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Moderate and formal cohomology
associated with constructible sheaves
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Abstract— On a complex manifold X, we construct the functors • <S> Ox and ^fiom^ • , Ox)
of formal and moderate cohomology from the category of R-constructible sheaves to that
of T>x -modules. It allows us to treat functorially and in a unified manner C°° functions,
distributions, formal completion and local algebraic cohomology.

The behavior of these functors under the usual operations on 'D-modules is system-
atically studied, and adjunction formulas for correspondences of complex manifolds are
obtained.

This theory provides a natural tool to treat integral transformations with growth
conditions such as Radon, Poisson and Laplace transforms.

Resume — Sur une variete complexe X, nous construisons les foncteurs • 0 Ox
et rrfiom(',0x) de cohomologie formelle et mod6ree de la categoric des faisceaux
R-constructibles a valeurs dans celle des T^-modules. Cela permet de trailer fonctori-
ellement et de maniere unifiee les fonctions (700, les distributions, la completion formelle
et la cohomologie locale alg6brique.

On 6tudie systematiquement Ie comportement de ces foncteurs pour les operations
usuelles sur les 'D-modules, et on obtient des formules d'adjonction pour les correspondances
de vari^tes complexes.

Cette th^orie fournit les outils naturels pour trailer les transformations integrales avec
conditions de croissance comme les transformations de Radon, Poisson et Laplace.
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Introduction

"Algebraic analysis", following Mikio Sato's terminology, is an attempt to treat
classical analysis with the methods and tools of Algebra, in particular, sheaf theory
and homological algebra. This approach has proved its efficiency, especially when
applied to the theory of linear partial differential equations (see [S-K-K]), which has
become, in some sense, a simple application of the microlocal theory of sheaves (see
[K-S]). However, while this sheaf theoretical approach perfectly works when dealing
with holomorphic functions and the various sheaves associated to it (hyperfunctions,
ramified holomorphic functions, etc.), some important difficulties appear when
treating growth conditions, which is quite natural since such conditions are obviously
not of local nature. However, as is commonly known, classical analysis is better
concerned with distributions and C°° -functions than with hyperfunctions and real
analytic functions.

These difficulties have been overcome by the introduction of the functor
^THom^^x) of temperate cohomology in [Kas] and its microlocalization, the functor
Cr/^oTn^Cx) of Andronikof [An]. The idea of ^fiom^- ,0x) is quite natural: the
usual functor R J{om{F,6x) may be calculated by applying Jtom{F^') to S6^, the
Dolbeault complex with hyperfunction coefficients, which is an injective resolution of
GX' It 2^ is replaced by "D^o the Dolbeault complex with distribution coefficients,
one gets a new functor which is well-defined and behaves perfectly with respect to F
when F is M-constructible. If X is a complexification of a real analytic manifold M
and if one chooses for F the orientation sheaf on M (shifted by the dimension), then
the sheaf of distributions on M is recovered (this was already noticed by Martineau
[Mr]). If y is a closed complex analytic subset of X and if one chooses F = Cy,
one recovers J?r[y](0^), the algebraic cohomology of Gx with support in V. The
functor ^Ttiom^^Qx) is an inverse to the functor Sol(') := RJ{om<^^{^6x) in the
Riemann-Hilbert correspondence, and this was the motivation for its introduction
in [Kas]. However, as we shall see below, it has many other applications.

The functor ^tiom^-^Qx) being well understood, and corresponding —roughly
speaking— to Schwartz's distributions, it was natural to look for its dual. This is
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2 MASAKI KASHIWARA AND PlERRE SCHAPIRA

one of the aims of this paper in which we shall introduce the new functor • (g) Ox of
formal cohomology. In fact, we shall treat in a unified way both functors, ^Tfiom^, Ox)
and • (g) Ox, starting with an abstract result. We show that a functor '0 defined on
the category ^x of open relatively compact subanalytic subsets of a real analytic
manifold X with values in an abelian category and satisfying a kind of Mayer-
Vietoris property, extends naturally to an exact functor on the category IR-Cons(X)
of IR-constructible sheaves (see Theorem 1.1 for a precise statement). The functor
U ^ ^m(C[/,T)6x) •= 'Dbxl^{x\u}^x as well as the functor U ̂  Cu^ ̂  :=
the subsheaf of ^^ consisting of sections vanishing up to infinite order on X \ U
satisfy the required properties, and thus extend as exact functors on [R-Cons(X).

w
When X is a complex manifold, the functors ^T/iom^Ox) and • 0 Ox are the
Dolbeault complexes of the preceding ones. When X is a complexification of a
real analytic manifold M, CM ^> Ox is nothing but ̂ ^ an(^ if ̂  is a closed complex
analytic subset ofX, Cy(g) Ox is the formal completion of Ox along Y. Moreover, if

w
F is an R-constructible sheaf, then RF{X', F(g) Ox) and RFc (X; ̂ fiom^F, ̂ x [dx]))
are well-defined objects of the derived categories of FTV-spaces and DFN-spa,ces
respectively, and are dual to each other (see Proposition 5.2, and its generalization
to solution sheaves of ©-modules, Theorem 6.1).

In this paper, we present a detailed study of the usual operations (external
product, inverse and direct images) on these functors. Of course, the results
concerning ^Thom were already obtained in [Kas], but our treatment is slightly
different and more systematic. Our main results are the adjunction formulas in
Theorems 7.2, 7.3 and 10.8. In order to prove Theorem 7.3 we have made use of the
theory of Ox-modules of type FN or DFN of Ramis-Ruget [R-R] (see also [Ho])
and we thank J-P. Schneiders for communicating his proof of Theorem 8.1.

Applications of our functors will not be given here. Let us simply mention that
the adjunction formulas appear as extremely useful tools in integral geometry (see
[D'A-Si], [D'A-S2]) and representation theory (in the spirit of [K-Sm]) and the
specialization of the functor of formal cohomology leads to a functorial treatment
of "asymptotic developments" (see [Co]). Finally, in a forthcoming paper, we shall
apply this theory to the study of integral transforms with exponential kernels, and
particularly to the Laplace transform.

A preliminary version of this paper appeared as a preprint in RIMS-999, Research
Institute for Mathematical Sciences, Kyoto University (1994).

1M. Kashiwara and P. Schapira, Integral Transforms with Exponential Kernels and Laplace
Transform, RIMS-1102 (1996).
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1. Functors on R-Constructible Sheaves

We shall mainly follow the notations of [K-S] for derived categories and sheaf theory.
In particular, if A is an additive category, we denote by (^(A) the additive category
of bounded complexes of A, and by ̂ (A) the category obtained by identifying with
0 the morphisms in (^(A) homotopic to 0. If A is abelian we denote by D^A)
its derived category with bounded cohomologies, the localization of ^^(A) by exact
complexes. We denote by Q the canonical functor from ^(A) to D^A). We
define similarly (7*(A) or K*(A) (* = + or —) by considering complexes bounded
from above or below. If R is a ring or a sheaf of rings, we write for short C^i?),
etc. instead of C^(Mod(.R)), etc.. For example, if X is a topological space, D^Cx)
is the derived category with bounded cohomologies of sheaves of C-vector spaces on
X.

Let X be a real analytic manifold and denote by IR-Cons(X) the abelian category
of IR-constructible sheaves of C-vector spaces (see [K-S] for an exposition). Denote
by R-ConSc(-X) the thick subcategory consisting of sheaves with compact support.

Let £fjc be the family of open relatively compact subanalytic subsets of X and
let us denote by the same letter ^fx the category whose objects are the elements of
^fx and the morphisms U —> V are the inclusions U C V, U and V in ifx- Then
U 1-4- C<7 gives a faithful functor

^x —^M-ConSc(X).

Let A be an abelian category over C. This means that HomA^, N) has a structure
of C-vector space for M, N e A, and the composition of morphisms is C-bilinear.
Let ^ : i^x —^ A be a functor, and consider the conditions:

(1.1) ^ (0)=0;

(1.2) for any U, V in iPx, the sequence

^(u n v) -> ̂ (u) © ̂ (V) -^ ^{u u v) -> o

is exact;
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4 MASAKI KASHIWARA AND PlERRE SCHAPIRA

(1.3) for any open inclusion U C V in ^x-i ^(U) —^ ^(V) is a monomorphism.

Theorem 1.1. —

(a) Assume (1.1) and (1.2). TAen there is a right exact functor, unique up to an
isomorphism,

^ : R-ConSc(X) —> A

such that ^{Cu) ̂  ̂ (U) functorially in U € ^x-

(b) Assume (1.1), (1.2) and (1.3). Then ̂  is exact

(c) Let '0i and '̂ 2 be two functors from ^fx to A both satisfying (1.1) and (1.2),
and let ̂ i and ^2 &6 ^/ie corresponding functors given in (a). Let 6 : '0i —> ^2
&e a morphism of functors. Then 0 extends uniquely to a morphism of functors

e: ̂ i —> ^2.
(d) Jn ^Ae situation of (o), assume that A %s a subcategory of the category Mod(Cjc)

o/ sheaves of C-vector spaces on X, and that A is local, that is: an object
F o/Mod(Cjc) belongs to A if for any relatively compact open subset U there
exists F/ in A such that F\u ^ F^u'
Assume further that ̂  is locale that is: supp('0(L^)) C U for any U € ^fx-
Then ^ extends uniquely to M-Cons(X) as a right exact functor ^ which is
local, that is, ^(F)\u ^ ^f{Fu)\u for any F G R-Cons(X) and U € ^x'
Moreover the assertion (b) remains valid, as well as (c), provided that both ̂ \
and '02 ^^ local.

Proof. Let Vect denote the category of C-vector spaces and let ^x^ be the category
of contravariant functors from ^fx to Vect. Let $ : R-Cons(X) —)• ^fx^ denote the
canonical functor. Let P be an object of ^fx^ satisfying the following two conditions
similar to (1.1-2).

(1.4) P(0) = 0;

(1.5) forany£7i ,£ /2eyx,

o -> P(Ui u u^) -> P(^i) e P(U^ -> P(<7i n u-z)
is an exact sequence.

Lemma 1.2. — Assume that P G ^fx^ satisfies (1.4) and (1.5). Then for any
V C ̂ x, the composition
(1.6)
Hom^v($(Cv),P) ̂  Homvect($(Cv)(y),P(V)) -^ Homvect(C,P(V)) ^ P(V)

is an isomorphism.
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MODERATE AND FORMAL COHOMOLOGY. . . 5

Proof. Let us first remark that P(UUj) c^ ^P(Uj) for a finite disjoint family {Uj}
of objects in Sfjc. Also recall that any relatively compact subanalytic subset has a
finite number of connected components.

Let us prove the injectivity of (1.6). For U C V let us denote by lu the canonical
element of $(Cy)([7). Then the map (1.6) is given by Hom^v(^(Cy),P) 3 a \->
a(V){lv) € P(V). Let a be an element of Homy^v(^(Cy),P). Assuming that
a(V)(lv) € P(V) vanishes, we shall prove that a(U) : T(U',Cv) -^ P(V) vanishes
for any U € ^fx- By the above remark, we may assume that U is connected. If U is
not contained in V then ^(Cy)(£7) = 0 and hence a(U) =0. If U is contained in V,
then $(Cy)(£7) is a one-dimensional vector space generated by lu- Then a(U) = 0
follows by the commutative diagram

$(Cy)(V) ————> P(Y)

1 1
^Cv)(U) ———> P(U)

in which the left vertical arrow sends ly to \u-
Let us prove the surjectivity by tracing backwards the arguments above. Let a

be an element of P(V). For a connected U G ^fx, define a(U) as follows. When U
is not contained in V, set a(U) = 0. When U is contained in V, define a(lu) to
be the image of a by the restriction map P(V) —^ P(U). For a general U G ^x,
letting U == UUj be the decomposition of U into connected components, we set
a{U) = (DQ:([7j). Then we can see easily that a belongs to Homy^v(^(Cy),P) and
the map (1.6) sends a to a. D

Now we are ready to prove Theorem 1.1. First we assume that ^ satisfies the
condition (1.1) and (1.2), and we shall prove (a) in Theorem 1.1.

For an object M € A and U G ^x^ we set

P(M)([/)=HomAW7),M).

Then P(M) is an object of ^fx^ and it satisfies the conditions (1.4) and (1.5). Now
we shall show

(1.7) For any F € R-ConSc(X), the functor ^(F) : M ̂  Homy^v(^(F),P(M)) is
representable by an object of A.

