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INTRODUCTION

This paper is devoted to the proof of existence of global solutions for a nonlinear
Schrödinger equation in two space dimension with small Cauchy data. Consider the
equation

(i∂t +∆)u = F (u,∇xu, u,∇xu)

u|t=0 = εu0

where t ∈ R, x ∈ Rd, F is a polynomial vanishing at least at order 2 at 0 and ε > 0.
The problem of local existence for the above equation with a general nonlinearity

and for small Cauchy data (i.e. small ε) in a convenient Sobolev space has been solved
by Kenig, Ponce and Vega [19]. Hayashi and Ozawa [18] obtained local existence in
one space dimension for large Cauchy data. The case of any space dimension was
treated by Chihara [4]. More recently, Kenig, Ponce and Vega [20] proved the similar
result for a generalized Schrödinger equation, i.e. an equation in which ∆ is replaced
by a more general operator.

We are interested in this paper in global solutions for small enough ε. When the
space dimension is larger or equal to 3, and F vanishes at least at order 3 at 0,
Chihara [5], [6] proved that there is a global solution if the data are small enough in
a (weighted) Sobolev space. He also proved the same result in two space dimensions
under a convenient restriction on the cubic part of the nonlinearity.

For quadratic nonlinearities, and space dimension larger or equal to three, global
existence for small data has been obtained under convenient assumptions on the non-
linearity. The most recent results are due to Hayashi and Hirata [10], Hayashi and
Kato [11], Hayashi, Miao and Naumkin [12]. We refer the reader to the introduction
of [15] for a detailed discussion of these results as well as further references.

The results we have mentioned so far could be qualified of “short range” type
ones. By this, we mean the following: the nonlinearity F can be written as a sum
of products of a nonlinear potential V (u,∇xu, u,∇xu) times u or ∇xu or u or ∇xu.



2 INTRODUCTION

Denote by k ! 1 the order of vanishing of V at the origin. Since linear solutions of the
Schrödinger operator decay in L∞ like t−d/2 when t → +∞, we see that V computed
on such a solution decays like t−kd/2 when t → +∞. We say that F is a short range
perturbation of the linear Schrödinger equation if this quantity is integrable when
t → +∞ i.e. if kd/2 > 1. All the results we have indicated above fall into this
category.

We are interested in this paper in the long range case, more precisely in the limiting
case kd/2 = 1. There are only two such possibilities: either the space dimension d
is 1 and F is cubic, or d = 2 and F is quadratic. The former case has been solved
in general by Hayashi and Naumkin [14]: they found a sufficient condition on the
cubic nonlinearity under which solutions are global for small enough Cauchy data in
a weighted Sobolev space. Their method relies on the use of the smoothing property
of Doi [9]. They could also in [17] reduce a particular quadratic nonlinearity to a
cubic one, thus obtaining global existence in this case as well.

The case of quadratic nonlinearities in two space dimensions is studied by Cohn [7]
for a very specific nonlinearity, and by Hayashi and Naumkin [15], [16] in the special
case of real analytic Cauchy data. Such an assumption allows one to avoid the difficulty
of the loss of one derivative in the right hand side of the equation.

Our aim in this paper is to study this quadratic two dimensional problem when the
Cauchy datum lies in a weighted Sobolev space. We are thus obliged to cope with the
problem of recovering the derivative lost in the right hand side. We state our main
theorem of global existence in the first chapter, together with precise assumption on
the quadratic nonlinearity we consider. Let us just describe here our general strategy
in the special case

(Dt + D2
x)u = u(Dx1u)

where Dt = 1
i ∂t, Dxj = 1

i ∂xj , j = 1, 2, and where the datum is given at t = 1, the
solution being looked for on {t ! 1}. We first take new coordinates T = t, X = x/t

and look for u in terms of a new unknown w(T, X) through u(t, x) = 1
t e

ix2/4tw(t, x/t).
We get for w an equation of form

(0.1)
(

DT +
D2

X

T 2

)
w =

1
T

eiθ(T,X)w

(
DX1

T
+

X1

2

)
w

where θ = TX2/4. Let us take a simplified model forgetting the X1/2 term above:

(0.2)
(

DT +
D2

X

T 2

)
w =

1
T

eiθ(T,X)w

(
DX1

T
w

)
.

Remark that DXj is the translation in the new coordinates of the operator tDxj−xj/2,
which is of constant use in the study of global problems for nonlinear Schrödinger
equations with small Cauchy data. Consequently, smoothness relatively to DX will
play an essential role. The form of the right hand side of (0.2) shows immediately what
are the difficulties we will encounter. First of all, we have a loss of a DX/T derivative
in the nonlinearity. To remove this problem, we shall use the Kato local smoothing
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INTRODUCTION 3

property in the version due to Kenig, Ponce and Vega [20], adapted to our long time
framework. Secondly, the right hand side of the equation contains the oscillating
factor eiθ, which cannot have any DX-smoothness uniformly as time T → +∞. To
treat these oscillating contributions, we introduce spaces of the following type

(0.3) {v ∈ L2; (DX/
√

T )s(DX/T )s′
v ∈ L2}

where s and s′ are integers. The smoothness relatively to DX/T corresponds to what
is gained by the local smoothing property – and to what is lost in the nonlinearity
w

DX1
T w. The smoothness relatively to DX/

√
T should be understood as a weak

version of smoothness relatively to tDx − x/2 for u(t, x). This type of derivative
is natural for the problem because of the form of θ(T, X) = (

√
TX)2/4. To study

products of elements in (0.3), we will need to have s and s′ large enough. There will be
no problem to ensure that for s′, but as DX√

T
eiθ =

√
TX
2 eiθ we cannot expect the right

hand side of (0.2) to be in a space of type (0.3) with a positive s. Consequently, instead
of trying to find directly w in a space of type (0.3), we shall look for w as an expansion
w = v+V1(v)eiθ where v and V1(v) will be essentially in a space (0.3) with large enough
s, s′, and where V1(v) will moreover decay like (

√
T |X |)−2 when

√
T |X | → +∞. When

plugging such an expression in eiθ(T,X)w(DX1
T w), one gets a first contribution of form

eiθ(T,X)v(DX1
T v), and remainders decaying like 〈

√
TX〉−2. One will choose V1(v) as

a function of v such that (DT + D2
X

T 2 )(V1eiθ) equals 1
T v(DX1

T v)eiθ modulo remainders.
This is possible because θ is a non characteristic phase for the operator DT + D2

X
T 2 . In

that way, one gets an equation

(0.4)
(

DT +
D2

X

T 2

)
v =

1
T

R

where R will be a combination of terms eimθ with coefficients decaying at least like
〈
√

TX〉−2. Since 〈
√

TX〉−2eimθ has some smoothness relatively to DX/
√

T uniformly
in T (actually, this expression accepts two DX/

√
T derivatives), this shows that we

have gained some smoothness in comparison with the right hand side of (0.2). Actually
one has to repeat such a method once again, to reduce the equation to (0.4) with a
right hand side R = R(v, DX

T v) with values in a space of type (0.3) with s ∼ 4.
This last equation can then be solved globally using the local smoothing property as
mentioned before.

Our paper is organized as follows. In the first chapter, we state our main theorem
and perform first reductions. The second chapter is devoted to the proof of the local
smoothing inequality that will be essential in the rest of the article. We make use of
Littlewood-Paley decompositions to define convenient Sobolev spaces, and to prove
the smoothing inequality as a consequence of propagation of singularities. Section 3 is
devoted to nonlinear estimates. We make extensive use of the ideas of paradifferential
calculus of Bony [1] to study nonlinear operators acting on the Sobolev spaces defined
in chapter 2. We also prove results concerning products or conjugation of an element
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4 INTRODUCTION

of such a Sobolev space with an oscillatory exponential. Section 4 gives the proof
of the theorem. We perform the method of elimination of oscillatory exponentials
outlined above. The main tool is again paradifferential calculus, which allows us to
decompose the right hand side of the equation as a sum of a nice term, and of a really
oscillating contribution, that we eliminate using the non charactericity of the phase.
Since the true equation is (0.1) rather than (0.2), we use weighted versions of the
Sobolev spaces defined in chapter 2 to treat the contribution coming from X in the
right hand side of (0.1). When all oscillatory contributions have been cancelled, the
proof of the theorem, as well as the description of the asymptotics of the solution,
follow from standard arguments.
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CHAPTER 1

THE NONLINEAR SCHRÖDINGER EQUATION

1.1. Statement of main results

Denote by (t, x) = (t, x1, x2) coordinates on R × R2, Dt = 1
i
∂
∂t , Dxj = 1

i
∂
∂xj

,
Dx = (Dx1 , Dx2). Let us denote by Q1(X0, X1, X2), Q2(X0, X1, X2) two polynomials
in three indeterminates, with complex coefficients, homogeneous of degree 2, satisfying
the following assumption:

(1.1.1) Q1 and Q2 vanish identically along (X1, X2) = (0, 0).

We will be interested in solutions to the following Schrödinger equation

(1.1.2) (Dt + D2
x)u = Q1(u, Dxu) + Q2(u, Dxu).

We want to prove global existence for small Cauchy data. Since (1.1.2) is invariant
under translations relatively to the time variable, we can without any loss of generality
take Cauchy data at t = 1 instead of t = 0, and study solutions for t ! 1. Our initial
datum will have to be smooth enough and will have to decay rapidly enough at infinity.
We thus introduce for M ∈ N

HM (R2) = {u ∈ L2(R2); ∀α,β ∈ N2, |α| + |β| " M, xα∂βx u ∈ L2(R2)}

= {u ∈ HM (R2); ∀ γ ∈ N2, |γ| " M, xγu ∈ HM−γ(R2)}
(1.1.3)

where HM (R2) denotes the usual Sobolev space. Remark that the first characteriza-
tion of HM (R2) implies that if λ is any real number, HM (R2) is invariant under the
transformation

(1.1.4) u ,−→ eiλx2
u.

Let us state our main result:

Theorem 1.1.1. — There is M0 ∈ N with the following properties: for any even
integer M ! M0, there is ε0 > 0 such that for any u0 in the unit ball of HM+4(R2),
and any ε ∈ ]0, ε0[, equation (1.1.2) with Cauchy datum u|t=1 = εu0 has a unique
global solution u ∈ C0([1, +∞[,HM (R2)).
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Remarks

– The problem of local existence for equation (1.1.2) has been solved by Kenig,
Ponce and Vega [19] for small Cauchy data. Local existence for arbitrary Cauchy data
has been proved by Hayashi and Ozawa [18] in one space dimension, by Chihara [4]
in higher space dimension, and by Kenig, Ponce and Vega [20] when ∆ is replaced by
a more general operator. The uniqueness assertion of our theorem follows from the
local uniqueness obtained by these authors (see [20], theorem 1.2). Consequently, we
will have to prove only global existence.

– The number M0 in the statement of the theorem has to be taken large enough
to apply the aforementioned results of uniqueness. For the proof of existence in the
large, we will just have to assume M0 ! 6.

– In the statement of the theorem, there is apparently a loss of smoothness between
the assumptions made on the Cauchy data – u0 ∈ HM+4(R2) – and the conclusion
saying that at time t the solution u(t, ·) belongs to HM (R2). This comes from the fact
that the above spaces are not optimal to solve our problem. An optimal statement,
without any artificial loss of smoothness, will be given in theorem 4.2.1 after several
reductions and the definition of convenient spaces.

The solution of theorem 1.1.1 has the same asymptotic behaviour as linear solu-
tions.

Theorem 1.1.2. — Under the assumptions of theorem 1.1.1 there is a L∞ function
v∞(x), satisfying (1 + |x|)Mv∞(x) ∈ L∞, and such that for any δ ∈ ]0, 1/2[ the
solution u has the following asymptotic behaviour:

(1.1.5)
∥∥∥∥
(
1 +

∣∣∣
x

t

∣∣∣
)M

(
u(t, x) − 1

t
eix2/4tv∞(x/t)

)∥∥∥∥
L∞(dx)

= O(t−1−δ), t −→ +∞.

1.2. First reductions

We look for a solution to (1.1.2) in new coordinates

(1.2.1) T = t, X =
x

t

and take as a new unknown the function w(T, X) related to u through the relation

(1.2.2) u(t, x) =
1
t
eix2/4tw(t, x/t).

Let us set

(1.2.3) θ(T, X) =
TX2

4
, Zj =

DXj

T
+

Xj

2
, j = 1, 2, Z = (Z1, Z2).
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1.2. FIRST REDUCTIONS 7

Then

Dxu(t, x) =
1
T

eiθ(T,X)(Zw)(T, X)|T=t,X=x/t

(Dt + D2
x)u(t, x) =

1
T

eiθ(T,X)
[
DT +

D2
X

T 2

]
w(T, X)|T=t,X=x/t.

(1.2.4)

We deduce from these relations that u is a solution of (1.1.2) if and only if w solves

(1.2.5)
(
DT +

D2
X

T 2

)
w =

1
T

eiθ(T,X)Q1(w, Zw) +
1
T

e−3iθ(T,X)Q2(w, Zw).

Since the transformation u ,→ e−ix2/4u leaves HM+4(R2) invariant, as remarked be-
fore, the initial condition for (1.2.5) will be

(1.2.6) w|T=1 = εw0

with w0 given in a fixed ball of HM+4(R2).
Let us indicate what will be our general strategy to find a global solution to (1.2.5)

for small Cauchy data. If, in the right hand side of (1.2.5), we had no oscillating
factor like eiθ, e−3iθ, a proof similar to the one of [8] for global existence for the non-
linear Klein-Gordon equation would work: namely, we could look for a solution w in
a Sobolev space of smooth enough functions of X , endowed with norms depending
conveniently on T . One would then have to prove L2 inequalities for these Sobolev
norms, and to supplement them by an L∞ estimate deduced from the equation. The
only new difficulty, in comparison with the Klein-Gordon case, would come from the
loss of one derivative in the right hand side, and we would have to compensate for
this loss using the smoothing property of the equation.

The oscillating factors eiθ, e−3iθ prevent us from applying directly such a strategy:
actually, taking DX -derivatives of such exponentials makes appear a TX factor, which
has bad behaviour as T → +∞. In other words, we cannot expect to put the right
hand side of (1.2.5) in any space of smooth functions in X uniformly in T → +∞.
The idea will be to use the fact that the phases θ and −3θ are non-characteristic for
the operator DT + D2

X/T 2. We shall use this property looking for the solution w
as w = v + V1eiθ + V−3e−3iθ where V1, V−3 will be expressions in terms of the new
unknown v. These functions V1, V−3 will have the same smoothness as v, but will
enjoy better decay assumptions when

√
T |X | → +∞, and will be chosen to cancel the

worst contributions to the right hand side of (1.2.5). In that way, we will reduce (1.2.5)
to an equation on v, in which the right hand side will no longer contain any harmful
oscillating factors, and to which the strategy discussed above can be applied.

Remark. — Let us comment on the assumptions on the nonlinearity. The fact that
we exclude nonlinearities of type B(u, Dxu; u, Dxu), where B is a bilinear form, comes
from the fact that they would induce in the right hand side of (1.2.5) terms in e−iθ,
where −θ is a characteristic phase for DT +D2

X/T 2 when T → +∞. Because of that,
we could not get rid of these terms by a normal form method as indicated above. We
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8 CHAPTER 1. THE NONLINEAR SCHRÖDINGER EQUATION

believe that this difficulty is not just a technical one: if one tries to find asymptotic
solutions through an ansatz inspired by the asymptotics of linear solutions, the same
problem appears, preventing one from constructing an asymptotic series as a formal
solution.

The second restriction on the nonlinearity coming from (1.1.1), namely the fact
that terms like u2 or u2 are excluded, is related to the fact that θ has a critical point
at X = 0. Because of that θ is a really oscillating factor only when

√
T |X | → +∞,

and the normal form method alluded to above can be carried out only in a region√
T |X | ! 1. To be able to treat the contribution of the domain

√
T |X | " 1, we need

some extra-vanishing of the non-linearity at X = 0, which is provided by at least
one Z-derivative of w. We have no conjecture on what happens when (1.1.1) is not
satisfied. We remark anyway that in three space dimension Hayashi and Naumkin [13]
have been able to get global solutions for nonlinearities of type u2 or u2.
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CHAPTER 2

LINEAR ESTIMATES

In the rest of that paper, we will only use the coordinates introduced in (1.2.1). We
will thus employ the notation (t, x) instead of (T, X) without any risk of confusion.
The aim of this chapter is to introduce, using dyadic decompositions, the spaces of
distributions in which we will look for the solutions of equation (1.2.5). The first
problem will be to prove a linear estimate in these spaces for solutions of Dt +D2

x/t2,
reflecting the Kato smoothing property. We will do so adapting to our long time
framework the method used by Kenig, Ponce and Vega [20] in the local in time
setting.

2.1. Symbolic calculus and applications

The spaces we shall introduce in the following section will be of uniformly local type.
Their definition will rely on the use of cut-off functions relatively to the x-variable. On
the other hand, to be able to prove smoothing estimates in those spaces, we shall have
to decompose their elements using pseudo-differential partitions of identity invariant
under the hamiltonian flow of the Schrödinger operator. To simplify the study of the
interaction of these different localizations, we first establish some general results. We
shall use throughout the whole paper the notation 〈x〉 = (1 + x2)1/2.

Definition 2.1.1. — A (C0, N0)-temperate weight (for a given positive constant C0

and a given N0 ∈ N) will be a C∞ function A : Rd × Rd → R, (x, ξ) ,→ A(x, ξ),
satisfying for any (x, ξ) ∈ R2d, any (y, η) ∈ R2d

(2.1.1) A(x, ξ) ! 1,
A(x, ξ)
A(y, η)

+
A(y, η)
A(x, ξ)

" C0(〈x − y〉 + 〈ξ − η〉)N0 .

Definition 2.1.2. — Let A be a temperate weight. We shall denote by S(A−∞) the
space of all smooth functions (x, ξ) ,→ a(x, ξ), defined on Rd × Rd, with values in C,
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such that for any N ∈ N, n ∈ N

(2.1.2) |a|A,N,n
def= sup

|α|+|β|!n
sup
(x,ξ)

|A(x, ξ)N∂αx ∂
β
ξ a(x, ξ)| < +∞.

We define in the obvious way the notion of a bounded family of symbols.

Remark. — Since A ! 1, it follows that S(A−∞) ⊂ S0
0,0. Consequently, by the

Calderón-Vaillancourt theorem [2], any pseudo-differential operator with symbol in
S(A−∞) is bounded on L2(Rd), its operator norm being controlled in terms of a
semi-norm (2.1.2) of the symbol.

We will need a result of symbolic calculus. If A and B are two (C0, N0)-temperate
weights, if a ∈ S(A−∞), b ∈ S(B−∞), we denote by a#b the symbol of the operator
a(x, D) ◦ b(x, D), given by the oscillatory integral

(2.1.3) a#b(x, η) =
1

(2π)d

∫
e−iyξa(x, η − ξ)b(x − y, η) dydξ.

In the same way, the adjoint a(x, D)∗ of a(x, D) has symbol a∗(x, η) given by

(2.1.4) a∗(x, η) =
1

(2π)d

∫
e−iyξa(x − y, η − ξ) dydξ.

Theorem 2.1.3. — For any C0 > 0, N0 ∈ N, N ∈ N, n ∈ N, there are C′
N,n > 0

and n′ ∈ N such that the following two statements are true:
(i) For any couple of (C0, N0)-temperate weights A, B and for any a ∈ S(A−∞),

b ∈ S(B−∞), one has ab ∈ S((AB)−∞), a#b − ab ∈ S((AB)−∞) with the following
estimates

|ab|AB,N,n " C′
N,n|a|A,N,n|b|B,N,n

|a#b − ab|AB,N,n " C′
N,n|∂ξa|A,N,n′|∂xb|B,N,n′.

(2.1.5)

(ii) For any (C0, N0)-temperate weight A and for any a ∈ S(A−∞), one has a∗ ∈
S(A−∞) with the estimate

(2.1.6) |a∗ − a|A,N,n " C′
N,n|∂x∂ξa|A,N,n′.

Proof. — (i) The proof of such a result is quite classical. We just have to pay attention
to the fact that C′

N,n depends on C0, N0, N, n but not on the weights themselves. The
first inequality (2.1.5) is clear. To prove the second one we write

(2.1.7) a#b(x, η) − ab(x, η) =
1

(2π)d

∫
e−iyξ(a(x, η − ξ) − a(x, η))b(x − y, η) dydξ

+
1

(2π)d

∫
e−iyξa(x, η)(b(x − y, η) − b(x, η)) dydξ

where both integrals are oscillatory ones. The last contribution is zero, as the coef-
ficient of the exponential does not depend on ξ and vanishes for y = 0. In the first
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2.1. SYMBOLIC CALCULUS AND APPLICATIONS 11

integral, let us write a(x, η − ξ) − a(x, η) = −ξã(x, ξ, η) with

ã(x, ξ, η) =
∫ 1

0
(∂ηa)(x, η − tξ) dt.

We have if |α| + |β| + |γ| " n

|∂αx ∂
β
ξ ∂
γ
η ã(x, ξ, η)| " |∂ηa|A,N,n

∫ 1

0
A(x, η − tξ)−N dt

" |∂ηa|A,N,nA(x, η)−NCN
0 〈ξ〉N0N

(2.1.8)

by (2.1.2), (2.1.1). By integration by parts, the first contribution to the right hand
side of (2.1.7) is

(2.1.9)
1

(2π)d

∫
e−iyξã(x, ξ, η)(Dxb)(x − y, η) dydξ.

Let L1(y, Dξ) = 〈y〉−2(1−y ·Dξ), L2(ξ, Dy) = 〈ξ〉−2(1− ξ ·Dy). Integrating by parts,
we get that (2.1.9) equals

(2.1.10)
1

(2π)d

∫
e−iyξ(tL1(y, Dξ))k(tL2(ξ, Dy))k[ã(x, ξ, η)(Dxb)(x − y, η)] dydξ.

Using (2.1.8), and the analogous inequality

|∂αx ∂βηDxb(x − y, η)| " |∂xb|B,N,nB(x, η)−NCN
0 〈y〉N0N

for |α| + |β| " n, we see that the modulus of (2.1.10) is smaller than

Ck,N

∫
〈y〉−k+N0N 〈ξ〉−k+N0N dydξ(A(x, η)B(x, η))−N |∂ηa|A,N,k|∂xb|B,N,k.

If k is large enough relatively to N , we get the inequality

|a#b − ab|AB,N,0 " CN,k|∂ηa|A,N,k|∂xb|B,N,k

where CN,k depends on N, C0, N0 but not on A nor B. The derivatives of a#b − ab
being estimated in the same way, the conclusion follows.

(ii) The proof is similar.

Example. — We will consider in the following families of weights Aq,δ(x, ξ), or
Aq,δ(t, x, ξ), depending on parameters q ∈ Zd, δ ∈ ]0, 1], and eventually t ∈ [1, +∞[,
satisfying (2.1.1) with C0 and N0 uniform in t, δ, q. We will then consider symbols
aq,δ(x, ξ) or aq,δ(t, x, ξ) satisfying for any α,β ∈ Nd

(2.1.11) |∂αx ∂
β
ξ aq,δ(t, x, ξ)| " Cα,β,Nδ

|α|+|β|Aq(x, ξ)−N

with Cα,β,N independent of q, δ.
In other words, we will have for any α,β ∈ Nd, n ∈ N

(2.1.12) sup
q,t

|∂αx ∂
β
ξ aq,δ(t, ·, ·)|Aq,δ ,N,n = O(δ|α|+|β|), δ −→ 0.

This introduction of δ gives us, according to (2.1.12) and (2.1.5), (2.1.6), a class of
symbols in which we do have a symbolic calculus when δ → 0.
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As an example, let us take φ ∈ C∞
0 (] − 1, 1[d), 0 " φ " 1, such that if we set

φq(x) = φ(x− q) we have
∑

q∈Zd φq(x) ≡ 1. For δ ∈ ]0, 1] put φq,δ(x) = φq(δx). If we
set Dq,δ(x, ξ) = 〈δx− q〉, we see that (2.1.1) is satisfied by this weight with a uniform
(C0, N0). Moreover, φq,δ(x) satisfies (2.1.12) with Aq,δ replaced by Dq,δ.

We will need the following proposition:

Proposition 2.1.4. — Let Aq,δ(t, x, ξ) be a family of weights satisfying (2.1.1) with
a uniform (C0, N0). Assume moreover that there is N1 ∈ N, C1 > 0 with

(2.1.13)
∑

q

Aq,δ(t, x, ξ)−N1 " C1

for any t ! 1, δ ∈ ]0, 1], (x, ξ) ∈ Rd × Rd. Let aq,δ(t, ·) ∈ S(Aq,δ(t, ·)−∞) satisfying
(2.1.12). Assume that there is a positive constant c such that

∑
q |aq,δ(t, x, ξ)|2 ! c

for any t ! 1, δ ∈ ]0, 1], (x, ξ) ∈ Rd × Rd. Let r ∈ [1, +∞]. There is δ0 > 0, C > 0
such that for any δ ∈ ]0, δ0], any interval I ⊂ [1, +∞[, any u ∈ L2(I × Rd) one has
the estimate

C−1
∥∥∥‖ l1 I(t)φp,δ(x)u(t, x)‖L2( dt

t dx)

∥∥∥
*rp

"
∥∥∥∥
(∑

q

‖φp,δ l1 I(t)aq,δ(t, x, D)u(t, x)‖2
L2( dt

t dx)

)1/2
∥∥∥∥
*rp

(2.1.14)

" C
∥∥∥‖ l1 I(t)φp,δ(x)u(t, x)‖L2( dt

t dx)

∥∥∥
*rp

where -rp means the -r norm relatively to p.
If u ∈ C0([1, +∞[, L2(Rd)), one has for any t the inequality

C−1
∥∥‖φp,δ(x)u(t, x)‖L2(dx)

∥∥
*rp

"
∥∥∥∥
( ∑

q

‖φp,δaq,δ(t, x, D)u(t, x)‖2
L2(dx)

)1/2
∥∥∥∥
*rp

(2.1.15)

" C
∥∥‖φp,δ(x)u(t, x)‖L2(dx)

∥∥
*rp

with a constant C independent of t.
The last inequality in (2.1.14), (2.1.15) holds without the assumption

∑
q |aq,δ|2 ! c.

Proof. — Let us write L2
I for L2(dt

t dx) over the interval I. We have

(2.1.16)
∑

q

‖φp,δaq,δ(t, x, D)u‖2
L2

I
=

∫

I

〈∑
q aq,δ(t, x, D)∗φ2

p,δaq,δ(t, x, D)u, u
〉dt

t
.

Let us define

(2.1.17) bq,δ(t, x, ξ) = |aq,δ(t, x, ξ)|2, bδ(t, x, ξ) =
∑

q

bq,δ(t, x, ξ).
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2.1. SYMBOLIC CALCULUS AND APPLICATIONS 13

Then bq,δ ∈ S(A−∞
q,δ ) and satisfies (2.1.12). Moreover, assumption (2.1.13) implies

that bδ ∈ S(1) and satisfies |∂αx ∂
β
ξ bδ(t, x, ξ)| " Cδ|α|+|β|. By assumption, we also

have bδ ! c.
Since aq,δ ∈ S(A−∞

q,δ ), φp,δ ∈ S(D−∞
p,δ ) with Dp,δ = 〈δx−p〉, and since these weights

satisfy condition (2.1.1) with uniform (C0, N0), properties (2.1.5) and (2.1.6) imply
that

(2.1.18) aq,δ(t, x, D)∗φ2
p,δaq,δ(t, x, D) = φp,δbq,δ(t, x, D)φp,δ + Rp,q,δ(t, x, D)

where Rp,q,δ(t, x, ξ) ∈ S((Aq,δDp,δ)−∞). Moreover, since aq,δ(t, x, ξ) and φp,δ satisfy
estimates of type (2.1.12), inequalities (2.1.5), (2.1.6) imply that the semi-norms of
Rp,q,δ are O(δ2) when δ → 0 uniformly in p, q. Summing (2.1.18) in q we get

(2.1.19)
∑

q

aq,δ(t, x, D)∗φ2
p,δaq,δ(t, x, D) = φp,δbδ(t, x, D)φp,δ + Rp,δ(t, x, D)

where, because of (2.1.13), Rp,δ(t, x, ξ) ∈ S(D−∞
p,δ ), the semi-norms of this symbol

being O(δ2) uniformly in p. Define now

Cδ(t, x, ξ) =
[
bδ(t, x, ξ) − c

2

]1/2
.

Since bδ ! c, we get that Cδ(t, x, ξ) ∈ S(1) with estimates |∂αx ∂
β
ξ Cδ| " Cδ|α|+|β|.

Applying again theorem 2.1.3, we see that

(2.1.20) bδ(t, x, D) = Cδ(t, x, D)∗Cδ(t, x, D) +
c

2
Id + Rδ(t, x, D)

where Rδ ∈ S(1), with semi-norms in this space O(δ2), δ → 0. Plugging into (2.1.19)
we get, changing the notation for Rp,δ,

(2.1.21)
∑

q

aq,δ(t, x, D)∗φ2
p,δaq,δ(t, x, D) = φp,δC

∗
δCδφp,δ +

c

2
φp,δφp,δ + Rp,δ(t, x, D)

where Rp,δ(t, x, ξ) ∈ S(D−∞
p,δ ), with semi-norms O(δ2) uniformly in p. The right hand

side of (2.1.16) is thus bounded from below by

(2.1.22)
c

2

∫

I
‖φp,δ(x)u(t, x)‖2

L2(dx)

dt

t
+

∫

I
〈Rp,δ(t, x, D)u, u〉dt

t

and from above by

(2.1.23)
c

2

∫

I
‖φp,δ(x)u(t, x)‖2

L2(dx)

dt

t
+

∫

I
‖Cδφp,δu(t, x)‖2

L2(dx)

dt

t

+
∫

I
〈Rp,δ(t, x, D)u, u〉dt

t
.

Since Cδ(t, x, D) is bounded on L2 uniformly in δ, the conclusion will follow from the
following lemma.
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Lemma 2.1.5. — With the above notations,

(2.1.24)

∥∥∥∥∥

∣∣∣∣

∫

I
〈Rp,δ(t, x, D)u, u〉dt

t

∣∣∣∣
1/2

∥∥∥∥∥
*rp

" Cδ
∥∥∥‖ l1 I(t)φp,δu‖L2( dt

t dx)

∥∥∥
*rp

for a uniform constant C > 0.

