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ALBANESE AND PICARD 1-MOTIVES

Luca Barbieri-Viale, Vasudevan Srinivas

Abstract. — Let X be an n-dimensional algebraic variety over a field of character-
istic zero. We describe algebraically defined Deligne 1-motives Alb™(X), Alb™ (X)),
Pict(X) and Pic™ (X) which generalize the classical Albanese and Picard varieties of
a smooth projective variety. We compute Hodge, ¢-adic and De Rham realizations
proving Deligne’s conjecture for H?"~!, Hy, 1, H' and H;.

We investigate functoriality, universality, homotopical invariance and invariance
under formation of projective bundles. We compare our cohomological and homologi-
cal 1-motives for normal schemes. For proper schemes, we obtain an Abel-Jacobi map
from the (Levine-Weibel) Chow group of zero cycles to our cohomological Albanese
1-motive which is the universal regular homomorphism to semi-abelian varieties. By
using this universal property we get “motivic” Gysin maps for projective local com-
plete intersection morphisms.

Résumé (1-motifs d’Albanese et de Picard). —  Soit X une variété algébrique de
dimension n sur un corps de caractéristique 0. Nous décrivons les 1-motifs de Deligne
AlbT(X), Alb™(X), Pict(X) et Pic™ (X) définis algébriquement, qui généralisent les
variétés d’Albanese et de Picard classiques d’une variété projective lisse. Nous calcu-
lons les réalisations de Hodge, ¢-adique et de De Rham, montrant ainsi la conjecture
de Deligne pour H?"~' H,,_,, H' et H;.

Nous étudions la fonctorialité, I'universalité, I'invariance par homotopie et l'inva-
riance par formation de fibrés projectifs. Nous comparons nos 1-motifs homologiques
et cohomologiques pour les schémas normaux. Pour des schémas propres, nous ob-
tenons une application d’Abel-Jacobi du groupe de (Levine-Weibel) Chow des zéro-
cycles vers notre 1-motif cohomologique d’Albanese, qui est ’homomorphisme univer-
sel régulier vers les variétés semi-abéliennes. En utilisant cette propriété universelle,
nous obtenons des applications de Gysin «motiviques » pour les morphismes projectifs
localement intersection compléte.
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CHAPTER 0

INTRODUCTION

This work is motivated by Deligne’s conjecture that 1-motives obtained from the
mixed Hodge structure on the cohomology of an algebraic variety would be “alge-
braically defined” (see [15, §10.4.1] and [16]). Deligne ([15, §10.1.3]) observed that a
torsion free mixed Hodge structure H (i.e., such that Hyz is torsion-free), which is of
Hodge type {(0,0),(0,—1),(=1,0),(—1,—1)}, and such that gr'¥; (H) is polarizable,
yields i) a semi-abelian variety G, whose abelian quotient is the abelian variety given
by gr'} (H), together with ii) a homomorphism u from the lattice L = gr§’ (Hz) to
the group G(C), induced by the canonical map Hyz — Hc.

Deligne called such a complex of group schemes [L = G] a 1-motive over C, and
showed that the category of 1-motives over C is equivalent to the category of torsion
free mixed Hodge structures of the above type. Thus any such 1-motive M = [L - G
has a Hodge realization Trodge(M), i.e., there is a unique (up to isomorphism) torsion-
free mixed Hodge structure Thodge (M) such that M can be obtained from Tiodge (M)
as above. Deligne ([15, §10.1.11]) also defined the ¢-adic and De Rham realizations
of a 1-motive M, denoted by Ty(M) and Tpr(M), respectively (see Chapter 1 for
more details).

0.1. The conjecture

Deligne’s conjecture, in particular, is that if X is an n-dimensional algebraic variety
over a field k of characteristic 0, then there are “algebraically defined” 1-motives, also
defined over k, compatible with base change to extension fields, such that i) when
k = C, their Hodge realizations are respectively isomorphic to the mixed Hodge
structures on

H?"7Y(X,Z(n))/(torsion), Hi(X,Z)/(torsion), HY(X,Z(1)), Hopn_1(X,Z(1 —n))

it) if k is algebraically closed, their ¢-adic and De Rham realizations are naturally
isomorphic to the corresponding ¢-adic and De Rham (co)homology i) the above



2 CHAPTER 0. INTRODUCTION

identifications are compatible with other structures, like comparison isomorphisms,
filtrations, Galois action, etc. Our goal is to prove these statements. Moreover, we
obtain some geometric properties of our constructions.

We recall that the case n = 1, i.e., when X is a curve, is already treated by Deligne
([15, §10.3]), and the case when X smooth and proper corresponds to the well known
transcendental descriptions of the Albanese and Picard varieties. Our construction of
Albanese and Picard 1-motives generalizes these cases. In the general case, for n > 1,
we propose the following dictionary:

Mized Hodge Structure 1-Motive
H?*=Y(X,Z(n)) AlbT(X)
Ho, 1 (X, Z(1 — n)) Pic™ (X)
HY(X,7Z(1)) Pic™(X)
H(X,7Z) Alb™(X)

Here, Alb™(X) is the “cohomological Albanese” 1-motive obtained from the mixed
Hodge structure H2"~1(X,Z(n))/(torsion) and, dually, Pic™ (X) is the “homological
Picard” 1-motive obtained from Ha,_1(X,Z(1 — n))/(torsion), etc. The 1l-motive
AlbT(X) is the Cartier dual of Pic™ (X) and Pict(X) is the Cartier dual of Alb™ (X).
In case X is singular, we have that Alb™(X) # Alb™(X) in general, because of the
possible failure of Poincaré duality. When n = 1, Alb¥(X) and Pic*(X) (and dually,
Alb™ (X) and Pic™ (X)) coincide.

We recall that the geometric definition of the “cohomological Picard and homologi-
cal Albanese” 1-motives of a smooth, but possibly non-proper scheme X, goes back to
Serre’s explicit construction of its Albanese variety, see [48]; in fact, Serre’s Albanese
variety was defined as the Cartier dual of the 1-motive

Pic™(X) = [Div % (X) — Pic’(X)] (X smooth)

where X is a smooth compactification of X with boundary Y, Div{ (X) is the free
abelian group of divisors which are algebraically equivalent to zero and supported on
Y, being mapped canonically to Pic’(X). On the other hand, a geometric construction
of Alb™ or Pic™ for a smooth open variety is more difficult and it appears to be new
as well.

Following the construction in [31], in the paper of Ramachandran [39] a geometric
construction of Pict (X) and Alb~ (X) was proposed for varieties with a singular closed
point obtained by collapsing a finite set of closed points in a smooth open variety;
in a subsequent paper, see [40], he proposed, independently, definitions of Albanese
and Picard motives corresponding to our Pic™(X) and Alb~(X). Ramachandran
announced in [41] (¢f. [3]) a proof of the algebraicity (up to isogeny) of certain 1-
motives built out of H*(X,Q(1)) for i < dim X + 1.
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0.2. THE RESULTS 3

Apart from Ramachandran’s work, a related paper by Carlson [12] on analogues of
Abel’s theorem for H? of some singular surfaces (see also [22]) and the recent paper
[3] (see also the “Hodge 1-motives” considered in [1] and related papers [7] and [9])
we do not know any results on Deligne’s conjecture (1972).

0.2. The results

Our definition of Pic™ (X)) is roughly the following (see Sections 2.1 and 2.2 below
for a more precise statement). Let X be any equidimensional algebraic variety over
an algebraically closed field k of characteristic zero. Let f : X — X be a resolution
of singularities and let X be a smooth compactification of X with normal crossing
boundary divisor Y.

Let S be the singular locus of X and let S be the closure of f~1(S) in X. Then
we let Div %(Y,Y) be the group of divisors supported on S which are i) disjoint
from Y (i.e., are linear combinations of compact components of f~1(S)), and i) are
algebraically equivalent to zero relative to Y. We let Div % / 5(7, Y’) be the subgroup
of those divisors which have vanishing push-forward (as Weil divisors) along f.

We can show the existence of a group scheme Pic(X,Y’) associated to isomorphism
classes of pairs (£, ) such that £ is a line bundle on X and ¢ : £ |y Oy is a
trivialization on Y. The connected component of the identity Pic’(X,Y) is a semi-
abelian variety, which can be represented as an extension

HO(Y—_OY) — Pic’(X,Y) — ker’(Pic®(X) — @; Pic’(¥;)) — 0

im HO(X, O%)
where Y = U;Y; is expressed as a union of (smooth) irreducible components. The
mapping which takes a divisor D disjoint from Y to the class of the pair (O (D), 1)
in Pic(X,Y) yields the “homological Picard” 1-motive

Pic™ (X) < [Div$ 5(X.Y) = Pic’(X,Y)].

The “cohomological Albanese” 1-motive Alb™ (X) is defined to be the Cartier dual of
Pic™ (X)) (see Section 3.1); a “concrete” description of it is also given when X is either
smooth or proper.

The definition of Pict(X) is obtained by generalizing Serre’s construction of the
generalized Albanese variety to smooth simplicial schemes (see Sections 4.1 and 4.2
for the details). Let X be a variety over an algebraically closed field k of characteristic
0. Let X. be a smooth proper hypercovering of X, and consider a proper smooth
compactification X . with normal crossing boundary Y. (we refer to [15, §6.2] for
the existence of such a hypercovering and compactification). Let Divy, (X.) be the
subgroup of divisors on X supported on Y, with zero pull-back on X, i.e., by
definition

— L d—dr —
Divy, (X.)= ker(Divy,(X¢) ——— Divy, (X1)).

SOCIETE MATHEMATIQUE DE FRANCE 2001



4 CHAPTER 0. INTRODUCTION

We consider the simplicial Picard functor

T — Pic(T x X.)EHYT x X.,0; + )

and we show that the associated sheaf Picy Jk (with respect to the fpgc-topology)

is representable by a group scheme locally of finite type over k, whose connected

component of the identity Picoy /i over k = k is an extension of the abelian scheme
0

ker(Pick , — Pick

) by the torus given by
ker(H°(X 1, O*Yl) — HO(X,, 0%2))

im(HO(Y07 O*Yo) - HO(Yla O*Yl)) '

Let Div %‘ (X.) denote the subgroup of those divisors which are mapped to Picoy. / o (k)

under the canonical mapping. We then define the “cohomological Picard” 1-motive of
the variety X as
Pic™ (X) < Div) (X.) — Pic’(X.)].

The “homological Albanese” 1-motive Alb™ (X) is defined to be the Cartier dual of
Pict(X) (see Section 5.1).

We show that Pic™ (X), Alb*(X), Pic*(X) and Alb™ (X) do have the appropriate
Hodge, De Rham and (-adic realizations (in Sections 2.4-2.6, 3.3, 4.3—4.5 and 5.3
respectively). We mostly deal with the geometric case, i.e., we consider varieties X
over an algebraically closed field k; the case when k is not algebraically closed is
considered in Chapter 7.

We show as well that our definitions are functorial and independent of choices of
resolutions or compactifications (e.g., see Section 2.3) and depend only on the semi-
normalization of the given variety (see Section 6.1). We remark (in Section 6.2) that
Alb™ can be contravariant functorial only for morphisms between varieties of the same
dimension, and similarly Pic™ is covariant functorial for such maps. We then show the
homotopical invariance of Pic™ (and hence dually of Alb™), and that Pic™ and Pic™
(and dually, the corresponding Albanese 1-motives) are invariant under formation of
projective bundles (see Section 6.3).

For proper X, we remark that our “cohomological” Albanese 1-motive Alb™(X) is
a quotient of Serre’s Albanese of the regular locus Xeg, @.€., we have an extension

0 — T(S) — Alb™ (Xyeg) — AT (X) — 0

where T'(S) is a torus whose character group is a sublattice of the lattice of Weil
divisors which are supported on the singular locus S. Thus, if X is also irreducible
and normal, then 7'(S) = 0, and further, any non-zero Cartier divisor supported on
the exceptional locus of a resolution is not numerically equivalent to zero; therefore,
Alb™ (Xyeg) = AlbT(X) is an abelian variety which is isomorphic to the Albanese
variety Alb(X) of any resolution of singularities X of X. In general, Alb™ (Xreg)
is a torus bundle over Alb()? ) whose pull-back to X,es (under a suitable Albanese

MEMOIRES DE LA SMF 87



0.3. SOME FURTHER QUESTIONS 5

mapping) is canonically trivialized. Thus, after choosing appropriate base points,
there is a (canonical) section

a” : Xreg — Alb™ (Xyeg)

which is a universal morphism to semi-abelian varieties in the sense of Serre [47] (see
Section 5.2).

We then show (in Section 6.4) that a~ factors through rational equivalence yielding
a “motivic” Abel-Jacobi mapping

at i CH"(X)dego — AlbT(X)

from the Levine-Weibel “cohomological” Chow group [30] of zero-cycles on a projective
variety X. We also prove that a™ is the universal regular homomorphism to semi-
abelian varieties (compare with [19] and [8]). By using this universal property we
get (in Section 6.5) “motivic” Gysin maps for projective local complete intersection
morphisms, i.e., for such a morphism g : X’ — X we get a push-forward

g AlbT(X') — AlbT(X)

and, dually, a pull-back g* : Pic™ (X) — Pic™ (X).

We note that the isogeny classes of our 1-motives define objects in the triangulated
category of mixed motives of Voevodsky, since it contains Deligne’s 1-motives (tensor
Q). Therefore we can view our constructions as determining “Picard and Albanese
mixed motives” as well.

We finally remark that the work presented in this volume was done a few years
ago; in fact, these results were previously announced in a short note [6].

0.3. Some further questions

We expect purely algebraic proofs for the Lefschetz theorem on inclusions of general
complete intersections g : Y < X (i.e., g/ and g* would be isomorphisms in this
case, if dimY > 2) as well as Roitman theorems on torsion zero-cycles (i.e., a™
would be an isomorphism on torsion, see [2] and [8] for the case k = C, and [46]
for the homological case): these matters are of independent interest, and we hope
to treat them elsewhere. In the context of algebraic proofs, it seems desirable as
well to have such a proof that Pic™(X) and Alb~ (X) are independent of the choices
of hypercovering and compactification (see Remark 4.4.4). In fact, the underlying
philosophy of the theory of 1-motives suggests that it should be possible (or at least
desirable) to obtain all constructions and properties “intrinsically”, without recourse
to the use of any specific realization functor. From this point of view, another problem
is to prove “directly” that the Gysin maps for projective local complete intersection
morphisms are independent of the factorization (see Remark 6.5.3).

It is natural to ask whether there is an analogue of our results in positive charac-
teristic. After the work of de Jong, there are smooth proper hypercoverings in this

SOCIETE MATHEMATIQUE DE FRANCE 2001



6 CHAPTER 0. INTRODUCTION

context as well, which suggests that one could possibly extend the definitions of Pic*
and Alb~ to this case. However, since our definitions of Pic™ and Alb™, and the
proofs that they have the correct realizations, make use of resolution of singularities
and duality theory, it is not clear to us how these might extend to positive charac-
teristics. In positive characteristics, one also needs to better understand what would
play the role of the De Rham realization.

More generally, since Deligne has defined a notion of a 1-motive over a base scheme
S, we could ask for the appropriate families X — S for which it is possible to define
Pict(X/9), Pic™ (X/S), and the corresponding Albanese 1-motives, as 1-motives over
S. Going still further, one could speculate about possible analogous 1-motives in the
context of Arakelov geometry.

0.4. Notations

We are mainly concerned with schemes locally of finite type over a base field k of
characteristic zero, which is assumed to be algebraically closed in most of this work;
we will consider non algebraically closed fields in Chapter 7. We tacitly assume that
our schemes are reduced and separated, unless explicitly mentioned otherwise. A
variety will be a reduced, separated k-scheme of finite type. We will often tacitly
identify a variety over k = k with its set of closed points. The hypothesis of zero
characteristic is repeatedly used, often without explicit mention, for example via the
existence of resolutions of singularities.

We denote by X. a simplicial k-scheme, whose components X; are k-schemes, and
we denote by d; : X; — X;—1, 0 < j < i, the face maps; we omit upper indices if there
is no risk of misunderstanding, e.g., we may write dy and d; for the two faces map
from X7 to Xy. We will also sometimes identify a k-scheme X with the “constant”
simplicial scheme X. it defines, where X,, = X for all n > 0, and all face and
degeneracy morphisms are the identity; if 7 : X. — X is the augmentation, then we
note that for any sheaf of abelian groups F on X, the canonical map F — R 7. (7*F)
is an isomorphism, and we have canonical isomorphisms H*(X, F) 2 H"(X.,7*F).

For a C-variety X we will denote by H*(X,Z(-)) (resp. H.(X,Z(-))) the singular
cohomology (resp. homology) group of the associated analytic space as well as the
(Tate twisted) mixed Hodge structure on it. Concerning mixed Hodge structures we
will use Deligne’s notation [15]: in particular, we will denote by W;H the weight
filtration on Hg (and if H is torsion free, on Hz as well), and by F'H the Hodge
filtration on Hc.

For a simplicial scheme X. and a simplicial abelian sheaf Fx_ we will denote by
H*(X.,Fx, ) the cohomology groups obtained from the right derived functor of the
following left exact functor

* *

s —d
Fx, — ker(T'(Xo, Fx,) ——5 T(X1, Fx,)).

MEMOIRES DE LA SMF 87



0.4. NOTATIONS 7

The same conventions as above apply to simplicial C-schemes X. and the mixed
Hodge structure on H*(X.,Z(-)).

We denote duals by (—)Y with the following conventions: if G is a group scheme
of additive type then GV is Hom(G, G,); if G is a torus or it is locally constant and
torsion free then GV is Hom(G, G,,); if A is an abelian variety then AV is Pic?(A); if
H is a mixed Hodge structure then H" is the internal Hom(H, Z(1)).

We denote by Div (X)) the group of Weil divisors on an equidimensional variety X.
If Y, Z are closed subschemes of X, we denote by Div z(X) C Div (X) the subgroup
of divisors which are supported on Z, and by Div (X,Y) C Div (X) the subgroup of
divisors which have the support disjoint from Y’; finally set

def

Div z(X,Y)“ Div 4(X) N Div (X,Y).

For any (possibly singular) variety X we let denote by CHy(X) the “homological”
(Fulton) Chow groups [21] of d-dimensional cycles on X. We denote by CH"(X)
the “cohomological” (Levine-Weibel) Chow group [30] of zero-cycles supported on the
regular locus of an n-dimensional quasi-projective variety X over an algebraically
closed field.

If f: Gy — G5 is a homomorphism of k-group schemes, ker’ f will denote the
identity component of the kernel of f.

SOCIETE MATHEMATIQUE DE FRANCE 2001






CHAPTER 1

PRELIMINARIES ON 1-MOTIVES

For the sake of exposition, and to fix notation and terminology, we collect some
general facts concerning 1-motives.

1.1. Deligne’s definition

Let S be any scheme. We will denote by M = (L, A, T,G,u) a 1-motive over S,
i.e., an extension G of an abelian scheme A by a torus T over S, a group scheme L
which is, locally for the étale topology on S, isomorphic to a finitely-generated free
abelian constant group, and an S-homomorphism L % G (see [15, §10]).

Diagrammatically a 1-motive M = (L, A, T, G,u) can be represented as

L

lu
1-T—- G — A —0

and can be regarded also as defining a complex of group schemes M = [L = Gl,
where L is in degree —1 and G is in degree 0.

A group scheme GG which is an extension of an abelian scheme A by a torus T is
also usually called a semi-abelian scheme, and we are not going to distinguish it from
the 1-motive which it defines in a canonical way (i.e., by taking L to be zero). The
same convention applies to the case of an abelian variety A (identified with the 1-
motive (0, 4,0, A,0)) or a torus. A lattice L determines a 1-motive [L — 0], which we
denote by L[1] (consistent with the notation when considered as a complex of group
schemes).

A morphism of 1-motives is a morphism of the corresponding complexes of group
schemes. Moreover, there is a natural full embedding of the category of 1-motives over
S into the derived category of bounded complexes of sheaves for the fppf-topology on
S (cf. [43, Prop.2.3.1]).



10 CHAPTER 1. PRELIMINARIES ON 1-MOTIVES

A 1-motive M is canonically equipped with an increasing filtration by sub-1-motives
as follows:

M i>0
G i=-1
WM =1 7 z——2
0 i<-3

In particular we have gr'V; (M) = A.

A complex of 1-motives is exact if it determines an exact sequence of complexes of
group schemes. For example, associated to any 1-motive M = (L, A, T, G, u) there is
a functorial exact sequence of 1-motives

(1) 0-G—M-—1L[1]—0
where L[1] = gry/ (M) = [L — 0].

1.2. Hodge realization

We recall that the Hodge realization Twodge(M) (T'(M) for short) of a 1-motive
M over k = C (see the construction by Deligne in [15, 10.1.3]) is the mixed Hodge
structure given by the lattice Ty (M) obtained by the pull-back of u : L — G along
exp : Lie(G) — G, with the weight filtration

Tz(M) 1 ZO
H{(G =1
WiT(M) % (@) i
Hl(T) = —2
0 1< =3

The Hodge filtration is defined by
FTy(M) ® C) = ker(Tz(M) @ C — Lie(G)),
whence gr'V; T(M) = H,(A,Z) as pure Hodge structures of weight —1. The functor
M +— Thodge(M)

is an equivalence between the category of 1-motives and the full subcategory of torsion
free Z-mixed Hodge structures of type

{(07 0)7 (07 _1)7 (_17 0)7 (_17 _1)}

such that gr'V} (H) is polarizable. In fact, Deligne ([15, §10.1.3]) observed that such
a torsion free mixed Hodge structure H yields (1) an abelian variety A with

A(C) = gt (He)
Hy + FO° gr%(H«:)

MEMOIRES DE LA SMF 87



1.3. ¢-ADIC AND ETALE REALIZATION 11

(ii) an algebraic torus T with character group gr',(Hz), so that
T(C) = Hom(gr", (Hz), C*)
and (74) a complex algebraic group G with

B W_1(He)
- W_y(Hz) + FONW_y(Hc)

which is an algebraic extension of A by T'; moreover, the canonical map Hy — H¢
yields (iv) a homomorphism u from the lattice L = gry/ (Hz) to the group G(C).
Deligne considered such a set of data (i)—(iv) as defining a 1-motive over C, and
showed that it is equivalent to the given mixed Hodge structure.

Thus any 1-motive M = (L, A,T, G, u) over C has a Hodge realization Ttodge(M )
and, conversely, any such mixed Hodge structure yields, canonically, a 1-motive. The
exact sequence (1) gives rise to an exact sequence of Hodge realizations

G(C)

(2) 0— THodge(G) - THodge(M) - THodge(L[l}) —0

For example, any abelian variety A over C considered as a 1-motive (i.e., we regard
A as (0,4,0,A,0)), has Hodge realization H; (A, Z); in particular, for a non-singular
complete variety X over C, the classical Albanese variety M = Alb(X) has Hodge
realization (n = dim X)

T(M) = Hi(AIb(X),Z) = H,(X,Z)/(torsion) = H?"~1(X,Z(n))/(torsion)

because of the canonical isomorphism Alb(X) & J"(X) where J"(X) is the coho-
mological (Griffiths) intermediate jacobian; for a smooth complete variety the Hodge
structures on H;(X,Z) and H*"~1(X,Z(n)) are canonically isomorphic (by Poincaré
duality) and they both correspond to the Albanese variety.

1.3. /-adic and étale realization

Let M = [L % G] be a 1-motive over S which we consider as a complex of fppf-
sheaves over S with L in degree —1 and G in degree 0. For any fixed integer m we let
T7/m(M) be H=*(M/m) where M/m is the cone of multiplication by m on M. Then
T7)m (M) is a finite group scheme which is flat over S, and is étale if S is defined over
Z[L].

m

For S = Spec(k) and k = k we then have
{(z,9) € L x G(k) | u(z) = —mg}

{(mz, —u(z)) |z € L}
If ¢ is a prime number then the ¢-adic realization T;(M) is simply defined to be the
inverse limit over v of Ty, (M). Ty(M) is the f-adic Tate module of an {-divisible
group. The f-adic realization of an abelian variety A is the f-adic Tate module of A;
the f-adic realization of a lattice L is L ®7 Zy.

Ty ym(M)(k) =
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12 CHAPTER 1. PRELIMINARIES ON 1-MOTIVES

If S = Spec(k) and k = k is of characteristic zero then

T(M) = lim Ty (M) = HTZ(M)-
m ¢
We call T(M) the étale realization of M. In particular, if k = C then T(M) =
T7(M) ® Z because the complex Ty (M) — LieG is quasi-isomorphic to M (C), and
therefore M /m(C) is quasi-isomorphic to (T%(M) @ Z/m)[+1].

