =
∑n−1

i=0 εi(p − 1 − ri)pi. We have acted by n−1
s on each

tensor component and then expanded the action of u ∈ U on each tensor component
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and rearranged the summation. We will show that the sum on the right hand side
vanishes, unless r and ε are of a special form. We will break up the argument into
several lemmas.

Lemma 4.2.25. — Let S(r, ε) be the subset of the set of all the n-tuples of non-
negative integers k = (k0, . . . , kn−1), such that k ∈ S(r, ε) if and only if for each i,
the following holds:

(i) if εi = 0 then ki = ri,
(ii) if εi = 1 then ki = p − 1 or ki = 2p − ri − 2.

Then ∑

u∈U

un−1
s bε = sgnr,ε

∑

k∈S(r,ε)

ΛkAk.

Proof of Lemma. — If εi = 0 and ki > ri or εi = 1 and ki > 2p− 2− ri then Ak = 0,
since the i-th tensor component of Ak vanishes by the argument above. Moreover,
Lemma 4.2.9 implies that

eki

ki!
Ep−1+εi(p−ri−1) ∈ 〈Ep−1+εi(p−ri−1)−ki

〉Fp
.

The vector
∑

u∈U un−1
s bε is fixed by U . Since, by Lemma 4.2.19, vectors bε′ , for

ε′ ∈ Σr, form a basis of RU
r there exist scalars µε′ ∈ Fp such that

∑

u∈U

un−1
s bε =

∑

ε′∈Σr

µε′bε′ .

Hence, it is enough to sum over the n-tuples k of non-negative integers such that, for
each i, we have

p − 1 + εi(p − ri − 1) − ki = (1 − ε′i)(p − 1 − ri)

for some ε′i ∈ {0, 1}. Hence, ki is of the form

ki = p − 1 + (εi − 1)(p − ri − 1) or ki = p − 1 + εi(p − ri − 1).

If εi = 0 and ki is of the form as above then the inequality ki # ri can be fulfilled
if and only if ki = ri. If εi = 1, then ki # 2p − ri − 2 implies that ki = p − 1 or
ki = 2p − ri − 2.

Lemma 4.2.26. — Let k ∈ S(r, ε) and let k = k0 + k1p + · · · + kn−1pn−1. Suppose
that Λk != 0 then one of the following holds:

(i) r = 0, ε = 1 and k = (2(p − 1), . . . , 2(p − 1)) = 2(p − 1),
(ii) k = q − 1.

Proof of Lemma. — Since k ∈ S(r, ε), for each i we have the inequalities:

0 # ki # 2p − 2 − ri # 2(p − 1).
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Hence, 0 # k # 2(q − 1), moreover k = 2(q − 1) if and only if r = 0, ε = 1 and
k = (2(p − 1), . . . , 2(p − 1)). If k = 0 or k > 0 and q − 1 does not divide k then

Λk =
∑

λ∈Fq

λk = 0.

We note that 00 = 1 comes from the action by the identity matrix. If k > 0 and q− 1
divides k, then

Λk =
∑

λ∈Fq

λk = −1.

Lemma 4.2.27. — Let k ∈ S(r, ε) and let k = k0 + k1p + · · · + kn−1pn−1. Suppose
that k = q − 1 then k = (p − 1, . . . , p − 1) = p − 1.

Proof of Lemma. — Since k ∈ S(r, ε) we may define integers ai and a′
i, such that for

each i,
ai + a′

i = ki

and 0 # ai, a′
i # p − 1, as follows. If εi = 0, then ai = ri and a′

i = 0. If εi = 1 and
ki = p− 1, then ai = p− 1 and a′

i = 0. If εi = 1 and ki = 2p− ri − 2, then ai = p− 1
and a′

i = p − 1 − ri. Then q − 1 = k implies that

a0 + a1p + · · ·+ an−1p
n−1 = (p − 1 − a′

0) + (p − 1 − a′
1)p + · · · + (p − 1 − a′

n−1)p
n−1.

Since 0 # ai, a′
i # p − 1, for every i, this implies that

ai = p − 1 − a′
i, ∀ i.

If εi = 1 and ki = p− 1, then we are done. If εi = 0 then by definition a′
i = 0 and by

above ai = p − 1, hence ki = ai + a′
i = p − 1. If εi = 1 and ki = 2p − 2 − ri then by

definition ai = p − 1 and by above a′
i = 0, hence ki = ai + a′

i = p − 1.

We return to the main body of the proof of Proposition 4.2.23.
Suppose that for some index j, we have εj = 0 and rj != p − 1. If Λk != 0 for

some k ∈ S(r, ε), then Lemmas 4.2.26 and 4.2.27 imply that either k = p − 1 or
k = 2(p − 1). However, the definition of S(r, ε) implies that kj = rj < p − 1. Hence
Λk = 0 for all k ∈ S(r, ε) and Lemma 4.2.25 implies that

∑

u∈U

un−1
s bε = 0.

So we obtain part (i) of the Proposition. We note that this case includes r = 0 and
ε != 1.

Suppose that r != 0. Moreover, suppose that r and ε are such that for every i,
if εi = 0 then ri = p − 1. Lemmas 4.2.26 and 4.2.27 imply that if k ∈ S(r, ε) and
Λk != 0 then k = p − 1. Lemma 4.2.25 implies that

∑

u∈U

un−1
s bε = sgnr,ε(−1)Ap−1.
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We will compute what happens on each tensor component of Ap−1. If εi = 0, then
by our assumption on r and ε, we have ri = p − 1 and

ep−1

(p − 1)!
Ep−1 =

(
p − 1

0

)
E0 = Ep−ri−1.

If εi = 1 then

ep−1

(p − 1)!
E2p−2−ri =

(
p − 1

0

)
Ep−ri−1 = Ep−ri−1.

The above calculation gives us

Ap−1 = Ep−r0−1 ⊗ · · ·⊗ Ep−rn−1−1 = b0.

Moreover, if p = 2, then 1 = −1 and if p != 2 then (−1)p−1+εi(p−1−ri) = (−1)ri ,
trivially, if εi = 1 and since ri = p − 1 if εi = 0. Hence, sgnr,ε = (−1)|r| and

∑

u∈U

un−1
s bε = (−1)|r|+1b0.

We claim that in this case bε = b1. Indeed, if ri != p − 1 then our assumption on r
and ε implies that εi = 1 and if ri = p − 1, then

(1 − εi)(p − 1 − ri) = (1 − 1)(p − 1 − ri) = 0.

Hence, bε = b1, see 4.2.16. This establishes part (ii) of the Proposition.
The only case left is r = 0 and ε = 1. Arguing as before we get that

∑

u∈U

un−1
s b1 = sgn0,1(−1)(Ap−1 + A2(p−1)).

We compute what happens on each tensor component of A2(p−1):

e2p−2

(2p − 2)!
E2p−2 =

(
2p − 2

0

)
E0 = E0.

And by Definition 4.2.16, b1 = E0 ⊗ · · ·⊗ E0. Since sgn0,1 = 1 we get
∑

u∈U

un−1
s b1 = −(b1 + b0).

This establishes part (iii) of the Proposition.

Remark 4.2.28. — We think of ⊗(det)a as a twist, that is, it changes the action,
but does not change the underlying vector space. Moreover, since U # Γ′ and ns ∈ Γ′,
Proposition 4.2.23 does not change if we twist the action by (det)a.

Remark 4.2.29. — We know that something like
∑

u∈U

un−1
s b1 = (−1)1+|r|b0

has to happen by Lemma 4.1.1.
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Lemma 4.2.30. — Let b1 and b0 be vectors in R0. Then

〈Γ(b1 + b0)〉Fp

∼= Vp−1,Fp
.

Proof. — The vector b1+b0 is fixed by U . Moreover, by Lemma 4.2.20 H acts trivially
on it. By Proposition 4.2.23

(b1 + b0)Tns =
∑

u∈U

un−1
s (b1 + b0) = −(b1 + b0).

Hence
〈b1 + b0〉Fp

∼= M1,∅

as HΓ-module and Lemma 3.1.8 gives us the result.

Corollary 4.2.31. — Let χ : H → F
×
p be a character, such that χ = χs and let a

be the unique integer, such that 1 # a # q − 1 and

χ
((

1 0
0 λ

))
= λa ∀λ ∈ F×

q

then
inj ρχ,S ⊕ inj ρχ,∅ ∼= R0 ⊗ (det)a.

Proof. — This is a rerun of the proof of Corollary 4.2.22. Lemma 4.2.21 and Lemma
4.2.30 imply the existence of an exact sequence

0 −→ V0,Fp
⊕ Vp−1,Fp

−→ R0

of Γ-representations. So it is enough to show that R0 is an injective object in RepΓ

and that it has at most 2 direct summands. The rest follows from Proposition 4.0.4
and Proposition 3.2.2. Theorem 4.2.5 says that the restriction of R0 to Γ′ has exactly
2 direct summands, hence R0 may have at most 2 direct summands. Moreover,
Theorem 4.2.5 says that the restriction of R0 to Γ′ is an injective object in RepΓ′ .
Since U is a p-Sylow subgroup of Γ and Γ′ contains U , Proposition 4.0.7 implies that
R0 is an injective object in RepΓ.

Definition 4.2.32. — Let α : H → F
×
p be a character, given by

α :
(

λ 0
0 µ

)
*−→ λµ−1.

Lemma 4.2.33. — Suppose that q = pn and let χ : H → F
×
p be a character. Let r be

the unique integer, such that 0 # r < q − 1 and

χ
((

λ 0
0 λ−1

))
= λr ∀λ ∈ F×

q .

Let r = r0 + r1p + · · · + rn−1pn−1, where 0 # ri # p − 1 for each i, and let

r = (r0, . . . , rn−1).

Let ε = (ε0, . . . , εn−1) be an n-tuple, such that εi ∈ {0, 1} for every i, then

(χαε"(p−1−r))s = χα(1−ε)"(p−1−r).

MÉMOIRES DE LA SMF 99



4.2. THE GENERAL CASE 45

Moreover, if r = 0, then we suppose that ε != 0 and ε != 1, then

(χαε"(p−1−r))s != χαε"(p−1−r)

where ε " (p − 1− r) =
∑n−1

i=0 εi(p − ri − 1)pi.

Proof. — Since twisting by s does not affect det we may assume that

χ
((

λ 0
0 µ

))
= λr ∀λ, µ ∈ F×

q .

Then the first part of the lemma amounts to

µr(µλ−1)ε"(p−1−r) = λr(λµ−1)q−1−r−ε"(p−1−r) = λr(λµ−1)(1−ε)"(p−1−r).

For the second part, we observe that the equality holds if and only if

µr+2ε"(p−1−r) = λr+2ε"(p−1−r)

for every λ, µ ∈ F×
q . Hence, equality holds if and only if

n−1∑

i=0

(ri + 2(p − 1 − ri)εi)pi ≡ 0 (mod q − 1).

Since, εi ∈ {0, 1} we have

0 # ri + 2(p − 1 − ri)εi # 2(p − 1).