If F = Cv for V € ^x, then ^(F) is represented by ^(V) by Lemma 1.2. Hence
if F is a finite direct sum of sheaves of the form Cy, then ^f(F) is representable.
Every F e IR-ConSc(X) is the cokernel of a morphism F\ —>• F^ in IR-ConSc(X),
where F\ and F'z are finite direct sums of sheaves of the form Cy. Since ^{F^) and
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6 MASAKI KASHIWARA AND PlERRE SCHAPIRA

^{F^) are represent able, ^(F) is represented by the cokernel of ^(.Fi) —> ^(^2).
This completes the proof of (1.7).

Thus we obtained the functor ^ : R-ConSc(X) —>• A and it is obvious that ^
satisfies the desired condition.

We shall show (b). Namely assuming (1.1), (1.2) and (1.3), we shall show that
^{F) —> ^ ( F ' ) is a monomorphism if F —^ F ' is a monomorphism in R-ConSc(X).
There is a finite family of {Uj}j=i,...,n of relatively open subanalytic sets and
morphisms fj : Cu, -> F ' such that F ' = Ej1111/?'- set Fj, = F + E^i1111 '̂-
It is enough to show that ^(Fk) -> ^(I^+i) is a monomorphism. Hence replacing
F and F ' with Fk and -F/c+i; we may assume from the beginning that F ' = F+lmf
for some / : Cu —)• F ' . Let us consider the commutative diagram with exact columns
and rows:

0 0 0

i i i
0 ———> 0 ———> F ———> F ———> 0i i i
0 ———> K ———> F^Cu ———> F ' ———> 0

[ [
0 ———> K ———> Cu ———> F ' / F ———> 0

0 0 0
Since K is a subobject of G[/, it is equal to Cy for some subanalytic open subset
V C U. Applying ^ to the diagram above, we obtain a commutative diagram:

0 0 0

0 ———> 0 ———> ^(F) ———> ^(F) ——> 0i i i
0 ———> ^(V) ———> ^(F) ® ̂ (U) ———> ^F') ———> 0

I I 1 1
0 ———> ^(V) ———> ^{U) ———> ^{F'/F) ———> 0

i i i
0 0 0
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MODERATE AND FORMAL COHOMOLOGY. . . 7

The rows are exact by (1.3) and the right exactitude of ^, and the columns are
exact except the right one. Hence the right column is also exact.
The property (c) is obvious by the construction above. The assertion (d) follows
easily from supp(^(F)) C supp(F). This completes the proof of Theorem 1.1. D

Now we consider a stronger condition than (1.2)

(1.8) For any U, V m^x, the sequence

o ->• ̂ (u n v) -> ̂ (u) e ̂ (v) -> ^(u u v) -> o

is exact.

Proposition 1.3. — Assume (1.1) and (1.8). Then for any U € ^x and any exact
sequence in IR-ConSc(X)

O-^G-^F-^C£/ ->O,

the sequence 0 ->• ^(G) -^ ^(F) -> ^(Q/) -^ 0 is exact.

Proof. We shall prove this in two steps.
(Step 1) Assume that F = e^=iC^. for connected subsets Uj in ^x-

We shall prove the proposition by induction on r. We may assume that Cjj, —^ Cu
is given by 1. For r = 2, this is nothing but (1.8). Set U' = U^=2 U 3 ' Then we have

a commutative diagram with exact rows and columns

0 0

i i
Gi ——^ G,

1 1
0 ———•> G ———> F ——> Cu ———> 0

0 ———> C[/-rwi ———> Cu' ® Cu, ———^ Cu ———> 0

[ 1
0 0

We can see easily that u is an isomorphism. By applying the right exact functor ^
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we obtain a diagram

0 0i i
t(Gi) —•^ t(G,)

1 1
^(G) ———> ^(F) ———> ^(C

1 1
o ——> ^(Cu'w,) ——> ^(Cu') e ̂ (Cc/j ——^ ^(Cy)

1 1

In this diagram, the bottom row is exact by (1.8) and the columns are exact by the
induction hypothesis. Hence the middle row is exact.

(Step 2) In the general case, we can find an epimorphism F ' —> F, where
F ' = (BCjjj. Then we have a diagram

0 0i i
K ——^ K

1 1
G/ , j-'f ,, /r<————> r ————> (L

1 !
G ———> F ———> Ci i
0 0
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MODERATE AND FORMAL COHOMOLOGY. . . 9

By applying ^, we obtain

0 0i i
^(K) ~ ) ^!(K)

[ I
0 ———> 9(0') ———> ^(F') ———> 9(Cu) ———> 0

1 1 II
0 ———> 9(G) ———> ^(F) ———> ^(Cy) ———> 0

[ 1
0 0

Since the columns are exact as well as the middle row by (Step 1), the bottom row
is also exact, l-j

Proposition 1.4. — (i) Assume (1.1) and (1.8). Then the functor ^ :
R-ConSc(X) -^ A, which is right exact, is left derivable. Let L^ denote the left de-
rived functor and set L^ = H~3 o L^f. Then L^ = 0 for j > 1 and L^{Cu) = 0
for any U C ^ x '
(ii) Under the locality condition as in Theorem 1.1 (d), ^, as a functor on
M-Cons(X) is left derivable.

Proof. Let us denote by SP the subcategory of R-ConSc(X) consisting of objects
P such that for any exact sequence 0 — G - ^ F - ^ P - ^ O i n R-ConSc(X), the
sequence 0 —> ^(G) —^ ^{F) —> ^(P) —^ 0 remains exact. One checks easily that if
0 -^ P' -> P -> P" -^ 0 is exact and if P ' and P" belong to °P, then so does P.

Now, let K be a subobject of C^Cu,. Arguing by induction on r, one gets that
K C SP. Then the proof follows. D

Proposition 1.5. — Let ̂ i and ^2 be two functors of triangulated categories from
D^(Cx) to a triangulated category, and let Q : ^i -> ^2 be a morphism of
functors of triangulated categories. We assume the following conditions:

(i) for any F C D^(Cx), ©(P) is an isomorphism if 6(Fz) is an isomorphism
for any compact subanalytic subset Z of X ,

(ii) for any closed (resp. open) subanalytic subset Z (resp. U) of X, 6(Cz) (resp.
Q(Cu)) is an isomorphism.

Then Q is an isomorphism.
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10 MASAKI KASHIWARA AND PlERRE SCHAPIRA

Proof. It is enough to show that Q(-F) is an isomorphism for any F G R-Cons(X)
with compact support. For such an F, there exists a finite filtration X == XQ D
X\ D • • • XN == 0 such that -F „ , y is a constant sheaf. Since there exist exact^•jA-^j+i
sequences 0 —^ -Fxj\Xj+i ^ -^Xj —^ -^Xj+i —>• O? it is enough to show that 9(Cz) is
an isomorphism for any locally closed subanalytic subset Z of X. Since Z may be
written as the difference of two closed (resp. open) subanalytic subsets, the assertion
follows. D
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w
2. The Functors • (g)^ and ̂ om(- , CD^x)

In this section and the two subsequent ones, X denotes a real analytic manifold.
We denote by ̂ x^^^x? ®x the sheaves on X of complex-valued real analytic
functions, C00 -functions, Schwartz's distributions and Sato's hyperfunctions. We
denote by orx the orientation sheaf on X, by f^x the sheaf of real analytic differential
forms of maximal degree and we define the sheaf of real analytic densities:

ix = flx ^ Orx .

If S^ is an ,s4x-module, we set
CQpV ,^1\/ ,0 CQp
^ = ̂ X ^six ^ •

We denote by 2)x the sheaf of rings on X of finite-order differential operators with
coefficients in six' Recall that Mod(3)x) (resp. ^^^(Q)^)) denotes the category
of left (resp. right) ax-modules, and D^x) (resp. D^a^)) its derived category
with bounded cohomologies.

We denote by uJx{^ orx[dimX]) the topological dualizing complex on X, and
for F C D^Cx), we set:

Dx(F)=RJ{om(F^Cx)^

Dx(F) =R Jfom(F,^x) •

Let U be an open subanalytic subset of X and Z = X \ U. We shall denote by
^ z t^e subsheaf of ^o°^ consisting of functions which vanish on Z up to infinite
order. We set:

(2.1) C^ ̂  = f^z

and we define ^fiom^Cu^bx) by the exact sequence:

(2.2) 0 -^ Fz^Dbx -> ̂ bx -^ ^liom^Cu, Tfbx) -> 0 .

Let us recall the following result, due to Lojaciewicz (see [Lo], [Ma]), which will be
a basic tool for all our constructions.

SOCIETE MATHEMATIQUE DE FRANCE



12 MASAKI KASHIWARA AND PlERRE SCHAPIRA

Theorem 2.1. (Lojaciewicz) — Let U\ and U^ be two subanalytic open subsets of
X. Then the two sequences below are exact:

0 -^ Cu.nu^ ̂  -^ (C^§ ̂ ) C {Cu^ ̂ ) -^ Cu^uu^ ̂  -^ 0,

0 -> Crfom^u^. ̂ bx) -^ ^Tfiom^Cu^, ̂ bx) C ̂ tiom^u^, T^x)

-^ ̂ m(C£/,n^^x) -^ 0.

By this result, the condition (1.2) is satisfied and (1.1) is obvious as well as (1.3).
Applying Theorem 1.1, we obtain two exact local functors :

(2.3) • § ̂  : R-Cons(X) -^ Mod(®x),

(2.4) ^hom^ ,T)bx) : (M-Cons(X))°PP -^ Mod(®x).

We call the first functor the Whitney functor and the second one the Schwartz
functor. Of course this last functor is nothing but the functor THx{' ) of [Kas].
Notice that for F € R-Cons(X), the sheaves F^ ̂  and ^tiom^F^bx) are
^^-modules, hence are soft sheaves.

If ^ be a locally free .sAx-module of finite rank, we set:

F S (^ ̂  X) = (F§ ̂ ) 0^ ̂

^fiom^F^bx 0^x s) = ^om(F,T)bx) 0^x x-

For the notions on topological vector spaces that we shall use now, we refer to
Grothendieck [Gri]. In particular we say that a vector space is of type FN (resp.
DFN) if it is Frechet nuclear (resp. the dual of a Frechet nuclear space).

Proposition 2.2. — Let F C IR-Cons(X). There exist natural topologies of type FN
on r(X;F^> ̂ ^ and of type DFN on Yc^'^fiom^F^b^)) and they are dual to
each other.

Proof, (a) We first prove the result when F = C[/, U an open subanalytic subset of
X. Set Z = X \ U and consider the two sequences:

(2.5) o -^ r(x; c^ ̂ ) —^ r(x; ̂ ) -^ r(x; Cz§ ̂ ) -^ o,
(2.6) 0 ̂  Y^X^hom(Cu^b'x)) ^- T^X'^bx) ̂  T^X'^fiom^Cz^bx)) ̂ 0.

These two sequences are exact since they are obtained by applying the functors
r(X; • ) or Fc(X;' ) to exact sequences of soft sheaves. Moreover F(X; Cc/0 ̂ ) =
r(X;^^^) is a closed subspace of the FTV-space I^X;^), hence inherits
a structure of an FN-spa,ce as well as the third term of (2.5). The space
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MODERATE AND FORMAL COHOMOLOGY. . . 13

Tc^X'^b^) is the topological dual space of r{X'^^). Hence in order to see that
rc{X',Thom(Cu,'Db^)) is the dual space of r(X;Cc/^> ̂ ), it is enough to show
that

Fc (X'^zW)) = if € r,(X;-D^); ( uf = 0 for any u e r(X;C^ ̂ )l .

This is easily obtained by the following result.

Lemma 2.3. — For any open subanalytic subset U of X, Yc^U'^^) is dense in
r(x;c^^).