The exact sequence (1) of 1-motives yields a long exact sequence of cohomology
groups

H™*(L[]/m) — H~(G/m) — H~'(M/m) — H~(L[1]/m) — H"(G/m)

where H~2(L[1]/m) = ker(L = L) is clearly zero, and H°(G/m) = coker(G = Q)
vanishes since multiplication by m is an epimorphism of fppf-sheaves. In the sequence
above we are left with finite group schemes, and thus, by taking the inverse limit on
m, the sequence yields the following short exact sequence

(3) 0— T(G) — T(M) — T(L[1]) — 0

The exact sequence above is clearly functorial with respect to maps of 1-motives, since
it is obtained from (1) by applying the functor T'; it is the étale analogue of (2).
We will later make use of the following fact.

ProPOSITION 1.3.1. — The étale realization functor T from the category of 1-
motives over k =k to abelian groups is faithful, and further, it reflects isomorphisms
(i.e., if M — M’ is a map of 1-motives such that T(M) = T(M') then M — M’ is
an isomorphism in the category of 1-motives).

’

Proof. — Consider M = [L % G, M' = [’ *> G’ and f : M — M'. Now T is
clearly an additive functor; hence, in order to show that T is faithful, we just need
to show that f(f) = 0 implies f = 0. By making use of the exact sequence (3) we
can see that it is enough to check it separately for maps of semi-abelian schemes or
lattices. Since torsion points are Zariski dense in a semi-abelian scheme over k = k,
JA“( f) = 0 implies f = 0 for morphisms f between semi-abelian schemes. Finally
T(L[1]) = L ® Z which is clearly faithful.

If M — M’ induces an isomorphism T'(M) = T(M’) then by (3) we have that T(G)
injects into 7'(G’) and T(L[1]) surjects onto T(L/[1]), therefore we have an extension
of lattices

0—-L'—-L—-L —0

Moreover by the snake lemma applied to the resulting diagram given by (3) we get
that

N el

= 29
(€

| =D
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1.4. DE RHAM REALIZATION 13

Now we have that F = ker(G — G') is a finite group, since T(G) — T(G'); we can
see that ~ R
!/
f6/r) _ 1@)
T(G) T(G)
Thus F = 0, since it injects into 7'(L”[1]) which is torsion free. If we let G” denote
the quotient of G by G’, we then get the following exact sequence of complexes

F=

0—[L"—-0—[L->G—-[L' -G]—[0—-G"—-0
Applying T we have that the composition of the following maps
T(L'[1) — T(M) = T(M') — T(G")

is the zero map as well as an isomorphism, therefore T(L" 1) = T(G") = 0 whence
L'=G"=0,ie, M = M. 0

1.4. De Rham realization

The De Rham realization of a 1-motive M = [L - G] over an algebraically closed
field k is obtained via Grothendieck’s interpretation of Hjy (cf. [32, §4], [15, 10.1.7]
and [18]). Consider G, as a complex of k-group schemes concentrated in degree 0.
Then, for any 1-motive M over k, we have Hom(M, G,) = 0, and there is an extension

0 — Ext(L[1],G,) — Ext(M,G,) — Ext(G,G,) — 0
where Ext(G,G,) is canonically identified with the Lie algebra of the dual of the
abelian variety A (the abelian quotient of the semi-abelian variety G), and
Ext(L[1],G,) = Hom(L, G,).
Hence the k-vector space Ext(M, G,) is finite dimensional.
By general arguments (cf. [32], [15]) M has a universal G,-extension M9, in

b
Deligne’s notation [15, 10.1.7], where M% = [L *~ G%] is a complex of k-group
schemes which is an extension of M by the vector space Ext(M,G,)V, considered as
a complex in degree zero. In fact, we have a diagram

0 0
1 1
0 — Ext(G,G,)Y — Ext(M,G,)" — Ext(L[1],G,)Y — 0
l l | def
0— G* — G" — Lf —0
1 1
G = G
1 1
0 0
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14 CHAPTER 1. PRELIMINARIES ON 1-MOTIVES

where G is the push-out of the universal G,-extension G¥ of the semi-abelian variety
G. The canonical map u? : L — G? is such that the composition

s
L5 G — Lf = Ext(L[1],G,)¥ = Hom(L, G,)"

is the natural evaluation map.
In particular we get the following extension

0 — Ext(M,G,)Y - G*— G —0
of group schemes. The De Rham realization of M is then defined as
Tor(M) = Lie G%,
with the Hodge-De Rham filtration given by
FOTpr(M) = ker(Lie G* — Lie G) = Ext(M,G,)".

If £ = C then the De Rham realization is compatible with the Hodge realization, see
[15, §10.1.8, §10.3.15]. We also have an exact sequence

(4) 0 — Tpr(G) — Tor(M) — Tpr(L[1]) — 0
which is the sequence of Lie algebras associated to
0—-G"—= G- LF —0.

We may also view (4) as obtained by applying the functor Tpgr to (1); thus (4) is the
De Rham version of (2) and (3).

Let X be a smooth projective variety over k = k of characteristic 0, and let Pic?(X)
be the group of isomorphism classes of pairs (£,V) where L is a line bundle on X
and V is an integrable connection on L. Then there is the following extension

0— H°(X,0%) — Pic®(X)? — Pic®(X) — 0

where Pic?(X)? is the the subgroup of those pairs (£, V) such that £ € Pic®(X). The
above extension is the group of points of the universal G,-extension of the abelian
variety Pick , and Lie Pic*(X)? = HAR(X)(1) (¢f. [32, §4]), where the twist (1)
indicates that the indexing of the Hodge filtration is shifted by 1. In general, for any
abelian variety A, A" = Pic*(AY), so that A has De Rham realization

Tor(A) = Hpp(A)" = HP R (A).

1.5. Cartier duals

We now recall briefly the construction by Deligne [15, §10.2.11-13] of the dual 1-
motive. The definition is motivated by the case of 1-motives over C where the Hodge
realization has a dual mixed Hodge structure which yields the dual 1-motive. In fact,
if H is a torsion free mixed Hodge structure of type {(0,0), (0, —1),(—1,0),(-1,—-1)}
such that gr'] (H) is polarizable then HY = Hom(H, Z(1)) is again of the same kind;
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since any 1-motive M over C corresponds (uniquely up to isomorphism) to such an
H = THodge (M) we can just set

THodge(Mv) - (THodge(M))v

as an implicit “analytic” definition for MV.

In order to give an algebraic description of MV the yoga of biextensions is needed:
see [34] for the original definition of biextension of formal groups and compare [27,
VII, (2.1)] for biextensions of abelian groups in an arbitrary topos. In order to deal
with 1-motives we need to consider the following generalization of Grothendieck biex-
tensions due to Deligne [15, §10.2.1].

Let K; = [A; el B;] for i = 1,2 two complexes of abelian sheaves (on a
Grothendieck site) concentrated in degrees —1 and 0. A biextension of K; and Ky
by an abelian sheaf H is given by a Grothendieck biextension P of By and By by H
and a pair of compatible trivializations of the biextensions of Ay x By and By x As
obtained by pullbacks. More precisely, this means one has the following data:

(i) an H-torsor P over By x B, which is a Grothendieck biextension,

(#1) a biadditive section of the biextension (1 x uz)*(P) over By x As,

(i4i) a biadditive section of the biextension (u; x 1)*(P) over A; X Ba,

along with

(iv) the compatibility condition that the two induced (biadditive) sections A; x Ay —
(u1 x ug)*(P) coincide.

Let Biext(K1, Ko; H) denote the group of isomorphism classes of biextensions. Now
we have the following fundamental results (see [15, §10.2.3-9] for details).

Let M; and M be two 1-motives over C. Then there is a natural isomorphism

Biext(My, M2; Gp,) = Hom(Thodge (M1) ® Thodge(M2), Z(1))

where the Hom is taken in the abelian category of mixed Hodge structures. Similarly,
there are purely algebraic versions of this correspondence (over k = k of characteris-
tic 0) which associates to a given biextension P € Biext(M;, Ma; G,,) the following
pairings

TZ/m(Ml) ®Tz/m(M2) — Um
and

Tpr(M1) ® Tor(Mz2) — k(1).
Here k(1) is a 1-dimensional filtered k-vector space with filtration F~1k(1) = k(1)
and F°k(1) = 0. The latter pairing on De Rham realizations is obtained by pulling
back P to a §-biextension P? of Mlh and M2h by G,,,. Over C, these latter two pairings
on the realizations are obtained from the former Hodge theoretic one by reduction
modulo m and by taking the associated C-pairing, respectively.

Let M be a 1-motive over C. Then, by the above, the canonical pairing

THodge(M) ® THodge(M)v - Z(l)
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16 CHAPTER 1. PRELIMINARIES ON 1-MOTIVES

defines a biextension P of M and M" by G,,, which is called the Poincaré biextension
of M and MV. This construction can be made algebraic. Let M = [L < G] be a
1-motive over an algebraically closed field, i.e.,

L
lu
1-T—- G — A -0
where G is an extension of an abelian variety A by a torus 7.
Assume T =1 first. Then there is an extension

1 — Ext(L[1], Gy,) — Ext(M,G,,) — Ext(A,G,,) — 0

where Ext(L[1],G,,) = Hom(L,G,,) = LY is a torus and the dual abelian variety
AY = Pic’(A) can be regarded as Ext(A,G,,) (cf. [38], [49]). Moreover, Ext(M,G,,)
consists of extensions of A by G,, together with a trivialization of the pull-back
on L. Let G" denote the group scheme which represents the functor associated to
Ext(M,G,,) (see [15, §10.2.11]). Define MY = [0 — G"“] with the biextension P of
M and M"Y by G,,, induced by the “classical” Poincaré biextension (see [34]) of A
and AY by G,,.

On the other hand, if L = 0, then TV = Hom(T,G,,) and there is a canonical
homomorphism

v:TV — AY

by pushing out characters x : T — G,, along the given extension G € Ext(A,T).
Define MY = [TV % AY] with the Poincaré biextension similarly obtained as above.
Note that the trivialization is given by 1 in the following push-out diagram

1— T — G — A —0

Xl (N} |
1—- G, — x«G — A—0,

i.e., the biadditive homomorphism G x TV — (1 x v)*P is defined by (g, x) — ¥ (g) €
X+G = P(g0(x)), Where P is the pull-back of the “classical” Poincaré biextension. We
also clearly have that (M"Y)Y = M so far.
In general, since Hom(L, A) & Ext(AY, L"), the composite homomorphism
L G—A

yields an extension G* € Ext(AY,LY). From the above we get a biextension of
M/W_oM = [L — A] and (M/W_oM)¥ = [0 — G"] by G,,. Pulling back we
then obtain a biextension P of M and (M/W_3M)Y by G,,. Moreover, the standard
extension M of M/W_yM by W_yM = [0 — T yields the following boundary map

u” TV = Hom(W_oM,G,,) — Ext(M/W_oM,G,,) = G*(k)
by pushing out characters. Define

\%
MYETY X Gyl
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1.5. CARTIER DUALS 17

to be the Cartier dual of M. Note that " is a lift of v : TV — AY obtained as above.
Thus the biextension P of M and (M/W_yM)V is trivialized on L and T, yielding
the desired Poincaré biextension of M and MV.
Summarizing, the Cartier dual MV is given by
T\/
LY
1—- LV - G* - AV —0,
we have that (MY)Y = M and
(e M)Y =gV MY,
We also clearly have an exact sequence (according to (1))
0—-G*—>MY—-TY[1]—0
which is the Cartier dual of the extension M of M/W_oM by W_oM.

By construction, the biextension P is the pull-back of the “classical” Poincaré biex-
tension of A and AY by G,, and it becomes trivial on L x T, i.e., there is a biadditive
homomorphism

i LxTY — (uxv)P.

The object (L, TV, A, AV, u,v,v) is then sometimes called the “symmetric avatar”

of the 1-motive M; the symmetric avatar of the Cartier dual is (TV, L, AV, A, v, u,?).

Finally, as recalled above (and proved by Deligne [15, §10.2]) the Poincaré biex-
tension yields pairings on realizations

TZ/m(M) ® TZ/m(Mv) — Hm
and

TDR(M) & TDR(MV) — k(].)
which are compatible, over the complex numbers, with the canonical pairing induced
by the duality between mixed Hodge structures. We therefore can see any given
realization of the Cartier dual as being the appropriate dual of that realization of the
original 1-motive.

For example, if X is a smooth proper k-scheme, then Picg( /i 1s an abelian variety
and (Picg(/k)v = Alby;, is the Albanese variety. Over k = C we have that J'(X) =
Pic% ¢ (C) thus Thoage(Pick,c) = H'(X,Z(1)) & Hy,-1(X,Z(1 — n)), by Poincaré
duality, and modulo torison, Tiodge(Albx/c) = H1(X,Z) = H**~ (X, Z(n)).
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CHAPTER 2

HOMOLOGICAL PICARD 1-MOTIVE: Pic™

We first begin by introducing some notation and terminology needed below. Let
X be an equidimensional variety over a field k of characteristic zero (not necessarily
algebraically closed). Let S C X be the singular locus and let f : X — X be a
resolution of singularities. We let S = f~1(S) be the reduced inverse image. Consider
a smooth compactification of X, which we denote by X; let Y = X — X be the
boundary, which we assume to be a divisor in X. Let S denote the Zariski closure
of S in X. We can arrange that the resolution X and compactification X are chosen
so that X is projective, and S + Y is a reduced normal crossing divisor in X; we
call such a compactification X a good normal crossing compactification (or good n.c.
compactification) of the resolution of X. For such a compactification to exist, the
resolution f : X — X must be chosen such that S is a normal crossing divisor.

2.1. Relative Picard functor

Associated to any pair (V, Z) consisting of any k-scheme V' and a closed subscheme
Z, we have a natural long exact sequence

(5) - — H'(V,0%) — H*(Z,0%) — Pic(V, Z) — Pic(V) — Pic(Z) — - --

induced by the surjection of Zariski (or étale) sheaves G, v — .Gy, z where we
denote i : Z — V the inclusion; here

Pic(V, Z) = H (V,Gpv — ixGpn z)

is the group of isomorphism classes of pairs (L, ) such that £ is a line bundle on V
and ¢ : L |22 Oy is a trivialization on Z (cf. [52], [42, §2], [11, §8]).

Now let X be an equidimensional k-variety, and X a good normal crossing com-
pactification of a resolution of X, with boundary Y.
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LEMMA 2.1.1. — Let (X,Y) be as above. The fpqc-sheaf associated to the relative
Picard functor

T — Pic(X xx T,Y x3 T)
1s representable by a k-group scheme which is locally of finite type over k. If k is
algebraically closed, its group of k-points is Pic(X,Y).

Proof. — See the Appendix . O
Now assume k = k. Let Y = UY;, where Y; are the (smooth) irreducible compo-

nents of Y.

PROPOSITION 2.1.2. — The sequence (5) wyields a semi-abelian group scheme

Pic’ (X,Y) over k =k, which can be represented as an extension

(6) 1-T(X,Y) - Pic"(X,Y) - AX,Y) — 0

where:

(i) Pic®(X,Y) is the connected component of the identity of Pic(X,Y);
(ii) T(X,Y) is the k-torus
T(X,Y)% coker ((W)*Gmy = (WY)*GM,Y)
where T : X — Speck, my : Y — Speck are the structure morphisms;
(iii) A(X,Y) is the abelian variety
AX,Y) = ke’ (Pic?(X) — @ Pic(Y;))
which is the connected component of the identity of the kernel.

Proof. — Everything follows from Lemma 2.1.1 combined with (5), by taking the
connected components of the identity, once we know the following.

(7) ker’ (Pic’(X) — Pic?(Y)) = ker’ (Pic®(X) — @ Pic’ (V7).
Recall that ker” denotes the connected component of the identity of the kernel. In

order to prove (7) we consider the normalization 7 : [[Y; — Y and the following
commutative diagram

Pic’(X) @ Pic(Y;)

®) k‘ T E

Pic’(Y)
Now, because of [26, Exposé XII, Prop.2.3] (¢f. [10]) the morphism
7 : Pie(Y) — @ Pic(Y;)
is representable by an affine morphism. Then f(ker® @) = 0, since ker” o is an abelian

variety. Since we obviously have ker 8 C ker o, we must have ker’ a = ker” 3 which is
the claimed equality (7). O
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2.2. DEFINITION OF Pic™ 21

2.2. Definition of Pic™

Let X be an equidimensional variety over k = k of characteristic 0. As before, let
X be a good, normal crossing compactification of a resolution f : X > Xof X , with
boundary divisor Y. Let D be any Weil (or equivalently Cartier) divisor on X such
that supp(D) NY = @, i.e., D € Div(X,Y); then (Ox(D),1) defines an element
[D] € Pic(X,Y), where 1 denotes the tautological section of O(D), trivializing it on
X — D, and hence also on Y.

We say that a divisor D € Div (X,Y) is algebraically equivalent to zero relative to
Y if [D] € Pic’(X,Y) and we denote by Div%(X,Y) C Div(X,Y) the subgroup of
divisors algebraically equivalent to zero relative to Y.

Let S be the closure of S in X; then S UY has normal crossings as well, since X
is “good”. Recall that Divg(X,Y) C Div(X,Y) denotes the group of divisors D on
X supported on S such that supp(D)NY = @, i.e., it is the free abelian group on
the compact irreducible components of S. We have a push-forward on Weil divisors

fe Dng()Af) — Div g(X) and we let Dng/S(X) be the kernel of f,.

We finally de_note by Div %/S (X,Y) the interseciion of Div 5 (X) with Div 2XY).
Thus Div % y 4(X,Y) is the group of divisors on X which are linear combinations of
compact divisorial components in g, which have trivial push-forward under f and

which are algebraically equivalent to zero relative to Y.

DEFINITION 2.2.1. — Let X be an equidimensional variety over k = k. With the
hypothesis and notation as above we define the following 1-motive

Pic™ (X) = [Div

% s(X.Y) 2 Pic’(X,Y)]

where u(D) = [D]. We call Pic™ (X)) the homological Picard 1-motive of X.
For any closed subscheme Z C X we define the following 1-motive

Pict (X — Z,Y) ¥ Div%(X,Y) % Pic’(X,Y)).

If Z is the union of all compact components of divisors in S , we then remark that
Pic™(X) is a sub-1-motive of PicT (X — Z,Y).

If X is an arbitrary n-dimensional variety over k = &, let X (") denote the union of
its n-dimensional irreducible components. Define

Pic™ (X) % Pic™ (X ™).

We next show that our definition of Pic™ (X) is independent of the choices made,
i.e., of the resolution X and compactification X as above, when X is equidimensional
(cf. also Remark 2.5.5).

SOCIETE MATHEMATIQUE DE FRANCE 2001



22 CHAPTER 2. HOMOLOGICAL PICARD 1-MOTIVE: Pic™

2.3. Independence of resolutions and compactifications

For an equidimensional k-variety X as above, consider two resolutions of singular-
1tles f X’ — X and f”: X" — X of X, with corresponding good compactifications
X and X . We then can find a third resolution f: X > X dominating both X’
and X", and choose a compactification X which is a resolution of the closure of (the
isomorphic image of) X;ee = X — S'in X x YN, which is also a good normal crossing
compactification of X.

Hence, to prove that Pic™ (X) is independent of the choices made, it suffices to
consider the following situation. Let f; : X 1 — X be a resolution with good normal
crossing compactification X, and let f5 : X o — X be another one, with good normal
crossing compactification X5, such that we have a morphism f : X5 — X; whose
restriction f : X, — X isa proper morphism of X-schemes, necessarily a birational
morphism. Under these conditions, we wish to show that Pic™ (X)) defined using either
X, or X4 coincide.

LetY; = X; — X i for i = 1,2. We then clearly have a morphism of 1-motives

Divey (X1,V1) — Pic’(X1,Y1)] — [Dive (X2, Ys) — Pic’ (X, Y3))

S1/8 S2/S

given by pulling back cycles and line bundles. It suffices to prove this is an isomor-
phism of 1-motives.
We first claim that there is an isomorphism of semi-abelian varieties

Pic’(X1, Y1) = Pic’(X 3, Ya).

In fact we have the following diagram

PiCO (71 ) ( 2)
| l
Pic(Y1) — Pic(Y3)

where the bottom arrow is injective since f.(Oy,) = Oy, (because Y; is semi-normal,
and Yo—Y] has connected fibers). Thus the kernels of the restrictions are the same,
and so, regarding the relative Pic” as an extension (by (5)) and using Proposition 2.1.2,
the claim is clear.
Now we have a splitting of the pull-back map
D1V§ /S(Xl,Yl) f—> DlVg /S(X27 ng)

using proper push-forward f, of divisors; we thus have

Divg o(X1,Y1) & G = Divg

(X2,Y2) | f«(D) = 0}. We will show that G = 0. Since X

S /S(X27}/2)

where G = {DEDWS/S

and X are birational,
fo i Pic®(X3) = Pic®(X1)
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we note that if D € G, then D is linearly equivalent to zero on X5. Thus D = div(r)x,
where r is a rational function on X, and therefore also on X;. But

div(r)y1 = f«(D) =0,
whence r is constant.

REMARK 2.3.1. — We remark that in our definition of Pic™, we can allow f : XX
to be a birational proper morphism from a smooth variety, which is not necessarily
a resolution of singularities of X. In fact, for any birational proper morphism g :
X’ — X between two such smooth X-varieties we can choose compactifications such
. . ~/ — .
that ¢ induces a morphism g : X — X. By arguing as above we then see that
i j— —_— —/
Pic”(X,Y) = Pic®(X,Y’) and Divg ((X,Y) =Divy, (X,Y).

5/8 /

2.4. Hodge realization of Pic™

In order to deal with the Hodge realization of Pic™ the following results are needed.
LEMMA 2.4.1. — Let X and Y be as above, with k = C. We then have the following
properties of (the group of C-points of) Pic(X,Y).

a) There is an exact sequence

H'(X,Y;Z(1)) — H'(X, Ox(-Y)) — Pie(X,Y) 5 B2(X,Y,2(1)).

b) There is an isomorphism

Pic’(X,Y) = ker(Pic(X, V) <5 H2(X, V3 Z(1))).

¢) There is an isomorphism
H'(X,Y;C(1)) | H'(X,0%(-Y))
FO+ HY(X,Y;Z(1)) HY(X,Y;Z(1))
d) Under the isomorphism (induced by a)-c))
Pic’(X,Y) = JY(X,Y)
the mapping D +— [D] = (Ox(D), 1) from Div®(X,Y) to Pic’(X,Y) is iden-
tified with the extension class map, for the mixed Hodge structure, determined

by the support of D.
e) Let Z be a closed subscheme Z C X such that ZNY = &. Then

71H0<ig;e(PiC_‘—(Y - Z7 Y)) = }‘rl(Y - Za Y7 Z(l))

JX, V)=

Proof. — We first claim that
H'(X,Y;C(1))
0
To see this, we consider the twisted log De Rham complex Q'Y(log(Y))(—Y). It
is well-known (see [51], page 4 for a quick proof) that its hypercohomology groups

= H'(X, 0x(-Y).
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are the relative cohomology groups H*(X,Y;C), the Hodge-De Rham filtration on
the relative cohomology is given by the subcomplexes Q; “(log(Y))(=Y), and the
corresponding hypercohomology spectral sequence degenerates at E1. We then have

H*X,Y,C — e
0 Y0 o (X, 03 108 (7))
The claimed isomorphism is obtained from (9) for k =4 = 1.
Let O(Y Yau) be the sheaf on X., given by the kernel of O — i*Oin where
i:Y — X is the inclusion. We have
Pic(X,Y) = H (X an, Olx..va)

because of (5) and GAGA. We have that Ox (—Yan) is the kernel of the canonical
map Ox  — i.0y,,; therefore, by the exponential sequences on X an and Ya,, since i,
is an exact functor, we get the following induced relative exponential exact sequence
of sheaves on X ap
(10) 0~ H(ZQ) = Ox, (Ya) = Ol =0
where 7 is the extension by zero functor along j : Xan — Yan = Xan.

We then get the following exact sequence of cohomology groups
(11)
The exact sequence in a) is then obtained. Since H?(X,Y;Z(1)) is finitely generated
and ker ¢/ is divisible, we get b). From (9) we then get c).