Proof. — Write

(2.1.25)
∫

I
〈Rp,δ(t, x, D)u, u〉dt

t
=

∑

*

∑

*′

∫

I
〈φ̃*′,δ(x)Rp,δφ̃*,δ(φ*,δu),φ*′,δu〉

dt

t

where φ̃*,δ = φ̃(δx − -) for a function φ̃ ∈ C∞
0 (Rd), φ̃ ≡ 1 close to Suppφ. Since

Rp,δ(t, x, ξ) ∈ S(D−∞
p,δ ), φ̃*,δ ∈ S(D−∞

*,δ ), we deduce from theorem 2.1.3 that the sym-
bol R*,*

′

p,δ (t, x, ξ) of the operator φ̃*′,δ ◦Rp,δ(t, x, D)◦ φ̃*,δ lies in S((D*,δDp,δD*′,δ)−∞).
Moreover, its semi-norms are O(δ2) when δ → 0 uniformly in p, -, -′ since the same
is true for Rp,δ(t, x, ξ) i.e. we have

(2.1.26) |∂αx ∂
β
ξR*,*

′

p,δ (t, x, ξ)| " Cα,β,Nδ
2〈δx − -〉−N 〈δx − -′〉−N 〈δx − p〉−N

with a constant independent of δ and p, -, -′. We deduce from that the uniform
estimates

(2.1.27) |∂αx ∂
β
ξ R*,*

′

p,δ (t, x, ξ)| " Cα,β,Nδ
2〈-− p〉−N 〈-′ − p〉−N

whence a similar estimate for the L(L2) operator norm of Rp,δ(t, x, D). We deduce
from (2.1.25)

∣∣∣∣

∫

I
〈Rp,δ(t, x, D)u, u〉dt

t

∣∣∣∣
1/2

" Cδ
∑

*

〈p − -〉−N‖ l1 I(t)φ*,δu‖L2( dt
t dx).

The conclusion of the lemma follows from this inequality.

2.2. Spaces of distributions and linear inequality

Let us introduce the dyadic decompositions that will be used in the rest of that
paper. Following for instance [3] chapter 2, we choose ϕ ∈ C∞

0 (Rd − {0}), ϕ ! 0,
Suppϕ ⊂ {ξ; 3/4 < |ξ| < 8/3} and χ ∈ C∞

0 ({ξ; |ξ| < 4/3}), χ ! 0, χ ≡ 1 close to 0
such that

χ(ξ) +
∑∞

0 ϕ(2−jξ) ≡ 1

|j − j′| ! 2 =⇒ Suppϕ(2−j ·) ∩ Suppϕ(2−j′ ·) = ∅

j ! 1 =⇒ Suppχ ∩ Suppϕ(2−j ·) = ∅.

(2.2.1)
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We denote by ∆j , j ∈ N (resp. ∆−1) the Fourier multiplier with symbol ϕ(2−jξ)
(resp. χ(ξ)) so that

∑+∞
j=−1∆j = Id. For j ∈ N, we set

(2.2.2) Sj =
j−1∑

k=−1

∆k = χ(2−jD).

For - ∈ N set Γ*(t) = l1 {2"<t<2"+1}.

Definition 2.2.1. — Let s, s′,α,α′ be real numbers, r ∈ [1, +∞].

(i) One denotes by F s,s′

α,α′,r the space of all distributions u belonging to
L2

loc([1, +∞[,S′(Rd)) such that there is a constant C > 0, a sequence (cjq)jq

indexed by j ! −1, q ∈ Zd, satisfying
∑

j(
∑

q |cjq|r)2/r " 1, such that

(2.2.3) ‖φq(x)∆juΓ*(t)‖L2( dt
t dx)

" Ccjq2(j−*/2)α(1 + 2j−*/2)−s−α2(j−*)α′
(1 + 2j−*)−s′−α′

for any j ! −1, q ∈ Zd, - ∈ N.

(ii) One denotes by Hs,s′

α,α′,r the space of all distributions u belonging to
L∞

loc([1, +∞[,S′(Rd)) such that there is a constant C > 0, a sequence (cjq)jq

indexed by j ! −1, q ∈ Zd, satisfying
∑

j(
∑

q |cjq|r)2/r " 1, such that

(2.2.4) ‖φq(x)∆juΓ*(t)‖L∞(dt,L2(dx))

" Ccjq2(j−*/2)α(1 + 2j−*/2)−s−α2(j−*)α′
(1 + 2j−*)−s′−α′

for any j ! −1, q ∈ Zd, - ∈ N.

(iii) One denotes by Hs,s′

α,α′ the space of all distributions u belonging to
L∞

loc([1, +∞[,S′(Rd)) such that there is a constant C > 0, and a sequence (cj)j

in the unit ball of -2, with

(2.2.5) ‖∆juΓ*(t)‖L∞(dt,L2(dx))

" Ccj2(j−*/2)α(1 + 2j−*/2)−s−α2(j−*)α′
(1 + 2j−*)−s′−α′

for any j ! −1, - ∈ N.

We define the norms in these spaces as the best constant C > 0.

We will use the notation

(2.2.6) ‖cjq‖*2j*rq =
( ∑

j

( ∑

q

|cjq |r
)2/r)1/2

.
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The definition of the above space is clearer if we write it in the following equivalent
way: a distribution u is in F s,s′

α,α′,r if and only if there is a family of L2
loc([1, +∞[)-

functions (cjq(t))jq and C > 0 such that

(2.2.7) ‖φq(x)∆ju(t, ·)‖L2(dx)

" Ccjq(t)
(

2j

√
t

)α(
1 +

2j

√
t

)−s−α (
2j

t

)α′ (
1 +

2j

t

)−s′−α′

,

sup
*

‖cjq(t)Γ*(t)‖L2(dt/t) is in the unit ball of -2j-
r
q.

One has a similar characterization of Hs,s′

α,α′,r replacing in the last condition the
L2(dt/t)-norm by the L∞ one, and of Hs,s′

α,α′ , by

‖∆ju(t, ·)‖L2(dx) " Ccj

(
2j

√
t

)α(
1 +

2j

√
t

)−s−α(
2j

t

)α′ (
1 +

2j

t

)−s′−α′

with (cj)j in the unit ball of -2. The difference between spaces Hs,s′

α,α′ and Hs,s′

α,α′,r

is that the latter imposes some x-decay when |x| → +∞ (for r < +∞). Since
‖∆ju(t, ·)‖2

L2 " C
∑

q ‖φq∆ju(t, ·)‖2
L2 we have an injection Hs,s′

α,α′,2 ⊂ Hs,s′

α,α′ .
The meaning of conditions (2.2.7) is as follows: the weight in the right hand side

corresponds to two types of derivatives: a stronger one Dx/
√

t and a weaker one Dx/t.
The indices s, s′ represent the amount of such derivatives available when 2j/

√
t or 2j/t

go to infinity. The indices α,α′ measure the behaviour when 2j/
√

t 3 1 or 2j/t 3 1.
The weaker derivative Dx/t is the one to which the Kato smoothing property will
apply, uniformly in t, when solving the linear Schrödinger equation. As a last remark,
let us say that the above spaces do not depend on the choice of ϕ,χ,φ.

Let us remark that in definitions (2.2.3), (2.2.4), (2.2.7), we could reverse the orders
of φq and ∆j :

Proposition 2.2.2. — A distribution u belongs to F s,s′

α,α′,r (resp. Hs,s′

α,α′,r) if and
only if there is a family of L2

loc([1, +∞[)-functions (resp. a family of L∞
loc([1, +∞[)-

functions) (cjq(t))jq and C > 0 such that

(2.2.8) ‖∆jφqu(t, ·)‖L2(dx)

" Ccjq(t)
(

2j

√
t

)α(
1 +

2j

√
t

)−s−α (
2j

t

)α′ (
1 +

2j

t

)−s′−α′

with sup* ‖cjq(t)Γ*(t)‖L2(dt/t) (resp. sup* ‖cjq(t)Γ*(t)‖L∞(dt) = ‖cjq‖L∞(dt)) in the
unit ball of -2j-rq.

Proof. — Assume that (2.2.7) is satisfied and let us prove (2.2.8). Choose φ̃ ∈
C∞

0 (Rd), φ̃ ≡ 1 close to Supp φ, ϕ̃ ∈ C∞
0 (Rd − {0}), ϕ̃ ≡ 1 close to Suppϕ,
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χ̃ ∈ C∞
0 (Rd), χ̃ ≡ 1 close to Suppχ, and define φ̃q(x) = φ̃(x − q), ∆̃j = ϕ̃(2−jD),

j ∈ N, ∆̃−1 = χ̃(D). Write

(2.2.9) ∆jφqu =
∑

q′

∑

j′"−1

(∆jφq(x)∆̃j′ φ̃q′(x))(φq′ (x)∆j′u).

It is enough to show that for any N ∈ N, there is CN > 0 with

(2.2.10) ‖∆jφq∆̃j′ φ̃q′‖L(L2) " CN 〈q − q′〉−N2−|j−j′|N

since the assumption (2.2.7) implies that

‖φq′(x)∆j′u(t, x)‖L2(dx)

" C2|j−j′|N0cj′q′(t)
(

2j

√
t

)α(
1 +

2j

√
t

)−s−α (
2j

t

)α′ (
1 +

2j

t

)−s′−α′

for some large enough N0. To prove (2.2.10) we write for any function w

(2.2.11) ∆jφq(x)∆̃j′ φ̃q′ (x)w

=
∑

p

∑

p′

∑

p′′

[φp(D)∆jφq(x)φp′ (D)∆̃j′ φ̃q′ (x)φ̃p′′ (D)](φp′′ (D)w).

Remark that φp(ξ)ϕ(2−jξ) ∈ S(Dp(ξ)−∞) where Dp(ξ) = 〈ξ − p〉, with semi-norms
uniformly controlled in p. In the same way φp′(ξ)ϕ̃(2−j′ξ) ∈ S(Dp′(ξ)−∞), φ̃p′′(ξ) ∈
S(Dp′′(ξ)−∞), φq(x) ∈ S(Dq(x)−∞), φ̃q′(x) ∈ S(Dq′(x)−∞), with uniform control of
semi-norms. By theorem 2.1.3, the operator inside the bracket in the right hand side
of (2.2.11) is given by a symbol in S(Ap,p′,p′′,q,q′(x, ξ)−∞), with

(2.2.12) Ap,p′,p′′,q,q′(x, ξ) = Dp(ξ)Dp′(ξ)Dp′′ (ξ)Dq(x)Dq′ (x),

its semi-norms being controlled uniformly in p, p′, p′′, q, q′. Since (2.2.12) is bounded
from below by c〈p − p′〉1/2〈p − p′′〉1/2〈q − q′〉, and since in the summation (2.2.11),
p (resp. p′) stays of magnitude 2j (resp. 2j′), the fact that the L(L2)-norm of an
operator is bounded by the semi-norms of its symbol implies that

‖∆jφq(x)∆̃j′ φ̃q′ (x)w‖2
L2

" C
∑

p

[ ∑

p′

∑

p′′

2−N |j−j′|〈p − p′〉−N 〈p − p′′〉−N 〈q − q′〉−N‖φp′′(D)w‖L2

]2

" C2−2N |j−j′|〈q − q′〉−2N

∥∥∥∥
∑

p′′

〈p − p′′〉−N‖φp′′(D)w‖L2

∥∥∥∥
2

*2p

where we used almost orthogonality in p. This inequality implies (2.2.10) and con-
cludes the proof.

The reverse implication (2.2.8) ⇒ (2.2.7) is shown in a similar way.

Our main objective is to prove the following version of the Kato smoothing property
in the framework of the spaces introduced in definition 2.2.1.
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Theorem 2.2.3. — Let s, s′,α,α′ be real numbers satisfying

(2.2.13)
α

2
+ α′ < 0, s + α ! 0, s′ + α′ ! 0.

Take v0 ∈ Hs+s′
(Rd), f ∈ F s,s′−1/2

α,α′,1 . Then the solution v of the linear problem
(
Dt +

D2
x

t2

)
v =

1
t
f(2.2.14)

v|t=1 = v0

belongs to Hs,s′

α,α′ ∩ F s,s′+1/2
α,α′,∞ and we have the smoothing inequality

(2.2.15) ‖v‖
Hs,s′

α,α′
+ ‖v‖

F
s,s′+1/2
α,α′,∞

" C[‖v0‖Hs+s′ + ‖f‖
F

s,s′−1/2
α,α′,1

].

The main step in the proof will be to obtain estimates for dyadic frequency cut-offs
of v. For δ ∈ ]0, 1], q ∈ Zd, we use the notation φq,δ(x) = φ(δx− q) introduced before
proposition 2.1.4 and Γ*(t) = l1 {2"<t<2"+1}.

Theorem 2.2.4. — There is δ0 ∈ ]0, 1] and for any δ ∈ ]0, δ0] a positive constant Cδ
such that for any v0, f , v, satisfying the assumptions of theorem 2.2.3, any j ∈ Z,
j ! −1, any - ∈ N

(2.2.16) sup
p

‖Γ*(t)φp,δ(x)∆jv‖L2( dt
t dx)

" Cδ(1 + 2j−*)−1/2‖∆jv0‖L2

+ Cδ(1 + 2j−*)−1/2
*∑

m=0

(1 + 2j−m)−1/2
∥∥∥‖Γm(t)φp,δ∆jf‖L2( dt

t dx)

∥∥∥
*1p

.

The proof of this theorem will be done in several steps. Define first

aq,δ(t, x, ξ) = φq,δ(x + 2ξ(1
t − 1)) = φ(δ(x + 2ξ(1

t − 1)) − q)

Aq,δ(t, x, ξ) = 〈δ(x + 2ξ(1
t − 1)) − q〉.

(2.2.17)

We see that Aq,δ is a family of (C0, N0)-temperate weights, with constants C0, N0

uniform in q ∈ Zd, δ ∈ ]0, 1], and that this family satisfies (2.1.13). Moreover
aq,δ|t=1 = φq,δ(x) and aq,δ ∈ S(A−∞

q,δ ), the semi-norms of these symbols in these
spaces being controlled uniformly in q, δ. More precisely, we have for N ∈ N, n ∈ N

(2.2.18) sup
q

|∂αx ∂
β
ξ aq,δ|Aq,δ ,N,n = O(δ|α|+|β|), δ −→ 0.

The symbols aq,δ are essentially constant along the bicharacteristics of Dt +D2
x/t2, so

that they will enjoy nice commutation properties with this operator. More precisely,
denote

(2.2.19) bq,δ(t, x, ξ) = −(∆φ)
(
δ
(
x + 2ξ

(
1
t − 1

))
− q

)
.
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We have

(2.2.20)
[
Dt +

D2
x

t2
, aq,δ(t, x, D)

]
=
δ2

t2
bq,δ(t, x, D)

whence the equation
(
Dt +

D2
x

t2

)
aq,δ(t, x, D)∆jv =

1
t
aq,δ(t, x, D)∆jf +

δ2

t2
bq,δ(t, x, D)∆jv

aq,δ(t, x, D)∆jv|t=1 = φq,δ(x)∆jv0.
(2.2.21)

The first step of the proof is to get an upper bound for the left hand side of (2.2.16)
in terms of aq,δ(t, x, D)∆jv cut-off in convenient time domains.

Proposition 2.2.5. — Choose ψ ∈ C∞
0 (Rd), ψ ≡ 1 on [−2, 2]d, ψ ! 0, and for

q ∈ Zd, δ ∈ ]0, 1] set ψq,δ(t, ξ) = ψ(2δξ(1
t − 1)− q). Denote by ∆̃j the dyadic cut-offs

introduced at the beginning of the proof of proposition 2.2.2. There is δ0 ∈ ]0, 1] and
C > 0 such that for any δ ∈ ]0, δ0], any j ! −1, any compact interval I ⊂ [1, +∞[,
any v ∈ L2

loc([1, +∞[, L2(dx)) one has

(2.2.22) sup
p∈Zd

‖φp,δ(x)∆jv(t, x)‖2
L2

I
" C sup

p∈Zd

∑

q∈Zd

‖ψq−p,δ(t, D)∆̃jaq,δ(t, x, D)∆jv‖2
L2

I

where L2
I = L2(I, dt

t dx).

To prove this proposition, we shall decompose φp,δ(x)∆jv(t, x) as an almost or-
thogonal sum using (aq,δ)q. Each term of this decomposition will have microlocal
support contained inside Suppφp,δ(x) ∩ Supp aq,δ(t, x, ξ), which will imply a (t, ξ)-
localization, given by ψq−p,δ in the right hand side of (2.2.22). This can be visualized
on the following picture where, at fixed ξ, we represent u = 1

t − 1 as a function of x:

Supp aq,δ

x

u

Suppφp,δ Suppφq,δ

Suppψq−p,δ

The formal proof will use the following lemma.

Lemma 2.2.6. — Let Aq,δ(t, x, ξ) be a family of temperate weights with uni-
form constants (C0, N0), satisfying for some N1 ∈ N, C1 > 0 the inequal-
ity

∑
q Aq,δ(t, x, ξ)−N1 " C1, uniformly in t, δ. Let r ∈ [1, +∞]. Denote

Dq′,δ(x) = 〈δx − q′〉.
Let Rq,q′,δ(t, x, ξ) be a family of symbols of S(A−∞

q,δ Dq′,δ(x)−∞) with semi-norms
in these spaces bounded uniformly in δ ∈ ]0, 1], q, q′ ∈ Zd. There is C > 0 such that
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for any w ∈ L2
loc([1, +∞[, L2(dx)), any compact interval I,

(2.2.23)
∥∥∥
( ∑

q

‖Rq,q′,δ(t, x, D)w‖2
L2

I

)1/2∥∥∥
*r

q′

" C
∥∥‖φq′,δw‖L2

I

∥∥
*r

q′
.

If Rq,δ(x, ξ) is a family in S(A−∞
q,δ ) at fixed t, with uniformly bounded semi-norms,

there is C > 0, and for any w ∈ L2(R2)

(2.2.24)
∑

q

‖Rq,δ(x, D)w‖2
L2 " C‖w‖2

L2 .

Proof. — We decompose w =
∑

p φp,δ(x)w and write

(2.2.25)
∑

q

‖Rq,q′,δ(t, x, D)w‖2
L2

I

=
∑

p,p′,q

∫

I
〈[φ̃p′,δ(x)Rq,q′ ,δ(t, x, D)∗Rq,q′,δ(t, x, D)φ̃p,δ ]φp,δw,φp′,δw〉dt

t
.

By theorem 2.1.3, the operator between brackets Lp,p′

q,q′,δ(t, x, D) has symbol

Lp,p′

q,q′,δ(t, x, ξ) ∈ S(A−∞
q,δ Dq′,δ(x)−∞Dp,δ(x)−∞Dp′,δ(x)−∞)

with uniformly controlled semi-norms. Since for N ! N1,

(2.2.26)
∑

q

Aq,δ(t, x, ξ)−NDq′,δ(x)−2NDp,δ(x)−NDp′,δ(x)−N

" CN 〈q′ − p〉−N 〈q′ − p′〉−N ,

∑
q Lp,p′

q,q′,δ(t, x, ξ) is in S0
0,0 with semi-norms controlled by the right hand side of

(2.2.26), uniformly in δ. We deduce from (2.2.25)
∑

q

‖Rq,q′,δ(t, x, D)w‖2
L2

I
"

∑

p

∑

p′

CN 〈q′ − p〉−N〈q′ − p′〉−N‖φp,δw‖L2
I
‖φp′,δw‖L2

I

from which (2.2.23) follows. One gets (2.2.24) applying the fixed time version of
(2.2.23) to Rq,q′,δ(t, x, ξ) def= φq′,δ(x)Rq,δ(x, ξ) and r = 2.

Proof of proposition 2.2.5. — By proposition 2.1.4, for small enough δ0 we have

(2.2.27) sup
p

‖φp,δ(x)∆jv(t, x)‖2
L2

I
" C sup

p

∑

q

‖φp,δ(x)aq,δ(t, x, D)∆jv‖2
L2

I
.

Remark that if (t, x, ξ) is in the support of φp,δ(x)aq,δ(t, x, ξ) one has δx − p ∈ Q,
δ(x + 2ξ(1

t − 1))− q ∈ Q, where Q is the cube ] − 1, 1[d, whence ψq−p,δ(t, ξ) = 1. We
thus write

(2.2.28) φp,δ(x)aq,δ(t, x, D)∆j = φp,δ(x)aq,δ(t, x, D)(∆̃jψq−p,δ(t, D))∆j .
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The family aq,δ(t, x, ξ) has semi-norms in S(A−∞
q,δ ) uniformly bounded (where Aq,δ is

defined by (2.2.17)) and moreover, for N ∈ N, n ∈ N

(2.2.29) sup
q

|∂αx ∂
β
ξ aq,δ(t, x, ξ)|Aq,δ ,N,n = O(δ|α|+|β|), δ −→ 0.

The family ψq−p,δ(t, ξ)ϕ̃(2−jξ) has semi-norms uniformly bounded in the space of
symbols S(1) = S0

0,0. By theorem 2.1.3 we see, taking (2.2.29) into account,

φp,δ(x)[aq,δ(t, x, D)][∆̃jψq−p,δ(t, D)]

= φp,δ(x)[∆̃jψq−p,δ(t, D)][aq,δ(t, x, D)] + δRq,p,δ(t, x, D)

where Rq,p,δ(t, x, ξ) is in S(A−∞
q,δ Dp,δ(x)−∞) with uniformly bounded semi-norms. We

deduce from (2.2.27) and from lemma 2.2.6 with r = ∞

sup
p

‖φp,δ(x)∆jv‖2
L2

I
" C sup

p

∑

q

‖ψq−p,δ(t, D)∆̃jaq,δ(t, x, D)∆jv‖2
L2

I

+ Cδ2 sup
p

‖φp,δ(x)∆jv‖2
L2

I
.

The conclusion follows taking δ small enough.

Corollary 2.2.7. — With the above assumptions and notations, there is C > 0
such that for any δ ∈ ]0, δ0], - ∈ N, v ∈ L∞

loc([1, +∞[, L2)

(2.2.30) sup
p

‖Γ*(t)φp,δ(x)∆jv(t, x)‖L2( dt
t dx)

" C inf
(
1,

2(*−j)/2

√
δ

)( ∑

q

‖ sup
t

|Γ*(t)F(aq,δ(t, x, D)∆jv)(t, ξ)|‖2
L2(dξ)

)1/2

where we denoted by F the Fourier transform in x.

Proof. — By proposition 2.2.5, the square of the left hand side is smaller than

(2.2.31) C sup
p∈Zd

∑

q

‖Γ*(t)ψq−p,δ(t, D)∆̃jaq,δ(t, x, D)∆jv(t, x)‖2
L2( dt

t dx).

The general term of this sum is bounded by Plancherel by

C

∫
sup

t
|Γ*(t)F(aq,δ(t, x, D)∆jv)(t, ξ)|2 dξ ×

∫
Γ*(t)

dt

t
.

This gives (2.2.30) when 1 " 2(*−j)/2/
√
δ. In the other case, we can always assume

j ! 0. Using that on the support of ψq−p,δ(t, ξ) we have the inequality

|2δξ(1
t − 1) − (q − p)| " K,

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



22 CHAPTER 2. LINEAR ESTIMATES

we estimate the general term of (2.2.31) by
∫

|Γ*(t)ψq−p,δ(t, ξ)ϕ̃(2−jξ)F(aq,δ(t, x, D)∆jv)(t, ξ)|2 dξ
dt

t

" C2*
∫

l1 {|2δξ(u−1)−(q−p)|!K}Γ*(1/u)

× ϕ̃(2−jξ)F(aq,δ(1/u, x, D)∆jv)(1/u, ξ)|2 dξ du

" C
2*−j

δ

∫
sup

t
|Γ*(t)F(aq,δ(t, x, D)∆jv)(t, ξ)|2 dξ

where the last inequality follows from the fact that u stays in an interval of length
K/δ|ξ|, with K independent of p, q, δ, and |ξ| ∼ 2j . This concludes the proof.

The factor 2(*−j)/2 in the right hand side of (2.2.30), represents the gain coming from
the smoothing property of the operator. The next step is to estimate the right hand
side of (2.2.30) using the equation. To simplify notations let us set

vjq = aq,δ(t, x, D)∆jv, fjq = aq,δ(t, x, D)∆jf(2.2.32)

v0
jq = φq,δ∆jv0, rjq = bq,δ(t, x, D)∆jv.

Proposition 2.2.8. — There are δ0 ∈ ]0, 1], C > 0 such that for any δ ∈ ]0, δ0], any
j ! −1, - ∈ N, v ∈ L∞

loc([1, +∞[, L2) one has

(2.2.33)
∥∥∥‖ sup

t
|Γ*(t)v̂jq(t, ξ)|‖L2(dξ)

∥∥∥
*2q

" C

[ ∥∥‖v̂0
jq(ξ)‖L2(dξ)

∥∥
*2q

+
∥∥∥∥
∥∥∥

*∑

m=0

∫
Γm(t)|f̂jq(t, ξ)|

dt

t

∥∥∥
L2(dξ)

∥∥∥∥
*2q

]
.

Proof. — Equation (2.2.21) may be written
(
Dt +

ξ2

t2

)
v̂jq(t, ξ) =

1
t
f̂jq(t, ξ) +

δ2

t2
r̂jq(t, ξ)(2.2.34)

v̂jq(1, ξ) = v̂0
jq(ξ)

whence

v̂jq(t, ξ) = exp(i
ξ2

t
− iξ2)v̂0

jq(ξ)

+ i

∫ t

1
exp

(
iξ2

(1
t
− 1

s

))[1
s
f̂jq(s, ξ) +

δ2

s2
r̂jq(s, ξ)

]
ds

which implies for any ξ, any - ∈ N,

sup
t

|Γ*(t)v̂jq(t, ξ)| " |v̂0
jq(ξ)|+

*∑

m=0

∫
Γm(s)|f̂jq(s, ξ)|

ds

s
+δ2

*∑

m=0

∫
Γm(s)|r̂jq(s, ξ)|

ds

s2
.
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Taking the L2(dξ) norm and the -2q norm, and setting

α*j =
∥∥∥‖ sup

t
|Γ*(t)v̂jq(t, ξ)|‖L2(dξ)

∥∥∥
*2q

a*j =
∥∥‖v̂0

jq‖L2(dξ)

∥∥
*2q

+
∥∥∥∥
∥∥∥

∑

m!*

∫
Γm(s)|f̂jq(s, ξ)|

ds

s

∥∥∥
L2(dξ)

∥∥∥∥
*2q

βj(s) =
∥∥‖r̂jq(s, ξ)‖L2(dξ)

∥∥
*2q

we get the inequality

(2.2.35) α*j " a*j + δ2
*∑

m=0

∫
Γm(s)βj(s)

ds

s2
.

Applying the second and the first inequalities (2.1.15) with r = 2, we have by definition
of rjq , vjq

βj(s) " C‖∆jv(s, ·)‖L2 " C
∥∥‖v̂jq(s, ξ)|‖L2(dξ)

∥∥
*2q

with a constant C independent of s. Plugging into (2.2.35), we get an inequality

(2.2.36) α*j " a*j + Cδ2
*∑

m=0

αmj2−m.

Using that a*j is increasing in -, we deduce from (2.2.36) that if δ is small enough
α*j " 2a*j which is the conclusion.

The last step of the proof is to estimate the right hand side of (2.2.33).

Proposition 2.2.9. — One has the following estimates, for a uniform constant C:

(2.2.37)
∥∥∥∥
∥∥∥

∫
Γm(t)|f̂jq(t, ξ)|

dt

t

∥∥∥
L2(dξ)

∥∥∥∥
*2q

" C inf
[2(m−j)/2

√
δ

, 1
] ∑

p∈Zd

‖Γm(t)φp,δ∆jf‖L2( dt
t dx)

for any m ∈ N, j ! −1.

Proof. — We use the notation ψr,δ(t, ξ) introduced in the statement of proposi-
tion 2.2.6. We also denote by ψ̃r,δ(t, ξ) the function defined like ψr,δ(t, ξ), replacing
ψ by a function ψ̃ ∈ C∞

0 (Rd), ψ̃ ! 0, ψ̃ ≡ 1 on Suppψ. Write

(2.2.38)
∫
Γm(t)|f̂jq(t, ξ)|

dt

t
" C

∑

r∈Zd

∑

j′

∫
Γm(t)|ψr,δ(t, ξ)ϕ(2−j′ξ)f̂jq(t, ξ)|

dt

t
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where ϕ(2−j′ξ) should be read χ(ξ) when j′ = −1. The general term of the above
sum can be estimated by

(2.2.39)
( ∫

ϕ̃(2−j′ξ)ψ̃r,δ(t, ξ)2Γm(t)
dt

t

)1/2

×
(∫

Γm(t)ψr,δ(t, ξ)2ϕ(2−j′ξ)2|f̂jq(t, ξ)|2
dt

t

)1/2
.

By the same computation as in the proof of corollary 2.2.7, the first factor is smaller
than C inf[1, 2(m−j′)/2/

√
δ]. The left hand side of (2.2.37) will be smaller than

(2.2.40)
∑

j′

C inf
[2(m−j′)/2

√
δ

, 1
]

×
∥∥∥

∑

r

‖Γm(t)ψr,δ(t, D)∆j′aq,δ(t, x, D)∆jf‖L2( dt
t dx)

∥∥∥
*2q

.

Let us write

(2.2.41) Γm(t)ψr,δ(t, D)∆j′aq,δ(t, x, D)∆jf

=
∑

*,*′,*′′

∑

p

Kj,j′,r
*,*′,*′′,p,q(t, x, D)(Γm(t)φ*′′,δ(D)φp,δ(x)∆jf)

where

(2.2.42) Kj,j′,r
*,*′,*′′,p,q(t, x, D)

= ∆j′ψr,δ(t, D)φ*,δ(D)aq,δ(t, x, D)∆̃jφ*′,δ(D)φ̃p,δ(x)φ̃*′′,δ(D).

We write

(2.2.43) ‖Γm(t)ψr,δ(t, D)∆j′aq,δ(t, x, D)∆jf‖L2( dt
t dx)

" C

∥∥∥∥
∥∥∥

∑

*′,*′′,p

Kj,j′,r
*,*′,*′′,p,q(t, x, D)(Γm(t)φ*′′,δ(D)φp,δ(x)∆jf)

∥∥∥
L2( dt

t dx)

∥∥∥∥
*2"

since the --sum is an almost orthogonal one. By theorem 2.1.3 and (2.2.42) the symbol
Kj,j′,r
*,*′,*′′,p,q(t, x, ξ) ∈ S(A−∞) where

A =
〈
2δξ(1

t − 1) − r
〉〈
δξ − -

〉〈
δ(x + 2ξ(1

t − 1)) − q
〉〈
δξ − -′〉〈δx − p

〉〈
δξ − -′′

〉

with uniformly controlled semi-norms. This implies that the symbol is in S(1) = S0
0,0

with semi-norms controlled by

(2.2.44) CN 〈2-′′(1
t − 1) − r〉−N 〈-− -′〉−N 〈-− -′′〉−N 〈r − (q − p)〉−N

uniformly in δ ∈ ]0, 1], t ! 1. At fixed t, the L(L2) operator norm of Kj,j′,r
*,*′,*′′,p,q(t, x, D)

is thus smaller than (2.2.44). Moreover, since (2.2.42) implies that - (resp. -′) is of
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magnitude 2j′ (resp. 2j), the 〈-− -′〉−N term of (2.2.44) provides a 2−N |j−j′| factor.
At fixed t, we thus have

(2.2.45)
∑

*′′

∥∥∥
∑

*′,p

Kj,j′,r
*,*′,*′′,p,q(t, x, D)(Γmφ*′′,δ(D)φp,δ(x)∆jf)

∥∥∥
L2(dx)

" CN

∑

*′,*′′,p

〈2-′′(1
t − 1) − r〉−N 〈-− -′〉−N 〈-− -′′〉−N 〈r − (q − p)〉−N

× 2−N |j−j′|‖Γm(t)φ*′′,δ(D)φp,δ(x)∆jf(t, ·)‖L2(dx).