The proof is given in Chapter I, Lemma 4.3 of [Ma].
(b) We shall say that two complexes V* and W9 of topological vector spaces of type
FN and DFN respectively are dual to each other if:

(2.7) V9: ' ' ' -^ V 1 —> V^1 -^ ' "
yi

(2.8) W9: • • ' - > • W-1-1 —— W-1 -> • • •
w^

W~1 is the topological dual of V^ and w^ is the transpose of v\
(c) Let us prove the proposition when F € IR-ConSc(X). In such a case F is
quasi-isomorphic to a bounded complex:

y : . . . -^ ^-1 _^o -^ o

where F° is in degree 0 and each F3 is a finite direct sum of sheaves of type Cc/, U
being open relatively compact and subanalytic (see [K-S, Chap. VIII]). Applying the
functors F(X; • § ce^>) and r^X^fom^ ^b^)\ we obtain two complexes V and
W9 of type FN and D F N , dual to each other. Moreover V1 = 0 for i > 0, W^ = 0
for i < 0 and these complexes are exact except in degree 0. Hence all w^ have closed
range and consequently their adjoints v^ have also closed range. Therefore, H°(y9)
and H°(W9) are of type FN and DFN respectively, and dual to each other. It
follows from the closed graph theorem that the topologies we have defined by this
procedure do not depend on the choice of the resolution of F.
(d) Finally consider the general case where F G R-Cons(X). Let us take an
increasing sequence {Zn}n of compact subanalytic subsets such that X is the union
of the interiors of Zn. Then F(X; F^ ̂ ) is the projective limit of F(X; FzJ^ ̂ )
with surjective projections and r^X'^fiom^F.Db^)) is the inductive limit of
rc(X;^m(Fz^CD^)). Then the result follows from (c). D

Corollary 2.4. — Let u : F —> G be a morphism in IR-Cons(X). Then the as-
w w

sociated morphisms r(X;F(g) ̂  -^ r(X;G<g) ̂ ) and r^X^n^G.T)^)) ->
r^X^/iom^'I)^)) have closed ranges.
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14 MASAKI KASHIWARA AND PlERRE SCHAPIRA

From now on, we shall work in D^R-Cons^)), the derived category of
M-Cons(X). Recall that D^R-Cons^)) is equivalent to the full triangulated
subcategory D^_^(Cx) of D^Cjc) consisting of objects whose cohomology groups
belong to ]R-Cons(X) (see [Kas]). The functors • § ̂  and ^hom^ ,'Dbx) being
exact, they extend to functors from D^_^(Cjc) to D^Sjc). We keep the same
notations for these functors on the derived categories.

Proposition 2.5. — Let F and G be in D^_^(Cjc). There are natural morphisms
in D^Sjc), functorial with respect to F and G:

(2.9) F(g)^ -^Pd)^,
w L w w

(2.10) (F^ ̂ ) 0^ (G0 c^?) ̂  (F ̂  G)0 ̂ ,

(2.11) (F^ c^) (1)̂  ^rfom(G,T)6x) -^ ^om{R J{om(F, G^Dbx).

Proof.
(i) First let us construct (2.9). Applying Theorem 1.1, we may assume F = Cu,

for an open subanalytic subset U of X. In this case, the construction is clear.
(ii) Let us construct (2.10). For F, G in IR-Cons(X), the morphism:

(F^ c^) 0 (G§ c^) ̂  (F (g) G)^ ̂

is easily constructed, by using Theorem 1.1, and reducing to the case where F = Cu
and G = Cy, for U and V two open subanalytic subsets of X. Since this morphism
is ^Ax-bilinear, it defines a morphism of 3)x-modules:

w w w
(F^ ̂ ) ̂  (G0 c^) -^ (F 0 G)0 ̂ .

L
Using the natural morphism W (g)^ W -^ W 0^^ 9T' for complexes of
3)jc-modules SJl®, W, we obtain the desired morphism.
(ii) In order to construct (2.11), we need several lemmas.

Lemma 2.6. — Let U be an open subanalytic subset of X . Then the composition
of morphisms:

w
(C[/(g)c^) 0 T^x\u)^x -> ̂  ^ ^Dbx -^ Vbx

is zero.

This follows immediately from Lemma 2.3.

Lemma 2.7. — Let G C R-Cons(X) and let U be an open subanalytic subset of X .
There exists a natural morphism:

(Cu^) ̂ ) ̂ ^fiom^Gu^bx) -> ^r^m(G,CD6x) •
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Proof. Using Theorem 1.1, we may reduce the proof to the case where G = Cy
for a subanalytic open subset V of X. Consider the diagram in which we set
s=x\{unv):

(Cc/0 C^°) ^Ts^Dbx — (Cc/0 C^)(S)T)bx — (QyS C^) ̂ ^fiom^unv^bx) —^ 0

0 ———^ ̂ (x\v)"Dljx ————————>- T)bx ——————————^ (rflom(Cv,rDbx) —————^ 0.

Here a is given by the multiplication. Then it is enough to check that a sends
(Cu^ <e^) 0 r^CD^x to r(x\y)CD6x. This follows from Lemma 2.6. D
End of the proof of Proposition 2.5. Let j : U ^ X denote the embedding. In
Lemma 2.7, we replace G by j^j^G and use the isomorphism (j^^G)^ ^ G\j.
Applying the morphism Gu —> G, we get:

w w
(C[/(g) ̂ ^/^(G.CDfcx) -> {Cu0 ce^)0r?om(G[/,rD6x) ->• rr^7n(^-lG,rD6x).

We can write j^j^G as J{om{Cu,G). Then, applying Theorem 1.1, we have
constructed a morphism, for -F and G in IR-Cons(X):

(F§ ̂ ) ̂ ^tiom^G^bx) -^ (rflom{J{om{F,G),rDbx).

(Notice that both terms are right exact in F.) This morphism being sl x- bilinear,
it defines:

(F^ ce^) (g)^ ^om^G^bx) -^ ^['llom{J{om(F,G)^bx).

This construction extends naturally to a morphism in ^(O^x) for F,G €
^(IR-ConspC)).

For F and G given in R-Cons(X), there exists a simplicial set 6 and a
homeomorphism i : G —^ X , such that F and G are the images of simplicial
sheaves (see [Kas] or [K-S]). On the category R-Cons(6), the functor J&m(F,G)
admits a right derived functor with respect to F, and it coincides with the usual
R J&m(F, G). Now recall that Q denotes the functor from K^ to D^ and that "lim"
and "lim" denote ind-objects and pro-objects (see [K-S] Chapter 1, §11). Then we
obtain "lim" Q(J&m(F',G)) ^ R J&m(F,G). where F ' -> F ranges over the family

F'->F
of quasi-isomorphisms in ^(R-Cons^)). Thus we obtain

w L w
Q(F0 ̂ ) (g)̂  Q^fiomt.G^bx)) -> "Hm" Q ((^(g) c€^) ̂  ̂ ^(G.CDfcx))

F ' - ^ F

-> "lim" Q^fiom^om^F^ G),CD6x))
F'->F

^ ^hom^R Jfom(F, G),T^x).

This completes the proof of Proposition 2.5. D
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16 MASAKI KASHIWARA AND PlERRE SCHAPIRA

Proposition 2.8. — Let F and G be in D^_^(C^-). There are natural morphisms
in D^Q)^), functorial with respect to F and G:

(2.12) D^F®^ ->• D'^F^ ̂  -> 'r/tOTn(F,1)6x) -^ R J{om{F,T3bx),
(2.13) G'(8>(F^<€^)^•(G'(g)F)§>ce^,
(2.14) ^fiom^G ® F, T)bx) ->• R ^om (G, 'T/iom(F, Vbx)),

W W

(2.15) D^(F 0 G)0 ̂  -^ R J{om(G, D^F0 c€^),

(2.16) D^G^^fiom^F^bx) -> ^fiom{G 0 F,T)bx\

Proof. The first morphism in (2.12) is (2.9). The second one is obtained by choosing
G = Cx in (2.11). The third morphism is equivalent to F^^Tfom^T^x) —^ ̂ x-
This last morphism is obtained by:

(F^ ̂ ) ̂  ̂ m^T^x) ̂  ̂ hom(R J{om{F, F),T)bx) .

The morphism (2.13) follows from (2.9) and (2.10). The morphism (2.14) follows
from (2.9), (2.11) and F -> R J{om(G,G 0 F). The morphism (2.15) follows from
(2.13) and G (g) D^(F 0 G) -^ D^F. Finally, the morphism (2.16) follows from
(2.14) and D'̂ G 0 (G 0 F) ̂  F. D

Remark 2.9. Let F C D^_^(Cx). Then there is a commutative diagram in D6^^):

(2.17) D'^(F) (g) 64x ————————————————^ ̂  J^m(F, ̂ )

D^(F) 0^ ———^D^(F) (g) ̂  ———^R J{om{F^)

D^(F) (g)^^ ——-^fiom^F^bx) ——^ R J{om(F,T)bx)

D^(F) 0 %x ————————————————^ R J&m(F, %x).
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w
3. Operations on - (g)^

We follow the notations of [K-S]. In particular we denote by /~\/p/^ ^ the
operations of inverse image, proper direct image, direct image and external product
in 3-modules theory. Let /: Y —> X be a morphism of real analytic manifolds.
We denote by OTy/x tne relative orientation sheaf ory 0 f^orx- Let 3)y-^x and
2)x<(-v be the "transfer bimodules". Recall that they are defined by

Sy^x = ̂ y ̂ f-^x f~^x.

^x^v = < ̂  Sy^x ̂ f-^ {r^y-^

and they are a (3)y, /-12)x)-bimodule and an (/"^x^y^bimodule, respectively.
For a left Sx-module 9JI (or more generally, an object of D^x)), we define

f-1^ = Sy^x ̂ -i^ /-lml

and for a left 3)y-module ̂  (or more generally, an object of D^Sy)), we define

^=Rf^X^-Y^Y^)^

^=Rf^X^-Y^^)^

We can define the same functors for right ©-modules. For example for ̂  C D^®^)

f_^=Rf\(^^(SY-^x),

f_^=Rf^^Q)Y^x)-

Proposition 3.1. — Let X and Y be two real analytic manifolds. Then there exists
a natural morphism in D^Sxxv), functorial with respect to F e D^_^(Cx) and
GeD^(Cy):

W W W

(3.1) (Ftgi^JKG'O^-^iaGQtgi^y.
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18 MASAKI KASHIWARA AND PlERRE SCHAPIRA

Proof. First assume G = Cy for an open subanalytic subset V of Y. Denote by ^i
and '02 the two functors on ^x denned by:

•\y ___ -̂ y

^l(£7) = (Cy ® 'g1 '̂) B (Cy (g> t^),
w

^2{U)=CuxV^^^Y'

There is a natural morphism '0i -^ '02. Applying Theorem 1.1, we get the result
in case G = Cy. Now let F e R-Cons(X). We apply the same argument to the
functors:

^(V) = (F ̂  cg^) ̂  (Cy ̂  ̂ )

^(^(^Cy)^^

and the result follows. D

Remark that morphism (3.1) is not an isomorphism in general. To have an
isomorphism, one has to consider the topological tensor product • § • of [Gri].

Proposition 3.2. — Let F c R-Cons(X) and G e R-Cons(y). Then:

(3.2) F(JC x Y ; (F ̂  G) i) ^^y) ^ r(X; F ^ ̂ ) @ r(Y; G ̂  cg^).

Proof. The functor • IEI • being exact on the category of vector spaces of type F N ,
one may reduce the proof (using Theorem 1.1) to the case F = C^, G = Cz^,
where Z\ and Z^ are closed subanalytic subsets of X and Y respectively. Then it is
enough to prove:

r(Xxy;^^^)^r(x;^j§r(y;^).
It is well-known that

r(x x r;^y) ^ r(x;^) @ r(y;^).

For x e X (resp. ^/ e V) let us denote by Ex (resp. Fy) the set of C°° -fund ions on
X (resp. V) that vanish at x (resp. y) to infinite order. Then we can see easily that
Ex <S> Fy is the set of C°° -functions on X x Y that vanish at (x, y) to infinite order.
Now we remark that for an FTV-space E and a complete space F and a family of
closed subspaces Fj of F, we have

n(^0F,)=£;0(F|F,),
3 3
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since E 0 F coincides with the space of continuous maps from E* to F. Applying
this remark, we obtain

r(x x y;^y^xz,) = H ̂  0 Fy= ( F| E,) 0 ( F| ^)
a;eZi a;CZi 2/6^2
2/6^2

=r(x;^)@r(y;^).
D

Now, let / : Y -> X be a morphism of real analytic manifolds.

Theorem 3.3. — Let F c D^(Cx).

(i) There exists a natural morphism in D^Sy), functorial in F:

(3.3) f~\F S ̂ ) ̂  /-^ ̂  ce?o.

(ii) r/i%s morphism is equivalent to the morphism in D^/"1®^) '•

(3.4) /-^F ̂ )^)-^R J{om^ (Sy^x, /-1^ S ̂  .