Part d) is well known if Y = & (e.g., see [12]). In order to show part d) in general,

we can proceed as follows. By considering relative Deligne-Beilinson cohomology
H3(X,Y;7Z(x)) we get a canonical cycle class map

c1: Pic(X,Y) — HA(X,Y;Z(1))

Moreover, ¢; is an isomorphism, fitting into the following commutative diagram with

exact rows
PIC(X,Y) — Pie(X,Y) L HAX,V;2(1) » HX(X,Ox(-Y))
=1 =l a | =]

JYX,Y) — HA(X,V;Z2(1) — HXX,Y;Z(1) — H3(X,Y;C(1))/F°

obtained from (9) and (11). For any closed subscheme Z C X with ZNY = @,
we then have the following commutative diagram of cohomology groups having exact
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rows and columns
0

1
Pic’(X,Y)
1

H? 7(X,Y3Z(1)) — Hp(X,Y;Z(1))

! l
HYX,Y;Z(1) — H'(X -2,Y;2(1)) — HZ(X,Y;Z(1)) — H*(X,Y;Z(1))
l ! !
H'(X,Y;;c(1) . H' (X - Z,Y;c(1)) . HZ(X,Y;c(1))
FoO FO FO

Here H;‘D,Z(Y, Y Z(")) = H{)’Z(Y; Z(+)) is the (relative) Deligne-Beilinson cohomol-
ogy of (X,Y) with support in Z.
Let Z be the support of a divisor D € Div (X,Y), i.e., ZNY = @. We then have
that
H,(X,Y;Z(1)) = H;(X,Z(1)).
In particular: H}(X,Y;Z(1)) = 0 and HZ(X,Y;7Z(1)) is purely of type (0, 0); in fact,
we have an isomorphism

H} ,(X,Y;Z(1)) = H7(X,Y; Z(1)) = Div z(X,Y).

The claim d) then follows from a diagram chase in the diagram above, using a general
homological lemma [9, Lemma 2.8].

Part e) then follows from the diagram as well, yielding the following isomorphism,
in the category of 1-motives over C,

Divy(X,Y) % JY(X,Y)
I =
Div%(X,Y) % Pic(X,Y)
where e denotes the extension class map determined by H'(X — Z,Y; Z(1)), regarded
as an extension of mixed Hodge structures. [l

For the following duality result we refer to the book of Spanier [50], giving a proof
in the topological setting. In order to deduce such a duality statement for different
cohomology theories, as well as compatibilities between them, we are going to give a
proof in the Grothendieck-Verdier duality style.

LEMMA 2.4.2. — Let M be a compact smooth n-dimensional C-variety. Let A+ B
be a reduced normal crossing divisor in M such that AN B = &. Then there is a
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duality isomorphism
H" (M — A,B;Z) = Hopy— (M — B, A;Z(—n))

in the category of mized Hodge structures. Moreover i) this isomorphism is functorial,
ve, if AA C A, B C B’ and A’ + B’ is also a normal crossing divisor such that
A’ N B’ = & then the following diagram
H"(M — A',B";7) — H"(M - A, B;Z)
~| =
Hop— (M — B',A';Z(—n)) — Hop—r(M — B, A;Z(—n))

commutes, in the category of mized Hodge structures; finally ii) this duality isomor-
phism is compatible with the Poincaré-Lefschetz duality, i.e., if B = B’ and A’ C A
as above then the following diagram, whose rows are parts of long eract sequences,
commutes

H"(M — A',B; 7) — H"(M-ABZ) — HT(M-A M-AZ
> =~ =~
Hop—r(M — B, A";Z(—n)) — Hon—r(M — B, A;Z(—n)) — Hon—r_1(A, A';Z(—n))

in the category of mixed Hodge structures.

Proof. — Let V=M —(AUB), V4 = M — A and Vg = M — B be the corresponding
open subsets; we have a diagram

v 2oy
(12) al L

Vi S M

We let 4i: A — Vg, Bi: B < V4 denote the closed imbeddings. Let 7 : M — k be
the structure morphism. Because of the canonical exact sequence

(13) 0— aZy — Zy, — BiZp —0
of sheaves on V4 we have

H"(Va,B) 2 Hom(Zy, ,Zy|r])
>~ Hom(Z s, 0w Zy [1])

where the Hom is taken in the derived category. Thus
RHOIH(ZM, 5*0!2\/) = RF(M, 5*0!2\/)
computes the singular cohomology of the pair (M — A, B). Now we have

Hy, (M — B, A)/(torsion) = Hom(H*"~"(M — B, A),Z)
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as mixed Hodge structures. Similarly the complex RI'(M,~.5iZy) computes the
cohomology of the pair (M — B, A) and we have
RHom(RT(M, 7. AZy)[2n], Z(~n)) = RHom(Rm(v. 3 Zyv)[2n], Z(—n))

=~ RHom(v. 3 Zy, 7' Z[—2n](—n))

= RHOHI((;[&*Z\/, ZM)

> RI(M,RHom (iesZy, Znr))
by using Grothendieck—Verdier duality, i.e., Rm is left adjoint to 7', where the du-
alizing complex wy Z7'Z is given by 7'Z = Zpr[2n](n), and the obvious equality
Y = Sra,. Now we can argue that

RHom (1a.Zy,Znr) = 6. RHom (anZy, 6 Ly
~ 6, RHom (aZv, ZLv,)

> ey
where the last equality is given by the following isomorphism
(14) VA =, RHom (Zv,Zvy,)

The isomorphism (14) can be obtained from biduality for constructible sheaves. In
fact, let wy, be the dualizing sheaf; since V4 is smooth wy, [-2n](—n) = Zy,, there-
fore, by biduality, the formula (14) is equivalent to

RHom (Zy,Zv,) = a. Ly
which is clear since

RHom (wZy,wy,[-2n](—n)) = a,RHom (Zy, o'wy, [~2n](—n))
= a,RHom (Zy,wyv[—2n](—n))

axwy[—2n](—n)

I

1

Oé*ZV

where we have used that a'wy, is the dualizing sheaf on V.
Summarizing, we have obtained the following isomorphism

RHom(RI'(M, v, Zv)[2n], Z(—n)) = RT(M, §,cuZy )

yielding the claimed duality isomorphism of groups.
In order to show the compatibility of the above with the mixed Hodge structures
we consider the following induced pairing in the derived category

(15) BTy [2n](n) & STy — 77
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This pairing is unique (up to a unique integer multiple); indeed, we have

Hom (v, Zy [2n](n) é) SeonZy, m'Z)

I
=~ Hom (7.5 Zy [2n](n) @ RHom (810 Zyv [2n](n), 7' Z), 7' Z)
R

I(n)
=~ Hom (.31 Zy [2n](n), RHom (RHom (§1a.Zy[2n](n), ' Z), 7' Z))
= Hom(y. 612y [20](n), 61, Zy [20](n))
(0 [ nj(n), o Zy 2n](n))
(Zv(n), Zv (n))

n)

where we have used the formula (14), biduality for the constructible sheaf djcZy
and the standard formalism of derived categories. The same arguments apply to the
constant sheaves Q or C.

By Saito’s theory of mixed Hodge modules [44], [45], all of the above constructions
and isomorphisms can (after ® Q) be “lifted” in a natural way to the derived cate-
gory of mixed Hodge modules. In particular, we see that our duality isomorphism is
compatible with the mixed Hodge structures as claimed.

We leave to the reader the analogous proofs of the assertions about functoriality,
and compatibility with Poincaré-Lefschetz duality. O

REMARK 2.4.3. — We remark that, for the truth of the Lemma 2.4.2 the assumption
that A N B = @ is not really needed: it suffices to assume that A + B is a reduced
normal crossing divisor on M, but the proof in this case is a bit more involved.

REMARK 2.4.4. — Let Q;,(log(N))(—D) be the log De Rham complex with terms
0} (log(N)) ®0,, On(-D)

for D any Weil divisor on M and N a reduced normal crossing divisor in M which
contains supp(D). Let j : M — N — M be the inclusion; we then have a quasi-
isomorphism

$1C — Q) (log(N))(=N).
In the notation of Lemma 2.4.2 we remark that the following pairing
Q) (log(A+ B))(—A) &c 2y, (log(A + B))(—B)
!
23, (1og(A + B))(~A — B)
!
Oy
can be identified with the sheaf theoretic pairing given by (15) (up to a unique scalar)

L
Y5 Cy ® d,a1Cy — 51Cy — Cypr .
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This is valid in the filtered derived category since (cf. [51]) we obtain the Hodge-De
Rham filtrations by truncation of the above log De Rham complexes; this gives a
“direct” proof that the duality isomorphism in the Lemma 2.4.2 is compatible, after
® C, with the respective Hodge filtrations.

As remarked by Deligne [17], the duality isomorphism is, after ®Q, also compatible
with weight filtrations, because this is true ®Q,, by comparison with étale cohomology,
and the Weil conjectures.

For another related compatibility argument using mixed Hodge complexes we refer
to [51].

We then have the following key result.

THEOREM 2.4.5. — Let X be a C-variety of dimension n. Then

Thtodge(Pic™ (X)) = Hyp_1 (X, Z(1 — n)).

Proof. — We first make a reduction to the case when X is equidimensional. Let
X < X be the union of the n-dimensional irreducible components of X. Then by
definition, Pic™ (X) = Pic” (X(™). On the other hand, the natural map

Hop_1(X™ Z(1 —n)) — Hop_1(X,Z(1 — n))

is an isomorphism of mixed Hodge structures.

Now for equidimensional X, let f : X — X bea resolution, with a good normal
crossing compactification X with boundary Y. As before, let S be the singular locus
of X, § = f~1(S), and § C X the Zariski closure of S.

Associated to the cartesian square

S — X
i) Lr
S — X

there is a Mayer—Vietoris long exact sequence of mixed Hodge structures on singular
homology yielding the following extension

(16) 0 — Ha1(X,Z(1 = n)) — Hap_1(X,Z(1 —n)) — Lx — 0
where
Ly = ker Hyp_5(S, Z(1 —n)) — Hop_o(X,Z(1 — n)) & Hap_o(S, Z(1 — n)).
Now we claim:
(i) Hzp—(S,Z(1 —n)) = Divg(X,Y),
(i) fv : Hapn—2(S,Z(1 —n)) — Hap—2(S,Z(1 — n)) is the proper push-forward of

algebraii: cycles, and
(iii) Hon_i(X,Z(1 —n)) = HY(X,Y)(1) as mixed Hodge structures.
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In fact Hy,_o(S,Z(1 —n)) is the free abelian group generated by the compact irre-
ducible (n — 1)-dimensional components of S, and Ha, (S, Z(1 — n)) has a similar
description. Thus (i) — (it) are clear and (%ii) follows from Lemma 2.4.2 because
X = X — Y. Moreover we have that the mapping

Hap—2(S,Z(1 — n)) — Hon_o(X,Z(1 —n))
induced by the inclusion S X , is just the cycle map relative to Y, i.e., the following
diagram
Divg(X,Y) = Hap o(S,Z(1 —n)) — Hap o(X,Z(1 —n))
! 1=

Pic(X,Y) L HAX,Y)

|
Pic(X,Y)
commutes.
Since, by definition, the kernel of ¢/ is Pic’(X,Y) (cf Lemma 2.1.2), the lattice
Lx is canonically isomorphic to Div % y S(Y, Y). Moreover the exact sequence (16)
modulo torsion is canonically isomorphic to the following exact sequence

(17) 0 — HY(X,Y,Z(1))/(torsion) — Ha, 1(X,Z(1 —n))/(torsion) — Lx — 0

in the category of torsion free mixed Hodge structures. But H'(X,Y)(1) is torsion-
free, by the universal coefficient theorem in topology; hence so is Hay,—1 (X, Z(1 —n)).
The Hodge structure on Ly is pure of weight zero and type (0,0); we then have

W_i(Han-1(X, Z(1 = n))) = W_;(H (X, Y, Z(1))), i1
We also have the following extension of mixed Hodge structures
(18)
H(Y,Z)
im HO(X,7Z)
Thus the weight filtration of Ha,—1(X, Z(1—n)) admits the following description. Let
0
r = rank LY’_Z)
im HO(X,Z)

®Z(1) — HY(X,Y,Z(1)) — ker(H (X, Z(1)) — H (Y, Z(1))) — 0

then
W_o(Hon 1(X,Z(1 —n))) =< Z(1)%"
and
Wfl(H2n71(X7Z(l - ’I’L))) = Hl(y7 KZ(]'))
Since H'(X,7Z(1)) is pure of weight —1, we have
ker(HY(X,Z(1)) — H (Y, Z(1))) = ker(H' (X, Z(1)) — &H'(Y;,Z(1)))
whence
gt Hyp (X, Z(1 — n)) = ker(HY(X,Z(1)) — @H(Y;, Z(1)))
and
gry Hop 1(X,Z(1 —n)) = Ly
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Thus the 1-motive associated (by Deligne) to Ha,—1(X,Z(1 — n)) is given by the
following

Lx
Le B
1— (CH® - JY(X,Y) — ker?(JY(X) — @J'(V;)) — 0

(JY(X,Y) was defined in Lemma 2.4.1(c); J1(X), J1(Y;) are similarly defined). Since
Thodge(Lx — JH(X,Y)) = Hop1(X,Z(1 — n))

by Deligne’s construction, we are reduced to showing that

(19) [Lx — JYX,Y)] 2 Pic™ (X)

in the category of 1-motives over C.
By Lemma 2.4.1 (cf. Proposition 2.1.2, where T(X,Y)(C) = (C*)®" and A(X,Y)
is the above abelian variety) we have that

Pic’(X,Y) = J}(X,Y).

According to our definition of Pic™ (X) we are left to check that the following

Lx £ JYX,Y)
(20) || 1=
0 ~ u -0/~

Dlvg/s(X,Y) — Pic’(X,Y)

commutes. We will deduce this from Lemma 2.4.1(d)
The Mayer-Vietoris exact sequence yielding (16) is given by the following commu-
tative diagram of mixed Hodge structures
Hop1(X) — Hop1(X,8) = Hapn—2(S) = Hop—2(X)
1 =] ! |
Hop1(X) — Hap_1(X,S) = Hapn—2(S) = Hop—2(X)

which yields the following diagram of mixed Hodge structures

0 — Hyp_1(X,Z(1 —n)) — Hap_1(X,Z(1 —n)) — Dive (X,Y)—0

5/5
I L F
0— Hop—1(X,Z(1 —n)) — Hy,—1(X,5) — DIV%(X,Y) —0

ker(Hap—2(S) — Han-2(X)) = Dive(X,Y).

Let D € Lx = Div %/S(Y, Y); then Z = supp(D) is a closed subset of X such that

ZNY =@, and D is homologically equivalent to zero relative to Y; we let

2[2]° = ker(Div%(X,Y) — H*(X,Y;Z(1))).
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We have the following diagram of torsion-free mixed Hodge structures

0— HYX,Y;Z(1)) — HYX-2ZY;Z(1) — Z[Z]°—0
(21) = L L
0— Hop1(X,Z(1 —n)) — Hap_1(X,S;Z(1 —n)) — DiV%(X,Y) —0
where the middle vertical mapping is obtained as follows. By Lemma 2.4.2 we have
HY (X - Z,Y;2(1)) = Hyp (X = Y, Z;Z(1 — n)).
Since X = X — Y and Z — S we have the following canonical map of mixed Hodge
structures
Hon (X =Y, Z;Z(1 — 1)) < Hap1(X, S;Z(1 — n)).
The claimed map is obtained by composition of the duality isomorphism and the
latter inclusion. Thus the diagram (21) commutes by the functoriality assertion in

Lemma 2.4.2.
By diagram chase on (21) one can then see that the image of D under the mapping

e: Ly — JY(X,Y)
is the image of [D] under the extension class map
7[2)° — JH(X,Y)

determined by the top row of (21). Thus (20) commutes by Lemma 2.4.1 part d).
The Theorem 2.4.5 is proved. ([l

REMARK 2.4.6. — In order to show that (20) commutes, which is the key point in
proving Theorem 2.4.5, one can instead choose Z to be the union of all compact
components of S. By excision and duality we then have

Hop 1(X) = Hop 1(X,S,Z(1 —n)) = Hap_1(X, S, Z(1 — n))
= Hyy 1(X, Z,Z(1 — n)) = H'(X = Z,Y, Z(1))
and, comparing with the Mayer-Vietoris sequence (16) we have the following pull-back
diagram (obtained as above from Lemma 2.4.2)
0— HYX,Y,Z(1)) - HYX - Z,Y,Z(1)) — Divy(X,Y) —0
(22) R : T
0— H'(X,Y,Z(1) = Hon1(X,Z(1 —n)) — Div} (X,Y) =0

in the category of mixed Hodge structures. Therefore, the claimed commutativity of
(20), now follows directly from Lemma 2.4.1 part e), as H*(X — Z,Y,7Z(1)) is the
Hodge realization of Pic™ (X — Z,Y) and Pic™ (X) is a sub-1-motive.
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2.5. Etale realization of Pic™

Let V be any k-scheme over a field k (of characteristic zero). For any pair (V, Z)
where Z is a closed subscheme of V' we denote by i : Z — Vand j:V -2 < V
the corresponding inclusions. We then have that G,y — .G,z is an epimorphism
of étale sheaves, and we let G, (v,z) denote its kernel. Associated to any such pair
there is an exact sequence

) m
0— J!(Mm) - Gm,(v,z) — Gm,(v,z) — 0
induced by multiplication by m on G,,’s and the snake lemma, where as usual g,

denotes the étale sheaf of m'™ roots of unity (cf. [33], [52]). A “relative Hilbert’s
theorem 90” is clearly available (¢f. [52, Section 1]).

PROPOSITION 2.5.1. — There is an isomorphism
H4(V, Gy (v,2)) = Pic(V, Z)

Proof. — From the Leray spectral sequence along ¢ : Vgy — Vza, for the sheaf G,, (v, z)
we get a functorial map Pic(V, Z) — H (V,G,, (v,z)). We can then consider the long
exact sequence (5) and compare with the corresponding sequence of étale cohomology
groups. Since H}, (V, Gy v) =2 H(V,0%) and H. (Z, Gy z) =2 H(Z,0%) for i = 0,1
we then get the result. [l
PROPOSITION 2.5.2. — We have the following “relative Kummer sequence”

0= HOV. G v.2))/m = Hu(V, i (tim)) =5 Pic(V, Z)m—tors — 0
where:

— HL(V,ji(pm)) can be interpreted as the group of isomorphism classes of triples
(L,p,m) given by a line bundle L on V, a trivialization ¢ : L |z Oz and
an isomorphism n : Oy =, £O™ which is compatible with ®™, i.e., such that
nlz=¢®™;

— HY(V, G (v,z)) is the subgroup of those elements in HO(V,0%) yielding 1 in
the group H°(Z,0%);

— the map u is defined by taking a unit a € H(V, G, (v,z)) to (Oy, 1,a™b);

— the map p takes a triple (L, p,n) to the pair (L, p) which is an m-torsion element
of Pic(V, Z).

Proof. — The description above can be easily obtained by modifying the original
argument for absolute Pic (¢f. [33, T11.4]). O

We can regard HZ(V, ji(um)) as “relative étale cohomology” groups of the pair
(V, Z) for which we adopt the notation H},(V, Z; tm).
Etale homology groups
HM (V)
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are defined, for an n-dimensional V' and integer ¢, to be the cohomology groups of the
following (dual) complex

RHom(RT(V, ), pip ™™ [—2n])

m
in the (twisted) derived category of étale sheaves of Z/m-modules; these homology

groups, in general, are not the same as Borel-Moore étale homology groups defined
by the dualizing complex. We then have the following result (¢f. Lemma 2.4.2).

LEMMA 2.5.3. — Let V be an n-dimensional proper smooth variety over k = k of
characteristic 0. Let A+ B be a normal crossing divisor in V' such that AN B = @.
Then there is a functorial duality isomorphism

HY,(V — A, By i) 2 Ht (V= B, A p0 ™)

2n—r

which is compatible with Poincaré-Lefschetz duality.
Proof. — The same proof of Lemma 2.4.2 applies here to the étale sheaf pi,,. O

N Suppose that X is a good n.c. compactification, with boundary Y, of a resolution
X of an equidimensional n-dimensional k-variety X, where k = k, char. k = 0, and
let 9,5, be as before. Let (D, L) € Div 5/3(77 Y) x Pic’(X,Y); by definition (see
Chapter 1 for details)

{(D, L) | mp : L2™ = Ox(-D)}

Tzym(Pic™ (X)) = {(mD,Ox(-D))}

We have a canonical map
P+ Ty (Pic™ (X)) — Hay 1 (X, p0™)

defined as follows. Let D be a divisor in Div%/S(Y,Y) and let Z be its sup-
port. If (D,£) is a pair in 7%, (Pic” (X)) then (£ |x_,,1,mp |x_j) belongs
to HL(X — Z,Y; i) by relative Kummer theory (i.e., the description in Propo-
sition 2.5.2); furthermore, the image of the triple (£ |x_,,1,7p |x_,) under the
boundary map
Hé}t(y - Z,Y, jim) — e’?t,Z(77 Y, )
is the class of D, which vanishes, since by choice D € Div %/S(Y, Y).
We have the following commutative diagram with exact rows

0— Hét(y7y7ﬂ7n) - Hét(Y—Z,Y,,um) - Hézt,Z(77KNM)

~ | l l
0— Hg;fl(Xvuglin) - 5271(X7S7 Mglin) - 5272(5,/117@%1771)
! 1= !

0— H2é;czfl(X7 H%l_") - HS’EL*].(X’ S’ M%l_n) - H2é;czf2(‘ga M%l_n)
We then can define p;, (D, L) to be the image of (£ |x_,,1,mp |x_,) in
Hié;—l(X; H%(l_n))~
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We let
HE! (X, 2(1 = n)) = lim HS), (X, p07).
We can show the following. "
THEOREM 2.5.4. — Let X be a variety of dimension n over an algebraically closed

field k of characteristic zero. Then
T(Pic™ (X)) = HE_, (X, Z(1 - n)).

Proof. — As in the proof of Theorem 2.4.5, we reduce immediately to the case when
X is equidimensional. Now we fix a choice of resolution f : X > X , good compacti-
fication X, etc.

By definition, Pic™ (X) is given by the 1-motive [Div%/S(Y, Y) — Pic’(X,Y)].
We have the following commutative diagram

~ ~

0— T(Pi(X,Y) — T(Pic (X)) — T(Dive, (X,Y)[1]) —0

S/S
Per L L pat é Py
0— HL(X.Y;Z(1)) — H§: (X, Z(1 —n)) — A -0

where the bottom row is given by the Mayer-Vietoris sequence for étale homology
and the duality Lemma 2.5.3 (r is a certain non-negative integer), and the top exact
sequence is given by (3) in Chapter 1. We get the mapping pe¢; above by taking limit
of p,., and pg, is the induced map.

Note that pg may be viewed as the analog of pg for the variety X. It is also
/5(7, Y)[1]) = 727" as well, such that
pd, is an isomorphism. Granting this, we are left to show our claim holds true
for smooth schemes, i.e., that p,, is an isomorphism. The latter follows from the
fact that the relative Néron-Severi group of (X,Y) is finitely generated, whence
T(Pic’(X,Y)) = lim Pic(X,Y)m tors, and, by Proposition 2.5.1 and the Kum-

easy to see from the definitions that f(DiV%

mer sequence in Proposition 2.5.2, we have Pic(X,Y ) _tors = élt(Y, Y tom), since
H°(X, G,, xy)) is divisible. O
REMARK 2.5.5. — Theorem 2.5.4 can also be used to show that Pic™ is independent

of the choices of resolutions and compactifications. In fact, after Proposition 1.3.1,
the induced isomorphism on étale realizations lifts to 1-motives. But, as remarked
before, we consider this proof to be “not in the spirit of the theory of 1-motives”.

2.6. De Rham realization of Pic™

Let k be a field of characteristic 0. Let X be a smooth k-variety, with smooth
compactification X and normal crossing boundary ¥ = X — X. Let 7 : Y — Y be
the normalization, and i : Y — X the inclusion. Note that Y is a smooth proper
k-variety as well.
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If (£, V) is a line bundle on X equipped with an integrable (k-linear) connection,
then restriction to Y yields a connection on £ |y with values in 7. Q%,

V:iitL =i L @o, Tk

defined as the composition of the restricted connection i*£ — i*£ ®o, Q) with
the natural Oy-linear map *£ ® ), — i*L ® TI'*Q%. There is also a connection

d: Oy — W*ng, similarly defined using the exterior derivative map d : Oy — Qi;

this is just V in the case when £ = Oxand V =d.

We will denote by Pich(77 Y’) the group of isomorphism classes of triples (£, V, ¢),
where (£, V) is a line bundle on X with an integrable connection and

(2 (2*576) = (OYvJ)

is a trivialization on Y as connections with values in . Q%; equivalently, we have a
trivialization of i*£ such that the induced trivialization of 7*i*L is given by a flat
section, for the induced connection on 7*i*L (in the standard sense) obtained from
V.