Denote by

kj,j′,r
*,*′′,q(t) =

∥∥∥
∑

*′,p

Kj,j′,r
*,*′,*′′,p,q(t, x, D)(Γmφ*′′,δ(D)φp,δ(x)∆jf)

∥∥∥
L2(dx)

γj
*′′,p(t) = ‖Γm(t)φ*′′,δ(D)φp,δ(x)∆jf(t, ·)‖L2(dx).

(2.2.46)

The norm to estimate in (2.2.40) is by (2.2.43) bounded from above by
∥∥∥∥∥

∑

r

∥∥∥∥
∥∥∥

∑

*′′

kj,j′,r
*,*′′,q(t)

∥∥∥
L2(dt/t)

∥∥∥∥
*2"

∥∥∥∥∥
*2q

.

Using (2.2.45), this last term can be controlled by

(2.2.47)
∥∥∥∥

∑

r

∥∥∥
∑

*′,*′′,p

〈- − -′〉−N 〈-− -′′〉−N 〈r − (q − p)〉−N2−N |j−j′|

×
(∫

〈2-′′(1
t
− 1) − r〉−2N |γj

*′′,p(t)|
2 dt

t

)1/2∥∥∥
*2"

∥∥∥∥
*2q

.

Put

βj
*′′,r,p =

(∫
〈2-′′(1

t
− 1) − r〉−2N |γj

*′′,p(t)|
2 dt

t

)1/2
(2.2.48)

β̃j
r,p = ‖βj

*′′,r,p‖*2"′′ .

We have an upper bound for (2.2.47)

2−N |j−j′|
∥∥∥∥

∑

r

∥∥∥
∑

*′′,p

〈-− -′′〉−N 〈r − (q − p)〉−Nβj
*′′,r,p

∥∥∥
*2"

∥∥∥∥
*2q

" C2−N |j−j′|
∥∥∥

∑

r

∑

p

〈r − (q − p)〉−N β̃j
r,p

∥∥∥
*2q

" C2−N |j−j′|
∑

p

∥∥∥
∑

r

〈r − q〉−N β̃j
r,p

∥∥∥
*2q

" C2−N |j−j′|
∑

p

‖β̃j
r,p‖*2r
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" C2−N |j−j′|
∑

p

(∑

r

∑

*′′

∫
〈2-′′(1

t − 1) − r〉−2N |γj
*′′,p(t)|

2 dt

t

)1/2

" C2−N |j−j′|
∑

p

‖Γmφp,δ(x)∆jf‖L2( dt
t dx).

Going back to (2.2.40) we see that we proved that the left hand side of (2.2.37) is
smaller than

C
∑

j′

inf[2(m−j′)/2/
√
δ, 1]2−N |j−j′|

∑

p

‖Γm(t)φp,δ(x)∆jf‖L2( dt
t dx).

The conclusion of the proposition follows.

Proof of theorem 2.2.4. — One has just to apply corollary 2.2.7 followed by proposi-
tion 2.2.8 and proposition 2.2.9, remarking that we have a bound for ‖‖v̂0

jq(ξ)‖L2(dξ)‖*2q
in terms of ‖∆jv0‖L2 .

Proof of theorem 2.2.3. — From now on, we shall fix δ small enough so that inequality
(2.2.16) of theorem 2.2.4 holds true. We can then, in the left and right hand sides of
(2.2.16), replace φp,δ by φp, loosing a bigger constant in the right hand side. Let us
prove first that ‖v‖

F s,s′+1/2
α,α′,∞

is smaller than the right hand side of (2.2.15). We deduce

from (2.2.16) that for any q

(2.2.49) 2−(j− "
2 )α(1 + 2j− "

2 )s+α2−(j−*)α′
(1 + 2j−*)s′+ 1

2+α′
‖Γ*(t)φq∆jv‖L2( dt

t dx)

" Caj*‖∆jv0‖L22j(s+s′)

+ C
*∑

m=0

bj*m2−(j−m/2)α(1 + 2j−m/2)s+α2−(j−m)α′
(1 + 2j−m)s′−1/2+α′

×
∥∥∥‖Γmφp(x)∆jf‖L2( dt

t dx)

∥∥∥
*1p

with

aj* = 2−j(s+s′+α+α′)+*(α+2α′)/2(1 + 2j−*/2)s+α(1 + 2j−*)s′+α′

bj*m = 2(*−m)(α+2α′)/2(1 + 2j−*/2)s+α(1 + 2j−m/2)−s−α

× (1 + 2j−*)s′+α′
(1 + 2j−m)−s′−α′

.

Since s + α ! 0, s′ + α′ ! 0, we get aj* " C2*(α+2α′)/2 and bj*m " 2(*−m)(α+2α′)/2.
Since α

2 + α′ < 0, we get taking the -2j-∞q norm of (2.2.49)

‖v‖
F

s,s′+1/2
α,α′,∞

" C‖v0‖Hs+s′ + C
*∑

m=0

2(*−m)(α+2α′)/2‖f‖
F

s,s′−1/2
α,α′,1

" C(‖v0‖Hs+s′ + ‖f‖
F s,s′−1/2

α,α′,1
).
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We still have to prove that v ∈ Hs,s′

α,α′ . Using inequality (2.1.15) with r = 2 we get for
any fixed t

‖∆jv(t, ·)‖L2(dx) " C
∥∥∥‖φp∆jv(t, ·)‖L2(dx)

∥∥∥
*2p

" C

∥∥∥∥
∥∥∥‖φpaq(t, x, D)∆jv(t, ·)‖L2(dx)

∥∥∥
*2q

∥∥∥∥
*2p

(2.2.50)

" C
∥∥∥‖F(aq(t, x, D)∆jv)(t, ξ)‖L2(dξ)

∥∥∥
*2q

.

Using notations (2.2.32), for t in the support of Γ*(t), we can bound ‖∆jv(t, ·)‖L2 by
(2.2.33), whence using estimate (2.2.37) the inequality

‖Γ*(t)∆jv(t, ·)‖L2 " C
[
‖∆jv0‖L2 +

*∑

m=0

(1 + 2j−m)−1/2
∥∥∥‖Γm(t)φp∆jf‖L2( dt

t dx)

∥∥∥
*1p

]
.

Arguing as for inequality (2.2.49), we deduce from that

‖v‖
Hs,s′

α,α′
" C

[
‖v0‖Hs+s′ + ‖f‖

F s,s′−1/2
α,α′,1

]
.

This concludes the proof of theorem 2.2.3.
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CHAPTER 3

NONLINEAR ESTIMATES

3.1. Estimates for products

The aim of this section is to study regularity of products in the framework of spaces
F s,s′

α,α′,r and Hs,s′

α,α′,r introduced in definition 2.2.1. Let us define a few more notations:
let χ ∈ C∞

0 (Rd), χ ≡ 1 close to 0.

Definition 3.1.1. — One denotes by H̃s,s′

α,α′,r (resp. H̃
s,s′

α,α′) the space of those v ∈
Hs,s′

α,α′,r (resp. in Hs,s′

α,α′) such that

(3.1.1) (‖φq(x)χ(D/
√

t)v(t, x)‖L∞(dtdx))q ∈ -rq,

(resp.

(3.1.2) χ(D/
√

t)v(t, x) ∈ L∞(dtdx)).

The above definition depends on the choice of χ except in the case α′ > d/2, which
is the only one we will encounter:

Lemma 3.1.2. — Assume α′ > d/2. Then definition 3.1.1 is independent of the
choice of χ. More generally, if ψ(t, ξ) is a smooth function satisfying Suppψ ⊂
{(t, ξ); |ξ| < C

√
t} and |∂βξ ψ(t, ξ)| " Cβt−|β|/2 for any β ∈ Nd, we have for v ∈ H̃s,s′

α,α′,r

(resp. v ∈ H̃
s,s′

α,α′)

(3.1.3) (‖φq(x)ψ(t, D)v‖L∞(dtdx))q ∈ -rq.

(resp.

(3.1.4) ψ(t, D)v ∈ L∞(dtdx).)

If, moreover, α+ 2α′ > 0, then H̃s,s′

α,α′,r = Hs,s′

α,α′,r (resp. H̃
s,s′

α,α′ = Hs,s′

α,α′) and one has
more precisely

(3.1.5) (‖φq(x)tδχ(D/
√

t)v‖L∞(dtdx))q ∈ -rq
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(resp.

(3.1.6) tδχ(D/
√

t)v ∈ L∞(dtdx))

for any δ ∈ [0, min(α2 + α′, α
′

2 − d
4 )[.

Proof. — For v satisfying (3.1.1), write

(3.1.7) φqψ(t, D)v = φqψ(t, D)χ(D/
√

t)v + φqψ(t, D)(1 − χ)(D/
√

t)v.

We shall again denote by φ̃q′ the function φ̃q′(x) = φ̃(x − q′) for φ̃ ∈ C∞
0 (Rd), φ̃ ≡ 1

close to Supp φ. Let us remark that an operator of form Kt
q,q′ = φq(x)◦ψ(t, D)◦φ̃q′ (x)

has a kernel whose modulus is bounded from above by

(3.1.8) Ctd/2(1+
√

t|x−y|)−2N |φq(x)||φ̃q′ (y)| " Ctd/2(1+
√

t|x−y|)−N〈q−q′〉−N

whence
‖Kt

qq′‖L(L∞) " CN 〈q − q′〉−N

‖Kt
qq′‖L(L2,L∞) " CN td/4〈q − q′〉−N .

(3.1.9)

We estimate the first contribution to (3.1.7) by

‖φqψ(t, D)χ(D/
√

t)v‖L∞ "
∑

q′

‖(φqψ(t, D)φ̃q′ )(φq′χ(D/
√

t)v)‖L∞(dtdx)

"
∑

q′

CN 〈q − q′〉−N‖φq′χ(D/
√

t)v‖L∞(dtdx)

(3.1.10)

which shows that this sequence is in -rq because of assumption (3.1.1). The second
contribution to the right hand side of (3.1.7) is estimated at fixed t by

‖φqψ(t, D)(1 − χ)(D/
√

t)v‖L∞

"
∑

q′

∑

j

‖(φqψ(t, D)(1 − χ)(D/
√

t)φ̃q′)(φq′∆jv)(t, ·)‖L∞(dx)

where the j-sum is restricted to indices satisfying C1

√
t < 2j < C2

√
t. By (3.1.9), we

get the upper bound

(3.1.11)
∑

q′

∑

j;2j∼
√

t

2jd/2〈q − q′〉−N‖φq′∆jv(t, ·)‖L2(dx)

"
∑

q′

∑

j;2j∼
√

t

2jd/2〈q − q′〉−Ncjq′ (2j/
√

t)α(2j/t)α
′

for a sequence (cjq′ )jq′ in -2j-
r
q′ using the definition of Hs,s′

α,α′,r. The supremum in t of
this last quantity is smaller than Cc′q with (c′q)q ∈ -rq since α′ > d/2.

Finally, when α + 2α′ > 0, ‖φqχ(D/
√

t)v‖L∞(dx) is bounded from above by the
sum in the right hand side of (3.1.11), extended to 2j < C

√
t i.e by

∑

2j<C
√

t

2j( d
2 +α+α′)t−α/2−α′

cjq " C

tδ
c′q
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for 0 " δ < min[α2 + α′, α
′

2 − d
4 ] and (c′q)q ∈ -r.

The proof for v ∈ H̃
s,s′

α,α′ is similar and simpler.

We will study products of elements of F s,s′

α,α′,r, H
s,s′

α,α′,r using Bony’s paraproducts [1].
Define for u, v ∈ S′(Rd)

(3.1.12) Tuv =
∑

j"1

Sj−1u∆jv.

The series converge in S′(Rd) and each of its terms has Fourier transform supported
inside a ring of size C2j. Moreover, we set

(3.1.13) R(u, v) =
∑

j,j′;|j−j′|!1

∆ju∆j′v

when the above series converges. We will use the same notations when u, v depend
on the parameter t ∈ [1, +∞[. When (3.1.13) has a meaning, one gets Bony’s decom-
position of the product uv:

(3.1.14) uv = Tuv + Tvu + R(u, v).

We will also use notations similar to (3.1.12), (3.1.13) in a slightly more general
framework. Assume we are given constants C1 > 0, C2 > 0 and families of C∞

functions (ϕj(ξ))j∈N, (χj(ξ))j∈N satisfying

Suppϕj(ξ) ⊂ {ξ; C−1
1 2j < |ξ| < C12j}, |∂βξ ϕj(ξ)| " Cβ2−j|β|

Suppχj(ξ) ⊂ {ξ; |ξ| < C22j}, |∂βξ χj(ξ)| " Cβ2−j|β|.
(3.1.15)

We will use the generic notation T̃uv and R̃(u, v) for operators

T̃uv =
∑

j"N1

(χj−N1(D)u)(ϕj(D)v)

R̃(u, v) =
∑

j,j′;|j−j′|!N2

(ϕj(D)u)(ϕj′ (D)v)
(3.1.16)

with N1, N2 ∈ N, with N1 large enough so that the Fourier transform of each contri-
bution to T̃uv be supported inside a ring of size 2j. In the definition of R̃, we also
eventually allow low frequency contributions of type (χ0(D)u)(ϕj′ (D)v), |j′| " N2,
(ϕj(D)u)(χ0(D)v), |j| " N2.

Proposition 3.1.3
(i) Let u ∈ L∞(dt

t dx) and v ∈ F s,s′

α,α′,r (resp. v ∈ Hs,s′

α,α′,r). Then Tuv and T̃uv are
in F s,s′

α,α′,r (resp. Hs,s′

α,α′,r).
(ii) Let sj, s′j ,αj ,α′

j , rj , j = 1, 2 be indices with rj ∈ [1, +∞]. Assume α′
1 >

d/2, s1 4= d. Let u ∈ H̃
s1,s′

1
α1,α′

1,r1
, v ∈ F

s2,s′
2

α2,α′
2,r2

(resp. v ∈ H
s2,s′

2
α2,α′

2
). Then Tuv and
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T̃uv belong to F s,s′

α,α′,r (resp. Hs,s′

α,α′,r1
) where

α = α2 + (α1 + 2α′
1)+, α′ = α′

2,

s = s2 − (d − s1)+, s′ = s′2 − [−s′1 −
d

2
]+,(3.1.17)

1
r

= min[1,
1
r1

+
1
r2

].

Proof
(i) For fixed t we write

(3.1.18) ‖φq(x)∆j(Tuv)(t, ·)‖L2(dx) "
∑

j′ ;|j−j′|!N0

‖φq(x)∆j(Sj′−1u∆j′v)(t, ·)‖L2(dx)

for a large enough integer N0. The general term of the above sum is smaller than
∑

q′

‖(φq∆j φ̃q′ )(Sj′−1uφq′(x)∆j′v)(t, ·)‖L2(dx).

Using that the L(L2) operator norm of the composition φq∆j φ̃q′ is smaller than
CN 〈q − q′〉−N we get for (3.1.18) the upper bound

∑

q′

∑

j′;|j−j′|!N0

CN 〈q − q′〉−N‖Sj′−1u‖L∞‖φq′(x)∆j′v(t, ·)‖L2(dx).

Since ‖Sj′−1u‖L∞ " C‖u‖L∞ the result follows multiplying by a cut-off Γ*(t) and
computing the L2(dt/t) (resp. L∞(dt)) norm.

(ii) To argue in the same way, we need an estimate for quantities like

‖φqSju(t, ·)‖L∞(dx).

Lemma 3.1.4. — Let u ∈ H̃s,s′

α,α′,r with α′ > d/2, s 4= d. We have for any j and any t
the estimate

(3.1.19) ‖φq(x)Sju(t, ·)‖L∞(dx) " cjq(2j/
√

t)(α+2α′)+(1 + 2j/
√

t)−(α+2α′)++(d−s)+

× (1 + 2j/t)[−
d
2−s′]+‖u‖

Hs,s′
α,α′,r

where (cjq)jq is a sequence in -∞j -
r
q.

Proof. — Consider first j, t with 2j <
√

t. When α+ 2α′ " 0, we argue as in (3.1.10)
to obtain

‖φqSju(t, ·)‖L∞(dx) = ‖φqSjχ(D/
√

t)u(t, ·)‖L∞(dx)

"
∑

q′

‖(φqSj φ̃q′)(φq′χ(D/
√

t)u(t, ·))‖L∞(dx)

" CN

∑

q′

〈q − q′〉−N‖φq′χ(D/
√

t)u(t, ·)‖L∞(dx)
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and we use condition (3.1.1) of the definition of H̃s,s′

α,α′,r to get an upper bound in
terms of a -rq sequence. When α+ 2α′ > 0, we write instead

‖φqSju(t, ·)‖L∞(dx) "
∑

k!j−1

‖φq∆ku(t, ·)‖L∞(dx)

"
∑

k!j−1

∑

q′

‖(φq∆̃kφ̃q′)(φq′∆ku)‖L∞(dx)

(3.1.20)

where ∆̃k is such that ∆̃k∆k = ∆k. Since the L(L2, L∞) operator norm of φq∆̃kφ̃q′

is smaller than C2kd/2〈q − q′〉−N we get the upper bound

(3.1.21) C
∑

k!j−1

∑

q′

2kd/2〈q − q′〉−N‖φq′∆ku(t, ·)‖L2

" C
∑

k!j−1

∑

q′

〈q − q′〉−N2kd/2(2k/
√

t)α(2k/t)α
′
ckq′

with (ckq′ )kq′ ∈ -2k-
r
q′ . We write (3.1.21) as (2j/

√
t)α+2α′

djq with

djq =
∑

k

l1 {k!j−1}2k d
2 +k(α+α′)−j(α+2α′)c′kq

with (c′kq)kq in -2k-rq. Since α+ 2α′ > 0,α′ > d/2, (djq)jq is a -∞j -rq sequence.
Consider next the case C

√
t < 2j < Ct. Arguing as in (3.1.20), (3.1.21) we get the

upper bound

‖φqSju(t, ·)‖L∞ " ‖φqχ(D/
√

t)u(t, ·)‖L∞(dx)

+ CN

∑

C
√

t<2k!2j−1

∑

q′

2kd/2〈q − q′〉−N‖φq′∆ku(t, ·)‖L2 .

The first term in the right hand side is smaller than a -rq sequence, uniformly in t, by
definition of H̃s,s′

α,α′,r, and the second one is smaller than

(3.1.22)
∑

q′

∑

k

l1 {C
√

t<2k<2j<Ct}〈q − q′〉−N2kd/2(2k/
√

t)−s(2k/t)α
′
ckq′ .

When s
2−α

′ ! 0, the supremum in t of (3.1.22) is smaller than the sum
∑

k 2k( d
2−α

′)c′kq

for a -2k-rq sequence (c′kq)kq, and so smaller than a -rq sequence since α′ > d/2.
When s

2 − α′ < 0 and d < s, the supremum in t of (3.1.22) is smaller than
∑

k

l1 {k!j−1}2k d
2−(k− j

2 )s+(k−j)α′
c′kq "

∑

k

2
k
2 (d−s)c′kq

which is a -rq sequence. Assume now s
2 − α′ < 0 and d > s. We write (3.1.22) as

(2j/
√

t)d−sdjq with

djq =
∑

k

l1 {C
√

t<2k<2j<Ct}2
(k−j)(d−s)(2k/t)α

′− d
2 c′kq.
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The supremum in t is smaller than C
∑

k l1 {k!j−1}2(k−j)( d
2−s+α′)c′kq which is a -2j-

r
q

sequence. This gives again (3.1.19).
Finally, consider the case Ct " 2j . We estimate

‖φqSju(t, ·)‖L∞ " ‖φqχ(D/t)u(t, ·)‖L∞(dx)

+ CN

∑

Ct!2k<2j

∑

q′

2kd/2〈q − q′〉−N‖φq′∆ku(t, ·)‖L2 .

The first term is estimated by the right hand side of (3.1.19), as easily seen reproducing
the computations of the two preceding cases. We are left with estimating

∑

Ct<2k<2j

2kd/2(2k/
√

t)−s(2k/t)−s′
c′kq " (2j/t)[−

d
2−s′]+

∑

Ct<2k<2j

(2k/
√

t)d−sc′kq

for a -2k-
r
q′ sequence (c′kq)kq . If d − s > 0, the last sum is smaller than (2j/

√
t)d−sc′′jq

for a -2j-rq sequence (c′′jq)jq . If d−s < 0, the supremum in t of that sum is smaller than∑
k 2k(d−s)/2c′kq which is a -rq sequence. In both cases, this gives the upper bound of

(3.1.19).

End of the proof of proposition 3.1.3. — When v ∈ F
s2,s′

2
α2,α′

2,r2
, we estimate the general

term of the right hand side of (3.1.18) by
∑

q′

‖(φq∆j φ̃q′)(φ̃q′Sj′−1u)(φq′∆j′v)(t, ·)‖L2(dx)

" CN

∑

q′

〈q − q′〉−N‖φ̃q′Sj′−1u(t, ·)‖L∞‖φq′∆j′v(t, ·)‖L2(dx).

We just have to apply lemma 3.1.4 to get the conclusion.
When v ∈ H

s2,s′
2

α2,α′
2
, we bound the general term of the right hand side of (3.1.18) by

∑

q′

‖(φq∆j φ̃q′)((φq′Sj′−1u)(∆j′v)(t, ·))‖L2(dx)

" CN

∑

q′

〈q − q′〉−N‖φq′Sj′−1u(t, ·)‖L∞‖∆j′v(t, ·)‖L2(dx).

and we apply again lemma 3.1.4.

We will now prove an estimate for the remainder.

Proposition 3.1.5
(i) Let (s1, s′1,α1,α′

1, r1), (s2, s′2,α2,α′
2, r2) be real numbers satisfying

(3.1.23)
s1 + s2 + s′1 + s′2 > 0, s1 + s2 > α′

1 + α′
2

α1 + α2 + α′
1 + α′

2 < 0, rj ! 1, j = 1, 2.
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Let u ∈ F
s1,s′

1
α1,α′

1,r1
(resp. u ∈ H

s1,s′
1

α1,α′
1
) and v ∈ H

s2,s′
2

α2,α′
2,r2

. Then R(u, v) belongs to

F s,s′

α,α′,r (resp. to Hs,s′

α,α′,r2
) with

s = s1 + s2 − d, s′ = s′1 + s′2 +
d

2

α = α1 + α2 + d, α′ = α′
1 + α′

2 −
d

2
(3.1.24)

1
r

= min[1,
1
r1

+
1
r2

].

(ii) Let us assume instead of (3.1.23)

(3.1.25)
s1 + s2 + s′1 + s′2 > 0, s1 + s2 > α′

1 + α′
2

α1 + α′
1 < 0, α′

2 >
d

2
, rj ! 1, j = 1, 2

and suppose that v ∈ H̃
s2,s′

2
α2,α′

2,r2
. We then have R(u, v) ∈ F s,s′

α1,α′
1,r (resp. R(u, v) ∈

Hs,s′

α1,α′
1,r2

) for the values of s, s′, r given by (3.1.24).

Proof. — We will estimate for u ∈ F
s1,s′

1
α1,α′

1,r1

(3.1.26) φq∆jR(u, v) =
∑

k,k′

|k−k′|!1
k"j−N0

∑

q′

(φq∆j φ̃q′ )[(φ̃q′∆ku)(φq′∆k′v)]

where N0 is a large enough integer. At fixed t, the L2(dx) norm of the general term
of (3.1.26) is bounded from above by

(3.1.27) CN 〈q − q′〉−N2jd/2‖φ̃q′∆ku(t, ·)‖L2(dx)‖φq′∆k′v(t, ·)‖L2(dx).

We multiply this expression by Γ*(t) and compute the L2(dt/t) norm in function of
‖φ̃q′∆kuΓ*(t)‖L2( dt

t dx) and of ‖φq′∆k′vΓ*(t)‖L∞(dt,L2(dx)). By definition of the spaces,
we get an upper bound given by an expression CN 〈q − q′〉−Ndjk*q′ with

(3.1.28) djk*q′ = 2jd/22(k−*/2)(α1+α2)(1 + 2k−*/2)−s1−s2−α1−α2

× 2(k−*)(α′
1+α

′
2)(1 + 2k−*)−s′

1−s′
2−α

′
1−α

′
2ckq′

with (ckq′ )kq′ ∈ -1k-
r
q′ , where we used that |k − k′| " 1. We must show that

(3.1.29)
∑

k"j−N0

djk*q′ " C2(j−*/2)α(1 + 2j−*/2)−s−α2(j−*)α′
(1 + 2j−*)−s′−α′

c′jq′

with (c′jq′ )jq′ in the unit ball of -1j-rq′ ⊂ -2j-
r
q′ , and where (α̃, α̃′) = (α,α′) in case (i),

and (α̃, α̃′) = (α1,α′
1) in case (ii).
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Case j ! -. — We have
∑

k"j−N0

djk*q′ " C
∑

k"j−N0

2jd/22−k(s1+s2+s′
1+s′

2)2*(
s1+s2

2 +s′
1+s′

2)ckq′

" C2−(j−*/2)s−(j−*)s′
c′jq′

(3.1.30)

with (c′jq′ )jq′ ∈ -1j-
r
q′ because of assumptions (3.1.23) or (3.1.25), s and s′ being given

by (3.1.24). This gives (3.1.29) both in cases (i) and (ii).

Case - > j ! -/2. — We have

(3.1.31)
∑

k"j−N0

djk*q′ " C2j d
2−

"
2 (s1+s2)c′*q′

+
∑

k;*>k>j−N0

2jd/22−k(s1+s2−α′
1−α

′
2)2*(

s1+s2
2 −α′

1−α
′
2)ckq′

where the first contribution is given by the sum (3.1.30) taken for k ! - instead of
k ! j − N0, and where (c′*q′)*q′ ∈ -1*-

r
q′ . The right hand side of (3.1.31) is smaller

than

C2−(j−*/2)(s1+s2−d)2(j−*)(α′
1+α

′
2−d/2) × [2(j−*)(s1+s2−α′

1−α
′
2)c′*q′ + cjq′ ]

because of (3.1.23), (3.1.25). The sequence between brackets is smaller than a -1j-rq′

sequence independent of -. This gives the estimate (3.1.29) in cases (i) and (ii),
remembering for the last one that α′

2 > d/2.

Case -/2 > j. — We first treat case (i). We have

(3.1.32)
∑

k"j−N0

djk*q′ " C[2j d
2−

"
2 (s1+s2)c′*q′ + 2j d

2−
"
2 (α′

1+α
′
2)c′′*q′ ]

+
∑

k;*/2>k>j−N0

2jd/22k(α1+α2+α
′
1+α′

2)2−
"
2 (α1+α2+2(α′

1+α
′
2))ckq′

where the first two terms are given by the sum (3.1.31) taken for k ! -/2 instead of
k ! j − N0, and where (c′*q′)*q′ , (c′′*q′)*q′ are in -1*-

r
q′ . Using (3.1.23) we get for the

right hand side of (3.1.32) the estimate

C2(j−*/2)(α1+α2+d)2(j−*)(α′
1+α′

2−d/2)

×
[
2−(j−*/2)(α1+α2+α′

1+α
′
2)2−

"
2 (s1+s2−α′

1−α
′
2)c′*q′(3.1.33)

+2−(j−*/2)(α1+α2+α′
1+α

′
2)c′′*q′ + c̃jq′

]

with (c̃jq′ )jq′ ∈ -1j-
r
q′ . The term between brackets is smaller than a sequence indexed

by (j, q′), independent of -, and belonging to -1j-rq′ . This gives conclusion (3.1.29) in
case (i). In case (ii), we estimate the L2(dx) norm of the general term of (3.1.26)

MÉMOIRES DE LA SMF 91



3.1. ESTIMATES FOR PRODUCTS 37

using (3.1.27) when k ! -/2, and writing

(3.1.34) ‖(φq∆j φ̃q′ )[(φ̃q′∆ku)(φq′∆k′v)](t, ·)‖L2

" C〈q − q′〉−N‖φ̃q′∆ku(t, ·)‖L2‖φq′∆k′v(t, ·)‖L∞

when -/2 > k ! j − N0. The assumption (‖φqχ(D/
√

t)v‖L∞)q ∈ -r2
q implies that

there is (cq′ )q′ ∈ -r2
q′ such that for any k′ with k′ " -/2 + N1, ‖φq′∆k′v‖L∞ " cq′ .

Consequently, if we multiply (3.1.34) by Γ*(t) and compute the L2(dt/t) norm, we
get an upper bound of form CN 〈q − q′〉−Nek*q′ with

ek*q′ = 2(k−*/2)α12(k−*)α′
1ckq′

with (ckq′ )kq′ ∈ -2k-
r
q′ . To finish the proof, we must show that

(3.1.35)
∑

k;*/2>k"j−N0

ek*q′ +
∑

k"*/2

djk*q′

is smaller than the right hand side of (3.1.29) with α̃ = α1, α̃′ = α′
1. The contribution

of the second sum in (3.1.35) is smaller than the first two contributions in the right
hand side of (3.1.32) i.e. to

C2(j−*/2)α12(j−*)α′
1
[
2j(d/2−α′

2)2(j−*/2)(α′
2−α1−α′

1)c̃*q′
]

with (c̃*q′)*q′ ∈ -1*-
r
q′ , and the term between brackets is smaller than a sequence in

-1j-
r
q′ , because of the assumption (3.1.25) α′

2 > d/2,α1 + α′
1 < 0. The first sum in

(3.1.35) is smaller than

C2(j−*/2)α12(j−*)α′
1

[ ∑

k;*/2>k"j−N0

2(k−j)(α1+α′
1)ckq′

]

and the term between brackets is a -2j-rq′ sequence since α1 + α′
1 < 0. This concludes

the proof in the case u ∈ F
s1,s′

1
α1,α′

1,r1
.

To prove (i) and (ii) for u ∈ H
s1,s′

1
α1,α′

1
we write instead of (3.1.26)

φq∆jR(u, v) =
∑

k,k′

|k−k′|!1
k"j−N0

∑

q′

(φq∆j φ̃q′ )[(∆ku)(φq′∆k′v)].

The L2(dx) norm of the general term of the above sum is smaller than

CN 〈q − q′〉−N2jd/2‖∆ku(t, ·)‖L2(dx)‖φq′∆k′v(t, ·)‖L2(dx).

We multiply this expression by Γ*(t) and compute the L∞(dt) norm in function
of ‖∆ku(t, ·)‖L∞(dt,L2(dx)) and of ‖φq′∆k′v(t, ·)Γ*(t)‖L∞(dt,L2(dx)). We get an upper
bound given by (3.1.28) with a sequence (ckq′ )kq′ in -1k-

r2
q′ instead of -1k-

r
q′ . The rest

of the proof is then identical as above.

We will also need:
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Proposition 3.1.6
(i) Let κ1 ∈ N, κ2 ∈ Nd, s, s′,α,α′ be real numbers satisfying

(3.1.36)
s + s′ > 2κ1 + |κ2|, s > 2κ1 + α′

s > 2κ1 + α+ 2α′, α+ α′ < d/2.

Let m ∈ Z∗, r ∈ [1, +∞], and w ∈ F s,s′

α,α′,r (resp. w ∈ Hs,s′

α,α′,r). Then

(3.1.37) R(w, (tDt)κ1(Dx/t)κ2eimθ) ∈ F s−2κ1,s′−κ2
α,α′,r

(resp.

(3.1.38) R(w, (tDt)κ1(Dx/t)κ2eimθ) ∈ Hs−2κ1,s′−κ2
α,α′,r ).

