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COEFFICIENT SYSTEMS AND SUPERSINGULAR
REPRESENTATIONS OF GLy(F)

Vytautas Paskunas

Abstract. — Let F be a non-Archimedean local field with the residual characteristic p.
We construct a “good” number of smooth irreducible F,-representations of GLa(F),
which are supersingular in the sense of Barthel and Livné. If F' = Q, then results
of Breuil imply that our construction gives all the supersingular representations up
to the twist by an unramified quasi-character. We conjecture that this is true for an
arbitrary F.

Résumé (Systemes de coefficients et représentations supersinguliéres de GL2(F))

Soit F' un corps local non archimédien de caractéristique résiduelle p. Nous construi-
sons le « bon » nombre de F,-représentations lisses et irréductibles de GLa(F) qui sont
supersinguliéres au sens de Barthel et Livné. Si F' = Q,, les résultats de Breuil im-
pliquent alors que notre construction donne toutes les représentations supersinguliéres
a la torsion prés par un quasi-caractére non ramifié. Nous conjecturons que ceci reste
vrai pour F' quelconque.
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CHAPTER 1

INTRODUCTION

Recently Breuil in [4] has determined the isomorphism classes of the irreducible
smooth F-representations of GL2(Q,). This allowed him to define a “correspon-
dance semi-simple modulo p pour GL2(Q,)”. Under this correspondence the iso-
morphism classes of irreducible smooth 2-dimensional F,-representations of the Weil
group of Q, are in bijection with the isomorphism classes of “supersingular” irre-
ducible smooth Fp—representations of GL2(Q,). Moreover, it is conjecturally related
to a p-adic correspondence in [5]. The term “supersingular” was coined by Barthel and
Livné. Roughly speaking a supersingular representation is the F,-analogue of a su-
percuspidal representation over C, see Definition 1.1.1. Let F' be a non-Archimedean
local field, with a residue class field F, of the characteristic p. All the irreducible
smooth F,-representations of G = GLy(F), which are not supersingular, have been
determined by Barthel and Livné in [2] and [1], and also by Vignéras in [18], with no
restrictions on F'. However, if F' # Q, then the method of Breuil fails and relatively
little is known about the supersingular representations of G.

This paper is an attempt to shed some light on this question. We fix a uni-
formiser wp of F' and we construct ¢(¢ — 1)/2 pairwise non-isomorphic, irreducible,
supersingular, admissible (in the usual smooth sense) representations of G, which
admit a central character, such that wp acts trivially. If F' = Q, then using the
results of Breuil we may show that our construction gives all the supersingular rep-
resentations up to a twist by an unramified quasi-character. We conjecture that this
is true for arbitrary F. If p is an irreducible smooth Fp—representation of the Weil
group Wg of F, then the wild inertia subgroup of Wy acts trivially on p, since it is
pro-p and normal in Wg. This implies that there are only g(gq — 1)/2 isomorphism
classes of irreducible smooth 2-dimensional F,-representations p of the Weil group of
F such that (det p)(Fr) = 1. Here, Fr is the Frobenius automorphism corresponding
to wp via the local class field theory. So the conjecture would be true if there was a
Langlands type of correspondence.



2 CHAPTER 1. INTRODUCTION

The starting point in this theory is that every pro-p group acting smoothly on
an Fp—vector space has a non-zero invariant vector. Let I; be the unique maximal
pro-p subgroup of the standard Iwahori subgroup I of G. Given a smooth represen-
tation ™ of G the Hecke algebra ‘H = Endg (C—Indﬁ 1) acts on the [;-invariants i,
It is expected that this functor induces a bijection between the irreducible smooth
representations of G and the irreducible modules of H. This happens if FF = Q,,.
Moreover, if F' is arbitrary and 7 is an irreducible smooth representation of G, which
is not supersingular, then 7/t is an irreducible H-module. All the irreducible modules
of H that do not arise this way are called supersingular. They have been determined
by Vignéras and we give a list of them in the Definition 2.1.2. There are ¢(q¢ — 1)/2
isomorphism classes of irreducible supersingular modules of H up to a twist by an
unramified quasi-character.

Given a supersingular module M of H we construct two G-equivariant coefficient
systems V and Z on the Bruhat-Tits tree X of PGLy(F) and a morphism of G-
equivariant coefficient systems between them. Once we pass to the 0-th homology,
this induces a homomorphism of G-representations. We show that the image of this
homomorphism

7 =Im(Ho(X,V) — Hy(X,I))

is a smooth irreducible representation of G, which is supersingular, since 7/t con-
tains a supersingular module M. Moreover, we show that two non-isomorphic irre-
ducible supersingular modules give rise to non-isomorphic representations. However,
the question of determining all smooth irreducible representations w of G, such that
7t contains M, remains open.

We will describe the contents of this paper in more detail. In Section 2 we recall
the algebra structure of H and the definition of supersingular modules.

Sections 3 and 4 deal with some aspects of the Fp-representation theory of T' =
GLy(F,). In Section 3 we give two different descriptions of the irreducible F,-
representations of I, one of them due to Carter and Lusztig [7] and the other one due
to Brauer and Nesbitt [3], and a dictionary between them. Let U be the subgroup
of unipotent upper-triangular matrices in I', then U is a p-Sylow subgroup of T'. If p
is a representation of I', then the Hecke algebra Hr = Endr(Indj, 1) acts on the U-
invariants pU. This functor induces a bijection between the irreducible representations
of I and the irreducible right modules of Hr.

Every representation p of I' has an injective envelope ¢ : p — injp. By this we
mean, a representation inj p of I' and an injection ¢, such that inj p is an injective object
in the category of F,-representations of I and every non-zero I'-invariant subspace of
inj p intersects ¢(p) non-trivially. Injective envelopes are unique up to isomorphism.
In Section 4 we determine the Hr-module structure of (injp)Y, for an irreducible
representation p of I'. This is important to us, so we give two ways of doing it. If
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CHAPTER 1. INTRODUCTION 3

p = q then the dimension of (injp)Y
tary argument. In general we use the results of Jeyakumar [10], where he describes
explicitly injective envelopes of irreducible representations of SLo(F,).

Let op be the ring of integers of F, let K = GLa(or). The reduction modulo
the prime ideal of o induces a surjection K — T', let K7 be the kernel of this map.
The Hecke algebra Hx = EndK(Indf 1) is naturally a subalgebra of H. Let M be a
supersingular module of H, then the restriction of M to H is isomorphic to a direct
sum of two irreducible modules of Hg. Since K/K; = T" we may identify represen-
tations of K on which K; acts trivially with the representations of I'. This induces

is small and this enables us to give an elemen-

an identification Hx = Hp. Since the irreducible modules of Hr are in bijection
with the irreducible representations of I', there exists a unique representation p = pps
of T", such that p is isomorphic to a direct sum of two irreducible representations
of T', and pY 2 M|s,.. Let p — injp be an injective envelope of p in the category of
F,-representations of I'. We consider now both p and inj p as representations of K.
We have an exact sequence

0 — o — (inj )"

of Hx-modules. The main result of Section 4 are Propositions 4.1.9 (p = ¢), Propo-
sitions 4.2.37 and 4.2.38 (general case), which say that there exists an action of H,
extending the action of Hg, on (inj p)’t, such that the above exact sequence yields
an exact sequence

(E) 0 — M — (injp)"

of H-modules. The fact that we can extend the action and obtain (E) implies the
existence of a certain G-equivariant coefficient system Z on the tree X.

The inspiration to use coefficient systems comes from the works of Schneider and
Stuhler [13] and [14], where the authors work over the complex numbers, and Ro-
nan and Smith [12], where the F,, coefficient systems are studied for finite Chevalley
groups. We introduce coefficient systems in Section 5. Let o1 be an edge on X contain-
ing a vertex og. Since, G acts transitively on the vertices of the tree X, the category
of G-equivariant coefficient systems is equivalent to a category of diagrams DZAG.
The objects of DZAG are triples (po, p1, @), where pg is a smooth representation of
R(09p), p1 is a smooth representation of R(o1) and ¢ is a K(o1) NR(0p)-equivariant ho-
momorphism, ¢ : p1 — po, where K(op) and K(o1) are the G-stabilisers of oy and o7y.
The proof of equivalence between the two categories is the main result of Section 5.
As a corollary we obtain a nice way of passing from “local” to “global” information,
see Corollary 5.5.5, and we use this in the construction of Z.

More precisely, we start with a supersingular H-module M and find the unique
smooth representation p = pps of K, such that p is isomorphic to a direct sum of two
irreducible representations of K, and p/t = M|y, , as above. We then consider an
injective envelope p — Injp of p in the category of smooth Fp—representations of K.
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4 CHAPTER 1. INTRODUCTION

Let o1 be an edge on X fixed by I and let o¢ be a vertex fixed by K. We extend the
action of K on Injp to the action of F*K = R(0y), so that a fixed uniformiser acts
trivially. We denote this representation by Yj. Let us assume that we may extend
the action of F*I = &(o1) N 8&(0p) on Yy|px to the action of K(o1). We denote the
corresponding representation of (o) by Y;. The triple Y = (Yp, Y1, id) is an object
in a category DZ.AG, which is equivalent to the category of G-equivariant coefficient
systems on the tree X, by the main result of Section 5. So Y gives us a G-equivariant
coefficient system Z. Moreover, the restriction maps of Z are all isomorphisms. This
implies that
HO(X7I)|K = Inj p-

In particular, we have an injection

p — Injp = Ho(X,Z,)|k,
which gives us an exact sequence of vector spaces

0 — plt — Hy(X, 7).

We show in Subsection 6.4 that using (E) we may extend the action of F*TI on Yy|px
to the action of £(oy), so that the image of p/* in Ho(X,Z)"* is an H-invariant
subspace, isomorphic to M as an H-module. We let m be the G-invariant subspace
of Hyo(X,Z) generated by the image of p. In Theorem 6.5.2 we prove that 7 is
irreducible and supersingular. We also show that 7 is the socle of Hy(X,Z). The
space Ho(X,Z)" is always finite dimensional, we determine the H-module structure
in Proposition 6.4.5. The proofs rely on some general properties of injective envelopes,
which we recall in Subsection 6.2. Using injective envelopes we also give a new proof
of the criterion for admissibility of a smooth representation of G, which works in a
very general context, see Subsection 6.3.

We would like to explain the thinking behind the construction of the coefficient
system V in Subsection 6.1. Let m be a smooth representation of G, generated by
its I;-invariant vectors. We may associate to m a G-equivariant coefficient system
Fr as follows. Given a simplex o on X, we let U} be the maximal normal pro-p
subgroup of the G-stabiliser of o. With this notation U} = I and U} = K;. We
may consider the coefficient system of invariants F,, = (WU;)U, where the restriction
maps are inclusions. Since 7 is generated by its I1-invariants the natural map

Hy(X, Fr) — 7

is surjective. If we are working over the complex numbers then a theorem of Schneider
and Stuhler in [13], says that the above homomorphism is in fact an isomorphism. If
we are working over F,,, then Ho(X, F,) can be much bigger than .

The construction of V is motivated by the following question. Let M be a su-
persingular module of H and suppose that there exists a smooth irreducible Fp—
representation 7 of G such that 7/t = M. What can be said about the corresponding
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1.1. NOTATION 5

coefficient system F,? It is enough to understand the action of K on 71, This
reduces the question to the representation theory of GLo(F,). In Corollary 6.1.10 we
show that there exists an injection V — F, and hence every m as above is a quotient
of Ho(X,V). We would like to point out that although in most cases we do not know
whether such 7 exists, the coefficient system V is always well defined. Moreover, if ™
is any non-zero irreducible quotient of Hy(X,V), then we show that 7 is supersingu-
lar, since w1 contains a supersingular H-module M. This implies that Hy(X,V) is a
quotient of one of the spaces considered by Barthel and Livné in [1]. Corollary 6.1.8
implies that at least in some cases the quotient map is an isomorphism. Now the Re-
marque 4.2.6 in [4] shows that in general dim Ho(X, V)" is infinite. The irreducible
representation 7, which we construct in this paper, is a quotient of Hy(X, V), more-
over the space 7/ is finite dimensional. Hence, in contrast to the situation over C, in
general Hy(X,V) is very far away from being irreducible.

We believe that our construction of irreducible representations will work for other
groups. Our strategy could be applied most directly to the group G = GLy (F'), where
N is a prime number. If NV is prime then the maximal open, compact-mod-centre
subgroups of G are the G-stabilisers of chambers (simplices of maximal dimension)
and vertices in the Bruhat-Tits building of G and if we had the equivalent of (E)
then the construction of the coefficient system Z and our proofs would carry through.
However, in order to do this one needs to understand the Hp-module structure of
(inj p)Y, (or at least the action of B on (inj p)V, at the cost of not knowing H-module
structure of Ho(X,Z)™), where p is an irreducible F-representation of I' = GLy (F,),
B is the subgroup of upper-triangular matrices, and U is the subgroup of unipotent
upper-triangular matrices of I'. This might be quite a difficult problem, since already
for N = 2 the dimension of (injp)Y can be as big as 2" — 1, if ¢ = p".

Acknowledgements. — 1 would like to thank Michael Spiess and Thomas Zink for a
number of useful discussions and for looking after me in general. I would like to thank
Marie-France Vignéras for her encouragement and her comments on this work.

1.1. Notation

Let F' be a non-Archimedean local field, o its ring of integers, pr the maximal
ideal of op. Let p be the characteristic and let ¢ be the number of elements of the
residue class field of F. We fix a uniformiser wp of F.

Let G = GLo(F) and K = GLa(0op). Reduction modulo pr induces a surjective
homomorphism

red : K — I' = GLo(F,).
Let K be the kernel of red. Let B be the subgroup of I' of upper triangular matrices.
Then
B=HU
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6 CHAPTER 1. INTRODUCTION

where H is the subgroup of diagonal matrices and U is the subgroup of unipotent
matrices in B. It is of importance, that the order of H is prime to p and U is a
p-Sylow subgroup of I'. Let I and I; be the subgroups of K, given by

I=red Y (B), I, =red *(U).
Then [ is the Iwahori subgroup of G and [; is the unique maximal pro-p subgroup of

I. Let T be the subgroup of diagonal matrices in K, and let Ty =T N K; =T N I;.
Let N be the normaliser of T in G. We introduce some special elements of N. Let

H:(O 1) n:<0_1) 52(01)
wp0) 7 \10)° 10)°
The images of IT and ns in N/T, generate it as a group. The normaliser N acts on T'
by conjugation, and hence it acts on the group of characters of T'. This action factors
through T, so if w € N/T and x is a character of T, we will write x* for the character,
given by

XY () = x(wtw), VteT.
Let B be the group of upper—trlangular matrices in G, then B = TU where T is the
group of diagonal matrices in G and U is the group of unipotent matrices in B.

DEFINITION 1.1.1. — Let 7 be a smooth irreducible F -representation of G, such
that m admits a central character, then 7 is called supersmgular if wis not a subquo-
tient of Ind X, for any smooth quasi-character y : B — B/U T — F

All the representations considered in this paper are over Fp, unless it is stated
otherwise.
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CHAPTER 2

HECKE ALGEBRA

LEMMA 2.0.2. — Let P be a pro-p group and let ™ be a smooth non-zero representa-
tion of P, then the space n” of P-invariants is non-zero.

Proof. — We choose a non-zero vector v in 7. Let p = (PU>E be a subspace of 7
generated by P and v. Since the action of P on 7 is smooth, the stabiliser Stabp(v)
has finite index in P, hence p is finite dimensional. Let v1,...,vq be an F, basis of p.
The group P acts on p and the kernel of this action is given by

d
Kerp = [ Stabp(v;).
=1

i—
In particular, Ker p is an open subgroup of P. Hence, P/ Ker p is a finite group, whose
order is a power of p. Now,

p’P — p’P/Kerp 7& 0

since P/ Kerp is a finite p-group, see [15], §8, Proposition 26. O

Let m be a smooth representation of GG, then
7t = Homy, (1, 7) = Homg(c—Indﬁ 1,7)
by Frobenius reciprocity. Let H be the Hecke algebra
‘H = Endg (c—Indﬁ 1)

then via the above isomorphism 7/t becomes naturally a right H-module. We obtain
a functor

Repg — Mod-H, 7w+— al

where Repg, is a category of smooth F,-representations of G and Mod-H is the
category of right H-modules. Since I; is an open pro-p subgroup of G, Lemma 2.0.2
implies that 7/t = 0 if and only if 7 = 0. This functor is our basic tool. The algebra
structure of H is well understood, in a general context of split reductive groups over F,
see [17]. We recall some of the results below. Since we deal only with GLy we can
be very explicit. Our notation follows [7], where finite groups with split BN-pair are
treated.
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DEFINITION 2.0.3. — Let g € G and f € c—Indﬁ 1 we define Ty, € 'H by
(Tgf)(rg1) = > f(I192).

Iig2Chig=—'hg1

LEMMA 2.0.4. — We may write G as a disjoint union
G = U Ilnll
neN/T

of double cosets.
Proof. — This follows from the Iwahori decomposition. O

It is immediate that the definition of 7T,; depends only on the double coset I 1gl;.
The Lemma above implies that it is enough to consider T},, where n € N is a repre-
sentative of a coset in N/T7.

DEFINITION 2.0.5. — Let ¢ € C—Indg 1 be the unique function such that
Suppe =1 and ¢(u)=1, VYue€l.

LEMMA 2.0.6

(i) The function ¢ generates C—Indﬁ 1 as a G-representation.
(ii) SuppThp = Iinly and (The)(g) =1, for every g € I1nly. In particular,

Ty = Z un" .
uGIl/(Ilf‘m—llln)
(iii) The set {Thp:n € N/T1} is cm_Fp-basis of (C—Indﬁ 1),
(iv) The set {T,, : n € N/T1} is an Fp-basis of H.

Proof. — Let g € G, then Supp(¢g~t¢) = g and (g7 p)(l1g) = 1. Part (i) follows
immediately.

Let f € c—Indﬁ 1, then by examining the definition of T, one obtains that
Supp(T,.f) € I1nSupp f. Hence, Supp(T,p) C I1nly. Since T, is a G-equivariant
homomorphism and I; acts trivially on ¢, it is enough to prove that (T,,¢)(n) = 1.
Since Supp ¢ = I3, it is immediate from Definition 2.0.3 that (T,¢)(I1n) = p(I1) = 1.
The last part follows from decomposing I1nl; into right cosets and applying the
argument used in Part (i).