The congruence implies that r + 2ε " (p− 1− r) must take values 0, q − 1 or 2(q − 1).
The extreme values are obtained if and only if r = 0 and ε = 0 or r = 0 and ε = 1.
By our assumptions, both cases are excluded. If

r + 2ε " (p − 1− r) = q − 1

then we rewrite this as
n−1∑

i=0

(p − 1 − ri)εip
i =

n−1∑

i=0

(p − 1 − ri)(1 − εi)pi.

Hence, for every i we must have

(p − 1 − ri)εi = (p − 1 − ri)(1 − εi).

Since 2εi != 1, for every i, this forces ri = p− 1, for every i, but r < q − 1, hence this
case is also excluded.

Definition 4.2.34. — Suppose that q = pn and let r = (r0, . . . , rn−1) be an n-tuple,
such that 0 # ri # p − 1 for every i. We define

δ ∈ Σr

given by δi = 1 if ri != p − 1 and δi = 0 if ri = p − 1.
We further define Σ′

r to be a subset of Σr given by

Σ′
r = Σr\{0, δ}.
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Remark 4.2.35. — We note that if p = q or r = (p − 1, . . . , p − 1), then Σ′
r = ∅

and we always have bδ = b1.

Lemma 4.2.36. — Suppose that q = pn and let χ : H → F
×
p be a character. Let r be

the unique integer, such that 0 # r < q − 1 and

χ
((

λ 0
0 λ−1

))
= λr ∀λ ∈ F×

q .

Let r = r0 + r1p + · · · + rn−1pn−1, where 0 # ri # p − 1 for each i, and let

r = (r0, . . . , rn−1).

If r = 0 then we consider inj ρχ,S and if r != 0 we consider inj ρχ,∅ as representations
of K on which K1 acts trivially.

Suppose that ε ∈ Σ′
r. If r = 0 then we regard bε and b1−ε as vectors in (inj ρχ,S)I1

via the isomorphism of Corollary 4.2.31. If r != 0 then we regard bε and b1−ε as
vectors in (inj ρχ,∅)I1 via the isomorphism of Corollary 4.2.22.

Then the action of HK on 〈bε, b1−ε〉Fp
extends to the action of H, so that

〈bε, b1−ε〉Fp
∼= Mγε

as an H-module, where

γε = γ1−ε = {χαε"(p−1−r), (χαε"(p−1−r))s}.

Proof. — To ease the notation, let

ψ = χαε"(p−1−r).

We observe that if b1−ε = b0, then ε = δ and if b1−ε = bδ then ε = 0. Since ε ∈ Σ′
r

neither of the above can occur.
By Lemma 4.2.20 and taking into account the twist by a power of det, I acts on

bε via the character ψ. By the same argument and Lemma 4.2.33 I acts on b1−ε via
the character ψs. Hence,

bεeψ = bε and b1−εeψs = b1−ε.

Moreover, Lemma 4.2.33 says that ψ != ψs. The case r = 0 is not a problem, since
ε ∈ Σ′

0 implies that 1− ε ∈ Σ′
0. Since H acts on bε and b1−ε by different characters,

they are linearly independent. Proposition 4.2.23 implies that

bεTns =
∑

u∈I1/K1

un−1
s bε = 0 and b1−εTns =

∑

u∈I1/K1

un−1
s b1−ε = 0.

Hence, by Lemma 2.2.2

〈bε, b1−ε〉Fp
∼= 〈bε〉Fp

⊕ 〈b1−ε〉Fp
∼= Mψ,∅ ⊕ Mψs,∅ ∼= Mγε |HK

as HK-modules. So we define

bεTΠ = b1−ε and b1−εTΠ = bε

which gives us the required isomorphism of H-modules.
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Proposition 4.2.37. — Suppose that q = pn and let χ : H → F
×
p be a character,

such that χ = χs. We consider the representation

inj ρχ,∅ ⊕ inj ρχ,S

as a representation of K, such that K1 acts trivially. We may extend the action of
HK on

(inj ρχ,∅ ⊕ inj ρχ,S)I1

to the action of H, such that (inj ρχ,∅ ⊕ inj ρχ,S)I1 as an H-module is isomorphic to
a direct sum of 2n−1 supersingular modules of H.

More precisely, for every ε ∈ Σ0 we consider bε as vectors in

(inj ρχ,∅ ⊕ inj ρχ,S)I1

via the isomorphism of Corollary 4.2.31. Then the action of HK can be extended to
the action of H so that

〈b0, b0 + b1〉Fp

∼= Mγ

where γ = {χ}. If ε ∈ Σ′
0, then

〈bε, b1−ε〉Fp

∼= Mγε

where γε = γ1−ε = {χαε"(p−1), χ(αε"(p−1))s}.

Proof. — Since, by Lemma 4.2.19 bε for ε ∈ Σ0 form a basis of RU
0 , the second part

implies the first. Since Σ′
0 = Σ0\{0,1}, the last part of the Proposition is given by

Lemma 4.2.36.
Lemmas 4.2.21 and 4.2.30 imply that

〈b0〉Fp

∼= Mχ,S , 〈b1 + b0〉Fp

∼= Mχ,∅

as an HK-module. Hence, by Lemma 2.2.2

〈b0, b1 + b0〉Fp

∼= Mχ,S ⊕ Mχ,∅ ∼= Mγ |HK

as HK-modules. Hence, if we define

b0TΠ = b0 + b1 and (b0 + b1)TΠ = b0

we get the required isomorphism.

Proposition 4.2.38. — Suppose that q = pn, let χ : H → F
×
p be a character, such

that χ != χs, and let a and r be unique integers, such that 1 # a, r # q − 1 and

χ
((

1 0
0 λ

))
= λa ∀λ ∈ F×

q , χ
((

λ 0
0 λ−1

))
= λr ∀λ ∈ F×

q .

Let r = r0 + r1p + · · · + rn−1pn−1, where 0 # ri # p − 1 for each i, and let

r = (r0, . . . , rn−1).

Then
inj ρχ,∅ ⊕ inj ρχs,∅ ∼= Rr ⊗ (det)a+r ⊕ Rp−1−r ⊗ (det)a

where p − 1 − r = (p − 1 − r0, . . . , p − 1 − rn−1).
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We regard the representation inj ρχ,∅⊕ injρχs,∅ as a representation of K, on which
K1 acts trivially. Let c and d be the cardinality of the sets:

c = |{ri : ri != p − 1}| and d = |{ri : ri != 0}|

then we may extend the action of HK on

(inj ρχ,∅ ⊕ inj ρχs,∅)I1

to the action of H, such that (inj ρχ,∅ ⊕ inj ρχs,∅)I1 as an H-module is isomorphic to
a direct sum of Lγ and 2c−1 + 2d−1 − 2 supersingular modules of H.

More precisely, let bε, for ε ∈ Σr, be a basis of (inj ρχ,∅)I1 and let bε, for ε ∈
Σp−1−r, be a basis of (inj ρχs,∅)I1 via the isomorphism above. Then the action of HK

can be extended to the action of H so that

〈b0, b1, b0, b1〉Fp

∼= Lγ

and
〈b0, b0〉Fp

∼= Mγ

where γ = {χ, χs}. If ε ∈ Σ′
r, then

〈bε, b1−ε〉Fp
∼= Mγε

where γε = γ1−ε = {χαε"(p−1−r), (χαε"(p−1−r))s}. If ε ∈ Σ′
p−1−r then

〈bε, b1−ε〉Fp

∼= Mγε

where γε = γ1−ε = {χsαε"r, (χsαε"r)s}.

Proof. — The first part of the Proposition follows from Corollary 4.2.22 and Corollary
3.2.3. For the second part we observe that since χ != χs, we have r != q− 1 and hence
vectors b0, b1, b0 and b1 are linearly independent. Lemma 4.2.21 implies that

〈b0〉Fp

∼= Mχ,∅ and 〈b0〉Fp

∼= Mχs,∅

as HK-modules. Lemma 4.2.20 with the appropriate twist by a power of det says that
H acts on b1 by a character χα1"(p−1−r) and H acts on b1 by a character χsα1"r.
Lemma 4.2.33 implies that

χα1"(p−1−r) = χs and χsα1"r = χ.

Hence,
b1eχs = b1 and b1eχ = b1.

Proposition 4.2.23 implies that

(−1)r+1b1Tns = (−1)r+1
∑

u∈I1/K1

un−1
s b1 = b0

and
(−1)q−rb1Tns = (−1)q−r

∑

u∈I1/K1

un−1
s b1 = b0.
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Hence, by Lemma 2.2.2
〈b0, b1, b0, b1〉Fp

∼= Lγ |HK

as HK-modules. We note that if p = 2 then 1 = −1 and if p != 2 then (−1)q−r =
(−1)r+1. So if we define

b1TΠ = b1, b1TΠ = b1, b0TΠ = b0, b0TΠ = b0

we get the required isomorphism of H-modules. Moreover,

〈b0, b0〉Fp

∼= Mγ

as H-module. The last part of the Proposition follows from Lemma 4.2.36. Since
dim(inj ρχ,∅)I1 = 2c and dim(inj ρχs,∅)I1 = 2d an easy calculation gives us the number
of indecomposable summands.

Remark 4.2.39. — If p = q, then Σ′
r = ∅ and Propositions 4.2.37 and 4.2.38 spe-

cialise to Proposition 4.1.9.

The following Proposition can be seen as a consolation for the Remark 4.1.6.

Proposition 4.2.40. — Suppose that q = pn, χ != χs and let ρ be a representation
of Γ, such that ρU ∼= Mχ,∅ ⊕ Mχs,∅ as an HΓ-module, and ρ = 〈ΓρU 〉Fp

, then

ρ ∼= ρχ,∅ ⊕ ρχs,∅.

Proof. — If ρ is a semi-simple representation of Γ, then Corollary 3.1.3 implies the
Lemma. Suppose that ρ is not semi-simple. Let soc(ρ) be the maximal semi-simple
subrepresentation of ρ. Since ρ is generated by ρU as a Γ-representation, the space
(soc(ρ))U is one dimensional, and hence soc(ρ) is an irreducible representation of Γ.
By Corollary 3.1.3 and symmetry we may assume that

soc(ρ) ∼= ρχ,∅.

Since, soc(ρ) is irreducible, ρ is an essential extension of ρχ,∅. By this we mean that
every non-zero Γ-invariant subspace of ρ intersects ρχ,∅ non-trivially. This implies
that there exists an exact sequence

0 −→ ρ −→ inj ρχ,∅

of Γ-representations. After twisting by a power of determinant we may assume that
χ is given by χ

((
λ 0
0 µ

))
= λr , where 0 < r < q − 1. The inequalities are strict,

since χ != χs. Let r be the corresponding n-tuple. Let ε ∈ Σr and bε ∈ (inj ρχ,∅)U ,
then H acts on bε by the character χαε"(p−1−r). In particular, if ε′ ∈ Σr, such that
ε′ != ε, then H acts on bε and bε′ by different characters. As a consequence of this,
the submodule Mχs,∅ of ρU must be mapped to some subspace 〈bε〉Fp

of (inj ρχ,∅)U ,
where ε ∈ Σr. By examining the action of H , we get that χs = χαε"(p−1−r). This
implies that

ε " (p − 1 − r) + r ≡ 0 (mod q − 1).
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Since 0 < r < q − 1 and ε ∈ Σr, we have

0 < ε " (p − 1− r) + r # q − 1.