(ii) Let κ1 ∈ {0, 1}, |κ2| = 1, s, s′,α,α′ be real numbers satisfying

(3.1.39)
s + s′ > 2κ1 + 1, s > 2κ1 + α′, s > 2κ1 − 2 + 2(α+ 2α′ + 2)

−d

2
− 1 < α+ α′, 2α+ 3α′ + 1 <

d

2
.

Then if β = 2(α+ α′ + 1), w ∈ F s,s′

α′,α′,r (resp. w ∈ Hs,s′

α′,α′,r) one has

(3.1.40) R(w, (tDt)κ1(Dx/t)κ2eimθ) ∈ F s−2κ1,s′−1
β,α′,r

(resp.

(3.1.41) R(w, (tDt)κ1(Dx/t)κ2eimθ) ∈ Hs−2κ1,s′−1
β,α′,r ).

The same results hold true for R̃ instead of R.

Proof. — We write with f = (tDt)κ1(Dx/t)κ2eimθ

(3.1.42) φq∆jR(w, f)(t, ·) =
∑

k,k′

|k−k′|!1

∑

q′

(φq∆j φ̃q′)((φq′∆kw)(∆k′f)).

We first treat case (i). Remark that since

tDt(eimθ) = m
tx2

4
eimθ =

1
m

[D2
x

t
+ im

]
eimθ

we have
∥∥∥∆k((tDt)κ1

(
Dx

t

)κ2

eimθ)
∥∥∥

L∞(dx)
" C

(
1 +

2k

√
t

)2κ1 (
2k

t

)|κ2|

∥∥∥∆k(tDt)κ1

(
Dx

t

)κ2

eimθ
∥∥∥

L2(dx)
" C

(
2k

t

)d/2 (
1 +

2k

√
t

)2κ1 (
2k

t

)|κ2|

.

(3.1.43)

This shows in particular that it is enough to prove (3.1.37), (3.1.38) in the special
case κ1 = κ2 = 0, to which one can reduce changing the values of s, s′. We deduce
from (3.1.42) that for p = 2 (resp. p = ∞)

(3.1.44) ‖φq∆jR(w, f)Γ*(t)‖Lp( dt
t ,L2(dx)) " C

∑

q′

〈q − q′〉−Ndj*q′
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with

(3.1.45) dj*q′ =
∑

k,k′

j−N0!k<*−j
|k−k′|!1

2j d
2 ‖φq′Γ*(t)∆kw‖Lp( dt

t ,L2(dx))‖∆k′fΓ*(t)‖L∞(L2)

+
∑

k,k′

k"j−N0
k"*−j

|k−k′|!1

‖φq′Γ*(t)∆kw‖Lp( dt
t ,L2(dx))‖∆k′fΓ*(t)‖L∞(dtdx).

We estimate (3.1.45) in the following cases:

Case j ! -. — In this case, only the second sum in (3.1.45) remains. It is bounded
from above by

∑

k"j−N0

2−(k−*/2)s−(k−*)s′
ckq′ " C2−(j−*/2)s−(j−*)s′

c′jq′

for -2-r sequences (ckq′ )kq′ , (c′jq′ )jq′ , since s+s′ > 0. This gives the needed conclusion.

Case - > j ! -/2. — Again, only the second sum of (3.1.45) contributes. We get the
upper bound

*∑

k=j−N0

2−(k−*/2)s+(k−*)α′
ckq′ + 2−*s/2c′*q′

= 2−(j−*/2)s+(j−*)α′
[ *∑

k=j−N0

2−(k−j)(s−α′)ckq′ + 2(j−*)(s−α′)c′*q′

]

for -2-r sequences (ckq′ )kq′ , (c′*q′)*q′ , and since s > α′, the expression between brackets
is a -2j-rq′ sequence, which gives the result.

Case -/2 > j. — The first sum in (3.1.45) is bounded from above, using (3.1.43), by

*/2∑

k=j−N0

2jd/22(k−*/2)α+(k−*)(α′+d/2)ckq′ +
*−j∑

k=*/2

2jd/22−(k−*/2)s+(k−*)(α′+d/2)ckq′

= 2(j−*/2)α+(j−*)α′
[ */2∑

k=j−N0

2(j−k)(d/2−α−α′)+(k−*/2)dckq′

+
*−j∑

k=*/2

2(j+k−*)(d/2−α−α′)+(k−*/2)(α+2α′−s)ckq′

]

and since d/2 > α+α′, s > α+2α′, the term between brackets is smaller than a -2j-rq′

sequence independent of -. This gives the wanted estimate. We still have to study
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the contribution to the second sum in (3.1.45). We get an upper bound

C2(j−*/2)α+(j−*)α′
[ *∑

k=*−j

2−(j+k−*)(s−α′)+(j−*/2)(s−α−2α′)ckq′

+
∑

k>*

2−(k−*)(s+s′)+(j−*/2)(s−α−2α′)−j(s−α′)ckq′

]
.

Since s > α′, s > α + 2α′, s + s′ > 0, the term between brackets is in -2j-
r
q′ . This

concludes the proof of the proposition in case (i).
To treat case (ii), let us remark first that assumption (3.1.39) implies the first

two relations (3.1.36). Moreover, conclusions (3.1.40), (3.1.41) coincide with (3.1.37),
(3.1.38) when the frequency j in the left hand side of (3.1.44) satisfies j ! -/2. Since,
in case (i), the estimates of (3.1.44) when j ! -/2 used only the first two relations
(3.1.36), we see that we just need to study the case j < -/2. We can also reduce to
κ1 = 0, replacing s by s − 2κ1. Using (3.1.43) with |κ2| = 1, we estimate the first
sum in (3.1.45) by

2(j−*/2)β+(j−*)α′
[ */2∑

k=j

2(k−*/2)(α+α′+ d
2 +1)2−(j−*/2)(2α+3α′+1− d

2 )2−jckq′

+
*−j∑

k=*/2

2(α′+ d
2 +1−s)(k+j−*)2(j−*/2)(s+2−2(α+2α′+2))2−jckq′

]
.

Since by (3.1.39), α + α′ + d
2 + 1 > 0 and 2α+ 3α′ + 1 − d

2 < 0, the first sum inside
the bracket is a -2j-rq′ sequence. When the coefficient of (k + j − -) in the second sum
is strictly positive, we also get that this sum is a -2j-

r
q′ sequence since, by (3.1.39),

s > −2 + 2(α + 2α′ + 2). When the coefficient of (k + j − -) is non-positive, we get
for this sum an upper bound

(3.1.46) C2(j−*/2)( d
2−1−2α−3α′−δ)2−jc′*q′

with (c′*q′)*q′ ∈ -2*-
r
q′ , δ > 0 when the coefficient of k + j − - is zero, δ = 0 otherwise.

Since d
2 − 1− 2α− 3α′ > 0, we see that the supremum in - > 2j of (3.1.46) is in -2j-rq′ .

Let us estimate now the second sum in (3.1.45): using (3.1.43), we get the estimate

2(j−*/2)β+(j−*)α′
[ *∑

k=*−j

2−(k−*)(s−1−α′)2−(j−*/2)(2(α+2α′+2)−s−2)2−j(s−α′)ckq′

+
+∞∑

k=*

2−(k−*)(s+s′−1)2(j−*/2)(s+2−2(α+2α′+2))2−j(s−α′)ckq′

]
.

When s − 1 − α′ > 0, the first sum is smaller than

2−(j−*/2)(2(α+2α′+2)−s−2)2−jc′*−j,q′
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with (c′*q′)*q′ ∈ -2*-
r
q′ , so smaller than a -2j-rq′ sequence using assumption (3.1.39) and

j " -/2. When s − 1 − α′ " 0, we get an upper bound

2(j−*/2)(s+2−2(α+2α′+2))2−j(s−α′)+jδc*q′ ,

with δ > 0 arbitrarily small, which gives again a -2j-rq′ upper bound using s > α′. For
the second sum, we have s + s′ > 1, whence again an upper bound in terms of a -2j-rq′

sequence.

We want to deduce from the preceding results a statement concerning products. Let
us set the following definition.

Definition 3.1.7. — Let s, s′,α,α′ be real numbers, r ∈ [1, +∞], M ∈ N. Denote
by 1

r = min[1, 1
r + 1

2 ]. We set

Es,s′

α,α′,r = Hs,s′

α,α′,r ∩ F s,s′+1/2
α,α′,r , Es,s′

α,α′,r = Hs,s′

α,α′ ∩ F s,s′+1/2
α,α′,r

Ẽs,s′

α,α′,r = H̃s,s′

α,α′,r ∩ F s,s′+1/2
α,α′,r , Ẽ

s,s′

α,α′,r = H̃
s,s′

α,α′ ∩ F s,s′+1/2
α,α′,r

(3.1.47)

Es,s′

α,α′,r(M) = {u ∈ Es,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, xγu ∈ Es,s′−|γ|
α,α′,r }

Es,s′

α,α′,r(M) = {u ∈ Es,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, xγu ∈ Es,s′−|γ|
α,α′,r }

(3.1.48)

Ẽs,s′

α,α′,r(M) = {u ∈ Ẽs,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, xγu ∈ Ẽs,s′−|γ|
α,α′,r }

Ẽ
s,s′

α,α′,r(M) = {u ∈ Ẽ
s,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, xγu ∈ Ẽ
s,s′−|γ|
α,α′,r }.

(3.1.49)

Corollary 3.1.8. — Let s, s′,α,α′,σ1,σ2,σ′
1,σ

′
2 be real numbers, M ∈ N, λ ∈ R+

a parameter, satisfying

(3.1.50)
α′ > d/2, s > α′ +

σ1 + σ2

2
, M > s′ − λ+

d

2
σj ! 0, s − σj 4= d, σ′

j ∈ [0, 1], j = 1, 2, s ! d.

(i) Assume moreover

(3.1.51) −(2α′ + 1) < α < −(α′ + 1).

Then if γ ∈ Nd, |γ| " 2M − d − 1, u1 ∈ Ẽ
s−σ1,s′−σ′

1
α+2,α′,∞ (M), u2 ∈ Ẽ

s−σ2,s′−σ′
2

α,α′,∞ (M) and if

(3.1.52) s + s′ >
σ1 + σ2

2
+
σ′

1 + σ′
2

2
+

|γ|
2

+
d

2

we have that xγu1u2 ∈ Ẽs,s′(γ)
β,α′,1 where

ŝ = s − σ1 − σ2, β = 2(α+ α′ + 1)(3.1.53)

ŝ′(γ) = s′ − max(σ′
1,σ

′
2) − [1 + λ− s′ + |γ| + δ +

d

2
]+

where δ > 0 is arbitrarily small.
(ii) Assume (3.1.50), (3.1.52) and

(3.1.54) α+ α′ < 0.

Then if u1 ∈ Ẽ
s−σ1,s′−σ′

1
α,α′,∞ (M), u2 ∈ Ẽ

s−σ2,s′−σ′
2

α,α′,∞ (M), one has xγu1u2 ∈ Ẽs,s′(γ)
α,α′,1 .
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We prove first:

Lemma 3.1.9. — Let u ∈ Ẽ
s,s′

α,α′,r with xγu ∈ Ẽ
s,s′−|γ|
α,α′,r for |γ| " d + 1. Then for any

δ > 0, u ∈ Ẽs,s′−d−δ
α,α′,1 .

Proof. — Write for q ∈ Zd, - ∈ N

‖φq∆juΓ*(t)‖L∞(dt,L2(dx)) " C〈q〉−d−1
∑

|γ|!d+1

‖xγφq∆juΓ*(t)‖L∞(L2)

" C〈q〉−d−1
∑

|γ|!d+1

‖∆̃j,γ(xγu)Γ*(t)‖L∞(L2)

(3.1.55)

where ∆̃j,γ is a family of Fourier multipliers defined by a cut-off satisfying conditions
(3.1.15). If we use (2.2.5) for u and xγu (replacing s′ by s′ − |γ|) in the right hand
side of (3.1.55), and then interpolate with (2.2.5), we obtain that u ∈ Hs,s′−d−δ

α,α′,1 .

The fact that u ∈ F
s,s′+ 1

2−d−δ
α,α′,1 is proved in the same way. One proves similarly that

‖φqχ(D/
√

t)u‖L∞ " C〈q〉−d−1. This concludes the proof.

Proof of corollary 3.1.8. — We will prove at the same time assertions (i) and (ii). We
set α̃ = α+ 2 in case (i) and α̃ = α in case (ii). We decompose

(3.1.56) u1u2 = Tu1u2 + Tu2u1 + R(u1, u2).

Let γ ∈ Nd, |γ| " 2M − d − 1. If |γ| " M − d − 1, we remark using notation (3.1.16)
that xγTu1u2 may be written as a linear combination of expressions of type T̃(xγ′u1)u2

with |γ′| " |γ|. Actually, arguing by induction, only the case |γ| = 1 has to be
considered. One then writes

xTu1u2 =
∑

j"1

([x, Sj−1]u1)(∆ju2) + T(xu1)u2

and remarks that [x, Sj−1] = χj(D) for a function χj(ξ) satisfying the second condi-
tion (3.1.15).

By assumption, we have

(3.1.57) xγ
′
xγ

′′
u1 ∈ Ẽ

s−σ1,s′−σ′
1−|γ′|−|γ′′|

α,α′,∞

for |γ′′| " d + 1. By lemma 3.1.9, we deduce xγ
′
u1 ∈ Ẽ

s−σ1,s′−σ′
1−|γ′|−d−δ

α,α′,1 ⊂
H̃

s−σ1,s′−σ′
1−|γ′|−d−δ

α,α′,1 for any δ > 0. We apply proposition 3.1.3 (ii) and get

(3.1.58) xγTu1u2 ∈ E
s−σ2−(d−s+σ1)+,s′−σ′

2−[−s′+σ′
1+|γ|+δ+d

2 ]+
α+(α+2α′)+,α′,1 .

Since s ! d, σ′
1 ∈ [0, 1], σ1 ! 0 and, in case (i), α+(α̃+2α′)+ = α+(α+2α′+2)+ ! β,

we see that this last space is contained inside Es,s′(γ)
β,α′,1 in case (i), and in Es,s′(γ)

α,α′,1 in case
(ii). When |γ| ! M − d, we decompose γ = γ1 + γ2 with |γ1| = M − d − 1, |γ2| " M
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and write xγTu1u2 as a linear combination of terms T̃
(xγ′

1u1)
(xγ

′
2u2) with |γ′1| " |γ1|,

|γ′2| " |γ2|. We get that xγTu1u2 is then inside

(3.1.59) E
s−σ2−(d−s+σ1)+,s′−σ′

2−|γ2|−[−s′+σ′
1+|γ1|+δ+ d

2 ]+
α+(α+2α′)+,α′,1 .

Since

|γ2| + [−s′ + σ′
1 + |γ1| + δ +

d

2
]+ " [−s′ + λ+ 1 + |γ| + δ +

d

2
]+

as −s′ + λ+ 1 + |γ1|+ d
2 > 0 by (3.1.50), we get that (3.1.59) is contained in Es,s′(γ)

β,α′,1

in case (i) and in Es,s′(γ)
α,α′,1 in case (ii).

The proof that xγTu2u1 belongs to Es,s′(γ)
β,α′,1 (resp. Es,s′(γ)

α,α′,1 ) in case (i) (resp. in
case (ii)) is similar: one has just to replace in (3.1.58), (3.1.59) the first lower index
by α̃+ (α+ 2α′)+, which is larger than β (resp. α) in case (i) (resp. case (ii)).

Let us study R(u1, u2). For |γ| " 2M − d − 1, we write xγR(u1, u2) as a linear
combination of terms of type R̃(xγ1u1, xγ2u2) with |γ1|+ |γ2| " |γ|, |γ1| " M − d − 1,

|γ2| " M . We will thus have xγ2u2 ∈ Ẽ
s−σ2,s′−σ′

2−|γ2|
α,α′,∞ and by lemma 3.1.9 xγ1u1 ∈

Ẽ
s−σ1,s′−σ′

1−|γ1|−d−δ
α,α′,1 ⊂ H̃

s−σ1,s′−σ′
1−|γ1|−d−δ

α,α′,1 . In case (i), we apply (i) of proposi-
tion 3.1.5. We check that for δ > 0 small enough,

2s + 2s′ − (σ1 + σ2) − (σ′
1 + σ′

2) − d − δ − |γ| > 0

2s − (σ1 + σ2) > 2α′(3.1.60)

2(α+ α′ + 1) < 0

because of assumptions (3.1.50), (3.1.51), (3.1.52), i.e. all conditions (3.1.23) are sat-
isfied. Consequently R̃(xγ1u1, xγ2u2) belongs to

E
2s−(σ1+σ2)−d,2s′−(σ′

1+σ
′
2)−|γ|−δ−d

2
2α+2+d,2α′−d/2,1

which is contained, since s ! d and α′ > d/2, inside Es,s′(γ)
β,α′,1 . This concludes the proof

of the fact that xγu1u2 ∈ Ẽs,s′(γ)
β,α′,1 in case (i) since (3.1.51) implies β2 + α′ > 0 whence

Ẽs,s′(γ)
β,α′,1 = Es,s′(γ)

β,α′,1 by lemma 3.1.2.
In case (ii), one has to check (3.1.25) to apply proposition 3.1.5 i.e. to verify condi-

tions (3.1.60) with the last inequality replaced by α+ α′ < 0, α′ > d/2. This follows
again from (3.1.50), (3.1.52), (3.1.54), and implies that R̃(xγ1u1, xγ2u2) ∈ Es,s′(γ)

α,α′,1 .
To conclude the proof of the corollary, we still have to get the L∞ estimate involved

in the definition of Ẽs,s′(γ)
α,α′,1 i.e. we must show that if |γ| " 2M−d−1 and χ ∈ C∞

0 (Rd),
Suppχ ⊂ B(0, 1),

(3.1.61) (‖φq(x)χ(D/
√

t)(xγu1u2)‖L∞(dtdx))q ∈ -1q.
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Consider A(t, D) =
∑

k;2k>10
√

t∆k and split γ = γ1 + γ2, with the inequalities
|γ1| " M − d − 1, |γ2| " M . We have

(3.1.62) φq(x)χ(D/
√

t)((xγ1u1)A(t, D)(xγ2u2))

=
∑

k,k′

|k−k′|!N0

2k>10
√

t

φq(x)χ(D/
√

t)[∆k′ (xγ1u1)∆k(xγ2u2))].

for a large enough integer N0. The general term in the sum (3.1.62) may be written

(3.1.63)
∑

q′

φq(x)χ(D/
√

t)φ̃q′ [φq′∆k′(xγ1u1)∆k(xγ2u2)].

For fixed t, the L∞(dx) norm of (3.1.63) is smaller than

(3.1.64) CN

∑

q′

〈q − q′〉−N td/2‖φq′∆k′(xγ1u1)(t, ·)‖L2‖∆k(xγ2u2)(t, ·)‖L2 .

The L∞ norm of (3.1.62) is thus smaller than the q′ sum of CN 〈q − q′〉−N times

∑

k;
√

t<2k<t

td/2

(
2k

√
t

)−2s+(σ1+σ2) (
2k

t

)2α′

ckq′

+
∑

k;t<2k

td/2

(
2k

√
t

)−2s+(σ1+σ2) (
2k

t

)−2s′+(σ′
1+σ′

2)+|γ|+d+δ

ckq′

"
∑

k;
√

t<2k<t

td/2−α′
(

2k

√
t

)−2s+(σ1+σ2)+2α′

ckq′

+
∑

k;t<2k

t
d
2 +

σ1+σ2
2 −s

(
2k

t

)−2(s+s′)+(σ1+σ2+σ′
1+σ′

2)+|γ|+d+δ

ckq′

for a positive δ and a -1k-
1
q′ sequence (ckq′ )kq′ . Since, by (3.1.50), α′ > d/2, s >

α′ + σ1+σ2
2 > d

2 + σ1+σ2
2 , and because of (3.1.52), we see that the last expression

is smaller than C
∑

k 2−kδ′ckq′ , for some positive δ′, i.e. the L∞ norm of (3.1.62) is
smaller than a -1q sequence. We are thus reduced to the study of

‖φq[χ(D/
√

t)((xγ1u1)(Id − A(t, D))(xγ2u2))]‖L∞ .

Repeating the preceding reasoning, we further reduce ourselves to

‖φq[χ(D/
√

t)((Id − A(t, D))(xγ1u1)(Id − A(t, D))(xγ2u2))]‖L∞ .

We get that this sequence is in -1q applying lemma 3.1.2 with ψ(t, ξ) = 1 − A(t, ξ).
This concludes the proof.
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3.2. Conjugation by an oscillatory exponential

Our aim in this section is to study expressions of type

(3.2.1) e−imθTw((1 − χ)(D/
√

t)eimθ)

where m ∈ Z∗ and w ∈ Ẽs,s′

α,α′,r. We want to show that (3.2.1) has essentially the same
smoothness as w. This will follow from the fact that making act a Dx/

√
t or a Dx/t

derivative on (3.2.1) gives either a term like (3.2.1) – with w replaced by Dx√
t
w or Dx

t w

– or two contributions coming from the action of the derivative on the exponentials,
that will compensate each other modulo remainders.

Let us introduce some notations:

Definition 3.2.1. — For µ ∈ R, ν ∈ R+ one denotes by Σµ
ν the space of smooth

functions (t, ξ) ,→ a(t, ξ) defined on [1, +∞[ × Rd with values in C, satisfying the
following inequalities

(3.2.2) |(t∂t)k(
√

t∂ξ)γa(t, ξ)| " Ckγ

( 〈ξ〉
t

(
1 +

〈ξ〉
t

)−1)ν (
1 +

〈ξ〉√
t

)µ−|γ|
,

for any γ when |ξ| > c
√

t, and for γ = 0 when |ξ| " c
√

t.

We shall also denote by Sµ the space of usual symbols of order µ i.e. smooth
functions b satisfying for any γ ∈ Nd

(3.2.3) |∂γxb(x)| " Cγ〈x〉−|γ|+µ.

Proposition 3.2.2. — Let s, s′,α,α′, r, µ, ρ, ν be real numbers satisfying

(3.2.4)
r ∈ [1, +∞], α+ α′ < d/2, α′ > d/2

ρ > µ ! 0, ν ! 0.

Let a(t, ξ) ∈ Σ−ρ
ν and b(x) ∈ Sµ. Assume moreover that for some c > 0,

(3.2.5) Supp a ⊂ {(t, ξ); |ξ| > c
√

t}.

and that

(3.2.6)
(α

2
+ α′ > 0, α+ α′ +

d

2
> 0

)
or

(α
2

+ α′ < 0, α+ α′ +
d

2
+ ν > 0

)
.

Then if w ∈ Ẽs,s′

α,α′,r, we have for any m ∈ Z∗

(3.2.7) e−imθb(
√

tx)Tw(a(t, D)eimθ) ∈ Ẽs+ρ−µ,s′

α+ζ,α′,r ⊂ Ẽs+ρ−µ,s′

α,α′,r

where ζ is any number in ]0, min(ρ− µ, d, d
2 − α− α′)[.

We write by definition of paraproduct

e−imθb(
√

tx)Tw[a(t, D)eimθ] =
∑

k

(Sk−1w)gk(3.2.8)

gk = e−imθb(
√

tx)a(t, D)∆k(eimθ).(3.2.9)
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The assumption (3.2.5) implies that in the right hand side of (3.2.8) the summation
is taken for k satisfying 2k > c

√
t. We begin by the following lemma:

Lemma 3.2.3. — For any N ∈ N, one has the following estimates, uniformly in
t ! 1, k with 2k >

√
t:

‖∆jgk(t, ·)‖L2(3.2.10)

" CN2−j d
2

(
2j+k

t

)d (
1 +

2j+k

t

)−N (
2k

√
t

)−ρ+µ
[

2k

t

(
1 +

2k

t

)−1
]ν

‖Sjgk(t, ·)‖L∞(3.2.11)

" CN

(
2j+k

t

)d (
1 +

2j+k

t

)−d (
2k

√
t

)−ρ+µ
[

2k

t

(
1 +

2k

t

)−1
]ν

.

Proof. — Compute the Fourier transform of b(
√

tx)e−imθ as the oscillatory integral

(3.2.12)
∫

e−ixξ−imtx2/4b(
√

tx) dx =
1

td/2
eiξ2/mtB(ξ/

√
t)

where

(3.2.13) B(η) =
∫

e−imx2/4b(x − 2η/m) dx.

If L = (1 + m2x2)−1(1 − 2mx · Dx), so that L(e−imx2/4) = e−imx2/4, we have

|(tL)k[b(x − 2η/m)]| " Ck〈x〉−k(1 + |x − 2η/m|)µ

whence, integrating by parts in (3.2.13), the estimate B(η) " C〈η〉µ. Treating the
derivatives in the same way, we get that B ∈ Sµ. We now write the Fourier transform
of gk as a multiple of

F(e−imθb(
√

tx)) ∗
[
a(t, η)ϕ(2−kη)

e−iη2/mt

td/2

]

that is, using (3.2.12), (3.2.13),

(3.2.14) eiξ2/mt

(
2k

t

)d ∫
e−2i ξη

mt 2k

B
(ξ − 2kη√

t

)
ϕ(η)a(t, 2kη) dη.

Integrating by parts in η we obtain an estimate of the modulus of (3.2.14) by

C

(
2k

t

)d (
1 +

2k|ξ|
t

)−N
[

2k

t

(
1 +

2k

t

)−1
]ν (

2k

√
t

)−ρ

×
N∑

N ′=0

∫ (
1 +

|ξ − 2kη|√
t

)µ−N ′ (
2k

√
t

)N ′

ϕ1(η) dη,

where we used (3.2.2), B ∈ Sµ, 2k > c
√

t, and where ϕ1 has the same support as
ϕ. Consider first N ′ with µ − N ′ " 0. When the integration is made over a domain
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|ξ − 2kη| > c2k for a small c > 0, we get an upper bound

(3.2.15) C

(
2k

t

)d (
1 +

2k|ξ|
t

)−N
[

2k

t

(
1 +

2k

t

)−1
]ν (

2k

√
t

)µ−ρ

.

On the other hand, the contribution of the integration for |ξ− 2kη| < c2k gives, since
this implies |ξ| ∼ 2k, and since −2N + N ′ " −N ,

C

(
2k

t

)d
[

2k

t

(
1 +

2k

t

)−1
]ν (

2k

√
t

)−ρ−N

which is still of form (3.2.15) changing the value of N .
On the other hand, for N ′ such that µ − N ′ > 0, we get immediately an upper

bound of type (3.2.15), changing the value of N .
Inequality (3.2.10) (resp. (3.2.11)) follows from estimate (3.2.15) computing the

L2 (resp. L1) norm of ∆̂jgk(ξ) over a ring (resp. a ball) of radius 2j.

Proof of proposition 3.2.2. — We decompose (3.2.8) as
∑

k;2k>c
√

t

Tgk(Sk−1w) +
∑

k;2k>c
√

t

R(gk, Sk−1w) +
∑

k;2k>c
√

t

TSk−1wgk

and we shall estimate successively for a fixed j
∑

k;2k>c
√

t

∆j(Tgk(Sk−1w))(3.2.16)

∑

k;2k>c
√

t

∆j(R(gk, Sk−1w))(3.2.17)

∑

k;2k>c
√

t

∆j(TSk−1wgk).(3.2.18)

The assumptions on a, b of proposition 3.2.2 will enter the proof only through the
estimates (3.2.10), (3.2.11). Since the parameters ρ and µ appear in the right hand
sides of these inequalities only in the difference ρ − µ, we can without reducing the
generality assume µ = 0, ρ > 0.

Estimate of (3.2.16). — We write the product of (3.2.16) with a function φq as

(3.2.19)
∑

j′

|j−j′|!N0

∑

k
2k>c

√
t

k"j−N0

∑

q′

(φq∆j φ̃q′ )((Sj′−1gk)φq′∆j′Sk−1w)

for a large enough integer N0. We multiply by Γ*(t) and compute the Lp(dt
t , L2(dx))

norm for p = 2 or p = ∞ of (3.2.19). We get an upper bound

(3.2.20)
∑

j′

|j−j′|!N0

∑

k
2k>c2"/2

k"j−N0

∑

q′

CN 〈q − q′〉−N‖Γ*(t)(Sj′−1gk)‖L∞(dtdx)

× ‖Γ*(t)φq′∆j′Sk−1w‖Lp( dt
t ,L2(dx)).
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The last norm in the above formula is bounded from above by

(3.2.21) C2(j−*/2)α+(j−*)α′
(1 + 2j−*/2)−s−α(1 + 2j−*)−s′−α′

cjq′

with s̃′ = s′ if p = ∞ and s̃′ = s′ + 1/2 if p = 2, (cjq′ )jq′ in the unit ball of -2j-rq′ . On
the other hand, we have by (3.2.11)

(3.2.22)
∑

k
k" "

2−N0
k"j−N0

‖Γ*(t)Sj′−1gk‖L∞(dtdx)

"
∑

k
k" "

2−N0
k"j−N0

2(j+k−*)d(1 + 2j+k−*)−d2−(k−*/2)ρ(2k−*(1 + 2k−*)−1)ν .

Denote by ζ′ any positive number with ζ′ < min[ρ, d]. When -/2 ! j, this last sum
is smaller than

∑

k>*−j

2−(k−*/2)ρ +
∑

k;*−j"k"*/2−N0

2(j+k−*)d−(k−*/2)ρ " C2(j−*/2)ζ′ .

When j > -/2, we have the estimate
∑

k"j−N0

2−(k−*/2)ρ " C2−(j−*/2)ρ.

We see that (3.2.22) is smaller than

(3.2.23) 2(j−*/2)ζ′(1 + 2j−*/2)−ρ−ζ
′
.

Consequently, (3.2.20), (3.2.21), (3.2.22), (3.2.23) show that (3.2.16) belongs to
Es+ρ,s′

α+ζ′,α′,r.

Estimate of (3.2.17). — We write the product of (3.2.17) with a function φq as

(3.2.24)
∑

j′,j′′

|j′−j′′|!N0
j′"j−N0

∑

k
2k>c

√
t

k"j′′−N0

∑

q′

(φq∆j φ̃q′)((∆j′gk)(φq′∆j′′Sk−1w))

for a large enough integer N0. We multiply by Γ*(t) and compute the Lp(dt
t , L2(dx))

norm for p = 2 or p = ∞ of (3.2.24). We get an upper bound

(3.2.25)
∑

j′,j′′

|j′−j′′|!N0
j′"j−N0

∑

k
k"*/2−N0
k"j′′−N0

∑

q′

CN 〈q − q′〉−N

× 2jd/2‖∆j′gk‖L∞(dt,L2(dx))‖Γ*(t)φq′∆j′′Sk−1w‖Lp( dt
t ,L2(dx)).

for a large enough N0. We use (3.2.10) to estimate the first norm in (3.2.25) and
remind that the second norm is bounded from above by (3.2.21) with j replaced by
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j′′ ∼ j′. Consequently, (3.2.25) is smaller than

(3.2.26)
∑

j′

j′"j−N0

∑

k
k"*/2−N0
k"j′−N0

∑

q′

CN 〈q − q′〉−N 2(j′+k−*)d+(j−j′)d/2(1 + 2j′+k−*)−N

× 2−(k−*/2)ρ[2k−*(1 + 2k−*)−1]ν2(j′−*/2)α2(j′−*)α′
cj′q′

since the terms in s, s̃′ of (3.2.21) can always be compensated for by (1+2j′+k−*)−N

as k ! *
2 − N0. This expression is smaller than

∑

j′

j′"j−N0

∑

q′

CN 〈q − q′〉−N cj′q′2(j−j′)d/2+(j′−*/2)α+(j′−*)α′
(1 + 2j′−*/2)−N+d

×
∑

k
k"*/2−N0
k"j′−N0

2(j′+k−*)d(1 + 2j′+k−*)−d2−(k−*/2)ρ[2k−*(1 + 2k−*)−1]ν

"
∑

j′

j′"j−N0

∑

q′

CN 〈q − q′〉−Ncj′q′2(j−j′)d/2+(j′−*/2)α+(j′−*)α′

×2(j′−*/2)ζ′(1 + 2j′−*/2)−ρ−ζ
′−N+d

by the estimate (3.2.23) of (3.2.22). If we take ζ < min[ζ′, d
2 − α− α′], we obtain an

upper bound of type

Cc′jq2
(j−*/2)(α+ζ)+(j−*)α′

(1 + 2j−*/2)−N ′

for any N ′ ∈ N, with (c′jq)jq in -2j-rq. This shows that (3.2.17) is in E+∞,+∞
α+ζ,α′,r.