We can consider the relative §-Picard functor on the category of schemes over k,
which we denote by Pic’ and is defined to be the fpgc-sheaf associated to the

(X,Y)/kK’
functor

T — Pic* (X x, T,Y x3 T).

We clearly have the following commutative square

Pic!(X,Y) — Pic*(X)

L L

Pic(X,Y) — Pic(X)

which is functorial as well. N
Let i : Y — X be the inclusion of the normal crossing boundary, and let 7: Y — Y
be the normalization. We have an induced relative dlog map given by the following
diagram
0— Qly(log Y)(-Y) — QlY — i*w*Q% —0

(23) 1 dlog 1 dlog 1 dlog
0— OFY,Y) 0 — &0y —0
We now have the following.

PROPOSITION 2.6.1. — Let (X,Y) be any pair as above over k =k, and let Y; (i =
1,2,...) denote the (smooth) irreducible components of the normal crossing boundary
divisor Y .

a) There is a functorial isomorphism

b~ - — . dlog
Pic*(X,Y) 2 H' (X, Ofx ) — Q(logY)(~Y).
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b) There is an extension
HO(Y, 0% — —
L 0V pit(Xv) - ke (Pict(X)® — @ Pick(¥))) — 0
HO(X,0%)

where (Pic?)? denotes the pull-back of Pic® in Pic®.
¢) The universal Gq-extension of the semi-abelian variety Pic®(X,Y) is given by
the k-group scheme (PIC(Y,Y)/k) , i.e., in the notation of Section 1.4, we have

an isomorphism
(Pic’(X,Y))F = (Pic?zy) W

d) We have an isomorphism

Lie Pic*(X,Y)? = H' (X, Ox(-Y) — Qk(log V) (-Y)).

Proof. — In order to show part a) we consider the canonical mapping which asso-
ciates to any line bundle £ with an integrable connection V, trivialized along Y (in
the appropriate sense), the cohomology class of a Cech cocycle given by the transition
functions defining £ and the induced forms. Since the following sequence (defined by
the obvious maps)

0— H(X, 0% (logY)(-Y)) — PicY(X,Y) — Pic(X,Y) — H (X, 0% (log Y)(-Y))
is exact, we get the claimed isomorphism: note that
H(X,0%(logY)(-Y)) c H'(X,0L)

consists of closed 1-forms, since char. k = 0.
The exact sequence in b) is obtained by the exact sequence of complexes given by
the columns in (23): in fact, the following equation holds

ker” (Pic*(X)" — H'(Y, 0§ — m.0%)) = ker’(Pic*(X)? — @ Pic*(;)")

by the Proposition 2.1.2.
From the above discussion we get the following diagram with short exact rows and

columns
0 0
. T T
H(Y7O;)c_> 0 NN 0PicO (X)) — - 0y
7}[0(?7 0:) Pic’(X,Y) ker” (Pic”(X) — @ Pic” (V7))
- l 1
Y0y e el . 0(Pich(X)0 — @ Pich (V)0
(X, 0x) Pic*(X,Y) ker” (Pic*(X) ® Pic"(Y;)?)
T T
HY(X,Q%(ogY)(-Y)) = ker(H*(X, Q%) — @:H(Y;,Q}.))
T T
0 0
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Therefore we see that Pic? (X,Y)% is the group of k-points of the pull-back of the
group scheme

kero((PichY k)o — @(Pici,i/k)o).

/
The latter is the universal extension of the abelian variety

ker’ (Pic’(X) — @ Pic(Y;)),
therefore Pic? (X, Y)? is the universal extension of the semi-abelian variety Pic’(X,Y),
and c¢) is proved.

The part d) is standard (e.g., can be obtained in a manner similar to the corre-
sponding result for the usual Picard functors, by computing k[e]-points as in [32]). O

Let X be equidimensional over k = k, and fix a resolution f : X — X and good
normal crossing compactification X with boundary Y, as usual. Let Z denote the
union of all compact components in S. By our choice of resolution and compactifica-
tion, Z has normal crossings, and ZNY = @. Denote by Z; (7 = 1,2,...) its smooth
irreducible components. Recall (Definition 2.2.1) that Z yields a 1-motive defined as
follows

Pict(X — Z,Y) ¥ Divy(X,Y) —£ Pic’ (X, Y)).
By definition, Pic™(X) is a sub-1-motive of PicT(X — Z,Y).

Correspondingly, we define the group Pichflog(f — Z,Y) as the group of isomor-
phism classes of triples (£, V'8, ) where L is a line bundle on X, V'°8 is an integrable
connection on L with log poles along Z, i.e.,

Ve L - L® Qly(log Z)

and ¢ : (i*L,V) 2 (Oy,d) is a trivialization (note that we are assuming ZNY = @).
We also have the following commutative square
Pic!(X,Y) — Pic" °¢(X — Z,Y)
L L
Pic(X,Y) = Pic(X,Y)
which is functorial. Denote Pic* '°8(X — Z,V)° the pull-back of Pic®(X,Y) C
Pic(X,Y) along the right hand vertical map in the above diagram.

Our goal here is to construct the universal G,-extension Pict(X — Z,Y)% of the
1-motive Pic™ (X — Z,Y). In order to do this, consider the following lifting

Wl Divy(X,Y) — Pict°8(X — Z,Y)°

of uz : Divy(X,Y) — Pic®(X,Y). The lifting u%, is obtained from the fact that
given a divisor D € Div z(X,Y), the line bundle O (D) comes equipped also with a
canonical connection with log poles along supp(D) C Z. The connection is charac-
terized by the property that the tautological meromorphic section, with divisor D, is
flat (i.e., if s is this section, V(s) = 0 defines a connection on the open complement of
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supp(D), which one verifies, by local calculation, has a unique meromorphic extension
with log poles along supp(D)). We then have the following result.

LEMMA 2.6.2. — Let X,Y and Z be as above.

a) There is an isomorphism

: g—log vy ~ 5% * leg
Pici°8(X — Z,Y) 2 H'(X, Olxyy — log(Y + 2))(=Y)).

b) The group Pic"°8(X — Z,Y)° is an extension of the following vector group
Div (X, ¥ = ker(@; H(Z;, 0,) — H'(X, 2k(log(¥))(~Y))

by the group Pich(77 Y)Y.
¢) We then have that

;
Pict(X — 7,Y)! = [Dive(X, V) —Zs Pici—8(X — Z,Y)"].

d) We have an isomorphism
LiePic" 8(X — 2,V)" 2 H'(X, O¢(-Y) — Q%(log(Y + 2))(-Y)).

Proof. — The proofs of parts a) and b) are very similar to those in Proposition 2.6.1.
In fact we have relative residue sequences given by the first row of the following
commutative diagram (cf. [20, 2.3])

0 0
! !
0— QL(logV)(—Y) — QL(log(Y + 2))(=Y) — &,0z,(~Z; 1Y) =0
! ! 1=
(24) 0— QlY — Qly(log Z) — ®;0z, —0
! !
iy, — @y (log ZNY;)
! !
0 0

where the isomorphisms are because Y NZ = &. Here recall that Y; are the irreducible
components of Y. The following diagram (similar to (23))

0 — QL(logY)(~Y) — QLlog(Y + Z)(-Y) — &;0z, — 0

T dlog T dlog T
0— OEFY,Y) = OEFY,Y) — 0 =0,

together with (24), yield a) and the extension of
0
z

Div % (X,Y)* = ker(®;H%(Z;,0z,) — H'(X,0%(logY)(-Y)))
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claimed in b). In fact, from the above, we get the following push-out diagram

0 0
| |
0—  H'X,QL(logY)(-Y)) — Pi(X,Y)? — Pic’(X,Y)
l l |
0— HOX, QL (log(Y + 2))(-Y)) — Pic* *¥(X — 2,Y)° — Pic’(X,Y)
| res l )
Div%(X,Y)" = Div%(X,Y)"
| |
0 0

where “res” is the ordinary residue of forms and ¢ is the residue of connections. Note
that here Pic?1°¢(X — Z, V)0 surjects onto Pic’(X,Y) as the canonical map

Pic(X,Y) — H'(X, Qx(log(Y + Z))(—Y))

factors through H' (X, Q% (log(Y))(=Y)).
For the latter claims ¢) and d) we proceed as follows. Considering the above
extensions, we are left to show that the canonical induced map

(25) Ext(Pict (X — 2,Y),G,)" = H(X, 0 (log(Y + 2))(~Y))

is an isomorphism: in fact, granting (25), ¢) follows from the above push-out diagram,
Proposition 2.6.1 and the construction of the universal extension as being given in
Chapter 1.

In order to show that the map in (25) is an isomorphism, we consider the following
commutative diagram

0 0
! !
Ext(Pic’(X,Y),G,)" =  H(X,Qk(log(Y))(-Y))
! !
Ext(Pict (X — 2,Y),Ga)¥ — HO(X,QL(log(Y + 2))(-Y))
l l res
Hom(Div%(X,Y),G,)" = Div % (X,Y)"
! !
0 0

where: by Proposition 2.6.1 we know that
Ext(Pic”(X,Y),G,)" = HO(X, Q0 (log Y)(-Y))
and, since Div z(X,Y) = Z[Z], we have that
Hom(Z[Z]°,Ga)" = ker(6;H(Z;,0z,) — H' (X, Q%(logY)(-Y)))
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is the restriction of the canonical isomorphism Hom(Z([Z],G,)" = &;H%(Z;,0yz,) to
those divisors which are algebraically equivalent to zero relatively to Y.

Thus the relative residue sequence (24) yields that the map in (25) is an isomor-
phism as well. The Lie algebra computation yielding d) is then straightforward. O

REMARK 2.6.3 (De Rham cohomology and homology). — For a variety X over a
field k of characteristic zero (not necessarily algebraically closed), let X. — X be a
smooth proper hypercovering, and let X. < X. be a smooth compactification with
normal crossing boundary Y., as in [15]. We define the De Rham cohomology of X
as follows:

Hpp(X) ©HY(X., 0% (logY2)).

The Hodge-De Rham filtration is that induced by truncations, as usual. This defini-
tion is in accordance with Deligne’s definition in [15, 10.3.15], determining De Rham
cohomology as a filtered vector space. Similarly, we define the Tate twist H{jp (X)(m)
to be the underlying vector space of Hjjg(X), with the obvious shift in indexing of
its Hodge-De Rham filtration. Relative cohomology may also be defined in a similar
way, as in [15] (see also [51]).

De Rham homology, denoted by HPR(X)= H}j(X)V, is defined to be the dual
(filtered) vector space: it differs, in general, from Hartshorne (Borel-Moore) De Rham
homology [29].

It can be shown, by comparison with the case ¥ = C and cohomological descent,
that

(i) the underlying k-vector space of H{j, (X)) is naturally identified with Hartshorne’s
algebraic De Rham cohomology [29]
(i) (Hig(X),F") is independent of the choice of the hypercovering and compacti-
fication X. — X.
(iii) if f: X — Y is a morphism of k-varieties, the induced map

[ Hpr(Y) — Hpg(X)

is strictly compatible with the respective Hodge-De Rham filtrations; in partic-
ular, if the underlying linear transformation is an isomorphism of vector spaces,
then it is an isomorphism of filtered vector spaces

(iv) if dim X = n, then Hi(X) =0 for i > 2n, and for irreducible X over k = £k,
HE% (X) is either 0 (if X is not proper over k) or 1-dimensional; if X (™ is the
union of the n-dimensional irreducible components of X, then

H]iDR(X) - H]SR(X(H))

is an isomorphism for ¢ > 2n — 1

(v) Hpg has other standard properties, like the excision isomorphism, and the

Mayer-Vietoris exact sequence; these are valid in the category of filtered vector
spaces and strictly compatible linear maps.
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If X is smooth over k, and X is a smooth compactification with normal crossing
boundary Y, we may regard X and Y as “constant” simplicial schemes, so that we
obtain

iy (X) = H' (X, Qi (log ¥).

More generally, if X is a proper smooth k-variety and Y, Z are disjoint normal
crossing divisors, we get

Hpr(X = Z,Y) EHY (X, Q(log(Y + Z))(-Y))

with Hodge-De Rham filtration defined by truncation of the (twisted) log De Rham
complex.

Now Lemma 2.6.2 implies the following.

COROLLARY 2.6.4. — Let X be a non-singular proper k-variety, Z and Y disjoint
normal crossing divisors in X . Then there is a natural isomorphism of filtered k-vector
spaces

Tpr(PicT™ (X — Z,Y)) 2 HLR (X — Z,Y)(1).

We now have the following duality result.

LEMMA 2.6.5. — Let V' be an n-dimensional proper smooth algebraic variety over a
field of characteristic zero. Let A+ B be a normal crossing divisor in V such that
AN B =@. Then there is a functorial duality isomorphism

HEr(V — A, B)(—n) = HER (V — B, A)

2n—r

which is compatible with the Hodge-De Rham filtration and Poincaré-Lefschetz duality.

Proof. — We can consider the following pairing

Q; (log(A + B))(~A) ® ©; (log(A + B))(~B)
!
Q; (log(A + B))(—A - B)
1
Oy
It will suffices to show that such a pairing yields non-degenerate pairings on hyperco-
homology

H' (V,Qy (log(A + B))(—A)) @, H*" " (V,Qy (log(A + B))(~B)) — H*"(V,Qy)

where H*"(V, Q) = H"(V, Q%) =k

Since we are in characteristic zero we are left to show it for £ = C for which it is
clear from the proof of Lemma 2.4.2 and Remark 2.4.4. Alternately, one can deduce
the duality isomorphism, as in the proof of Poincaré duality for algebraic De Rham
cohomology, by reducing to Serre duality (cf. [28, IIL.8]). O
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THEOREM 2.6.6. — Let X be any n-dimensional k-variety, where k is algebraically
closed of characteristic 0. Then

Tor(Pic™ (X)) = H % (X)(1 —n).
Proof. — As usual, we can reduce to the case when X is equidimensional. Fix a
resolution f : X — X with good normal crossing compactification X and boundary Y.

As above, let Z be the union of all compact components of S. We clearly have the
following (see (24)) relative residue sequence

0— QL (logY)(-Y) — QL (log(Y + 2))(=Y) — @;0z, — 0
where Z; are the smooth irreducible components of Z. Moreover
HRR(X)(1=n) — HYE (X, 8)(1—n) = HY" (X, 5)(1—n)
= Hpt (X, 2)(1—n) = Hpp (X = Z,Y)(1)

by excision and duality, i.e., Lemma 2.6.5, and we have the following pull-back dia-
gram (compare with (22))

0— HL(X,Y)(1) —» HA(X — Z,Y)(1) = Divy(X,Y)®k —0
(26) I 7 7
0— Hir(X,Y)(1) - HEPE (X)(1-n) — Divl (X,Y)®k —0

5/s
by duality and the Mayer-Vietoris sequence for De Rham homology.
Consider the following pull-back diagram of 1-motives
0 — Pic’(X,Y) — Pict(X - Z,Y) — Divy(X,Y)[1] —0
Il f T

0— Pic’(X,Y) — Pic™ (X) — Div%/s(X,Y)[l] — 0.
We then get the following commutative diagram with short exact rows (and whose
middle column implies the theorem)

Tpr(Pic’(X,Y)) — Tpr(Pict(X — Z,Y)) — Tpr(Div%(X,Y)[1])

& T I
(27) HL(XY) — HPR (X) —  Divy (X,Y) &k
= =4 =1
Tor(Pic’(X,Y)) <  Tpr(Pic™ (X))  — Tpr(DivY ; SX, Y[

where: i) the top and bottom rows are obtained by applying Tpr to the earlier
diagram of 1-motives, and are exact by construction (c¢f. Chapter 1), i) the second
row is exact according to (26), i) the vertical isomorphisms are then obtained by
applying Proposition 2.6.1, Lemma 2.6.2 and Corollary 2.6.4, yielding the top row of
(26) as the top row of De Rham realizations in (27). O
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CHAPTER 3

COHOMOLOGICAL ALBANESE 1-MOTIVE: Alb"

We keep the same notations and hypotheses of the previous chapter.

3.1. Definition of Alb™

Let X be a variety over an algebraically closed field k of characteristic 0. To define
our cohomological Albanese Alb™(X), we just take the Cartier dual of Pic™ (X). We
are then left with finding a “more explicit” description of Alb™, if possible; this is
given by Proposition 3.1.4, when X is smooth, and by (28), when X is proper.

DEFINITION 3.1.1. — For an algebraic variety X over an algebraically closed field k
of characteristic zero we define the following 1-motive

AlbT(X) = Pic™ (X)Y = [DivY

3s(X.Y) — Pic’(X,Y)]".

We call Alb™(X) the cohomological Albanese 1-motive of X. Since Pic™ is inde-
pendent of the choices of resolutions and compactifications so is Alb™.

We recall that Deligne’s definition of “motivic cohomology” of a curve C (see [15],
¢f. [16]) is the 1-motive

H},(C)(1) ¥ [Div %(C") — Pic"(C)]

where C is a compactification of the semi-normalization C’ of the given curve C,
such that F = C — C’ is a finite set of non-singular points. We can relate Deligne’s
definition to ours.

PROPOSITION 3.1.2. — If C is a curve (i.e., a purely 1-dimensional variety) over an
algebraically closed field k of characteristic 0, we have a canonical identification

H! (C)(1) = AIbT(C).
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Proof. — The normalization C of C clearly factors through the semi-normal curve
C’ and the morphism C’ — C is bijective on points, and so induces an isomorphism
on the groups of Weil divisors. We therefore have that Alb™(C) = Alb™(C”). On the
other hand, H},(C)(1) = H} (C")(1) as well, from Deligne’s definition.

We then can assume C' = (' itself to be semi-normal; let 7 : C — C be the
normalization. First consider the compact case, i.e., C' = (' = C. We then have a
canonical quasi-isomorphism

(08 — i.0%] = [Rm. Of — R, O%]

where i : § — C' is the embedding of the finite set S of singular points andi: S — C
the embedding of the inverse image of S: therefore, we get an isomorphism

Pic(C, S) = Pic(C, S).

From the exact sequences (5) we get the following diagram
0
. 1
H2(S,05) 0 e
0 HO(C,0z) — Pic’(C,S5) — Pic”(C) =0
1 Il !
HO(S,(’)%) o ~
0 - ————— — Pic’(C,S) — Pic’(C) -0
HO(C,O’é)
L | I
0— DiV%/S(C)V — Pic?(C) — Pic’(C) =0
1 |
0 0

showing that [Div%/S(CN’) — Pic’(C)] is Cartier dual of Pic’(C) = HL (C)(1) (cf.
(53]). B N
If C is not compact, let C' be a smooth compactification of the normalization C,
and set F' = C — C; then [Div %(C) — Pic’(C)] dualizes to
0 *
HAFOF) Pic’(C, F) — Pic’(C) — 0
HO(C,0)

One can then see that the symmetric avatars of Alb™(C) and H}, (C)(1) are the same,
e.g., by making use of the “classical” Lemma 3.1.3. O

The proof of the following fact is left as an exercise for the reader.

LEMMA 3.1.3. — Let C be a non-singular projective curve. Let S and T be disjoint
finite sets of closed points. Then we have the following duality isomorphism between
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1-motives
[Div %(C) — Pic’(C, T)]Y = [Div3(C) — Pic’(C, S)].
We have that Alb™ (X) is a semi-abelian variety whenever X is proper over k; in
fact, in this case X = X, i.e., Y = @, and Alb™(X) is given by the following Cartier
dual

Ab*(X) = Dive () - Pic’(X)]”

/S
Thus, if X is a proper k-variety, A1b+(X ) can be represented as an extension
(28) 0— T(S/S) — Alb™(X) — Alb(X) — 0

where the torus T'(S/S) has character group Div %/S()? ) (cf. Chapter 1). Therefore,
we can regard Alb™(X) as a G,,-bundle over the abelian variety Alb(X).

If X is a smooth variety over k = k, we then have that X = X, i.e., S=8= z,
whence Pic™ (X) is a semi-abelian variety, and Alb™ (X) is given by a homomorphism
from a lattice to an abelian variety. It is natural to ask what these are, “concretely”.

Let X be a non-singular proper variety over k = k, and Y C X a normal crossing
divisor. Denote by Z¥ and Z* the free abelian groups generated by the connected
components of Y and X respectively (note that the connected components of X are
irreducible, but this need not hold for Y'). Then there is a canonical homomorphism
v 7Y — 7% induced by the mapping that takes a component of ¥ to the component
of X to which it belongs. The kernel of + is generated by classes [Y7] — [Y;] where Y7
and Y are distinct connected components of Y contained in the same component of
X.

Let Y7 and Y, be distinct connected components of Y, contained in the same
component of X, and choose (closed) points yr € Y7 and ys € Y. Then we consider
ax(yr —ys) € AIb(X), where as : Z9(X)o — Alb(X) denotes the Albanese mapping
for zero-cycles of degree zero. If Y — Y is the normalization, then Y - X is a
morphism between smooth and proper varieties, and so yields a morphism Alb(f’) —
Alb(X) of abelian varieties. Note that ¥ = I, Vi, and Alb(Y) = @; Alb(Y;), where
Y = U,;Y; is the decomposition into irreducible components.

PROPOSITION 3.1.4. — Let X be a smooth proper k-variety, andY a normal crossing
divisor in X. The Cartier dual of Pic®(X,Y) is the 1-motive given by the lattice

2 wer(zY L 25) = T(X, Y)Y,
the abelian variety
Alb(X)
im(&; Alb(Y;))

and the homomorphism of group schemes

= (kerO(PiCO(Y) — @ PiCO(Yi)))v

AIb(X)

L 7(XY) bX)
ux T = S A (YY)
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defined by
ux(Yr —Yy) =ax(yr —ys) (mod ima; Alb(Y;))
where Y7, Y lie in the same component of X, and y; € Y, y;y € Y; are any closed
points. Therefore,
Alb(X)
TE)

Alb*(X) = [z X

Proof. — We first note that the homomorphism ux is well-defined; in fact if y7, v/, is
another such pair of points, then we easily see that ax(yr — ys) — ax(y; — /) lies in
the image of @; Alb(Y;) — Alb(X) (first we consider the case when the pair of points
Y7, yr1, as well as ¢}, ys, each lie in an irreducible component of Y'; then we can deduce
the general case).

By (5) it is clear that the character group of the torus T(X,Y) is given by the
lattice Z(XY). The following pull-back homomorphism between abelian varieties

Pic’ (X) 2, @®; Pic’(Y;)
is dual to the following push-forward homomorphism
@; AIb(Y;) — Alb(X)

Thus
coker (@; Alb(Y;) — Alb(X)) = (ker® p)V
as claimed.

In order to check that the map uyx is Cartier dual to Pic’(X,Y), it suffices to
show that ux coincides, on each generator [Y;] — [Y;] of ZXY) | with the analogous
homomorphism for the Cartier dual 1-motive. Choosing points yr € Y7, y; € Yy which
are smooth on Y, one can reduce (by considering the normalization of an irreducible
curve passing through the pair of points, and standard functoriality for Picard and
Albanese varieties) to checking the duality assertion when X is a smooth connected
projective curve, and Y consists of 2 points, for which it is “classical” (see [53] for a
more general statement; see also [48, Exemple, pg.11-04], and [37]). O

We can now show that the Albanese l1-motive Alb' is a birational invariant of
normal proper varieties, and that in fact it is given by the Albanese variety of any
resolution of singularities of X. More generally, we have the following.

PROPOSITION 3.1.5. — If X is a normal k-variety the Albanese 1-motive Alb™*(X)
is the Cartier dual of Pic®(X,Y). In particular, if X is also proper, then AlbT(X) =
Alb(X).

Proof. — First consider the case when X is a proper, normal surface. The propo-
sition is true in this case because the intersection matrix of the exceptional divisor
of a desingularization of a normal surface singularity is known [35] to be negative
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definite: the group Div%(X ) is zero since any non-zero linear combination of compact

components of S cannot be numerically equivalent to zero.

For higher dimensional proper X, we take X to be smooth and projective; now by
choosing successive hyperplane sections, we can find a complete intersection smooth
surface T in X and a commutative square

Div(X) — NS(X)
Lo 1

Divy (T) — NS(T)

where SNT C T is a reduced normal crossing divisor. Since T is general Div 5()? )

injects into Divy (T). If Tp is the normalization of the image of 7' in X, then

T — Tp is a resolution of singularities of a normal proper surface, with exceptional

divisor S NT; hence Div %HT(T) = 0 by the case of surfaces considered above, and so

Div%()?) =0 as well.