Hence, we get an equality on the right hand side, which implies that, for each i,
(1 − εi)(p − 1 − ri) = 0. So ε = δ, and bε = b1, see 4.2.34 and 4.2.35. However, by
Proposition 4.2.23 (ii)

b1Tns = (−1)r+1b0 != 0.

We obtain a contradiction, since Tns kills Mχs,∅.
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CHAPTER 5

COEFFICIENT SYSTEMS

We closely follow [13] and [14, §V], where the G-equivariant coefficient systems of
C-vector spaces are treated. In fact, the results of this Section do not depend on the
underlying field. Our motivation to use coefficient systems stems from [12], where
the equivariant coefficient systems of Fp-vector spaces of finite Chevalley groups are
considered.

5.1. Definitions

The Bruhat-Tits tree X of G is the simplicial complex, whose vertices are the
similarity classes [L] of oF -lattices in a 2-dimensional F -vector space V and whose
edges are 1-simplices, given by families {[L0], [L1]} of similarity classes such that

!F L0 ⊂ L1 ⊂ L0.

We denote by X0 the set of all vertices and by X1 the set of all edges.

Definition 5.1.1. — Let σ be a simplex in X , then we define

K(σ) = {g ∈ AutF (V ) : gσ = σ}.

By fixing a basis {v1, v2} of V we identify G with AutF (V ). Let

σ0 = [oF v1 + oF v2] and σ1 = {[oF v1 + oF v2], [oF v1 + pF v2]}.

Then σ0 is a vertex and K(σ0) = F×K, and σ1 is an edge containing a vertex σ0.
Moreover, K(σ1) is the group generated by I and Π.

Definition 5.1.2. — A coefficient system V (of Fp-vector spaces) on X consists of

– Fp vector spaces Vσ for each simplex σ of X , and
– linear maps rσ′

σ : Vσ′ → Vσ for each pair σ ⊆ σ′ of simplices of X such that for
every simplex σ, rσ

σ = idVσ .
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Definition 5.1.3. — We say the group G acts on the coefficient system V , if for
every g ∈ G and for every simplex σ there is given a linear map

gσ : Vσ −→ Vgσ ,

such that
– ghσ ◦ hσ = (gh)σ, for every g, h ∈ G and for every simplex σ,
– 1σ = idVσ for every simplex σ,
– the following diagram commutes for every g ∈ G and every pair of simplices

σ ⊆ σ′:

Vσ
gσ

!! Vgσ

Vσ′

rσ′

σ

$$

gσ′
!! Vgσ′

rgσ′

gσ

$$
.

In particular, the stabiliser K(σ) acts linearly on Vσ for any simplex σ.

Definition 5.1.4. — A G-equivariant coefficient system (Vτ )τ on X is a coefficient
system on X together with a G-action , such that the action of the stabiliser K(σ) of
a simplex σ on Vσ is smooth.

Remark 5.1.5. — The definition given in [14] §V, requires the action to factor
through a discrete quotient.

Let COEFG denote the category of all equivariant coefficient systems on X ,
equipped with the obvious morphisms.

The following observation will turn out to be very useful. Suppose that G acts on
a coefficient system V = (Vσ)σ. Let τ ′ be an edge containing a vertex τ . There exists
g ∈ G, such that τ ′ = gσ1 and τ = gσ0. Then

Vτ = gσ0Vσ0 , Vτ ′ = gσ1Vσ1

and
rτ ′

τ = gσ0 ◦ rσ1
σ0

◦ (g−1)τ ′ .

5.2. Homology

Let X(0) be the set of vertices on the tree and let X(1) be the set of oriented edges
on the tree. We will say that two vertices σ and σ′ are neighbours if {σ, σ′} is an
edge. And we will write

(σ, σ′)
to mean a directed edge going from σ to σ′. Let V = (Vτ )τ be an equivariant coefficient
system. We define a space of oriented 0-chains to be

Cor
c (X(0),V) = Fp-vector space of all maps ω : X(0) −→

⋃̇
σ∈X0

Vσ
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such that
– ω has finite support and
– ω(σ) ∈ Vσ for every vertex σ.

Similarly, the space of oriented 1-chains is

Cor
c (X(1),V) = Fp-vector space of all maps ω : X(1) −→

⋃̇
{σ,σ′}∈X1

V{σ,σ′}

such that
– ω has finite support,
– ω((σ, σ′)) ∈ V{σ,σ′} ,
– ω((σ′, σ)) = −ω((σ, σ′)) for every oriented edge (σ, σ′).

The group G acts on Cor
c (X(0),V) via

(gω)(σ) = gg−1σ(ω(g−1σ))

and on Cor
c (X(1),V) via

(gω)((σ, σ′)) = g{g−1σ,g−1σ′}(ω((g−1σ, g−1σ′))).

The action on both spaces is smooth.
The boundary map is given by

∂ : Cor
c (X(1),V) −→ Cor

c (X(0),V)

ω *−→
(
σ *→

∑

σ′

r{σ,σ′}
σ (ω((σ, σ′)))

)

where the sum is taken over all the neighbours of σ. The map ∂ is G-equivariant.
We define H0(X,V) to be the cokernel of ∂. It is naturally a smooth representation

of G.

5.3. Some computations of H0(X,V)

Throughout this section we fix an equivariant coefficient system V = (Vτ )τ , with
the restriction maps given by rτ ′

τ . Our first lemma follows immediately from the
definition of ∂.

Lemma 5.3.1. — Let ω be an oriented 1-chain supported on a single edge τ = {σ, σ′}.
Let

v = ω((σ, σ′)).

Then
∂(ω) = ωσ − ωσ′ ,

where ωσ and ωσ′ are 0-chains supported only on σ and σ′ respectively. Moreover,

ωσ(σ) = rτ
σ(v) and ωσ′(σ′) = rτ

σ′ (v).
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Lemma 5.3.2. — Let ω be a 0-chain supported on a single vertex σ. Suppose that the
restriction map rσ1

σ0
is an injection, then the image of ω in H0(X,V) is non-zero.

Proof. — Since every restriction map is conjugate to rσ1
σ0

by some element of G, it
follows that every restriction map is injective.

Let ω′ be a non-zero oriented 1-chain. We may think of the support of ω′ as the
union of edges of a finite subgraph T of X . Since all the restriction maps are injective,
Lemma 5.3.1 implies that ∂(ω′) will not vanish on the vertices of T , which have only
one neighbour in T . In particular, ∂(ω′) will be supported on at least 2 vertices.
Hence, ω !∈ ∂Cor

c (X(1),V).

Lemma 5.3.3. — Let ω be 0-chain. Suppose that the restriction map rσ1
σ0

is surjective,
then there exists a 0-chain ω0, supported on a single vertex σ0, such that

ω + ∂Cor
c (X(1),V) = ω0 + ∂Cor

c (X(1),V).

Proof. — Since every restriction map is conjugate to rσ1
σ0

by some element of G, it
follows that every restriction map is surjective.

It is enough to prove the statement when ω is supported on a single vertex τ , since
an arbitrary 0-chain is a finite sum of such. If τ = σ0 then we are done. Otherwise,
there exists a directed path going from σ0 to τ , consisting of finitely many directed
edges (σ0, τ1), . . . , (τm, τ).

We argue by induction on m. Let v = ω(τ). Since r{τm,τ}
τ is surjective there exists

v′ ∈ V{τm,τ}, such that
r{τm,τ}
τ (v′) = v.

Let ω′ be an oriented 1-chain supported on the single edge {τm, τ} with ω′((τm, τ)) =
v′. By Lemma 5.3.1 ω+∂(ω′) is supported on a single vertex τm. Since, the number of
edges in the directed path has decreased by one, the claim follows from induction.

The following special case will be used in the calculations of modules of the Hecke
algebra.

Lemma 5.3.4. — Let ω0 be a 0-chain supported on a single vertex σ0. Let

v0 = ω0(σ0)

and suppose that there exists v1 ∈ Vσ1 , such that

rσ1
σ0

(v1) = v0.

Let ω′ be a 0-chain supported on a single vertex σ0 with

ω′(σ0) = rσ1
σ0

((Π−1)σ1 (v1)),

then
Π−1ω0 + ∂Cor

c (X(1),V) = ω′ + ∂Cor
c (X(1),V).
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Proof. — We observe that Πσ0 = Π−1σ0 and σ1 = {σ0, Πσ0}. The 0-chain Π−1ω0 is
supported on a single vertex Πσ0 with

(Π−1ω0)(Πσ0) = (Π−1)σ0 (v0).

Let ω1 be an oriented 1-chain supported on a single edge σ1 with

ω1((σ0, Πσ0)) = (Π−1)σ1(v1).

From Lemma 5.3.1 we know that ∂(ω1) is supported only on σ0 and Πσ0. Moreover,

∂(ω1)(Πσ0) = rσ1
Πσ0

(ω1((Πσ0, σ0)) = rσ1
Πσ0

(−(Π−1)σ1 (v1))

= −(rσ1
Πσ0

◦ (Π−1)σ1)(v1) = −((Π−1)σ0 ◦ rσ1
σ0

)(v1) = −(Π−1)σ0 (v0)

and
∂(ω1)(σ0) = rσ1

σ0
(ω1((σ0, Πσ0))) = rσ1

σ0
((Π−1)σ1(v1)).

Hence
∂(ω1) = ω′ − Π−1ω0

and that establishes the claim.

Proposition 5.3.5. — Suppose that the restriction map rσ1
σ0

is an isomorphism of
vector spaces. Then

H0(X,V)|K(σ0)
∼= Vσ0

and
H0(X,V)|K(σ1)

∼= Vσ1 .

Moreover, the diagram

Vσ0

∼= !! H0(X,V)

Vσ1

rσ1
σ0

$$

∼= !! H0(X,V)

id
$$

of F×I-representations commutes.

Proof. — Let Cor
c (σ0,V) be a subspace of Cor

c (X(0),V) consisting of the 0-chains
whose support lies in the simplex σ0, with the understanding that the 0-chain which
vanishes on every simplex is supported on the empty simplex. Let  be the composition

 : Cor
c (σ0,V) ↪−→ Cor

c (X(0),V) −→ H0(X,V).

Then  is K(σ0) equivariant. Moreover, Lemma 5.3.2 says that  is an injection and
Lemma 5.3.3 says that it is a surjection. Hence

 : Cor
c (σ0,V) ∼= H0(X,V)|K(σ0).

Let ev0 be the map

ev0 : Cor
c (σ0,V) −→ Vσ0

ω *−→ ω(σ0)
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then ev0 is an isomorphism of K(σ0)-representations. Hence

 ◦ (ev0)−1 : Vσ0
∼= H0(X,V)|K(σ0).

Since V is G-equivariant, the map rσ1
σ0

is F×I = K(σ1) ∩ K(σ0)-equivariant and since
it is isomorphism of vector spaces, we obtain that

 ◦ (ev0)−1 ◦ rσ1
σ0

: Vσ1 |F×I
∼= H0(X,V)|F×I .