Estimate of (3.2.18). — We write the product of (3.2.18) with a function φq as

(3.2.27)
∑

j′

|j−j′|!N0

∑

k
2k>c

√
t

∑

q′

(φq∆j φ̃q′)((φq′Sj′−1Sk−1w)(∆j′gk))

for a large enough integer N0. We multiply by Γ*(t) and compute the Lp(dt
t , L2(dx))

norm for p = 2 or p = ∞. We get the upper bound

(3.2.28)
∑

j′

|j−j′|!N0

∑

k
k"*/2−N0

∑

q′

CN 〈q − q′〉−N‖φq′Sj′−1Sk−1wΓ*(t)‖Lp( dt
t ,L∞(dx))

× ‖∆j′gkΓ*(t)‖L∞(dt,L2(dx)).

We consider first the case α/2 + α′ > 0, α+ α′ + d/2 > 0. Let us show that for some
µ0 ∈ N and some sequence (cjq′ )jq′ in -2j-

r
q′ we have the estimate

(3.2.29) ‖φq′Sj′−1Sk−1wΓ*(t)‖Lp( dt
t ,L∞(dx))

" Ccjq′2j′d/2+(j′−*/2)α+(j′−*)α′
(1 + 2j′−*/2)µ0 .
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We write

‖φq′Sj′−1Sk−1wΓ*(t)‖Lp( dt
t ,L∞(dx))

" CN

∑

q′′

∑

k′!j′−2

〈q′ − q′′〉−N2k′d/2‖φq′′∆k′wΓ*(t)‖Lp( dt
t ,L2(dx)).

When j′ < -/2 we get an estimate of type
∑

k′!j′−2

2k′d/2+(k′−*/2)α+(k′−*)α′
c′k′q′

for some -2k′-rq′ sequence (c′k′q′ )k′q′ . Since d
2 + α + α′ > 0, (3.2.29) follows. When

j′ > -/2, we estimate the left hand side of (3.2.29) by
∑

k′<*/2

2k′d/2+(k′−*/2)α+(k′−*)α′
c′k′q′ +

∑

k′;*/2!k′

2k′d/2+(k′−*)α′−(k′−*/2)µ1c′k′q′2(j′−*/2)µ2

for large enough µ1 and µ2. This is smaller than

2
"
2

d
2−

"
2α

′+(j′− "
2 )µ2c′′*q′ = 2j′ d

2 +(j′−*)α′
c′′*q′2(j′− "

2 )(µ2−α′− d
2 )

for some -2*-
r
q′ sequence (c′′*q′)*q′ , whence (3.2.29).

Next, we compute from (3.2.10)
∑

k"*/2−N0

‖∆j′gkΓ*(t)‖L∞(dt,L2)

" C2−j′d/2
∑

k"*/2−N0

2(j′+k−*)d(1 + 2j′+k−*)−N2−(k−*/2)ρ

" C2−j′d/22(j′−*/2)ζ′(1 + 2j′−*/2)−N+d−ζ′

(3.2.30)

where ζ′ is any number ζ′ < min[ρ, d]. Then (3.2.29) and (3.2.30) show that (3.2.28)
is smaller than

Ccjq2(j−*/2)(α+ζ′)2(j−*)α′
(1 + 2j−*/2)−N ′

for any N ′ i.e. the contribution of (3.2.18) is in E+∞,+∞
α+ζ′,α′,r.

Let us now study the case α
2 + α′ < 0, α+ α′ + d

2 + ν > 0. We have

(3.2.31)
∑

k"*/2−N0

‖∆j′gkΓ*(t)‖L∞(dt,L2)

" C2−j′ d
2

∑

k"*/2−N0

2(j′+k−*)d(1 + 2j′+k−*)−N2−(k− "
2 )ρ[2k−*(1 + 2k−*)−1]ν .

When j′ < -/2, we estimate the sum by
∑

k;*/2−N0!k<*−j′

2(j′+k−*)d2−(k−*/2)ρ−j′ν +
∑

k;k"*−j′

2−(j′+k−*)(N−d)−(k−*/2)ρ+(k−*)ν

" C2(j′−*/2)ζ′−j′ν
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with ζ′ < min(ρ, d). When j′ > -/2, the sum is smaller than
∑

k;k"*/2−N0

2−(j′+k−*)(N−d)−(k−*/2)ρ+(k−*)ν " C2−(j′−*/2)N ′−j′ν

for a convenient N ′. Consequently, (3.2.31) is smaller than

(3.2.32) CN ′2(j′−*/2)ζ′(1 + 2j′−*/2)−N2−j′(ν+d/2)

for any N . If we use (3.1.19), we get also

(3.2.33) ‖φq′Sj′−1SkwΓ*(t)‖Lp( dt
t ,L∞(dx)) " C(1 + 2j′−*/2)µ0cjq

with (cjq)jq in -∞j -rq. Combining with (3.2.32), we obtain that (3.2.28) is smaller than

CN2(j−*/2)(α+ζ′)+(j−*)α′
(1 + 2j−*/2)−Ncjq*

with cjq* = 2*( α
2 +α′)2−j(ν+ d

2 +α+α′)cjq. Since α
2 + α′ < 0, ν + d

2 + α + α′ > 0,
this sequence is smaller than a -2j-

r
q sequence independent of -. This shows that

contribution (3.2.18) is in E+∞,+∞
α+ζ′,α′,r.

We have proved up to now that (3.2.7) belongs to Es+ρ,s′

α+ζ,α′,r ⊂ Es+ρ,s′

α,α′,r . We still
have to show that we can replace E by Ẽ.

When α
2 +α′ > 0, lemma 3.1.2 together with the assumption α′ > d/2, shows that

these two spaces are identical. Let us assume now that α
2 + α′ < 0. By (3.2.8) we

have to estimate the quantity

(3.2.34) φqχ(D/
√

t)
( ∑

k;2k>c
√

t

Sk−1wgk

)

=
∑

k;2k>c
√

t

φqχ(D/
√

t)[(χ(D/10
√

t)Sk−1w)gk]

+
∑

k;2k>c
√

t

φqχ(D/
√

t)[((1 − χ(D/10
√

t))Sk−1w)gk]

with χ ∈ C∞
0 (Rd), Suppχ ⊂ B(0, 1),χ ≡ 1 on B(0, 1/2). The first term in the right

hand side may be written

(3.2.35)
∑

k

∑

q′

(φqχ(D/
√

t)φ̃q′ )((φq′χ(D/10
√

t)Sk−1w)gk).

Since w ∈ Ẽs,s′

α,α′,r, we have, by lemma 3.1.2

(3.2.36) ‖φq′χ(D/10
√

t)Sk−1w‖L∞(dtdx) " Ccq′

for a constant C and a -rq′ sequence (cq′)q′ independent of k. Moreover, by (3.2.11)
and the assumption ρ − µ > 0,

∑
k;2k>c

√
t ‖gk‖L∞(dtdx) " C. We thus deduce from
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(3.2.35), (3.2.36) that the first term in the right hand side of (3.2.34) has L∞ norm
in -rq. The last sum in (3.2.34) may be written

(3.2.37)
∑

k

∑

q′

(φqχ(D/
√

t)φ̃q′ )[(φq′ (1 − χ)(D/10
√

t)Sk−1w)(1 − χ)(D/
√

t)gk].

as follows from inspection of the supports of the Fourier transforms. We estimate

(3.2.38) ‖(φq′ (1 − χ)(D/10
√

t))Sk−1w(t, ·)‖L∞(dx)

"
∑

q′′

∑

k′;c
√

t<2k′<2k−1

CN 〈q′ − q′′〉−N2k′d/2‖φq′′∆k′w(t, ·)‖L2 .

When 2k < t we get an upper bound

∑

k′ ;c
√

t<2k′<2k−1

2k′d/2

(
2k′

√
t

)−s (
2k′

t

)α′

ck′q′ "
∑

k′;c
√

t<2k′<2k−1

2k′(d/2−α′)

(
2k′

√
t

)µ0

ck′q′

where (ck′q′)k′q′ is in -2k′-rq′ and µ0 is chosen large enough. If µ0 + d
2 − α′ > 0, we get

an upper bound of type

C2k(d/2−α′)c′kq′

(
2k

√
t

)µ0

" Cc̃q′

(
2k

√
t

)µ0

where (c′kq′ )kq′ ∈ -2k-
r
q′ , (c̃q′ )q′ ∈ -r independent of k, t.

When 2k > t, we control (3.2.38) by

∑

k′;c
√

t<2k′<t

2k′(d/2−α′)

(
2k′

√
t

)µ0

ck′q′ +
∑

k′;t<2k′<2k−1

2k′d/2

(
2k′

√
t

)−s (
2k′

t

)−s′

ck′q′

which is also controlled by Cc̃q′

(
2k
√

t

)µ0
. We thus have

‖φq′(1 − χ)(D/10
√

t)Sk−1w(t, ·)‖L∞(dx) " Cc̃q′

(
2k

√
t

)µ0

for some µ0 and some -rq′ sequence (c̃q′)q′ . Moreover we deduce from (3.2.10)

‖(1 − χ)(D/
√

t)gk‖L∞(dx) " C
∑

2j>c
√

t

2jd/2‖∆jgk‖L2(dx) " CN (2k/
√

t)−N .

We deduce from these two inequalities that the L∞(dxdt) norm of (3.2.37) is smaller
than a -rq sequence. This shows that the L∞(dxdt) norm of (3.2.34) is in -rq and
concludes the proof of proposition 3.2.2.

Our next objective is to estimate quantities of type

(3.2.39) Ta(t,x)wb(t, D)eimθ

where m ∈ Z∗, a(t, x) is a smooth function of x satisfying for any γ ∈ Nd

(3.2.40) |(Dx/
√

t)γa(t, x)| " Cγ(1 +
√

t|x|)m1−|γ|(1 + |x|)m′
1
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and where b(t, ξ) is in Σm2
ν , using the notations of definition 3.2.1.

Proposition 3.2.4. — Let m1, m′
1, m2, ν be real numbers satisfying the inequalities

m1 " 0, m′
1 " 0, and let a be a symbol verifying (3.2.40) and b ∈ Σm2

ν .
(i) Take s, s′,α,α′, r such that s, s′,α,α′ ∈ R, r ∈ [1, +∞],

(3.2.41) −d < α+ α′ < −d

2
, s < α+ 2α′, s + s′ < −1/2, ν =

d

2
.

Let w ∈ Es,s′

α,α′,r be such that a(t, x)w ∈ Es,s′

α,α′,r. Then (3.2.39) belongs to

E
s−m1−m2,s′−m′

1
α+2d,α′,r .
(ii) Assume instead of (3.2.41),

(3.2.42) −d

2
< α+ α′, s < α′ − d

2
, s + s′ < −1

2
, ν = 0.

Then if w ∈ Es,s′

α,α′,r and a(t, x)w ∈ Es,s′

α,α′,r, (3.2.39) belongs to the space

E
s−m1−m2,s′−m′

1
α+d,α′,r .
We can in the above statements replace operator T by operator T̃ of (3.1.16).

We first prove the following lemmas:

Lemma 3.2.5. — Let a be a symbol satisfying (3.2.40) with m1 " 0, m′
1 " 0, b ∈

Σm2
ν , m ∈ Z∗. We have the following estimates

‖a(t, x)∆jb(t, D)eimθ‖L2(dx) " C

(
2j

t

)ν+d/2 (
1 +

2j

t

)−ν+m′
1
(

1 +
2j

√
t

)m1+m2

(3.2.43)

‖a(t, x)∆jb(t, D)eimθ‖L∞(dx) " C

(
2j

t

)ν (
1 +

2j

t

)−ν+m′
1
(

1 +
2j

√
t

)m1+m2

.

(3.2.44)

Proof. — Remark first that since m1 " 0, m′
1 " 0, (3.2.40) implies that

(3.2.45) ‖ l1 {|x|"c2j/t}a(t, x)‖L∞ " C

(
1 +

2j

√
t

)m1 (
1 +

2j

t

)m′
1

.

Moreover, a direct computation and the assumption b(t, ξ) ∈ Σm2
ν shows that

‖∆jb(t, D)eimθ‖L2(dx) " C

(
2j

t

)ν+d/2 (
1 +

2j

t

)−ν (
1 +

2j

√
t

)m2

‖∆jb(t, D)eimθ‖L∞(dx) " C

(
2j

t

)ν (
1 +

2j

t

)−ν (
1 +

2j

√
t

)m2

.

(3.2.46)

Together with (3.2.45), these inequalities show that (3.2.43), (3.2.44) hold true if we
replace in the left hand side a(t, x) by l1 {|x|"c2j/t}a(t, x). Consequently, we are left
with estimating in L2 or L∞ the quantity

(3.2.47) | l1 {|x|<c2j/t}a(t, x)∆jb(t, D)eimθ| " C| l1 {|x|<c2j/t}∆jb(t, D)eimθ|,
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where we used that a is bounded since m1 " 0, m′
1 " 0. When 2j <

√
t, the wanted

upper bound follows from the above estimate of the L2 or L∞ norms of ∆jb(t, D)eimθ.
When 2j !

√
t, we write ∆jb(t, D)eimθ as a constant multiple of

(3.2.48)
∫

eixξ−iξ2/mtϕ(2−jξ)b(t, ξ)
dξ

td/2
=

(
2j

√
t

)d ∫
ei2j [xξ− 2jξ2

mt ]b̃j(t, ξ) dξ

where b̃j(t, ξ) = ϕ(ξ)b(t, 2jξ) is supported in a fixed ring of size 1 and satisfies by
(3.2.2) for any γ ∈ Nd

(3.2.49) |∂γξ b̃j(t, ξ)| " Cγ

(
2j

t

)ν (
1 +

2j

t

)−ν (
1 +

2j

√
t

)m2

.

Define the operator

(3.2.50) Lj(t, x, ξ, Dξ) = [1 + 22j(x − 2j+1 ξ
mt )

2]−1[1 + 2j(x − 2j+1 ξ
mt) · Dξ].

Remark that when ξ ∈ Suppϕ and x stays in the domain |x| " c2j/t with c small
enough, this operator is of form Lj = α0

j (t, x, ξ) + α1
j(t, x, ξ) · Dξ where α0

j ,α
1
j are

smooth coefficients satisfying for - = 0, 1 and γ ∈ Nd

(3.2.51) |∂γξ α
*
j(t, x, ξ)| " Cγ(1 + 2j/

√
t)−2.

Consequently, tLj is of the same type, and integrating by parts, we write (3.2.48) as

(3.2.52)
(

2j

√
t

)d ∫
ei2j [xξ− 2j ξ2

mt ](tLj)M b̃j(t, ξ) dξ

when x stays in the domain {|x| < c2j/t}, for any M ∈ N. It follows then from
(3.2.49), (3.2.51) that (3.2.47) is smaller than

CN l1 {|x|<c2j/t}

(
2j

t

)ν (
1 +

2j

√
t

)−N

for any N . This implies immediately an upper bound of the L∞ (resp. L2) norm
of this quantity by the right hand side of (3.2.44) (resp. (3.2.43)) and concludes the
proof.

Lemma 3.2.6. — If s′ is a real number, define s′2 = s′+ 1
2 , s′∞ = s′. For r ∈ [1, +∞],

set r2 = r, r∞ = r̃, with r̃ defined in definition 3.1.7.
(i) Let s, s′,α,α′, r be real numbers, with r ∈ [1, +∞], and assume that

(3.2.53) −d < α+ α′ < −d/2, s < α+ 2α′, s + s′ < −1/2.

If w ∈ Es,s′

α,α′,r, one has the following estimates for p = 2 or p = ∞:

(3.2.54) ‖φq(x)χ(D/
√

t)wΓ*(t)‖Lp( dt
t ,L∞) " C2−s(j−*/2)+(j−*)(α′−d)cjq

when -/2 " j " -,

(3.2.55) ‖φq(x)SjwΓ*(t)‖Lp( dt
t ,L∞) " C2−

"
2α−*α

′
cq
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when j " -/2,

(3.2.56) ‖φq(x)χ(D/
√

t)wΓ*(t)‖Lp( dt
t ,L2) " C2−s(j−*/2)−s′

p(j−*)cjq

when - " j,

(3.2.57) ‖φq(x)(1 − χ(D/
√

t))SjwΓ*(t)‖Lp( dt
t ,L2)

" C2−s(j−*/2)+(j−*)α′
(1 + 2j−*)−α

′−s′
pcjq

when -/2 " j, where (cjq)jq (resp. (cq)q) is a sequence in the unit ball of -2j-
rp
q (resp.

-
rp
q ).

(ii) Assume instead of (3.2.53)

(3.2.58) −d/2 < α+ α′, s < α′ − d/2, s + s′ < −1/2.

If w ∈ Es,s′

α,α′,r, one has for p = 2 or p = ∞,

(3.2.59) ‖φq(x)χ(D/
√

t)wΓ*(t)‖Lp( dt
t ,L∞) " C2−s(j−*/2)+(j−*)(α′−d/2)cjq

when -/2 " j " -,

(3.2.60) ‖φq(x)SjwΓ*(t)‖Lp( dt
t ,L∞) " C2(j− "

2 )α+(j−*)α′
cjq2j d

2

when j " -/2, and (3.2.56), (3.2.57) when respectively - " j and -/2 " j, for some
sequence (cjq)jq in the unit ball of -2j-rq.

Proof. — Let us prove first (3.2.54) and (3.2.55). We estimate, with some N1 ∈ N,

‖φq(x)χ(D/
√

t)wΓ*(t)‖Lp( dt
t ,L∞)

"
∑

q′

∑

j′;j′!*/2+N1

‖(φq(x)χ(D/
√

t)φ̃q′ )(φq′∆j′wΓ*(t))‖Lp( dt
t ,L∞)

"
∑

q′

∑

j′;j′!*/2+N1

CN2j′d/2〈q − q′〉−N‖φq′∆j′wΓ*(t)‖Lp( dt
t ,L2).

(3.2.61)

Using the definition of Es,s′

α,α′,r, we get the upper bound

(3.2.62) CN

∑

q′

∑

j′;j′!*/2+N1

2j′d/2〈q − q′〉−N2α(j′−*/2)+α′(j′−*)cj′q′

for a -2j′-
rp

q′ sequence (cj′q′)j′q′ . In case of assertion (i) of the lemma, under assumption
(3.2.53), (3.2.62) is smaller than C2− "

2α−*α
′
c′q for a -

rp
q sequence (c′q)q. This last

expression may be written

C2−s(j−*/2)+(j−*)(α′−d)cjq*

with
cjq* = 2j(s−α′+d)2*(−s/2−d−α/2)c′q.

This quantity is smaller than 2−j(α+α′+d)c′q when s/2+ d+α/2 " 0, -/2 " j " -, and
than 2j(s/2−α′−α/2)c′q when s/2 + d + α/2 ! 0, -/2 " j " -. In both cases, because
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of (3.2.53), we get an upper bound by a -2j-
rp
q sequence, whence (3.2.54). One proves

(3.2.55) in the same way.
Let us now prove inequality (3.2.59) of assertion (ii) of the lemma. Because of

(3.2.58), the quantity (3.2.62) is smaller than C2 "
2 ( d

2−α
′)c*q with (c*q)*q ∈ -2*-

r
q. We

write this upper bound C2−s(j−*/2)+(j−*)(α′−d/2)cjq* with

cjq* = 2(j−*/2)(s−α′+d/2)c*q.

Since s−α′ +d/2 < 0, the supremum for - " 2j of this sequence is in -2j-rq. This gives
the conclusion (3.2.59). One gets (3.2.60) by a similar computation.

Let us prove now (3.2.56). Arguing as in (3.2.61) we write

(3.2.63) ‖φq(x)χ(D/
√

t)wΓ*(t)‖Lp( dt
t ,L2)

" CN

∑

q′

∑

j′;j′!*/2+N1

〈q − q′〉−N2α(j′−*/2)+α′(j′−*)cj′q′ .

Let us consider first the case α + α′ " 0. Then the right hand side of (3.2.63) is
smaller than C2− "

2α−*α
′+*εc′q where (c′q)q ∈ -rq, ε = 0 if α+ α′ < 0, ε > 0 arbitrarily

small if α+ α′ = 0. We write this quantity C2−(j−*/2)s−(j−*)s′
pcjq* where

(3.2.64) cjq* = 2j(s+s′
p)2−

"
2 (α+2α′+s+2s′

p−2ε)c′q " 2j(ε+δ)c′q

if - " j and δ = max[s + s′p,
s
2 − α

2 − α′]. The assumptions (3.2.53) or (3.2.58) imply
that δ < 0, so the right hand side of (3.2.64) is in -2j-

r
q if ε < −δ, whence (3.2.56) in

this case. When α + α′ > 0 we are necessarily in case (ii) and the right hand side of
(3.2.63) is smaller than c2− "

2α
′
c′*q for a -2*-rq sequence (c′*q)*q. We write this quantity

2−s(j−*/2)−s′
p(j−*)cjq*, with for - " j

cjq* = 2j(s+s′
p)2−

"
2 [s+2s′

p+α′]c′*q " 2j max[s+s′
p, s

2−
α′
2 ]c′*q.

Since by (3.2.58) s + s′p < 0, s < α′, the supremum in - " j of this last sequence
belongs to -2j-rq. This concludes the proof of (3.2.56).

Finally, let us prove (3.2.57) in cases (i) and (ii). We write

(3.2.65) ‖φq(x)(1 − χ)(D/
√

t)SjwΓ*(t)‖Lp( dt
t ,L2)

"
∑

q′

∑

j′;*/2+N1!j′!j−1

‖(φq(1 − χ)(D/
√

t)φ̃q′ )(φq′∆j′wΓ*(t))‖Lp( dt
t ,L2)

" CN

∑

q′

( ∑

j′;*/2+N1!j′!inf(*,j−1)

〈q − q′〉−N2(j′−*)α′−s(j′−*/2)cj′q′

+
∑

j′ ;*<j′<j

〈q − q′〉−N2−s(j′−*/2)−s′
p(j′−*)cj′q′

)
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where (cj′q′ )j′q′ ∈ -2j′-
r
q′ and where we used the definition of Es,s′

α,α′,r. When j − 1 " -,
since in both cases (i) and (ii) α′ − s > 0, we get for (3.2.65) the upper bound

C2(j−*)α′
2−s(j−*/2)c′jq

for a -2j-
r
q sequence (c′jq)jq . When - < j − 1, using that s + s′p < 0, α′ − s > 0 we

obtain the upper bound

C2−s(j−*/2)−s′
p(j−*)[c′jq + c′′*q2

(s+s′
p)(j−*)]

for a -2j-
r
q (resp. -2*-

r
q) sequence (c′jq)jq (resp. (c′′*q)*q). The conclusion follows from

these estimates.

Proof of proposition 3.2.4. — We want to estimate

(3.2.66) φq∆j [Ta(t,x)wb(t, D)eimθ]Γ*(t)

in L2(dt
t , L2(dx)) and L∞(dt, L2(dx)). We study successively the following cases.

Estimate for j " -/2. — We write for |j − j′| " N0, N0 a fixed integer, and p = 2 or
p = ∞

(3.2.67) ‖φq∆j [Sj′−1(a(t, x)w)Γ*(t)∆j′ b(t, D)eimθ]‖Lp( dt
t ,L2)

"
∑

q′

CN 〈q − q′〉−N‖φq′Sj′−1[a(t, x)w]Γ*(t)‖Lp( dt
t ,L∞)

× ‖∆j′ [b(t, D)eimθ]‖L∞(L2).

In case (i), we use inequality (3.2.55) (for aw instead of w) together with (3.2.43) with
ν = d/2. We get the upper bound

(3.2.68) C2−
"
2α−*α

′
cq2(j−*)d = C2(j−*/2)(α+2d)2(j−*)α′

cjq

with (cq)q ∈ -rp
q and cjq = 2−j(α+α′+d)cq, a sequence in -2j-

rp
q , as we have α+α′+d > 0

by (3.2.41). In case (ii), we apply (3.2.60) together with (3.2.43) with ν = 0. We get
the upper bound

(3.2.69) C2(j−*/2)α+(j−*)α′
cjq2jd/22(j−*)d/2 = C2(j−*/2)(α+d)+(j−*)α′

cjq

for a -2j-
rp
q sequence (cjq)jq . The expressions (3.2.68), (3.2.69) show that (3.2.66)

belongs to the spaces indicated in the statement of the proposition.

Estimate for -/2 < j " -. — For j′ with |j − j′| smaller than some given integer N1,
we write

(3.2.70) Sj′−1(aw)∆j′ (b(t, D)eimθ) = Uj′ · Vj′

where, if c(t, x) = (1 + tx2)−m1/2(1 + x2)−m′
1/2, we set

Uj′ = c(t, x)Sj′−1(aw)

Vj′ = c(t, x)−1∆j′ [b(t, D)eimθ].
(3.2.71)

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



58 CHAPTER 3. NONLINEAR ESTIMATES

We further decompose, choosing N2 such that j′′ ! j′ + N2 and j ! -/2 imply
(1 − χ)(D/

√
t)∆j′′Γ* = ∆j′′Γ*,

Uj′ = U ′
j′ + U ′′

j′ +
∑

j′′"j′+N2

U j′′

j′(3.2.72)

U ′
j′ = c(t, x)Sj′−1[aχ(D/

√
t)w]

U ′′
j′ = c(t, x)Sj′−1[a(1 − χ)(D/

√
t)Sj′+N2w]

U j′′

j′ = c(t, x)Sj′−1[a∆j′′w]

when t is in the support of Γ*(t). We have the estimate

‖φq(x)Uj′Vj′Γ*(t)‖Lp( dt
t ,L2(dx))(3.2.73)

" ‖φq(x)U ′
j′Γ*(t)‖Lp( dt

t ,L∞(dx))‖Vj′Γ*(t)‖L∞(dt,L2(dx))

+ ‖φq(x)U ′′
j′Γ*(t)‖Lp( dt

t ,L2(dx))‖Vj′Γ*(t)‖L∞(dtdx)

+
∑

j′′"j′

‖φq(x)U j′′

j′ Γ*(t)‖Lp( dt
t ,L2(dx))‖Vj′Γ*(t)‖L∞(dtdx).

We write

φqU
′
j′ =

∑

q′

Kj′qq′ [φq′χ(D/
√

t)w]

φqU
′′
j′ =

∑

q′

Kj′qq′ [φq′(1 − χ)(D/
√

t)Sj′+N2w](3.2.74)

φqU
j′′

j′ =
∑

q′

Kj′′

j′qq′ [φq′∆j′′w]

where the operator Kj′qq′ , (resp. Kj′′

j′qq′ ) is given by

(3.2.75) Kj′qq′w(x) = φq(x)c(t, x)2j′d

∫
h(2j′(x − y))a(t, y)φ̃q′ (y)w(y) dy

(resp.

(3.2.76) Kj′′

j′qq′w(x) = φq(x)c(t, x)2j′d

∫
h(2j′(x − y))a(t, y)∆̃j′′ (φ̃q′ (y)w(y)) dy)

for h ∈ S(Rd) with ĥ ∈ C∞
0 (Rd). Let us remark that the kernel kj′qq′ (x, y) of Kj′qq′

satisfies for any N ∈ N

sup
x

∫
|kj′qq′(x, y)| dy " CN 〈q − q′〉−N ,

sup
y

∫
|kj′qq′ (x, y)| dx " CN 〈q − q′〉−N ,

(3.2.77)

since, on the domain |y| ! ε|x| (ε > 0) |c(t, x)a(t, y)| " C as m1 " 0, m′
1 " 0, and

on the domain |y| < ε|x|, the decay of h compensates the growth of c(t, x), since
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2j′ ! c2*/2 ! c
√

t on the support of Γ*(t). Consequently, for t ∼ 2*, σ ∈ [1, +∞]

(3.2.78) ‖Kj′qq′‖L(Lσ,Lσ) " CN 〈q − q′〉−N

for any N , uniformly in j′, q, q′. By integration by parts, we can write (3.2.76)

(3.2.79) φq(x)c(t, x)2j′d

∫
(2−j′′Dy)M [h(2j′(x − y))a(t, y)]

× (2−j′′Dy)−M ∆̃j′′ [φ̃q′ (y)w(y)] dy

for any M ∈ N. Since, by (3.2.40),

|Dγya(t, y)| " Ct|γ|/2(1 +
√

t|y|)m1(1 + |y|)m′
1

and, for t ∼ 2*,
√

t " C2*/2 " C2j, we deduce from (3.2.79) that the kernel kj′′

j′qq′(x, y)
of Kj′′

j′qq′ satisfies

sup
x

∫
|kj′′

j′qq′ (x, y)| dy " CN 〈q − q′〉−N2−N(j′′−j′),

sup
y

∫
|kj′′

j′qq′ (x, y)| dx " CN 〈q − q′〉−N2−N(j′′−j′),
(3.2.80)

whence, for t ∼ 2*, σ ∈ [1, +∞]

(3.2.81) ‖Kj′′

j′qq′‖L(Lσ,Lσ) " CN 〈q − q′〉−N2−N(j′′−j′).

Let us estimate the first contribution to the right hand side of (3.2.73). Using (3.2.74),
(3.2.78) we see that

‖φq(x)U ′
j′Γ*(t)‖Lp( dt

t ,L∞(dx))‖Vj′Γ*(t)‖L∞(dt,L2(dx))

" CN

∑

q′

〈q − q′〉−N‖φq′(x)χ(D/
√

t)wΓ*(t)‖Lp( dt
t ,L∞(dx))

× ‖Vj′Γ*(t)‖L∞(dt,L2(dx)).