(iii) If f is a closed embedding, (3.3) %5 an isomorphism.

(iv) J/ / %5 smooth, (3.4) %5 an isomorphism.

Proof, (i) For £7 C ^x, set:

^i(^) = Sy-^x ^y-i^x /"'(Cc/ S ̂ ),
w

W)=Cf-^u)^^'

These two functors satisfy conditions (1.1) and (1.2). Let Z = X \ U. The natural
morphism

^r ̂ f-^x f^^z -^ ̂ f-^z)

defines the morphism:
0{U):^(U)^^{U).

Theorem 1.1 gives a morphism

3)y-.x ̂ -i^ r\F ̂  ̂ ) ̂  (r1^) S c€?.

Then to obtain (i), it remains to use

f_-\F ̂  ̂ ) ̂  Sy^x 0y-^x /-1(JF ̂  c€?) •
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20 MASAKI KASHIWARA AND PlERRE SCHAPIRA

(ii) follows from the adjunction formula:

Hom^,(^)(ay_^ ^f-i^x ajt^) ^ Hom^(y-i^^)(9Jt,JiJ&ma^(ay_,^,9T))

applied with 9Jt = /^(F §> ce<^) and 91 = /-^ <§ ^5°.

(iii) We may assume that Y is a closed submanifold of X. Arguing by induction on
codim V, we may assume that Y is a hypersurface defined by the equation g = 0,
with dg ^ 0. Using Proposition 1.3, we may also assume F = Cu for an open
subanalytic subset U of X. Let Z = X \ U. We have to show that the natural
morphism:

fi' <^00 /n<f>°° —\ <2)0017 • ^ x , z / 9 ^ x , z ~^ ^Y,znY
is an isomorphism.

Since ̂ z n 9^ = 9^,z^ 6 is injective. On the other hand, any h C ^znv
may be extended to h € ^ zw ^ Theorem 2.1, we may decompose h as
h = h-t + /i,2, with fai C ^^^, ^2 € <?^y. Hence 0 sends ^i to h.

(iv) We may argue locally on Y and make an induction on dimY - dimX.
Hence we may assume that Y = X x M and / is the projection. Moreover, by
Proposition 1.3, we may assume F = Cu for an open subanalytic subset U of X.
Let Z = X \ U. Denoting by t the coordinate of M, it is enough to show that

n — .̂ f~1 a00 _\ a00 ^/^ (i,oo , r\u ~^ J ^x,z -> ̂ y,/-!^) ——^ ^Y,f-^(z) ~^ °

is exact. This is an easy exercise. D

Remark 3.4- K / is smooth, the isomorphism (3.4) defines a morphism:

(3.5) /,(.T1^ ̂  ce?>v) -> F ̂  ̂ v.

In fact we may write (3.4) as

®x^y t)^ (/-1^ ̂  ̂  0 ory)[-d] ̂  /-^F ̂  ̂  (g) orx),

where d = dimY — dimX, or equivalently:

(r1^ ̂  c€?ov) ̂  ay^x ^ /'(^ ̂  ̂ v).
Then (3.5) follows by adjunction.

The morphism (3.5) is also constructed as in Proposition 4.3 below by using the
integration along the fiber /i^^) -)- ̂ v.

Theorem 3.5. — Let G € D^_c(Cy) and assume that f is proper on supp(G).
Then there is a natural isomorphism in D^Sjc), functorial with respect to G :

(3.6) Rf\G^^ ^Rf^RJiom^^Y^x.G^^)).
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Proof.
(i) Using morphism (3.4) with F = Rf\G^ we get the morphism:

w w
Rf\G® ̂  -^ Rf^R Jbm^^Y^x.f^Rf^G^ ̂ ).

By composing with f~lRf^G —> G, we get morphism (3.6). Let us prove that this
is an isomorphism. By decomposing / as a product of a smooth map and a closed
embedding, we may argue separately in these cases.

(ii) First assume that / is smooth. We may suppose supp(G) is contained in
an arbitrarily small open subset of Y (if Z = supp(G) and Z = Z\ U Z^ use the
distinguished triangle G -> Gzi 0 Gz^ —^ Gz^nz^ -^)- Hence we may assume
that y = X x W and / is the projection. Arguing by induction, we may assume
p = 1. Moreover, by Proposition 1.3, we may assume G == Cz, where Z is a closed
subanalytic subset of Y.

Lemma 3.6. — There exists a disjoint locally finite family { Z j } of locally closed
subanalytic subsets of Y satisfying the following properties:

(i) Z = U j Z j ,

(ii) f(Zj) is locally closed and Zj is closed in f^f^Zj) for any j ,

(111) for any j and x C f(Zj), f^^x} H Zj is connected,

(iv) for any j , Zj \ Zj is a union of Zk 's.

Proof. Since /*(Cz) is a constructible sheaf, there exists a subanalytic stratification
X = U^Xa such that /*(Cz)|^ is locally constant of rank Na. Then for any
x € XQ, /^(aOHZ has exactly Na connected components, say {^j(^)}j=i,-,Nc.-
We order them so that if we take Zj € Zj{x) then Zj < Zj' for j < j ' . Set
Za j = LLex ^jO^)' Hence Z is a disjoint union of Zaj.

Let us show that Zaj is closed in Zn/"1^). Take XQ € Xa. There exists
a disjoint family {^j}j=i,...,Na of open subsets of Y such that Zj(xo) C Uj. Then
there exists a neighborhood W of XQ such that Z^}f~l{W) C \JjUj. Since
/*(Cz) ^ Qjf^Cznu,) on W, Wznu,)\^^ is a loc^ constant sheaf of
rank 1, by taking W such that WnXa is connected. Then the fiber of Z^\Uj -^ X
is connected over W ft X^ and hence Z^j D /-lTy = z D ̂ j D /"^^a 0 ̂ )- This

shows that Zaj is closed in Z n /-1 (Xa). Therefore Z^j is subanalytic. The family
{Zaj}aj satisfies the desired property. D
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By this lemma, we may assume G = Cz where Z is a locally closed subanalytic
subset of Y satisfying the following properties:

(3.7)

T = f(Z) is a locally closed subanalytic subset of X,
for any x G T, ZQ/"1^) is connected,
Zis closed in /^(r),
Z —^ X is proper.

Moreover we may assume that Z is contained i n X x { t e M ; — l < ^ < l } . Set
S = (T \ T) x {t e R; -1 < t < 1}. Then Zi = S\J Z is a closed analytic subset
with connected fibers over X. Then it is enough to prove the theorem for G = Cs
and G = C^. Hence we reduced the theorem to the case G = Cz where Z is a
closed subanalytic subset satisfying the following two properties:

f for any x C /(Z), ZQ/"1^) is connected,
(3.8) \

[ Z c X x {t^R',0<t< 1}.

Let p± : V x R>o -)- V be the map ((a;,t),s) i-> {x,t ± s). Set Z± =
p±(Z x R>o) n-^ x [°^1]- Then ^± is a closed subanalytic set and Z = Z^^\Z-
and T x [0,1] = Z+ |j Z-. Therefore we have an exact sequence

o -> CTX[O,I] -^ Cz+ e Cz_ -^ Cz -^ o.

Hence it is enough to check the theorem for G = Cz^, Crx[o,i]-

Thus we have finally reduced the theorem to the case G = Cz, Z being a closed
subanalytic subset of Y satisfying:

f3 9) J z is proper over x5

I for any a; C f(Z), Z(~>\f~l{x) is a closed interval containing 0.
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Set T = f{Z). Then Rf^{G) = Cr. We have a commutative diagram with exact
columns:

0 0 0i i i
0 ———> f^ ———> f.(t^) -a/"* f.(f^) ———: 0

1 1 1
0 ———> ^ ———> f^) -9/9^ ACq?) ———> 0

1 1 1
w w ()/r)t w

0 ———> CT®^ ———> /.(CzO^) ——^ /*(Cz®^) ———>

[ [ [
0 0 0

Since 9/9t has a right inverse given by u{x^ t) \—> Jg u{x^ t) dt^ the top and the middle
rows are exact and hence the bottom row is exact.
(iii) Finally assume that / is a closed embedding. Arguing by induction, we may
assume Y = {xn = 0}, where (.TI, . . . ^Xn) is a local coordinate system. Moreover,
by Proposition 1.3, we may assume G = C^, Z being a closed subanalytic subset of
V. Then we have 3)y^x ^ (Bfcx)35^9/9^)^/^- Hence for a 3)y-module ^H, we
have the isomorphism

00

J&m^ (Sy^x^) ̂  ̂ n]] = I] ̂  0 c^
k=0

given by
00

J{om^{^Y^x^) ̂ f^^x^f {{O/Qx^/M) .
k=0

w
Hence taking Cz <^) ^o^ as 9^, (3.6) reduces to the bijectivity of:

w w
(3.10) Cz 0 ̂  -^ (Cz ^) ce?o)[[^]]

Let us consider the commutative diagram:
w

0 ———> ^z ———> ^ ———^ cz^ ̂  ——> 0

\o | /3 I (3.10)
s|/ 4' 4'

0 —————^ ^,z[[Xn}} —————> ^[[Xn}} ————> {Cz^>^)[[Xn}} —————> 0
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Then Kera ^ Ker/? c± S^y and a and (3 are surjective. Hence (3.10) is an
isomorphism. Q

Remark 3.7 Note that Theorem 3.5 does not remain true if we replace (g) with 0.
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4. Operations on ^Tfiom^Dbx)

The results of this section already appeared in [Kas], but our construction of the
direct image morphism is slightly different.

Proposition 4.1. — LetX and Y be two real analytic manifolds. Then there exists a
natural morphism in D^Sxxv), functorial in F € D^(Cx) and G e D^(Cy):

(4.1) ^['^lom{F^bx)^rr^lom(G,T)bY) -> ^om{F ^ G,T)6y).

The proof is similar to the one of Proposition 3.1 and we do not repeat it.

Remark that the morphism (4.1) is not an isomorphism in general. Similarly to
Proposition 3.2, we have:

Proposition 4.2. — For F C R-Cons(X) and G G M-Cons(y), we have

(4.2)
Fc (X x Y'^fiom{F ^ G^bxxv)) ̂  Fc {X^fiom(F^bx)) ̂  Fc (r^n^G^y)).

Proof. This follows by duality (Proposition 2.2) from Proposition 3.2. D

Now let / : Y —^ X be a morphism of real analytic manifolds.

Proposition 4.3. — There is a natural morphism in D^Q)^), functorial in F e
Dt_,(Cx) :

(4.3) /.CrfcmC-1^^) -^ CTfom^CD^).

Proof. Let Z be a closed subanalytic subset of X. For a By-module 9Jt, we have the
Spencer sequence Sp.(W) and a quasi-isomorphism Sp.(W) -> 971. Denoting by 6y
the sheaf of real analytic vector fields on V, we have Spk(W) == 3)y ̂ y A ©^ ̂ ^r
9Jt. Then 5p,(3)y^x) gives a resolution of 2)y-^x as a (ay,/~lax)-bimodule
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locally free over ®y. Hence I^-i^T)^ (g)o^ ®y_,x is represented by the complex
°1{. =r^-i(^^0o^5p.(2)y-^). Wehave^ -r^-i^^^A^y^-^x
/-^x. Hence we have /.(S^o) = Tzf\(^b^) 0,̂  ®jc. The integration of
distributions gives a morphism ^ : f\{T)b^) -> Tfb^. Since T)&^ is a right
ax-module, we obtain the morphism u : f\(°lto) -^ lYD^. We shall show that the
composition

W)^/!W^r^
vanishes. The homomorphism

di: ̂ i = rf-i^b^^QY^f-i^f-^x -^ °i{o = rj-i^)^^-!^/-1^

is given explicitly as follows. For (p e ̂ Vy, v C 9y and P C 3)x, writing the image
of v by the morphism 6y -)- ̂ y <S>f-i^ f^Qx as ̂  dj^Wj (aj € 64y, w^- € ©x),
we have

di((/? 0 v 0 P) = (/w 0 P - V^ (̂ a -̂ (g) w^-P .
j

Let 5 be a section of f\{°lti). We may assume s = (p 0 v (g) P, where the support
of (/? is small enough. In order to see that udi{s) = 0, it is enough to show that
(J^, (pv)P - Y,j{ff ^paj)wjP = 0. For any C°°-function g on X we have

/,((/, ̂ p-EUr3^31)9

-UH^-^/Mr^
= fv(vr(Pg) -^a,r(w,Pg)) =0.