We claim that this isomorphism is in fact K(σ1)-equivariant. Let v1 ∈ Vσ1 , let v0 =
rσ1
σ0

(v1) and let ω0 ∈ Cor
c (σ0,V), such that ω0(σ0) = v0. Then

( ◦ (ev0)−1 ◦ rσ1
σ0

)(v1) = ω0 + ∂Cor
c (X(1),V).

By Lemma 5.3.4

Π−1ω0 + ∂Cor
c (X(1),V) = ω′ + ∂Cor

c (X(1),V),

where ω′ ∈ Cor
c (σ0,V) with ω′(σ0) = rσ1

σ0
((Π−1)σ1(v1)). This implies that

Π−1( ◦ (ev0)−1 ◦ rσ1
σ0

)(v1) = ( ◦ (ev0)−1 ◦ rσ1
σ0

)((Π−1)σ1(v1)).

Since Π−1 and F×I generate K(σ1) this proves the claim.
The commutativity of the diagram follows from the way the isomorphisms are

constructed.

5.4. Constant functor

The content of this Section is essentially [12] Lemma 1.1 and Theorem 1.2. Let
RepG be the category of smooth Fp-representations of G. Let π be a smooth repre-
sentation of G with the underlying vector space W . Let σ be a simplex on the tree X ,
we set

(Kπ)σ = W .

If σ and σ′ are two simplices, such that σ ⊆ σ′ then we define the restriction map

rσ′

σ = idW .

For every g ∈ G and every simplex σ in X we define a linear map gσ by

gσ : (Kπ)σ −→ (Kπ)gσ, v *−→ π(g)v.

This gives a G-equivariant coefficient system on X , which we denote by Kπ.

Definition 5.4.1. — We define the constant functor

K : RepG −→ COEFG, π *−→ Kπ .

Lemma 5.4.2. — Let π be a smooth representation of G, then

H0(X,Kπ) ∼= π

as a G-representation.
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Proof. — We have an evaluation map

ev : Cor
c (X(0),Kπ) −→ π, ω *−→

∑

σ∈X(0)

ω(σ).

Since the restriction maps are just idW , Lemma 5.3.1 implies that the image of the
boundary map ∂Cor

c (X(1),Kπ) is contained in the kernel of ev. Hence, we get a
G-equivariant map

H0(X,Kπ) −→ π.

It is enough to show that this is an isomorphism of vector spaces, and this is implied
by Proposition 5.3.5.

Proposition 5.4.3. — Let V = (Vσ)σ be a G-equivariant coefficient system with the
restriction maps rσ′

σ and let (π,W) be a smooth representation of G, then

HomCOEFG(V ,Kπ) ∼= HomG(H0(X,V), π).

Proof. — Any morphism of G-equivariant coefficient systems will induce a G-
equivariant homomorphism in the 0-th homology. Hence by Lemma 5.4.2 we have a
map

HomCOEFG(V ,Kπ) −→ HomG(H0(X,V), π).

We will construct an inverse of this. Let φ ∈ HomG(H0(X,V), π), let σ be a vertex
on the tree X , let v be a vector in Vσ, and let ωσ,v be a 0-chain, such that

Suppωσ,v ⊆ σ, ωσ,v(σ) = v,

then we define

φσ : Vσ −→ W , v *−→ φ(ωσ,v + ∂Cor
c (X(1),V)).

Let τ be an edge in X with vertices σ and σ′, we define

φτ : Vτ −→ W , v *−→ φσ(rτ
σ(v)).

Lemma 5.3.1 implies that the definition of φτ does not depend on the choice of vertex.
Hence, the collection of linear maps (φσ)σ is a morphism of coefficient systems, which
induces φ on the 0-th homology. An easy check shows that (φσ)σ respect the G-action
on V and Kπ.

5.5. Diagrams

Definition 5.5.1. — Let DIAG be the category, whose objects are diagrams

D0

D1

r

$$
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where (ρ0, D0) is a a smooth Fp-representation of K(σ0), (ρ1, D1) is a smooth Fp-
representation of K(σ1), and r ∈ HomF×I(D1, D0).

The morphisms between two objects (D0, D1, r) and (D′
0, D

′
1, r

′) are pairs (ψ0, ψ1),
such that ψ0 ∈ HomK(σ0)(D0, D′

0), ψ1 ∈ HomK(σ1)(D1, D′
1) and the diagram:

D0
ψ0

!! D′
0

D1

r

$$

ψ1
!! D′

1

r′
$$

of F×I representations commutes.

The main result of this section is Theorem 5.5.4, which says that the categories
DIAG and COEFG are equivalent. It is easier to work with objects of DIAG than
the coefficient systems.

Definition 5.5.2. — Let V = (Vσ)σ be an object in COEFG. Let D : COEFG →
DIAG be a functor, given by

V *−→

Vσ0

Vσ1

rσ1
σ0

$$

.

We will construct a functor C : DIAG → COEFG and show that the functors
C and D induce an equivalence of categories. The key point here is that G acts
transitively on the vertices of X .

5.5.1. Underlying vector spaces. — Let D = (D0, D1, r) be an object in DIAG.
Let i ∈ {0, 1}, we define c-IndG

K(σi) ρi, to be a representation of G whose underlying
vector space consists of functions

f : G −→ Di

such that
f(kg) = ρi(k)f(g) ∀ g ∈ G, ∀ k ∈ K(σi)

and Supp f is compact modulo the centre. The group G acts by the right translations,
that is

(gf)(g1) = f(g1g).
Let τ be a vertex on the tree X , then there exists g ∈ G, such that τ = gσ0. Let

Fτ = {f ∈ c-IndG
K(σ0) ρ0 : Supp f ⊆ K(σ0)g−1}.

The space Fτ is independent of the choice of g. Let τ ′ be an edge on the tree X , then
there exists g ∈ G such that τ ′ = gσ1. We define

Fτ ′ = {f ∈ c-IndG
K(σ1) ρ1 : Supp f ⊆ K(σ1)g−1}.

We observe that Fτ ′ is also independent of the choice of g.
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5.5.2. Restriction maps. — Let i ∈ {0, 1}, then Fσi is naturally isomorphic to
Di as a K(σi) representation. The isomorphism is given by

evi : Fσi −→ Di, f *−→ f(1).

The inverse is given by

ev−1
i : Di −→ Fσi , v *−→ fv

where fv(k) = ρi(k)v, if k ∈ K(σi), and 0 otherwise. Let

rσ1
σ0

= ev−1
0 ◦r ◦ ev1 .

Then rσ1
σ0

is an F×I-equivariant map from Fσ1 to Fσ0 . If v ∈ D1 then it sends

rσ1
σ0

: fv *−→ fr(v).

We observe, for the purposes of Theorem 5.5.4, that

D̃ = (Fσ0 ,Fσ1 , r
σ1
σ0

)

is an object of DIAG. Moreover, ev = (ev0, ev1) is an isomorphism of diagrams
between D and D̃. We will show later on that ev induces a natural transformation
between certain functors.

Let τ ′ be an edge containing a vertex τ , then there exists g ∈ G, such that τ = gσ0

and τ ′ = gσ1. Moreover, g can only be replaced by gk, where k ∈ K(σ0) ∩ K(σ1) =
F×I. We define

rτ ′

τ : Fτ ′ −→ Fτ , f *−→ grσ1
σ0

(g−1f)

where g acts on the space c-IndG
K(σ0) D0 and g−1 on the space c-IndG

K(σ1) D1. Since, r
is F×I-equivariant we have

ρ0(k) ◦ rσ1
σ0

◦ ρ1(k−1) = rσ1
σ0

for all k ∈ F×I. Hence, the map rτ ′

τ is independent of the choice of g. Explicitly, let
v = f(g−1), then

rτ ′

τ : f *−→ gfr(v).

Let τ be any simplex then we define the map rτ
τ = idFτ .

5.5.3. G-action. — So far from a diagram we have constructed a coefficient system.
We need to show that G acts on it. Let i ∈ {0, 1} and let f ∈ c-IndG

K(σi) Di. For any
g ∈ G we have

Supp(gf) = (Supp f)g−1.

Hence for any simplex τ we obtain a linear map

gτ : Fτ −→ Fgτ , f *−→ gf.
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Moreover, 1τ = idFτ and ghτ ◦ hτ = (gh)τ , for any g, h ∈ G. Let τ ′ be an edge
containing a vertex τ . We need to show that the diagram:

Fτ
gτ

!! Fgτ

Fτ ′

rτ ′

τ

$$

gτ ′
!! Fgτ ′

rgτ ′

gτ

$$

commutes. There exists g1 ∈ G such that τ = g1σ0 and τ ′ = g1σ1. Moreover, such g1

is determined up to a multiple g1k, where k ∈ F×I. Let f ∈ Fτ ′ and let v = f(g−1
1 ),

then
rτ ′

τ (f) = g1fr(v).

Hence
(gτ ◦ rτ ′

τ )(f) = gg1fr(v).

Since gτ ′ = gg1σ1, gτ = gg1σ0 and (gf)((gg1)−1) = f(g−1
1 ) = v we obtain

(rgτ ′

gτ ◦ gτ ′)(f) = rgτ ′

gτ (gg1fv) = gg1fr(v).

Hence the diagram commutes.

5.5.4. Morphisms. — Let D′ = (D′
0, D

′
1, r

′) be another diagram, let ψ = (ψ0, ψ1)
be a morphism of diagrams

ψ : D −→ D′

and let F ′ = (F ′
τ )τ be a coefficient system associated to D′ via the construction

above. Let τ be any simplex on the tree. If τ is a vertex let i = 0 and if τ is an edge,
let i = 1. There exists some g ∈ G such that τ = gσi. Let f ∈ Vτ and let v = f(g−1)
we define a map

ψτ : Fτ −→ F ′
τ , f *−→ gfψi(v)

where fψi(v) is the unique function in F ′
σi

, such that fψi(v)(1) = ψi(v). Since the map
ψi is K(σi)-equivariant, ψτ is independent of the choice of g.

We will show that the maps (ψτ )τ are compatible with the restriction maps. Let τ ′

be an edge containing a vertex τ . We claim that the diagram

Fτ
ψτ

!! F ′
τ

Fτ ′

rτ ′

τ

$$

ψτ ′
!! F ′

τ ′

(r′)τ ′

τ

$$

commutes. There exists g ∈ G such that τ = gσ0 and τ ′ = gσ1. Let f ∈ Fτ ′ and let
v = f(g−1). Then

(ψτ ◦ rτ ′

τ )(f) = ψτ (gfr(v)) = gfψ0(r(v))

and
((r′)τ ′

τ ◦ ψτ ′)(f) = (r′)τ ′

τ (gfψ1(v)) = gfr′(ψ1(v)).
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Since (ψ0, ψ1) is a morphism of diagrams

ψ0(r(v)) = r′(ψ1(v)).

Hence the diagram commutes as claimed and (ψτ )τ are compatible with the restriction
maps.