Let n,n’ € N, and suppose that nTy # n/T;, then Lemma 2.0.4 implies that
Iinly # Iin'I,. By Part (ii) the functions T,¢ and T, ¢ have disjoint support. This
implies that the set {T},¢o : n € N/T1} is linearly independent. Any f € (C—Indﬁ 1),
is constant on the double cosets I1nly, for n € N, and since Supp f is compact, f is
supported only on finitely many such, hence Lemma 2.0.4 and Part (ii) imply that
{Tn¢ :n € N/T1} is also a spanning set. Hence we get Part (iii).

Let ¢ € H, Part (i) implies that ¢» = 0 if and only if ¢/(¢) = 0. This observation
coupled with Part (iii) implies Part (iv). O

MEMOIRES DE LA SMF 99



CHAPTER 2. HECKE ALGEBRA 9

COROLLARY 2.0.7. — Let 7 be a smooth representation of G and let v € ©'t, then
the action of Ty, on w' is given by

UTn = Z un_lv.

uGIl/(Ilf‘mfllln)

Proof. — The isomorphism Homg(c—Indg 1,7) = 7!t is given explicitly by 1 +— ().
Let ¢ be the unique G-invariant homomorphism, such that (p) = v, then

ans=<onns><sa>=w<Tnssa>=w( 3 unsﬂ)

uGIl/(Ilﬂn—lhn)
The last equality follows from Lemma 2.0.6 (ii). Since, 1 is G-invariant, we obtain
the Lemma. O

LEMMA 2.0.8. — Let n/,n € N and suppose that n normalises I1, then
T,T, = Tn’n; T, T = Thpn.

Proof. — Lemma 2.0.6 (i) implies that it is enough to show that the homomorphisms
map ¢ to the same function. Let f € c—Indﬁ 1 then since n normalises I; we have
(Tn(f)(g9) = f(ng) and T, = n~'¢. Now the Lemma follows from Lemma 2.0.6
(ii). O

Let t € T and let h be the image of ¢ in H, via T/T) = H, we will write T}, for the

homomorphism 73.

DEFINITION 2.0.9. — Let x: H — F; be a character, we define

1
ey = T x(h)T},.
X |H|f;[()h

Let
Px = ex¥,
then ¢, is the unique function in c—Indﬁ 1 such that
Supp oy =1, ¢x(9) = x(gh), Vgel,

via the isomorphism I/I; & H.
LEMMA 2.0.10

(i) ei =ey and eyey, =0, if x # .

(ii) id = > ey, where the sum is taken over all characters x : H — F:.

(iii) eX(C—Indﬁ 1) = c-Ind{ .

Proof. — We note that H is abelian and the order of H is prime to p. Parts (i) and
(ii) follow from the orthogonality relations of characters. Lemma 2.0.6 (i) implies that
eX(C—Ind?1 1) is generated by ¢, and this implies Part (iii). O

SOCIETE MATHEMATIQUE DE FRANCE 2004



10 CHAPTER 2. HECKE ALGEBRA

COROLLARY 2.0.11. — Let 7 be a smooth representation of G, then I acts on (7'*)e,
by a character x. Moreover,
ol =@ (11)e,.

Proof. — The group I acts on w't. Since I; acts trivially and I/I; = H, which
is abelian and of order prime to p, the space 7/t decomposes into one dimensional I
invariant subspaces. Corollary 2.0.7 implies that e, cuts out the x-isotypical subspace.
The last part follows from Lemma 2.0.10 (ii). O

LEMMA 2.0.12

(i) Th,ey = exsThn,, Tmey = eysTm.

(i) If x = x* then T2 ey = =T, ey.

(iii) If x # x* then T} e = 0.
Proof. — Part (i) follows from Lemma 2.0.8. Lemma 2.0.6 (i) implies that it is
enough to calculate T,%Sexgo = Tﬁsgax. Applying Lemma 2.0.6 (ii) twice we obtain
Supp T,%S ¢y € K. Hence it is enough to do the calculation in the space Indf 1. Since

K acts trivially on this space, it is enough to do the calculation in the space Indg 1.
Then the Lemma is a special case of [7] Theorem 4.4. O

LEMMA 2.0.13. — Let m > 0 and let w = IIng then the following hold:

(1) Il’LUIl’u)mIl = Ilwm+111,

(i) Hw 'LHw™tt N LHw™l = Lw™,

(ifi) Tom = (T0)™ = (T T, )™.
Proof. — The first two parts can be checked by a direct calculation. For Part (iii) we
observe that

Supp T Twme € Iyw Supp Tymp = Lwlw™ I = Luw™ ',
where the last equality is Part (i). Part (i) and Lemma 2.0.6 (ii) imply that
(TwTwm@)(me’_l) =1
Since I; acts trivially on ¢ and all the homomorphisms are G-equivariant, we may
apply Lemma 2.0.6 (ii) again to obtain
TwTwmgO = Twm+1 @.

Lemma 2.0.6 (i) implies that T,,Tyym = Tyym+1. Induction and Lemma 2.0.8 gives us
Part (iii). O

LEMMA 2.0.14

(i) Let n € N, then there exists h € H and integers a € {0,1}, m > 0 and b € Z
such that
T, = T4(TnTn,) " THTh

where Tﬁl =Tg-1.
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2.1. SUPERSINGULAR MODULES 11

(ii) The elements T,,,, T, Ty-1 and ey, for every character x : H — F:, generate
H as an algebra.

Proof. — We note that Lemma 2.0.8 implies that T is invertible with 17 R
and T2 is central in H. Every n € N maybe written as n = I1%(Iln,)™I1°¢, where
t € T. Lemma 2.0.8 and Lemma 2.0.13(iii) imply Part (i). Hence T,_, T11, Ti1-1 and
Ty, for h € H generate H as an algebra. Lemma 2.0.8 implies that The, = x(h™1)e,
and hence Lemma 2.0.10 (ii) implies that T}, can be expressed as a linear combination
of idempotents e,. This gives us Part (ii). O

LEmMMA 2.0.15
(i) The set {eyTpp:ne N/T,x: H— F;} is an F-basis of (C—Ind?1 1),
(ii) The set{eyT, :n e N/T,x: H — F:} is an F-basis of H.

Proof. — Since e, T}, = x(h™!)ey, Lemma 2.0.6 (iii) implies that the set
{exTho:neN/T,x: H —>F:}

is a spanning set. Since the elements e, are orthogonal idempotents it is enough to
show that the set {e,Th¢ : n € N/T} is linearly independent for a fixed charac-
ter x. Lemma 2.0.6 (ii) implies that Supp e, T, = Inl. Lemma 2.0.4 implies that if
nT # n'T, then e, T, and e, T, ¢ have disjoint support and hence the set is linearly
independent. Part (ii) follows from Part (i) and Lemma 2.0.6 (i). O

2.1. Supersingular modules

All the irreducible modules of H have been determined by Vignéras in [18]. They
naturally split up into two classes.

PROPOSITION 2.1.1. — Let w be a smooth irreducible representation of G, which ad-

mits a central character. Suppose that T is not supersingular, then ©'t is an irreducible
H-module.

Proof. — See [18] E.5.1. O

The modules as above could be called non-supersingular, we are interested in all
the rest.

DEFINITION 2.1.2. — Let x : H — F: be a character, let v = {x,x*} and let

A€ F; . We define a standard supersingular module MvA to be a right H-module such
that its underlying vector space is 2 dimensional

M,i‘ = <’U1, 1)2>Fp

and the action of H is determined by the following:
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(i) If x = x® then
viey =v1, vil,, =—-v1, vilnp=w

and
vaey = V2, VT, =0, i = Avy.
(i) If x # x® then
viey =v1, vil,, =0, viTn =2
and

V2Eyxs = V2, UQTnS = 0, ’UQTH = )\1)1.

To show that these relations define an action of H requires some work, this is done
in [18].

LEMMA 2.1.3. — The modules Mv)\ are irreducible and
N o~
M7 = M3
if and only if ¥ =~ and N = \.

Proof. — The definition immediately gives that Mv)\ does not have a 1 dimensional

submodule, hence it is irreducible. If ¥’ : H — F; is a character, such that x’ & ~
then

M,i‘ex/ =0.

Hence, v = +'. The element T3 acts on Mi‘ by a scalar A. Hence, A = \. O
The following Proposition explains why Mi‘ are called supersingular.

PROPOSITION 2.1.4. — Let M be an irreducible H module, such that M % 7't for
any non-supersingular irreducible representation m, then

Y )\
M = M7
for some v and .
Proof. — See [18] C.2 and E.5.1. O
COROLLARY 2.1.5. — Let m be a smooth irreducible representation of G, admitting

a central character. Suppose that ' contains a submodule isomorphic to MA)/‘ for
some v and X\, then m is supersingular.

We will also need to consider the following extension of supersingular modules.
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DEFINITION 2.1.6. — Let x : H — F; be a character, such that x # x*, let v =
{x,x*} and let A € F, . Let

HN =H/(T2 — \H
then we define a right H-module L$ to be
L} = exH ex(TuTn, — To, T)H*.

The definition seems to be asymmetric in x and x°, however the multiplication
from the left by 711 induces an isomorphism
exH Jex(TuT,, — T, Tn)H* 2 ey M ey (TnTn, — T, Tr)H*,

since T}y is a unit in H*.

LEMMA 2.1.7. — The images of ey, eI, eIy, and e, T, T in Lﬁ form an F,-
basis of LQ,

Proof. — This follows from Lemma 2.0.15 (ii) and Lemma 2.0.12 (ii). O
LEMMA 2.1.8. — There exists a short exact sequence

O—>M,;\—>L$—>M,i‘—>0
of H-modules.
Proof. — Let v1 be the image of e, T}, in Lfr and let vo be be image of e, T}, Tt in
LQ. The subspace (v, 1)2>fp is stable under the action of Tj,,, T11 and e/, for every
X :H — F:. Hence, by Lemma 2.0.14 (ii) the subspace is stable under the action

of H. From Lemma 2.0.12 (ii) and Definition 2.1.2 (ii) it follows that (vy, v2>§p = M.
An easy check shows that L} /M2 = M. O

LEMMA 2.1.9. — Let (m, V) be a smooth representation of G and let £ € F;, Let e
be an unramified quasi-character:

e FX Y g g
where valp is the valuation of F. Suppose that m'* contains Mﬁ;\, where v = {x, x°}

and let V' be the underlying vector space of M? in V. If we consider the representation
(m ® pe odet, V) of G, then the action of H on V is isomorphic to MA)/‘E_Q,
Proof. — Let
V= <1)1, v2>fp
as in Definition 2.1.2. Since p¢ is unramified, Corollary 2.0.7 implies that the action

of T,,, and the idempotents e, on V does not change. Lemma 2.0.14 (ii) implies that
it is enough to check how 11 acts. Since det Il = —wp, twisting by pe o det gives us

0T =T 1o = §_1v2 and voT = I lug = §_1/\v1.

Once we replace v1 by v; the isomorphism follows from Definition 2.1.2. O
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14 CHAPTER 2. HECKE ALGEBRA

Since, by twisting by an unramified character we may vary A as we wish, we might
as well work with A = 1.

DEFINITION 2.1.10. — Let v = {x, x*} then we define H-modules
My=M and L,=L..

2.2. Restriction to Hg
Let Hx = End K(Indf 1). The natural isomorphism of K representations
Indgl ~{fe c—Indﬁ 1:SuppfC K}
gives an embedding of algebras
Hrx — Hompg (Indf 1, c—Indﬁ 1) = Homg (C—Indﬁ 1, C—Indﬁ 1) =H.

As an algebra Hy is generated by T;,, and e,, for all characters x.

DEFINITION 2.2.1. — Let x : H — F: be a character. Let Jy() be a set, such that
Jo(x) = @ if x # x*, and Jo(x) = {s}, if x = x°. Let J be a subset of Jy(x), we define
M, ; to be a right Hx-module, whose underlying vector space is one dimensional,
M, ;= <v>fp and the action of Hg is determined by the following:

vey =,
vT,, =0 ifseJorsd& Jo(x), vl =-v, ifs&Jandse Jy(x).
Given x and J as above, we will denote

J = Jo(O\.

LEMMA 2.2.2. — Let x: H — F; be a character and let v = {x, x*}, then
M’Y|HK =My, ;@ st,j
as Hy-modules, where J is a subset of Jo(x). Moreover, if x # x°, then
Ly |#c = (Indf x & Indf x*)"
as H g -modules.

Proof. — The first isomorphism follows directly from Definition 2.1.2. Since Jy(x)
has at most two subsets, it doesn’t matter which subset we take. For the second
isomorphism we observe that the space (IndX y)™ is two dimensional, with the basis
{@x, Tn,px=}. Moreover, I acts on the basis vectors by characters y and x® respec-
tively. Now

OxTn, = Z uns_lgax = eX< Z uns_lgo) =eTh, o =Ty exsp =T, pys
u€l, /K u€el /K

MEMOIRES DE LA SMF 99



2.2. RESTRICTION TO Hg 15

and
(Tnypxe )T, = > ung Ty eyetp = TnSeXS< > ung lso> =exT2p=0
uwely /Ky uel /K,
and Lemma 2.1.7 allows us to define the obvious isomorphism on the basis. O
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CHAPTER 3

IRREDUCIBLE REPRESENTATIONS OF GLy(F,)

3.1. Carter and Lusztig theory

In [7] Carter and Lusztig have constructed all irreducible F,-representations of a
finite group I', which has a ’split BN-pair of characteristic p’. Since GLy(F,) is a
special case of this, we will recall their results. Let I' be a finite group with a BN-pair
(I,B,N,S). Let H= BN N, then H is normal in N, and S is the set of Coxeter
generators of W = N/H. We additionally require that B = HU, where U is a normal
subgroup of B, which is a p-group, and H is abelian of order prime to p. Moreover,
we assume that H = N,enyB™.

THEOREM 3.1.1 ([7]). — Let p be an irreducible representation of T' then

(i) the space of U invariants p¥ is one dimensional;

(i) suppose that the action of B on pV is given by a character x : H — F;, via
B — B/U~H andlet J ={s€ S:s.pY = pU} then the pair (x,J) determines p
up to an isomorphism;

(iii) conversely, given a character x : H — F:, let Jo(x) ={s€ S:x*=x} and
let J be a subset of Jo(x) then there exists an irreducible representation py,; of I' with
the pair (x,J) as above.

Proof. — This is [7] Corollary 7.5, written out in detail, see also [11] Theorem 3.9
and [8] Theorem 4.3. and [6] §3.4. O

Let Hr = Endp(IndE 1). We would like to rephrase Theorem 3.1.1 in terms of
‘Hr-modules. For each s € S we may choose a representative ny € N. Moreover,
according to [7] Lemma 2.2, we can choose ng in a nice way. The obvious equivalent
of Definition 2.0.3 gives an endomorphism 7,, € Hr for each n € N. Definition 2.0.9
for each character y : H — F; gives an idempotent e, € Hr.

DEFINITION 3.1.2. — Let x : H — F; be a character, and let J be a subset of
Jo(x) we define M, s to be a right Hr-module, whose underlying vector space is one



18 CHAPTER 3. IRREDUCIBLE REPRESENTATIONS OF GL2(F,)

dimensional, M, ;= (v)fp and the action of Hr is determined by the following:

vey =
and for every s € S we have
0 ifsed,
vT,, =4 —vifs e Jy(x), s € J,
COROLLARY 3.1.3. — The functor of U invariants

Repr — Mod-Hr, p+—— p¥

induces a bijection between the irreducible representations of I' and the irreducible
right Hr-modules. Moreover, if an irreducible representation py,j corresponds to the
pair (x, J), in the sense of Theorem 3.1.1 (i), then

U
px,J = MXyJ
as an Hr-module.

Proof. — See, [6] Theorem 3.32. O

REMARK 3.1.4. — Ideally, we would like to have an analogue of the Corollary above
for G or more generally for any group of F-points of a reductive group, split over F'.

Carter and Lusztig, in [7] construct all the irreducible representations p,, s in a
very elegant way. For each pair (x,J) they define a I'-equivariant homomorphism
@1{}0 : Ind}y x — Ind} yo
which depends on the geometry of the Coxeter group W, so that
Py,s = Im @{]uo

where wy is the unique element of maximal length in W.

From now onwards we specialise to our situation, so that I' = GLy(F,), B is
the subgroup of upper-triangular matrices, U is the subgroup of unipotent upper-
triangular matrices, H is the diagonal matrices, N is the normaliser of H in I', that
is the monomial matrices and W = N/H is isomorphic to the symmetric group on

two letters, W = {1, s}. Let
(01
T\ 0

be a fixed representative of s in IN. In particular, s is the element of the maximal
length in W and also the single Coxeter generator, so that S = {s}. Hence, if
x:H— F;, then either Jo(x) = @ or Jo(x) = S. Since

K/K, =T, I/K1~B, L/Ki=2U
to ease the notation, we will often identify the spaces

{f:T —F,: flug) = f(9), Vg €T, Vue U}
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3.1. CARTER AND LUSZTIG THEORY 19

and

{fe C—Indﬁ 1:SuppfC K}
in the natural way. In particular, we will use the same notation for the elements of
Hyx and Hr and we note that the Definitions 2.2.1 and 3.1.2 coincide.

ProprosITION 3.1.5. — For each character x : H — F:,

such that x = x*, let
Py,s =Im ((1 +Tn,): Indg X — Indg X)
and let
Py.o = Im (Tns : Indg X — Indg X)
then the representations py,s and py o are irreducible. Moreover,
P;],S =((1+ Tns)‘»@x>§p = Mys and Pg,z = <Tn590x>fp = Myo

as ‘Hr-modules. For each character x : H — T, such that X # X%, let

P )
pyo =1Im (T, : Indy y — Indg x°)
then the representation py o is irreducible. Moreover,
U ~J
Px.o = <Tns¢x>ﬁ, =My
as an Hr-module. Further, these representations are pairwise mon-isomorphic, and

every irreducible representation of I' is isomorphic to py, .y, for some character x and
a subset J of Jo(x).

Proof. — This is a special case of [7] Theorem 7.1 and Corollary 7.5. The isomor-

phisms of Hr-modules are given by the Corollary 3.1.3. O
REMARK 3.1.6. — Although we do not use this, we note that Frobenius reciprocity
gives us

e-Ind% py.o = T, (c-Ind$ x) < c-Ind§ x*
and if x = x° then

e-Ind% py.s = (14 T, ) (c-Ind¥ x) < c-Ind¢ .
Using this, one can relate the central elements of Vignéras in [18] to the ‘standard ’
endomorphisms 7, of Barthel and Livné in [1].

LEMMA 3.1.7. — Let x: H — F; be a character, such that x = x°*. Then the homo-
morphisms e, (1 + T, )ey and —e, Ty, e, are orthogonal idempotents. In particular,

Indp X & py,o © py.s-

Moreover, let ' : Fy — F

» be a character such that x = x' o det, then

Prx.s Zx odet and pyo =2 St@x odet

where St is the Steinberg representation.
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Proof. — Since x = x* we have
exTn, =Ty, ey and eXT,i = —eyTy,.