If X is open we just notice that DivZ(X,Y) is contained in Div%(X); however,
the latter group can be assumed to vanish, since X can be chosen to be a projective
resolution of a normal compactification of X. O

REMARK 3.1.6. — After Proposition 3.1.5, we have the following alternative descrip-
tion of Pic™ (X)), for a proper k-variety X.

Let X, be the normalization of X, S,, be the pull-back of the singular locus, and
X a resolution of the normalization. We then have an exact sequence

0 — Divs,. (X) — Pic¢(X) — CI(X,,) — 0

5/8,
where Cl denotes the divisor class group and Divg /s (X) is the group generated
by exceptional divisors for X — X,. Equivalently, Div 3/s ()Af ) is the kernel of the

push-forward map Div (X) — Div (X,); it is also the kernel of the push-forward map
Div#(X) — Div g, (Xn).

We have Div%/sn (X) = 0, by Proposition 3.1.5. Hence DiV'{;’/sn (X) has no in-

tersection with Pic’(X), and so Pic’(X) injects into CI(X,); denote its image by
C1°(X,). Let Divg, /5(Xy) denote the group of Weil divisors on X, have vanishing
push-forward in X; these divisors are necessarily supported on 5,,. Let Div %n / s(Xn)
be the inverse image of C1°(X,,) under the obvious map Div g, /s(Xn) — Cl(X,)
which send a Weil divisor to its divisor class.

We can now define a class group 1-motive of X to be the following 1-motive:

Divg /¢(Xn) — CI°(X,)].
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We then have that the homological Picard 1-motive Pic™ (X) is canonically isomorphic
to the class group 1-motive

Pic™ (X) = [Divy ,4(Xn) — CI°(X,)].

Note that this description of Pic™ (X) does not involve any resolution of singu-
larities of X; in particular, it yields a possible description of Pic™ (X) in positive
characteristics as well. We do not pursue this idea further here.

3.2. Albanese mappings to Alb™"

Let X be an equidimensional proper k-variety of dimension n, where k is alge-
braically closed of characteristic 0. Let X,o; denote the set of smooth points of X.
We may also consider X, as an open subscheme of any given resolution of singu-
larities X. Let Xyeoq = [ ; Uj be the decomposition into irreducible (or equivalently
connected) components. If X — X is a resolution, then the Zariski closures U; C X
are the irreducible (equivalently, connected) components of X.

Choose base points z; € U, for each j, and let x = {z;};. Let ax : X — AIb(X) be
the corresponding Albanese mapping. Since X is proper over k, Alb™(X) is a torus
bundle over Alb(X). Consider the following pull-back square

AlbT(X) — Alb(X)

ax | T ax

AbT(X) - X
Then Alb'(X) is a torus bundle on X, with toric fiber

T(S5/8)% Hom(Div & S()?), Gm)

/

We claim that the restriction of the torus bundle Ale(X ) — X to the open subset
Xreg C X has a natural trivialization. In fact, dually, any divisor D in Div %/S(X ) =

T(S/S) is mapped to the class in Pic’(X) of the line bundle O(D), which is canon-
ically trivialized on X,eg, since supp(D) N X,ee = @. Therefore, by a “classical”
argument due to Severi (cf. [48, §1]) there is a section o : X, — Alb'(X). By
composing o with ax we get the Albanese mapping

(29) at : Xreg — AlbT(X).

It is easy to see that a3 is independent of the choice of the resolution of singularities
X of X.

If X is not equidimensional, let X (™ denote the union of its n-dimensional irre-
ducible components. We define X, to be the intersection of X (") with the locus of
smooth points of X. Since Alb™(X) = Alb*(X™), while X,o; C X\, we obtain

MEMOIRES DE LA SMF 87



3.3. HODGE, ETALE AND DE RHAM REALIZATIONS OF Alb* 51

an Albanese mapping aj : X, — AlbT(X) by restricting that of X if the base
points z; are chosen in X,q.

3.3. Hodge, étale and De Rham realizations of Alb™

Let X be an n-dimensional variety over C. We recall that Cartier duality for
1-motives is compatible, under the Hodge realization, with the canonical involution
H — Hom(H,Z(1)) on the category of mixed Hodge structures. We thus have the
following consequence of Theorem 2.4.5.

COROLLARY 3.3.1. — Let X be as above. Then
Thodge(AlbT (X)) = H*"" (X, Z(n))/(torsion)
Proof. — We have the formula
Hom(Ha, 1 (X, Z(1 —n)),Z(1)) = H*" (X, Z(n))/(torsion)
in the category of mixed Hodge structures. Cartier duality for 1-motives and Theo-

rem 2.4.5 then yield the result. (|

We let " H*"1(X,C(n))
( ) - FOHQn_l(Xa C(n)) +1im H2n—1(X,Z(TL)) '

‘We then have:

COROLLARY 3.3.2. — Let X be a proper variety over C and n = dimX. The
Albanese 1-motive Alb+(X) is canonically isomorphic to the semi-abelian variety
J™"(X), given as an algebraic extension

*

0—T— J"X) - J"X)—0
where f : X — X is any resolution of singularities, and the torus T is given by
H?"2(S,7)
im(H2"—2(S,7) & H>"~2(X, 7))

*

Proof. — This follows from the Mayer-Vietoris sequence of mixed Hodge structures
H2n_2(S,Z) EBH%L_Q()?,Z) N H2n_2(§, Z) N H2n_1(X, Z)_HHQn—l(j‘(i’Z)

Tate twisted by n, where: H2"=2(S,Z(n)) is pure of weight —2 and H2"~ (X, Z(n))
is pure of weight —1.

In fact, the Deligne 1-motive canonically associated to H*"~1(X,Z(n)) is exactly
the claimed semi-abelian variety J"(X) but, by the Theorem 2.4.5, the Hodge realiza-
tion of Alb*(X) is also H?"~1(X,Z(n)), modulo torsion, and the Hodge realization
functor is fully faithful. O

We now let X be a variety over an algebraically closed field k of characteristic zero.
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COROLLARY 3.3.3. — Let X be as above and n = dim X. Then
T(AIbT (X)) = H2*~Y(X, Z(n))/(torsion)

Proof. — This follows from the formula
Hom(HS! (X, Z(1 —n)),Z(1)) = HX"Y(X, Z(n))/(torsion)
and Theorem 2.5.4. |

Let X be any n-dimensional variety over an algebraically closed field of characteris-
tic zero as above. Recall (2.6.3) that Hy, (X) = H*(X., Q% (log(Y.))), the De Rham

cohomology (filtered) k-vector spaces of X, where X. is any smooth compactification
of a proper smooth hypercovering X. with normal crossing boundary Y..

COROLLARY 3.3.4. — Let X be as above. Then
Tor(AlbT (X)) = HE ' (X)(n)
Proof. — By Theorem 2.6.6, as above, we get the result. |
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CHAPTER 4

COHOMOLOGICAL PICARD 1-MOTIVE: Pic*

4.1. Simplicial Picard functor

We first extend some results from the folklore on Picard functors to the context of
simplicial schemes. Presumably these are known to experts, though we do not have
any reference for these facts.

Let m : V. — S be a simplicial scheme over a base scheme S. We will denote by
Pic(V.) the group of isomorphism classes of simplicial line bundles on V. (i.e., of
invertible Oy -modules). We have the following description of Pic(V.). Denote by
di : V; — Vi the faces map of the given simplicial scheme V., and consider the
following set of data and conditions:

— a line bundle : £ on Vj;

— an isomorphism : «: (d})*(L) =, (d})*(L) on Vi;
satisfying the

— cocycle condition : that the following composite

()" (@)~ o((d3) " ())o((d5)" (@)
yields 1 € T'(Va, G,y,), i.e., if we let
fo = dydf = dydy
h = dyd3 = did
f2 = dyd} = didj
then we want that the following diagram

@)
[5(L) ——— f{(L)
%V&>\ zﬁémw

F(0)

commutes.
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We clearly then have the following.

PROPOSITION 4.1.1. — Let V. be a simplicial scheme. Elements of Pic(V.) corre-
spond to isomorphism classes of pairs (L, «) as above, satisfying the cocycle condition.
Moreover, there is a functorial isomorphism

Pic(V.) 2 H'(V., 07, ).

Proof. — The identification of Pic(V.) with isomorphism classes of pairs (£, «) is
easy, and left to the reader. For a proof of the cohomological description, see Ap-
pendix . [l

We now consider the simplicial Picard functor on the category of schemes over S,
which we denote as follows
T +—s Picv./s(T)

obtained by sheafifying the functor
T +— Pic(V. xgT)
with respect to the fpgc-topology. This means that if 7 : V. xgT — T, then
Picy, ;s(T) =2 H},,o(T, R' 7 (OF,  i1))-

As usual, if 7. (05, ) = O, the Leray spectral sequence along m and descent yields
an exact sequence

0 — Pic(S) — Pic(V.) — Picy, /s(S) — H*(S,G,) — HA(V., 05).

Furthermore, if there is a section of 7, we have that
Pic(V.
PiCV./S(S) = ﬁ

We are mainly interested in the case when S is the spectrum of a field k£ and X. is
a proper (smooth) simplicial scheme over k; the previous description for k-points of
Picy /i (i.e., the formula Picy, ,;(k) = Pic(V.)) applies in the geometric case (i.e.,
when k is algebraically closed), since H!(k,G,,) = 0 for i = 1,2 in that case; here, we
do not need the assumption that m.Ox,k = k.

In order to give another description of the simplicial Picard functor, which is more
suitable for our purposes, we consider the canonical spectral sequence

(30) EPT = Hq(Xp,O}p)=>Hp+q(X.7O}.)

Let m; : X; — k denote the structure morphisms. The spectral sequence yields the
following exact sequence of fpgc-sheaves:

ker((ﬂ-l)*Gm,Xl - (WQ)*Gm,Xg)
im((ﬂ-O)*Gm,Xo i (Wl)*Gm,Xl)

We have the following facts.

(31) 0—

— PiCX./k — ker(PicXO/k — PiCXl/k)
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LEMMA 4.1.2. — If X. is smooth and proper over a field k, then the simplicial Picard
Junctor Picx /. is representable by a group scheme locally of finite type over k.

Proof. — See Appendix . O
For smooth proper simplicial schemes over k = k we have the following description.

PROPOSITION 4.1.3. — Let X. be smooth and proper over k = k of characteristic
zero. The sequence (81) yields a semi-abelian group scheme over k, which can be
represented as an extension
(32) 1 - T(X.)— Pic"(X.) - A(X.) =0
where:

(i) Pic®(X.) is the connected component of the identity of Picx, /s

(i) T(X.) is the k-torus defined by
T(X.)% lfef((ﬂl)*Gm,Xl = (12)+Gm,x,)

lm((ﬂ'O)*Gm,Xo - (Wl)*Gm,Xl)

where m; : X; — k are the structure morphisms;

(iii) A(X.) is the following abelian variety
A(X.) = ker®(Pic®(Xo) — Pic’(X1))

obtained as the connected component of the identity of the kernel.

Proof. — From Lemma 4.1.2, by taking connected components of the identity of the
group schemes in (31), where T(X.) is connected, we claim that Pic”(X.) surjects
onto the abelian variety kerO(Picg(o/k — Picg(l/k): by the spectral sequence (30), the

image of Pic(X.) is the kernel of the following edge homomorphism

ker((ﬂ-Q)*Gm,Xg - (WS)*Gm,Xg)
im((ﬂ—l)*Gm,Xl - (7(-2)*Gm,X2)

which vanishes on the connected component of the identity of the domain. O

ker(PicXO/,C — Pich/k) —

4.2. Definition of Pic™

Now let X. be a smooth simplicial k-variety, which we assume to be obtained from
a simplicial pair (X.,Y.) such that X. = X. — Y., X. is a proper smooth simplicial
scheme and Y. has components Y; which are normal crossing divisors in X ;. We then
have a spectral sequence

EYY = HY, (X, o*yp):ml;ﬁ(f. ,0%.)-

Since each component of X. is smooth we have that Hy. (X,, 0% ) # 0 if and only
P P
if ¢ = 1 and we clearly have that

Hy (X, 0%, ) =Divy, (X,).
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From the above spectral sequence we then have

* *

(33) HY (K., 0% ) 2 ker(Divy, (Xo) 2= Divy, (X1))

We will denote by Divy_ (X.) the subgroup of divisors on Xg given by the right side
of (33). The canonical mapping

(34) Divy, (X.) = Hy, (X.,0% ) = H'(X.,0% ) = Picx_,,(k)

is compatible with the restriction of the map taking a divisor on X to the associated
line bundle.
In order to define Pict, we let

Pic’(X.) = Pick

X./k(k’) C Pic(X.),

and let Div§. (X.) denote the inverse image of Pic’(X.) under the above mapping
(34).

Now let X be an algebraic variety over a field k = k of characteristic zero. Let
7 : X. — X be a smooth proper hypercovering of X, such that we can choose a
simplicial pair (X.,Y.) as above (i.e., so that X. — Y. = X. and Y. has normal
crossings.)

DEFINITION 4.2.1. — With the hypothesis and notation as above we define the 1-
motive

Pict(X) = [Div) (X.) — Pic’(X.)].
We call Pict (X) the cohomological Picard 1-motive of X.

REMARK 4.2.2. — If X is smooth, let X be a smooth compactification with normal
crossing boundary Y. We may take X . to be the constant simplicial scheme associated
to X. Then we see easily that Pic™(X) = [Div$(X) — Pic’(X)].

On the other hand, if X is proper over k, then X. = X., and Pic™(X) = Pic’(X.)
is a semi-abelian variety.

4.3. Hodge realization of Pict

Let (X.,Y.) be a simplicial pair as above. For k = C, by the simplicial exponential
sequence on (X.)an and GAGA, we have an isomorphism
s v 1/~ * ~ 1/~ *
Pic(X.)=H (X.,OY.) ~H ((X.)an, (Y.)an)
and a simplicial cycle map

cl. : Pic(X.) — H*(X.,Z(1)).
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LEMMA 4.3.1. — Let X. be as above and k = C. Then

7T H'(X.,C(1))
VP +HN(X.,Z(1))

~ Pic’(X.)
and
Divy (X.) = ker(H3 (X.,Z(1)) — H*(X.,Z(1)))

Under these isomorphisms the canonical mapping Div 9/. (X.) — Pic’(X.) defined

above is identified with an appropriate extension class map for mized Hodge structures
on HY(X.,Z(1)).

Proof. — From the simplicial exponential sequence, since the complex Z(1). — Ox

is quasi-isomorphic to O% [—1] on (X.)an, we have that

JUX.) = kerct.

because

HY(X.,C(1)) .

HY(X.,0% ) = =6

Since we have a spectral sequence
P9 _ gl (X P+aq X
BV = HY (X, Z(1)=HY (X, Z(1)
such that EY* = 0 for ¢ = 0,1, we obtain ]HI%/. (X.,Z(1)) = 0, and moreover

H, (X.,Z(1)) = ker(HE, (X0, Z(1)) 25 HE, (X1, Z(1))

whence H3. (X.,Z(1)) = Divy, (X.). The following diagram (with exact bottom row)

lnz

Div) (X.) — Hy (X, 0% )
|

|
Pic’(X.) — Pic(X.) R H*(X.,Z(1))

Hy (X.,Z(1))
!

commutes, showing the claimed description of Div{ (X.) (note that Hj, (X., 0%)

is computed using the Zariski topology).
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To show that the cycle class coincides with the extension class for the mixed Hodge
structure on H*(X.,Z(1)), we consider the following commutative diagram of coho-
mology groups having exact rows and columns

0
!
Pic’(X.)
1
Hy, (7.7(9%_) — Hl(Y.,O*Y.)
! 1
HY(X.Z(1)) — HY(X.,Z2(1)) — Hy (X.,2(1) — H*X.,Z(1))
1 1 1
H'(X.,C(1))/F° — H'(X.,C(1))/F° — Hj (X.,C(1))/F°
1
JHX.)
1
0

The result then follows from a diagram chase (cf. the proof of Lemma 2.4.1 and [9,
Lemma 2.8]). O

THEOREM 4.3.2. — Let X be defined over C. Then
Ttodge(Pic* (X)) = H'(X, Z(1)).
Proof. — We have an exact sequence of mixed Hodge structures
0—H"(X.,z(1)) - H(X,Z(1)) - Div) (X.) = 0

where H'(X,Z(1)) = H'(X.,Z(1).) by universal cohomological descent: the claim
then follows from the Lemma 4.3.1. |

4.4. Etale realization of Pict

Let V. be any simplicial k-scheme. We first need to recall the existence of the
following long exact sequence

s = HY (V. Gr) — HE (V2 i) — HE (Ve, Gr) 5 HE(V2, Gn) — -+ -
and a “simplicial Hilbert’s Theorem 90”.
PROPOSITION 4.4.1. — There is an isomorphism
H,(V.,G,,) = Pic(V.)

Proof. — Consider the Leray spectral sequence along €. : (V.)¢t — (V.)zar. Since
(€.)4(G;,) = Gy, we then have a canonical functorial map

e HY(V., 0} ) — Hi (V. Gyp).
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Consider the canonical spectral sequence
EP? = HE (Vy, Gr)=HE (V. G )

A similar spectral sequence is clearly available for Zariski cohomology groups, and ¢*
is compatible with a morphism between the respective spectral sequences.

Since we have that H (Vp, Gm) = Hyz,, (Vp, Oy, ) for all p > 0 and ¢ = 0,1, via
ep : (Vp)et — (Vp)zar, we then get that ¥ is an isomorphism. O

We then can see that the cohomology group Hét(V. , lbm,) 1 isomorphic to the group
given by the isomorphism classes of pairs (£.,n.) where L. is a simplicial line bundle
and 7. is an isomorphism 1. : L™ = Oy . Moreover, we get the following.

PROPOSITION 4.4.2. — We have the “simplicial Kummer sequence”
0 — HO(V., 0% ) /m ~ HL(V. , ftm) L Pic(Ve)miors — 0
where:
— Hleft(‘/.,um) can be regarded as the group of isomorphism classes of triples
(L,c,n) given by a line bundle £ on Vg, an isomorphism « : (do)*(L) —
(d1)*(L) on Vi satisfying the cocycle condition, an isomorphism 1 : Oy, =, com

on Vo which is compatible with a®™ on V1, i.e., such that the composite of the
following isomorphisms

(dO)*(n) (do)*(£®m) Ol®m (dl)*(£®m)

(d1)*(n)~"

Ov, = (do)"(Ov,)

(dl)* (OVO) = OVI

is the identity on Oy, (here dy and dy from Vi to Vi are the face maps of the
simplicial scheme);

- HO(V.,O;) is gwen by those units ug € H°(Vy, O,) such that di(uo) = di (uo)
on Vi;

— the map u is defined by taking a unit uy to the triple (Oy,, 1,u61),'

— the map p is defined by taking a triple (L,c,n) to a the torsion pair (L,«) in
the simplicial Picard group.

Proof. — Taking into account Propositions 4.1.1 and 4.4.1, the proof is an easy mod-
ification of [33, IIL.4]. O

Now let X be a k-variety, where k is algebraically closed of characteristic 0. Fix
a smooth proper hypercovering X. and a smooth compactification X. with normal
crossing boundary Y.. For (D, L.) € Div) (X.) x Pic’(X.) as above, by definition

{(D,£.) | n. : L5 = Oy (~D)}

Tzym(Pic™ (X)) = {(mD, 0% (D))}
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We have a canonical map
P Ty (Pict (X)) — HE (X, pum)

defined as follows
,Om(D,E.)dzef (L.,m)x. -
Note that 7. is well-defined up to multiplication by an element of £*, which is m-
divisible, so that the isomorphism class of (L., 7.)|x, is well-defined.
We let
Hzt(X' ’ Z(l)) déf @HZt(X' ) ﬂm)
We can show the following.

THEOREM 4.4.3. — Let X be defined over k which is algebraically closed of charac-
teristic zero. Then
T(Pic* (X)) = HY (X, Z(1).

Proof. — 1If we let Pic™(X) be given by the 1-motive [Div ) (X.) — Pic’(X.)] for
a chosen hypercovering and compactification with normal crossing boundary, we get
the following commutative diagram (with short exact rows)

T(Pic®(X.)) — T(Pict(X)) —» T(DivY (X.)[1))

ﬁét/\l l Pés AJ' Pér ~
Hey (X, Z(1)) — HE(X,Z(1)) — ker(Hg, y, (X., Z(1)) — HE,(X., Z(1)))

where (i) the bottom row is just the exact sequence of cohomology with supports, (ii)
we have
Heo (X, Z(1)) = Hi (X, Z(1)),

since X. — X is a universal cohomological descent morphism, and (iii) the top exact
sequence is given by (3) in Chapter 1. We get the mapping pg above by taking
the inverse limit of p,,; pg is the induced map. From the above description the
mapping p(é)t is an isomorphism: in fact, it is easy to see that we have an isomorphism
f(DiV v, (X.)) = Hzt’y. (X., 2(1)) such that the following diagram

T(Divy,(X.)) = My (X.,Z(1))
1 l

—
—

—=  cl. o, — =
Pic(X.) — Hz (X.,Z(1))

commutes (here T'(Divy. (X.)) and Pic(X.) are the profinite completions of the

lattice Divy, (X.) and Pic(X.), respectively).

Granting this, we are left to show that p,, is an isomorphism. The latter fol-
lows from the fact that the Néron-Severi group of such a smooth proper simpli-
cial k-scheme X. (i.e., the group of connected components of Pic(X.)) is finitely
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generated, whence T(Pic’(X.)) = lim Pic(X.)m_tors and, by the simplicial vari-
ants of Hilbert’s Theorem 90 and Kummer theory (see (4.4.1) and (4.4.2)), we have
Pic(X.)m—tors = H} (X, ). O

REMARK 4.4.4. — From Theorem 4.4.3 and Proposition 1.3.1, we can see that the
definition of Pic™(X) is independent of choices of hypercoverings and compactifica-
tions. In fact, given two such smooth proper hypercoverings of X which admit smooth
compactifications with normal crossing boundaries, we can always find a third one
mapping to both, see [25, Exposé V bis, 5.1.7 and 5.2.4]. Now let X! be a smooth
proper hypercovering of X with smooth compactification Y/., and let X! be another

one, with smooth compactification X. mapping to X. compatibly with the normal
crossing boundaries. Then, we get a map of 1-motives

1!

Div ., (X.) — Pic®(X")] — [Div . (X") — Pic”(X")]
by pulling back cycles and simplicial line bundles. By the Theorem 4.4.3
T(Div Y, (X.) - Pic’(X"))) 2 T([Div Y. (X") — Pic’(X.))).

By Proposition 1.3.1 this isomorphism lifts to an isomorphism of 1-motives.
However, as for the case of Pic™, one would like to see directly, by a geometric
argument, that the above map of 1-motives is an isomorphism.

4.5. De Rham realization of Pic*

Let k be a field of characteristic 0. For any simplicial k-scheme X. we will denote by
Pic”(X .) the group of isomorphism classes of pairs (L., V.), where L. is a simplicial
line bundle and V. is a simplicial integrable connection

V.: L. — L. ®@X‘ Q,lX

We can consider the simplicial §j-Picard functor on the category of k-schemes, which
we denote by Pic_hx ko obtained by sheafifying the functor

T — Pic/(X. x; T)

with respect to the fpge-topology.

For a given pair (£.,V.) we clearly get a pair (£,V) on X( and an isomorphism
a: di(L,V) = di(L,V), i.e.,, a is an isomorphism (dp)*(£) =, (dy)*(£) which is
compatible with the connections, and, moreover, « satisfies the cocycle condition (cf.
Proposition 4.1.1). In fact, we have the following description.

PROPOSITION 4.5.1. — Let X. be any smooth proper simplicial k-scheme. Elements
of Pic*(X.) are in natural bijection with isomorphism classes of triples (£,V,a)
consisting of an invertible sheaf L on Xy, with an integrable connection V, and an
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isomorphism o : di(L, V) =, di (L, V) satisfying the cocycle condition. There is a
functorial isomorphism

1
Pic’(X.) = H'(X., 0% dlog, 0k )
Proof. — Tt follows from the Proposition 4.1.1 and a simplicial version of [32, Sec-
tions 3-4] according to the general hint given by Deligne in [15, 10.3.10]. O

We have the following exact sequence
0 — H°(X.,0% ) — Pic*(X.) — Pic(X.) — H'(X.,Q% )
which is obtained from the exact sequence of complexes of simplicial sheaves
dl
0— Qk [-1] = [0, —2. 0k ] - 0% —0

using the Proposition 4.5.1.
Since X. is smooth and proper over k, the semi-abelian variety PicO(X .) is mapped
to zero in H'(X., QY ); we thus get an extension

(35) 0 — H(X.,Q% ) — Pic®(X.)° — Pic’(X.) — 0

by pulling back along the inclusion Pic’ < Pic. The group extension (35) is the
group of k-points of the universal G,-extension of the semi-abelian scheme Picg(. k>
in fact we have the following.