Hence we obtain ud\ = 0. Thus we have constructed a morphism of complexes

/! {Ff-izW) 0^ Sp.^Y^x)) -^ r^(T>^) •

Since F i->- f\ [Ttiom^f^F^b'^) (g)®^ 5'p.(2)y_».x)) is an exact functor from
IR-Cons(-X") to the category of complexes of ©^-modules, we may apply Theorem
1.1 and define a natural morphism:

/! ('r/ion^/-1^,'!)^) 03^ 6'p.(®y_,x)) -> Tfiom(F,Vb'x)

for F € R-Cons(X) and hence for F G ^(R-Cons^)). Thus we get (4.3) since
D^_^(Cx) is the derived category of IR-Cons(X). D
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Theorem 4.4. — Let G € D^_^(Cy) and assume that f is proper on suppG. Then
there is a natural isomorphism in D^®^), functorial with respect to G:

(4.4) /, ̂ tiom^G, Dby) ̂  ̂ hom{R /*G, CDfcx).

Proof. The morphism is constructed by applying Proposition 4.3 with F = Rf^G,
and then using f-^Rf^G -> G. By using the graph embedding, it is enough to prove
the theorem in the case of a closed embedding and the case of a smooth morphism.

When / is a closed embedding, applying Proposition 1.3, we can reduce to the
case G =Cz for a closed subanalytic subset ofV, and then one easily sees that (4.4)
is an isomorphism, using the local structure theorem of distributions supported by
a submanifold:

ry(T)fcx) ^ ®x^y ̂ y ^by .

If / is smooth, the proof that (4.4) is an isomorphism goes as in Theorem 3.5, and
one can reduce the theorem to the case where Y = X x R and / the projection
to X, G = Cz where Z satisfies the condition (3.9). Thus we have to check the
exactitude of

0 -> f^z^by Q/Q^ f^z^DbY -f-^ Tf^bx -^ 0.

This is an easy verification (cf. [Kas, Lemma 4.5]). D

For F C D^(Cx), the morphism (4.3) defines the morphisms

(4.5) ®x^y ̂ Y ^mCr^.^y) -> f^fiom^F^bx)

(4.6) ^mCr^T^Y) -^ R Jfom^-i^(3)x^yJ'^^7n(F,T)6x)).

Theorem 4.5. — L^FeD^(Cx).

(i) Assume that f is smooth. Then (4.5) defines the isomorphism:

(4.7) R Mom^ (Sy^x, ̂ ^(.r1^, ̂ y)) ̂  f~1 ̂ om(F, ̂ bx) .

(ii) Assume that f is a closed embedding. Then (4.6) defines the isomorphism:

(4.8) ^tiom^F, ̂ Dby) ̂  R Jiom^^ (®x^y, ̂ om{F, ̂ x)).

Proof, (i) Set d = dimY - dimX. Since / is smooth, f-S ^ f^S 0 ory/^[d] for
any sheaf S on X, and Sx^-y ̂ y VI ^ R ̂ om^^Y-^x^) ̂  o^Y/x[d} for any
3)y-module 9 .̂ This defines the morphism (4.7). To prove that it is an isomorphism,
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we may reduce the proof to the case Y = X x R, / is the projection and F == Cz,
Z being a closed subanalytic subset of X. Then one checks that the sequence:

0 -^ f-^z^bx -^ Tf-^z^by QIQt^ Yf-^z)^by -^ 0

is exact. Here t denotes the coordinate of R.
(ii) Let us prove first

(4.9) R J{om^^ (ax<-y^m(Fjc\y^x)) :== 0.

The question being local, we can write Y = {x = (a;i, . . . , Xn)\ ̂ i = " ' = xi =
0}. Set Yi = {x\Xi = 0}. Then we have an exact sequence

0 ̂  FX\Y ^- ^iFx\v, ^- e^Fx\(y,uy,) ^- • • • •

Hence by replacing F with Fx\Yi^ ^xvr^uy); e^c•5 we may assume that FX\Y =

Fx\Yi ^OT some z. Since we have

RJiomc^^ (^x^-Y^liom(Fx\Y^x))

^ R J&m^ (Sx^y, ̂ ^ ^Y^Y^Izom{Fx\Y^x))

^ R Jfom^ (0)Y^Y,R^om^^ (^x^Y.^om^Fx^^x)} )

we can reduce to the case when Y is a hypersurface defined by the equation {g = 0}
with dg ^ 0. We may also assume F = Cu, U being an open subanalytic subset
of X. The multiplication by g on ^TBoT^C^y,'!)^) is surjective (resp. injective)
since it is a quotient of ^Dbx (resp. a subsheaf of j^b^y where j : U \ Y —^ X is
the open embedding). This shows (4.9).

Using (4.9) and the distinguished triangle FX\Y —> F —> Fy—>, it remains to
prove (4.8) when F = f^G with G <E D^(Cy). Then by Theorem 4.4,

R J&mo^ (^x^Y^fiom^Tfbx)) ̂  R ^Hom^^ (^X^Y^X^Y ^y ^^(G.Dfcy))
^ R Jtom^^x^-Y^x^-Y) ̂ Y rrfom(/-lF,^y)

and the result follows from

R Jiom^^x^Y^x^v) ̂  ay .

D
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5. The functors- (g) €x and Tfiom(' , Ojc)

From now on, all manifolds and morphisms of manifolds will be complex analytic.
If X is a complex manifold, one denotes by Ox its structural sheaf and by O^? the
sheaf of holomorphic p-forms. One denotes by dx the complex dimension of X, and
we also write f^x instead of O ^ ^ . We denote by X^ the underlying real analytic
manifold of X and by X the complex conjugate of X, i.e. the complex manifold with
real underlying manifold X^ and structural sheaf 0^, the sheaf of anti-holomorphic
functions on X. Then, X x X is a complexification of XR by the diagonal embedding
X^ ^- X x X. If / : y —)• X is a morphism of complex manifolds, we denote by
f^ the real analytic underlying morphism. However, if there is no risk of confusion,
we often write X or / instead of X^ or f^. For example, we shall always write ̂ ^
instead of^, or D^(Cx) instead of D^(CxJ. We denote by °bx the sheaf
of rings of finite order holomorphic differential operators on X, and by /-1, /,, / ,
^ the operations on holomorphic ©-modules. We denote by 3)y-^x and 3)x<-v
the "transfer bimodules". Notice that 3)x and 3)̂  are two subrings of ®XR and if
P ^ ®x, Q G 2)^, then [P, Q] = 0.

Definition 5.1 — Let F e D^(Cx). We set:
w w

F (g) Ox = R J{om^(G^ F 0 ̂ ),

^fiom{F,Gx) = R J{om^{G^^fiom(F,T)bx)) .

w
We call • 0 ©x and ^Tfiom^ , Cjc) the functors of formal and moderate cohomology,

respectively. The objects F §> Gx and ^^(F,®^) belong to D^Sx). If ^ is a
locally free Ox-module of finite rank, we set:

w w
Figt^^FOCx^Ox'S,

Thom(F, <S) = 'r/iom(F, Gx) ®0x ^ •

Notice that:
w L w

F 0 Ox ^ "x ®®7 (F ® ^?)[-^x]
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and similarly for ^r/nwi^Ox).
Let F G D^_^(Cx). Applying Proposition 2.8, we get a sequence of morphisms:

Dx^ (S) Ox -^ DxF § Ox -^ ^fiom(F, Ox) -^ R ̂ m(F, Ox).

Moreover, if G € D^(Cx), there are natural morphisms:

G 0 (F § Ox) -^ (G 0 F) § Ox,

^om{G (g) F, Ox) -> -R ̂ m (G, ̂ (̂F, Ox)) .

We shall have to work in the derived categories of FN or -DFW-spaces. Let
us recall their constructions. Denote by C^(FW) the additive category of bounded
complexes of topological vector spaces of type FN and linear continuous morphisms
and by ^(FN) the category obtained by identifying to 0 a morphism homotopic
to zero. Then D^FW) is the localization of ^{FN) by the complexes which are
algebraically exact. The construction of ^{DFN) is similar. The duality functors
between FN and DFN spaces being exact, they extend to duality functors between
the derived categories.

The bifunctor • IZ1 • on the category of FW-spaces (resp. JDFW-spaces) being
exact, it extends to the derived category:

@: D^FW) x D^FW) -^ D^FAQ,

@: D\DFN) x ^(DFN) -^ B\DFN) .

Proposition 5.2. — Let F e D^_^(Cx). Then we can define

RT{X',F^ Ox) and Rr^X^fiom^F^x^dx})

as objects o/'D^.FW) and ^{DFN) respectively, and they are dual to each other.

This proposition will be generalized to the case of solutions of ©-modules in § 6.
Proof. First assume F C R-Cons(X). Set:

y^nx;^^0^)
W1 = r^X'^fiom^F^b^^^)).

By Proposition 2.2, the space V1 (resp. W~1) is naturally endowed with a topology of
type FN (resp. DFN) and these two spaces are dual to each other. The complexes
RT(X',F<S) Ox) and R^c(X',^T^lom(F^x[dx})) are represented by the complexes:

0 —> V° -^ V1 —> • • • —^ V^ —> 0
a

0 —> W-^ -^ TV-^^ —> ... —> W° —> 0,
9
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respectively. Now let F C D^_^(Cx). By [Kas, Theorem 2.8], F is represented by
a bounded complex of R-constructible sheaves, and the proof is similar. D

We shall now study the functorial operations on the functors of formal and
moderate cohomology.

Proposition 5.3. — Let X and Y be two complex manifolds. Let F € D^_^(Cx),
G C D^(Cy). Then there exist natural morphisms in D^xxr)? functorial with
respect to F and G:

•\/y -w _ w
(5.1) (F(S>Gx)W® GY)—^(FSG)<sGxxY,

(5.2) 'rAom(F,CxMr^%om(G,Gy)—^'rfo^l(FaG,Cxxy)•

Proof. Apply -R J^ma-^y(Cyxy'' ) to the morphisms (3.1) and (4.1). D

Proposition 5.4. — LetF e D^_^(Cx) andG € D^_e(Cy). Then there are natural
isomorphisms:

(5.3)
Rr(X xY;(FSG)^)GxxY)^Ry(X;F^i Gx)SRT(Y;G^> Cy),

(5.4)
RTc{X x Y;Tfiom{FSG,GxxY)) ̂  RT^X-^hom^F^x}} § RTc(Y;Tliom(G,€Y)).

Proof. The results follow from the corresponding ones with 0 replaced by 'S00 or
T)b in Propositions 3.2 and 4.2. D

Now let / : Y —> X be a morphism of complex manifolds. We shall often make
use of the following morphisms.

Lemma 5.5. —

(i) For 9T € D^Sy^, we have the canonical isomorphisms:

R Jiomf-^ (f~^, R Jiomcs^Y^x^,^))
(5.5)

^ R Jiom^ (°i>Y-,x,R -7foma^(0y, 91)) ,

(5.6) ^R J{om^(€Y, 9T) [dy] ̂  -R J{om^(G^ ̂  91) [dx},

(5.7) ^R J&m®y(Cy, yi) [dy] ̂  J? Jfoma^(0^, ^R, 91) [dx].