So the elements above are orthogonal idempotents as claimed. By Proposition 3.1.5,
the summands they split off are p, g and py,o.

Since x = x*, the character y must factor through the determinant. So x extends
to a character of I" and hence

Ind% x = Ind5 1 ® ¥’ o det.

So we may assume that x is the trivial character. The Bruhat decomposition says that
I' = BsB U B and hence by Theorem 3.1.1 (ii) p1,s = 1, the trivial representations
of G. This implies that p; & is the Steinberg representation. O

COROLLARY 3.1.8. — Let x : H — F; be a character, such that x = x®. Let p be
any representation of T, such that for some v € pU we have

<U>Fp = My,y
as an Hr-module. Then
<FU>E, = Px.d

as a I'-representation.

Proof. — Since v is fixed by U there exists a homomorphism ¢ € Homp (Indg 1,p)
such that ¥(¢) = v. The isomorphism of Hp-modules implies that

v =vey = P(exp) = Y(py).
Hence, H acts on v by a character y and
¥(Indgy 1) = ¢(ex (Indg; 1)) = (Indjs x).
If J = 2 then
Y((1+Tn)px) = v(1 + Ty, )ey = 0.
Hence, py, s is contained in the kernel of 1. By Lemma 3.1.7
Im?/’ = Px,o-

Since, the image is irreducible and contains v we get the result. The proof for J = S
is analogous. O

The Corollary has a nice application, which complements [18] E.7.1.

COROLLARY 3.1.9. — Let w be a smooth representation of G and suppose that there
exists a non-zero vector v € 't such that

vep =v, VI, =0, vIg=v

then G acts trivially on v.

MEMOIRES DE LA SMF 99



3.2. ALTERNATIVE DESCRIPTION OF IRREDUCIBLE REPRESENTATIONS 21

Proof. — As an Hy module
(v)g, = Mas.

By Corollary 3.1.8 K acts trivially on v. On the other hand
v =0T =1 .

Iwahori decomposition implies that II and K generate G as a group. Hence G acts
trivially on v. O

REMARK 3.1.10. — There is a version of this twisted by a character. This example
will lead us to better things. See Remark 5.5.6.

LEmMA 3.1.11. — Let x : H — F; be a character, let J be a subset of Jo(x), and
let J = Jo(x)\J. The sequence of Hr-modules

0 — My.y — (Indly x*)7 — M. 5 — 0
is exact. Moreover, it splits if and only if x = x°.

Proof. — The space (Ind; x*)V is two dimensional, with the basis {Ty,©y, @y }-

If x = x° then e, (1 + T, )e, and —e, T}, e, are orthogonal idempotents, which
split the sequence.

If x # x° then Jo(x) = J = @ and for every A, u € F,, we have

(AT, Py + ﬂ%axs)ex = AT, ¢x (AT, Yx + N@xs)exs = HPxs
and
(AT, Py + WPXS)TnS = L, ox-

Hence M, o is the only proper submodule, so the sequence cannot split. O

3.2. Alternative description of irreducible representations

Let V4 r be an F' vector space of homogeneous polynomials in two variables X
and Y of the degree d. The group K acts on Vg p via

<a b) (X97Y) = (aX + cY)? ™ (bX +dY).

cd
m; = (d) Xy
i

where (‘f) denotes the binomial coefficient. Vectors m;, for 0 < i < d, form a basis of
Var. Let Vg, be the op-lattice in Vy p spanned by the m;, for 0 < i < d. An easy

For 0 <7 < d, let

check shows that Vg ,, is K invariant. Let

Var, = Viaor Qop 0F/PF.
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The vectors m; ® 1, for 0 < i < d, form an Fy-basis of Vg, . The subgroup K
acts trivially on Vg , so we consider Vg, as a representation of I". Let Fr be the
automorphism of I'; given by

Fr: (¢ b — ab b
“\ed cPdr)’
Let p be a representation of I'. We will denote by pf* the representation of I' given

by
P (g) = p(Fr(g)).

THEOREM 3.2.1. — Let I' = GLy(Fy) and suppose that ¢ = p". The isomorphism
classes of irreducible Fp—representations of T' are parameterised by pairs (a,r), where
—a is an integer 1 <a < qg—1 and
— 7 is an ordered n-tuple r = (r9,71,...,7n—1), where 0 < r; < p—1, for every i.
Moreover, the irreducible representations of I' can be realized over Fy and the irre-
ducible representation corresponding to (a,r) is given by

Ver, ® (det)* = Vo p, @ VIR @ @ V% @@ VI L @ (det)”.

Proof. — This is shown in [3], see also [1] Proposition 1 and [18] Ap. 6. We remark
that since (Z) is a unit in F if » < p — 1, our spaces really coincide with the ones
considered in [1]. O

We fix some embedding ¢ : F;, — F, and we will assume that every character
x: H— F; factors through ¢. Once we have done that, we will omit ¢ from our
notation. We will denote

V.5, = VrF, ©F, F,.

We need a dictionary between the two descriptions.

PRrOPOSITION 3.2.2. — Let x : H — F: and let a be the unique integer, such that
1<a<qg—1and

X((53)) =" VreF;
and let r be the unique integer, such that 1 <r < q—1 and

((3,5)) =¥ vaeF;.
Suppose that r # q— 1, and let r = (rg,...,rn—1) be the digits of a p-adic expansion
of r

r=ro+rptcdrap" Tt

then x # x° and py o corresponds to the pair (a,r). More precisely
pro 2V, 5, @ @V L @ (det)?,

T Tn—1,Fp

Suppose that r = q—1, then x = x*,
pro =V, g5 ® - ® Vij’{}p ® (det)® 2 St @(det)®
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and
Prs = Vor, @ @Vys @ (det)” = (det)”

where St denotes the Steinberg representation.

Proof. — Every character x : H — F: is of the form

X:(AO)»—>)\CMCI
0p

for some integers ¢ and d. Moreover, y = x* if and only if
c—d=0 (modgq-—1).
The integers a and r are uniquely determined by the congruences
d=a (modg—1) and c¢—d=r (modq—1).

By Theorem 3.1.1 if p is an irreducible representation of I', then dim pV = 1, and
by Corollary 3.1.3 the irreducible representations of I" correspond to the irreducible
modules of the Hecke algebra Hp. Since we have two complete lists of irreducible
representations, it is enough to match up the corresponding irreducible modules. We
recall that
pﬁf,J = My,
as Hpr-modules.
We observe that the action of U on Vdfp fixes the vector mo ® 1. Moreover,

<>\0>m0®1—)\dm0®1.
0 p

Let (a,r) be any pair parameterising an irreducible representation of I' and let

r=ro+rip+-+rp_1p"h

By picking such (mo ® 1),, in every component of the tensor product we obtain a

non-zero vector 1
(mo®@1)p = (Mo ® 1)y, @+ ® (Mo @ 1)y, _,

fixed by U. The vector (mg ® 1), spans the space of U invariants, since it is one

dimensional. Moreover, since the action on the components of the tensor product is

twisted by Fr we obtain

A0
(0 ,U) (mo ® 1)r = (A)*A" (Mo @ 1)y
Suppose that we start with an arbitrary character x : H — F; and obtain the
integers a and r as in the statement of the proposition.
If r # ¢ — 1, then by above x # x®. Let r be the n-tuple corresponding to r. Since,
X # x°, the module M, g is the only irreducible module of Hr, which is not killed by
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the idempotent e,. Let (mg ® 1), be the vector constructed above. Since, H acts on
(mp ® 1), via the character y, we obtain

Myo = (V5@ @V & @ (det))”

T Tn—1,Fp
as Hr-modules and that implies the isomorphism between representations.

If r = g —1, then x = x°, and the only Hr-modules, which are not killed by e,,
are My s and My g. We observe that Vi, g is just the trivial representation. Let 0 =
(0,...,0), then the representation corresponding to the pair (a,0) is just 1 ® (det)?,
which is isomorphic to py, s, by Proposition 3.1.7. The only case left isr =p -1 =
(p—1,...,p—1), hence

Myo = (V, y 5, @ @ V" o @ (det)”)”
as Hr-modules, since the module M, s is already taken. This implies that
Pxe =V 17, © (det)* = St ®(det)”
where the last isomorphism follows from Proposition 3.1.7. O
COROLLARY 3.2.3. — Suppose that ¢ = p" and the representation py j corresponds

to the pair (a,7). Let r = 1o +rmip+ -+ 1, 1p" "' and let J = Jo(x)\J, where
Jo(x) ={s€S:x*=x}. Then

== — - Fr ! a+r
o7 Z Vi, @OV 5 © (det)™ T

Proof. — If r =0 or r = g—1, then r is of a special form and the isomorphism follows
from Proposition 3.2.2.
If r #0 and r # ¢ — 1, we observe that

D) = (2 ((B3) = A VAeF;
and
08 = (' ) =A vaeE;.
The claim follows from Proposition 3.2.2. o
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CHAPTER 4

PRINCIPAL INDECOMPOSABLE REPRESENTATIONS

We will recall some facts from the modular representation theory of finite groups.
Let I' be any finite group. We denote by Repp the category of Fp—representations of
I' and by Irrpr the set of isomorphism classes of irreducible representations in Repr.
We note that Repr is equivalent to the module category of the ring F,[I'].

PROPOSITION 4.0.4. — A representation inj is an injective object in Repr if and only
if it is a projective object in Repp.

The isomorphism classes of indecomposable injective (and hence projective) objects
in Repp are parameterised by Irrr.

More precisely, if inj is indecomposable and injective, then the mazximal semi-simple
submodule soc(inj) and the mazimal semi-simple quotient inj / rad(inj) are both irre-
ducible. Moreover,

soc(inj) 2 inj / rad(inj).

Conversely, given p € Irrp, there exists a unique up to isomorphism indecomposable,
ingjective object inj p in Repr, such that

p = soc(inj p).
Proof. — See [15], Exercises 14.1 and 14.6. O

We will call indecomposable representations of I', which are injective objects in
Repr, principal indecomposable representations.

REMARK 4.0.5. — We note that a monomorphism p < inj p is an injective envelope
of p in Repp.
COROLLARY 4.0.6. — We have the following decomposition:

Fplll= @ (dimp)injp.

pElrrp
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Proof. — Since Fp [['] is an injective and projective object it must decompose into a
direct sum of indecomposable injective objects. Since

dim Homr (p, F,[I']) = dim Homy}(p, 1) = dim p

the representation inj p occurs in the decomposition with the multiplicity dim p. O

PROPOSITION 4.0.7. — Let U be a p-Sylow subgroup of I'. Then a representation p
is an injective object in Repr if and only if p|lu is an injective object in Repy;.

Proof. — This follows easily from [15], §14.4, Lemma 20. O

PROPOSITION 4.0.8. — Suppose that U is a p-group, then the only irreducible repre-
sentation is 1 and hence the only principal indecomposable representation is Fp [U].

Proof. — The first part is [15], §8 , Proposition 26, the last part follows from Corol-
lary 4.0.6. O

COROLLARY 4.0.9. — Let inj be an injective object in Repp and let U be a p-Sylow
subgroup of T', then

diminj = dim inj" |U].

Proof. — The restriction inj |y is an injective object in Repy;. By the above Propo-
sition
inj |p= mF,[U].

The multiplicity m is given by: m = dim Homg (1, inj) = diminjY. O

In the rest of the section I' = GL2(F,) and U is the subgroup of unipotent upper
triangular matrices. Given p € Irrr we are going to compute (injp)Y as an Hr-
module. Once we know the modules we are going to show that if we consider inj py s
and inj Py 7 as representations of K, then the action of Hx on

(inj py,s & inj p,. 7)"

extends to the action of H, so that if x = x® then it is isomorphic to a direct sum of
supersingular modules and if x # x® then it is isomorphic to a direct sum of L. and
supersingular modules. See Propositions 4.2.37 and 4.2.38 for the precise statement.
This calculation, becomes of importance in Section 6.4. Although, the general case
includes the case ¢ = p, if ¢ = p we give a different, easier way of doing this. When
q = p, the main result is Proposition 4.1.9.
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4.1. The case ¢ =p
We start off with no assumption on q.
LEMMA 4.1.1. — Suppose that x # x*, then there exists an exract sequence
0 — Ind x* — inj oy

of I'-representations.

Proof. — Since inj py,» is an injective module, there exists 1) such that the diagram
0 Px. 2 Ind} x*
inj py.z

commutes. If Ker¢ # 0, then (Ker)V is a non-zero proper submodule of (Indl;g Y

not containing M, &. By Lemma 3.1.11 this cannot happen. o
COROLLARY 4.1.2. — Suppose that x # x° then
diminj py.& > 2q.
Proof. — Corollary 4.0.9 implies that
diminj p, & = dim(inj py )Y |U].

The order of U is ¢ and since by Lemma 4.1.1 Indl;g Xx° is a subspace of injpy gz, we
obtain
dim(inj py )7 = 2. O

LEMMA 4.1.3. — Suppose that ¢ = p and x # x° then the sequence of I representa-
tions
0— pxo — Ind% X* — pxoe — 0

18 exact.

REMARK 4.1.4. — This fails if ¢ # p.

Proof. — The argument below is taken from [18] Ap. 6. We know that
Pxs,o = T, (Ind% x*)

and py, g is isomorphic to the subspace of Indg x° generated by T}, ¢,. Since, bes Oy =
0 we always have
Px.o < KerT, .

If ¢ = p, then by Proposition 3.2.2 and Corollary 3.2.3 there exists an integer r such
that

dimpy g +dimpye g =(r+1)+(p—1-7r+1)=p+1=dimIndy x°.

Hence the sequence is exact. O
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COROLLARY 4.1.5. — Suppose that ¢ = p and let x : H — F; be a character, such
that x # x*. Let p be any representation of I', such that for some v € pY

<’U>fp = Myo
as an Hr-module. Then

<FU>FP = Px.o

as a I'-representation.
REMARK 4.1.6. — This fails if p # ¢, by Remark 4.1.4, it is enough to look at
Indp X/ pye o

Proof. — Since v is fixed by U, there exists a homomorphism 1 € Homp (Indg 1,p)
such that ¢ (¢) = v. The isomorphism of Hp-modules implies that

v =vey = Y(exp) = P(ox)-
Hence H acts on v by a character y and
Y(Indpy 1) = ey (Indg; 1)) = ¢(Indj x).
Now
Y(Th,px=) = VT, e = 0.
Hence, pys & is contained in the kernel of ¢. By Lemma 4.1.3
Imw = Px,2-

Since, the image is irreducible and contains v we get the result. O
LEMMA 4.1.7. — Suppose that ¢ = p. If x = x° then
diminj py,; = p.
If x # x® then
diminj py,& = 2p.
Proof. — Corollary 4.0.6 implies that

dimF,[[] = Z (dim p)(dim inj p)
pElrrr
= Z (dim py, &) (diminj py &) + (dim py g)(dim inj py. 5)
XX=XE

—|—§ Z (dim py, o )(diminj py o) + (dim py= o) (diminj pys o).
XoXFX®

If x = x® then Corollary 4.0.9 implies that
diminj py,5 > p.
If x # x® then Corollary 4.1.2 implies that

diminj py,& = 2p.
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Lemma 4.1.3 and Lemma 3.1.7 imply that
dimpy,j +dimp, . 7 =p+1.
We put these inequalities together and we obtain
dimF,[] > > (p+1)p = dimF,[I]
X

So all the inequalities must be equalities and we obtain the lemma. O
COROLLARY 4.1.8. — Suppose that g = p. If x = x° then
(L' (inj PX7J)U>E, = Px.J-
In particular,
(inj PX,J)U = My

as an Hr-module.

If x # x° then
(D(inj py,o)" ), = Indp x°.
In particular,
(inj py7)” = (Indp x*)”

as an Hr-module.
Proof. — If x = x® then we have an exact sequence
0 — py,g — injpy,J

of I'-representations. Since, by Lemma 4.1.7

dim ng = dim(inj py, 7)Y
we obtain the Corollary. Similarly, if x # x® then by Lemma 4.1.1 there exists an
exact sequence

0— Indg X° — injpy,o
of I'-representations. Since, by Lemma 4.1.7

dim(Ind; x*)Y = dim(inj py »)Y

we obtain the Corollary. O

PROPOSITION 4.1.9. — Suppose that ¢ = p, let x : H — F; be a character and
let v ={x,x*}. We consider representations inj py,y and inj Py TGS Tepresentations
of K, via
K — K/K; ~T.
If x = X* then the action of Hy on (inj py.z @ inj py.s)* extends to the action of H
so that
(inj py.o © inj py,s)" =2 M,
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If x # x° then the action of Hx on (inj py,o @ inj py=, o)1t extends to the action of H
so that

(inj py.o @ inj pys o)™ = L.
Proof. — Suppose that x = x* then Corollary 4.1.8 says that
(inj py,e @ inj pxﬂ)h = <Tns§0x>Fp ®((1+ Tn.;)‘Px>Fp = My,o ® My,s = M|y,

as ‘H-modules, where the last isomorphism follows from Lemma 2.2.2. It is enough
to define the action of T;. If we let

(Toso )T = (14T )y and (14 T, )ox) T = T, o
then this gives us the required action. Suppose that x # x*, then Corollary 4.1.8 and
Lemma 2.2.2 imply that
(inj py,o @ inj PXS,G)II = (Ind? X @ Ind? X)Il 2 Loyl

as Hg-modules. The space (Indf x*)'* has basis {T,, ¢y, ¢y} and the space
(Ind¥ )™t has basis {T},.@ys, @y} It is enough to define the action of Tiy on the
basis. If we set

OxTn = @ys,  OxsTn = oy
and
(Tns @x)TH =T, oxs (Tns ‘PXS)TH = Th,ox

then this gives us the required action. O

4.2. The general case

Our counting argument breaks down if p # ¢. The strategy is to restrict to SLa(Fy),
where the principal indecomposable representations have been worked out by Jeyaku-
mar in [10]. Let

I"=SLy(F,), B'=BnI', H =HNT".
We note that U is a subgroup of IV and ns € T".

4.2.1. Modular representations of SLy(F,). — The irreducible Fp—representa—
tions of SLo(F,) were determined by Brauer and Nesbitt.