Applying (3.2.54) and (3.2.43) with a = c−1, ν = d/2 in case (i) (resp. (3.2.59) and
(3.2.43) with a = c−1, ν = 0 in case (ii)), we get the upper bound

(3.2.82) C2−(s−m1−m2)(j−*/2)2(j−*)α′
cjq

in both cases, for a -2j-
rp
q sequence (cjq)jq . This is the wanted conclusion. To study the

second contribution to the right hand side of (3.2.73) we write using again (3.2.74),
(3.2.78)

‖φq(x)U ′′
j′Γ*(t)‖Lp( dt

t ,L2(dx))‖Vj′Γ*(t)‖L∞(dtdx)

" CN

∑

q′

〈q − q′〉−N‖φq′(x)(1 − χ)(D/
√

t)Sj′+N2wΓ*(t)‖Lp( dt
t ,L2(dx))

× ‖Vj′Γ*(t)‖L∞(dtdx).
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Since (3.2.44) with a = c−1 implies in any case ‖Vj′Γ*(t)‖L∞(dtdx) " C2(j−*/2)(m1+m2)

we obtain from (3.2.57) the upper bound

C2−(s−m1−m2)(j−*/2)2(j−*)α′
c′jq

for a -2j-
rp
q sequence (c′jq)jq . This is again the wanted conclusion.

To study the third contribution to the right hand side of (3.2.73), we write using
(3.2.74), (3.2.81)

(3.2.83)
∑

j′′"j′

‖φq(x)U j′′

j′ Γ*(t)‖Lp( dt
t ,L2(dx))‖Vj′Γ*(t)‖L∞(dtdx)

" CN

∑

q′

∑

j′′"j′

〈q − q′〉−N2−N(j′′−j′)‖φq′(x)∆j′′wΓ*(t)‖Lp( dt
t ,L2(dx))

× ‖Vj′Γ*(t)‖L∞(dtdx).

Using (3.2.44) and the definition of Es,s′

α,α′,r, we estimate (3.2.83) by

CN

∑

q′

∑

j′′"j′

〈q − q′〉−N2−N(j′′−j′)2−(j′′−*/2)s2(j′′−*)α′
(1 + 2j′′−*)−s′

p−α
′
cj′′q′

× 2(j′−*/2)(m1+m2)

" C2−(j−*/2)(s−m1−m2)2(j−*)α′
c′jq

with a -2j′′-
rp

q′ (resp. -2j-
rp
q ) sequence (cj′′q′)j′′q′ (resp. (c′jq)jq). This gives the wanted

conclusion.

Estimate for - " j. — Using decomposition (3.2.72), we estimate

(3.2.84) ‖φqUj′Vj′Γ*(t)‖Lp( dt
t ,L2) " ‖φqU

′
j′Γ*(t)‖Lp( dt

t ,L2)‖Γ*(t)Vj′‖L∞(dtdx)

+ ‖φqU
′′
j′Γ*(t)‖Lp( dt

t ,L2)‖Γ*(t)Vj′‖L∞(dtdx)

+
∑

j′′"j′

‖φqU
j′′

j′ Γ*(t)‖Lp( dt
t ,L2)‖Γ*(t)Vj′‖L∞(dtdx).

We estimate the first term in the right hand side using (3.2.74), (3.2.78), (3.2.56) and
(3.2.44) by

(3.2.85) C2−(s−m1−m2)(j−*/2)−(s′
p−m′

1)(j−*)cjq

for a -2j-
rp
q sequence (cjq)jq . This is the wanted conclusion. The second contribution

to the right hand side of (3.2.84) is estimated in the same way, using (3.2.57) instead
of (3.2.56). Finally, the third contribution is smaller, by (3.2.81), (3.2.44) and the
definition of Es,s′

α,α′,r, than

CN

∑

j′′"j′

∑

q′

〈q − q′〉−N2−N(j′′−j′)2(−j′′−*/2)s−(j′′−*)s′
pcj′′q′2(j−*)m′

12(j−*/2)(m1+m2)

for a -2j′′-
rp

q′ sequence (cj′′q′)j′′q′ . This is again smaller than (3.2.85), which concludes
the proof of the proposition.
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We close this chapter with a corollary of proposition 3.2.4 which will be used in the
rest of this paper. Remind that we defined in definition 3.1.7 spaces Es,s′

α,α′,r(M),
Ẽs,s′

α,α′,r(M).

Corollary 3.2.7. — Take d = 2 and let b(t, ξ) ∈ Σm2
ν . Let m ∈ Z∗, M ∈ 2N. Let w

be an element of Ẽs,s′

α,α′,r(M) such that for a given µ ∈ [0, 4], 〈
√

tx〉µw ∈ Ẽs−µ,s′

α,α′,r (M).
Assume

(3.2.86) −2 < α+ α′ < −1, s − µ < α+ 2α′, s + s′ − µ − M < −1/2, ν = 1

or

(3.2.87) −1 < α+ α′, s − µ < α′ − 1, s + s′ − µ − M < −1/2, ν = 0.

Then under assumptions (3.2.86), (resp. (3.2.87)) Twb(t, D)(eimθ) belongs to
Es−m2,s′

α+4,α′,r(M) (resp. Es−m2,s′

α+2,α′,r(M)).

Proof. — Take γ ∈ Nd with |γ| " M . We have to show that the expression
xγTwb(t, D)(eimθ) belongs to Es−m2,s′−|γ|

α+4,α′,r (resp. Es−m2,s′−|γ|
α+2,α′,r ). Using the notations

introduced in (3.1.16), we can write this expression as a linear combination of
quantities T̃xγ′wb(t, D)(eimθ) for |γ′| " |γ|. Write xγ

′
w = aw̃ with

a(t, x) = xγ
′
(1 + x2)−M/2〈

√
tx〉−µ

w̃ = 〈
√

tx〉µ(1 + x2)M/2w.
(3.2.88)

We see that a satisfies (3.2.40) with m1 = −µ " 0, m′
1 = −M + |γ′| " −M + |γ| " 0.

Moreover, by assumption, w̃ ∈ Ẽs−µ,s′−M
α,α′,r . When (3.2.86), (resp. (3.2.87)) is satisfied,

we deduce from (i) (resp. from (ii)) of proposition 3.2.4 that Tawb(t, D)(eimθ) belongs
to Es−m2,s′−|γ|

α+4,α′,r (resp. Es−m2,s′−|γ|
α+2,α′,r ) which is the wanted conclusion.
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CHAPTER 4

PROOF OF THE MAIN THEOREM

4.1. Main reductions

Let us recall that we have seen in section 1.2 that theorem 1.1.1 will be proved if
we succeed to construct a solution to the equation

(
Dt +

D2
x

t2

)
w =

1
t
eiθ(t,x)Q1(w, Zw) +

1
t
e−3iθ(t,x)Q2(w, Zw).(4.1.1)

w|t=1 = εw0

defined for t ! 1, when ε is small enough and w0 stays in the unit ball of HM+4(R2).
Using the definition of Z = Dx

t + x
2 and the assumptions on Q1, Q2, we can rewrite

the first equation (4.1.1) as

(4.1.2)
(
Dt +

D2
x

t2

)
w =

1
t

∑

|γ|!2

qγ1 (w, Dx
t w)xγeiθ +

1
t

∑

|γ|!2

qγ2 (w, Dx
t w)xγe−3iθ

where γ ∈ Nd, |γ| " 2 in the summation, and qγ1 (Y0, Y1), qγ2 (Y0, Y1) are homogeneous
of degree 2 in (Y0, Y1), their degree in Y1 degY1

qγj (Y0, Y1) satisfying the relation

(4.1.3) 0 < degY1
qγj (Y0, Y1) + |γ| " 2, j = 1, 2.

The spaces we will use to look for a solution are the spaces Ẽs,s′

α,α′,r(M) and Ẽ
s,s′

α,α′,r(M)
introduced in (3.1.49). Let us recall their definition

Ẽs,s′

α,α′,r(M) = {v ∈ Ẽs,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, xγv ∈ Ẽs,s′−|γ|
α,α′,r }

Ẽ
s,s′

α,α′,r(M) = {v ∈ Ẽ
s,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, xγv ∈ Ẽ
s,s′−|γ|
α,α′,r }.

(4.1.4)

Since we have relations

Zγ =
∑

γ′+γ′′!γ
aγ′,γ′′(Dx/t)γ

′
xγ

′′

xγ =
∑

γ′+γ′′!γ
bγ′,γ′′(Dx/t)γ

′
Zγ

′′
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with coefficients aγ′,γ′′ , bγ′,γ′′ uniformly bounded for t ! 1, we see that these spaces
are also characterized by

Ẽs,s′

α,α′,r(M) = {v ∈ Ẽs,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, Zγv ∈ Ẽs,s′−|γ|
α,α′,r }

Ẽ
s,s′

α,α′,r(M) = {v ∈ Ẽ
s,s′

α,α′,r; ∀ γ ∈ Nd, |γ| " M, Zγv ∈ Ẽ
s,s′−|γ|
α,α′,r }.

(4.1.5)

We also have an injection Ẽs,s′

α,α′,∞(M) ⊂ Ẽ
s,s′

α,α′,∞(M) because of the corresponding

property H̃s,s′

α,α′,2 ⊂ H̃
s,s′

α,α′ .
The indices s, s′,α,α′, M used in (4.1.4), (4.1.5) will be fixed satisfying the following

conditions

(4.1.6)
α+ 2α′ + 4 > s > α′ + 2 > 3, α+ α′ < −1, M = s + s′ − 4 ! 6

α+ 2α′ + 4 > s > 2(α+ 2α′ + 2).

Remark that the conditions concerning (α,α′) read

(4.1.7) −2 < α+ α′ < −1, α′ > 1,
α

2
+ α′ < 0

i.e. (α,α′) has to stay in the shaded area in the following figure and s must stay in the

α

α′

1

(−4, 2)

α+ α′ = −2 α+ α′ = −1 α/2 + α′ = 0

two intervals defined in (4.1.6). One should think of (α,α′) as being close to (−4, 2),
and in the shaded area, and s being close to 4 − 0, in the intervals (4.1.6). The fact
that s has to be pretty large is imposed by the nonlinear estimates we will need to
study the right hand side of (4.1.2). We cannot hope to put this right hand side in a
space Ẽs,s′

α,α′,r(M) for such a large s: in fact, this would impose to be able to make act
on it s Dx√

t
derivatives, which is incompatible (if one wants uniform time estimates)

with the presence of the exponentials eiθ, e−3iθ. To get around this difficulty, the
main idea is to get rid of these exponentials exploiting the fact that their phases are
non-characteristic for the operator Dt + D2

x
t2 .
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We fix now s, s′,α,α′, M satisfying (4.1.6), we take µ ∈ ]0, 2[, close enough to 2,
and introduce the following notations:

G = {v ∈ Ẽ
s,s′

α,α′,∞(M); (tDt)kv ∈ Ẽ
s−2k,s′

α,α′,∞ (M), k = 0, 1, 2}

G′ = {f ∈ Es,s′−1
β,α′,1 (M); tDtf ∈ Es−2,s′−1

β,α′,1 (M)}

V = {V ∈ Ẽs+2,s′−1
β,α′,1 (M); tDtV ∈ Ẽs,s′−1

β,α′,1 (M), ∀ c ∈ Sµ, ∀ γ ∈ N2, |γ| " 1,

c(
√

tx)(D/t)γ(tDt)kV ∈ Ẽs+2−µ−2k,s′−1−|γ|
α+2|γ|,α′,1 (M), k = 0, 1}

(4.1.8)

where the index β is defined in terms of α by

(4.1.9) β = 2(α+ α′ + 1).

We will look for the solution w of (4.1.2) as

(4.1.10) w = v + V1e
iθ + V−3e

−3iθ

with v ∈ G, V1, V−3 ∈ V . This expression should be understood as the beginning of
an expansion of w, since the definition of V in (4.1.8) shows that V1, V−3 will decay
like 〈

√
tx〉−µ. The two functions V1, V−3 will be determined as functions of v in order

to cancel the worst oscillating terms in the right hand side of (4.1.2). Let us compute
the expression we get when substituting (4.1.10) in the right hand side of (4.1.2). Set
the following notations for sets of indices

(4.1.11) I1 = {−4,−2, 2, 0}, I2 = {−5,−1, 3}.

Denote by V the pair (V1, V−3). We have the following lemma:

Lemma 4.1.1. — There are

– quadratic polynomials P 1
γ (Y0, Y1), P−3

γ (Y 0, Y 1) in two indeterminates, indexed by
γ ∈ N2, satisfying

(4.1.12) 0 < degY1
P 1
γ + |γ| " 2, 0 < degY 1

P−3
γ + |γ| " 2,

– quadratic polynomials Pm
γ (Y0, W0, Y 0, W 0; Y1, W1, Y 1, W 1) in indetermi-

nates Y0, Y 0 ∈ C, Y1, Y 1, W0, W 0 ∈ C2, W1, W 1 ∈ C4 , linear in the variables
(Y0, Y 0, Y1, Y 1) and (W0, W 0, W1, W 1), indexed by m ∈ I1 and γ ∈ N2, satisfying

(4.1.13) 0 < deg(Y1,W1,Y 1,W 1) Pm
γ + |γ| " 2,

– quadratic polynomials Pm
γ (W0, W 0; W1, W 1) indexed by m ∈ I2 and γ ∈ N2

satisfying

(4.1.14) 0 < deg(W1,W 1)
Pm
γ + |γ| " 2,
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such that, if w is given by (4.1.10) we have
∑

|γ|!2

qγ1 (w, D
t w)xγeiθ +

∑

|γ|!2

qγ2 (w, D
t w)xγe−3iθ = S1 + S2 + S3

S1 =
∑

|γ|!2

P 1
γ (v, D

t v)xγeiθ +
∑

|γ|!2

P−3
γ (v, D

t v)xγe−3iθ

S2 =
∑

m∈I1

∑

|γ|!2

Pm
γ (v, V, v, V ; D

t v, D
t V, D

t v, D
t V )xγeimθ

S3 =
∑

m∈I2

∑

|γ|!2

Pm
γ (V, V ; D

t V, D
t V )xγeimθ.

(4.1.15)

The lemma is proved substituting (4.1.10) into the left hand side of (4.1.15) and
sorting terms according to the degree of homogeneity in (v, v, D

t v, D
t v). Our first

task will be to write S1, S2, S3 in (4.1.15) making appear the main contributions and
remainders. We have to introduce some notations.

Definition 4.1.2. — A quadratic remainder will be a continuous function v ,→ R(v)
(resp. (v, V ) ,→ R(v, V ), resp. V ,→ R(V )) defined on the open unit ball of G (resp.
G × V , resp. V), with values in G′, vanishing at the origin, and such that one has the
following estimates for v, v′ in the unit ball of G (resp. (v, V ), (v′, V ′) in the unit ball
of G × V , resp. V, V ′ in the unit ball of V)

‖R(v) − R(v′)‖G′ " C(‖v‖G + ‖v′‖G)‖v − v′‖G
‖R(v, V ) − R(v′, V ′)‖G′ " C(‖(v, V )‖G×V + ‖(v′, V ′)‖G×V)

× ‖(v − v′, V − V ′)‖G×V

‖R(V ) − R(V ′)‖G′ " C(‖V ‖V + ‖V ′‖V)‖V − V ′‖V .

(4.1.16)

(Actually V is not endowed with a norm, but with a family of semi-norms. We should
thus speak not of the unit ball of V , but of a bounded set, and not use a notation like
‖ ·‖V . Anyway, to avoid introducing some more notations, we shall use such an abuse
of notations).

Remind that we defined in definition 3.2.1 the class Σµ
ν of symbols b(t, ξ). Let us

denote by E , E ′, E ′′ three generic spaces. We set the following definition:

Definition 4.1.3. — A quadratic symbol A(v, t, ξ) with values in E ⊗Σµ
ν , such that

tDtA ∈ E ′ ⊗ Σµ
ν , and (tDt)2A ∈ E ′′ ⊗ Σµ

ν , will be a linear combination of functions
v ,→ a(v)b(t, ξ) with b ∈ Σµ

ν and where a is a function defined on the unit ball of G,
with values in E , vanishing identically at v = 0, and such that

‖a(v) − a(v′)‖E " C(‖v‖G + ‖v′‖G)‖v − v′‖G
‖tDt(a(v) − a(v′))‖E′ " C(‖v‖G + ‖v′‖G)‖v − v′‖G(4.1.17)

‖(tDt)2(a(v) − a(v′))‖E′′ " C(‖v‖G + ‖v′‖G)‖v − v′‖G
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for any v, v′ in the unit ball of G.
We use a similar terminology for symbols A(v, V, t, ξ) defined on the unit ball of

G × V .

Before beginning the study of equation (4.1.2) let us introduce a last notation. If
A = a ⊗ b with a a function of (t, x) belonging to a space E and b a symbol in Σµ

ν ,
we shall denote by OpB(A) the paradifferential operator of symbol A, defined using
(3.1.12) by

(4.1.18) OpB(A)u = Ta(t,x)(b(t, D)u).

We shall also use the generic notation Õp
B
(A) for the operator

(4.1.19) Õp
B
(A)u = T̃a(t,x)(b(t, D)u).

The study of equation (4.1.2) will be done in several steps. For each of them, we
will present the underlying idea on the example used in the introduction, namely the
equation

(4.1.20)
(
Dt +

D2
x

t2

)
w =

1
t
eiθw

(Dx

t
w

)

where Dx denotes generically one of the derivatives Dxj . The right hand side in the
above equation is one of the contributions to the right hand side of (4.1.2).

Step 1: Expression of the equation in terms of v, V

Let us indicate the idea of this first step, when w solves (4.1.20), and when we look
for it as w = v + V1eiθ with some V1 to be determined in function of v in a foregoing
step. The assumptions v ∈ G, V1 ∈ V mean essentially that v, V1 are smooth, and
moreover that V1 decays essentially like 〈

√
tx〉−2. We plug the expression for w in

(4.1.20) and get
(
Dt +

D2
x

t2

)
v =

1
t
eiθv

Dx

t
v +

1
t
e2iθ

[
v
Dx

t
V1 + V1

Dx

t
v
]

+
1
t
e3iθV1

Dx

t
V1 −

(
Dt +

D2
x

t2

)
(V1(v)eiθ)(4.1.21)

+ other terms.

We look at the different terms in the right hand side of this equation and explain how
they appear in (4.1.26) – which is the expression we shall obtain in general. First of
all write

(4.1.22) V1
Dx

t
V1e

iθ = Teiθ

(
V1

Dx

t
V1

)
+ R

(
eiθ, V1

Dx

t
V1

)
+ TV1

Dx
t V1

eiθ.

Since V1 is smooth, so is V1
Dx
t V1 (with a loss of one Dx/t-derivative). Consequently,

the first two terms in the right hand side of (4.1.22) are smooth, i.e. will contribute
to the R-term in (4.1.26). The third term in the right hand side of (4.1.22) is also
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smooth: this will be the contains of lemma 4.1.9. Actually, modulo remainders, it can
be written

T(〈
√

tx〉2V1)(〈
√

tx〉2DxV1/t)(〈
√

tx〉−4eiθ).

Since 〈
√

tx〉−4eiθ accepts four Dx/
√

t-derivatives, and since V1 decays essentially like
〈
√

tx〉−2, this expression will belong to G′ (this uses the fact that the index s satisfies
s < 4). Consequently we get again a R-type contribution to (4.1.26).

Let us look now at

(4.1.23) v
Dx

t
veiθ = Teiθ

(
v
Dx

t
v
)

+ R
(
eiθ, v

Dx

t
v
)

+ Tv Dx
t ve

iθ.

The first two terms in the right hand side can be handled as above, and give a
R-contribution to (4.1.26). The last term Tv Dx

t veiθ has no chance at all of being
smooth, as v has no decay (unlike V1). We thus keep this term in the right hand side
of (4.1.26), writing it as OpB(A1(v))eiθ where A1(v) = v Dx

t v is a symbol independent
of ξ. Finally, arguing in the same way, we decompose the e2iθ-term in (4.1.21) as a
term of type OpB(A2(v, V ))e2iθ and a R(v, V )-like term.

Let us turn now to the general case. Our main goal in this first step will be the
proof of the following proposition.

Proposition 4.1.4. — Set M ′ = 2M − 5. There are

– a real number µ ∈ ]0, 2[,
– quadratic symbols Am(v, t, ξ), m = 1,−3, with values in the space

Ẽs,s′−1
β,α′,1 (M ′) ⊗ Σ0

0 + Ẽs,s′−1
α,α′,1 (M ′) ⊗ Σ0

1,

such that, for k = 1, 2, (tDt)kAm(v, t, ξ) belongs to

Ẽs−2k,s′−1
β,α′,1 (M ′) ⊗ Σ0

0 + Ẽs−2k,s′−1
α,α′,1 (M ′) ⊗ Σ0

1,

– quadratic symbols Am(v, V, t, ξ), m ∈ I1 − {0}, with values in the space
Ẽs,s′−1
β,α′,1 (M ′) ⊗ Σ0

0 + Ẽs,s′−1
α,α′,1 (M ′) ⊗ Σ0

1, such that for any c ∈ Sµ′
, µ′ ∈ [0, µ] and

k = 0, 1
(4.1.24)

c(
√

tx)(tDt)kAm(v, V, t, ξ) ∈ Ẽs−2k−µ′,s′−1
β,α′,1 (M ′) ⊗ Σ0

0 + Ẽs−2k−µ′,s′−1
α,α′,1 (M ′) ⊗ Σ0

1,

– two bilinear forms (v, V ) ,→ Hj(v, V ), j = 1, 2, defined on G × V with values in
Ẽs,s′

α,α′,1(M + 1), satisfying, for k = 0, 1, c ∈ Sµ′
, µ′ ∈ [0, µ]

(4.1.25) ‖c(
√

tx)(tDt)kHj(v, V )‖Es−µ′−2k,s′
α,α′,1 (M+1)

" C‖v‖G‖V ‖V ,

– quadratic remainders v ,→ R(v), (v, V ) ,→ R(v, V ) defined on the unit ball of G
and G × V respectively, satisfying the conditions of definition 4.1.2,
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such that if (v, V ) satisfies the equation

(4.1.26)
(
Dt +

D2
x

t2

)
v =

1
t

∑

m∈{1,−3}

[
OpB(Am(v, t, ξ))(eimθ) −

(
Dt +

D2
x

t2

)
(Vmeimθ)

]

+
1
t

∑

m∈I1−{0}

OpB(Am(v, V, t, ξ))(eimθ)

+
1
t

2∑

j=1

xjHj(v, V ) +
1
t
R(v) +

1
t
R(v, V ),

then w given by (4.1.10) is a solution to (4.1.2).

The proof will be made of several lemmas showing that S1, S2, S3 in (4.1.15) can
be reduced to terms in the right hand side of (4.1.26).

Lemma 4.1.5. — We fix λ > 2 close to 2. Let γ1, γ2, γ′ ∈ N2 with |γ1| " 1, |γ2| " 1,
|γ′| " 2M − 3.

(i) Let v1, v2 be two elements of G. Then for k = 0, 1, 2

(4.1.27) (tDt)k[xγ
′
((D/t)γ1v1)((D/t)γ2v2)]

belongs to the space Ẽs−2k,s′−(λ+|γ′|−s′+2+δ)+−1
β,α′,1 when |γ1|+ |γ2| > 0, and to the space

Ẽs−2k,s′−(λ+|γ′|−s′+2+δ)+
α,α′,1 when γ1 = γ2 = 0 for any δ > 0. Moreover the norm of

(4.1.27) in these spaces is estimated by C‖v1‖G‖v2‖G.
(ii) Let v1 ∈ G, v2 ∈ V. Then for k = 0, 1, c ∈ Sµ′

, µ′ ∈ [0, µ]

(4.1.28) c(
√

tx)(tDt)k[xγ
′
((D/t)γ1v1)((D/t)γ2v2)]

belongs to the space Ẽs−2k−µ′,s′−(λ+|γ′|−s′+2+δ)+−1
β,α′,1 when |γ1| + |γ2| > 0 and to the

space Ẽs−2k−µ′,s′−(λ+|γ′|−s′+2+δ)+
α,α′,1 when γ1 = γ2 = 0 for any δ > 0. Moreover the

norm of (4.1.28) in these spaces is estimated by C‖v1‖G‖v2‖V .
(iii) Let v1 ∈ V, v2 ∈ V. Then for k = 0, 1, c ∈ Sµ′

, µ′ ∈ [0, µ]

(4.1.29) c(
√

tx)(tDt)k[xγ
′
((D/t)γ1v1)((D/t)γ2v2)]

belongs to the space Ẽs−2k−µ′,s′−(λ+|γ′|−s′+2+δ)+−1
β,α′,1 when |γ1| + |γ2| > 0 and to the

space Ẽs−2k−µ′,s′−(λ+|γ′|−s′+2+δ)+
α,α′,1 when γ1 = γ2 = 0, and for c ∈ S2µ′

, µ′ ∈ [0, µ]

(4.1.30) c(
√

tx)[xγ
′
((D/t)γ1v1)((D/t)γ2v2)]

belongs to the space Ẽs−2µ′,s′−(λ+|γ′|−s′+2+δ)+−1
β,α′,1 when |γ1|+ |γ2| > 0 and to the space

Ẽs−2µ′,s′−(λ+|γ′|−s′+2+δ)+
α,α′,1 when γ1 = γ2 = 0. Moreover the norm of (4.1.28) in these

spaces is estimated by C‖v1‖V‖v2‖V .
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Proof
(i) The quantity to study may be written as a combination of expressions xγ

′
w1w2

with

w1 = (tDt)k1 (D
t )γ1v1 ∈ Ẽ

s−2k1,s′−|γ1|
α,α′+|γ1|,∞ (M) ⊂ Ẽ

s−2k1,s′−|γ1|
α+2|γ1|,α′,∞ (M)

w2 = (tDt)k2 (D
t )γ2v2 ∈ Ẽ

s−2k2,s′−|γ2|
α,α′+|γ2|,∞ (M) ⊂ Ẽ

s−2k2,s′−|γ2|
α+2|γ2|,α′,∞ (M)

for k1 + k2 = k. When |γ1| + |γ2| > 0, one of the first lower indices of the above
spaces equals α + 2, so we can apply (i) of corollary 3.1.8 with σj = 2kj , σ′

j = |γj |.
One checks that assumptions (3.1.50), (3.1.51) are satisfied because of (4.1.6) and of
λ > 2. Moreover, condition (3.1.52) is satisfied as long as

s + s′ > 2 +
1
2
(|γ′| + |γ1| + |γ2|) + 1

(since σ1+σ2 " 4), which is true since s+s′ = M+4, |γ′| " 2M−3. By (3.1.53) we get
that xγ

′
w1w2 is in the wanted space. When γ1 = γ2 = 0, we use (ii) of corollary 3.1.8,

and get also the conclusion of the lemma, since in this case max(σ′
1,σ

′
2) = 0.

(ii) We write expression (4.1.28) in terms of xγ
′
w1w2 with

w1 = (tDt)k1(D
t )γ1v1 ∈ Ẽ

s−2k1,s′−|γ1|
α,α′+|γ1|,∞ (M) ⊂ Ẽ

s−2k1,s′−|γ1|
α+2|γ1|,α′,∞ (M)

w2 = c(
√

tx)(tDt)k2(D
t )γ2v2 ∈ Ẽs−µ′−2k2,s′−|γ2|

α+2|γ2|,α′,∞ (M) ⊂ Ẽ
s−µ′−2k2,s′−|γ2|
α+2|γ2|,α′,∞ (M)

for k1 + k2 = k, where the last inclusion in the first line comes from the definition of
the spaces. We then apply corollary 3.1.8 as in the proof of (i), taking here σ1 = 2k1,
σ2 = 2k2 + µ′ which still satisfies σ1 + σ2 " 4 since k " 1, µ′ " 2.

(iii) In this case, (4.1.29) is estimated as (4.1.28). For (4.1.30), we write this
expression in terms of xγ

′
w1w2 where, if cj ∈ Sµ′

with c1c2 = c,

wj = cj(
√

tx)(D
t )γj vj ∈ Ẽs−µ′,s′−|γj |

α+2|γj|,α′,∞(M)

and we apply again corollary 3.1.8.

Let us study now term S1 of (4.1.15).

Lemma 4.1.6. — Set M ′ = 2M − 5. There are quadratic symbols Am(v, t, ξ), m =
1,−3, with values in Ẽs,s′−1

β,α′,1 (M ′) ⊗ Σ0
0 + Ẽs,s′−1

α,α′,1 (M ′) ⊗ Σ0
1 such that for k = 1, 2,

(tDt)kAm ∈ Ẽs−2k,s′−1
β,α′,1 (M ′) ⊗ Σ0

0 + Ẽs−2k,s′−1
α,α′,1 (M ′) ⊗ Σ0

1, and a quadratic remainder
v ,→ R(v) such that

(4.1.31) S1 =
∑

m∈{1,−3}

OpB(Am(v, t, ξ))(eimθ) + R(v).

Proof. — We will study the case of contribution P 1
γ (v, (D/t)v)eiθxγ to S1, the other

contribution being treated in the same way. Because of (4.1.12) such an expression
is a linear combination of quantities of type ((D/t)γ1v)((D/t)γ2v)xγ3eiθ for γ1, γ2, γ3
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satisfying |γ1| " 1, |γ2| " 1, 0 < |γ1| + |γ2| + |γ3| " 2. We decompose such an
expression as

(4.1.32) OpB(xγ3eiθ)[((D/t)γ1v)((D/t)γ2v)] + R(xγ3eiθ, ((D/t)γ1v)((D/t)γ2v))

+ OpB((D/t)γ1v(D/t)γ2v)(xγ3eiθ) = W1 + W2 + W3.

To show that W1 is a quadratic remainder, we just have to prove by definition of G′

that for any γ ∈ N2 with |γ| " M , any k = 0, 1, any v1, v2 ∈ G,

(4.1.33) (tDt)kxγOpB(xγ3eiθ)[((D/t)γ1v1)((D/t)γ2v2)]

belongs to Es−2k,s′−|γ|−1
β,α′,1 , and that its norm in this space is estimated by

C‖v1‖G‖v2‖G . Remark that it follows from formula (3.1.12) that when we mul-
tiply a paraproduct Tab by x, xTab may be written, commuting x with the ∆j ’s, as
a linear combination of terms of type T̃ab, Ta(xb). In the same way, an expression
T(xa)b is a linear combination of expressions T̃ab, Ta(xb). Applying this to (4.1.33),
we see that this term may be written as a linear combination of expressions

(4.1.34) OpB(xγ
′
3(tDt)k′

(eiθ))[(tDt)k′′
xγ

′
((D/t)γ1v1)((D/t)γ2v2)]

with k′+k′′ = k, |γ′| " |γ|+1 " M +1 " 2M−3, γ′3 = 0 when |γ1|+ |γ2| > 0, |γ′3| = 1
when (γ1, γ2) = (0, 0). We apply (4.1.27) to the term inside the bracket of (4.1.34).
Since s′ = M + 4 − s > 5 as M > 5, assertion (i) of lemma 4.1.5 shows that this
term belongs to Es−2k′′,s′−|γ|−1

β,α′,1 when |γ1| + |γ2| > 0, and to Es−2k′′,s′−|γ|
α,α′,1 when

(γ1, γ2) = (0, 0). Moreover, we have the estimate

‖Sj(xγ
′
3(tDt)k′

eiθ)‖L∞ =
∥∥∥Sj(

(2Dx

t

)γ′3(D2
x

t
+

i

2

)k′

eiθ)
∥∥∥

L∞

" C
(2j

t

)|γ′3|(
1 +

2j

√
t

)2k′

.

We conclude that when |γ1|+ |γ2| > 0, γ′3 = 0, (4.1.34) is in Es−2k,s′−|γ|−1
β,α′,1 and when

(γ1, γ2) = (0, 0), |γ′3| = 1, (4.1.34) is in

Es−2k,s′−|γ|−1
α,α′+1,1 ⊂ Es−2k,s′−|γ|−1

α+2,α′,1 ⊂ Es−2k,s′−|γ|−1
β,α′,1 .