(ii) For HJl € Di>(3)xR); we Aave a canonical morphism:

(5.8) /"^ J{om^{G^, W) -f R J^m^Cy, fs'1^) .
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Proof. Let us prove first (5.6). For a Sy^-module ^Tl, we have
L L L

Q)X^Y^ ^)^ ̂  ̂  ®x^-y ̂ ^ (®x^r ̂ y ^) •

Hence we have
L

^X (g)0^ ̂  9rl

^ ̂  /* CT^X ̂ f-1^ ^X^-Y ̂  (^X^Y ^Y ^))

^Rf^ (®x<-y ̂ r (/"^x ̂ f-1^ ^X^-Y ̂  ̂ )) •

Hence (5.6) follows from f~l^l-^(S)f-l^—ci)^:^_Y ^ ̂ y
The proof of (5.5) is similar. We have

R Jiomf-^ (.T1^ R Jiom^(^Y^x^))

^ R Jtom^ (^Y^X.R ̂ omf-^ (f-1^ R Mom^^y^^)})

^ R J{om^ (3)y^x, R Jiom^^y^ ̂ f-^ f-1^^)) .
L

Then (5.5) follows from ̂ y^x ̂ f-1^ f ^'x ^ °y-
The isomorphism (5.7) is obtained by the same method as for (5.6).
Let us prove (5.8). There is a morphism

f^R J{om^{€^W) -^R Jiom^^y^ l^-io^ f^^^y^ ^f-i^ /-lmT)

^R J{om^(Qy^y_^ ̂ f-i^ /- lmT).
L

Applying the functor 3)y^x ^j-^x ' 5 we °btain the desired morphism. D

Theorem 5.6. — Functorially in F e D^_^(Cjc); there are a natural morphism in
D^Sy):

i w -, w
(5.9) r'CF^Cx)^./'-1^®^,

and a natural morphism in D^Sjc)-'

(5.10) ^Thom^FMdY}} -^ 'riiom(F,Gx[dx}) .
W

Proof. In order to get (5.9), we apply (5.8) with 9JI = F^ ^^ and apply Theorem
3.3. In order to get (5.10), we apply (5.7) with Vt = ^TIiom^f^F.Dbx) and use
Proposition 4.3. n

Theorem5.7. — Let G G D^_^(Cy) and assume that f is proper on suppG. Then
there are natural isomorphisms in D^Q)^)^ functorial with respect to G:

w _ w
(5.11) Rf^RM,m^('3)Y^x,G(S> Cy) <—.R/iG® Gx ,
(5.12) /,'r/;om(G,Oy[dy]) ̂  ̂ fiom^R^G^x^x}).
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w
Proof. In order to get (5.11), apply (5.5) with 91 = G0 ̂ ^ and use the isomorphism
(3.6). Similarly, to obtain (5.12), apply (5.7) with 91 = ^^(G.T^y) and use the
isomorphism (4.4). D

Theorem 5.8. —

(i) If f is smooth, there are natural isomorphisms in D^/'^x)-'

(5.13) f-^F^ Gx)^R^om^((SY^x.f~lF^ Oy),

(5.14) ^J^m^^(^y^x^^m(/-lF,Oy))-:4/-lrr^m(F,Ox).

(ii) If f is a closed embedding, there are natural isomorphisms in D^Sy):
i w ,-, i w

(5.15) f_~\F 0 Ox)-^r1^ ̂  ©r ,
(5.16) Cr^/-1^, Oy)^4/-1 Cr^F, Ox).

Proo/. (i) Assume that / is smooth. To obtain the isomorphism (5.13), we apply
(5.5) with 91 = f^F^) ̂  and then Theorem 3.3 (iv). Similarly to obtain the
isomorphism (5.14), we apply (5.5) with 91 = t7'^lom{f~lF,rDbY) and then Theorem
4.5 (i).
(ii) Assume that / is a closed embedding. First, let us prove

L w
(5.17) 3)y-.x ̂ x (FX\Y ^ ̂ ) = 0 ,

(5.18) Sy-^x ^3)x ^om(Fx\Y^x) = 0 .

As in the proof of Theorem 4.5, we can reduce to the case where V is a hypersurface
denned by a holomorphic equation {g = 0} with dg ^- 0. Using Proposition 1.3, we
may assume that F = Cu, U being open subanalytic in X. Let Z = X \ U. Then
we have to check that g acting on ̂  zuY as we^ as 9 actmg on ^^"(C^y.T^x)
are isomorphisms, which is clear. Applying R jHomo^(0^, • ) to (5.17) and (5.18),
we get

1 w
r^xvy^Cx^O,

/"^/^(Fxv^x) -O.

Using the distinguished triangle F^\y — ^ F — ^ F Y —>, we may assume F = f^G
for some G € D^(Cy). Then the isomorphisms (5.15) and (5.16) follow from
Theorem 5.7 by applying Sy^x^x • to (5-11) and (5-12)^ noticing that:

^Y->X ^2x ^X^Y ^ ̂ Y[dx - dy],

^Y-.X ^x R ̂ m^^(®y^x,9l) ̂  91.

D
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Proposition 5.9. — Functorially in F C D^_^(Cx), there are a natural morphism
mD^Sx);

(5.19) /,(r1^ Oy[dy]) -^F^) Gx[dx]

and a natural morphism in D^Sy):

(5.20) f~1 ̂ fiom^F, Ox) -^ ̂ fiom^F, Oy).

Proof. By decomposing / as the product of the graph embedding Y —^ X x Y and
the projection X x Y —^ X , it is enough to define those morphisms for a closed
embedding and a smooth morphism.

(i) Closed embedding case. We have by (5.5)

/,(r1^ OvM ̂ -/.(r1^ Gx)[dv})

^ 3x<-y ̂ y (^Y-^X ^x (F^ ®x)[^y])
w

^3x^y®ay-R.^OTng^(a^y,(^0 ©x)[rfx])
-^(^S ©x)[dx].

We get (5.19). The morphism (5.20) is nothing but (5.16).

(ii) Smooth case. We have by (5.14)

/-^/lom^Ox) = 3ir^x ®/-iax /"^^rn^Cx)
^- Sy^x ®/-i®x -R ^omc^ (ay^Jf,(r/^om(/-lF,Cr))
^••rfom^-^^y).

Similarly by (5.13)

/,(r1^ Oy[dr]) = -R/! (Sx^y ^ay (r^S Oy[dy]))
^RftRJtom^^Y^x,/'1?^ Oy[dy])[dy - dx]
^-Rf,f-\F^ Ox)[2dy-dx]

i W

^Rf,f\F® Gx)[dx}
W

^F^) 6x[dx}.

D
As a consequence of the stability by external product (Proposition 5.3) and by

inverse image (Theorem 5.8), we get natural morphisms for F and G in D^_^(Cjc)
w L w w

(5.21) (F (g) Ox) ^)©x (G ̂  ®x) -^ (F 0 G) (g) Ox,
(5.22) ^kom^F, Ox) ^©x ^om(G, Ox) ̂  cr^m^ (g) G, Ox).
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Let us give a few applications of the preceding results.
Let M be a real analytic manifold, X a complexification of M, i : M ̂  X the

embedding.

Theorem 5.10. — Let F C D^(CM). Then we have
w w

(5.23) i . F ^ G x ^ z ^ F ^ W ,
(5.24) ^fom^F, ̂ x [dx]) ̂  ̂  ̂ om{F, Tib^) .

In particular:

CM^OX^^
^^(D^CM^X) ̂  ̂ M.

Notice that (5.24) is a result of Andronikof [An], and the last formula is due to
Martineau [Mr].
Proof. Let us identify X and XR for simplicity. Then

z*F S Ox = R ^om^(G^ i^F d ̂ )

by the definition, and

w w

i,F (g) ̂  ̂  fi ^-oma^ (®^xxx'F ® ̂ )

by Theorem 3.5. Hence we have

z*F^ Ox '^-R.^'omas^^x'^^^x^x-.xxx'^^ ce^))
^ a ̂ omax (2'x^xxx ̂  ̂  -F ̂  <€^)
^fl^'omax^x,^^^)
^i^F^)^).

The proof of (5.24) is similar, using Theorem 4.4. Q

Next, we consider a closed complex analytic subset Z of X. Let ^^ denote the
defining ideal of Z in X. Recall ([Grg]) that one sets for an ©^-module SF:

9?Tz = InnS-y ,̂
k

F[Z]W = lii^^oniOxW^^)-
fc
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One denotes by RT[Z](- ) the derived functor of F[^](- ). One calls °^z the formal
completion of ^ along Z , and RT[Z]W the algebraic cohomology of 9^ supported
byZ.

It is a well-known fact that ©x z is a flat Ox-module and ajp\z ^ ̂ ^x (^x z )
for a coherent Ox-module 9.

Lemma 5.11. — For a closed submanifold Z of X , we have the isomorphism

(5.25) OxTz^ ̂ 2)z (^z^x^z) .

Proof. We have the homomorphism 3)z-^x ̂ x (^x \z) ̂  Oz 0©jc Wx |z) —^ Oz.
Since it is 3)^-linear, we obtain the 3)^-linear homomorphism

(5.26) 6x^z ->J{om^^(Q)z^x^z).

We shall show that it is an isomorphism. The question being local, we may assume
X = {{x,y);x G C71^ G C^} and Z is given by x =0. For a = (ai,-- ,0n) G Z^
let us denote by D^ the differential operator (Q/Qx^ ' • • {Q/Qxn)^. Then we
have

Q^z^x ^ O^zD^ .

This implies

J{omc,^z-^x^z) ̂  IJ^ ̂  (CDC

and the homomorphism (5.26) is given by Ox \z 3 u ^ (D^u ^)a ^ Fla ̂ z

(CD0)*. It is obvious that this is an isomorphism. D

Theorem 5.12. — Let Z be a closed complex analytic subset of X. There are natural
isomorphisms:

(5.27) Cz S Ox ^ Gx^z ,
(5.28) -rfiom(Cz^x) ̂  Rr^x) .

w
In particular, Cz 0 6x is concentrated in degree 0.

w
Notice that Dufresnoy [Du] already proved that Cz0 6x is concentrated in degree

zero.
"w w

Proof, (i) Let us prove (5.27). The morphism €x ^ Cx 0 €x -> C^ 0 Ox induces
a morphism

(5.29) Ox-^^°(CzSOx).
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Set ^ = H°(Cz ̂  Ox). Then applying the functor '^z to (5.29), we obtain

(5.30) Cx'z -^ ̂ z .

Hence in order to see Ox \z ^ 9, it is enough to show that this morphism and the
morphism

(5.31) ^ -> ̂ \z

are isomorphisms.
Now the question being local, we can find a closed embedding / : X —^ X' from

X into a smooth manifold X' and a closed smooth submanifold Z ' of Xf such that
Z = /-^Z'). Theorem 5.7 and Lemma 5.11 imply

Theorem 5.8 implies

z/ ^ Cz' ^ Ox/ .

w -, W

Cz0 Gx^f~\Cz^ Ox/).

On the other hand, f~l(Gx' \ z ' ) = Ojc ^)©^, (Ox' |z0 ^ Ojc |z. Hence we have

^ w
Ox |z ^ Cz (g) Ox •

Then to see that (5.30) and (5.31) are isomorphisms, it is enough to remark that

(OxT^)Tz ^ ©x^z •

(ii) Let us prove (5.28). It is enough to show a similar result with Ox replaced by
Dbx- Since the germ of T)f?x is injective over the germ of Ox [Ma, Chapter VII,
Theorem 2.4], RT^z}{^x) ̂  ̂ [z\{^x)- Hence it is enough to prove

^^(Cz.^x) ^ IW^fcx),

that is,
rzCpfcx)^iW-D&x).

This is equivalent to saying that a distribution with support in Z is locally
annihilated by ̂  for k ^ 0. We can reduce this to the case where Z is a
hypersurface and it is well-known in this case. D
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6. Duality Theorem

Let X be a complex manifold of complex dimension dx- As usual, one denotes
by D^_^(2)x) (resp. D^(®x)) the full triangulated subcategory of D^Sx)
consisting of objects having quasi-coherent (resp. coherent) cohomologies.

The following theorem generalizes Proposition 5.2.

Theorem 6.1. — Let 9Jt € D^(®x) and fe^ F,G <E D^(Cx). T^en we can ae-
fineRY(X',RJ{om^^m^G,F^ Ox)) and^rc (X;^^^,^)^] ̂ x (^^G))
05 067^5 o/ D^FAQ ana ^(DFN), functorially with respect to W, F and G.
Moreover, these two objects are dual to each other.

Proof. We shall use the results of the appendix. Following the notations there,
D^(P(3)x)) is equivalent to D^(3)x). Here we take as ^f in A.2 the set of
relatively compact open subsets. Also D~(P(X)) is equivalent to D^_^(Cx). Here
we take as y in A.3 the set of relatively compact open subanalytic subsets. As in
the appendix, for a locally finite family U = {Ui}i^i of relatively compact open
subsets, set LoW = ®zGj(®x)^. For a locally finite family 2T = {Vj}j^j of
relatively compact open subanalytic subsets, set Lc(V) = (Dj^jCv,.. Then for
F e R-Cons(X), we have

^(x;J&m^(LD(u)0^c(»),F§^)))^]^^(^ny,;F^^^
^j

and

(6.1) ^(X^fiom^b^^-^) 0o^ (Lp(U) 0Lc(9J)))

^Qr.^ny^^^F,^^^-^)).
tj

They are an jFW-space and a DFN-spa,ce respectively and are dual to each other.
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For a complex 11* G C~(P(Q)x)), a complex W <E C~(P(X)) and a bounded
complex F9 of R-constructible sheaves,

A(ir,2r, F9) = r(x; J&mc^ (^(U') 0 Lc^), F" ̂  ̂ ')) )

and

£?(ir,y,F') =rc(x; rr^m(F^rD^X'dx+•))0^ (^(U^^LC^)))
are a complex of .F TV-spaces and a complex of D.F TV-spaces respectively, and they
are dual to each other. Hence they give an object of D^^FTY) and an object of
~D~(DFN) dual to each other. Forgetting the topology, they become

J?r(x; R Jioma,^ {LD(^) 0 Lc^),F9 ̂  Ox) )

and

^F^X;^^^,^)^]^^^)^^^))).