THEOREM 4.2.1 ([3]). — Suppose that ¢ = p™. The isomorphism classes of irre-
ducible Fp—representations of TV are parameterised by n-tuples v = (ro,...,"n-1),
where 0 < r; < p—1, for every i. Moreover, every irreducible representation can be
realized over Fy and the representation corresponding to an n-tuple r is given by

Fr Fr? Fr™
Vr,Fq = V;"O,Fq & erl,Fq K V;",-,Fq Q- ® ‘/""'rtflqu

where Vi, p, are the spaces of Section 3.2.
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COROLLARY 4.2.2. — Let p be an irreducible representation of T', then p |p/ is irre-
ducible. Moreover, given an irreducible representation p' of T' there exist, precisely
q — 1 isomorphism classes of irreducible representations of T, given by p @ (det)?,
where 0 < a < qg— 1, such that

(p @ (det)®) [ p'.
Proof. — This is immediate from Theorem 4.2.1 and Theorem 3.2.1. O

REMARK 4.2.3. — By counting dimensions, we may show that

(inj(V,. g, @ (det)?)) [m=inj V, g,

I

as I''-representations. However, we will obtain this directly later on.

We recall the construction of the indecomposable principal representations for
SLy(F,) as it is done in [10]. The idea is to go from the Lie algebra to the uni-
versal enveloping algebra and then to the group.

Let g be the Lie algebra of SLy(C). It has a C-basis

= (on) 260 o= (09)

Let U be the universal enveloping algebra of g. Let Uz be a subring of I/ generated
by the elements

ek fk

k7 kD
over Z. The ring Uy has a Z-basis, which is also a C-basis for U. Let d be a non-
negative integer and let V; be the irreducible module of g of highest weight d. The
space V; has a C-basis of weight vectors m;, for 0 < i < d, and the action of g is given
by

VkeZt

emo=0, em;y=(d—i+1)m;—1, 1

fmd = 0, fmz = (Z + 1)mi+1, 0 <
hmi = (d — 2i)mi, 0 < ) < d.

~

Let Vy 7z be a Z-lattice in Vg spanned by m;, for 0 <7 < d. We adopt the convention
that m; =0 if ¢ < 0 or 7 > d. Since,

e (1R
BT\ d—i ik
fk

m; = Z—’jk mitk
k! g

for all k € ZT, the lattice V7 is a Uz-module. Let

and

vd,Fq =Vaz®z F,.
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For every A € Fy we define z(X), y(A) € End(‘N/d,Fq), by

z(N®1) = ZA’“(Z—TU ® 1)

k>0

and P
yNwe1) =3 A%HU ® 1).

k>0
Since e and f act nilpotently on Vg this sum is well defined. There exists a unique
homomorphism

SLy(F,) — End(Vyr,)

such that

(é ?) — 2(\) and <i 2) sy,

This gives us a representation of I'V. To ease the notation, we denote
mir, =m; ® L.

We will refer to {m;r, : 0 <i < d} as the standard basis of ‘N/d,Fq. The action of I

is determined by
1A N A
(0 1> miF, = Z <d— z> ' mg,F,,

k=0
10 A
2 mi7Fq:Z i A mgF,-
k=i
This gives
A0 iy
(0 )\_1> mip, = A,

At first we resolve the ambiguities in our notation.

LEMMA 4.2.4. — Let Vyx, be a representation of I' constructed in Section 3.2. Then
Var,|r = Vd,Fq~

Proof. — The isomorphism is given by
m; ®1—m;F,.

An easy check shows that the isomorphism respects the action of matrices ((1) {‘) and
(}\ (1)), for all A € F,. Since, these matrices generate I'' we are done. O

The Lemma above is the reason, why we wanted to work over F,. We drop the
tilde from our notation and go to F,,.

For each r, such that 0 < r < p—1, Jeyakumar finds a I'-invariant subspace R, of
the representation ‘/;)7177",?}, ® fol,fp’ such that dim R, = 2p. Let R,_1 = folfpv
then dim R,_1 = p. The main result of [10] can be stated as follows.
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THEOREM 4.2.5 ([10]). — Suppose that ¢ = p™. Letr = (ro,...,rn—1) be an n-tuple,
such that 0 < r; < p—1, for every i. Let

R, =R,®R"®---@R"™ .
If r # 0, then
R, ¥ inj Vrfp'
And
Ro=injVoz ®@injV, ;5
wherep—1=(p—1,...,p—1) and 0 = (0,...,0).

REMARK 4.2.6. — Our indices differ slightly from [10].

4.2.2. Going from SLy(F,) to GLy(F,;). — We will recall how the subspaces R,
are constructed and show that they are in fact I'-invariant. That this should be the
case is indicated by Remark 4.2.3. The twisted tensor product will give us principal
indecomposable representations of I'. Since the spaces R, have a rather concrete
description, this will enable us to work out the corresponding Hr-modules.

LEMMA 4.2.7. — Let V be a representation of I and let W be a T -invariant subspace
of V. If W is invariant under the action of H, then W is I'-invariant.

Proof. — Let v € W and g € I'. We may write g = ¢’¢1, for some ¢’ € IV and g; € H.
Then

gv = ¢'(g1v) € W.
Hence W is I'-invariant. O
Let  be an integer such that 0 < r < p—1. Let {v;}, for 0 <i < p—1—r be the
standard basis of V};qfrfp and let {w,}, for 0 < j < p — 1 be the standard basis of
fol,Fp'

DEFINITION 4.2.8. — For 0 < i < 2p — r — 2, we define vectors F; in Vp—l—rfp ®

fol,Fp’ by
E;, = Z Ve X wy.
k-+l=i
It is convenient to extend the indexing set to Z by setting E; = 0, if ¢ < 0 or
1>2p—2p—r.

LEMMA 4.2.9. — The sequence of I'-representations
0— ‘/Qp—r—Q,fp - V;o—l—r,fp ® V;o—l,fp
m;F, — L

15 exact.
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Proof. — If r = p — 1 then this is true trivially. If r # p — 1 then the map is I"’-
equivariant by [10] Lemma 4.2. So by Lemma 4.2.7 it is enough to show that it is
H-equivariant. Since

A o
(0 2) mivﬁp = )\QP_T_Q_iutmi,ﬁp

and

A0 —r—2—1,1
<0u>E’:A2p ek

we are done. O
DEFINITION 4.2.10 ([10]). — Let r be an integer, such that 0 < r < p — 1. For
0<i<p—r—1,let a; be integers defined by the following relation:

ap=0 and a1 =(p—r—2)!

and A
(=D)*(r+1)...(r+14)
p—r—2)...(p—r—i—-1)

Let Z be a vector in V;;flfr,fp ® folfp given by

Aiy1 = Q5 + (a1 — ao).

Z = ao(vo ® Wp—r—1) + a1(v1 ® Wp—r—2) + -+ + ap—r_1(Vp—r—1 ® W),
and let R, be a subspace of V:uflfr F, ® ‘/;;71 F, given by
f I >

R, = <E07...,E2p7r—2;ZaﬁZa""FZ

FP
Moreover, for r = p — 1 we define
Rpfl - Vp*l,fp'

PROPOSITION 4.2.11. — Let r be an integer, such that 0 < r < p—1, then R, is a
I-invariant subspace of Vp—r—lfp ® Vp—1fp' Moreover, if r #p—1, then

dim R, = 2p
and if r =p—1, then

dim R,_1 = p.
Proof. — If r = p—1 then there is nothing to prove, since R,,_1 = Vo1 F,: Ifr #£p-—1
then by [10] Theorem 4.7 R, is I-invariant and dim R, = 2p. So by Lemma 4.2.7

it is enough to show that R, is H-invariant. For v € forflfp and w € V;FLE we
have

foew)=freoaw+v® fw.

Hence, for 0 < k < r we have

f* o
HZe(le@wp,r,l,lH|z+j:k:, Oglép—r—1>§p
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with the usual 'vanishing when not defined’ convention. Since

A0 - . »
A l—j, p—r—1—1
<0 ) @ Wp—r—1-145 = A" NI P G @ w11y

_yp—k—1, p-r—1+k
=\ purr Viti @ Wp—r—1-1+j

the group H acts on each %Z , for 0 < k < r by a character. We combine this with

Lemma 4.2.9 and obtain that R, is H invariant. O
LEMMA 4.2.12. — We have .

L

k' p r—1 — =0
if and only if k > r+ 1. For k > 1 we have

ok

HEpfrfl = O

In particular, U fizes E,_,_1 and the action of H is given by

A0 e
( ) Epp1 =N ()" E, .

0p
Proof. — If r = p — 1, then this is trivial. If r # p — 1 then for k£ > 0 we have
fk p—r—1+k
k' ;D r—1 = p—r—1 Ep7r71+k~

We observe that Ej,_,_i1; vanishes trivially, if £ > p. If r +1 < k < p — 1, then we
write k =7 4+ 1+ j, where 0 < j < p —r — 2. The binomial coefficient becomes

Jj+p
p—r—1/"

Since0<r<p—1,wehave l<p—r—1<p—1,andsince 0 < j<p—r—1,p
divides the binomial coefficient. Hence
k
fk' p—r—1 — =0

fork>r+1. H0O<k<<r,thenp—r—1<p—r—1+k < p—1 and the binomial
coefficient does not vanish. Hence

for 0 <k <r. Let £ >0, then

ek —1+k
B = (p p—1 ) Bp-r-i-k

We observe that E,_,_1_j vanishes trivially, if £ > p —r — 1. Suppose that 1 < k <
p—r—1, then we may write k = 7 —1, where 0 < 7 < p—r—2 < p— 1. The binomial

coefficient becomes
j+p
p—1)°
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Since j < p — 1, p divides the binomial coefficient, and hence

ek

EEp—r—l =0

for all k£ > 1. Since the action of U is given in terms of ¥ /k! this implies that U fixes
E,_._1. An easy verification gives us the action of H. O

PROPOSITION 4.2.13. — Let W, be a subspace of R, given by
Wy =(Ep_r_1,... ,Ep,l)fp.
Then W, is I'-invariant. Moreover,
Wry = <Epfr71>fp
and

Wy = (PEp i), & Vg, ® (det)? "

Proof. — If r = p—1 then W,_; = folfp and we are done. Otherwise, since W,
has a basis of eigenvectors for the action of H, it is enough to show that W, is I''-
invariant. Since the action of I is given in terms of the action of Uz it is enough to
show that W, is invariant under the action of Uz. Lemma 4.2.12 implies that W, has
a basis %Ep_,«_l, for 0 < k < r. We observe that Lemma 4.2.12 also implies that

Pl = <"~'+l> S e ew,

k! k (k+1)!
for0<k<randl>0. Suppose that 0 < k <rand [ >k + 1 then
el fk
ﬁ(ﬁEpﬂ’fl) =0.

This follows from the multiplication in Uz, see [9] §26.2, and Lemma 4.2.12. If
0<I<k<r, then

el fF p—r—1+k\ €
ﬁ(_Epﬂ’fl) = ( ) ﬁEpfrflJrk

k! p—r—1
—-r—1+k —-1-k+1
O e

Hence W, is invariant under the action of Uz and hence under the action of T'.

We know from Lemma 4.2.12 that E,_,_; is fixed by U. The action of H splits
WY into a direct sum of one dimensional subspaces. Suppose that dim WY > 2. Since
H acts on each vector E,_,_14 by a distinct character for 0 < k < r, we must have
E, 145 € WTU, for some 1 < j < r. This implies that

eEp—r—14j = (p = j)Ep—r—24; = 0.

Hence p must divide j and this is impossible. Hence, dim WY = 1.
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Since W, is I'-invariant, we have
By}, < Wi

We may choose r + 1 distinct elements A; in F,. Then

10 f

k=0
Let A be an (r + 1) x (r + 1) matrix, given by Ag; = A¥, for 0 < i,k < r, with
the convention that 0° = 1. Then det A is the Vandermonde determinant, which is
non-zero, since all the \; are distinct. Hence, A is invertible and

fk
k' pr 16<FEpr 1>F

for all 0 < k < r. Hence, W, = (TE,_,_ 1)f .
Since dim WY = 1 and W, = ITWV

, >F , the representation W, is irreducible. To

decide, which one it is, we may proceed as in the proof of Proposition 3.2.2. Since
r < p—1, the action of B on W implies that W, 2V, F,© (det)P—r—1. O

LEMMA 4.2.14. — The vector Ey is fized by the action of U. Moreover, H acts on
EQ by

(3 2) Eo = XN (AP (AP E,.

Proof. — Since Ey = vg ® wq this is immediate. O
DEFINITION 4.2.15. — Suppose that ¢ = p™ and let r = (ro,...,r,—1) be the n-tuple
such that 0 < r; < p — 1, then we define a representation R, of T, given by

R =R, @R"@---@ R™"

where R,, are I'-representations of Definition 4.2.10.

DEFINITION 4.2.16. — Suppose that ¢ = p™ and let = (rg,...,7,—1) be an n-tuple,
such that 0 < r; < p— 1, for every i. Let € = (eg,...,£,—-1) be an n-tuple, such that
g; € {0,1} for every i. We define a vector

be = E(1—co)(p—1-10) @+ @ E(1—,,_1)(p—1-r0_1)

in R,., where E(l—s,',)(p—l—m) is a vector in R,,, for each 0 <i < n — 1.

DEFINITION 4.2. 17 — Suppose that g =p" and let r = (19, ...,rn—1) be an n-tuple,
such that 0 < r —1,for 0 < i< n—1. We define ¥, to be the set of n-tuples
(€0, .. ,5n_1), such that

g,=0, ifr,=p—1and ¢ €{0,1}, otherwise.
We will write 0 = (0,...,0) and 1 =(1,...,1).
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REMARK 4.2.18. — We hope to prevent some notational confusion. Since we want
Lemma 4.2.19 to hold and since dim RpU \F

—LHtp
choice for ¢;, between 0 and 1. We choose 0, since then we can state Lemma 4.2.21

in a nice way. However, if r; = p — 1, then

1-0)p-r-1)=101-1)(p—r;,—1)=0

so it does not matter, whether ¢; = 0 or ¢; = 1, and we will exploit this in our
notation. We note that the definition of b is independent of the set ,. and we might
have € € ¥, €’ € X, but b, = ber.

=1, if r, = p — 1, we have to make a

LEMMA 4.2.19. — The set {b. : € € ¥,.} is a basis of RY.

Proof. — Let r be an integer, such that 0 < r < p—1. Ifr=p—1,thendimR, =p
and Ey isin RU. If 0 < r < p— 1, then dim R, = 2p and Ey and E,_1_, are two
linearly independent vectors in RY.

Let  be an n-tuple. Then by above vectors b, for € € ¥,., span a linear subspace
of RU of dimension |¥,|. Also by above, dim R, = |¥,|q. Since, U is a p-Sylow
subgroup of I of order ¢ and by Theorem 4.2.5 R, is an injective object in Repyv,
Corollary 4.0.9 implies that

dim RY = |%,|.
Hence, the set {be : € € X} is a basis of RY. O
LEMMA 4.2.20. — Let v = (rg,...,"n—1) be an n-tuple, with 0 < r; < p— 1, let

€ = (€oy...,en—1) be an n-tuple such that ; € {0,1}, for every i, and let be be a
vector in RY, then the action of H is given by

(5 0) be =X =,

where r =19 +1p+ -+ rp_1p" " and
e.(p—r—1)=clp—ro—1)+e1lp—r1—p+--+en_1(p—rn-1 _1)pn71.

Proof. — This follows from Proposition 4.2.12 and Lemma 4.2.14. We note that the
action on each tensor component is twisted by Fr. O

LEMMA 4.2.21. — Suppose that ¢ = p™ and let v = (ro,...,rn—1) be an n-tuple, such
that 0 < r; < p—1, for each i. Let by be a vector in R,. Let

r=ro+rip+-+rn_1p"h

Then
(Thols, = V, 5, @ (det)? ™~

as a I'-representation.

MEMOIRES DE LA SMF 99



4.2. THE GENERAL CASE 39

Proof. — Let W,. be the subspace of R, given by

We=W, @ @W,, _,
with the notation of the Proposition 4.2.13. We have

0 # (Tbo)g, < Wr.

Proposition 4.2.13 applied to every tensor component implies that

Wr 2=V, 5 @ (det)? 17"
which is irreducible. Hence, we must get the whole of W.. O
COROLLARY 4.2.22. — Let x : H — F; and let a and r be unique integers, such
that 1 < a,r<q—1 and

((32) =2 VACF x((3,%) =N YAEF]

0

n—1

Letr =rg4+rp+ -+ rp_1p™ +, where 0 < r; < p—1 for each i, and let r =

(roy .y rn—1). If x £ X° then
inj py.o = Ry @ (det)*",

If x = x° then
injpyo = Rp1 ® (det)* =V, _; 5 © (det)”.

Proof. — Lemma 4.2.21 implies the existence of an exact sequence
0~ Vg, — B @ (det)’

of I'-representations. It is enough to show that R, is an indecomposable injective
object in Repp. The rest follows from Propositions 3.2.2 and 4.0.4.

Theorem 4.2.5 says that the restriction of R, to I is indecomposable. In particular,
R, must be indecomposable as a I'-representation. Moreover, Theorem 4.2.5 says
that the restrictions of R, to I' is an injective object in Repp,. Since U is a p-Sylow
subgroup of both I" and IV, Proposition 4.0.7 implies that R, is an injective object in
Repr. Finally, the last isomorphism follows directly from the definition of Rp_;. O

4.2.3. Computation of Hr-modules. — We will compute the action of T,
on RY.
PROPOSITION 4.2.23. — Let ¢ = p™ and let r = (rg,...,rn—1) be the n-tuple, such

that 0 < r; < p—1, for every i. Let € € ¥, and let be be a vector in R,.
(i) Suppose that for some index j, €; =0 and r; #p — 1 then

Z ung *be = 0.

uclU
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(ii) Suppose that r # 0. Moreover, suppose that for every i, ife; = 0 thenr; = p—1

then be = b1 and
Z ’U/I’Ls_lbl = (—1)1+‘r‘b0
uelU
where [r| =ro+mp+ -+ rp_1p
(iii) Suppose that ¥ =0 and € = 1, then

Z un;lbl = —(bo + bl)
uelU

n—1

This covers all the possible pairs (r,e), such that € € ¥,..

REMARK 4.2.24. — We note that by is well defined even if 1 € ¥,.. See Definitions
4.2.16 and 4.2.17.