Finally, we will show that the maps (ψτ )τ are compatible with the G-action. Let τ
be any simplex on the tree. To ease the notation, for every h ∈ G we denote by hτ

the action of h on both (Fτ )τ and (F ′
τ )τ . Let τ be a simplex on the tree X and let

h ∈ G. We claim that the diagram

Fhτ
ψhτ

!! F ′
hτ

Fτ

hτ

$$

ψτ
!! F ′

τ

hτ

$$

commutes. If τ is an edge let i = 1, if τ is a vertex let i = 0. There exists g ∈ G, such
that τ = gσi. Let f ∈ Fτ and let v = f(g−1), then

ψhτ (hτ (f)) = ψhτ (hgfv) = hgfψi(v)

and

hτ (ψτ (f)) = hτ (gfψi(v)) = hgfψi(v).

Hence, the diagram commutes as claimed and the collection (ψτ )τ defines a morphism
of equivariant coefficient systems.

5.5.5. Equivalence

Definition 5.5.3. — Let C be a functor

C : DIAG −→ COEFG

which sends a diagram D to the coefficient system (Fτ )τ as above.

One needs to check that given three diagrams and two morphisms between them

D
ψ−−→ D′ ψ′

−−−→ D′′

we have

C(ψ′ ◦ ψ) = C(ψ′) ◦ C(ψ).

However, that is immediate from the construction of C(ψ) in Section 5.5.4.

Theorem 5.5.4. — The functors C and D induce an equivalence of categories be-
tween DIAG and COEFG.
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Proof. — Let D = (D0, D1, r) be an object in DIAG. Then

(D ◦ C)(D) = D̃ = (Fσ0 ,Fσ1 , r
σ1
σ0

)

with the notation of Section 5.5.2. The isomorphism

ev : D̃ ∼= D

of Section 5.5.2 is given by the evaluation at 1. We claim that it induces an isomor-
phism of functors between D ◦ C and idDIAG. We only need to check what happens
to morphisms. Let D′ = (D′

0, D
′
1, r

′) be another object in the category of diagrams
and let ψ = (ψ0, ψ1) be a morphism

ψ : D −→ D′.

Let (D ◦ C)(D′) = D̃′ = (F ′
σ0

,F ′
σ1

, (r′)σ1
σ0

) and let

(D ◦ C)(ψ) = ψ̃ = (ψ̃0, ψ̃1)

be a morphism induced by a functor D ◦ C. We need to show that the diagram:

D̃′ ev !! D′

D̃

ψ̃

$$

ev !! D

ψ

$$

commutes. Let i ∈ {0, 1}, let f ∈ Fσi and let v = f(1) then

(ψi ◦ evi)(f) = ψi(v).

From Section 5.5.4 ψ̃i(f) is the unique function in F ′
σi

, taking value ψi(v) at 1. Hence

(evi ◦ψ̃i)(f) = ψi(v).

This implies that the diagram commutes.
Conversely, we need to show that the functor C ◦D is isomorphic to idCOEFG . Let

V = (Vτ )τ be a G-equivariant coefficient system with the restriction maps tτ
′

τ . Then
D(V) is a diagram given by:

Vσ0

Vσ1

tσ1
σ0

$$
.

Let k ∈ K(σ0) then it acts on Vσ0 by a linear map kσ0 . Similarly, if k ∈ K(σ1) then it
acts on on Vσ1 by a linear map kσ1 . Let

(C ◦D)(V) = F = (Fτ )τ

with the restriction maps rτ ′

τ . We will construct a canonical isomorphism ev = (evτ )τ

ev : F ∼= V
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of G equivariant coefficient systems. Let τ be a simplex on the tree. If τ is a vertex
let i = 0 and if τ is an edge let i = 1. There exists g ∈ G such that τ = gσi. For
f ∈ Fτ we let v = f(g−1). Then v is a vector in Vσi . We define a map evτ , by

evτ : Fτ −→ Vτ , f *−→ gσiv

where gσi is the linear map coming from the G action on V . If we replace g by gk,
for some k ∈ K(σi), then

(gk)σi(f((gk)−1)) = (gσi ◦ kσi ◦ k−1
σi

)(f(g−1)) = gσi(f(g−1)).

Hence, the map evτ is independent of the choice of g. Moreover, evτ is an isomorphism
of vector spaces with the inverse given as follows. Let w ∈ Vτ , let v = (g−1)τw, then
v is a vector in Wσi . Let fv be the unique function in Fτ such that fv(1) = v. Then
(evτ )−1 is given by

(evτ )−1 : Vτ −→ Fτ , w *−→ gfv

where the action by g is on the space c-IndG
K(σi) Vσi .

The collection of maps (evτ )τ is G-equivariant. Let h ∈ G, then hf belongs to the
space Fhτ and

evhτ (hf) = (hg)σi((hf)((hg)−1)) = (hτ ◦ gσi)(f(g−1)) = hτ (evτ (f)).

We need to show that the maps evτ are compatible with the restriction maps. Let
τ ′ be an edge containing a vertex τ . We need to show that the diagram

Fτ
evτ !! Vτ

Fτ ′

rτ ′

τ

$$

evτ ′
!! Vτ ′

tτ
′

τ

$$

commutes. There exists g ∈ G such that τ = gσ0 and τ ′ = gσ1. Let f be a function
in Fτ ′ . Let v1 = f(g−1) , then v1 is a vector in Vσ1 . Let v0 = tσ1

σ0
(v1). Then rτ ′

τ (f) is
the unique function of Fτ taking value v0 at g−1. Hence

(evτ ◦rτ ′

τ )(f) = gσ0v0.

On the other hand
(tτ

′

τ ◦ evτ ′)(f) = tτ
′

τ (gσ1v1).

The action of G on V respects the restriction maps, in the sense that the diagram:

Vσ0

gσ0
!! Vτ

Vσ1

tσ1
σ0

$$

gσ1 !! Vτ ′

tτ
′

τ

$$
.

commutes. Hence,
tτ

′

τ (gσ1v1) = gσ0v0.
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Hence our original diagram commutes and ev = (evτ )τ defines an isomorphism of
G-equivariant coefficient systems.

In order to show that the morphism ev induces an isomorphism of functors between
C ◦ D and idCOEFG we need to check what happens to the morphisms. However the
proof is almost identical to the one given for DIAG so we omit it.

Corollary 5.5.5. — Let (ρ0, V0) be a smooth representation of K(σ0) and (ρ1, V1)
a smooth representation of K(σ1). Suppose that there exists an F×I-equivariant iso-
morphism

r : V1
∼= V0,

then there exists a unique (up to isomorphism) smooth representation π of G, such
that

π|K(σ0)
∼= ρ0, π|K(σ1)

∼= ρ1

and the diagram

V0

∼= !! π

V1

r

$$

∼= !! π

id

$$

of F×I-representations commutes.

Proof. — Let D be the object in DIAG, given by D = (V0, V1, r). Let C(D) be a coef-
ficient system corresponding to D, with the restriction maps rτ ′

τ . Since (D◦C)(D) ∼= D
and r is an isomorphism, the map rσ1

σ0
is an isomorphism and Proposition 5.3.4 implies

that H0(X, C(D)) satisfies the conditions of the Corollary.
The statement of the Corollary can be rephrased as follows: there exists a unique

up to isomorphism smooth representation π of G, such that

D ∼= D(Kπ).

If π′ was another such, then

D(Kπ′ ) ∼= D ∼= D(Kπ).

Hence, by Theorem 5.5.4
Kπ′ ∼= Kπ .

Lemma 5.4.2 implies that

π′ ∼= H0(X,Kπ′) ∼= H0(X,Kπ) ∼= π

and we obtain uniqueness.

Remark 5.5.6. — Let W̃ be a subgroup of G generated by s and Π. The Iwahori
decomposition says that G = IW̃ I. Let π be a representation constructed as above,
v ∈ π and g ∈ G. Then gv may be determined by decomposing g = u1wu2, where
u1, u2 ∈ I, w ∈ W̃ , and then chasing around the diagram.
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The simplest example illustrating 5.5.5 is the trivial diagram 1̃ = (1,1, id). The
proof of Corollary 3.1.9 can be reinterpreted as a construction of a morphism 1̃ ↪→
D(Kπ). This gives us an injection of G representations

1 ∼= H0(X, C(1̃)) ↪−→ H0(X,Kπ) ∼= π.
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CHAPTER 6

SUPERSINGULAR REPRESENTATIONS

6.1. Coefficient systems Vγ

Let χ : H → F
×
p be a character, and let ρχ,J be an irreducible representation of Γ,

with the notations of Section 3. We consider χ as a character of I and ρχ,J as a
representation of K, via

K −→ K/K1
∼= Γ and I −→ I/I1

∼= H.

Let ρ̃χ,J be the extension of ρχ,J to F×K such that our fixed uniformiser !F acts
trivially, and let χ̃ be the extension of χ to F×I, such that !F acts trivially. The space
of I1-invariants of ρ̃χ,J is one dimensional and F×I acts on it via the character χ̃. We
fix a vector vχ,J such that

ρI1
χ,J = 〈vχ,J 〉Fp

.

Lemma 6.1.1. — There exists a unique action of K(σ1) on (ρ̃χ,J ⊕ρ̃χs,J )I1 , extending
the action of F×I, such that

Π−1vχ,J = vχs,J and Π−1vχs,J = vχ,J .

Moreover, with this action

(ρ̃χ,J ⊕ ρ̃χs,J)I1 ∼= IndK(σ1)
F×I χ̃

as K(σ1)-representations.

Proof. — We note that if t ∈ T is a diagonal matrix then ΠtΠ−1 = sts, hence
(χ̃)Π ∼= χ̃s as representations of F×I and Mackey’s decomposition gives us

(IndK(σ1)
F×I χ̃)|F×I

∼= χ̃ ⊕ χ̃s.

Since
(ρ̃χ,J ⊕ ρ̃χs,J)I1 ∼= χ̃ ⊕ χ̃s
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as F×I-representation, we can extend the action. Explicitly, we consider f ∈
IndK(σ1)

F×I χ̃, such that Supp f = F×I and f(g) = χ̃(g), for all g ∈ F×I. Then the map

f *−→ vχ,J , Π−1f *−→ vχs,J

induces the required isomorphism. Since, Π and F×I generate K(σ1) the action is
unique.

Definition 6.1.2. — Let χ : H → F
×
p be a character, and let γ = {χ, χs} we define

Dγ to be an object in DIAG, given by

ρ̃χ,J ⊕ ρ̃χs,J

(ρ̃χ,J ⊕ ρ̃χs,J )I1

$$

where the action of K(σ1) on (ρ̃χ,J ⊕ ρ̃χs,J)I1 is given by Lemma 6.1.1. Moreover, we
define Vγ to be a coefficient system, given by

Vγ = C(Dγ).

Lemma 6.1.3. — The diagram Dγ is independent up to isomorphism of the choices
made for vχ,J and vχs,J .

Proof. — Suppose that instead we choose vectors v′χ,J and v′
χs,J

and let D′
γ be the

corresponding diagram. Since, the spaces ρI1
χ,J and ρI1

χs,J
are one dimensional there

exist λ, µ ∈ F
×
p , such that

λvχ,J = v′χ,J , µvχs,J = v′
χs,J

.