This is the wanted conclusion, which shows that W1 is a quadratic remainder.
Let us show that W2 is also a quadratic remainder, proving that for any γ ∈ N2,

|γ| " M , any k = 0, 1, any v1, v2 ∈ G

(4.1.35) (tDt)kxγR(xγ3eiθ, (D/t)γ1v1(D/t)γ2v2)

belongs to Es−2k,s′−|γ|−1
β,α′,1 , with estimates by ‖v1‖G‖v2‖G . As for (4.1.33), we can write

(4.1.35) as a linear combination of quantities

(4.1.36) R̃((tDt)k′
xγ

′
3eiθ, (tDt)k′′

xγ
′
(D/t)γ1v1(D/t)γ2v2)

with k′ + k′′ = k, |γ′| " |γ|+1 " M +1 " 2M − 3, γ′3 = 0 if |γ1|+ |γ2| > 0, |γ′3| = 1 if
(γ1, γ2) = (0, 0). We have seen above that w = (tDt)k′′

xγ
′
(D/t)γ1v1(D/t)γ2v2 belongs
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to Es−2k′′,s′−|γ|−1
β,α′,1 when |γ1| + |γ2| > 0 and to Es−2k′′,s′−|γ|

α,α′,1 when (γ1, γ2) = (0, 0).
In the first case, we apply (i) of proposition 3.1.6 with κ1 = k′, κ2 = 0 and α, (resp.
s, resp. s′) replaced by β (resp. s − 2k′′, resp. s′ − |γ| − 1). By (4.1.6), conditions
(3.1.36) are satisfied, so (4.1.36) belongs to Es−2k,s′−|γ|−1

β,α′,1 . When (γ1, γ2) = (0, 0), we
use (ii) of proposition 3.1.6 with κ1 = k′ " 1, κ2 = γ′3 and s (resp. s′) replaced by
s− 2k′′ (resp. s′ − |γ|). Since (4.1.6) is satisfied, assumptions (3.1.39) are realized, so
(4.1.36) again belongs to Es−2k,s′−|γ|−1

β,α′,1 . This gives the conclusion.
Finally, let us show that W3 gives a contribution to the sum in the right hand side

of (4.1.31). This term is the quadratic form associated to the bilinear form

(4.1.37) OpB((D/t)γ1v1(D/t)γ2v2)(xγ3eiθ).

Consider first the case γ3 = 0 whence |γ1| + |γ2| > 0. We write then (4.1.37) as
OpB(a(t, x) ⊗ b(t, ξ))(eiθ) where b ≡ 1 ∈ Σ0

0, and where a = (D/t)γ1v1(D/t)γ2v2

satisfies by lemma 4.1.5 (i) for k = 0, 1, 2 (tDt)ka ∈ Es−2k,s′−1
β,α′,1 (M ′). In other words,

W3 is of form OpB(A1)(eiθ) for a quadratic symbol A1. When γ3 4= 0, we take
χ ∈ C∞

0 (R2), χ ≡ 1 close to 0 and decompose (4.1.37) as

(4.1.38) OpB((D/t)γ1v1(D/t)γ2v2χ(ξ/t))((2D/t)γ3eiθ)

+ OpB((D/t)γ1v1(D/t)γ2v2(1 − χ)(ξ/t))((2D/t)γ3eiθ).

The first term in (4.1.38) may be written OpB(a ⊗ b)(eiθ), with b = χ(ξ/t)(2ξ/t)γ3 ,
element of Σ0

1, and a = (D/t)γ1v1(D/t)γ2v2. We just have to use lemma 4.1.5 (i),
to conclude that (tDt)ka ∈ Es−2k,s′−1

α,α′,1 (M ′), i.e. that a ⊗ b is a quadratic symbol of
wanted type.

The second contribution to (4.1.38) may be written as a linear combination of
terms

(4.1.39) Õp
B
(xγ

′
3(D/t)γ1v1(D/t)γ2v2(1 − χ)(ξ/t))(eiθ)

with |γ′3| " 1 if |γ1| + |γ2| > 0, |γ′3| " 2 if γ1 = γ2 = 0. For γ ∈ N2 with |γ| " M ′, we
have |γ| + |γ′3| " M ′ + 2 " 2M − 3. Again, lemma 4.1.5 (i) shows that (4.1.39) may
be written OpB(a ⊗ b)(eiθ) with b = (1 − χ)(ξ/t) ∈ Σ0

1, (tDt)ka ∈ Ẽs−2k,s′−1
α,α′,1 (M ′) for

k = 0, 1, 2. This concludes the proof of the lemma.

We study now the contribution to S2 in (4.1.15) indexed by m ∈ I1 − {0}.

Lemma 4.1.7. — Set M ′ = 2M−5. Denote by S′
2 the contribution to S2 given by the

second sum (4.1.15) limited to m ∈ I1−{0}. There are quadratic symbols Am(v, V, t, ξ)
m ∈ I1 −{0}, with values in Ẽs,s′−1

β,α′,1 (M ′)⊗Σ0
0 + Ẽs,s′−1

α,α′,1 (M ′)⊗Σ0
1, satisfying (4.1.24),

and there is a quadratic remainder R(v, V ) satisfying the second condition (4.1.16),
such that

(4.1.40) S′
2 =

∑

m∈I1−{0}

OpB(Am(v, V, t, ξ))(eimθ) + R(v, V ).
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Proof. — The general term of S′
2 may be written

(4.1.41) ((D/t)γ1v)((D/t)γ2V )(xγ3eimθ)

where |γ1| " 1, |γ2| " 1, 0 < |γ1| + |γ2| + |γ3| " 2, and where v (resp. V ) should be
read indifferently v or v (resp. V or V ). We decompose (4.1.41) as

OpB(xγ3eimθ)[((D
t )γ1v)((D

t )γ2V )] + R(xγ3eimθ, ((D
t )γ1v)((D

t )γ2V ))

+ OpB((D
t )γ1v(D

t )γ2V )(xγ3eimθ).
(4.1.42)

Remark that the assumption V ∈ V implies

(tDt)kV ∈ Ẽs−2k,s′

α,α′,∞ (M) ⊂ Ẽ
s−2k,s′

α,α′,∞ (M), k = 0, 1,

i.e. V satisfies the same assumptions as v. Consequently, the proof of the preced-
ing lemma implies that the first two terms in (4.1.42) provide a contribution to the
quadratic remainder R(v, V ) (the fact that v admits two tDt derivatives by definition
of G, instead of only one for V , does not play any role, since this is not used in the
study of the first two terms in (4.1.32)). Let us study the last term in (4.1.42). When
γ3 = 0, so |γ1| + |γ2| > 0, (ii) of lemma 4.1.5 implies that for k = 0, 1, c ∈ Sµ′

,
µ′ ∈ [0, µ], a = (D/t)γ1v(D/t)γ2V satisfies

c(
√

tx)(tDt)ka ∈ Ẽs−2k−µ′,s′−1
β,α′,1 (M ′).

Consequently, the last term of (4.1.42) is of type OpB(a ⊗ b)(eimθ) with b ∈ Σ0
0, i.e.

satisfies (4.1.24). When γ3 4= 0, write the last term in (4.1.42) as

(4.1.43) OpB((D/t)γ1v(D/t)γ2V χ(ξ/t))((2D/mt)γ3eimθ)

+ OpB((D/t)γ1v(D/t)γ2V (1 − χ)(ξ/t))(xγ3eimθ).

The first term may be written OpB(a ⊗ b)(eimθ) with a symbol

b(t, ξ) = χ(ξ/t)(2ξ/tm)γ3 ∈ Σ0
1,

since |γ3| ! 1, and with a satisfying

(4.1.44) c(
√

tx)(tDt)ka ∈ Ẽs−2k−µ′,s′−1
α,α′,1 (M ′)

for k = 0, 1, c ∈ Sµ′
, µ′ ∈ [0, µ] by (ii) of lemma 4.1.5. The second contribution to

(4.1.43) may be written as linear combination of terms

Õp
B
(xγ

′
3(D/t)γ1v(D/t)γ2V χ1(ξ/t))(eimθ)

where χ1 ∈ C∞ is bounded as well as its derivatives, χ1 ≡ 0 close to 0 and |γ′3| " |γ3|.
This may be written as OpB(a ⊗ b)(eimθ) with b = χ1(ξ/t) ∈ Σ0

1 and a satisfying
(4.1.44) because of (ii) of lemma 4.1.5 and of the fact that we have s′ > 5, since
s′ = M + 4 − s and M > 5. The conclusion of the lemma follows.

Let us examine now the non-oscillating contribution to S2.
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Lemma 4.1.8. — The sum
∑

|γ|!2 P 0
γ (v, V, v, V ; D

t v, D
t V, D

t v, D
t V ) may be written

(4.1.45)
2∑

j=1

xjHj(v, V ) + R(v, V )

where Hj satisfies (4.1.25) and R(v, V ) is a quadratic remainder.

Proof. — The general term of the expression to be studied is of type

(4.1.46) ((D/t)γ1v)((D/t)γ2V )xγ3

for |γ1| " 1, |γ2| " 1, 0 < |γ1| + |γ2| + |γ3| " 2, and where v (resp. V ) should be
read indifferently v or v (resp. V or V ). When |γ1|+ |γ2| > 0, and so |γ3| " 1, (ii) of
lemma 4.1.5 shows that this expression belongs to G′, and so provides a contribution
to the quadratic remainder R(v, V ). When γ1 = γ2 = 0, we have 1 " |γ3| " 2, so
we can write (4.1.46)

∑2
j=1 xjHj(v, V ) where Hj is of form xγ

′
3vV for γ′3 satisfying

|γ′3| " |γ3|− 1 " 1. By (ii) of lemma 4.1.5, and the assumption s′ > 5, which follows
from M > 5, we obtain

c(
√

tx)(tDt)kHj ∈ Ẽs−2k−µ′,s′

α,α′,1 (M + 1)

for c ∈ Sµ′
, µ′ ∈ [0, µ], which is the wanted conclusion.

Finally, let us study contribution S3 to (4.1.15).

Lemma 4.1.9. — If µ is in ]0, 2[ close enough to 2, the contribution S3 to (4.1.15) is
a quadratic remainder R(V ) satisfying the last condition (4.1.16).

Proof. — We write S3 as a linear combination of expressions

(4.1.47) xγ3((D/t)γ1V )((D/t)γ2V )eimθ

with m ∈ I2, 0 < |γ1|+ |γ2|+ |γ3| " 2, and where again one should read indifferently
V or V for V . We decompose (4.1.47) as

OpB(xγ3eimθ)[((D
t )γ1V )((D

t )γ2V )] + R(xγ3eimθ, ((D
t )γ1V )((D

t )γ2V ))

+ OpB((D
t )γ1V (D

t )γ2V )(xγ3eimθ).
(4.1.48)

We have seen in the proof of lemma 4.1.7 that V satisfies the same assumptions as v,
and so that the first two terms are quadratic remainders of type R(V ). We are thus
left with the study of the bilinear term in (V ′, V ′′) ∈ V × V

(4.1.49) OpB(((D/t)γ1V ′)((D/t)γ2V ′′))(xγ3eimθ).

When γ3 = 0, so |γ1|+|γ2| > 0, lemma 4.1.5 (iii) shows that w = (D/t)γ1V ′(D/t)γ2V ′′

satisfies
〈
√

tx〉2µw ∈ Ẽs−2µ,s′−1
β,α′,1 (M), 〈

√
tx〉µtDtw ∈ Ẽs−2−µ,s′−1

β,α′,1 (M).
We can exploit these decay assumptions on w to prove that (4.1.49) is actually a
remainder: one checks immediately using (4.1.6) that if µ is chosen in ]0, 2[ close
enough to 2, assumption (3.2.87) is satisfied for w (replacing in (3.2.87) (α, µ, s′) by
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(β, 2µ, s′ − 1)) and for tDtw (replacing in (3.2.87) (α, s, s′) by (β, s − 2, s′ − 1)). We
thus deduce from corollary 3.2.7 that

OpB(w)(eimθ) ∈ Es,s′−1
β+2,α′,1(M) ⊂ Es,s′−1

β,α′,1 (M)

OpB(tDtw)(eimθ) ∈ Es−2,s′−1
β+2,α′,1 (M) ⊂ Es−2,s′−1

β,α′,1 (M).

Since OpB(w)(tDteimθ) belongs also to this last space, and since the norms in these
spaces are estimated by C‖V ′‖V‖V ′′‖V , this shows that (4.1.49) is a quadratic re-
mainder.

When γ3 4= 0, we write (4.1.49) as a combination of terms

(4.1.50)
OpB(((D/t)γ1V ′)((D/t)γ2V ′′)χ(ξ/t))[(2D/mt)γ3eimθ],

OpB(xγ
′
3((D/t)γ1V ′)((D/t)γ2V ′′)χ1(ξ/t))[eimθ]

with χ1 ∈ C∞(Rd), bounded as well as all its derivatives, χ1 ≡ 0 close to 0,
and |γ′3| " |γ3|. All these expressions can be written as quantities of type
Õp

B
(w(t, x)b(t, ξ))(eimθ) with b ∈ Σ0

1, and w satisfying, because of (iii) of lemma 4.1.5,

〈
√

tx〉2µw ∈ Ẽs−2µ,s′−1
α,α′,1 (M), 〈

√
tx〉µ(tDt)w ∈ Ẽs−2−µ,s′−1

α,α′,1 (M).

Since (3.2.86) (with s′ replaced by s′ − 1) is satisfied by (4.1.6), we get from corol-
lary 3.2.7 that (4.1.50) belongs to Es,s′−1

α+4,α′,1(M) ⊂ Es,s′−1
β,α′,1 (M), and its image by tDt

to Es−2,s′−1
β,α′,1 (M).

Proposition 4.1.4 now follows from (4.1.2), (4.1.10), (4.1.15) and lemmas 4.1.6 to 4.1.9.

Step 2: Cancelation of main oscillating terms

We want now to choose V1, V−3 to eliminate in the right hand side of (4.1.26) the
main oscillating contributions, namely OpB(Am)(eimθ), m = 1,−3. In the case of
example (4.1.20), the oscillating term to get rid of is T(v Dx

t v)e
iθ. To do so, we remark

that an explicit computation shows that

(4.1.51)
(

Dt +
D2

x

t2

)
eiθ =

1
t
Λ(t, D)eiθ

where Λ(t, ξ) = 2 ξ
2

t + i is an elliptic symbol of order 2 in ξ/
√

t. We thus set

(4.1.52) V1(v) = e−iθT(v Dx
t v)(Λ(t, D)−1eiθ).

The equality (4.1.51) allows one to prove that modulo remainders
(

Dt +
D2

x

t2

)
[V1(v)eiθ ] =

1
t
T(v Dx

t v)e
iθ

i.e. this choice of V1 eliminates the OpB(A1)(eiθ) contribution to (4.1.26) (this is the
contains of lemma 4.1.11). Moreover V1 will satisfy the wanted decay and smooth-
ness requirements: this is established in general in proposition 4.1.10. The idea is
that Λ(t, D)−1eiθ in (4.1.52) admits two Dx/

√
t-derivatives. But when acting on an
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oscillatory exponential eiθ, a gain of (Dx/
√

t)−2 in smoothness is equivalent to a gain
of 〈

√
tx〉−2 in decay. Let us now proceed to the general case.

Proposition 4.1.10. — There exists for m = 1,−3 Lipschitz functions v ,→ Vm(v)
defined on the unit ball of G, with values in V, vanishing at 0, and quadratic symbols
v ,→ A′

m(v, t, ξ) with values in

(4.1.53)
1∑

*=0

Ẽs−2−*,s′−1
β,α′,1 (M ′) ⊗ Σ−2−*

0 +
1∑

*=0

Ẽs−2−*,s′−1
α,α′,1 (M ′) ⊗ Σ−2−*

1

satisfying

(4.1.54) tDtA
′
m ∈

1∑

*=0

Ẽs−4−*,s′−1
β,α′,1 (M ′) ⊗ Σ−2−*

0 +
1∑

*=0

Ẽs−4−*,s′−1
α,α′,1 (M ′) ⊗ Σ−2−*

1

such that for m = 1,−3

(4.1.55)
(
Dt+

D2
x

t2

)
(Vmeimθ) =

1
t
OpB(Am(v, t, ξ))(eimθ)− 1

t
OpB(A′

m(v, t, ξ))(eimθ).

We first prove the following lemma.

Lemma 4.1.11. — Let - ∈ N, m ∈ Z − {0,−1}, k ∈ {1, 2}, M ′ = 2M − 5.
(i) Let A(t, x, ξ) be a symbol satisfying for k′ = 0, · · · , k

(4.1.56) (tDt)k′
A ∈ Ẽs−*−2k′,s′−1

α,α′,1 (M ′) ⊗ Σ−*
1

(resp.

(4.1.57) (tDt)k′
A ∈ Ẽs−*−2k′,s′−1

β,α′,1 (M ′) ⊗ Σ−*
0 ).

There are B(t, x, ξ), C(t, x, ξ) satisfying

(tDt)k′
B ∈

1∑

*′=0

Ẽs−*−*′−2k′,s′−1
α,α′,1 (M ′) ⊗ Σ−*−*′−2

1 , k′ = 0, · · · , k

(tDt)k′
C ∈

1∑

*′=0

Ẽs−*−*′−2k′−2,s′−1
α,α′,1 (M ′) ⊗ Σ−*−*′−2

1 , k′ = 0, · · · , k − 1

(4.1.58)

(resp.

(tDt)k′
B ∈

1∑

*′=0

Ẽs−*−*′−2k′,s′−1
β,α′,1 (M ′) ⊗ Σ−*−*′−2

0 , k′ = 0, · · · , k

(tDt)k′
C ∈

1∑

*′=0

Ẽs−*−*′−2k′−2,s′−1
β,α′,1 (M ′) ⊗ Σ−*−*′−2

0 , k′ = 0, · · · , k − 1)

(4.1.59)

with B supported in the domain {ξ; |ξ| > c
√

t}, and such that

(4.1.60)
(
Dt +

D2
x

t2

)
[OpB(B)(eimθ)] =

1
t
OpB(A)(eimθ) +

1
t
OpB(C)(eimθ).

Moreover, the semi-norms of B and C are controlled linearly by the semi-norms of A.
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(ii) Assume that A satisfies for k′ = 0, 1, and any c ∈ Sµ′
, µ′ ∈ [0, µ]

(4.1.61) c(
√

tx)(tDt)k′
A ∈ Ẽs−*−µ′−2k′,s′−1

α,α′,1 (M ′) ⊗ Σ−*
1

(resp.

(4.1.62) c(
√

tx)(tDt)k′
A ∈ Ẽs−*−µ′−2k′,s′−1

β,α′,1 (M ′) ⊗ Σ−*
0 ).

Then the symbols B and C satisfy for any c ∈ Sµ′
, µ′ ∈ [0, µ]

c(
√

tx)(tDt)k′
B ∈

1∑

*′=0

Ẽs−*−*′−µ′−2k′,s′−1
α,α′,1 (M ′) ⊗ Σ−*−*′−2

1 , k′ = 0, 1

c(
√

tx)C ∈
1∑

*′=0

Ẽs−*−*′−µ′−2,s′−1
α,α′,1 (M ′) ⊗ Σ−*−*′−2

1 ,

(4.1.63)

(resp.

c(
√

tx)(tDt)k′
B ∈

1∑

*′=0

Ẽs−*−*′−µ′−2k′,s′−1
β,α′,1 (M ′) ⊗ Σ−*−*′−2

0 , k′ = 0, 1

c(
√

tx)C ∈
1∑

*′=0

Ẽs−*−*′−µ′−2,s′−1
β,α′,1 (M ′) ⊗ Σ−*−*′−2

0 ).

(4.1.64)

Proof. — The lemma asserts that if A is given, we can find a B, which has the same
smoothness and a better ξ/

√
t-decay than A, so that (4.1.60) is true, with a remainder

C that is two degree less regular than A but has a better ξ/
√

t decay.
Assume that A satisfies (4.1.56). Take χ ∈ C∞

0 (R2), χ ≡ 1 close to 0 and write

A(t, x, ξ) = A(t, x, ξ)(1 − χ(ξ/
√

t)) + A(t, x, ξ)χ(ξ/
√

t).

We incorporate the last term in C i.e. we assume that A vanishes for |ξ| < c
√

t. For
m ∈ Z − {0,−1}, set

(4.1.65) Λm(t, ξ) =
(

1 +
1
m

)
ξ2

t
+ i

so that
(
Dt + D2

x
t2

)
eimθ = 1

tΛm(t, D)eimθ. We define

(4.1.66) B(t, x, ξ) = A(t, x, ξ)Λm(t, ξ)−1 − 2
Dx√

t
A(t, x, ξ) · ξ√

t
Λm(t, ξ)−2.

Then B satisfies (4.1.58), and a direct computation shows that
(
Dt +

D2
x

t2

)
[OpB(B)(eimθ)] − 1

t
OpB(A)(eimθ) =

1
t
OpB(C)(eimθ)

with

C(t, x, ξ) =
(
tDt +

D2
x

t

)
(B(t, x, ξ)) − 4

D2
x

t
A(t, x, ξ)

( ξ√
t
,
ξ√
t

)
Λ−2

m

which satisfies (4.1.58). The proof under assumption (4.1.57) is identical. Assertion
(ii) of the lemma follows from the above expressions for B and C.
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Remark. — We use in the above proof the assumption m 4= −1 in an essential
way. If m = −1, Λm(t, ξ) is no longer of order 2, and we can no longer make the
asymptotic construction in the proof of the above lemma. In other words we are not
able to eliminate oscillatory terms of type OpB(A)(e−iθ). These terms do not appear
in the right hand side of our equation (4.1.26) because of the restrictive assumption
on the form of the nonlinearity in the right hand side of (1.1.2).

Proof of proposition 4.1.10. — We apply lemma 4.1.11 (i) to the symbol A =
Am, m = 1,−3, with k = 2, - = 0. We denote by −A′

m the symbols C of
lemma 4.1.11: they satisfy conditions (4.1.53), (4.1.54). Consequently, if we set

Vm = e−imθOpB(Bm)(eimθ)

where Bm satisfies (4.1.58), or (4.1.59), we just have to see that Vm is a Lipschitz
function of v on the unit ball of G, with values in V . The Lipschitz dependence will
follow from the fact that Am, and thus Bm, are Lipschitz in v by construction. The
main fact to prove is that Vm fulfills the conditions (4.1.8) defining V . We will make
use of proposition 3.2.2. Consider first the case corresponding to (4.1.58) i.e.

(4.1.67) (tDt)k′
Bm ∈

1∑

*=0

Ẽs−*−2k′,s′−1
α,α′,1 (M ′) ⊗ Σ−*−2

1 .

We apply proposition 3.2.2 with ρ = 2 or ρ = 3, ν = 1, b ≡ 1, µ = 0. We check that
because of (4.1.7), condition (3.2.4) and the second condition (3.2.6) are satisfied. We
deduce from (3.2.7) that

Vm ∈ Ẽs+2,s′−1
α+2−0,α′,1 ⊂ Ẽs+2,s′−1

β,α′,1 .

Writing for γ ∈ N2, |γ| " M , xγVm as a linear combination of expressions
e−imθOpB(xγ

′
Bm)(eimθ) for |γ′| " |γ|, and using (4.1.67), we get in the same way

that Vm ∈ Ẽs+2,s′−1
β,α′,1 (M).

Let us study now the derivative

(4.1.68) tDtVm = e−imθOpB(tDtBm)(eimθ) − e−imθ[mtx2/4, OpB(Bm)](eimθ).

Using (4.1.67) and proposition 3.2.2, we get that the first term in the right hand side
belongs to Ẽs,s′−1

β,α′,1 (M). Going back to the definition of OpB(·) we see that the last
term in (4.1.68) is the opposite of

(4.1.69) e−imθ
∑

j

Sj−1Bm(t, x, D)[mtx2/4,∆j](eimθ).

If for ∆j = ϕ(2−jD), we set ∆(1)
j = (∇ϕ)(2−jD), ∆(2)

j = (∆ϕ)(2−jD), we have that

(4.1.70)
[mtx2

4
,∆j

]
(eimθ) =

[
− m

4
(2−j

√
t)2∆(2)

j + i∆(1)
j · (2−jD)

]
(eimθ).
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Since Bm is supported in {|ξ| > c
√

t}, the sum in (4.1.69) is restricted to 2j > c
√

t,
so (4.1.70) shows that (4.1.69) is of type e−imθÕp

B
(Bm)(eimθ), and so belongs to

Ẽs+2,s′−1
β,α′,1 (M) ⊂ Ẽs,s′−1

β,α′,1 (M).
To study

(4.1.71) c(
√

tx)(D/t)γ(tDt)kVm, k = 0, 1, |γ| " 1

with c ∈ Sµ, we argue as above when γ = 0: we apply proposition 3.2.2 remarking
that in (3.2.7) we can take ζ > 0 since µ < 2. We get that (4.1.71) belongs to
Ẽs+2−µ−2k,s′−1
α,α′,1 (M). When |γ| = 1 in (4.1.71), we write this expression as

(4.1.72) (D/t)γ [c(
√

tx)(tDt)kVm] +
1√
t
c1(

√
tx)(tDt)kVm

where c1 ∈ Sµ−1. The first contribution belongs to

Ẽs+2−µ−2k,s′−1−|γ|
α,α′+|γ|,1 (M) ⊂ Ẽs+2−µ−2k,s′−1−|γ|

α+2|γ|,α′,1 (M)

which is the wanted conclusion. To study the second contribution, we apply again
proposition 3.2.2 with µ replaced by µ− 1. In this case, in (3.2.7), we can take ζ = 1
since µ − 1 < 1 whence c1(

√
tx)(tDt)kVm ∈ Ẽs+2−(µ−1)−2k,s′−1

α+1,α′,1 (M). Coming back to
the definitions of these spaces, we deduce that the second term in (4.1.72) belongs to
the same space as the first one.

When instead of (4.1.67) one assumes that

(tDt)k′
Bm ∈

1∑

*=0

Ẽs−*−2k′,s′−1
β,α′,1 (M ′) ⊗ Σ−*−2

0

(i.e. when we study the case corresponding to (4.1.59)), we use proposition 3.2.2 with
ν = 0, and α replaced by β. We remark that the first condition (3.2.6), which reads
β
2 +α′ > 0, β+α′ +1 > 0 is satisfied by (4.1.6). We deduce from (3.2.7) with ζ = 0+
(which is possible as d

2 − β − α′ > 0) that

(4.1.73) (tDt)kVm ∈ Ẽs+2−2k,s′−1
β,α′,1 (M)

which is the wanted conclusion. The study of (4.1.71) when γ = 0 is similar, and shows
that this term belongs to Ẽs+2−µ−2k,s′−1

β,α′,1 (M). When |γ| = 1, we use decomposition
(4.1.72). The first term will belong to

Ẽs+2−µ−2k,s′−1−|γ|
β,α′+1,1 (M) ⊂ Ẽs+2−µ−2k,s′−1−|γ|

β+2,α′,1 (M)

which gives the conclusion as β + 2 > α + 2. To study the second contribution to
(4.1.72), we remark first that

c1(
√

tx)(tDt)kVm ∈ Ẽs+2−(µ−1)−2k,s′−1
β,α′,1 (M) ⊂ Ẽs+2−µ−2k,s′−1

α+1,α′,1 (M)

again by (3.2.7) and since (4.1.6) implies β > α+1. Exploiting the 1/
√

t factor in the
second term of (4.1.72), we see that this expression belongs to Ẽs+2−µ−2k,s′−1−|γ|

α+2,α′,1 (M).
This concludes the proof.
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Corollary 4.1.12. — There exists:
– for m = 1,−3 Lipschitz functions v ,→ Vm(v) defined on the unit ball of G, with

values in V, vanishing at v = 0,
– for m = 1,−3 quadratic symbols v ,→ A′

m(v, t, ξ) with values in (4.1.53), satisfy-
ing (4.1.54),

– for m ∈ I1 − {0}, quadratic symbols v ,→ A′
m(v, t, ξ) satisfying for k = 0, 1,

c ∈ Sµ′
, µ′ ∈ [0, µ]

(4.1.74) c(
√

tx)(tDt)kA′
m(v, t, ξ)

∈ Ẽs−2k−µ′,s′−1
β,α′,1 (M ′) ⊗ Σ0

0 + Ẽs−2k−µ′,s′−1
α,α′,1 (M ′) ⊗ Σ0

1,

– A function v ,→ H(v) =
∑2

j=1 xjHj(v) where Hj(v) are defined on the unit ball
of G, vanish at 0, and satisfy for k = 0, 1, c ∈ Sµ′

, µ′ ∈ [0, µ], v, v′ in this unit ball

(4.1.75) ‖c(
√

tx)(tDt)k[Hj(v) − Hj(v′)]‖Es−µ′−2k,s′
α,α′,1 (M+1)

" C(‖v‖G + ‖v′‖G)‖v − v′‖G ,

– A quadratic remainder v ,→ R(v) defined on the unit ball of G, with values in G′,
such that, if we set I = {1,−3}∪ (I1 − {0}) = {−4,−3,−2, 2, 1} and

(4.1.76) F (v) =
∑

m∈I

OpB(A′
m(v, t, ξ))(eimθ) + H(v) + R(v),

for any element v of the unit ball of G which is a solution of

(4.1.77)
(

Dt +
D2

x

t2

)
v =

1
t
F (v),

the function w given by (4.1.10) is a solution to (4.1.2).

Proof. — We define Vm(v) by proposition 4.1.10 and denote V (v) = (V1(v), V−3(v)).
We just have to see that if v satisfies (4.1.77) with a convenient definition of A′

m, H, R
in (4.1.76), then (v, V ) is a solution to (4.1.26). By (4.1.55), the first sum in the
right hand side of (4.1.26) is 1

t

∑
m∈{1,−3} OpB(A′

m)(eimθ). For m ∈ I1 − {0} we
define A′

m(v, t, ξ) = Am(v, V, t, ξ). Since v ,→ V (v) is Lipschitz with values in V ,
(4.1.24) implies that A′

m satisfies (4.1.74) for m ∈ I1 − {0}. We define also the
function Hj(v) satisfying (4.1.75) from the bilinear forms of (4.1.25) by the formula
Hj(v) = Hj(v, V (v)). Since v ,→ V (v) is Lipschitz, (4.1.75) follows from (4.1.25). In
the same way, if we substitute V (v) into the last term R(v, V ) of (4.1.26), we get a
quadratic remainder. A solution v to (4.1.77) thus allows us to construct a solution
(v, V ) to (4.1.26), and so a solution w to (4.1.2).