Proof. — Let r be an integer such that 0 < r < p — 1 and let ¢ € {0,1} such that
e=0,if r=p—1. Let Eq1_c)p—r—1) be a vector in R,. We observe that

3 Bey(pmr—1) = (~DP TV, ).
If r # p — 1 this follows from Lemma 4.2.9, and if » = p — 1, this follows from the

isomorphism R, =V _, F,- Moreover, if € = 0 then Proposition 4.2.13 implies that

ok
HEp_l =0 Vk >r
and if € = 1 then Lemma 4.2.9 implies that
k

e

k!
Let 7 be an n-tuple, 7 = (rg,...,7n—1), with 0 < r; < p—1, let € € X,.. We recall
that

Ezpfzfr =0 Vk>2p—2—7“.

be = E(—co)(p-1-r0) ® - © E(1—c,,_1)(p—1-10_1)-

Z ung 'be = sgn,. . ZAkAk

uelU k
where the sum is taken over all the n-tuples k = (ko,...,k,—1) of non-negative

Hence we may write

integers, moreover
Ak = § )\ko+k1p+~~~+kn_1p"71
AEF,

and
eko ekn—1

A ::ZBTE%71+aﬂp7T07D(8"'69ZT_:TE%‘J+€n—ﬂP‘Tn—Y*D

n—1!
and

sgy, . = (<) =1
where €. (p — 1 —7) = Y." ' ei(p — 1 — r;)p’. We have acted by n;' on each
tensor component and then expanded the action of u € U on each tensor component
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and rearranged the summation. We will show that the sum on the right hand side
vanishes, unless r and € are of a special form. We will break up the argument into
several lemmas.

LEMMA 4.2.25. — Let S(r,e) be the subset of the set of all the n-tuples of non-
negative integers k = (ko, ..., kn—1), such that k € S(r,e) if and only if for each 1,
the following holds:

(1) ifEiZO then ki =T,
(i) ife; =1 thenki=p—1ork, =2p—1r;, — 2.

Then
Z un.;lbs = 58I, . Z A Ag.
uelU keS(r,e)

Proof of Lemma. — If e, =0and k; > r; ore; =1 and k; > 2p—2 —1r; then Ag =0,
since the i-th tensor component of Ag vanishes by the argument above. Moreover,
Lemma 4.2.9 implies that

k.
eki

k| Ep1qeip—ri-1) € <Ep—1+61:(p—m—1)—qu>ﬁp'
;!

The vector ) s ung tbe is fixed by U. Since, by Lemma 4.2.19, vectors bes, for
e’ € ¥, form a basis of RH there exist scalars . € Fp such that

-1
g ung be = E terber.
uelU e'ex,

Hence, it is enough to sum over the n-tuples k of non-negative integers such that, for
each i, we have

p—1+elp—ri—1)—ki=(01-¢)p—1-m)
for some € € {0,1}. Hence, k; is of the form
ki=p—1+(E—-1){p-r—1) or k=p—1+e(p—ri—1).

If &; = 0 and k; is of the form as above then the inequality k; < r; can be fulfilled
if and only if k; = r;. If &5 = 1, then k; < 2p — r; — 2 implies that k; = p— 1 or
ki = 2p —Tr; — 2. O

LEMMA 4.2.26. — Let k € S(r,e) and let k = ko + kip + - -+ + ko—1p" %, Suppose
that A # 0 then one of the following holds:

(i)r=0,e=1landk=Q2(p-1),...,.2p—1)) =2(p—1),
(i) k=q—1.

Proof of Lemma. — Since k € S(r, ), for each i we have the inequalities:

0<k <2p—-2—-7;<2(p—1).
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Hence, 0 < k < 2(¢ — 1), moreover k = 2(¢ — 1) if and only if r = 0, ¢ = 1 and
k=Q2p-1),...,2(p—1)). If k=0o0r k >0 and ¢ — 1 does not divide k¥ then

Ap = ZA’“:O.

AEF,
We note that 0° = 1 comes from the action by the identity matrix. If k£ > 0 and g — 1
divides k, then
Ag= ) M=-1L O

A€F,

LEMMA 4.2.27. — Let k € S(r,e) and let k = ko + kip + -+ + kn_1p" L. Suppose
thatk=q—1thenk=(p—-1,...,p—1)=p—1.

Proof of Lemma. — Since k € S(r,e) we may define integers a; and af, such that for
each 1,

a; + a; =k;
and 0 < a;,a; < p—1, as follows. If ¢;, = 0, then a; = r; and af = 0. If ¢; = 1 and
ki=p—1,thena;=p—1landa,=0.Ife; =1and k; =2p—r; —2, thena; =p—1
and a; = p —1—r;. Then ¢ — 1 = k implies that

ao+ap+-Fanap" ' =p-1-ay)+(p-1—a)p+---+(p-1—a, ;)p" "
Since 0 < a;,a; < p — 1, for every 4, this implies that

a;=p—1—a,, Vi.
If &, =1 and k; = p — 1, then we are done. If ¢; = 0 then by definition a} = 0 and by

above a; =p —1, hence k; =a;+a, =p—1. If¢; =1 and k; = 2p — 2 — r; then by
definition a; = p — 1 and by above a; = 0, hence k; = a; + a; =p — 1. O

We return to the main body of the proof of Proposition 4.2.23.

Suppose that for some index j, we have ¢; = 0 and r; # p— 1. If A # 0 for
some k € S(r,e), then Lemmas 4.2.26 and 4.2.27 imply that either k = p — 1 or
k =2(p — 1). However, the definition of S(r,¢) implies that k; = r; < p — 1. Hence
A =0 for all k € S(r,¢) and Lemma 4.2.25 implies that

Z ung 'be = 0.
uelU

So we obtain part (i) of the Proposition. We note that this case includes » = 0 and
e # 1.

Suppose that r # 0. Moreover, suppose that r and e are such that for every i,
if &, = 0 then r;, = p — 1. Lemmas 4.2.26 and 4.2.27 imply that if k € S(r,e) and
Ag # 0 then k = p — 1. Lemma 4.2.25 implies that

Z uny 'b. = sgn,. (—1)Ap_1.
uelU
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We will compute what happens on each tensor component of A, ;. If ; = 0, then
by our assumption on r and €, we have r; = p — 1 and

eP~1 -1
g = (o) B
If e; = 1 then

ep~! p—1
MEQP—Q—T,; = ( 0 )Ep—r,;—l = Ep—r,;—l-
The above calculation gives us
Apfl = Epfrofl Q- Epfrn,lfl = bo.
Moreover, if p = 2, then 1 = —1 and if p # 2 then (—1)P~1+eP=1=r) — (1)

trivially, if &; = 1 and since r; = p — 1 if &; = 0. Hence, sgn,. . = (—1)I"l and

Z uny 'he = (=1)I"+1pg.
uelU
We claim that in this case b = by. Indeed, if r; # p — 1 then our assumption on r
and € implies that ¢; = 1 and if r; = p — 1, then
l-eg)lp-1-m)=1-1)(p-1-7;)=0.
Hence, b, = by, see 4.2.16. This establishes part (ii) of the Proposition.
The only case left is » = 0 and € = 1. Arguing as before we get that

Z uns_lbl = sgn071(—1)(Ap_1 + A2(p71))'
uelU
We compute what happens on each tensor component of Ayq,_1):
e2r—2 2p — 2
——Fy, o= Ey = Ey.
(2p—2) ( 0 ) v
And by Definition 4.2.16, by = Ey @ - - - @ Ep. Since sgng ; = 1 we get
Z un;lbl = —(b]_ + bg)
uelU
This establishes part (iii) of the Proposition. O
REMARK 4.2.28. — We think of ®(det)® as a twist, that is, it changes the action,

but does not change the underlying vector space. Moreover, since U < T and ng € TV,
Proposition 4.2.23 does not change if we twist the action by (det)®.

REMARK 4.2.29. — We know that something like

> un; oy = (=1)"+1lb
uelU

has to happen by Lemma 4.1.1.
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LEMMA 4.2.30. — Let by and bg be vectors in Rg. Then
(C(b1 +bo))F, = V17, -

Proof. — The vector by +bg is fixed by U. Moreover, by Lemma 4.2.20 H acts trivially
on it. By Proposition 4.2.23

(bl + bO)Tns = Z uns_l(bl + bo) = —(bl + bo)

uelU
Hence
(b1 + b0>fp = Mg
as Hp-module and Lemma 3.1.8 gives us the result. O

COROLLARY 4.2.31. — Let x : H — F: be a character, such that x = x° and let a
be the unique integer, such that 1 < a < q¢—1 and
x((6%)) =" VAeFg
then
inj py,s ® inj py,o = Ro @ (det)?.
Proof. — This is a rerun of the proof of Corollary 4.2.22. Lemma 4.2.21 and Lemma
4.2.30 imply the existence of an exact sequence
00— VO,FZ, D fol,FP — Ry

of I'-representations. So it is enough to show that Rg is an injective object in Repp
and that it has at most 2 direct summands. The rest follows from Proposition 4.0.4
and Proposition 3.2.2. Theorem 4.2.5 says that the restriction of Rg to I has exactly
2 direct summands, hence Ry may have at most 2 direct summands. Moreover,
Theorem 4.2.5 says that the restriction of Rg to I' is an injective object in Repy.
Since U is a p-Sylow subgroup of I' and I contains U, Proposition 4.0.7 implies that
Ry is an injective object in Repp. o

DEFINITION 4.2.32. — Let a: H — F: be a character, given by

a: (6\ 2) — Ap

LEMMA 4.2.33. — Suppose that ¢ = p™ and let x : H — F; be a character. Let r be
the unique integer, such that 0 <r < q—1 and

X((3,2:))=A" VAEFS

n—1

Letr=rg+rp—+---+rp_1p™ -+, where 0 < r; < p—1 for each i, and let
r= (7“07 . ,’I“n_l).
Let e = (eg,...,en—1) be an n-tuple, such that e; € {0,1} for every i, then

(Xae.(pflf'r-))s _ Xa(lfe).(pflf'r-).
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Moreover, if r = 0, then we suppose that € # 0 and € # 1, then
(Xas.(p—l—r))s 7& Xas.(p—l—r)

where €. (p—1—1) ="V ei(p—r; — 1)p'.

Proof. — Since twisting by s does not affect det we may assume that
x((50)) =X VAxpeFr

Then the first part of the lemma amounts to
MT(H/\—l)s.(p—l—r) — /\T()\M—l)q—l—r—s.(p—l—r) _ )\r(/\‘u—l)(l—s).(p—l—r).

For the second part, we observe that the equality holds if and only if

MT+2€-(}7—1—1‘) — )\r+2€.(p—1—r)

for every A\, € F*. Hence, equality holds if and only if

n—1

Z(” +2(p—1—7r)e)p' =0 (mod q —1).
=0

Since, &; € {0,1} we have
0<rm+2(p—1—r)e; <2(p—1).

The congruence implies that r 4+ 2e. (p — 1 — r) must take values 0,¢g — 1 or 2(¢ — 1).
The extreme values are obtained if and only if r =0 ande =0orr =0 and ¢ = 1.
By our assumptions, both cases are excluded. If

r+2.(p—1—-7r)=¢q—1

then we rewrite this as

n—1 n—1
Yp—1—r)ep' = (p—1—r)(1—c)p"
=0 1=0

Hence, for every ¢ we must have
p=—1-=r)e;=(p—-1—r)(1—¢).

Since 2¢; # 1, for every i, this forces r; = p — 1, for every i, but r < ¢ — 1, hence this
case is also excluded. O

DEFINITION 4.2.34. — Suppose that ¢ = p™ and let = (rg,...,7,—1) be an n-tuple,
such that 0 < r; < p— 1 for every i. We define

6eX,

givenby §; =1ifr; #p—1land §; =0if r; =p — 1.
We further define ¥, to be a subset of £, given by

¥ =3,.\{0,d}.
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REMARK 4.2.35. — We note that if p =qorr = (p—1,...,p— 1), then X}, = &
and we always have bs = by.

LEMMA 4.2.36. — Suppose that ¢ = p™ and let x : H — F; be a character. Let r be
the unique integer, such that 0 <r < q—1 and

x((3,%))=X" VAeF).

n—1

Letr=rg+rp—+---+rp_1p" , where 0 < r; < p—1 for each i, and let

T = (7“07 cee ,’I“n_l).
If r =0 then we consider inj py,s and if r # 0 we consider inj py,& as representations
of K on which K acts trivially.

Suppose that € € .. If r = 0 then we regard be and by—_c as vectors in (inj py )™
via the isomorphism of Corollary 4.2.81. If r # 0 then we regard be and byi_¢ as
vectors in (inj pX’g)Il via the isomorphism of Corollary 4.2.22.

Then the action of Hi on (be, bl,e)fp extends to the action of H, so that

(be, b1—€>FP =M,
as an H-module, where
Ve =T1e = {XO{SI(p_l_r), (Xas.(p—l—r))s}.
Proof. — To ease the notation, let
w _ XOésl(p_l_r).

We observe that if by_. = bg, then € = § and if by_. = bs then € = 0. Since € € ¥,
neither of the above can occur.

By Lemma 4.2.20 and taking into account the twist by a power of det, I acts on
be via the character 1. By the same argument and Lemma 4.2.33 I acts on b;_ via
the character 1)°*. Hence,

beew = be and bl,eew = b]_,e.

Moreover, Lemma 4.2.33 says that ¢ # ¢*. The case r = 0 is not a problem, since
€ € Xf implies that 1 — e € 2. Since H acts on b and b1 _ by different characters,
they are linearly independent. Proposition 4.2.23 implies that

beT,, = Z uns_lbe:O and bi_T,, = Z un;lbl,e:O.
wel /K, uel, /Ky

Hence, by Lemma 2.2.2
(be; b1-e)F, = (be)F, ® (b1-c)F, = My,o & Mys o = My, |74
as Hx-modules. So we define
beTii = b1_e and bi_Tn = be

which gives us the required isomorphism of H-modules. O
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PROPOSITION 4.2.37. — Suppose that g = p™ and let x : H — F: be a character,
such that x = x°. We consider the representation

inj py,z @ inj py. s
as a representation of K, such that Ky acts trivially. We may extend the action of
Hg on

(inj px.o @ in py,s)"
to the action of H, such that (inj py.& & inj py,s)"* as an H-module is isomorphic to
a direct sum of 2"~ ' supersingular modules of H.

More precisely, for every € € g we consider be as vectors in

(inj Px,o D inj px,S)Il
via the isomorphism of Corollary 4.2.31. Then the action of Hy can be extended to
the action of H so that

(bo,bo + b1>Fp =~ M,
where v = {x}. If e € X, then

<bea b17€>E, = M“/

where ve = y1-e = {xa= @~V y(a= P~ V),
Proof. — Since, by Lemma 4.2.19 b, for € € ¥ form a basis of R{, the second part
implies the first. Since Yg = X\{0, 1}, the last part of the Proposition is given by
Lemma 4.2.36.
Lemmas 4.2.21 and 4.2.30 imply that
(bo)g, = My,s, (b1 +bo)g, = My

as an Hy-module. Hence, by Lemma 2.2.2

(bo; b1 + bo)g, = My,s © My,5 = M, |3,
as Hyx-modules. Hence, if we define

bgTH = bg + b]_ and (bg + b]_)TH = b()
we get the required isomorphism. O

PROPOSITION 4.2.38. — Suppose that ¢ = p”, let x : H — F: be a character, such
that x # x*, and let a and r be unique integers, such that 1 < a,r < q—1 and

x((§9))=2* VAXeFS, x((3,%)) =X VAeF)

n—1

Letr=rg+rp—+---+rp_1p" -, where 0 < r; < p—1 for each i, and let

r=(rg,...,Tn—1)
Then
inj py,e ®inj pys o = Rp ® (det)* ™" @ Rp_1-_r ® (det)®
wherep—1—r=((p—1—ro,...,p—1—1,_1).
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We regard the representation inj py o ®inj pys & as a representation of K, on which
K1 acts trivially. Let ¢ and d be the cardinality of the sets:

c=Wri:ri#p—1} and d=|{r;:r;#0}
then we may extend the action of Hx on
(inj py,e @ inj be',@)h

to the action of H, such that (inj py.z ® inj pys )™t as an H-module is isomorphic to
a direct sum of L., and 2°7* + 2971 — 2 supersingular modules of H.

More precisely, let be, for € € ¥y, be a basis of (inj py,z)* and let be, for e €
Sp_1-r, be a basis of (inj pys o)1 via the isomorphism above. Then the action of Hx
can be extended to the action of H so that

<b0a b1a50a51>fp = L“/

and

IR

{bo, bo)r,
where v = {x,x*}. If € € X, then
<beablf€>ﬁp = M"/e

M,

where e = 71_e = {xa= P17 (ya= @15}, [fe € ¥ then

p—1—7r
<Ee; Z_717e-:>f = M?,s

where 3, =7; . = {x"a®", (xa®")}.

Proof. — The first part of the Proposition follows from Corollary 4.2.22 and Corollary
3.2.3. For the second part we observe that since xy # x*, we have r # ¢ — 1 and hence
vectors bg, b1, bo and by are linearly independent. Lemma 4.2.21 implies that

(bo)F, = My, and  (bo)g, = My: o

as Hx-modules. Lemma 4.2.20 with the appropriate twist by a power of det says that

H acts on by by a character ya®~1=") and H acts on by by a character y*a'™".

Lemma 4.2.33 implies that
Xal.(p—l—r) _ Xs and Xsal.r = .
Hence,
b]_exs = bl and Blex = Z_)]_.
Proposition 4.2.23 implies that
(-1 0T, = (=)™ D7 ungthy = bo
uel /K,

and

(1) b1 T, = (1) Y ung by = bo.
u€el, /K1
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Hence, by Lemma 2.2.2

<b07b1750a51>fp = LV |'HK
as Hx-modules. We note that if p = 2 then 1 = —1 and if p # 2 then (-1)7" =
(—=1)"*1. So if we define

biTn =b1, biTu=b1, boTu=bo, boTh = bo
we get the required isomorphism of H-modules. Moreover,
<b0,l_70>fp =~ Mry

as H-module. The last part of the Proposition follows from Lemma 4.2.36. Since
dim(inj py,z)"* = 2¢ and dim(inj py= )" = 2¢ an easy calculation gives us the number
of indecomposable summands. O

REMARK 4.2.39. — If p = ¢, then ¥/, = @ and Propositions 4.2.37 and 4.2.38 spe-
cialise to Proposition 4.1.9.

The following Proposition can be seen as a consolation for the Remark 4.1.6.