The isomorphism
λ id⊕µ id : ρ̃χ,J ⊕ ρ̃χs,J −→ ρ̃χ,J ⊕ ρ̃χs,J

induces an isomorphism of diagrams Dγ
∼= D′

γ .

Since Dγ and D(Vγ) are canonically isomorphic, to ease the notation, we identify
them. Let ωχ,J , ωχs,J ∈ Cor

c (X(0),Vγ) supported on a single vertex σ0, such that

ωχ,J(σ0) = vχ,J and ωχs,J(σ0) = vχs,J .

Let
ωχ,J = ωχ,J + ∂Cor

c (X(1),Vγ) and ωχs,J = ωχs,J + ∂Cor
c (X(1),Vγ)

be their images in H0(X,Vγ).

Lemma 6.1.4. — We have

〈ωχ,J , ωχs,J〉Fp

∼= Mγ

as right H-modules.
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Proof. — Since the restriction maps in Vγ are injective, Lemma 5.3.2 says that ωχ,J

and ωχs,J are non-zero. We have

〈vχ,J 〉Fp
= (ρ̃χ,J)I1 ∼= Mχ,J and 〈vχs,J〉Fp

= (ρ̃χs,J)I1 ∼= Mχs,J

as HK-modules. Hence ωχ,J and ωχs,J are fixed by I1 and

〈ωχ,J〉Fp
⊕ 〈ωχs,J〉Fp

∼= Mχ,J ⊕ Mχs,J

as HK-modules. Corollary 2.0.7 and Lemma 5.3.4 imply that

ωχ,JTΠ = Π−1ωχ,J = ωχs,J and ωχs,JTΠ = Π−1ωχs,J = ωχ,J .

Hence
〈ωχ,J , ωχs,J〉Fp

∼= Mγ

as H-modules.

Lemma 6.1.5. — The vector ωχ,J (resp. ωχs,J) generates H0(X,Vγ) as a G-
representation.

Proof. — Lemma 5.3.4 implies that Π−1ωχ,J = ωχs,J . Hence, it is enough to show
that ωχ,J and ωχs,J generate Cor

c (X(0),Vγ) as a G-representation. Since, ρχ,J and
ρχs,J are irreducible K-representations, ωχ,J and ωχs,J will generate the space

Cor
c (σ0,Vγ) = {ω ∈ Cor

c (X(0),Vγ) : Suppω ⊆ σ0}

as a K-representation. Since the action of G on the vertices of X is transitive, the
space Cor

c (σ0,Vγ) will generate Cor
c (X(0),Vγ) as a G-representation.

Corollary 6.1.6. — Let π be a non-zero irreducible quotient of H0(X,Vγ), then π
is a supersingular representation.

Proof. — Lemma 6.1.5 implies that the images of ωχ,J and ωχs,J in π are non-zero.
Hence, by Lemma 6.1.4, πI1 will contain a supersingular module Mγ , then Corollary
2.1.5 implies that π is supersingular.

Proposition 6.1.7. — Let π be a smooth representation of G and suppose that there
exists v1, v2 ∈ πI1 such that

〈Kv1〉Fp

∼= ρχ,J , 〈Kv2〉Fp

∼= ρχs,J , Π−1v1 = v2, Π−1v2 = v1,

then there exists a G-equivariant map φ : H0(X,Vγ) → π such that

φ(ωχ,J) = v1 and φ(ωχs,J) = v2

where γ = {χ, χs}.

Proof. — By Lemma 5.4.2 and Theorem 5.5.4, it is enough to construct a morphism
of diagrams Dγ → D(Kπ). However, such morphism is immediate.
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Corollary 6.1.8. — Let π be a smooth representation of G and suppose that one
of the following holds: χ = χs, or p = q, then

HomG(H0(X,Vγ), π) ∼= HomH(Mγ , πI1 ).

Remark 6.1.9. — This fails if q != p and χ != χs. Proposition 6.4.5 gives an example.

Proof. — Lemmas 6.1.4 and 6.1.5 imply that we always have an injection

HomG(H0(X,Vγ), π) ↪−→ HomH(Mγ , πI1).

By Lemma 2.2.2 Mγ |HK
∼= Mχ,J ⊕ Mχs,J . Under the assumptions made, Corollaries

2.0.7, 3.1.8 and respectively 4.1.5 give us vectors v1, v2 ∈ πI1 as in Proposition 6.1.7,
hence the injection is an isomorphism.

Corollary 6.1.10. — Let π be a smooth representation, and suppose that πI1 ∼=
Mγ, then

dim HomG(H0(X,Vγ), π) = 1.

Proof. — It is enough to consider the case p != q and χ != χs. Since Corollary 6.1.8
implies the statement in the other cases. Let ρ = 〈KπI1〉Fp

, then ρI1 = πI1 . Hence

ρI1 ∼= Mγ |HK
∼= Mχ,∅ ⊕ Mχs,∅

as an HK-module. Proposition 4.2.40 implies that ρ ∼= ρχ,∅ ⊕ ρχs,∅. The action of
Π on πI1 is given by Corollary 2.0.7. Now we may apply Proposition 6.1.7 to get
a non-zero homomorphism. So the dimension is at least one. The module Mγ is
irreducible, and Lemmas 6.1.4 and 6.1.5 imply that the dimension is at most one.

6.2. Injective envelopes

For the convenience of the reader we recall some general facts about injective
envelopes. Let K be a pro-finite group and let RepK be the category of smooth
Fp-representations of K. We assume that K has an open normal pro-p subgroup P .

Definition 6.2.1. — Let π ∈ RepK and let ρ be a K-invariant subspace of π. We
say that π is an essential extension of ρ if for every non-zero K-invariant subspace π′

of π, we have π′ ∩ ρ != 0.
Let ρ ∈ RepK and let Inj be an injective object in RepK. A monomorphism

ι : ρ ↪→ Inj is called an injective envelope of ρ, if Inj is an essential extension of ι(ρ).

Proposition 6.2.2. — Every representation ρ ∈ RepK has an injective envelope
ι : ρ ↪→ Inj ρ. Moreover, injective envelopes are unique up to isomorphism.

Proof. — [16], §3.1.
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Lemma 6.2.3. — Let Inj be an injective object in RepK and let ι : ρ → Inj ρ be an
injective envelope of ρ in RepK. Let φ be a monomorphism φ : ρ ↪→ Inj, then there
exists a monomorphism ψ : Inj ρ ↪→ Inj such that φ = ψ ◦ ι.

Proof. — Since Inj is an injective object there exists ψ such that the diagram

0 !! ρ ι !!

φ
""

Inj ρ

ψ%%

Inj

of K-representations commutes. Since φ is an injection Kerψ ∩ ι(ρ) = 0. This implies
that Kerψ = 0, as Inj ρ is an essential extension of ι(ρ).

Lemma 6.2.4. — Let ρ ∈ RepK be an irreducible representation and let ι : ρ ↪→ Inj ρ
be an injective envelope of ρ in RepK, then ρ ↪→ (Inj ρ)P is an injective envelope of ρ
in RepK/P .

Proof. — We note that since P is an open normal pro-p subgroup of K and ρ is
irreducible, Lemma 2.0.2 implies that P acts trivially on ρ. Hence, ι(ρ) is a subspace
of (Inj ρ)P . Moreover, (Inj ρ)P is an essential extension of ι(ρ), since Inj ρ is an
essential extension of ι(ρ).

Let L : RepK/P → RepK be a functor sending a representation ξ to its inflation
L(ξ) to a representation of K, via K → K/P . Then

HomK/P(ξ, (Inj ρ)P) ∼= HomK(L(ξ), Inj ρ)

where the isomorphism is canonical. Since, the functor L is exact and Inj ρ is an
injective object in RepK , the functor HomK/P(∗, (Inj ρ)P) is exact. Hence, (Inj ρ)P is
an injective object in RepK/P , which establishes the Lemma.

Definition 6.2.5. — Let π ∈ RepK, we denote by socπ the subspace of π, generated
by all irreducible subrepresentations of π.

Lemma 6.2.6. — Let ρ ∈ RepK be irreducible, and let ι : ρ ↪→ Inj ρ be an injective
envelope of ρ, then soc(Inj ρ) ∼= ρ.

Proof. — Let τ be any non-zero K invariant subspace of Inj ρ, which is irreducible as
a representation of K. Since Inj ρ is an essential extension of ι(ρ) and ρ is irreducible,
we have τ = ι(ρ). Hence, soc(Inj ρ) = ι(ρ).

6.3. Admissibility

Let G be a locally pro-finite group and let RepG be the category of smooth Fp-
representations of G.
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Definition 6.3.1. — A representation π ∈ RepG is called admissible, if for every
open subgroup K of G, the space πK of K-invariants is finite dimensional.

Theorem 6.3.2. — Suppose that G has an open pro-p subgroup P. A representation
π ∈ RepG is admissible if and only if πP is finite dimensional.

Proof. — If π is admissible, then πP is finite dimensional. Suppose that πP is finite
dimensional and let 1 ↪→ Inj 1 be an injective envelope of the trivial representation in
RepP , then there exists ψ, such that the diagram

0 !! πP !!

""

π|P

ψ##

(dim πP) Inj 1

of P-representations commutes. This implies that (Kerψ)P = 0, and hence by Lemma
2.0.2, ψ is injective.

Let K be any open subgroup of G. Since P is an open compact subgroup of G, we
may choose an open subgroup P ′ of G such that P ′ is a subgroup of P ∩ K and P ′

is normal in P . It is enough to show that πP′
is finite dimensional. Since ψ is an

injection, it is enough to show that (Inj1)P
′

is finite dimensional. Since P is pro-p
and P ′ is a normal open subgroup of P , Lemma 6.2.4 and Proposition 4.0.8 imply
that

(Inj1)P
′ ∼= Fp[P/P ′]

which is finite dimensional.

6.4. Coefficient systems Iγ

Let χ : H → F
×
p be a character, and let

ρχ,J ↪−→ Inj ρχ,J , ρχs,J ↪−→ Inj ρχs,J

be injective envelopes of ρχ,J and ρχs,J in RepK , respectively. We may extend the
action of K to the action of F×K, so that our fixed uniformiser !F acts trivially. We
get an exact sequence

0 −→ ρ̃χ,J ⊕ ρ̃χs,J −→ Ĩnjρχ,J ⊕ Ĩnjρχs,J

of F×K-representations. This gives a commutative diagram

0 !! ρ̃χ,J ⊕ ρ̃χs,J
!! Ĩnjρχ,J ⊕ Ĩnjρχs,J

0 !! (ρ̃χ,J ⊕ ρ̃χs,J)I1 !!

$$

Ĩnjρχ,J ⊕ Ĩnjρχs,J

$$
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of F×I-representations. We will show that we may extend the action of F×I on
(Ĩnjρχ,J ⊕ Ĩnjρχs,J)|F×I to the action of K(σ1), so that we get an object Yγ in DIAG,
together with an embedding Dγ ↪→ Yγ . Since the categories DIAG and COEFG are
equivalent, this will give us an embedding of coefficient systems Vγ ↪→ Iγ . We will
show that the image

πγ = Im(H0(X,Vγ) −→ H0(X, Iγ))

is an irreducible supersingular representation of G. All the hard work was done in
Propositions 4.2.37 and 4.2.38, the construction of Yγ and the proof of irreducibil-
ity follow from the ’general non-sense’ of Section 6.2. This gives hope that similar
construction might work for other groups.