LEMMA 4.5.2. — Let X. be a smooth proper simplicial k-scheme, where k is alge-
braically closed of characteristic 0. We have that

(Pick, /)" = (Pick )",
and we have a canonical isomorphism
Lie(Pic_hX./k)O ~H'(X.,0x, — Q%)

Proof. — The universal G,-extension of any semi-abelian scheme is obtained as a
pull-back from the universal extension of its abelian quotient. The abelian quotient
of Picg(. /i 18

Ax. = kerO(Picg(O/,C — Picgﬁ/k).

By [32, Sections 3-4] it is easy to see that the universal G,-extension of Ax_ is given
by the group scheme (cf. Chapter 1)

ker’((Pick, )" — (Pick, ,)")
and we then have that

Ext(Ax,,Gq)" = ker(H°(Xo,QY,) — H°(X1,0k,))-
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Everything then follows from the following diagram with exact rows and columns,

0 0
7 7

0— T(X.) - Pic’(X.) — ker” (Pic%, /. — Pick, x) —0
| 1 1

0— T(X.) —» Pic*(X.)° — ker’((Pick, ,)° — (Pick, ,)°) —0
7 7

H(X., 0% ) = ker(H°(X,,Q%,) — H°(X1,9%,))

7 7
0 0

where T'(X.) is the toric part of Picg(. /i, and the middle row and column are exact
by Proposition 4.5.1 and (35). Therefore, by taking associated sheaves, we see that
(Picg( / k)o is representable by the pull-back of the universal extension of Ax_. Finally,

since the Lie algebra of Picg(./k is HY(X.,Ox), from (35), we get the last claim by
taking Lie algebras (cf. [32]). O

More generally, let X. be a smooth simplicial k-variety, where k is a field of char-
acteristic 0. Let X. be a smooth compactification with normal crossing boundary Y..
We then define Pic®™'°8(X.) to be the group of isomorphism classes of pairs
(ﬁ.,Vl,Og), where L. is a simplicial line bundle on X and V8 is a sitmplicial in-

tegrable connection with log poles along Y., i.e., V'8

homomorphism

is a k-linear simplicial sheaf

VL. — L. R0y Ok (logY.)

satisfying the Leibniz product rule (c¢f. [20, Section 2], [32, Section 3|, [14]). We
clearly have a natural injective homomorphism

Pic’(X.) — Pic"5(X.)
and we have the following cohomological description.

PRrROPOSITION 4.5.3. — Let X. be any smooth simplicial k-variety. Elements of the
group Pich_log(X.) are in bijection with isomorphism classes of triples (L, V'8, a)
consisting of an invertible sheaf L on X, with an integrable connection with log poles

viee. £ ®0x, Qlyo (log Yp)

o~

and an isomorphism « : dj(L,V'°8) = di(L, V'°8), satisfying the cocycle condition.
There is a functorial isomorphism

_ 1
Pic'°8(X.) 2 H'(X., 0% dlog, QL (logV.))

Proof. — A variant of the proof of Proposition 4.5.1 (¢f. Lemma 2.6.2). O
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Now let X be a k-variety, where k is a field of characteristic 0. Let X. — X be a
smooth proper hypercovering, and X. a smooth proper compactification with normal
crossing boundary Y.. We recall (2.6.3) that by the De Rham cohomology of X we
mean the graded, filtered k-vector space

Hi (X) B (K., 2 (log Y.)).
THEOREM 4.5.4. — Let X be a k-variety, where k is algebraically closed of charac-
teristic 0. Then
Tor(Pic™ (X)) & Hpp(X)(1).
Proof. — Let Pic™(X) be given by the l-motive [Div ) (X.) — Pic’(X.)] for a

chosen hypercovering and compactification with normal crossing boundary Y.. We
have the following exact sequence of complexes

0— QlY — QlY (logY.) - Q. —0
T dlog T dlog T
0— O*Y, = O*Y, — 0

where Q. is just the quotient QlY /k(logY.) / QlY Ik We therefore have the following

push-out diagram

0— H(EX.0F) - Pic’(X.)* — Pic’(X.) -0

! ! |
0— H(X.,0L (logY.)) — Pic* "*¥(X.)° — Pic”(X.) -0

where the top row is (35) and the bottom row is obtained from the dlog map as well.
From the latter we are then left to show that

(36) Ext(Pict,G,)Y = H)(X., Q% (logY.)).

In fact, granting (36), we have that, by the push-out diagram and the Lemma 4.5.2,
the universal G,-extension of Pict(X) is given by

o
Pic (X)" 2 [Div (X.) = Pic? 15(X.)"]
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where the lifting u® above of u : Div) (X.) — Pic’(X.) can be described as in

Lemma 2.6.2 via the Proposition 4.5.3. Therefore
Tor(PicT (X)) ¥ Lie Picf '8 (X.)°
= Lie(Hl(Y.,O’%. dlog, QlY (logY.))
~H'(X.,05 — Q% (logY.))
~HY(X., Qy (logY.))
= Hp (X)

Moreover, this isomorphism is clearly compatible with the Hodge filtrations, provided
we shift the index of the filtration on the right by 1.

In order to show (36) we consider the following commutative diagram with exact
columns

0 0
! !
Ext(Pic®(X.),G,)" = H(X., QL )
! !
Ext(Pict(X),G,)Y — HO(Y.,Q%‘/k(log Y.))
l l res
Hom(Div . (X.),Ga)" = ker(H'(X.,Q.) — H'(X.,QL )
! !
0 0

where the horizontal maps are the canonical maps induced by universality; from the
previous Lemma 4.5.2 we know that the horizontal map on top is an isomorphism, so
that we are left to show that the horizontal map at the bottom is an isomorphism.

If Y. is smooth this last claim is clear since we have a simplicial surjective Poincaré
residue map

res. : QlY (logY.) — Oy,

and therefore H(X., Q.) = H%(Y., Oy, ). In general, since the subschemes Y; C X;

are normal crossing divisors, for each ¢ > 0, we have exact sequences (cf. [20, 2.3])
0— Q% — Q% (logi) — ©;i0y;, — 0

where the index ji (i fixed) runs over the smooth components of Y;, i.e., ¥; = U;; Y.

These sequences are compatible via the face and degeneracy maps of the simplicial

scheme X.. Because of this construction, and the definition of global sections of a

SOCIETE MATHEMATIQUE DE FRANCE 2001



66 CHAPTER 4. COHOMOLOGICAL PICARD 1-MOTIVE: Pict

simplicial sheaf, we clearly get a canonical identification
H°(X.,Q.) = ker(@;0H" (Y0, Oy,,) — ®;1H(Y;1,0y,,)) = Divy, (X.) ® k.
We finally then get Div ) (X.)®k = ker(Divy, (X.)®k — H'(X., QL ) as claimed.
([l

REMARK 4.5.5. — From Theorem 4.5.4, we obtain an “algebraic proof” (i.e., inde-
pendent of base change to C and comparison with the analytic topology) that the
filtered vector space (Hjg(X), F) is independent of the choices of X. and its com-
pactification X ., since the 1-motive Pict is independent of these choices, as we saw
earlier using étale realizations, as a consequence of Theorem 4.4.3.

REMARK 4.5.6. — For a given singular variety X we can consider a singular com-
pactification X in such a way that X ., in our above considerations, is a hypercovering
of X. By the previous argument, in the proof of the Theorem 4.5.4, we constructed
the following extension
0— TDR(PiCO(Y.)) — TDR(PiC+(X)) — TDR(DiV OY. (Y.)[l]) — 0
1 1 1

0— Hh(X)(1) — Hhp(xX)1) % Div) (X)ek —0

The resulting bottom row can be regarded as obtained from an exact sequence of
cohomology with supports as well as a Poincaré “residue” map compatible with the
Hodge filtration.
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CHAPTER 5

HOMOLOGICAL ALBANESE 1-MOTIVE: Alb™

We keep the notations and hypotheses from the previous chapter.

5.1. Definition of Alb™

In order to define our homological Albanese Alb™ (X)) we just take the Cartier dual
of Pic™(X).

DEFINITION 5.1.1. — If X is a variety over an algebraically closed field k& of charac-
teristic zero, define the following 1-motive

Alb™(X) = Pic™(X)¥ = [Div) (X.) — Pic’(X.)]",

where X. — X is a smooth proper hypercovering, and X . a smooth compactification
of X. with normal crossing boundary Y.. We call Alb™ (X)) the homological Albanese
1-motive of X.

LEMMA 5.1.2. — If X is proper over k = k of characteristic 0, and 7 : X. — X is
any proper hypercovering, then the natural homomorphism between connected algebraic
k-groups

7 : Pic’ (X )—» Pic’(X.)
s a surjection with torsion free kernel.

Proof. — In fact, by Kummer theory and cohomological descent we get the following
commutative square of isomorphisms

HE (X tm) = Pic(X. )n - tors
~1 . 1
Hé}t(Xv fim) — Pic(X)m—tors
Therefore, since the Néron-Severi groups are finitely generated, the Tate module of
Pic’(X) is isomorphic to T(Pic’(X.)). To conclude we remark that Pic’(X.) is the
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group of k-points of a semi-abelian variety, in which torsion points are Zariski dense
(cf. Proposition 1.3.1). O

REMARK 5.1.3. — As a consequence, we see that for any smooth proper hypercov-
ering X. — X of a proper k-variety X, the simplicial Picard variety PicO(X .) is the
semi-abelian quotient of the connected commutative algebraic group PicO(X ).

For a proper smooth hypercovering 7 : X. — X of a proper k-scheme X, where
k =k, we let Z* denote the free abelian group on connected components of X;. Let

aet ker(Z*1 — 27°)
im(z** — zX)
and consider the following abelian variety

(kerO(PiCO(XO) M PicO(Xl)))v = (do _Adllk;i)iol)b(Xl)

Here (do — dy)« = (do)« — (d1)« : Alb(X1) — Alb(Xo).

Let (do)« — (d1)« : Z0(X1) — Z0(Xo) denote as well the induced map between
zero-cycles, and let ax, : Zo(Xo)o — Alb(Xy) be the Albanese map, defined on the
subgroup Zy(Xo)o C Zp(Xo) of zero-cycles on Xy which have degree zero on each
component of Xj.

The Albanese variety of the smooth, proper k-variety Xy is here defined to be
the product of the Albanese varieties of its connected components (note that these
connected components are irreducible, smooth, proper k-varieties, which need not
have the same dimension).

Lx. (mod torsion)

PROPOSITION 5.1.4. — Let X be proper over k = k. Then Alb™ (X) coincides with

the 1-motive
Alb(Xy)

(do — d1)« Alb(X7)
where the map uy s defined as follows. For each connected component X¢ of X3

choose a closed point x. € X¢. Then, for > n.X. € ker(ZX1 — ZXO), we have

ch((do)*(ﬂﬁc) - (dl)*(xc)) € ZO(XO)O’

uyx :Lx —

and we define

Uy, (chXc (mod imZX2)>
= Xy (ch(dg)*(xc) - (dl)*(acc)> (mod (do — dy)s AIb(X1)).

If X is also normal then Lx =0 and
Alb™(X) = Pic’(X)V

is an abelian variety.
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Proof. — To check that uy is well defined is left as an exercise. We recall that
Pic’(X.) is an extension of the abelian variety ker’(Pic’(Xo) — Pic’(X1)) by the
torus T'(X.) (see (31) in Chapter 4 for a description of the torus). Now, Lx_ is the
character group of the torus T'(X.), Alb(Xy)/im Alb(X7) is the dual abelian variety;
the claimed map between them is obtained from Cartier duality — as in the proof of the
corresponding assertion of Proposition 3.1.4, using standard functoriality properties
of Albanese and Picard varieties, one can reduce to the case of the standard smooth
proper hypercovering of an irreducible projective curve with 1 node; now we further
reduce to determining the Cartier dual of Pic® of this singular curve, which is treated
in [53].
If X is normal, then 7, (0% ) = O%, and so

7 : Pic(X) — Pic(X.)
is injective, by the Leray spectral sequence for the sheaf O% along ; therefore, from
Lemma 5.1.2 we get
7 : Pic’(X) = Pic’(X.).
Since X is normal, Pic’(X) is an abelian variety [13], therefore T/(X.) = 0. O
REMARK 5.1.5. — If X is smooth, possibly open, then X., X., Y. can be taken to
be the constant simplicial schemes associated to X, X and Y, respectively, where X

is a smooth compactification of X with normal crossing boundary Y. In this case
Alb™ (X)) is a semi-abelian variety, which can be represented by an extension

1—-T(Y)— Alb™(X) — Alb(X) — 0

where, by definition, T(Y) is the k-torus with character group Div {(X); see Propo-
sition 5.2.1 below.

REMARK 5.1.6. — As a consequence of Lemma 5.1.2 we have that
HY(X,0x)—H"(X,m.(0x,))
is always a surjection, and the following edge homomorphism

Zero
—

H'(X.,0x) H°(X,R'm.(0x.))

is the zero map. In fact, since H'(X,Ox) = LiePic’(X) and H'(X.,0x.) =
Lie Pic’(X.), we see that H'(X, Ox) always surjects onto H'(X., Ox_); moreover,

HY(X,0x)=H'(X.,0x.)
if X is normal, and we then have that

LieAlb™ (X) = H'(X,0x)".
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5.2. Albanese mappings to Alb™

Let X,c; be the smooth locus of an equidimensional k-variety X, where k is alge-
braically closed of characteristic 0. We then have that X,es = X-5=X-(Yu¥)
for a resolution of singularities X and a good normal crossing compactification X,
with boundary divisor Y; also Y U S is a normal crossing divisor in X.

We then obtain a commutative square of 1-motives

[0 — Pic®(X,Y)] —  [Div)(X) — Pic®(X)]
l l
[Divg, J(X,Y) = Pic”(X,Y)] — [Divg (X) — Pic’(X)]

which we may rewrite as
Pic™(X) — Pict(X)
| 1
Pic™ (X) — PicT (Xyeg)-

By taking Cartier duals, we obtain the following commutative square.
Alb™(X) — AbT(X)

T T
Alb™ (Xpeg) — AlbT(X).

In particular we get a canonical mapping
(37) 77 Alb™ (Xpeg) — AlbT(X).

Let ay : X — Alb(X) be the Albanese mapping, obtained by choosing a base point
x. in each component X°¢ of X,., (note that the components of X,z and X are
in bijection). Since Alb™(Xyeg) is a torus bundle on Alb(X) we can consider the
following pull-back (c¢f. Chapter 3)

Alb™ (X,eg) — Alb(X)
a 7 a
ABT(X) - X

One can see that the torus bundle Ale(X ) — X is trivial when restricted to the
open subset X,og C X (in fact, the same argument in Chapter 3 applies here, cf. [48,
§1]). Hence we get a section 0™°8 : X,oq — Alb” (X). By composing 0" and @ we
get the Albanese mapping

(38) ay @ Xreg — Alb™ (Xreg)-
PROPOSITION 5.2.1. — For any equidimensional variety X over k = k, the mor-
phism

ax : Xreg — Alb™ (Xyeg)

X
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is universal among (base point preserving) morphisms to semi-abelian varieties, in
the sense of Serre [47]. If X is a normal proper k-variety, then Alb™ (X,eq) is the
Albanese variety of any resolution of singularities of X .

Proof. — Tt follows from the explicit construction by Serre in [48] that Alb™ (X eg)
is equal to its “Albanese variety” in the sense of [47], and the morphism a, is then
universal by [48, Théoréme 1], i.e., any torus bundle on Alb(X) which is trivial on
Xreg is a push-out of Alb™ (X,eg). If moreover X is normal and proper, and XX

is a projective resolution of singularities, then Div%(X ) = 0, as seen in the proof of
Proposition 3.1.5; therefore the character group of the torus vanishes. O
If X is proper then Alb™(X) is semi-abelian and the Albanese map
af : Xreg — AbT(X)

defined in (29) can be obtained by composing ay and 7, defined in (37). Since
Alb™ (X,eg) is universal, 77 can be also be regarded as being induced by the universal
property (note that 7 is affine and surjective).

PROPOSITION 5.2.2. — Let X be proper over k. Then there is an extension
0— T(S) — Alb™ (Xyeg) — AIbT(X) — 0
with kernel the torus T(S) whose character group is the quotient lattice
- 0/v
Dlvg(X)
Dive (X)
S/s

This is a sublattice of the lattice of divisors on X which are supported on the singular
locus S of X: in particular, T(S) =0 if X is non-singular in codimension one.

Proof. — Since X = X, the claimed torus bundle is obtained as the Cartier dual of
the following injective map of 1-motives

DivY (X) — Pic’(X)] — [Divd(X) — Pic(X)]

/5

Since Div g/s()?) = ker(Div g()?) — Div g(X)) the description of T'(S) is clear. O

5.3. Hodge, étale and De Rham realizations of Alb™

An immediate consequence of the Theorem 4.3.2 is the following.

COROLLARY 5.3.1. — Let X be defined over C. Then
Thodge (Alb™ (X)) = H1(X,Z)/(torsion)
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Proof. — Tt follows from Cartier duality and the isomorphism of mixed Hodge struc-
tures

Hom(H'(X,7Z(1)),Z(1)) = H,(X,Z)/(torsion)
because of Theorem 4.3.2. [l

As a consequence of Theorems 4.4.3 and 4.5.4 we have:

COROLLARY 5.3.2. — Let X be defined over an algebraically closed field of charac-
teristic zero. Then
T(AIb™ (X)) = H(X,Z)/(torsion)
and
Tpr(Alb™ (X)) = HPH(X).

We then have the following corollary deduced from the properties of Alb~ and Alb™
obtained so far (see Proposition 5.2.2 and Lemma 5.1.2). Of course this may also be
proved directly by topological arguments (and is in fact well known to experts).

COROLLARY 5.3.3. — Let X be a normal proper k-variety. Then
H{Y(Xyeg, Z)/ (torsion) = HY(X, Z)/(torsion)

and HE(X,Z)/(torsion) is a quotient of HEY(X, 7).
If k = C then

H)(Xyog, Z)/ (torsion) = Hy (X, Z)/(torsion)

are isomorphic Hodge structures, pure of weight —1, and H1(X,Z)/(torsion) is a
quotient Hodge structure of Hy(X,Z).
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CHAPTER 6

MOTIVIC ABEL-JACOBI AND GYSIN MAPS

We now obtain some further properties of our Albanese and Picard 1-motives.
We will give algebro-geometric (= “motivic”) constructions of some cohomological
operations. We will work throughout over an algebraically closed base field k of
characteristic 0.

6.1. Semi-normalization

Deligne’s original construction of the motivic cohomology of a curve (cf. Proposi-
tion 3.1.2) shows that it depends only on the semi-normalization of the curve, and not
on the curve itself. For example, the motivic cohomology of the cuspidal projective
plane cubic is zero. This is due to the fact that, e.g., over C, the singular coho-
mology groups, compatibily with their mixed Hodge structures, are invariant under
homeomorphisms.

In general, we easily get the following result in arbitrary dimension.

PROPOSITION 6.1.1. — Let f : X — X' be a radicial k-morphism such that f(X)
X', ie., fk : X(K) — X'(K) is bijective on K-points for any field extension k
K. Then there are canonical isomorphisms Pic™ (X) = Pic™ (X’) and Pict(X)
Pict(X"), thus, dually, Alb™(X) = Alb™(X') and Alb™ (X) = Alb~ (X").

RN 1l

Proof. — In fact this is a direct consequence of our definitions. For example, we can
take a resolution of singularities X of X which is a resolution of X’ as well. Thus the
1-motives Pic™ (X) and Pic™ (X’) are clearly isomorphic by construction. Similarly,
if m: X. — X is a smooth proper hypercovering of X, there is an induced one
7' X. — X', yielding the identification Pic™(X) = Pic*(X’). O

In particular, all four of our 1-motives associated to a k-variety X, in fact depend
only on the semi-normalization of X.
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6.2. Functoriality

Contravariant (resp. covariant) functoriality of Pic™ (resp. Alb~) is true, essen-
tially by construction, and is valid for every morphism. For Pic™ (resp. A1b+) we can
expect covariance (resp. contravariance) only for morphisms between varieties of the
same dimension, yielding the zero map if the morphism does not have dense image in
some irreducible component.

PROPOSITION 6.2.1. — Let f : X — X' be any morphism between k-varieties such
that dim X' = dim X. We then have a push-forward f. : Pic” (X) — Pic™ (X’) and,
dually, a pull-back f* : AlbT(X') — AlbT(X).

Proof. — We will assume, for simplicity of exposition, that X and X’ are irreducible;
we leave the necessary modifications (mainly notational) for the general case to the
reader.

If the morphism f is not dominant we define f* to be the zero homomorphism. If
f is dominant, we choose resolutions X — X, X' — X’ and good compactlﬁcatlons
X < X and X' < X with normal crossing boundaries Y ¢ X, Y’ C X such that
there is a morphism f : X — X compatible with f, and hence satisfying f ( YHhcv.

Let D € Divg, 5(X.,Y). The push-forward f.(D), as a Weil divisor, clearly belongs
to Divg o (X/7 Y”"). We therefore just need to show that there is an induced push-
forward of relative line bundles which is compatible with the push-forward of Weil
divisors. This is the content of the following lemma. O

LEMMA 6.2.2. — Let f : X — X’ be a proper surjective morphism between n-

dimensional integral smooth proper varieties over an algebraically closed field k of

characteristic 0. Let 0X C X and 0X' C X' be reduced, normal crossing divisors

such that f~1(0X")eq is a normal crossing divisor in X which is contained in 0X.
Then there is a homomorphism of algebraic groups

fx : Pic?(X,0X) — Pic’(X7,0X")
such that

() f. is compatible with the natural homomorphism f, : Pic’(X) — Pic®(X") in-
duced by the cycle theoretic direct image (i.e., push-forward) on divisors

(ii) the assignment f +— fi is compatible with composition of appropriate proper
maps

(iit) if D is any divisor on X with support disjoint from 0X, and [D] € Pic®(X,0X)
is the class of the pair (Ox(D),sp) (where sp is the tautological meromorphic
section of Ox(D) with divisor D), then f.[D] = [f.D] € Pic(X’,0X"), where
f«D is the cycle theoretic direct image (i.e., push-forward) of D under the proper
map f, which is a divisor on X' whose support is disjoint from 0X'.
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Proof. — By considering the obvious map Pic®(X,0X) — Pic’(X, f~*(0X")), we
reduce immediately to the case when 0X = f~1(0X’). Now we can construct a Stein

factorization diagram
7—>f X'
N /o
Y

where Y is a normal, proper variety of dimension n, g : Y — X’ is a finite, surjective
morphism, and h is birational and proper with connected fibres. Further, h,.O+ = Oy,
and f.Ox = g.0y.

Define 9Y = g7 (0X")1ed, s0 that 0X = h™1(0Y )eq. Let Z; denote the union of
the components of Yy;,, which are not contained in Y. Let Z’ = g(Z1), Z = g~ '(2"),
Z =h=Y(Z"). Then Z, Z and Z' are each closed subsets of X, Y and X’, respectively,
which have codimension > 2. Let U=Y —Z, V=X —Z, W = X’ — Z', so that we
have an induced commutative triangle of proper morphisms

f

V—W
N, /o
U

which is the Stein factorization of f : V' — W. Also define 9V = VNoX, 0U = YNIY,
oW =W Nnox'.
We now make the following claims.
(i) There is a homomorphism a : Pic®(X,0X) — Pic(U,0U), which fits into a
commutative triangle

Pic? (77 87) restriction Pic (V, 8V)

Pic(U, 0U)

(ii) There is a norm map g, : Pic(U,0U) — Pic(W,0W), such that (a) the compo-
sition g. o g* is multiplication by deg g, and (b) g.[D] = [g.D] for the class of
any Weil (= Cartier) divisor D on U with support disjoint from OU.

(iii) The natural restriction map p : Pic(X’,0X’) — Pic(W,dW) is an isomorphism.

Granting these claims, the desired map f, is the composition

-1
Pic’(X, 9X) % Pic(U, dU) 2= Pic(W, 0W) ), Pic(X7, 9X7).