PROPOSITION 4.2.40. — Suppose that ¢ = p™, x # x° and let p be a representation
of T, such that pV = M, 5 ® M= & as an Hr-module, and p = (FpU)fp, then

P = px,o D pxe o

Proof. — If p is a semi-simple representation of I', then Corollary 3.1.3 implies the
Lemma. Suppose that p is not semi-simple. Let soc(p) be the maximal semi-simple
subrepresentation of p. Since p is generated by pU as a I'-representation, the space
(soc(p))V is one dimensional, and hence soc(p) is an irreducible representation of T'.
By Corollary 3.1.3 and symmetry we may assume that

soc(p) = py.o-

Since, soc(p) is irreducible, p is an essential extension of p, z. By this we mean that
every non-zero I'-invariant subspace of p intersects py, o non-trivially. This implies
that there exists an exact sequence

0— p—injpye

of T'-representations. After twisting by a power of determinant we may assume that
X is given by X((f)‘ 2)) = )", where 0 < r < g — 1. The inequalities are strict,
since x # x*. Let 7 be the corresponding n-tuple. Let ¢ € ¥, and b. € (inj px,g)U,
then H acts on b. by the character ya®®=1=7")_ In particular, if ¢/ € %,., such that
g’ # ¢, then H acts on b. and b. by different characters. As a consequence of this,
the submodule M, & of pV must be mapped to some subspace {be ), of (inj py)Y

where € € ¥,. By examining the action of H, we get that x* = ya=(®~1=7)_ This
implies that
es(p—1—7r)+r=0 (modq-—1).
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Since 0 <7 < q¢—1 and € € X,., we have
O<e.(p—1-7r)+r<qg-—1.

Hence, we get an equality on the right hand side, which implies that, for each 4,
(1—e)(p—1—=mr;) =0. Soe =4, and b = by, see 4.2.34 and 4.2.35. However, by
Proposition 4.2.23 (ii)

b1Ty, = (—=1)""1bg # 0.

We obtain a contradiction, since T, kills Mys . O
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CHAPTER 5

COEFFICIENT SYSTEMS

We closely follow [13] and [14, § V], where the G-equivariant coefficient systems of
C-vector spaces are treated. In fact, the results of this Section do not depend on the
underlying field. Our motivation to use coefficient systems stems from [12], where
the equivariant coefficient systems of F,-vector spaces of finite Chevalley groups are
considered.

5.1. Definitions

The Bruhat-Tits tree X of G is the simplicial complex, whose vertices are the
similarity classes [L] of op-lattices in a 2-dimensional F-vector space V and whose
edges are 1-simplices, given by families {[Lo], [L1]} of similarity classes such that

wplLo C L1 C Ly.
We denote by X the set of all vertices and by X; the set of all edges.
DEFINITION 5.1.1. — Let ¢ be a simplex in X, then we define
R(o)={g9g € Autp(V): go =0o}.
By fixing a basis {v1,v2} of V we identify G with Auty (V). Let
oo = [opv1 + 0pva] and o1 = {[opv1 + 0pva], [0pv1 + PrU2)}.

Then oy is a vertex and R(op) = F*K, and o7 is an edge containing a vertex oyg.
Moreover, R(o1) is the group generated by I and II.

DEFINITION 5.1.2. — A coefficient system V' (of F,-vector spaces) on X consists of

- Fp vector spaces V, for each simplex o of X, and
— linear maps rg/ : Voo — V, for each pair o C ¢’ of simplices of X such that for
every simplex o, rg =idy, .
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DEFINITION 5.1.3. — We say the group G acts on the coefficient system V), if for
every g € G and for every simplex o there is given a linear map

9o Vo — %U;
such that

— gho © hy = (gh),, for every g, h € G and for every simplex o,

- 1, =idy, for every simplex o,

— the following diagram commutes for every g € G and every pair of simplices
ocCo:

v, 2. v,,

o’ go’
T Tga

Vo-/ _)90 Vga’
In particular, the stabiliser £(c) acts linearly on V,, for any simplex o.

DEFINITION 5.1.4. — A G-equivariant coefficient system (V) on X is a coefficient
system on X together with a G-action , such that the action of the stabiliser (o) of
a simplex o on V, is smooth.

REMARK 5.1.5. — The definition given in [14] §V, requires the action to factor
through a discrete quotient.

Let COEF s denote the category of all equivariant coefficient systems on X,
equipped with the obvious morphisms.
The following observation will turn out to be very useful. Suppose that G acts on
a coefficient system V = (V;),. Let 7/ be an edge containing a vertex 7. There exists
g € G, such that 7/ = goy and 7 = gog. Then
Ve = Yoy V(rov Vi = 9o Vo'l
and

/

T7 = Goy © Tgé © (9_1)7"-

5.2. Homology

Let X (o) be the set of vertices on the tree and let X () be the set of oriented edges
on the tree. We will say that two vertices o and ¢’ are neighbours if {o,0'} is an
edge. And we will write

(0,0")
to mean a directed edge going from o to o’. Let V = (V; ), be an equivariant coefficient
system. We define a space of oriented 0-chains to be

C (X, V) = F,-vector space of all maps w : Xy — U V,
oeXo

MEMOIRES DE LA SMF 99



5.3. SOME COMPUTATIONS OF Hy(X,V) 53

such that

— w has finite support and
— w(o) € V, for every vertex o.

Similarly, the space of oriented 1-chains is

C"(X(1), V) = Fp-vector space of all maps w : X(;) — U Vieo'y
{o,0’}eX1
such that

— w has finite support,
~w((0,0") € Vigory
— w((d’,0)) = —w((c,d")) for every oriented edge (o, 0’).
The group G acts on C*(X gy, V) via
(gw)(0) = gg-10(w(g™'0))
and on CY"(X (1), V) via

(9)((0,0") = g(g-10,9-101 (W((g 0,97 0"))).

The action on both spaces is smooth.
The boundary map is given by

9: C& (X, V) — C& (X0, V)
w— (U — ZT{EU’U,}(W((U; 0/))))

where the sum is taken over all the neighbours of . The map 9 is G-equivariant.
We define Hyp(X, V) to be the cokernel of 9. It is naturally a smooth representation
of G.

5.3. Some computations of Hy(X,V)

Throughout this section we fix an equivariant coefficient system V = (V.),, with
the restriction maps given by rll. Our first lemma follows immediately from the
definition of 0.

LEMMA 5.3.1. — Let w be an oriented 1-chain supported on a single edge T = {o,0'}.
Let

v=w((c,0")).
Then
O(w) = we — wer,
where w, and w, are 0-chains supported only on o and o’ respectively. Moreover,

wo(o)=7rI(v) and we(o") =71l (v).
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LEMMA 5.3.2. — Let w be a 0-chain supported on a single vertex o. Suppose that the
restriction map rgl is an injection, then the image of w in Ho(X,V) is non-zero.

Proof. — Since every restriction map is conjugate to rg! by some element of G, it
follows that every restriction map is injective.

Let w’ be a non-zero oriented 1-chain. We may think of the support of w’ as the
union of edges of a finite subgraph 7 of X. Since all the restriction maps are injective,
Lemma 5.3.1 implies that d(w’) will not vanish on the vertices of 7, which have only
one neighbour in 7. In particular, d(w’) will be supported on at least 2 vertices.
Hence, w ¢ 0C" (X (1), V). O

LEMMA 5.3.3. — Letw be 0-chain. Suppose that the restriction map rg} is surjective,
then there exists a 0-chain wg, supported on a single vertex oqy, such that

w + 8Cgr(X(1), V) =wo + 8CSr(X(1)7 V)

Proof. — Since every restriction map is conjugate to rgl by some element of G, it
follows that every restriction map is surjective.

It is enough to prove the statement when w is supported on a single vertex 7, since
an arbitrary O-chain is a finite sum of such. If 7 = ¢ then we are done. Otherwise,
there exists a directed path going from o( to 7, consisting of finitely many directed
edges (00,71), .+, (T, T)-

We argue by induction on m. Let v = w(7). Since riT’”’T} is surjective there exists
v' € Vis,. 71, such that

rimm ') = .

Let w’ be an oriented 1-chain supported on the single edge {7.,, 7} with w’'((7;n, 7)) =
v'. By Lemma 5.3.1 w+9(w’) is supported on a single vertex 7,,. Since, the number of
edges in the directed path has decreased by one, the claim follows from induction. [

The following special case will be used in the calculations of modules of the Hecke
algebra.

LEMMA 5.3.4. — Let wy be a 0-chain supported on a single vertex og. Let
vo = wo(00)
and suppose that there exists v1 € Vy,, such that
rgt(vi) = vo.
Let w' be a 0-chain supported on a single vertex oo with
w'(00) = rgt (T4, (v1)),

then
T lwg + C (X 1y, V) = W' + C (X 1y, V).
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Proof. — We observe that Ilog = II" 1oy and o7 = {09, Ilog}. The 0-chain I~ 'wy is
supported on a single vertex Iloy with

(IT"  wo) (T ) = (IT™") g (vo)-
Let wy be an oriented 1-chain supported on a single edge o1 with

wi((00,110g)) = (I171),, (v1).
From Lemma 5.3.1 we know that d(w1) is supported only on oy and Iloy. Moreover,

9(w1)(Noo) = rif,, (w1 (Moo, 00)) = rig,, (—(1T7")g, (v1))
= — (1, © (e, ) (v1) = = (7)o 0751 ) (v1) = — (I 1) (v0)

and
d(w1)(o0) = 75t (w1((00,Tag))) = 7ot (IT71) 4, (v1)).
Hence
O(wr) =w' =TT wy
and that establishes the claim. O
PROPOSITION 5.3.5. — Suppose that the restriction map rgl is an isomorphism of

vector spaces. Then
Ho(X,V)|g(00) = Voo

and

1%

HO(X7 V)lﬁ(tn) VUl'

Moreover, the diagram

1%

Vo’o E— H()(X, V)

ros T Tid

Vo’l E— H()(X, V)

1%

of F*I-representations commutes.

Proof. — Let Cg"(00,V) be a subspace of C2"(X(g),V) consisting of the 0-chains
whose support lies in the simplex oy, with the understanding that the 0-chain which
vanishes on every simplex is supported on the empty simplex. Let j be the composition

7:C(00,V) — CT(X(0y, V) — Ho(X, V).

Then 7 is R(0¢) equivariant. Moreover, Lemma 5.3.2 says that j is an injection and
Lemma 5.3.3 says that it is a surjection. Hence

7:C2(00,V) = Ho(X, V)| 8(00)-
Let evg be the map
evg : O (00, V) — Vo,

w — w(op)
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then evq is an isomorphism of £(oy)-representations. Hence
Jo (eVO)_l : VUO = HO(Xv V)|ﬁ(ao)'

Since V is G-equivariant, the map rg} is F'*I = R(o1) N R(0o)-equivariant and since
it is isomorphism of vector spaces, we obtain that

g0 (evg)to Too  Vou lpxr =2 Ho(X, V)| px1-

We claim that this isomorphism is in fact £(o1)-equivariant. Let vy € V;,, let vg =
r7t(v1) and let wo € C¢" (00, V), such that wo(oo) = vo. Then

(7o (evg) o ros)(v1) = wo + 0C (X (1), V).
By Lemma 5.3.4
I twy + 0CY (X (1), V) = ' + 0C (X (1), V),
where ' € C¢" (00, V) with w'(0¢) = 7} (IT7!)4, (v1)). This implies that
I (g0 (evo) ™ orgi)(v1) = (70 (evo) ™" o rg ) (17 1)4, (v1))-
Since IT-! and F*I generate (o) this proves the claim.

The commutativity of the diagram follows from the way the isomorphisms are
constructed. O

5.4. Constant functor

The content of this Section is essentially [12] Lemma 1.1 and Theorem 1.2. Let
Repg be the category of smooth Fp—representations of G. Let m be a smooth repre-
sentation of G with the underlying vector space W. Let o be a simplex on the tree X,
we set

(Kr)o = W.
If 0 and o’ are two simplices, such that o C ¢’ then we define the restriction map

’

re =idw.
For every g € G and every simplex o in X we define a linear map g, by
9o : (K)o — (Kx)go, v+ m(g)v.
This gives a G-equivariant coefficient system on X, which we denote by K.
DEFINITION 5.4.1. — We define the constant functor
K:Repg — COEFq, m— K.
LEMMA 5.4.2. — Let w be a smooth representation of G, then
Ho(X,Kr) =

as a G-representation.
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Proof. — We have an evaluation map
ev: O (X(0), Kr) — T, wr— Z w(o).
o€X(o0)

Since the restriction maps are just idyy, Lemma 5.3.1 implies that the image of the
boundary map 9Cg"(X(1),Kr) is contained in the kernel of ev. Hence, we get a
G-equivariant map

H() (X, K:ﬂ-) — .
It is enough to show that this is an isomorphism of vector spaces, and this is implied
by Proposition 5.3.5. O

PROPOSITION 5.4.3. — Let V = (V,), be a G-equivariant coefficient system with the
restriction maps rg' and let (w, W) be a smooth representation of G, then

Homcoer, (V, ’Cﬂ) = Homg(Ho(X, V), 7T).

Proof. — Any morphism of G-equivariant coefficient systems will induce a G-
equivariant homomorphism in the 0-th homology. Hence by Lemma 5.4.2 we have a
map

Homeoer, (V,Kr) — Homg(Ho(X, V), 7).

We will construct an inverse of this. Let ¢ € Homg(Ho(X,V), ), let o be a vertex
on the tree X, let v be a vector in V,,, and let w,, be a 0-chain, such that

Suppwo,y C 0, weu(0) =0,
then we define
o Vo — W, v+ ¢(won + 90T (X(1),V)).
Let 7 be an edge in X with vertices o and ¢’, we define
Gr Ve — W, v ¢o(r7(v)).

Lemma 5.3.1 implies that the definition of ¢, does not depend on the choice of vertex.
Hence, the collection of linear maps (¢, ), is a morphism of coefficient systems, which
induces ¢ on the 0-th homology. An easy check shows that (¢, ), respect the G-action
on YV and K. O

5.5. Diagrams
DEFINITION 5.5.1. — Let DZ.AG be the category, whose objects are diagrams
Dy

|

D,
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where (pg, Do) is a a smooth F,-representation of f(cp), (p1, D1) is a smooth F,-
representation of &(o1), and r € Hompx (D1, Dy).

The morphisms between two objects (Dg, D1, r) and (D}, D}, ') are pairs (1o, ¥1),
such that g € Homg(,)(Do, D), ¥1 € Homg(,,) (D1, D7) and the diagram:

of F'*I representations commutes.

The main result of this section is Theorem 5.5.4, which says that the categories
DIAG and COEF ¢ are equivalent. It is easier to work with objects of DZ.AG than
the coefficient systems.

DEFINITION 5.5.2. — Let V = (V,,), be an object in COEF . Let D : COEF g —
DIAG be a functor, given by
Voo

Vi— TZéT
Vou
We will construct a functor C : DZAG — COEFq and show that the functors

C and D induce an equivalence of categories. The key point here is that G acts
transitively on the vertices of X.

5.5.1. Underlying vector spaces. — Let D = (Dy, D1, r) be an object in DZ.AG.
Let ¢ € {0,1}, we define C—Indg(ai) pi, to be a representation of G whose underlying
vector space consists of functions
such that

f(kg)=pi(k)f(9) Vge G, VkeR(o)

and Supp f is compact modulo the centre. The group G acts by the right translations,
that is

(9f)(91) = f(g19)-

Let 7 be a vertex on the tree X, then there exists g € G, such that 7 = gog. Let
Fr={f € cInd§,, po : Supp f C K(oo)g™'}.

The space F; is independent of the choice of g. Let 7/ be an edge on the tree X, then
there exists g € G such that 7/ = go;. We define

Fo={f¢€ C—Indg(al) p1:Supp f C R(o1)g™ 1}
We observe that .. is also independent of the choice of g.
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5.5.2. Restriction maps. — Let i € {0, 1}, then F,, is naturally isomorphic to
D; as a R(o;) representation. The isomorphism is given by

evi: Foy — Dy, fr— f(1).
The inverse is given by

evi_1 Dy — Fyyy, v fy
where f,(k) = pi(k)v, if k € R(0;), and 0 otherwise. Let

o1 —1
’I"o.o =€vVy oroevy.

Then rg! is an F* I-equivariant map from F,, to F,,. If v € Dy then it sends
Tor: fo = fr(u)-
We observe, for the purposes of Theorem 5.5.4, that
D = (Foy, Fory132)

is an object of DZAG. Moreover, ev = (evg,evy) is an isomorphism of diagrams
between D and D. We will show later on that ev induces a natural transformation
between certain functors.

Let 7/ be an edge containing a vertex 7, then there exists g € G, such that 7 = gog
and 7" = go;. Moreover, g can only be replaced by gk, where k € &(og) N R(01) =

F*I. We define
1 Fp = Fry f— g9 f)

1

where g acts on the space c—Indg(go) Dy and g~ on the space C—Indg(gl) D;. Since, r

is F'* I-equivariant we have
po(k) orgtopi (k™) =73l
for all k € F*I. Hence, the map rl/ is independent of the choice of g. Explicitly, let
v=f(g7'), then
T: : f — gfr('u)
Let 7 be any simplex then we define the map 7] =idr,.
5.5.3. G-action. — So far from a diagram we have constructed a coefficient system.

We need to show that G acts on it. Let 7 € {0,1} and let f € c—Indg(m) D;. For any
g € G we have

Supp(gf) = (Supp f)g~".

Hence for any simplex 7 we obtain a linear map

g‘r:f‘r_)}—gra f'—>gf
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Moreover, 1, = idx, and gu, o hy = (gh);, for any g, h € G. Let 7" be an edge
containing a vertex 7. We need to show that the diagram:

Fr s Fr

7’ g7’
T.T TgT
gr

For L For

commutes. There exists g1 € G such that 7 = g109 and 7/ = g101. Moreover, such g;
is determined up to a multiple g1k, where k € F*I. Let f € F,, and let v = f(g; "),
then

/

Tjr— (f) = glfr(v)'
Hence
(g‘l' o T:/)(f) = gglfr(v)~

Since g7 = gg101, g7 = gg10o and (gf)((991) ") = f(g; ") = v we obtain
(197" 0 g ) (f) = 197 (991.f0) = 991 fr(v)-

Hence the diagram commutes.

5.5.4. Morphisms. — Let D’ = (D], D},r’") be another diagram, let ¢ = (10, 11)
be a morphism of diagrams
:D— D
and let 7/ = (F.), be a coefficient system associated to D’ via the construction
above. Let 7 be any simplex on the tree. If 7 is a vertex let ¢ = 0 and if 7 is an edge,
let # = 1. There exists some g € G such that 7 = go;. Let f € V; and let v = f(g~ 1)
we define a map
1/)7—:-7'.7—>-7:7,—7 f’_)gf't/u(v)

where fy, () is the unique function in F , such that fy, (1) = 1;(v). Since the map
¥; is R(0;)-equivariant, 1, is independent of the choice of g.

We will show that the maps (1)), are compatible with the restriction maps. Let 7/
be an edge containing a vertex 7. We claim that the diagram

commutes. There exists g € G such that 7 = gog and 7/ = go;1. Let f € F,/ and let
v=f(g71). Then

(r orD)(f) = ¥r(9fr(w) = 9Syo(r(v))
and

()T 0 )(f) = ()2 (9fpr(0) = 9w (0)-
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Since (¢, 1) is a morphism of diagrams

bo(r(v)) =1 (¢h1(v)).