Hence the functors A and B send quasi-isomorphisms to quasi-isomorphisms, and
they induce the functors

D^P^x))01515 x D-(P(X))°PP x D^R-Cons^)) -» D+(FA^)

and

^oh^^x)) x D-(P(X)) x D^R-Cons^))01515 -^ D-(DFTV).

To obtain the theorem, it is enough to recall that

D^(P(3x)) ^ D^(ax) and D-(P(X)) c. D^_,(Cx). D

Let us derive an easy corollary. Let 9JT be a regular holonomic 3)x-module, and
let F be an object of D^_^(Cx). It is proved in [Kas] that the natural morphism:

(6.1) ^ (̂F, Ox) ^<3)x ajt -^ JR ̂ "^W ̂ x) ^Sx 9Jt

is an isomorphism.

Corollary 6.2. — Let VR be a regular holonomic 3)x -module, and let F be an object
o/D^_^(Cx). Then, the natural morphism:

w
(6.2) R Jfomo^ (mi, F 0 Ox) -^ -R ^mo^ (971, F <g) Ox)

%5 an isomorphism.
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Proof. We shall deduce (6.2) from (6.1) by duality. Let U be an open relatively
compact subanalytic subset of X. Set

Ai = RF (£7; R J&mc^ (mi, F (g) Ox))

A2 = R F Q7; J? Jfomo^ (mi, F ^ Ox))

B2 = RT^ {U'^fiom(F^x[dx}) ̂ x ^)
B^=RYc {U-, R J{om(F, ̂ x [dx]) ̂ x ^)

Then we have morphisms Ai -^ A2 and B^ —> B\ in D^Vect). By (6.1), B^ —> B\ is
an isomorphism. In order to prove the assertion, it is enough to show that A\ —f A^
is an isomorphism. There are pairings Ai 0 B\ —^ C and A^ 0 B^ —> C, which are
compatible, namely, the following diagram commutes:

AI (g) £?2 —————)- A2 (8) ^2

Ai (g) Bi ———> C.

By [Kai], the cohomology groups of Ai and Bi are finite-dimensional and they are
dual to each other in D^Vect). Since B^ —^ Bi is an isomorphism in D^Vect), the
cohomology groups of B^ are finite-dimensional. By Theorem 6.1, A2 is the dual
of £?2 in ^(FN) and hence the cohomology groups of A2 are finite-dimensional
and A2 is isomorphic to the dual of B^ in D^Vect). Therefore Ai —^ A^ is an
isomorphism. D
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7. Adjunction Formulas

w
The purpose of this section is to give adjunction formulas for the functors • 0 Ox
and ^om^Cx)? using ©-modules theory. Some of the proofs will be given in §9.

We say that a quasi-coherent 3)x-modules W. is good (resp. quasi-good) if, on
every relatively compact open subset of X, it admits a filtration {9Jtfc} by coherent
Sx-submodules such that each quotient Wk/W-k-i admits a good filtration and
SDtfc = 0 for \k\ > 0 (resp. k < 0). One defines the full triangulated subcategory
^ood^x) (resp. D^_g^d(®x)) of D^x) consisting of objects with good
(resp. quasi-good) cohomologies. One defines similarly D^O)^), D^^ja)^),
D^ood(aT) and D^^W) ̂  right S-modules.

Let yjt be an object of D^(3)x). We define its dual by the formula:

(7.1) D^mt = R J{om^^ (mi, Sx [^d).

This is an object of D^®^).
Let / : y —> X be a morphism of complex manifolds. We set:

d y / x = dy — dx = dim Y — dim X.

Let us recall the following well-known results.

Theorem 7.1. —

(i) Let 9Jt e D^Sx) and VI € D^Q)^). r/ien ^ere Z5 a natural isomorphism in

D^Cx):

(7.2) Rf^^r^^f.^^x^'

(ii) Assume 9Jt e D^^x) ^5p. D^^(®x)^ anrf / is non characteristic for 9Jt.

(a) We have f^ C D^Sy) (resp. D^^v)^ and

/"^x^ ̂  ̂ Y/"1^'
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(b) Moreover, for £ e D^S^x)? we /mve ^/ie isomorphism:

R^R J{om^(f_~l^^[dY/x}) ̂  R ̂ m^(9JtJ.£).

(iii) Let ̂  G D^^S&y) anc? assume that f is proper of supp^). Then f_^f\ C
I^ood(®x) and:

^Y^^^xL^'

(iv) For ̂  G D5 good(°^) an^ ̂  e D^Sy), ^/lere %5 a natural isomorphism:

Rf^R Jlom^^r^^Y/x^R J{omc,^j_^^).

Proof, (i) is obvious, (ii.a) is proved in [S-K-K] and (ii.b) follows immediately, (iii) is
proved in [Ka2], [Sc] (see also [S-Sc]). The morphism /i/'^x^y/x] — ®x defines
the morphism /(/"^[^y/x] —^ ^ which defines the morphism in (iv). To prove
that it is an isomorphism, we first reduce this to the case where ^l is quasi-good,
then to the case where it is good. Then it remains to apply (iii). D

We can now state our adjunction formulas.

Theorem 7.2. — Let W <E D^Sx) and let G € D^(Cy). Assume that f is
proper on supp(G). Then there are natural isomorphisms:

(7.3) R^RJiom^^r^G^ Oy) ̂ - R Jtom^^m.R^G^ Ox),

(7.4) Rf\ (^m(G,^y[dr]) ̂  f~1^) ̂  ̂ om{R f^G^x[dx}) ̂ x ml-

Notice that if9Jle D^(3)x) and / is non characteristic for 9JI, (7.4) is equivalent
to the isomorphism:

(7.5)
R^R J{om^ (/^mt.cr^G.Oy)) [2dY/x] ̂  P J{om^^ (W.^^m^/.G.Ox)).

Proof. By Theorem 5.7, we have the isomorphism:
w w

RJ{om^^m,Rf\G® Ox) ̂  R Jtom^^ (^Rf^R Jiom^^Y-^x^G (g) Oy)).

Then (7.3) follows by adjunction.
The isomorphism (7.4) follows from Theorem 5.7 and the formula (7.2). D

Theorem 7.3. — Let Vt <E D^_g^(3)y) and assume that f is proper on supp(W).
Let F G D^_^(Cx). Then there are natural isomorphisms:

(7.6) ^/^Jfom^(^,/- lFSOy)[dy]^^^max(/^^^®x)^x],

(7.7) Rf\ (crfomCr^.^y) ̂  ^) ̂  ̂ ^(F.^x) ̂ x f.^'

The proof will be given in chapter 9.
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8. ©x-Modules of Type FN or DFN

We shall recall here some constructions and results of Ramis-Ruget [R-R] and Houzel
[Ho].

A sheaf ^ on a real manifold X is said of type FN (resp. DFN) if for each open
(resp. compact) subset U (resp. K) of X, the space T^U'^) (resp. F^;^)) is
endowed with a topology of type FN (resp. DFN), and the restriction mappings

w
are continuous. For example, if-X is real analytic and F G R-Cons(X), then F^^^
is a sheaf of type F N . However, one shall take care that ^Ttiom^F.Dbx) is not of
type DFN in general.

Let X be a complex manifold. Following [Ho], we consider Ox as a sheaf of
complete bornological algebras and deal with Born(Ox), the category of complete
bornological Ox-modules. Houzel (loc. cit.) has defined a tensor product bifunctor
• ^ ©x' on tms category. This category contains the category of Ox-modules of type
FN and that of type DFN as its full subcategories.

On the other-hand, [R-R] defined the notion of an -FW-free (resp. DFN-tree)
Ox-module as an Ox-module of type FN (resp. DFN) isomorphic to E(S)QX for
some FN (resp. DFN) vector space E. This is an object of Born(Ox).

Let E 0 Ox be an FTV-free (resp. DFTV-free) Ox-module and let % be an
Ox-module of type FN (resp. DFN). Then one has the isomorphism:

(8.1) ( E ^ G x ) S ^ ^ ^ E S ^ S .

Notice that E § %, as defined by [Ho] is the same as that defined by [R-R]. For
example, in the FTV-case, E § ̂  is the sheaf U ̂  E § ?(£/;%).

In particular, for a continuous Ox-linear homomorphism E^ § Ox —^ E^ § Ox
of FN-ivee (resp. DFN-bee) Ox-modules and an Ox-module ^ of type FN (resp.
DFN), we can define a continuous Ox-linear homomorphism E\ § % —)- E^ § ̂

Let % = E(g)0x be an FTV-free or DFTV-free Ox-module, and let % be a coherent
Ox-module. Then we have the natural isomorphism: ^^o^ % ̂  E^^Q. This implies
that the functor % (^)©^ • is exact on the category of coherent Ox-modules. Hence %
is Ox-flat. In other words, FTV-free and DFN-iree Ox-modules are flat over Ox.
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Let U (resp. K) be an open (resp. compact) subset of X , and let E<^Qx be an
FN-iree (resp. a DFN-iree) Ox-module. Then RT{U;E^Gx) ^ E^RT{U;€x)
(resp. Rr(K;E^Gx)^E^Rr(K'^x)).

Examples of FN or DF TV-free Ojc-modules may be obtained as follows. Let Z
be a Stein complex manifold, K a Stein compact subset of Z, fz (resp. /j<) the
projection Z x X -> X (resp. K x X -^ X). Then Rfz^Zxx) ̂  F(Z; Oz)(g)0x is
FTV-free, and I?/x*(0zxx|^^) ^ r(X;Oz)00x is DFN-tvee.

The following theorem is an essential tool in the proof of Theorem 7.3. Although
it has already been used in [S-Sc], its proof, due to J-P. Schneiders, was not written
down in this paper and for the reader convenience we include it here. This proof is
an adaption of the techniques developed by Ramis-Ruget [R-R].

Theorem 8.1. — Let 2ft* be a complex of FN-free (resp. DFN-free) Gx -modules
and let^Q be an Gx-module of type FN (resp. DFN). Assume that0/!9 has bounded
GX -coherent cohomology groups. Then the natural homomorphism

%• 0©x ^ ̂  %• § ©x <@

is a quasi-isomorphism.

We shall only treat the case of sheaves of type F N ^ the other case being similar.
Let ^ be an Ojc-module of type F N . Define the 0^-module:

§,(^) = Qx § Gx(X) § ... § Gx(X) § 9{X)

where 9{X) = F(X;^), Gx(X) = r(X;©x) and Gx(X) appears n-times. The
Ox-module structure of ^(9^) is defined by the first factor. Define for n > 1:

6n:SnW-^Sn-^)

by:

fo ̂  ' ' • ̂  /n+1 ̂  ̂ (-l^'/O 0 • • • 0 /j/j+1 ̂  • • • ̂  /n+1
J=0

and define:

E : §oW -> ̂

by:

h (g) / 1-4- /i/.

One checks that 6n-i o Sn = 0. Hence we get a complex §•(£?) e C~(6x)-
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Lemma 8.2. — Assume 9 is FN-free. Then e induces an isomorphism:

£:S.(9) ̂ ^ inK~{Gx).

Proof. First assume ^p = 6x- We construct the homotopy operators:

^n:Sn(©x)-^n+l(Ox)

by:

/O ̂  • • • ̂  /n+l ̂  (-l)7^1^ 0 • • • ̂  /n+1 ̂  1

and

77:0x^^o(©x)

by:

/^/(g)l.

One checks that:

(i) for n > 0, ^n+i 0/2,^4- /i^-i o j^ == zd,

(ii) for n = 0, Ji o /IQ + ^7 ° ̂  = z^;

(iii) e or] = id.

This proves the lemma in case ̂  = Q x ' The case 9 = E § Ox follows by applying
the exact functor E<^ • to the preceding complexes.