This obviously factors through the subgroup Pic’(X’,0X7), which is the maximal
divisible subgroup of Pic(X’,0X’).
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We now proceed to prove the claims, in the order stated. First, we consider the
map h* : Pic(U, 0U) — Pic(V,0V). We have that
Pic(U,0U) = H' (U, Oy o))
Pic(V,0V) = H'(V, Oy ov))»

where for a scheme A and a closed subscheme B, we let O7, p, = ker(0f — O%).

By the Leray spectral sequence for h, we obtain an exact sequence
!
0= H' (U, h Oy )~ Pic(V,0V) — HU, Rh. Oy 1)),

and h* : Pic(U,0U) — Pic(V,9V) is the composition of h’ with the natural map

Pic(U,0U) = H' (U, Oy grry) — H' (U, hOfy 5yy)-
In fact

Ow.avy = 1:Ofv.av),
since Of; = h. Oy, and the natural map O};; — h.Oj},, is injective. This means we
have an exact sequence
0 — Pic(U,0U) O Pic(V,0V) — H(U, R'h.Ofy 5v))-

So to construct the map o and the commutative triangle in Claim (i), it suffices to
prove that the natural map

Pic’(X,0X) — H°(U, R*h.Ofy o)
vanishes.
Thus it suffices to prove that for each closed point € U, the map to the stalk at x
Pic’(X,0X) — (th*OE‘VﬁV))z
vanishes. We may identify (R'h.Ofy 5y))e with H'(Va, Ofy,. 5y, ), where
Ve =V Xy Spec Oy v, OVy =9V xy Spec Oy ir.
So we want to show that the maps
Pic’(X,0X) — Pic(V,, dV,)

vanish, for all z € U.
If x ¢ OU, then 0V, = &. It suffices to see that the natural map

Pic’(X) — Pic(V;)
vanishes. Now z is a non-singular point of U. Thus we can find a non-singular
proper variety U, containing Useg as a dense open subset; we can find a non-singular

proper variety V containing h*I(Ureg) as a dense open set, and dominating X. Then
Pic’(X) = Pic’(V) = Pic’(U), and evidently the map

Pic’(T) — Pic(V,)

vanishes, as it factors through Pic(Spec O, ) = 0.
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So we may take x € OU. Now the fiber h~1(x) is contained in V. Let @m,U be
the completion of O, 7, and let

‘//; =V xy Spec @%Uv 8‘//; =0V XU Spec @%U'
Then we have a natural homomorphism
Pic(V,, dV,) — Pic(Vy, dVy).

Since O,y — (/Q\LU is faithfully flat, we see easily that this homomorphism is injective.
So we are reduced to proving that Pic’(X,0X) — Pic(V,,dV,) vanishes.

For each n > 1, let V.* C V,, be the closed subscheme defined by the n-th power of
the ideal sheaf of the reduced fiber h=1(z)seq. Let OV, denote the scheme theoretic
intersection OV N V™. Then V! = 9V} = h™ (2)seq, since h='(z) C V. There is a
natural homomorphism

Pic(V,,0V,) — lim Pic(V,", oV").
p—
We claim that it is an isomorphism. This follows, using the five lemma, from the
Grothendieck Existence Theorem [24], which gives isomorphisms
Pic(V,) 2 lim Pic(V,"), Pic(dV,) 2 lim Pic(aV,!"),
and analogous isomorphisms on unit groups.
Hence we are reduced to proving that for each n, the natural restriction maps

Pic’(X,0X) — Pic(V", V™)
are zero. This is clear for n = 1 since V! = 9V}, so that Pic(V},0V,}) = 0. For
n > 1, one has that
Pic(V*,0V)") = ker (Pic(V*, V") — Pic(V,},0V,))

is an affine algebraic group which is purely of additive type (i.e., is a vector group) [10,
Section 4]. Hence any homomorphism from a semi-abelian variety to Pic(V,?*, 0V.")
must vanish. This completes the proof of Claim (i).

Now we construct the norm map g, : Pic(U,0U) — Pic(W,0W) of Claim (ii).
First note that R! g*O{u ouy = 0, since the relative Picard group of a semi-local pair
vanishes. Hence we have an identification

Pic(U,0U) = H' (W, 9.0y o17))-

Since U, W are integral and normal, and g is finite surjective, the norm map on func-
tions induces a homomorphism Ny /w @ g.Op — Of,. We claim this induces a map
on subsheaves Ny : g*O’(“U ouy O{W aw)» OF equivalently, that the composition

\ . Nuyw .
9+Ov,ovy = 9Oy ——— O — Opw
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vanishes. Since Oy, injects into the direct sum of constant sheaves associated to its
stalks at the generic points of OW, it suffices to show that for any such generic point
n € OW, the map on stalks

(9:0(v,00))n = On.ow
vanishes. Now O, sw is the function field of an irreducible component of OW, and
is the residue field of the discrete valuation ring O, w. The stalk (¢.0f;), is the
unit group of the (semi-local) integral closure of O, w in the function field of U;
denote this semi-local ring by O, . The stalk (g*(’)ku,aU))77 is the subgroup of Oy ;;
of units congruent to 1 modulo the Jacobson radical (which is the ideal defining
OU = g7 1 (OW )yea in Oy ).

Now O,y is a free module over O, w of rank equal to the degree of g, and for
any a € O, y, the norm of a equals the determinant of the endomorphism of the
free O, w-module O,y given by multiplication by a. So it suffices to observe that if
a € O;‘,’U is congruent to 1 modulo the Jacobson radical, then this endomorphism is
of the form 1 + A, where the matrix entries of A lie in the maximal ideal of O, w;
hence the determinant of this matrix maps to 1 in the residue field of O, w. This
proves that

(Q*O?U,aU))n - O;,aw
vanishes.

Now we define the map

g« : Pic(U,0U) — Pic(W,0W)
to be the map
H'(W, 900y a1ry) = H' (W, Oy ow))
induced by the sheaf map

Nuyw : 9:Ow,ov) = O(w,ow)-
This evidently has the property that g, o g* is multiplication by deg g, since this is
true at the sheaf level. To see the compatibility with the push-forward for divisors D
with support | D | disjoint from OU, we compare the above map g, with the analogous
map
Hy(1ppy(Ws 9-Ou00)) = Hoy(o)(W: Ofw,ow)-
This completes the proof of Claim (ii).
To prove Claim (iii), it suffices to note that
Pic(X’) = Pic(W), Pic(0X’) < Pic(OW),
and that
H(X',0%;) = H*(W,05), H°(0X',0}+;) = H°(OW, Ohy,).
All of these follow from the choice of the open set W C X', such that X’ — W has
codimension > 2 in X'/, and 9X’ — OW has codimension > 2 in X’ (recall that X’
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is integral, non-singular and complete, and 9X” is a reduced, normal crossing divisor
in X/, and is hence a complete, equidimensional and Cohen-Macaulay scheme; thus
X' is locally connected in codimension 2). O

REMARK 6.2.3. — By making use of Propositions 6.2.1 and 1.3.1 we can see the
following faithfulness property of the Albanese and Picard 1-motives. If we let f :
X — X' be a generically finite morphism such that the push-forward f, : Pic™ (X) —
Pic™ (X’) induces an isomorphism on étale realizations then f, itself is an isomorphism
of 1-motives. A similar statement holds for f* : Alb™(X’) — Alb™(X).

6.3. Projective bundles and vector bundles

Let P = P(£) = ProjS(€) be the projective bundle associated to a locally free
sheaf & on X (here S(£) is the symmetric algebra of & over Ox).

PROPOSITION 6.3.1. — There are canonical isomorphisms Pic™ (X) = Pic™ (P
and Pict (X) = Pict(P), therefore, dually, Alb™(X) = Alb™(P) and Alb™ (X)

Alb—(P).

~—

1%

Proof. — Let P =P(E) — X be the pull-back along a chosen resolution of singular-
ities X — X. We can choose a “Nash compactification” X of the resolution X , G.e.,
we can also get a locally free sheaf £ on X which extends g (to construct a Nash
compactification, first choose an arbitrary one, and a coherent extension F of E ; then
resolve singularities of the Nash blow-up associated to F, on which the pull-back of
F, modulo torsion, is a locally free sheaf).

We can then assume that P extends to P = P(€) on X, and the boundary
P— P = Zis a normal crossing divisor in P which is a projective bundle over
the normal crossing boundary Y of X. Since the Picard varieties of X and P are also
isomorphic, the exact sequence (5) (c¢f. Proposition 2.1.2) yields an isomorphism of
semi-abelian varieties Pic’(X,Y) = Pic’(P, Z). Pull-back of divisors from X to P
yields a compatible isomorphism between lattices, giving rise to the claimed isomor-
phism for Pic™; that for Alb™ follows from Cartier duality.

For Pict and Alb™, we argue as follows. Consider a Nash compactification X*
of X, i.e., such that £ extends to a locally free sheaf £* on X*. We can find a
smooth proper hypercovering X. of X* such that the induced reduced hypercovering
of X* — X is a normal crossing divisor Y. in X.. Then X. = X. —Y. yields a smooth
proper hypercovering of X, and X . is a smooth compactification with normal crossing
boundary. Now P. = P xx X. is a smooth proper hypercovering of P, and we can
get an induced compactification of P.

F. = Y. X X P((S*)
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which has normal crossing boundary. We then see easily that Pic’(X.) = Pic’(P.)
because of the exact sequence (31) (¢f. Proposition 4.1.2); similarly the lattices are
isomorphic. O

Let V =V(€) = Spec S(€) be the geometric vector bundle associated to a locally
free sheaf £ on X. We have the following homotopy invariance property.

PROPOSITION 6.3.2. — There is a canonical isomorphism Pict(X) = Pict (V) and,
dually, there is an isomorphism Alb™ (X) = Alb™ (V).

Proof. — Consider a Nash compactification X* of X, so that £ extends to a locally
free sheaf £* on X*, and let V* = V(E*). We let X. be a smooth proper hypercovering
of X* such that the reduced inverse image of X* — X is a normal crossing divisor, and
let V* be the simplicial vector bundle on X . obtained by the pull-back of V* along
the hypercovering. We take

V.=X. xx- P& @ Ox-)

to be the compactification of V* with normal crossing boundary. We then have to
show that
Divy (X.) — Pic’(X.)] = [Divy (V.) — Pic’(V.)]

where N. is the normal crossing boundary of V., considered as a compactification of
V. =X. xx V. We have

Thus it is clear that the groups of divisors supported on N. and on Y., which are
algebraically equivalent to zero (i.e., have classes in Pico) on the respective proper
simplicial schemes, are naturally isomorphic; hence the lattices of our two 1-motives
are naturally isomorphic. From the short exact sequence

0 — Pic(X.) = Pic(V.) = Z—0

we conclude that Pic’(X.) = Pic’(V.), and we are done. O

6.4. Universality and zero-cycles

We let X be a projective n-dimensional k-variety. Let X (™ be the union of the
n-dimensional irreducible components of X, and let X,¢; denote the locus of smooth
points of X which lie in X (). We fix base points z, € X¢ in each component of Xieg,
and let af : Xyee — Alb'(X) be the corresponding Albanese map (see (29)). We
denote by

ak : 2" (Xreg)dego — AbT(X)
the induced map on the group Z™(Xieg)dego Of zero cycles on X,og which have degree
0 on each component of X,g; in fact a} is independent of the choices of base points

{z.} =x
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We recall that the “cohomological” Levine-Weibel Chow group of zero-cycles
CH"(X) is defined to be the quotient of the free abelian group on (closed) points
of Xieg, @.€., Z"(X1eg), modulo the subgroup of zero-cycles which are divisors of
appropriate rational functions on Cartier curves on X (cf. [30] and [8]).

Using a}, we get a “motivic” construction of an Abel-Jacobi map, generalizing the
Abel-Jacobi map for the Chow group of zero-cycles of degree 0 on projective non-
singular varieties, to the case of projective varieties with arbitrary singularities (this
is done in [2] and [8] over C). For a different algebraic construction, see [19].

THEOREM 6.4.1. — Let X be a projective k-variety. The Albanese map a} yields a
universal reqular homomorphism
(39) at : CH"(X)dego — AlbT(X)

from the “cohomological” Chow group of zero-cycles of degree zero to semi-abelian
k-varieties.

We will prove the above theorem in several steps. We first construct Gysin maps
for “good” curves, defined as follows. A curve C' C X is “good” if (i) C is reduced,
purely of dimension 1, and C'N S is reduced of dimension 0 (ii) C' is a local complete
intersection in X (iii) ¢ ¢ X™ (iv) if X,, — X is the normalization, and we set
Co = X, xx C, Sy = X,, xx (CNS), then Cy is also purely 1-dimensional, and
Sp C Cy consists of smooth points of Cy. Note that if C' is good, and X <" is the
union of the irreducible components of X of dimension < n, then CNX<" = &.

LEMMA 6.4.2. — Leti: C — X be a “good” curve in X. We then have Gysin maps
i* : Pic™ (X) — Pic™ (C)

and dually
il - AIbT(C) — AlbT(X).

Proof. — We may assume without loss of generality that X is equidimensional. Let
X, — X be the normalization, X — X, a resolution of singularities, and f : XX
the induced resolution of singularities. Since C' is “good”, the scheme C' X x Xisa
curve which is smooth at f~1(C' N S).

Denote by C’ the pull-back curve X xx C. Let f' : C' — C be the restriction
of f. Then C' = Cy = X, xx C, and the normalization C — C of the curve C
clearly factors through f’ : ¢’ — C. Let i : C — X be the induced map. Then
there is a natural pull-back map on Picard varieties i* : Pic’(X) — Pic®(C). Thus, in
order to get the claimed map ¢* on 1-motives, it is enough to show that any divisor
De Div%/s(f() pulls back to a divisor *(D) € Div %/C(é). Since €’ is smooth at
the finite set of points f~1(C'N.S) it will suffices to show that (i')*(D) € Div OC,/C(C’)

where i : €' < X is the canonical induced embedding.
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Now let D denote the support of D. Then Dis mapped to S, and therefore DxxC ,
which is the support of (i)*(D), is mapped to C N'S. We thus have the following
diagram of Fulton’s homological Chow groups

CH, (D) — CH, 1(S) — CH,_{(X)
! !
CHy(D xx C) — CHo(C'NS) — CHy(C)

by Fulton’s compatibility result [21, Theorem 6.1] between pull-back and Gysin maps
for locally complete intersection morphisms. Since the push-forward of D vanishes as
a cycle on S, the pull-back of D to D x x C pushes forward to zero in CHo(C' N S).
Since C'N S is a reduced 0-dimensional scheme, the latter push-forward to CHo(C'N.S)
is in fact zero as a cycleon CN S. |

We need the following compatibilities (¢f. Lemma 3.3-3.4 in [8]).

LEMMA 6.4.3. — (a) Let C be a “good” curve as in Lemma 6.4.2. There is a com-
mutative diagram
o
Zl(creg)dego —C> A1b+(C)
i | Lif

+
Z(Xpog)dego —2 Alb*(X).

(b) Let f : Y — X be a morphism of n-dimensional projective varieties, such that
J1Yiee t Yreg — Xieg 45 a finite, flat morphism. Let v € Z"(Xreg)dego be a zero-cycle
of degree zero with inverse image f*(y) € 2" (Yreg)dego- We then have

(40) ay (f*(7)) = f*(ax (7))-

(c) If f: Y — X is a blow up at a smooth point of X there is a commutative diagram

at
Zn(yreg)dego - Alb+(Y)
fel =1 fr
+

ZM(Xreg) X, AlbH(X)
The proof is left as an exercise for the reader.

LEMMA 6.4.4. — Let C be a reduced projective curve. The canonical section
Creg — AIDT(C)
yields a universal reqular homomorphism to semi-abelian k-varieties
at : CHY(C)gego — AIbT(C),

which is an isomorphism when C is semi-normal.
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Proof. — We recall that CH'(C') 2 Pic(C) and CH'(C)gego = Pic’(C). Let C’ be
the semi-normalization of C; the canonical identification Pic®(C”) 2 Alb*(C) (see
Proposition 3.1.2) together with the pull-back map Pic’(C) — Pic®(C”), which is just
the semi-abelian quotient of Pic?(C'), yields the result. O

Now, in order to show that the map at : 2"(Xyeq)dego — AlbT (X)) (n > 1) factors
through rational equivalence, by [8], it suffices to show that ker a™ contains all divisors
(f)c where: i) C is a “good” curve in X, and 4) f is a rational function on C' which
is a unit at points of C'N.S. Using our Lemma 6.4.3 we adapt the proof of Lemma 3.5
in [8] to our situation.

In order to show universality of a® : CH"(X)gego — AlbT (X), we first note that,
from the definitions, it is easy to see that a™ factors through the natural surjection
CH™(X)dego — CH™(X(™)geq0, since by definition Alb™(X) = AlbT(X™). So we
may assume X is equidimensional.

Now consider the canonical extension

0 — T(S) — Alb™ (Xyeg) — AIbT(X) — 0

(see Proposition 5.2.2). If 1 : CH"(X)gego — G is a regular homomorphism to a
semi-abelian variety GG, we need to find a unique factorisation

+
CH™(X)gego —— Alb*(X)
Lyt
G

through a™, for some homomorphism of algebraic groups ¢*. Since X;ee = [[, U
maps to CH" (X )dego by taking a point « € U® to the difference « — x. in the Chow
group, we get a map Yo : Xreg — G. By definition, since 9 is a regular homomorphism,
1 is a morphism, which sends each of the base points x. to 0.

By the universal property (Proposition 5.2.1) of Alb™ (Xyeg), %o factors through
Alb™ (Xyeg) yielding a map ¢~ : Alb™ (Xes) — G.

Using the above-mentioned canonical extension, we need to show that ¢~ (7'(S)) =
0 in order to obtain a well defined map ™ on the quotient semi-abelian variety
Alb™(X); the uniqueness of )~ will then imply that of ¢ .

We have the following fact.

LEMMA 6.4.5. — Let i : C — X be a complete intersection curve in X which is
“good” (i.e., satisfies the hypotheses of Lemma 6.4.2), such that C meels every irre-
ducible component of S, and moreover its singular locus F is exactly CNS. We have
a commutative diagram

0— T(S) — Alb™ (Xyeq) — AIbT(X) —0

1 T, i

0— T(F) — Alb™ (Creg) — ADT(C) =0

where T(F) — T(S) is a surjection of tori.
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Proof. — This follows easily from the dual statement, i.e., that the following diagram
0 — Pic™ (X) — PicT (Xyeg) — Div3(X) — 0
1 ! 1
0 — Pic™(C) — Pict(Creg) — DivE(C) — 0

commutes. Moreover, Div g(X) injects into Div p(C'). O

By successive hyperplane sections we can always find a general complete intersec-
tion curve C' as above; therefore by Lemma 6.4.4 and Lemma 6.4.5 we conclude as
follows. Since % : Creg = Xreg, We have that the composite of the following

CHY(C)aego = CH™(X)ego Y.oa

yields a unique
Y& ADT(C) - G
by the universal property for curves, i.e., Lemma 6.4.4; whence 1/ (T(F)) = 0, be-
cause the universal morphism Creg — Alb™ (Cleg) is compatible with wg.
Since T'(F') surjects onto T'(S), the commutativity of the diagram in Lemma 6.4.5
implies that ¢~ (T'(S)) = 0 as claimed. Thus Theorem 6.4.1 is proved.

6.5. Gysin maps

First consider the case of normal varieties.

PROPOSITION 6.5.1. — Let f : X' — X be any proper morphism of k-varieties,
where X is normal. We then have a functorial Gysin map

f* : Pic™ (X) — Pic™ (X')
and, dually,
fF AT (X') — AlbT(X)

Proof. — Let f: X — X be the induced map on smooth compactifications X' and
X, compatibly with the normal crossing boundaries Y’ and Y. We then have the
following diagram of 1-motives
Pic™ (X) Pic™ (X")
I 11,

Pic™ (X) — Pic (X)

yielding the claimed map, where since X is normal we have that Pic™ (X) =
Pic™ (X) = Pic’(X,Y), and we have a pull-back map on relative line bundles
7 Pic®(X,Y) — Pic® (X, Y").
O
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We recall that a morphism f : Z — X is a projective local complete intersection
morphism if can be factorized as f = 7 o4 for a regular embedding ¢ : Z — P and
a projection 7 : P — X from the projective bundle P = P(£) associated to a locally
free Ox-module £.

THEOREM 6.5.2. — Let f : Z — X be a projective local complete intersection mor-
phism. We then get a functorial Gysin map

f - AlbT(Z) — AlbT(X)

and, dually,
f* : Pic” (X) — Pic™ (2)

Proof. — Since Alb™(P) = Alb™(X) by Proposition 6.3.1 we are left to prove our
claim for regular imbeddings. We then have the following diagram

CH™(Z)dego —= AlbT(Z)

e |
b

CH™(P)dego —— AlbT(P)
where i, for cycles exists trivially, and therefore, by Theorem 6.4.1, the composite of
i« and af factors through Alb™(Z2).

In order to show that the construction is independent of the factorisation, we
observe that it is so on the étale realizations (where it coincides with the Gysin map
obtained via Grothendieck-Verdier duality), and therefore, by Proposition 1.3.1, we
are done. |

REMARK 6.5.3. — It would of course be of interest to have the same result for proper
local complete intersection morphisms as well, for which the above strategy of com-
parison with the Levine-Weibel Chow group of 0-cycles is not applicable.

It would also be desirable to have a “geometric” proof of independence of the
Gysin map from the choice of factorization, instead of the above one using the étale
realization.
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CHAPTER 7

RATIONALITY QUESTIONS

We now consider the above theory in the case when the ground field k is an arbitrary
field of characteristic 0. Let k denote a fixed algebraic closure of k; if A is any “object”
(1-motive, scheme, morphism, sheaf ...) over k, then A will denote its base change
to k.

7.1. 1l-motives over non-closed fields

Consider a 1-motive M = [L % G] over k. By definition, this is a homomorphism
between k-group schemes, where L is an étale group scheme, and G a semi-abelian
scheme, such that Ly is a lattice (free abelian group of finite rank). The lattice Ly
is naturally a module over the Galois group Gal(k/k), and the étale group scheme
L is determined by this Galois module. The Galois group operates semi-linearly on
Gy = G xy k as well, and the morphism u is determined uniquely by the morphism
ugp : Ly — Gy, which is Gal(k/k)-equivariant. Conversely, any Galois equivariant
morphism Ly — G5 is necessarily of the form uz.

Thus, to give a l-motive over k is to give (i) a semi-abelian k-scheme G (ii) a
lattice L which underlies a Gal(k/k)-module (iii) a 1-motive [L 2, Gy] over k, such
that @ is Gal(k/k)-equivariant, for the given module structure on L, and the natural
semi-linear action on Gt.

If £ — C, then for any 1-motive M over k, we obtain a corresponding 1-motive M¢
over C, which has a Hodge realization. For the étale realization, note that f(ME) is
a free Z-module of finite rank, which supports a natural action of Gal(k/k). We call
this Galois module the étale realization of M. Finally, if M? denotes the universal
Gg-extension of M in the category of complexes of k-group schemes, then Mg is the
universal G,-extension of Mz in the category of complexes of k-group schemes, and

Lie(M*); = Lie(M?)
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as filtered k-vector spaces. We define the De Rham realization Tpr (M) to be the
filtered k-vector space Lie(M?).

7.2. Albanese and Picard 1-motives in zero characteristic

The aim of this section is to show that if X is a k-variety, then there are naturally
defined 1-motives Pict(X), Pic™ (X), Alb™(X), Alb™(X) defined over k, pairwise
Cartier dual, with the following properties.

(i) If & is an extension field of k, the corresponding 1-motives for X}, are obtained
by base change from k to k' from the 1-motives for X.

(ii) The étale realizations coincide with appropriate the étale (co)homology groups
(modulo torsion) of Xi as Gal(k/k)-modules, where the Galois action on étale
(co)homology is the standard one.

(iii) The De Rham realizations coincide, as filtered k-vector spaces, with the appro-
priate De Rham (co)homology groups of X (defined as in (2.6.3) via suitable
hypercoverings and compactifications over k).

The proofs of the above assertions are fairly straightforward, and basically amount
to the observation that, when we carry out the constructions of 1-motives for X3
as in the earlier sections, and consider the computations of realizations, these are
sufficiently natural as to be automatically compatible with the action of Gal(k/k).
As such, our arguments will be a little sketchy.

First consider the construction of Pic™ (X). Let n = dim X = dim X3 If Xén) is
the union of the n-dimensional irreducible components of Xz, then it corresponds to
a unique closed k-subscheme X (™ of X, which is also purely of dimension n. So we
reduce to the case when X and X7 are equidimensional.