Hence the diagram commutes as claimed and (¢ ), are compatible with the restriction
maps.

Finally, we will show that the maps (), are compatible with the G-action. Let 7
be any simplex on the tree. To ease the notation, for every h € G we denote by h,
the action of h on both (F;), and (F.),. Let 7 be a simplex on the tree X and let
h € G. We claim that the diagram

th ,

"Th‘f — S hr
hﬁ Thf
F T

commutes. If 7 is an edge let 4 = 1, if 7 is a vertex let 4 = 0. There exists g € G, such
that 7 = go;. Let f € F, and let v = f(g~!), then

wh‘r(h‘r(f)) = 1Z)h‘r(hgfv) = hgfw,;('u)
and
he (= (f)) = he(9fpi0) = g fii(w)-

Hence, the diagram commutes as claimed and the collection (¢, ), defines a morphism
of equivariant coefficient systems.

5.5.5. Equivalence

DEFINITION 5.5.3. — Let C be a functor
C:DIAG — COEFq

which sends a diagram D to the coefficient system (F.), as above.

One needs to check that given three diagrams and two morphisms between them
,lp !/

D—)Dl—)D”

we have
C(Y o) =C(Y') o C(¥).

However, that is immediate from the construction of C(¢) in Section 5.5.4.

THEOREM 5.5.4. — The functors C and D induce an equivalence of categories be-
tween DIAG and COEF .
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Proof. — Let D = (Dg, D1,r) be an object in DZ.AG. Then
(Do C)(D) =D = (Foy, Foy,75))

o197 " og
with the notation of Section 5.5.2. The isomorphism
ev:D~D

of Section 5.5.2 is given by the evaluation at 1. We claim that it induces an isomor-
phism of functors between D o C and idprag. We only need to check what happens
to morphisms. Let D' = (Dj, D}, r") be another object in the category of diagrams
and let 1) = (¢o, 1) be a morphism

Wi D — D
(r")g:) and let

o)

Let (DoC)(D') = D' = (F. ,F..,

(DoC)(¥) =4 = (o, 1)
be a morphism induced by a functor D o C. We need to show that the diagram:

ﬁ/ i} D’
i v
5 v, 5
commutes. Let i € {0,1}, let f € F,, and let v = f(1) then
(Vi o evi)(f) = ti(v).
From Section 5.5.4 %(f) is the unique function in ¥}, taking value 1;(v) at 1. Hence
(evi o) (f) = i(v).
This implies that the diagram commutes.
Conversely, we need to show that the functor C o D is isomorphic to idcoer, . Let
V = (V;), be a G-equivariant coefficient system with the restriction maps t;/. Then

D(V) is a diagram given by:
Voo -

il
Vs,

Let k € R(op) then it acts on V,, by a linear map k,,. Similarly, if £ € &(oy) then it
acts on on V,, by a linear map k,,. Let

(CoD)(V) =F = (Fr)r
with the restriction maps rll. We will construct a canonical isomorphism ev = (ev;),

ev: F ==V
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of G equivariant coefficient systems. Let 7 be a simplex on the tree. If 7 is a vertex
let i = 0 and if 7 is an edge let # = 1. There exists ¢ € G such that 7 = go;. For
feF, welet v= f(g~'). Then v is a vector in V,,. We define a map ev,, by

eve 1 Fr — Vo, fr— g0

where ¢, is the linear map coming from the G action on V. If we replace g by gk,
for some k € £(0;), then

(9K)o; (F((9k) ™)) = (90 © ko 0k )(f(971)) = 9o (F(971))
Hence, the map ev. is independent of the choice of g. Moreover, ev. is an isomorphism
of vector spaces with the inverse given as follows. Let w € V;, let v = (¢ 1), w, then
v is a vector in W,,,. Let f, be the unique function in F, such that f,(1) =v. Then
(ev,)~!is given by
(eV-,-)_1 Ve — Fr, wr—gfy

where the action by g is on the space C-Indg(gi) Vs,

The collection of maps (ev,), is G-equivariant. Let h € G, then hf belongs to the
space Fp, and

thT(hf) = (hg)m((hf)((hg)_l)) = (hT o gai)(f(g_l)) = hT(evT(f))'

We need to show that the maps ev, are compatible with the restriction maps. Let
7/ be an edge containing a vertex 7. We need to show that the diagram

ev,
Fr—"5V,
TTW T o
T T
eV
Fri Vo

commutes. There exists g € G such that 7 = gop and 7" = go;. Let f be a function
in Frr. Let v1 = f(g7") , then vy is a vector in V;,. Let vg = g} (v1). Then rT(f) is
the unique function of F, taking value vy at ¢g~'. Hence
(evror )(f) = goyvo-
On the other hand
(7 0 ever)(f) = 7 (g0, 01):
The action of G on V respects the restriction maps, in the sense that the diagram:

Voo 270 v,

Gou

Vo, —— Vi

commutes. Hence,

t:, (901 1)1) = oo V0-
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Hence our original diagram commutes and ev = (ev,), defines an isomorphism of
G-equivariant coeflicient systems.

In order to show that the morphism ev induces an isomorphism of functors between
C oD and idcoer, we need to check what happens to the morphisms. However the
proof is almost identical to the one given for DZ.AG so we omit it. O

COROLLARY 5.5.5. — Let (po, Vo) be a smooth representation of K(og) and (p1, Vi)
a smooth representation of R(o1). Suppose that there exists an F* I-equivariant iso-
morphism
r: V1 = Vo,
then there exists a unique (up to isomorphism) smooth representation © of G, such
that
Tl (o) = P0s  Tla(or) = p1

and the diagram

I

Vo——m

T

i ——
of F*I-representations commutes.
Proof. — Let D be the object in DZ.AG, given by D = (Vp, Vi, 7). Let C(D) be a coef-
ficient system corresponding to D, with the restriction maps rf. Since (DoC)(D) = D
and 7 is an isomorphism, the map rg! is an isomorphism and Proposition 5.3.4 implies
that Ho(X,C(D)) satisfies the conditions of the Corollary.

The statement of the Corollary can be rephrased as follows: there exists a unique
up to isomorphism smooth representation 7 of (G, such that

D = D(K.,).

If 7’ was another such, then

Hence, by Theorem 5.5.4

Lemma 5.4.2 implies that
= HO(Xa ’Cw’) = HO(Xa ,CTK‘) =7
and we obtain uniqueness. O

REMARK 5.5.6. — Let W be a subgroup of G generated by s and II. The Iwahori
decomposition says that G = I WI. Let 7 be a representation constructed as above,
v € and g € G. Then gv may be determined by decomposing g = ujwusy, where
u,ug € I, w € W, and then chasing around the diagram.
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The simplest example illustrating 5.5.5 is the trivial diagram 1= (1,1,id). The
proof of Corollary 3.1.9 can be reinterpreted as a construction of a morphism 1 —
D(K,). This gives us an injection of G representations

12 Hy(X,C(1)) — Ho(X,K,) = .
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CHAPTER 6

SUPERSINGULAR REPRESENTATIONS

6.1. Coefficient systems V,

Let x: H — F; be a character, and let p,, s be an irreducible representation of I',
with the notations of Section 3. We consider x as a character of I and py j as a
representation of K, via

K—K/K; 2T and I — I/ 2 H.

Let py,s be the extension of p, ; to F*K such that our fixed uniformiser wr acts
trivially, and let ¥ be the extension of x to F'* I, such that wp acts trivially. The space
of I -invariants of p, s is one dimensional and F'*I acts on it via the character . We
fix a vector vy, s such that

I
Prrs = (Ux.J)F,-

LEMMA 6.1.1. — There exists a unique action of R(o1) on (ﬁX’J@ﬁxs_j)Il, extending
the action of F*1I, such that

-1 _ _ -1 R
I vy, s =0,.7 and 11 Vys T = Uy,J-
Moreover, with this action

- - N R(o1) ~
(Py,7 @ pxsj)l1 = IndF(XI) X

as R(o1)-representations.

Proof. — We note that if ¢ € T is a diagonal matrix then IItII"' = sts, hence

(X)' = x* as representations of F* I and Mackey’s decomposition gives us
R(01) ~ ~ = Ts
(Indj7 %) er = X @ X
Since

(Px.s ® ﬁxsj)h =xXax
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as F*I-representation, we can extend the action. FExplicitly, we consider f €
Ind?(f}) X, such that Supp f = F*I and f(g) = X(g), for all g € F*I. Then the map

fr—ves, T r—u. g

induces the required isomorphism. Since, IT and F*I generate £(c;) the action is
unique. O

DEFINITION 6.1.2. — Let x : H — F: be a character, and let v = {x, x*} we define
D, to be an object in DZAG, given by

ﬁX)J D ﬁxs ,j
(ﬁx,J S ﬁxsj)h

where the action of &(01) on (py,s & p,. +)1 is given by Lemma 6.1.1. Moreover, we
define V, to be a coefficient system, given by

V, =C(D,).
LEMMA 6.1.3. — The diagram D., is independent up to isomorphism of the choices
made for vy, y and A
Proof. — Suppose that instead we choose vectors v} ; and v; .7 and let D’ be the

corresponding diagram. Since, the spaces pil ; and pil 5 are one dimensional there
exist A\, u € F:, such that
The isomorphism
Aid@pid : py,g ® ﬁxsj — Py,g D ﬁxs’j
induces an isomorphism of diagrams D, = D’ . O
Since D., and D(V,) are canonically isomorphic, to ease the notation, we identify
them. Let w, s, Wy 7 € Cg" (X(0), V) supported on a single vertex g, such that
wy,s(00) =vy,s and w,.5(00) =v,. 7
Let
Wy,J = Wy,J + 3Cgr(X(1), VV) and wxsj =W g + 3Cgr(X(1), VA/)
be their images in Hy(X, V,).

LEMMA 6.1.4. — We have

I

(@x.0, Wy 7w, =M,y

as right H-modules.
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Proof. — Since the restriction maps in V, are injective, Lemma 5.3.2 says that @, j
and wxs 5 are non-zero. We have

<UX,J>E. = (ﬁx,J)Il =M,,; and <Ux5,7>fp = (ﬁxsj)ll = MXSJ
as ‘Hx-modules. Hence w,, ; and W, . 7 are fixed by I; and

(@x,0)F, ® (@ 7)F, = My ®M,. 7
as Hx-modules. Corollary 2.0.7 and Lemma 5.3.4 imply that

_ r—1— - — [ T
Wy gIln=11"w,,;=w .5 and wXS’JTHfH Woo 7 =Wy,J

X, X,
Hence

<wx7JanS,7>Fp = M,
as H-modules. O
LEMMA 6.1.5. — The wvector Wy j (resp. W,.7) generates Ho(X,V,) as a G-
representation.
Proof. — Lemma 5.3.4 implies that 1171w, ; = w,. 7. Hence, it is enough to show

that wy,s and w,. 7 generate CZ"(X(g),V,) as a G-representation. Since, py s and
Py 7 are irreducible K-representations, w, j and Wys T will generate the space

Cg (00, V) = {w € C"(X(0), Vy) : Suppw C oo}

as a K-representation. Since the action of G on the vertices of X is transitive, the
space C¢* (00, Vy) will generate C2"(X gy, V,) as a G-representation. O

COROLLARY 6.1.6. — Let m be a non-zero irreducible quotient of Ho(X,Vy), then w
s a supersingular representation.

Proof. — Lemma 6.1.5 implies that the images of W, ; and W, . 7 in ™ are non-zero.
Hence, by Lemma 6.1.4, 7/t will contain a supersingular module M., then Corollary
2.1.5 implies that 7 is supersingular. O

PROPOSITION 6.1.7. — Let 7 be a smooth representation of G and suppose that there
exists v1,ve € 7 such that

<Kvl>fp = Px,J>» <KU2>fp = szja Hilvl = V2, H71U2 = 1,
then there exists a G-equivariant map ¢ : Ho(X,V,) — 7 such that
O(@y,7) =v1  and ¢(wxs,j) = 1y
where v = {x,x"}.

Proof. — By Lemma 5.4.2 and Theorem 5.5.4, it is enough to construct a morphism
of diagrams D~ — D(K,). However, such morphism is immediate. (]
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COROLLARY 6.1.8. — Let m be a smooth representation of G and suppose that one
of the following holds: x = x°, or p = q, then

Homg (Ho(X,V,), ) = Homy (M., 7).
REMARK 6.1.9. — This fails if ¢ # p and x # x°®. Proposition 6.4.5 gives an example.
Proof. — Lemmas 6.1.4 and 6.1.5 imply that we always have an injection
Homg (Ho(X, V,), ) — Homs (M., 7'1).

By Lemma 2.2.2 M|y, = M, ;& MXS <. Under the assumptions made, Corollaries
2.0.7, 3.1.8 and respectively 4.1.5 give us vectors vi,vs € 7t as in Proposition 6.1.7,

hence the injection is an isomorphism. O
COROLLARY 6.1.10. — Let ® be a smooth representation, and suppose that 't =
M., then

dim Homg (Ho(X, V,),7) = 1.

Proof. — Tt is enough to consider the case p # ¢ and y # x®. Since Corollary 6.1.8
implies the statement in the other cases. Let p = (lel)fp, then pt = 71, Hence

I
Pt = Myl = Myo © My o

as an Hx-module. Proposition 4.2.40 implies that p = py & ® pys,z. The action of
II on 7t is given by Corollary 2.0.7. Now we may apply Proposition 6.1.7 to get
a non-zero homomorphism. So the dimension is at least one. The module M, is
irreducible, and Lemmas 6.1.4 and 6.1.5 imply that the dimension is at most one. [

6.2. Injective envelopes

For the convenience of the reader we recall some general facts about injective
envelopes. Let K be a pro-finite group and let Repx be the category of smooth

F,-representations of . We assume that K has an open normal pro-p subgroup P.

DEFINITION 6.2.1. — Let m € Repyx and let p be a K-invariant subspace of w. We
say that 7 is an essential extension of p if for every non-zero K-invariant subspace 7’
of m, we have ' N p # 0.

Let p € Repx and let Inj be an injective object in Repx. A monomorphism
¢t : p— Inj is called an injective envelope of p, if Inj is an essential extension of ¢(p).

PROPOSITION 6.2.2. — FEvery representation p € Repyx has an injective envelope
t:p<— Injp. Moreover, injective envelopes are unique up to isomorphism.

Proof. — [16], §3.1. O
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LEMMA 6.2.3. — Let Inj be an injective object in Repyx and let v : p — Injp be an
injective envelope of p in Repx. Let ¢ be a monomorphism ¢ : p — Inj, then there
ezists a monomorphism v : Inj p — Inj such that ¢ = o .

Proof. — Since Inj is an injective object there exists ¥ such that the diagram
0——p Lt Injp

¢l

Inj

of K-representations commutes. Since ¢ is an injection Ker 1) Ne(p) = 0. This implies
that Kert = 0, as Inj p is an essential extension of ¢(p). O

LEMMA 6.2.4. — Let p € Repx be an irreducible representation and let ¢ : p — Injp
be an injective envelope of p in Repy, then p — (Injp)¥ is an injective envelope of p
in Repy/p.

Proof. — We note that since P is an open normal pro-p subgroup of K and p is
irreducible, Lemma 2.0.2 implies that P acts trivially on p. Hence, ¢(p) is a subspace
of (Injp)¥. Moreover, (Injp)” is an essential extension of (p), since Injp is an
essential extension of ¢(p).

Let £ : Repy /p — Repg be a functor sending a representation £ to its inflation
L(§) to a representation of K, via K — K/P. Then

Homy /p (&, (Inj p)*) = Homy (£(€), Inj p)

where the isomorphism is canonical. Since, the functor £ is exact and Injp is an
injective object in Repy, the functor Homy /p (*, (Inj p)¥) is exact. Hence, (Injp)¥ is
an injective object in Repy /p, which establishes the Lemma. O

DEFINITION 6.2.5. — Let m € Repy, we denote by soc w the subspace of 7, generated
by all irreducible subrepresentations of .

LEMMA 6.2.6. — Let p € Repy be irreducible, and let v : p — Injp be an injective
envelope of p, then soc(Inj p) = p.

Proof. — Let 7 be any non-zero I invariant subspace of Inj p, which is irreducible as
a representation of K. Since Inj p is an essential extension of ¢(p) and p is irreducible,
we have 7 = 1(p). Hence, soc(Inj p) = ¢(p). O

6.3. Admissibility

Let G be a locally pro-finite group and let Repg be the category of smooth F,-
representations of G.
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DEFINITION 6.3.1. — A representation m € Repg is called admissible, if for every
open subgroup K of G, the space 7 of K-invariants is finite dimensional.

THEOREM 6.3.2. — Suppose that G has an open pro-p subgroup P. A representation
7 € Repg is admissible if and only if 7 is finite dimensional.

Proof — If 7 is admissible, then 77 is finite dimensional. Suppose that 7% is finite
dimensional and let 1 < Inj 1 be an injective envelope of the trivial representation in
Repp, then there exists v, such that the diagram

0 7773 7T|7>

(dim 7%) Inj 1

of P-representations commutes. This implies that (Ker)” = 0, and hence by Lemma
2.0.2, v is injective.

Let K be any open subgroup of G. Since P is an open compact subgroup of G, we
may choose an open subgroup P’ of G such that P’ is a subgroup of P N K and P’
is normal in P. It is enough to show that 77" is finite dimensional. Since 1 is an
injection, it is enough to show that (Inj 1)73/ is finite dimensional. Since P is pro-p
and P’ is a normal open subgroup of P, Lemma 6.2.4 and Proposition 4.0.8 imply
that

(Inj 1) = F,[P/P

which is finite dimensional. O

6.4. Coefficient systems 7,
Let x: H — F; be a character, and let

Px,s — Injpyg, pe7—Injp,. 5

be injective envelopes of py, s and Pys 7 in Repy, respectively. We may extend the
action of K to the action of F* K, so that our fixed uniformiser wp acts trivially. We
get an exact sequence

0 — px,g ® Py 7 — Injpyy ®Injp,. 7
of F'* K-representations. This gives a commutative diagram
0 —— Pxd ® Pye 7 — Injpy s @ I;jpxsj

T T

0 —— (Px.s @ Pro 1) —— Tnjpy s & Injp, . 5
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of F*I-representations. We will show that we may extend the action of F'*I on
(IijX,J @ I’rijXS 77)|F><] to the action of (1), so that we get an object Y, in DZAG,
together with an embedding D~ — Y. Since the categories DIAG and COEF ¢ are
equivalent, this will give us an embedding of coefficient systems V, — Z,. We will
show that the image

my =Im(Ho(X,Vy) — Ho(X,Z,))

is an irreducible supersingular representation of G. All the hard work was done in
Propositions 4.2.37 and 4.2.38, the construction of Y, and the proof of irreducibil-
ity follow from the ’general non-sense’ of Section 6.2. This gives hope that similar
construction might work for other groups.