Lemma 6.4.1. — Let ρ be an irreducible representation of K and let

ρ ↪−→ Inj ρ

be an injective envelope of ρ in RepK , then

(Inj ρ)|I ∼=
⊕
χ

dimHomH(χ, (inj ρ)U ) Inj χ

where the sum is taken over all irreducible representations of H, which we identify
with the irreducible representations of I and

ρ ↪−→ inj ρ, χ ↪−→ Injχ

are the injective envelopes of ρ in RepΓ and of χ in RepI , respectively.

Proof. — If χ is an irreducible representation of I, then Lemma 2.0.2 implies that
I1 acts trivially on χ. Since I/I1

∼= H , the irreducible representations of I and H
coincide. Moreover, since H is abelian, all the irreducible representations of H are
one dimensional. Since, the order of H is prime to p, all the representations of H are
semi-simple. Therefore

(Inj ρ)I1 ∼=
⊕
χ

mχχ

as a representation of I, where the multiplicity mχ of χ is given by

mχ = dim HomI(χ, Inj ρ).

Lemma 6.2.4 implies that (Inj ρ)K1 ∼= inj ρ as representations of K/K1
∼= Γ. Corollary

4.0.6 implies that inj ρ is finite dimensional. In particular, mχ is finite for every χ.
Moreover,

HomI(χ, Inj ρ) ∼= HomI(χ, (Inj ρ)K1) ∼= HomB(χ, inj ρ) ∼= HomH(χ, (inj ρ)U ).

Hence, mχ = dim HomH(χ, (inj ρ)U ). We consider an exact sequence

0 −→ (Inj ρ)I1 −→ (Inj ρ)|I
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of I-representations. The restriction (Inj ρ)|I is an injective object in RepI . Lemma
6.2.3 implies that

(Inj ρ)|I ∼= N ⊕
⊕
χ

mχ Injχ

for some representation N . Since RepH is semi-simple and Inj χ is an essential ex-
tension of χ, Lemma 6.2.4 implies that (Inj χ)I1 ∼= χ. By comparing the dimensions
of I1-invariants of both sides we get that dimN I1 = 0 and Lemma 2.0.2 implies that
N = 0.

Lemma 6.4.2. — Let χ : H → F
×
p be a character. We consider χ and χs as one

dimensional representations of I, via I/I1
∼= H. Let

χ ↪−→ Injχ, χs ↪−→ Inj χs

be injective envelopes of χ and χs in RepI , respectively. Let V1 be the underlying
vector space of Injχ and let V2 be the underlying vector space of Injχs. Further, let
v1 and v2 be vectors in V1 and V2 respectively, such that

〈v1〉Fp
= (Inj χ)I1 , 〈v2〉Fp

= (Injχs)I1 .

Then there exists an action of K(σ1) on V1 ⊕ V2, extending the action of I, so that
our fixed uniformiser !F acts trivially and

Π−1v1 = v2, Π−1v2 = v1.

Proof. — Let t ∈ T be any diagonal matrix, then sts = ΠtΠ−1. Hence

χs ∼= χΠ

as I-representations, where χΠ denotes the action of I, on the underlying vector space
of χ, twisted by Π. So we get an exact sequence

0 −→ χs −→ (Inj χ)Π

of I-representations. Twisting by Π is an exact functor in RepI and

HomI(ξ, (Inj χ)Π) ∼= HomI(ξΠ, Injχ).

Since Inj χ is an injective object in RepI , this implies that (Injχ)Π is an injective
object in RepI . Since Inj χ is an essential extension of χ, (Injχ)Π is an essential
extension of χs. Since injective envelopes are unique up to isomorphism, there exists
an isomorphism φ of I-representations

φ : (Injχ)Π ∼= Injχs.

The proof of Lemma 6.4.1 shows that the space (Injχ)I1 is one dimensional. Hence,
after replacing φ by a scalar multiple we may assume that φ(v1) = v2. We may extend
the action of I on V1 and V2 to the action of F×I by making !F act trivially. We
denote the corresponding representations by Ĩnjχ and Ĩnjχs. For trivial reasons

φ : (Ĩnjχ)Π ∼= Ĩnjχs.
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We consider the induced representation IndK(σ1)
F×I Ĩnjχ. Let ev1 and evΠ be the evalu-

ation maps at 1 and Π respectively, then we get an F×I-equivariant isomorphism:

IndK(σ1)
F×I Ĩnjχ ∼= V1 ⊕ V2, f *−→ ev1(f) + φ(evΠ(f)).

The action of K(σ1) on the left hand side gives us the action of K(σ1) on V1 ⊕V2. Let
v ∈ V1 and w ∈ V2, then the action of Π−1 is given by

Π−1(v + w) = φ−1(w) + φ(v)

and hence Π−1v1 = v2 and Π−1v2 = v1.

We will construct a diagram Yγ . This will involve making some choices. Suppose
that q = pn, let χ : H → F

×
p be a character and let γ = {χ, χs}. We consider an

irreducible representation ρχ,J of K. Lemma 3.2.2 gives us a pair (r, a), where r is
the usual n-tuple and a is an integer modulo q−1. Let ρχ,J ↪→ Inj ρχ,J be an injective
envelope of ρχ,J in RepK . Let Wr be the underlying vector space of Inj ρχ,J . We
may assume that Wr depends only on the n-tuple r. Since, if χ′ = χ ⊗ (det)c, then
ρχ′,J

∼= ρχ,J ⊗ (det)c and a simple argument shows that ρχ′,J ↪→ (Inj ρχ,J )⊗ (det)c is
an injective envelope of ρχ′,J in RepK . Let

Yγ,0 = (Ĩnjρχ,J ⊕ Ĩnjρχs,J ,Wr ⊕Wp−1−r)

where tilde denotes the extension of the action of K to the action of F×K, so that
!F acts trivially. We are going to construct an action of K(σ1) on Yγ,0|F×I , which
extends the action of F×I, and this will give us Yγ . However, this can be done in a
lot of ways, and not all of them suit our purposes. Lemma 6.2.4 and Remark 4.0.5
imply that

(Yγ,0)K1 ∼= inj ρχ,J ⊕ inj ρχs,J

as K-representations, where on the right hand side we adopt the notation of Propo-
sitions 4.2.37 and 4.2.38. In particular,

(Yγ,0)I1 ∼= (inj ρχ,J ⊕ inj ρχs,J)I1

as HK-modules. In Lemma 4.2.19 we have worked out a basis consisting of eigenvec-
tors for the action of I of (a model of) (inj ρχ,J ⊕ inj ρχs,J)I1 . The above isomorphism
gives us a basis Bγ of (Yγ,0)I1 . Lemma 6.4.1 gives an F×I-equivariant decomposition:

ζ : Wr ⊕Wp−1−r
∼=

⊕
b∈Bγ

W(b)

such that ζ(b) ∈ W(b), for every b ∈ Bγ , and the representation, given by the action
of I on W(b), is an injective object in RepI , which is also an essential extension of
〈ζ(b)〉Fp

. To simplify things we view ζ as identification and omit it from our notation.
If χ = χs then we pair up the basis vectors as in Proposition 4.2.37:

Bγ = {b0, b0 + b1}
⋃

{ε,1−ε}⊆Σ′
0

{bε, b1−ε}.
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If χ != χs then we pair up the basis vectors as in Proposition 4.2.38:

Bγ = {b0, b0} ∪ {b1, b1}
⋃

{ε,1−ε}⊆Σ′
r

{bε, b1−ε}
⋃

{ε,1−ε}⊆Σ′
p−1−r

{bε, b1−ε}.

Let {b, b′} be any such pair and suppose that I acts on b via a character ψ, then I
will act on b′, via a character ψs. We denote

W(b, b′) = W(b) ⊕W(b′).

Lemma 6.4.2 implies that there exists an action of K(σ1) on W(b, b′), extending the
action of F×I, such that

Π−1b = b′, Π−1b′ = b.

This amounts to fixing an isomorphism of vector spaces φ : W(b) ∼= W(b′), such that
φ(b) = b′ and which induces an isomorphism of I representations φ : (Inj ψ)Π ∼= Injψs.

If χ = χs then Yγ,0 decomposes into F×I-invariant subspaces:

W(b0, b0 + b1)
⊕

{ε,1−ε}⊆Σ′
0

W(bε, b1−ε).

If χ != χs then Yγ,0 decomposes into F×I-invariant subspaces:

W(b0, b0) ⊕W(b1, b1)
⊕

{ε,1−ε}⊆Σ′
r

W(bε, b1−ε)
⊕

{ε,1−ε}⊆Σ′
p−1−r

W(bε, b1−ε).

Let Yγ,1 be a representation of K(σ1), whose underlying vector space is Wr⊕Wp−1−r,
and the action of K(σ1) extends the action of F×I on each direct summand, as it was
done for W(b, b′).

Definition 6.4.3. — Let Yγ be an object in DIAG, given by

Yγ = (Yγ,0, Yγ,1, id)

and let Iγ be the corresponding coefficient system

Iγ = C(Yγ).

Remark 6.4.4. — The definition of Yγ depends on all the choices we have made.

Proposition 6.4.5. — Let χ : H → F
×
p be a character and let γ = {χ, χs}. Suppose

that χ = χs, then
H0(X, Iγ)I1 ∼= Mγ

⊕
{ε,1−ε}⊆Σ′

0

Mγε

as H-modules, where γε = γ1−ε = {χαε"(p−1), χ(αε"(p−1))s}. Suppose that χ != χs,
then

H0(X, Iγ)I1 ∼= Lγ
⊕

{ε,1−ε}⊆Σ′
r

Mγε

⊕
{ε,1−ε}⊆Σ′

p−1−r

Mγε

as H-modules, where γε = γ1−ε = {χαε"(p−1−r), (χαε"(p−1−r))s} and γε = γ1−ε =
{χsαε"r, (χsαε"r)s}.
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Proof. — In Propositions 4.2.37 and 4.2.38 we have showed that we may extend the
action of HK on (inj ρχ,J⊕injρχs,J)I1 to the action of H, so that the resulting modules
are isomorphic to the ones considered above. We will show that H0(X, Iγ)I1 realizes
this extension. By Proposition 5.3.5 (or alternatively Corollary 5.5.5) we have

H0(X, Iγ)|K(σ0)
∼= Yγ,0, H0(X, Iγ)|K(σ1)

∼= Yγ,1

as K(σ0) and K(σ1)-representations, respectively. Moreover, the diagram

Yγ,0

∼= !! H0(X, Iγ)

Yγ,1

id
$$

∼= !! H0(X, Iγ)

id
$$

of F×I-representations commutes. So

(Yγ,0)I1 ∼= H0(X, Iγ)I1

as HK-modules. Lemma 6.2.4 implies that

H0(X, Iγ)I1 ∼= (inj ρχ,J ⊕ inj ρχs,J)I1

as HK-modules, and we know the right hand side from Propositions 4.2.37 and 4.2.38.
It remains to determine the action of TΠ. Corollary 2.0.7 implies that for every
v ∈ H0(X, Iγ)I1 we have

vTΠ = Π−1v.