Our next task is to find a global solution to (4.1.77) for small enough Cauchy data. We
cannot do that directly on equation (4.1.77): actually we want to find a solution v,
which belongs in particular to Es,s′

α,α′,∞. In the right hand side, R(v) belongs to
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Es,s′−1
β,α′,1 ⊂ Es,s′−1

α,α′,1 ⊂ F s,s′−1/2
α,α′,1 . The smoothing property of theorem 2.2.3 tells us

that the corresponding linear solution belongs to Es,s′

α,α′,∞, which is nice. The trouble
comes from the OpB(A′

m)(eimθ) terms in (4.1.76). We cannot hope to put these terms
in F s,s′−1/2

α,α′,1 . In fact, when m = 1,−3, A′
m belongs to Σ−2

0 : this means that the gain
of smoothness we can get when applying OpB(A′

m) to eimθ is at most 2 i.e. these
terms cannot be in any F s,s′−1/2

α,α′,1 space for s > 2. In the same way, for m ∈ I1 − {0},
A′

m is a symbol of order 0, which decays like 〈
√

tx〉−2+0 relatively to space. Since the
action of Dx/

√
t over eimθ results in a loss of

√
tx, this shows that the best that can be

expected for OpB(A′
m)(eimθ) (m ∈ I1) is to lie in a F s,s′−1/2

α,α′,1 space with s < 2. On the
other hand, because of conditions (4.1.6), we do need to be able to solve our problem
in a space of that type with s > 2 (actually s close to 4). Because of that we will
exploit again the fact that the phases of oscillations in (4.1.76) are non-characteristic
ones to further reduce the equation.

Step 3: Last reduction of the equation

Up to now, we have eliminated by an appropriate choice of V the first line in the
right hand side of (4.1.26). We still have to eliminate the OpB(Am(v, V, t, ξ))(eimθ)
terms (or equivalently, the terms of type OpB(A′

m(v, t, ξ))(eimθ) in (4.1.76)). In the
case of example (4.1.20) these are coming from the rectangular terms in (4.1.21) i.e.
are expressions of type OpB(A2(v, V ))(e2iθ), where A2(v, V ) is bilinear. In particular,
this A2 decays like 〈

√
tx〉−2, which means that the corresponding term admits two

Dx/
√

t-derivatives. This is not enough to incorporate it to the remainders in (4.1.26),
since the latter have to accept about four of these derivatives. In this third step, we
thus repeat the procedure of step 2, to get rid of these last annoying terms.

Proposition 4.1.13. — There exists a function v ,→ K(v) (resp. v ,→ R̃(v)) defined
on the unit ball of G, with values in Ẽs,s′

α,α′,1(M) (resp. Es,s′

β,α′,1(M)), such that for any
v, v′ in the unit ball of G

‖K(v) − K(v′)‖Es,s′
α,α′,1(M)

" C‖v − v′‖G(‖v‖G + ‖v′‖G)

‖R̃(v) − R̃(v′)‖Es,s′
β,α′,1(M)

" C‖v − v′‖G(‖v‖G + ‖v′‖G),
(4.1.78)

and satisfying the following: if v and v′ are two elements of the unit ball of G, solutions
to

(4.1.79)
(
Dt +

D2
x

t2

)
(v − K(v′)) =

1
t
H(v′) +

1
t
R̃(v′)

then (v, v′) solves

(4.1.80)
(
Dt +

D2
x

t2

)
v =

1
t
F (v′)

where F and H are defined in (4.1.76).

SOCIÉTÉ MATHÉMATIQUE DE FRANCE 2002



82 CHAPTER 4. PROOF OF THE MAIN THEOREM

Proof. — We have to define K(v′) in such a way that the contribution
∑

m∈I

OpB(A′
m)(eimθ)

in (4.1.76) is canceled. Apply first lemma 4.1.11 (i) to A′
m, m = 1,−3. Since then

A′
m belongs to (4.1.53), and tDtA′

m to (4.1.54), we get from this lemma symbols B′
m

and C′
m satisfying for m = 1,−3

B′
m ∈

2∑

*=0

Ẽs−2−*,s′−1
β,α′,1 (M ′) ⊗ Σ−4−*

0 +
2∑

*=0

Ẽs−2−*,s′−1
α,α′,1 (M ′) ⊗ Σ−4−*

1

C′
m ∈

2∑

*=0

Ẽs−4−*,s′−1
β,α′,1 (M ′) ⊗ Σ−4−*

0 +
2∑

*=0

Ẽs−4−*,s′−1
α,α′,1 (M ′) ⊗ Σ−4−*

1 .

(4.1.81)

When m ∈ I1−{0}, A′
m satisfies (4.1.74) and lemma 4.1.11 (ii) provides symbols B′

m,
C′

m such that for c ∈ Sµ′
, µ′ ∈ [0, µ]

c(
√

tx)B′
m ∈

1∑

*=0

Ẽs−µ′−*,s′−1
β,α′,1 (M ′) ⊗ Σ−2−*

0 +
1∑

*=0

Ẽs−µ′−*,s′−1
α,α′,1 (M ′) ⊗ Σ−2−*

1

c(
√

tx)C′
m ∈

1∑

*=0

Ẽs−µ′−2−*,s′−1
β,α′,1 (M ′) ⊗ Σ−2−*

0 +
1∑

*=0

Ẽs−µ′−2−*,s′−1
α,α′,1 (M ′) ⊗ Σ−2−*

1 .

(4.1.82)

With these notations, we set

K(v′) =
∑

m∈I

OpB(B′
m)(eimθ)

R1(v′) =
∑

m∈I

OpB(C′
m)(eimθ)

(4.1.83)

and (4.1.60) shows that (4.1.80) implies (4.1.79) if we can prove that K(v′) belongs
to Ẽs,s′

α,α′,1(M) and R1(v′) to Es,s′−1
β,α′,1 (M) (the quadratic estimates (4.1.78) follow then

from the linear dependence of (4.1.83) in B′
m, C′

m, and the quadratic nature of these
terms).

Consider first the contribution to K(v′) coming from terms of type OpB(B′
m)(eimθ),

m = 1,−3. Condition (4.1.81) implies

B′
m ∈

2∑

*=0

Ẽs−4−*,s′

β,α′,1 (M ′) ⊗ Σ−4−*
0 +

2∑

*=0

Ẽs−4−*,s′

α,α′,1 (M ′) ⊗ Σ−4−*
1 .

We apply corollary 3.2.7 with b ∈ Σ−4−*
0 (resp. b ∈ Σ−4−*

1 ), µ = 0, s replaced by
s−4− -, M replaced by M ′ = 2M −5, and we check that conditions (3.2.87), (3.2.86)
which read respectively

−1 < β + α′, s − 4 − - < α′ − 1, s + s′ − 4 − -− M ′ < −1/2

−2 < α+ α′ < −1, s − 4 − - < α+ 2α′, s + s′ − 4 − -− M ′ < −1/2
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are satisfied because of (4.1.6). We deduce that the corresponding contribution to
K(v′) belongs to Es,s′

α+2,α′,1(M). Since 1
2 (α + 2) + α′ > 0, the last assertion of

lemma 3.1.2 implies that this space equals Ẽs,s′

α+2,α′,1(M) ⊂ Ẽs,s′

α,α′,1(M). Let us ex-
amine now the contribution to K(v′) coming from OpB(B′

m)(eimθ), m ∈ I1 −{0}. We
deduce from (4.1.82) that for c ∈ Sµ

c(
√

tx)B′
m ∈

1∑

*=0

Ẽs−µ−2−*,s′

β,α′,1 (M ′) ⊗ Σ−2−*
0 +

1∑

*=0

Ẽs−µ−2−*,s′

α,α′,1 (M ′) ⊗ Σ−2−*
1 .

We apply corollary 3.2.7. We check that conditions (3.2.87), (3.2.86) are satisfied
if µ ∈ ]0, 2[ is taken close enough to 2, because of (4.1.6). We obtain that the
corresponding contribution to K(v′) is in Es,s′

α+2,α′,1(M) ⊂ Ẽs,s′

α,α′,1(M).
Next, let us consider R1(v′). To study the contribution coming from OpB(C′

m)(eimθ),
m = 1,−3, we use assumption (4.1.81) together with corollary 3.2.7. We get that these
terms belong to Es,s′−1

β,α′,1 (M). For the contribution of OpB(C′
m)(eimθ), m ∈ I1 − {0},

we use (4.1.82) and corollary 3.2.7 and get the same conclusion. The proposition is
proved.

To close this chapter, we prove a lemma concerning the quantity F (v) defined in
(4.1.76).

Lemma 4.1.14. — Denote by S(v) the difference S(v) = F (v) − H(v). For v, v′ in
the unit ball of G, we have the following inequalities:

1∑

k=0

‖(tDt)k(S(v) − S(v′))‖Es−2−2k,s′
β,α′,1 (M)

" C‖v − v′‖G(‖v‖G + ‖v′‖G)

1∑

k=0

‖(tDt)k(F (v) − F (v′))‖Es−2−2k,s′
α,α′,1 (M)

" C‖v − v′‖G(‖v‖G + ‖v′‖G).

(4.1.84)

Proof. — In (4.1.76) we have, because of the definition (4.1.8) of G′,

R(v) ∈ Es,s′−1
β,α′,1 (M) = Ẽs,s′−1

β,α′,1 (M) ⊂ Ẽs−2,s′

β,α′,1 (M)

tDtR(v) ∈ Es−2,s′−1
β,α′,1 (M) = Ẽs−2,s′−1

β,α′,1 (M) ⊂ Ẽs−4,s′

β,α′,1 (M)

where the equality between E and Ẽ spaces follows from β
2 +α′ > 0 and lemma 3.1.2.

Consequently, the contributions of R(v) to the left hand sides of (4.1.84) satisfy the
wanted conclusion.

Since H(v) ∈ Ẽs,s′−1
α,α′,1 (M) ⊂ Ẽs−2,s′

α,α′,1 (M), tDtH(v) ∈ Ẽs−2,s′−1
α,α′,1 (M) ⊂ Ẽs−4,s′

α,α′,1 (M)
by (4.1.75), the contribution of H(v) to the left hand side of the second inequal-
ity (4.1.84) satisfies also the inequality. We are thus reduced to the study of
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∑
m∈I OpB(A′

m(v, t, ξ))(eimθ). For m = 1,−3, (4.1.53) and (4.1.54) imply

(4.1.85) (tDt)kA′
m ∈

1∑

*=0

Ẽs−4−2k−*,s′

β,α′,1 (M ′)⊗Σ−2−*
0 +

1∑

*=0

Ẽs−4−2k−*,s′

α,α′,1 (M ′)⊗Σ−2−*
1 .

We apply corollary 3.2.7 with µ = 0, s replaced by s− 4− 2k− -, M replaced by M ′,
and α replaced by β for the contributions of the first sum in (4.1.85). One checks that
(3.2.86) and (3.2.87) (with α replaced by β) are satisfied because of (4.1.6), whence
the conclusion

OpB((tDt)kA′
m)(eimθ) ∈ Es−2−2k,s′

β+2,α′,1 (M) + Es−2−2k,s′

α+4,α′,1 (M)

⊂ Es−2−2k,s′

β,α′,1 (M) = Ẽs−2−2k,s′

β,α′,1 (M).

Since OpB(A′
m)(tDteimθ) belongs also to Ẽs−4,s′

β,α′,1 (M) , as one sees writing tDt(eimθ) =
1
m

(
im + D2

x
t

)
eimθ and applying again corollary 3.2.7, we see that the contributions

of (tDt)kOpB(A′
m)(eimθ), m = 1,−3 to (tDt)kS(v), k = 0, 1 belong to Ẽs−2−2k,s′

β,α′,1 (M).
The fact that these contributions satisfy the first inequality (4.1.84) follows from the
quadratic nature of A′

m.
Let us consider now OpB(A′

m)(eimθ) for m ∈ I1 − {0}. By (4.1.74), for k = 0, 1,
µ′ ∈ [0, µ]

(4.1.86) 〈
√

tx〉µ
′
(tDt)kA′

m ∈ Ẽs−µ′−2k−2,s′

β,α′,1 (M ′) ⊗ Σ0
0 + Ẽs−µ′−2k−2,s′

α,α′,1 (M ′) ⊗ Σ0
1.

We apply again corollary 3.2.7 with s replaced by s−2k−2, m2 = 0, α replaced by β
for the contribution of the first term in the right hand side of (4.1.86). If µ ∈ ]0, 2[ is
close enough to 2, conditions (3.2.86), (3.2.87) are satisfied by (4.1.6), and we obtain

OpB((tDt)kA′
m)(eimθ) ∈ Ẽs−2−2k,s′

β,α′,1 (M)

which again gives the wanted conclusion.

4.2. Existence of the global solution

The main remaining step in the proof of theorem 1.1.1 is to prove the following
result: denote by G0 the space

G0 = {v ∈ HM+4(R2); ∀ γ, |γ| " M, (D + x/2)γv ∈ HM+4−|γ|}
= {v ∈ HM+4(R2); ∀ γ, |γ| " M, xγv ∈ HM+4−|γ|}

Theorem 4.2.1. — There is ε0 > 0 such that for any v0 ∈ G0 with ‖v0‖G0 < ε0, the
problem

(
Dt +

D2
x

t2

)
(v − K(v)) =

1
t
H(v) +

1
t
R̃(v)(4.2.1)

v|t=1 = v0

has a global solution v ∈ G.
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We shall construct v using the standard iterative scheme
(
Dt +

D2
x

t2

)
(vν+1 − K(vν)) =

1
t
H(vν) +

1
t
R̃(vν)(4.2.2)

vν+1|t=1 = v0

for ν ! 0, v0 being defined as the solution to
(
Dt + D2

x
t2

)
v0 = 0, v0|t=1 = v0. The

main step is to prove:

Proposition 4.2.2. — There is a constant C > 0 such that if vν belongs to the unit
ball of G, vν+1 satisfies

‖vν+1‖G " C[‖v0‖G0 + ‖vν‖2
G ] (ν ! 0)(4.2.3)

‖vν+1 − vν‖G " C‖vν − vν−1‖G(‖vν−1‖G + ‖vν‖G) (ν ! 1).

The above inequalities imply in a standard way the existence of a global solution
v ∈ G to (4.2.2) if the Cauchy data are taken small enough. To prove the proposition,
we will study successively the different components of the norms of G.

Lemma 4.2.3. — The norm ‖vν+1‖Es,s′
α,α′,∞(M)

(resp. the norm ‖vν+1−vν‖Es,s′
α,α′,∞(M)

)

is estimated by the right hand side of the first (resp. second) inequality (4.2.3).

Proof. — Since Z commutes to Dt + D2
x

t2 , we deduce from (4.2.2) that for any γ ∈
N2, |γ| " M

(
Dt +

D2
x

t2

)
(Zγvν+1 − ZγK(vν)) =

1
t
ZγH(vν) +

1
t
ZγR̃(vν).

Since by corollary 4.1.12 H(vν) ∈ Ẽs,s′−1
α,α′,1 (M) and R̃(vν) ∈ Es,s′−1

β,α′,1 (M), the char-
acterization (4.1.5) of these spaces shows that ZγH(vν) and ZγR̃(vν) belong to
Es,s′−|γ|−1
α,α′,1 ⊂ F

s,s′−|γ|−1
2

α,α′,1 , their norms in these spaces being controlled by C‖vν‖2
G .

The smoothing inequality (2.2.15) of theorem 2.2.3 implies

(4.2.4) ‖Zγ(vν+1 − K(vν))‖
Es,s′−|γ|

α,α′,∞
" C

[
‖Zγ(vν+1 − K(vν))|t=1‖Hs+s′−|γ|

+ ‖ZγH(vν)‖
F

s,s′−|γ|− 1
2

α,α′,1

+ ‖ZγR̃(vν)‖
F

s,s′−|γ|− 1
2

α,α′,1

]

if the inequalities (2.2.13) are satisfied i.e. α2 +α′ < 0, s+α ! 0, s′− |γ|+α′ ! 0. The
first two of these inequalities follow from (4.1.6). Since |γ| " M = s + s′ − 4 the last
one is satisfied if s " α′+4, which follows also from (4.1.6). The last two norms in the
right hand side of (4.2.4) are controlled by C(‖H(vν)‖Es,s′−1

α,α′,1 (M)
+ ‖R̃(vν)‖Es,s′−1

α,α′,1 (M)
)

and so by C‖vν‖2
G because of the properties of H and R̃ listed in (4.1.75) and (4.1.78).
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In the first term of the right hand side we have

‖Zγvν+1|t=1‖Hs+s′−|γ| =
∥∥∥
(
Dx +

x

2

)γ
v0

∥∥∥
Hs+s′−|γ|

" ‖v0‖G0

‖ZγK(vν)|t=1‖Hs+s′−|γ| " ‖ZγK(vν)‖
Es,s′−|γ|

α,α′,∞

" ‖K(vν)‖Es,s′
α,α′,1(M)

" C‖vν‖2
G .

Consequently, (4.2.4) implies

‖Zγvν+1‖
Es,s′−|γ|

α,α′,∞
" ‖ZγK(vν)‖

Es,s′−|γ|
α,α′,∞

+ ‖v0‖G0 + C‖vν‖2
G

which implies the wanted estimate for ‖vν+1‖Es,s′
α,α′,∞(M)

using again inequality (4.1.78)

and the injection Es,s′

α,α′,∞(M) ⊂ Es,s′

α,α′,∞(M). The estimate for vν+1 − vν is obtained
in the same way using the equation

(
Dt +

D2
x

t2

)
(vν+1 − vν − (K(vν) − K(vν−1)))

=
1
t
(H(vν) − H(vν−1)) +

1
t
(R̃(vν) − R̃(vν−1)).

Lemma 4.2.4. — The norm
∑2

k=1 ‖(tDt)kvν+1‖
Es−2k,s′

α,α′,∞ (M)
(resp. the norm

∑2
k=1 ‖(tDt)k(vν+1 − vν)‖

Es−2k,s′
α,α′,∞ (M)

) is estimated by the right hand side of the

first (resp. second) inequality (4.2.3).

Proof. — By proposition 4.1.13, a solution (vν , vν+1) of (4.2.2) solves also

(4.2.5)
(
Dt +

D2
x

t2

)
vν+1 =

1
t
F (vν)

whence commuting Zγ , |γ| " M to the equation

tDt(Zγvν+1) = −D2
x

t
(Zγvν+1) + ZγF (vν)(4.2.6)

(tDt)2(Zγvν+1) = −(tDt)
D2

x

t
(Zγvν+1) + tDt(ZγF (vν)).

We have
D2

x

t
(Zγvν+1) ∈ Es−2,s′−|γ|

α+2,α′,∞ = Ẽ
s−2,s′−|γ|
α+2,α′,∞ ⊂ Ẽ

s−2,s′−|γ|
α,α′,∞

when vν+1 ∈ Es,s′

α,α′,∞(M). Consequently, ‖D2
x

t (Zγvν+1)‖
E

s−2,s′−|γ|
α,α′,∞

is controlled in

terms of ‖vν+1‖Es,s′
α,α′,∞(M)

, and so, by lemma 4.2.3, by the right hand side of the

first inequality (4.2.3). By lemma 4.1.14, the quantity ‖ZγF (vν)‖
E

s−2,s′−|γ|
α,α′,∞

is also

controlled by C‖vν‖2
G . The first equality (4.2.6) thus shows that ‖tDtvν+1‖

Es−2,s′
α,α′,∞(M)

is estimated by the wanted quantity. One studies in the same way (tDt)2vν+1 and
(tDt)k(vν+1 − vν), k = 1, 2.
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The preceding lemma shows that to estimate the left hand side of (4.2.3) we just
need to bound ‖vν+1‖

Es,s′
α,α′,∞(M)

and ‖vν+1−vν‖
Es,s′

α,α′,∞(M)
instead of the Es,s′

α,α′,∞(M)

norms which have been yet studied in lemma 4.2.3. In other words, we must consider
for |γ| " M

(4.2.7)
‖χ(D/

√
t)(Zγvν+1)‖L∞(dtdx)

‖χ(D/
√

t)(Zγ(vν+1 − vν))‖L∞(dtdx).

Lemma 4.2.5. — The first (resp. second) norm (4.2.7) is estimated by the right hand
side of the first (resp. second) inequality (4.2.3).

Proof. — We shall prove that there is δ > 0, and for any γ ∈ N2 with |γ| " M , a
constant C > 0, such that for any t ! 1

|Dt[χ(D/
√

t)Zγvν+1]| " C

t1+δ
[‖v0‖G0 + ‖vν‖2

G ],

|Dt[χ(D/
√

t)Zγ(vν+1 − vν)]| " C

t1+δ
‖vν − vν−1‖G(‖vν‖G + ‖vν−1‖G).

(4.2.8)

The control of (4.2.7) by the right hand side of (4.2.3) will follow from the time
integration of the above inequalities (and the fact that at t = 1 we have a trivial
estimate for χ(D)(Dx + x

2 )γv0).
To prove (4.2.8), we deduce from (4.2.5) the equalities

(4.2.9) Dt[χ(D/
√

t)Zγvν+1] =
i

2t

D√
t
· χ′

(
D√
t

)
Zγvν+1

− 1
t
χ

(
D√
t

)
D2

x

t
Zγvν+1 +

1
t
χ

(
D√

t

)
ZγF (vν)

(4.2.10) Dt[χ(D/
√

t)Zγ(vν+1 − vν)] =
i

2t

D√
t
· χ′

(
D√

t

)
Zγ(vν+1 − vν)

− 1
t
χ

(
D√
t

)
D2

x

t
Zγ(vν+1 − vν) +

1
t
χ

(
D√
t

)
Zγ(F (vν) − F (vν−1)).

We have that D√
t
· χ′

(
D√

t

)
Zγvν+1 and χ

(
D√

t

)
D2

x
t Zγvν+1 belong to the space

E+∞,+∞
α+2,α′,∞. Since α

2 + 1 + α′ > 0, property (3.1.6) of lemma 3.1.2 implies that
the modulus of the first two terms in the right hand side of (4.2.9) is bounded by
Ct−1−δ‖vν+1‖Es,s′

α,α′,∞(M)
, and so by the right hand side of the first inequality (4.2.8),

using lemma 4.2.3. One has a similar statement for the first two contributions
to the right hand side of (4.2.10). Let us study now the contribution of F (vν),
F (vν) − F (vν−1). We decomposed in lemma 4.1.14 F (vν) = H(vν) + S(vν) with
S(vν) ∈ Ẽs−2,s′

β,α′,1 (M) whence χ(D/
√

t)ZγS(vν) ∈ E+∞,+∞
β,α′,∞ . Using β/2 + α′ > 0 and

property (3.1.6) we get for 1
t |χ

(
D√

t

)
ZγS(vν)| an estimate by the right hand side
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of the first equation (4.2.8). A similar statement holds true for the contributions of
S(vν) − S(vν−1) to (4.2.10). To conclude the proof, we need to estimate

1
t
|χ(D/

√
t)ZγH(vν)|(4.2.11)

1
t
|χ(D/

√
t)Zγ(H(vν) − H(vν−1))|.(4.2.12)

Using the definition of Z, we can write

(4.2.13) ZγH(vν) = xγH(vν) +
∑

γ′,γ′′,*
|γ′|+|γ′′|+*!|γ|

|γ′′|+*>0

t−*aγ′,γ′′,*(Dx/t)γ
′′
(xγ

′
H(vν))

for convenient coefficients aγ′,γ′′,*. By corollary 4.1.12, we know that H(vν) ∈
Ẽs,s′−1
α,α′,1 (M), whence

t−*(Dx/t)γ
′′
(xγ

′
H(vν)) ∈ Ẽs,s′−|γ|−1

α,α′+|γ′′|+*,1 ⊂ Ẽs,s′−|γ|−1
α+2,α′,1

if |γ′′| + - ! 1. We then deduce from (3.1.6) the inequality, for |γ′| + |γ′′| + - " |γ|,
|γ′′| + - > 0

|χ(D/
√

t)t−*(D/t)γ
′′
(xγ

′
H(vν))| " C

tδ
‖H(vν)‖Es,s′−1

α,α′,1 (M)
" C

tδ
‖vν‖2

G

for some δ > 0, where the last inequality comes from (4.1.75). To estimate (4.2.11) by
the right hand side of the first inequality (4.2.8), we just have to study the first term
in the right hand side of (4.2.13). Write H(v) =

∑2
j=1 xjHj(v). We know by (4.1.75)

that 〈
√

tx〉Hj(v) ∈ Ẽs−1,s′

α,α′,1 (M + 1). We shall deduce below from that the inequality

(4.2.14) |xγHj(vν)| " C〈
√

tx〉−1‖vν‖2
G .

This will imply

|χ(D/
√

t)xjx
γHj(vν)| " ‖xj〈

√
tx〉−1‖L∞(dx)‖vν‖2

G

" Ct−1/2‖vν‖2
G .

This shows that the contribution of xγH(vν) to the left hand side of (4.2.11) is
controlled by the right hand side of the first equation (4.2.8).

To prove (4.2.14), write that w = 〈
√

tx〉xγHj(v) ∈ Ẽs−1,s′−|γ|
α,α′,1 and decompose

φq(x)w = φq(x)χ(D/
√

t)w +
∑

q′

∑

k;2k>c
√

t

(φq(x)∆̃kφ̃q′ )(φq′∆kw).

By definition of Ẽs−1,s′−|γ|
α,α′,1 , the first term is smaller than Ccq‖vν‖2

G for a -1 sequence
(cq)q. The modulus of the second contribution is bounded, using the definition of
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Hs−1,s′−|γ|
α,α′,1 by

(4.2.15) C
∑

q′

〈q − q′〉−N
∑

k;2k>c
√

t

2k‖φq′∆kw(t, ·)‖L2(dx)

" C‖vν‖2
G

∑

q′

〈q − q′〉−N

( ∑

k;c
√

t<2k<t

2kckq′

( 2k

√
t

)−s+1(2k

t

)α′

+
∑

k;t<2k

2kckq′

( 2k

√
t

)−s+1(2k

t

)−s′+|γ|
)

for a -2k-
1
q′ sequence (ckq′ )kq′ . Since by (4.1.6) s > α′ + 2 > 3, s + s′ − |γ| − 2 !

s + s′−M − 2 ! 2, we bound (4.2.15) by a -1q sequence times ‖vν‖2
G , whence (4.2.14).

The corresponding estimate for (4.2.12) being obtained in the same way, this con-
cludes the proof of lemma 4.2.5.

Lemmas 4.2.3, 4.2.4, and 4.2.5 imply immediately proposition 4.2.2, by definition of
the norm on G. As remarked earlier, theorem 4.2.1 is then an immediate consequence
of proposition 4.2.2.

Proof of theorem 1.1.1. — If we are given v0 ∈ G0 with small enough norm in that
space, theorem 4.2.1 provides a solution v ∈ G defined for t ! 1 to (4.2.1). By
proposition 4.1.13, v is then a solution to

(
Dt +

D2
x

t2

)
v =

1
t
F (v)

and by corollary 4.1.12, the function w = v + V1(v)eiθ + V−3(v)e−3iθ is a solution to
(4.1.2), hence to (4.1.1), defined for t ! 1. Since this in turn implies theorem 1.1.1,
the only thing we still have to prove is that for any w0 ∈ HM+4 in a small enough
neighborhood of 0, there is v0 in a small enough neighborhood of 0 in HM+4 ⊂ G0

such that

(4.2.16) w0 = v0 + V1(v0)eix2/4 + V−3(v0)e−3ix2/4.

Lemma 4.2.6. — The map v0 ,→ w0 given by (4.2.16) is a local diffeomorphism from
a neighborhood of 0 in HM+4 to a neighborhood of 0 in HM+4.

Proof. — Since multiplication by eiλx2
leaves HM+4 unchanged, we just have to

see that v0 ,→ Vm(v0), m = 1,−3 is bounded from HM+4 to HM+4 and satisfies
‖Vm(v0)‖HM+4 " C‖v0‖2

HM+4 when v0 stays in the unit ball of HM+4. The conclu-
sion will then follow from the local inversion theorem.

Remind the construction of V1, V−3 at fixed time t = 1: in lemma 4.1.6, we de-
fined symbols Am m = 1,−3, which are at t = 1 linear combinations of expressions
a ⊗ b where b(ξ) is a symbol of order 0, and a is a quadratic expression of type
a = xγ3(Dγ1x v0)(Dγ2x v0) with |γ1| " 1, |γ2| " 1, 0 < |γ1| + |γ2| + |γ3| " 2. One gets
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immediately that a ∈ HM+3. One then constructs from Am symbols Bm, through
formula (4.1.66), which at t = 1 gives

Bm ∈ HM+3 ⊗ S−2 + HM+2 ⊗ S−3

and one define Vm(v0) as

Vm(v0) = e−imx2/4OpB(Bm)(eimx2/4).

Then proposition 3.2.2, applied at t = 1, shows that Vm ∈ HM+4. Moreover, since
Am is quadratic in v0, we have the wanted quadratic estimate. This concludes the
proof.

Proof of theorem 1.1.2. — Using the change of unknown (1.2.2), we have to find v∞
such that for any γ ∈ N2 with |γ| " M

(4.2.17) ‖xγ(w(t, x) − v∞(x))‖L∞(dx) = O(t−δ), t −→ +∞.

By (4.1.10), w(t, x) = v(t, x)+V1eiθ+V−3e−3iθ, where V1, V−3 lie in V ⊂ Ẽs+2,s′−1
β,α′,1 (M).

We shall choose the indices in (4.1.6) as optimal as possible i.e. (α,α′) close to
(−4, 2), in the shaded area of the figure of page 64. Then s will be close to 4
and β = 2(α+ α′ + 1) will be close to −2. If |γ| " M , m = 1,−3, we thus have
xγVm ∈ Ẽs+2,s′−1−|γ|

β,α′,1 whence by (3.1.5)

‖χ(D/
√

t)xγVm‖L∞(dx) = O(t−δ), t −→ +∞

for any δ ∈ ]0, 1/2[. Moreover

‖(1 − χ)(D/
√

t)xγVm‖L∞(dx) " C
∑

k;c
√

t<2k<t

2k

(
2k

√
t

)−s−2 (
2k

t

)α′

+ C
∑

k;t<2k

2k

(
2k

√
t

)−s−2 (
2k

t

)−s′+1+|γ|

using Sobolev injections and the definition of Es+2,s′−1−|γ|
β,α′,1 . Since s > α′−1, s+ s′ >

M ! |γ|, we get an O(t−δ) upper bound. Consequently, the asymptotic behaviour of

xγw will be given by the one of xγv. Since v ∈ Ẽ
s,s′

α,α′,∞(M), we have for |γ| " M

‖(1 − χ)(D/
√

t)xγv‖L∞(dx) " C
∑

k;c
√

t<2k<t

2k

(
2k

√
t

)−s (
2k

t

)α′

+ C
∑

k;t<2k

2k

(
2k

√
t

)−s (
2k

t

)−s′+|γ|

and since s > α′+1, s+s′ > M+1 ! |γ|+1, we get a O(t−δ) estimate for this term also.
We thus have to study χ(D/

√
t)(xγv). Since any term of type χ(D/

√
t)((D/t)xγ

′
v),
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|γ′| " |γ| − 1 will be also O(t−δ) in L∞ (still because D
t (xγ

′
v) ∈ Es,s′−|γ′|−1

α+2,α′,∞ ), we
reduce ourselves to the study of χ(D/

√
t)(Zγv). But it follows from (4.2.8) that

(4.2.18) |Dt(χ(D/
√

t)(Zγv))| " Ct−1−δ

for any δ ∈ ]0, 1/2[ (the fact that δ can be taken as close as we want to 1/2 follows
by inspection of the proof of lemma 4.2.5, using that we took (α,α′) near (−4, 2)).
We deduce from (4.2.18) that χ(D/

√
t)(Zγv) has a limit in L∞ when t → +∞, and

that the distance between the function and its limit is O(t−δ). This concludes the
proof.
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