LEMMA 6.4.1. — Let p be an irreducible representation of K and let
p—Injp
be an injective envelope of p in Repy, then
(13 )l = € clim Homs (. inj )" ) In x
where the sum is taken over all irreducible representations of H, which we identify
with the irreducible representations of I and
p—injp, x—Injx
are the injective envelopes of p in Repr and of x in Rep;, respectively.

Proof. — If x is an irreducible representation of I, then Lemma 2.0.2 implies that
I acts trivially on x. Since I/I; 2 H, the irreducible representations of I and H
coincide. Moreover, since H is abelian, all the irreducible representations of H are
one dimensional. Since, the order of H is prime to p, all the representations of H are
semi-simple. Therefore

(Inj p)" = @myx
X
as a representation of I, where the multiplicity m, of x is given by
m, = dim Hom; (), Inj p).

~

Lemma 6.2.4 implies that (Inj p)% 22 inj p as representations of K/K; = T'. Corollary
4.0.6 implies that inj p is finite dimensional. In particular, m, is finite for every x.
Moreover,

Hom;(x, Inj p) = Homy (x, (Inj p)**) 2 Homp(x, inj p) = Homp (x, (inj p)).
Hence, m,, = dim Homp (x, (inj p)). We consider an exact sequence

0 — (Injp)™ — (Inj )|
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of I-representations. The restriction (Injp)|; is an injective object in Rep;. Lemma
6.2.3 implies that

(Inj p)|1 %N@@mxlnjx
X

for some representation A/. Since Repy is semi-simple and Injx is an essential ex-
tension of y, Lemma 6.2.4 implies that (Inj x)/* = y. By comparing the dimensions
of I -invariants of both sides we get that dim N* = 0 and Lemma 2.0.2 implies that

N =0. (]

LEMMA 6.4.2. — Let x : H — F; be a character. We consider x and x° as one
dimensional representations of I, via I/I; = H. Let

x —Injx, x*<—Injx’
be injective envelopes of x and x° in Rep;y, respectively. Let Vi be the underlying

vector space of Injx and let Vo be the underlying vector space of Injx*. Further, let
v1 and vg be vectors in Vi and Va respectively, such that

(w1)g, = ()", (v2)p = (Ijx)".

Then there exists an action of R(c1) on Vi @ Vi, extending the action of I, so that
our fized uniformiser wr acts trivially and

-1 —1
11 V1 = Vg, 11 Vo = V1.

Proof. — Let t € T be any diagonal matrix, then sts = ITtII-!. Hence
X 2=
as I-representations, where x'' denotes the action of I, on the underlying vector space
of x, twisted by II. So we get an exact sequence
0 — x* — (Inj x)"
of I-representations. T'wisting by II is an exact functor in Rep; and

Hom; (&, (Inj x)™) = Hom, (€7, Inj x)-
Since Inj x is an injective object in Rep;, this implies that (Injx)™ is an injective
object in Rep;. Since Injy is an essential extension of y, (Injx)! is an essential
extension of x®. Since injective envelopes are unique up to isomorphism, there exists

an isomorphism ¢ of I-representations

¢+ (Injx)" = Injx".
The proof of Lemma 6.4.1 shows that the space (Inj )™t is one dimensional. Hence,
after replacing ¢ by a scalar multiple we may assume that ¢(v1) = vo. We may extend

the action of I on V5 and V5 to the action of F*I by making wp act trivially. We
denote the corresponding representations by Injx and Injx?®. For trivial reasons

¢ : (Injx)™ = Injy°.
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We consider the induced representation Indf,(f}) II] x. Let evy and evy be the evalu-

ation maps at 1 and II respectively, then we get an F'* I-equivariant isomorphism:
R(o1) T A
Ind 7 Ijx 2 Vi @ Vs, f— evi(f) + élevn(f)).

The action of (o) on the left hand side gives us the action of K(o1) on Vi @ Va. Let
v € V; and w € Va, then the action of II™! is given by

I (v +w) = ¢~ (w) + ¢(v)
and hence IT"1v; = v9 and [T~ 1wy = v;. O

We will construct a diagram Y. This will involve making some choices. Suppose
that ¢ = p™, let x : H — F: be a character and let v = {x, x*}. We consider an
irreducible representation p, ; of K. Lemma 3.2.2 gives us a pair (r,a), where 7 is
the usual n-tuple and a is an integer modulo ¢—1. Let p, ; — Inj p, s be an injective
envelope of py j in Repy. Let W, be the underlying vector space of Injp,, j. We
may assume that W, depends only on the n-tuple r. Since, if X' = x ® (det)®, then
Py’ = py.s @ (det)® and a simple argument shows that p,/ j < (Injpy,s) ® (det)€ is
an injective envelope of p,s ; in Repg. Let

Y0 = (Wjpy.s & Ijp . 7. Wr & Wp_1_r)

where tilde denotes the extension of the action of K to the action of F* K, so that
wr acts trivially. We are going to construct an action of £(o1) on Y, o|px, which
extends the action of F*I, and this will give us Y,. However, this can be done in a
lot of ways, and not all of them suit our purposes. Lemma 6.2.4 and Remark 4.0.5
imply that
(V1,05 Zinjpys @injp. 5

as K -representations, where on the right hand side we adopt the notation of Propo-
sitions 4.2.37 and 4.2.38. In particular,

(Y5,0)"" 2 (inj py,s @ injp,. 7)1
as Hx-modules. In Lemma 4.2.19 we have worked out a basis consisting of eigenvec-
tors for the action of I of (a model of) (inj py,s ®inj p, . ’7)11, The above isomorphism
gives us a basis B, of (Y, 0)/'. Lemma 6.4.1 gives an F* I-equivariant decomposition:

CWr @ Wpo1-r = D W(D)

beB,

such that {(b) € W(b), for every b € B, and the representation, given by the action

of I on W(b), is an injective object in Rep;, which is also an essential extension of

(¢ (b)>§p. To simplify things we view ( as identification and omit it from our notation.
If x = x® then we pair up the basis vectors as in Proposition 4.2.37:

B'y = {b07b0+b1} U {b€7b1—6}'

{e,1—e}C%l
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If x # x® then we pair up the basis vectors as in Proposition 4.2.38:
B, = {bo,bo} U {b1,b1} U {be, b1} U {b,b1—c}-

{e1—e}cx {e1-e}Cx,_, .

Let {b,0'} be any such pair and suppose that I acts on b via a character v, then I
will act on ¥’, via a character 1*. We denote

W(b,b') =W(b) & W(b).
Lemma 6.4.2 implies that there exists an action of &(c1) on W(b, V'), extending the
action of F*I, such that
O =V, O % =0
This amounts to fixing an isomorphism of vector spaces ¢ : W(b) =2 W(b'), such that
#(b) = b’ and which induces an isomorphism of I representations ¢ : (Inj )™ 2 Inj*.
If x = x*® then Y, o decomposes into F'* I-invariant subspaces:

W(bo, bo + b1) é W(be,b1_¢).
{5»175}g26

If x # x*® then Y, o decomposes into F'* I-invariant subspaces:

W(bo,bo) @W(b1,b1) @  W(b.,b1_.) P W(be,b1_c).
{e,1—e}C>1. {e,1—c}C3!

p—1—mr

Let Y, 1 be a representation of £(¢1), whose underlying vector space is Wy, @Wp_1_r,
and the action of K(o1) extends the action of F*I on each direct summand, as it was
done for W(b, V).

DEFINITION 6.4.3. — Let Y, be an object in DT.AG, given by
Y, = (Y,0,Y,,1,id)
and let Z, be the corresponding coefficient system
7, =C(Y).
REMARK 6.4.4. — The definition of Y., depends on all the choices we have made.

PROPOSITION 6.4.5. — Let x : H — F: be a character and let v = {x, x*}. Suppose
that x = x*, then
HO(XvIv)Il = Mv @ M,
{e,1—e}CXy
as H-modules, where ve = v1_e = {xa=®=V x(asP=1)3Y. Suppose that x # x°,
then
HO(X7I'y)Il =L, @ M, @ M%
{e,1—e}C3! {e1-e}Cx , .

as H-modules, where ve = y1_ = {xa=P717") (ya= P} and 5, = 7,_. =
{Xsoés.‘r’7 (Xsas.‘r’)s}.
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Proof. — In Propositions 4.2.37 and 4.2.38 we have showed that we may extend the
action of H on (inj py,s&inj Py j)ll to the action of H, so that the resulting modules
are isomorphic to the ones considered above. We will show that Hy(X, IW)I ! realizes
this extension. By Proposition 5.3.5 (or alternatively Corollary 5.5.5) we have

Ho(X,Z)|a(00) = Yr.0.  Ho(X,Zy)|a(0r) = Yr

as R(op) and £R(o1)-representations, respectively. Moreover, the diagram

Y’Y,O ; HO(XaI’Y)
d T
Vo1 —— Ho(X,T,)
of F* I-representations commutes. So
(Y%O)Il = Ho(X, I’y)h
as Hx-modules. Lemma 6.2.4 implies that
Ho(X,Z,)"" = (inj py,s @ injp,. 7)"
as Hx-modules, and we know the right hand side from Propositions 4.2.37 and 4.2.38.
It remains to determine the action of Ty. Corollary 2.0.7 implies that for every
v € Ho(X,Z,)" we have
vig = o 'o.
Hence the action of Ty is determined by the isomorphism

Yo1 = Ho(X,Z,)|g(0,)-

Since B, is a basis of (Y,,0)’, it is enough to know how II~! acts on the basis vectors.
Let W(b,b') be one of the £(o1)-invariant subspaces of Y, 1, as before. We have
extended the action of F*I on Y, g|px; to &(o1) so that

O %=V, O % =0
Hence, if we consider B, also as a basis of Ho(X,Z,)"* we have
bIm =V, bTn=0.

Now the statement of the Proposition is just a realization of Propositions 4.2.37 and
4.2.38. O

6.5. Construction

Now we will construct an embedding D, — Y,. Suppose that x = x*®, then we
consider vectors bg and bg + by in (YA,,O)Il. Lemmas 4.2.21 and 4.2.30 imply that

(Kbo)w, = px,s, (K(bo+b1))F, = px.o
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as F'* K-representations. We have constructed the action of £(c1) on Y., 1 so that
I 'bg =bo + b1, I (bo+b1) = bo.

Suppose that y # x°, then we consider vectors by and bg in (YA,,O)Il. Lemmas 4.2.21
implies that

(Kbo)g, = pro, (Kbo)g, = pye.o
as F'* K-representations. We have constructed the action of £(c1) on Y., 1 so that
I by =bo, I ‘b = bo.

Hence, in both cases we get an embedding D, — Y, in the category DI.AG. This
gives us an embedding of G equivariant coefficient systems V, — Z,.

DEFINITION 6.5.1. — Let 7, be a representation of G, given by
Ty = Im(HO(Xv V“/) - HO(sz“/))
THEOREM 6.5.2. — For each v = {x, X}, the representation m, is irreducible and

I contains an H-submodule isomorphic to M.,,. Further, if

supersingular. Moreover, =

then v =~'.

Proof. — Lemma 5.3.2 implies that 7 is non-zero. So by Corollary 6.1.6 it is enough
to prove that 7, is irreducible. To ease the notation we identify the underlying vector
spaces of Y, o and Ho(X,Z,). If x = x° then Lemma 6.1.5 implies that

Ty = (Gbo)w, = (G(bo + b1))F, -

If x # x® then Lemma 6.1.5 implies that
my = (Gbo)g, = (Gho)g, -

This can be rephrased in a different way. By Proposition 5.3.5 we have

Ho(X,Z,)|x = Injpy,s ®Injp,. 5
as K-representations. Lemma 6.2.6 implies that

P, © pye 7 = soc(Ho(X, Iy ) k).
Hence, if x = x° then

(soc(Ho(X,Z,)|k))™ = (bo,bo + b1)g,

and if y # x® then

(soc(Ho(X, Z,)|x))™ = (bo, bo)F,

and hence
my = (G(soc(Ho(X, T,) k)" ), -
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The key point is that (soc(Ho(X,Z,)|k))!* is an H-invariant subspace of Ho(X,Z,)",
moreover

(soc(Ho(X,Z,) )" = M,
as an H-module. This can be deduced either from Lemma 6.1.4 or from the module
computation in Proposition 6.4.5.

Suppose that 7’ is non-zero G-invariant subspace of m, then by Lemma 2.0.2
(7)K1 # 0, and hence soc(r’|x) # 0. We apply Lemma 2.0.2 again to obtain
(soc(7'| k)1t # 0. We have trivially soc(n’|x) C soc(Ho(X,Z,)|x). Hence

0 # (soc(r’|1))1" < (soc(Ho(X,T,)|x )™ 1 ()",
Since the spaces (soc(Ho(X,Z,)|k))* and (7')/+ are H-invariant subspaces of
Ho(X,Z,)"", and (soc(Ho(X,Z,)|k))" is an irreducible H-module, we get
(soc(Ho(X,Z,)[x))" < (x)"

and this implies that 7’ = 7. Hence 7y is irreducible.
Suppose that 7, = 7./, then this induces an isomorphism of vector spaces

¢ : (soc(my| k)™ = (soc(my |x))™.
The argument above implies that both spaces are H-invariant and Corollary 2.0.7
implies that ¢ is an isomorphism of H-modules. Hence,

M, 2= (soc(my|10)) & (soc(ms i) = M.y,
Lemma 2.1.3 implies that v = +'. O
COROLLARY 6.5.3. — The representation Ho(X,Z,) is an essential extension of m,
in Repg. In particular,
7 2= soc(Ho(X, T,),
where soc(Ho(X,Z,)) is the subspace of Ho(X,Z,) generated by all the irreducible

subrepresentations.

Proof. — Let 7 be a non-zero G-invariant subspace of Ho(X,Z,). The proof of The-
orem 6.5.2 shows that (soc(Ho(X,Z,)|x))" is a subspace of 7/*. This implies that
7 is a subspace of m. The last part is immediate. O

6.5.1. Twists by unramified quasi-characters. — Let \ € F: , we define an
unramified quasi-character uy : F* — F: , by
() = A

LEMMA 6.5.4. — Suppose that m, @ px o det = s, then v =" and X\ = £1.

Proof. — Our fixed uniformiser wp acts on 7., @ uy o det, by a scalar A?, and it acts
trivially on 7. Hence, A = +1. By Lemma 2.1.9 M, ® p1_1 o det = M., and hence
by the argument of 6.5.2 M, = M., which implies that v =’ O
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PROPOSITION 6.5.5. — Suppose that ¢ = p, then 7y @ (u—1 o det) = .

Proof. — By Corollary 6.5.3 it is enough to show that Y, ® (u_1odet) =2 Y, in DTAG.
We claim that we always have

Y1 2Y,1® (p—1 odet)

as R(o1)-representations. Since F*I is contained in the kernel of p_; o det, it is
enough to examine the action of II. We recall that the action of &(o1) was defined,
by fixing a certain isomorphism ¢ : W(b) = W(V'), and then letting 1" act on
W(b,b') =W(b) & W(b') by

MY (v 4+ w) = 6 (w) + B().
Let ¢; be an F* [-equivariant isomorphism
W) aWE) ZWh)aWE), v+wr—v—uw,
then, since p_1(det(II71)) = —1, we have
I @ ey (det (1)) (11 (0 + w)) = 67 (w) — $(v) = 12 (1~ (v + w)).

Hence W(b,b') = W(b,V') ® (u—1 o det) as R(o1)-representations and hence Y, ; =
Y, 1 ® (p—1 odet) as R(o1)-representations. Since F'* K is contained in the kernel of
p—1odet we also have Y, o 2 Y, o ® (u—1 odet). However, to define an isomorphism in
DIAG we need to find ¢o : Y, o = Y, o, which is compatible with ¢; via the restriction
maps. If p = ¢ this is easy, since if y = x*, then

Wiy ® Wp_1-r = W(bo) ® W(bo + b1)
and if y # x® then
Wr D Wp—l—r - (W(bo) S W(bl)) 2 (W(EO) @ W(Bl))

and the subspaces that II ‘swaps’ come from different injective envelopes. Note, that
this is not the case if ¢ # p. Hence, if we define

W Wr®Wp1—+ Z2Wr, ®Wp_1—p, vF+wr—v—w

then ¢ = (t0,¢1) is an isomorphism ¢ : Y, =Y, ® (u_; o det). O
LEMMA 6.5.6. — The representations Ho(X,Z,) and my are admissible.
Proof. — Proposition 6.4.5, Lemma 6.3.2. O

Our main result can be summarised as follows.

THEOREM 6.5.7. — Let wr be a fived uniformiser, then there exists at least q(q—1)/2
pairwise non-isomorphic, irreducible, supersingular, admissible representations of G,
which admit a central character, such that wr acts trivially.
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Proof. — There are precisely g(¢ — 1)/2 orbits v = {x,x°}. Then the statement
follows from Theorem 6.5.2 and Corollary 6.5.6. Each 7, admits a central character,
since Hy(X,V,) admits a central character. If X\ € o5, then it acts on Ho(X,V,) by

a scalar
x((5%)) =x((5%))
and wp acts trivially by construction. O
If F = Q, then we may apply the results of Breuil [4].

COROLLARY 6.5.8. — Suppose that F = Qp, then m is independent up to isomor-
phism of the choices made in the construction of Y,. Moreover, if 7 is an irreducible
supersingular representation of G, admitting a central character, then there exists

AE F;, unique up to a sign, and a unique -y, such that
T, @ (o det).
Proof. — In [4] Breuil has determined all the supersingular representations, in the

case of F' = Q,,. As a consequence, by [18] Theorem E.7.2, the functor of I-invariants,
Repy — Mod-H, 7 — 7t induces a bijection between the isomorphism classes of
irreducible supersingular representations with a central character and isomorphism
classes of supersingular right modules of H. In particular, there are precisely p(p—1)/2
isomorphism classes of supersingular representations with a central character, such
that wp acts trivially. By Theorem 6.5.7 our construction yields at least p(p — 1)/2
such representations. Hence 7, does not depend up to isomorphism on the choices
made for Y.

Let m be any supersingular representation of G with a central character. We may
always twist 7 by an unramified quasi-character, so that wp acts trivially. Hence by
above

T =, ® (pa o det)
and by Lemma 6.5.4 and Proposition 6.5.5, v is determined uniquely and A up to
+1. O
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