Hence the action of TΠ is determined by the isomorphism

Yγ,1
∼= H0(X, Iγ)|K(σ1).

Since Bγ is a basis of (Yγ,0)I1 , it is enough to know how Π−1 acts on the basis vectors.
Let W(b, b′) be one of the K(σ1)-invariant subspaces of Yγ,1, as before. We have
extended the action of F×I on Yγ,0|F×I to K(σ1) so that

Π−1b = b′, Π−1b′ = b.

Hence, if we consider Bγ also as a basis of H0(X, Iγ)I1 we have

bTΠ = b′, b′TΠ = b.

Now the statement of the Proposition is just a realization of Propositions 4.2.37 and
4.2.38.

6.5. Construction

Now we will construct an embedding Dγ ↪→ Yγ . Suppose that χ = χs, then we
consider vectors b0 and b0 + b1 in (Yγ,0)I1 . Lemmas 4.2.21 and 4.2.30 imply that

〈Kb0〉Fp

∼= ρ̃χ,S , 〈K(b0 + b1)〉Fp

∼= ρ̃χ,∅
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as F×K-representations. We have constructed the action of K(σ1) on Yγ,1 so that

Π−1b0 = b0 + b1, Π−1(b0 + b1) = b0.

Suppose that χ != χs, then we consider vectors b0 and b0 in (Yγ,0)I1 . Lemmas 4.2.21
implies that

〈Kb0〉Fp

∼= ρ̃χ,∅, 〈Kb0〉Fp

∼= ρ̃χs,∅

as F×K-representations. We have constructed the action of K(σ1) on Yγ,1 so that

Π−1b0 = b0, Π−1b0 = b0.

Hence, in both cases we get an embedding Dγ ↪→ Yγ in the category DIAG. This
gives us an embedding of G equivariant coefficient systems Vγ ↪→ Iγ .

Definition 6.5.1. — Let πγ be a representation of G, given by

πγ = Im(H0(X,Vγ) −→ H0(X, Iγ)).

Theorem 6.5.2. — For each γ = {χ, χs}, the representation πγ is irreducible and
supersingular. Moreover, πI1

γ contains an H-submodule isomorphic to Mγ. Further, if

πγ
∼= πγ′

then γ = γ′.

Proof. — Lemma 5.3.2 implies that πγ is non-zero. So by Corollary 6.1.6 it is enough
to prove that πγ is irreducible. To ease the notation we identify the underlying vector
spaces of Yγ,0 and H0(X, Iγ). If χ = χs then Lemma 6.1.5 implies that

πγ = 〈Gb0〉Fp
= 〈G(b0 + b1)〉Fp

.

If χ != χs then Lemma 6.1.5 implies that

πγ = 〈Gb0〉Fp
= 〈Gb0〉Fp

.

This can be rephrased in a different way. By Proposition 5.3.5 we have

H0(X, Iγ)|K ∼= Inj ρχ,J ⊕ Inj ρχs,J

as K-representations. Lemma 6.2.6 implies that

ρχ,J ⊕ ρχs,J
∼= soc(H0(X, Iγ)|K).

Hence, if χ = χs then

(soc(H0(X, Iγ)|K))I1 = 〈b0, b0 + b1〉Fp

and if χ != χs then
(soc(H0(X, Iγ)|K))I1 = 〈b0, b0〉Fp

and hence
πγ = 〈G(soc(H0(X, Iγ)|K))I1 〉Fp

.
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The key point is that (soc(H0(X, Iγ)|K))I1 is an H-invariant subspace of H0(X, Iγ)I1 ,
moreover

(soc(H0(X, Iγ)|K))I1 ∼= Mγ

as an H-module. This can be deduced either from Lemma 6.1.4 or from the module
computation in Proposition 6.4.5.

Suppose that π′ is non-zero G-invariant subspace of πγ then by Lemma 2.0.2
(π′)K1 != 0, and hence soc(π′|K) != 0. We apply Lemma 2.0.2 again to obtain
(soc(π′|K))I1 != 0. We have trivially soc(π′|K) ⊆ soc(H0(X, Iγ)|K). Hence

0 != (soc(π′|K))I1 # (soc(H0(X, Iγ)|K))I1 ∩ (π′)I1 .

Since the spaces (soc(H0(X, Iγ)|K))I1 and (π′)I1 are H-invariant subspaces of
H0(X, Iγ)I1 , and (soc(H0(X, Iγ)|K))I1 is an irreducible H-module, we get

(soc(H0(X, Iγ)|K))I1 # (π′)I1

and this implies that π′ = πγ . Hence πγ is irreducible.
Suppose that πγ

∼= πγ′ , then this induces an isomorphism of vector spaces

φ : (soc(πγ |K))I1 ∼= (soc(πγ′ |K))I1 .

The argument above implies that both spaces are H-invariant and Corollary 2.0.7
implies that φ is an isomorphism of H-modules. Hence,

Mγ
∼= (soc(πγ |K))I1 ∼= (soc(πγ′ |K))I1 ∼= Mγ′ .

Lemma 2.1.3 implies that γ = γ′.

Corollary 6.5.3. — The representation H0(X, Iγ) is an essential extension of πγ

in RepG. In particular,
πγ

∼= soc(H0(X, Iγ)),
where soc(H0(X, Iγ)) is the subspace of H0(X, Iγ) generated by all the irreducible
subrepresentations.

Proof. — Let π be a non-zero G-invariant subspace of H0(X, Iγ). The proof of The-
orem 6.5.2 shows that (soc(H0(X, Iγ)|K))I1 is a subspace of πI1 . This implies that
πγ is a subspace of π. The last part is immediate.

6.5.1. Twists by unramified quasi-characters. — Let λ ∈ F
×
p , we define an

unramified quasi-character µλ : F× → F
×
p , by

µλ(x) = λvalF (x).

Lemma 6.5.4. — Suppose that πγ ⊗ µλ ◦ det ∼= πγ′ , then γ = γ′ and λ = ±1.

Proof. — Our fixed uniformiser !F acts on πγ ⊗ µλ ◦ det, by a scalar λ2, and it acts
trivially on πγ′ . Hence, λ = ±1. By Lemma 2.1.9 Mγ ⊗ µ−1 ◦ det ∼= Mγ , and hence
by the argument of 6.5.2 Mγ′ ∼= Mγ , which implies that γ = γ′.
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Proposition 6.5.5. — Suppose that q = p, then πγ ⊗ (µ−1 ◦ det) ∼= πγ .

Proof. — By Corollary 6.5.3 it is enough to show that Yγ⊗(µ−1◦det) ∼= Yγ in DIAG.
We claim that we always have

Yγ,1
∼= Yγ,1 ⊗ (µ−1 ◦ det)

as K(σ1)-representations. Since F×I is contained in the kernel of µ−1 ◦ det, it is
enough to examine the action of Π. We recall that the action of K(σ1) was defined,
by fixing a certain isomorphism φ : W(b) ∼= W(b′), and then letting Π−1 act on
W(b, b′) = W(b) ⊕W(b′) by

Π−1(v + w) = φ−1(w) + φ(v).

Let ι1 be an F×I-equivariant isomorphism

ι1 : W(b) ⊕W(b′) ∼= W(b) ⊕W(b′), v + w *−→ v − w,

then, since µ−1(det(Π−1)) = −1, we have

Π−1 ⊗ µ−1(det(Π−1))(ι1(v + w)) = φ−1(w) − φ(v) = ι1(Π−1(v + w)).

Hence W(b, b′) ∼= W(b, b′) ⊗ (µ−1 ◦ det) as K(σ1)-representations and hence Yγ,1
∼=

Yγ,1 ⊗ (µ−1 ◦ det) as K(σ1)-representations. Since F×K is contained in the kernel of
µ−1 ◦det we also have Yγ,0

∼= Yγ,0⊗ (µ−1 ◦det). However, to define an isomorphism in
DIAG we need to find ι0 : Yγ,0

∼= Yγ,0, which is compatible with ι1 via the restriction
maps. If p = q this is easy, since if χ = χs, then

Wr ⊕Wp−1−r = W(b0) ⊕W(b0 + b1)

and if χ != χs then

Wr ⊕Wp−1−r = (W(b0) ⊕W(b1)) ⊕ (W(b0) ⊕W(b1))

and the subspaces that Π ‘swaps’ come from different injective envelopes. Note, that
this is not the case if q != p. Hence, if we define

ι0 : Wr ⊕Wp−1−r
∼= Wr ⊕Wp−1−r, v + w *−→ v − w

then ι = (ι0, ι1) is an isomorphism ι : Yγ
∼= Yγ ⊗ (µ−1 ◦ det).

Lemma 6.5.6. — The representations H0(X, Iγ) and πγ are admissible.

Proof. — Proposition 6.4.5, Lemma 6.3.2.

Our main result can be summarised as follows.

Theorem 6.5.7. — Let !F be a fixed uniformiser, then there exists at least q(q−1)/2
pairwise non-isomorphic, irreducible, supersingular, admissible representations of G,
which admit a central character, such that !F acts trivially.
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Proof. — There are precisely q(q − 1)/2 orbits γ = {χ, χs}. Then the statement
follows from Theorem 6.5.2 and Corollary 6.5.6. Each πγ admits a central character,
since H0(X,Vγ) admits a central character. If λ ∈ o×F , then it acts on H0(X,Vγ) by
a scalar

χ
((

λ 0
0 λ

))
= χs

((
λ 0
0 λ

))

and !F acts trivially by construction.

If F = Qp then we may apply the results of Breuil [4].

Corollary 6.5.8. — Suppose that F = Qp, then πγ is independent up to isomor-
phism of the choices made in the construction of Yγ . Moreover, if π is an irreducible
supersingular representation of G, admitting a central character, then there exists
λ ∈ F

×
p , unique up to a sign, and a unique γ, such that

π ∼= πγ ⊗ (µλ ◦ det).

Proof. — In [4] Breuil has determined all the supersingular representations, in the
case of F = Qp. As a consequence, by [18] Theorem E.7.2, the functor of I1-invariants,
RepG → Mod -H, π *→ πI1 induces a bijection between the isomorphism classes of
irreducible supersingular representations with a central character and isomorphism
classes of supersingular right modules of H. In particular, there are precisely p(p−1)/2
isomorphism classes of supersingular representations with a central character, such
that !F acts trivially. By Theorem 6.5.7 our construction yields at least p(p − 1)/2
such representations. Hence πγ does not depend up to isomorphism on the choices
made for Yγ .

Let π be any supersingular representation of G with a central character. We may
always twist π by an unramified quasi-character, so that !F acts trivially. Hence by
above

π ∼= πγ ⊗ (µλ ◦ det)
and by Lemma 6.5.4 and Proposition 6.5.5, γ is determined uniquely and λ up to
±1.

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2004





BIBLIOGRAPHY
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