Now we may choose a resolution of singularities f : XX , and a compactification
X of X , both defined over k, such that YE is a good normal crossing compactification
of the resolution XE — Xi. Let Y C X be the normal crossing boundary divisor,
S C X the singular locus, S C X the Zariski closure of f=1(5).

Lemma 2.1.1 gives the representability of the relative Picard functor of the pair
(X,Y) by a k-group scheme (say, Pic(X,Y)), locally of finite type, whose k-points
coincide with the relative Picard group Pic(Xr, Yz).

The identity component Pic’(X;,Y;) is stable under the semi-linear Gal(k/k)-
action on Pic(X,Y), and so naturally determines a k-subgroup scheme Pic’(X,Y)

of Pic(X,Y). The lattice Div %7/57(75, Yz) is evidently stable under Gal(k/k), with
k k

respect to the natural Galois action on Weil divisors on YE
Finally, the canonical map

DiV %I/SF (YE7 YE) — PiCO (757 YE)
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is clearly Galois equivariant. Hence we obtain a well-defined 1-motive over k, which
we define to be Pic™ (X); by construction we then have Pic™ (X3) = Pic™ (X)y.
The isomorphism

T(Pic™(X3)) — HS'_ (X5, Z(1 — n))/(torsion)

is Gal(k/k)-equivariant, since it ultimately rests on the identification, via Kummer
theory, of étale p,,-coverings of certain open subschemes of Xz with isomorphism
classes of triples (£, ¢, ) (see Proposition 2.5.2) consisting of m-torsion line bundles
L with additional trivializing data; but this identification is easily seen to be Ga-
lois equivariant, where the Galois group operates on such triples in the obvious way
(corresponding to the natural Galois action on 7%, (Pic™ (X3))), while it acts on the
collection of étale coverings by twisting (changing the structure morphism to Spec k),
which corresponds to the natural action on étale (co)homology.
As for the De Rham realization, the same proof that

Tor(Pic™ (X7)) = Lie(Pic™ (X7)")

coincides, as a filtered k-vector space with HDE | (X7)(1 — n), yields a proof that
HPR (X)(1 —n) coincides with Lie(Pic™ (X)%) as a filtered k-vector space, provided
we have 1 fact: that for Z C X as in Lemma 2.6.2, the Lie algebra computation in
Lemma 2.6.2(d) is valid.

This is of course clear over k, from the formula in Lemma 2.6.2(a)

. b—log,~ ~ e * dlo,
Pict ™8 (X — Z7, Yy) 2 H (Xz, 0%y — O (log(Vg + ZE))(_YE)> :

The analogous formula may not be valid over k, since the expression on the right side
arises as the value (on k, or k) of an appropriate Picard functor, while the left side
refers to the sections of the associated fpgc sheaf (these do coincide over k, while this
is unclear over k).

But the tangent space at the identity to the Picard functor admits a k-linear
transformation to the corresponding tangent space of the representable functor given
by the associated fpgc-sheaf. This linear transformation, upon base change to k, is an
isomorphism of (filtered) vector spaces. Hence it is an isomorphism over k as well. So
the “presheaf tangent space” is the same as the true tangent space (this applies also
to the simplicial Picard functor).

The results for Alb™(X) now follow by Cartier duality from those for Pic™ (X).

Next, consider Pic™ (X). We can choose a smooth proper hypercovering X. — X
and a smooth compactification X. of X. with normal crossing boundary Y., all in
the category of simplicial k-schemes.

The fpgc-sheaf associated to the simplicial Picard functor of X . is representable by
a k-group scheme, locally of finite type, whose identity component is a semi-abelian
k-scheme Pic’(X.), such that

Pic’(X.)r = Pic’((X.)p).
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The lattice Div ?Y- )E((Y. )z) is a Galois module in an obvious way, such that the map
defining the 1-motive Pic* (X7) is Galois equivariant.

Thus there is a well-defined 1-motive Pic™ (X), defined over k, such that there is
an identification Pict (X )z = Pic™ (X7). The discussion of the properties of the étale
and De Rham realizations is very similar to that of Pic™ (X)), and is left to the reader.
The case of Alb™ (X)) follows by Cartier duality.

7.3. Albanese mappings

From the above constructions of 1-motives over k, it is also clear that various
functorial properties, and Albanese mappings, are all defined over k as well, possibly
after slight reformulation. For example, if f : X — X'’ is a morphism between n-
dimensional k-varieties, then there is a push-forward f, : Pic” (X) — Pic” (X’), and a
pull-back f* : Alb™(X’) — Alb™(X). For an arbitrary morphism of k-varieties, there
is a pull-back f* : Pic™ (X’) — Pict(X) and a push-forward Alb~ (X) — Alb™ (X').

For the Albanese mappings af : Xyeq — AlbT(X) and ag @ Xyeg — Alb™ (Xyeg),
these exist over k provided we can choose the base points z. € XN (Xieg) tO
be k-rational points, or more generally, if the O-cycle )" _x. is defined over k (i.e., is
Gal(k/k)-invariant). However, we cannot in general choose such base-points. Instead,
we can consider the map

(A7) J] Xe x Xe © (Xreg X Xreg)g — AIb™ (Xreg)g
(&
given by (A~ ) (z,y) = ax (x) — ay (y), which is in fact independent of x = {z.}., and
Gal(k/k)-equivariant, thus yielding a map of k-varieties
A7 U — Alb™ (Xiep),
where U C X,eg X Xyeg is the open k-subscheme consisting of the union of the con-
nected components intersecting the diagonal, and so Up =[], X. x X..

The morphism A~ is universal among those k-morphisms from U to semi-abelian
k-varieties such that the natural involution on U intertwines with multiplication by
—1 on the semi-abelian variety.

In a similar way, we can define a Galois equivariant k-morphism

(A)g: ] Xe x Xe © (Xreg X Xreg)p — AbT(X)g,

and hence a k-morphism
At U — AIbT(X).
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APPENDIX

PICARD FUNCTORS

Let Schy, be the category of schemes over a field k. We will consider contravariant
functors from Schy to Ab, the category of abelian groups; we will refer to such a
functor as a presheaf on Schy. We are interested in representing such functors, when
possible, by k-group schemes of finite type whose identity component is a semi-abelian
k-scheme, i.e., an extension of an abelian scheme by a k-torus.

A.1. Axioms

We recall that according to Grothendieck [23] and Murre [36] a presheaf F is
representable by a k-group scheme, locally of finite type, if and only if a certain list of
7 axioms is satisfied. This implies the following necessary and sufficient conditions for
representability by a group scheme whose identity component is semi-abelian, where
P7’ is a modification of [36, P7].

P1 : F is strictly pro-representable and the local components at rational points
are noetherian;

P2:if A= mn A/t s a local k-algebra which is complete and separated
w.r.t. the p-adique topology, then F/(A) = lim F(A/p");

P3:if A=lim A, as k-algebras, then FI(A) =lim F(Aq);

P4-P5 : F is a fpgc-sheaf;

P6 : if T € Schy and € is a T-point of F, then N (&)= {f : T — T/F(f)(€) = 0}
yields a closed subscheme of T7;

P7 : if £ is a V-point of F, for V = C — S a Zariski open of a projective non-
singular k-curve C, then the induced map of k-points has the module m = S,
in the sense of Serre [49].

Here, in P7’, the condition on m is that if S = {Py,..., P.}, then the non-negative
integers nq,...,n, involved in the definition of a modulus (see [49, page 10]) are all
taken to be 1.

Let F', F’ and F" be presheaves on Schy, forming an extension

0—F —-F—=F'—=0,
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i.e., such that 0 — F'(T) — F(T) — F"(T) — 0 is an exact sequence of abelian
groups for any T € Schy, which is natural in T. Denote by

0—>ﬁ/—>ﬁ—>ﬁ”—>0

the exact sequence of associated sheaves for the fpgc-topology (i.e., the faithfully flat
and quasi-compact topology). If we let

(41) Q(T) Y coker(F(T) — F"(T))
for T' € Schy, then @ is a functor on Schy.

LEMMA A.1.1. — Assume that the fpgc-sheaves F' and F" satisfy the azioms P1-P3
and P6. Further assume that i) Q vanishes on the subcategory of of artinian algebras,
it) @Q wvanishes on the subcategory of local complete algebras, and iii) lim | Q(A.)
injects into Q(lim_ Aq).

Then the fpqc-sheaf F satisfies the axioms P1-P3 and P6.

Proof. — The following sequence
(42) 0— F'(T) — F(T) — F"(T) - Q(T) - 0

is exact and natural in T' € Schy. To show pro-representability we use Grothendieck’s
criterion in [23, 195-5/9], saying that F needs to be left exact on the subcategory of
artinian algebras. From ¢) and (42) one can see that F is pro-representable. Then
there is a topological algebra O such that F(A) = Hom,(O, A).

We show that the local components are noetherian by using Grothendieck’s crite-
rion [23, Prop.5.1, 195-8]. In fact, the local component at a point £ is pro-represented

by the localization O, where p¢ = ker(O i k), and in order to show that O,
is noetherian it will suffices to show that (p¢/ pg)v is finite dimensional. For any
k-scheme T the k-point & of F induces an element ér e F (T") by pulling back along
the structural morphism; we then get an automorphism (+¢). : FSF by adding
&r in F(T'). Thus we can assume & = 0, therefore we have

(pe/92)" = ker(F(k[t]/ (%)) — F(k)).
By (42) we conclude that P1 is satisfied.

Axioms P2-P3 follow from a diagram chase, because of (42) and the assumptions
ii)—iii). To show P6 we proceed as follows. Let £ : T — F be a point, i.e., £ € F(T).
We have to show that N(¢) is a closed subscheme of T. Let £’ € F"(T) be the
induced point of F” and let i : N(€”) < T be the closed embedding. Then F(i)(£)
actually belongs to F/(N(£")) since it yields zero in F”(N(¢”)). Then N(F(i)(€)) is
a closed subscheme of N(€”) hence of T. We can see that N(£) = N(F(i)(£)). In
fact, if o : T/ — N (&) is a point such that F(a)F(i)(€) = 0 then ic : T — T belongs
to N (). Conversely, if o : T — T is such that F(a)(€) = 0 then a belongs to N(£")
as well which means that o = i3 where 8 : T' — N(£") whence 3 € N(F(i)(¢)). O
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If F is any functor from Schj” to abelian groups, and if 2 € X is a point, let
x* : F(X) — F(k(z)) denote the homomorphism induced by the inclusion morphism
Speck(x) — X determined by =.

LEMMA A.1.2. — Let k be an algebraically closed field, and let F : Schy’ — Ab be a
functor, satisfying:
(a) the natural map F(k) — F(P' — {1}) (induced by the structure morphism) is
surjective, and
(b) if V is a non-singular quasi-projective k-curve, the image of the natural map
F(S™"V) — F(V"™) is the subgroup of invariants under the natural action of the
permutation group.
Then for any non-singular projective k-curve, any finite subset S C C(k), and any
rational function f € k(C) which is regular on S and has f(x) =1 for all x € S, we
have that

> ordg(f)z* i F(C - S) — F(k)
zeC (k)
is the zero map. Thus F satisfies condition P7' above.

Proof. — Let C be a non-singular projective k-curve, S C C(k) a finite set of closed
points. For any divisor § =), n;x; on C — S, let §* : F(C' — S) — F(k) be the map
given by 0* = . n;z}. Clearly § — §* is a homomorphism from divisors on Cg to
Hom(F(C — S), F(k)). If 0 is an effective divisor of degree n, then § determines a
point [§] € S™(C — S) in an obvious way, and hence a homomorphism

[0]* : F(S™(C — S)) — F(k).

There is a homomorphism

(iw;‘) L F(C — 8) — F((C — 8)"),

i=1
where m; : (C — S)" — C — S is the i*" projection. Clearly the image is contained in
the subgroup of invariants for the action of the permutation group .S,,. Hence there
exists a map of sets (not necessarily unique, or even a homomorphism)

¢ F(C—=85) = F(S"(C=5)), £~ 5"(¢)
such that S™(€) is a pre-image in F(S™(C—S) of (Z?:l wj) (&), forany £ € F(C-9),
i.e., the diagram

F(C - S) Zio ™ F((C—8)m)

o

F(S™(C = 5))

commutes.
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We claim that for any effective divisor § =}, njz; of degree n on C'— S, we have
(43) [0]" 09 = 6" € Hom(F(C — S), F(k)).
Indeed, let 5= (x1,...,21,%2,...,22, ) € (C—S)", where z; is repeated n; times

as a coordinate. Then ¢ is a preimage in (C' — S)™ of [§] € S™((C — S)™). Hence

n

6o (Zﬁ) = [0]* 0.

i=1
On the other hand, from the definitions, it is clear that
S*O(Z’ﬂ';-k>: njx; = 6"
i=1 j
Now suppose f € k(C) such that f |s= 1. Let T = f~1(1), and consider f as a
morphism f : C — T — P' — {1}. There is an induced morphism
fiP = {1} - §"(C —T) — §™(C — 8),

where n = deg f. The map f has the property that if §, = f ~L(t) as a divisor, then

ft) = [04].
Let 00 = (f)o, 0oo = (f)oo be the divisors of poles and zeroes of f. Then the lemma
asserts that

0y =04 F(C—8) — F(k).
To prove this, by (43), it suffices to show that
[00]" = [doc]” : F(S™(C = 5)) — F(k).
Since f(t) = [6], it follows that
[0 =t*o f* VteP! - {1},
and so we are reduced to proving that 0* = co* : F(P' — {1}) — F(k).
If 7 : P! — {1} — Speck is the structure morphism, then we are given that
7 F(k)—F(B = {1}),
while clearly 0* o 7* and oco* o m* both equal the identity on F'(k). Hence 0* = co* as

desired. O

Now we can easily show that our “relative” and “simplicial” Picard functors are
representable by checking the list of axioms P1-P7’. Because of Lemma A.1.1 and
Lemma A.1.2 representability will follows from the representability theorems for the
classical Picard functor: we will sketch the arguments below.

We remark that, in the particular case when we have an extension of sheaves as
above and we moreover assume that F”’ is affine, one can then also deduce repre-
sentability of F by descent, as in Proposition 17.4 of [38].
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A.2. Representability of the relative Picard functor

In order to show representability of fpgc-sheaves one can assume that the base field
k is algebraically closed (see [36, Lemma 1.8.9]). The fpgc-sheaf associated to the
relative Picard functor 7'+ Pic(X x;, T,Y x; T) in Lemma 2.1.1 will be denoted
by Picix v) k- The exact sequence (5) yields the following short exact sequence of
frqc-sheaves

0—T(X,Y)— Picx y) ), — ker(Picg,, — Picy/s) — 0

Since X is non-singular and complete, we see that to prove representability of
Pic(Xy) /i We reduce immediately to the case when X is connected, hence irreducible.
If Y = @, then [36] yields the desired representability. If X is irreducible and Y # @
(as we may now assume), then pairs (£, o) consisting of line bundles on X, trivialized
along Y, do not admit non-trivial automorphisms. Therefore, the functor which takes
a k-scheme T to Pic(X x; T,Y xj T) is already a sheaf with respect to the Zariski
topology and, by descent theory (see [42, §2.1], [11, §8.1]), even with respect to the
frqc-topology.

We now apply our Lemma A.1.1 and Lemma A.1.2 to the functors F = F =
Picx.yyp F' = F' = T(X,Y) and

F" = ker(Picg ), — Picys) = ker(Picg , — @ Picy, /i)

where Y} for j = 1,...,r are the connected (possibly reducible) components of Y. We
have that X integral and (7g)«(Ox) = (7y,)«(Oy,) = k. We then have the following
commutative diagram with exact rows and columns

0 0
! . !
0 S by Y g pign)
! N !
F'T) < Pie(X xx T) — @ Pic(Y; x; T)
! 1 1
ﬁ//(T) < Pi(}Ei}C((?,;T) _ @521 Pwéi'j(?;T)
! !
(Pic(T))®r—! 0
!
0

Thus we have that the functor Q(7') in (41) is canonically isomorphic to (Pic(T))®" 1.
It is then easy to see that () satisfies the hypotheses i) — 4ii) stated in the
Lemma A.1.1.
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Let ]_[z Y, — Y be the normalization of the normal crossing divisor Y, where Y;
are now the irreducible components of Y. Consider the following exact sequence

0 — ker(Picy , — Picy)y) — ker(Picg ,, — @i Picy; k) LN ker(Picy/, — @ Picy, /).

In the Lemma 2.1.1 we have shown that the map p above vanishes on the con-
nected components of the identity yielding a description of the semi-abelian scheme

-0
PIC(Y,Y)/]C

A.3. Representability of the simplicial Picard functor

Let X. be a simplicial scheme. We first construct an explicit functorial isomorphism
Pic(X.) = H'(X.,0% )

as claimed in Proposition 4.1.1. We clearly can bijectively associate to (the iso-
morphism class of) a simplicial line bundle £. on X. (i.e., to an invertible Ox -
module) a pair (£,«) consisting of a line bundle £ on Xy and an isomorphism
a : (do)* (L) = (d1)*(£) on Xj, satisfying the cocycle condition (as in the Sec-
tion 4.1).
Assume given:
1) an element £ € H'l(bl,(’)j(o), for an open covering U = {U;}ier of Xo, corre-
sponding to a line bundle £ € Pic(Xj), together with trivializations s; : Oy, =,
L |y;; then & = {fi; € O%, (U; NUj)} with s;
2) an isomorphism « : (do)*(£) = (d1)* (L) satistying the cocycle condition.
Let

UiﬂU]’: fljsj UiﬂU]’

Vig ©d N (U) ndg N (U).
Then {V;; }(i,j)elxl is an open covering of X;. Moreover, on V;; we have trivializations
di(s;) of (di)*(£), and d§(s;) of (do)*(L), respectively. Therefore, o is uniquely
determined by a;; € O% (Vi;), satisfying
di(si) = aijdy(s;)
on V;;. The a;; have to satisfy a compatibility condition: on V;; N Vi, have dj(s;) =
di(fir)di (sk), and d(s;) = di(f;1)dg(si), thus
di(si) = di(fir)di(sk) = di(fir)oudi(s1),

but di(s;) = a;;d(s;) = aijd(f1)ds(si) as well, therefore dfj(s;) cancels and we
obtain

(44) di (fir)ouwr = ciidy(fii)
on Vij N V.
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Let K; be the canonical (Godement) flasque sheaf of discontinuous sections of O%.

and let Q; < éc denote the quotient sheaf. We have an exact sequence
X4

Choose a function ¢ : Xo — I such that z € U,(,) for any x € X. This determines
well defined sections t; € Ko(Ui), ti(z) = fipe) € OX, .- For any z € U;NUj, we
have fij = fio(a) j:ol(z) S O}OW therefore: ¢; = fi;t; on U; N U; and the images of ¢;
in Qy(U;) patch together to give a global section ¢t € I'( Xy, Qp). By construction,
[ ] F(XOa QO)
im F(Xo, Ko)
is the class of the given line bundle £ on Xj.
Next, we have a natural element 8 € I'(X1, K1), given by

= H'(Xo,0%,)

Ba) = apa@)etdo(e)) € Oxg.ai

note that & € Vi, (4, (2))¢(do(x)) DY the definition of p. We claim that (writing the group
operation in I'(Xy, Q1) multiplicatively):

dg(t) _ (X1, K4)
) A= G0 © 1%L 0%
In fact, on V;; we have that dj(t) is the image of df(t;) where dj(t;)(x) =
di(fip(ai(z))) € O, ,; similarly, di(t) is the image of dg(t;) where dg(t;)(x) =
do(fie(do())) € OX, .- From the definition of Q1 as a quotient sheaf, the claimed
formula (45) will be proved if: for any i,j € I and z € Vj;, dj(t;)(d5(t;)) " 6(x)
defines a section in O% (Vi;). From the identity (44) we have

i (t:)(d (1)) 7 B(@) = di (fip(as @) (5 (Fiotao (@) ™ Qs (2)) o(do(a)) = i € O,
Thus, given a simplicial line bundle, therefore data as in 1) and 2) above, together
with a choice of ¢ : X — I we get an element of H* (X.,0%, ) computed by means of

c I'(X4, Q1).

the canonical Godement resolution of the simplicial sheaf O% .
It is now easy to verify that this construction is independent of the additional
choices made (the local trivializations s; and the map ), and defines a homomorphism
Pic(X.) — H'(X.,0%.).

Conversely, we see that Hl(X”Oj(.) is identified with the H! of the following
complex
['(Xo, Ko) — I'(X1, K1) @ I'(Xo, Qo) — I'(X2,K2) & I'(X1, Q1).

Given a cycle (8,t) € I'(X1,K1) & I'(Xo, Qp), we can choose an open cover {U;} of
Xo and pre-images t; € Ko(U;) of ¢, and we will then obtain f;; € 0§0(Ui nUj)
satisfying t; = f;;t; in Ko(U; N U;). Now one immediately verifies that the f;; define
an invertible sheaf £ on Xy, and (reversing the earlier arguments) 3 determines an
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isomorphism o : djL = di L. Since § maps to 0 in I'(Xsg, K3), we deduce that «
satisfies the cocycle condition.

We now come to the proof of the representability of the simplicial Picard functor.
Let X. be a smooth and proper simplicial k-scheme. To prove representability of
the simplicial Picard functor, we again reduce to the case when k is algebraically
closed, using [36, Lemma I1.8.9]. Then we may further reduce to the case when
(rx.)+«(Ox,) = k. Then we have

Pic(X. xj T)

(46) PICX./;C(T) = PicT

since we can choose a base point in X.. We let 7~ denote the free abelian group on
the connected components of X,, a =0,1,..., and let 7, : X, — k be the structural
morphism.
We then set (¢f. Chapter 4)
K = ker(Z*° — 7°)
C'= coker(Z*° — 7°)

def ker((ﬂ-l)*Gm,Xl - (WQ)*Gm,Xg)

FIET(X.)= -
( ) lm((ﬂ—O)*Gm,Xo - (7(-1)*Gm,X1)
F(T)¥ Pic(X. x;, T) F =Picx_ ;i
F"(T) % ker(Pic(Xo x4 T) — Pic(X1 x4 T)) F" = ker Pic, ;5 — Picx, /i

Gdéf ker((71'2),.1([1‘77,1’)(2 — (7T3)*Gm,X3)
im((ﬂ-l)*Gm,Xl - (TFQ)*GTmXQ)

G = associated fpqc sheaf.

We then have an exact sequence of pre-sheaves
0—-F - F—-F' -G
and, for each T' € Schy, a commutative diagram of complexes

0— F/(T) — F(T) - F'"(T) — G(T)
! ! !

0— F'(T) — F(T) — F'"(T) — G(T)

with exact top row. By (46), we have that F(T) — F(T) is surjective with kernel
Pic(T). Moreover we have the following commutative diagram with exact rows and
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columns:
0 0 0
1 | 1
PicT)® K — ®I_, Pic(T) — ®;- Pic(T)
1 | b
F'(T) — &7_ Pic(X{ xx T) — @iy Pic(XY{ %, T)
1 | b
~ Pic(X{§ x5 T) Pic(X{ x4 T)
" r 0 NN 1
FUT) = @ —pm) =17 Pie(T)
1 | 1
Pic(T) ® C 0 0
!
0

Now we can see that F/(T) = F/(T) in fact: F’ is of G,,-type whence the map
F'(T) — F'(T) is surjective with finite kernel but the finite kernel is actually zero
being isomorphic to the kernel of the injective map Pic(T') < Pic(T) ® K. Now we
let G’ denote the image of F in F”. The associated fpgc-sheaf G is representable, in
fact: G’ is the kernel of the homomorphism of group schemes F” — G. We then have
the following commutative diagram with exact rows:

0— F'(T) — F(T) — G'(T) — 0

N e N
0— F(T) - F(T) - G'(T) — Q(T)—0

where, by definition, Q(T) is the cokernel of F(T) — G/(T) and we can apply our
Lemma A.1.1 and Lemma A.1.2. As G is of G,,-type then the map G(T)—G(T)
is surjective with finite kernel Go(T'). Moreover we have that Pic(T) and Q(T') are
respectively the kernel and the cokernel of G'(T) — G/(T). Considering G’ as the

kernel of the homomorphism of group schemes F” — G we can see that there is a
functorial exact sequence

(47) 0 — finite group — Q(T") — Pic(T) ® C
where the finite group is a subgroup of Go(T') whence it is zero whenever H°(T, O%.)
is divisible e.g., if T' is an artinian algebra or a strictly Hensel local ring.

Therefore we can easily check the vanishing conditions of Lemma A.1.1: ) —

ii) follow from (47), and i) follows by a diagram chase using (47) since Pic and
HY(T, 0%) commute with the relevant direct limits.
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