D

Lemma 8.3. — Let 9^ be a complex of FN-free Gx-modules, and let (® be an
Gx-module of type FN. Assume ̂ is exact. Then 99 0©^ % is exact.

Proof. Since the problem is local, we may assume X is Stein. For a double complex
H " , we denote by s(H") the associated simple complex : s^H99)" = en=p^qHP7q.
Remark the following well-known property:

(8.2) if H P ' 9 is exact for every p, then s(H") is exact.
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By Lemma 8.2 we have §.(9^) c± 9^ in K(Gx) for any k. Hence tensoring by ̂
we have §,(9^) §)©„ % ^ 9^ §©^ % in ^(©x). Hence, by applying (8.2) to the
double complex §,(^) §©^ ^ — 9^ 0©x ̂

(8.3) 5(§.(^) §©^ %) -^e §©^ % is a quasi-isomorphism.

We set ^(X) = r(X;^). Since the ^'s are FTV-free and X is Stein, one has
^(X;^) = 0 for A^ 0. This shows that ^r(X;^) ^ ^•(X), that is, ^(X) is
exact. This implies:

Ox §©x ®xW § • • • § Cx(^) § ̂ {X) 0©^ % is exact.

Hence by applying again (8.2)

(8.4) s^S^9) (§©„ ^S) is exact.

Then the lemma follows from (8.3) and (8.4). D

Lemma 8.4. — Let u : 9^ -^ 9^ be a morphism of complexes of FN-free
Gx -modules, and assume that u is a quasi-isomorphism. Let^S be an 6 x-module of
type FN. Then u 0 ̂  : 3^ ^©x (® ~^ ̂  ^©x (® z5 a quasi-isomorphism.

Proof. Let M(u) denote the mapping cone of u. This is a bounded from above
complex of FN-iree Cjc-modules quasi-isomorphic to 0. Then M(u) 0 % is
quasi-isomorphic to 0 by Lemma 8.3, and it remains to notice that M(u) (g)©^ % is
the mapping cone of u § %. D
Proof of Theorem 8.1. Since 2ft* has bounded and coherent cohomology, locally
on X, there exist a bounded complex 2^ of free Ox-modules of finite type and a
quasi-isomorphism

?/ • 5F* ~ ̂ e
Lt/ . oL/ —— tVL .

gis

Since any FN-fiee Cjc-module is flat, we have:

££• 0^ % ̂  %• 0^ ̂
g^s

On the other hand we have by Lemma 8.4:

^ gcx^^^ §©x^
QZS

Since ^S* 0©^ % ̂  ̂ < § ©^ %, the proof is complete. D
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9. Proof of Theorem 7.3

We begin by the proof of (7.6) and we shall deduce later (7.7) by duality. Notice
that since ^[Jtiom(F,rDbx) is not a sheaf of type DFN in general, it would not have
been possible to copy the argument of the proof of (7.6) (in particular, when using
Theorem 8.1 as we shall do), to obtain (7.7).

In view of Theorem 7.1 (iv), we have to prove that the morphism defined by (5.9)

(9.1) Rf\RJ{om^ (^./^(F^ Ox)) -> Rf\R Jiom^^f-1? ̂  Oy)

is an isomorphism. By Theorem 5.8, this morphism is an isomorphism if / is a
closed embedding. Hence, using the graph decomposition of /, we may assume from
the beginning that Y = Z x X and / is the second projection. Moreover we may
assume F e R-Cons(X) and ^Vt admits a good filtration. Then we can reduce to the
case where 9T = 3)y 0©y 9 for a coherent Cy-module 9^ with proper support over
X. Now the left hand side of (9.1) is isomorphic to

Rf^Rj{om^ (^Oy^-io^y-^F^ Ox)) ^ Rf\R ̂ mc^Oy)!^ (F§ Ox).

Hence it is enough to show that
L w - w

(9.2) R f^R J{om^ (^, Cy) (g)©^ (F 0 Ox) -^ R f\R Jtom^ (9% f^F 0 Cy)

is an isomorphism. Let us introduce the sheaf:

f-^F § 0^^/x = R J{om^(G^ f-^F ̂  C6^).

Instead of proving (9.2), it is enough to prove that

(9.3) Rf.R Jfom©^,0y) ̂  (F§ ̂ ) ̂  Rf.R Jtom^^J-^F^ O^/x)

is an isomorphism. The morphism (9.2) is obtained by applying R J{omG^^(Q^, •)
to (9.3).

For XQ € X, we shall prove that (9.3) is an isomorphism on a neighborhood oi XQ.
Let us take an open neighborhood W of XQ and a subanalytic Stein compact subset K
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such that W C K. Let p : Z x K — Z be the projection. Then si = p*(0y ) is a
ZxJ^

coherent ring on Z. The category of coherent Oy|^ ̂ -modules is equivalent to the
category of coherent ^-modules by the functor ^ —^ p*(^). Hence ^ = p^(^| )
is a coherent ^-module. Now let us apply the results in §A.2 in the appendix. Let
us take as ^ in §A.2 the set of relatively compact Stein open subsets in Z. Then
y satisfies the conditions (A.7) and (A.8). Hence there exists II* C (7~(P(^))
and a quasi-isomorphism -L^(ir) —> ^. Writing ^k = {Uk,i}zei{k), we set
il^ = {Uk,i x W}ieJ(fc)- Then there is a quasi-isomorphism

£o,(U-)|^-^|^.

For any relatively compact Stein open subset V of Z we have

(9.4) Rf^RJtom^ ((Cy)yxx,0y) ^ r(y;©z) § Ox

and

(9.5)
^/^J&mo^((Oy)vxx,r l^^oce?o/x)^^(y;Oz) § (F^^)

^ (r(v;0z) § ©x) §©x (^ ̂ ) •
We set %• = ^JHomcy(^(ir),Oy)|^. By (9.4), each 91̂  is an jFW-free
Oyy-module. In the derived category, 9l* is isomorphic to Rf^R J&m©y(9p,Cy)|,„.
Hence %* has bounded coherent cohomology groups. The object

R f^R Jiom^ (9?, Oy) ̂  (F ̂  ̂ )

is represented by %• (g)©^ (F§ ce^)), and by (9.5),

R J{om^ f^, f^F ^ C^?0/Rf^RJiom^ (^./-^^ C^/x)

is represented by 91* 0c^ (F^ ce^)) on W. Hence to prove that (9.3) is an
isomorphism, it is sufficient to apply Theorem 8.1.

Finally, let us prove (7.7). Set:

^i = R^RJiom^^f-1?^ Cy)[dy]

^2 = RJiom^^{f_^F^ Qx)[dx]

3{i - fi/. (^fiom^F^Y) ̂  91),

3(2 = ^^m(F, ̂ x) ̂ x f^ •

MEMOIRE 64



MODERATE AND FORMAL COHOMOLOGY. . . 51

The morphism

(9.6) 3{i -^ 3{2

is equivalent to the morphism:

Rf^RJtom^ (Dym^fom^-^^yldy]))

-» R Jtom^^ (/,Dym,^om(F,^x[dx])) ,

which follows from Proposition 5.6. Hence, to prove that (9.6) is an isomorphism,
it is enough to prove that for each open subset U of X, the morphism:

(9.7) RT^UM -^ RY^UW

is an isomorphism. Consider the morphism deduced from (7.6):

(9.8) RT{U', ̂ 2) -^ -Rr([/; ̂ i).

By its construction, this last morphism is well-defined in the category D^^FTV), and
is dual to (9.7) by Theorem 6.1. By (7.6) and the closed graph theorem, (9.8) is an
isomorphism in D^-FW). Hence (9.7) is an isomorphism and the proof is complete.
D
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10. Integral Transformations

10.1 Tempered C00 Functions
w

In this section, in order to study a multiplicative structure of • 0 Ox and
^THom^^Gx), we shall construct an auxiliary functor ^THom^F^^). It is not exact
in F but left exact. We show that, for a complex manifold X, ^THom^F^Gx) can be
also calculated by the Dolbeault complex of^Tfiom^F,^^).

Let X be a real analytic manifold. Let U be an open subanalytic set. A
function / e ^o°°(U) is called with polynomial growth at p e X if it satisfies the
following condition. For a local coordinate system (a;i, . . . ,Xn) around p, there
exist a sufficiently small compact neighborhood K of p and a positive integer N
such that

(10.1) sup {dlst(x,K\U))N\f{x)\ <oo .
x(EKnU

Here, dist{x,K \ U) is the distance from x to K \ U. It is obvious that / has
polynomial growth at any point of U. We say that / is tempered at p if all its
derivatives are with polynomial growth at p. We say that / is tempered on an open
set fl, if it is tempered at any point of fl.

Remark that in this case / can be extended to a distribution defined on f^.

Proposition 10.1. — Let X = R" and A = ̂ ^ SP'jQx^. Lei u be a distribution
on X . Assume that An is C°° on an open subanalytic subset U and that ^u\u is
tempered at p e X . Then u u is also tempered at p.

Proof. By the ellipticity of A, u is C°° on U. Let us take a distribution K(x) and
a C°° function R{x) such that

S(x) = AX(aQ + R(x)

and the support of K(x) and the support of R(x) are contained in {x € X; |a;| < 1}.
Then K{x) is integrable. For c > 0, set

Kc(x) = c^K^x) and Rc(x) = c^R^x).
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Then we have again

Hence we have

S(x) = ̂ Kc{x) + Rc(x) .

u(x)= K^x - y){Au)(y)dy + j Rc(x - y)u(y)dy .

Now we take a; € U and set c = dist(:r, X \ U)/2. Then we have

fK^x-y)(Au)(y)dy ^ ( sup \(Au)(y)\} f K^x - y)\dy < const. c-^
•/ \1^|<C / J

for some TVi. On the other hand, we have

/ Rc(x - y)u(y)dy < const. V sup \D^Rc(x - y)\ <, const. c~N

1 7 lal^TV^^

for some N. Thus 'u|[/ has polynomial growth at p.
Since ^D^u(x) = D^Au(x), any derivative of u\u has polynomial growth at p

and hence ^|^ is tempered at p. D

10.2 The Functor rr/^om( , ce^)
Let X be a real analytic manifold. For a subanalytic open subset £7, we

shall define the 2)x-module ^fiom^Cu ,C6^>) as follows. For an open subset f^,
r^^r&w^Ct/,^)) is the set of C°° functions on ^ H (7 which are tempered on
^2. Then U 1-4- ^THom^Cu 5^^) is a contravariant functor from ^fx to the category of
3)jc-modules.

Proposition 10.2. — For any subanalytic open subsets U and V,

0 -^ ̂ om^Cuuv^) -^ Tfiom^Cu^) C^n^Cy,^) ̂  ̂ ^(C^ny,^) -^ 0

%5 exact.

Proof. It is enough to show the exactness of the following sequence, assuming that
X = W1 and that U and V are relatively compact:

0 -^ r^X'^fiom^Cuuv^)) —^T(X^fiom(Cu^)) C F (X^m^y,^))

^ r^CTfom^nv,^)) -^0.

The property Ker(a) = F (X;r^/^om(CE/uv^^))) easily follows from the existence of
a positive integer N and G > 0 such that

dist (x, X \ (U U V))^ < C (dist(rr, X \ (7) + dist(a;, X \ V)) for any ^ € (7 U V.
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Let us prove the surjectivity of a. Set FQ = {x C U',dist{x^X \ V) < dist(a;,X \
U ) / 2 } C W\V and Fi = {.r e y;dist(;r,X \ ?7) < dist(a;,X \ V)/2} c V \ U.
T h e n £ / n y c X \ ( F o n F i ) .

Now recall the following lemma on cut-off functions.

Lemma 10.3. — ([H°? Cor. 1.4.11]) Let FQ and F^ be closed subanalytic subsets.
Then there exists -0 <E ^°° {X \ (FQ n ̂ i)) such that

(10.2) ^ =Q on a neighborhood of FQ \ F\;

(10.3) '0 = 1 on a neighborhood of Fi \ FQ;

(10.4) '0 is tempered at any points of X \ {FQ Q Fi).

Take ^ ^ ^(X;rrtom(CJc\(^on^l)^^)) as in the lemma above.
For / G r {X'^tiom{Cunv^)), define /o e C600(^) by

f^)/(^) i f^eyny,
^^fo if.e^\y.

For ^ € (7 H V n supp(^) C (U n V) \ Fo, we have

dist(^ X \ U) < 2 mm (dist(rr, X \ U), dist{x, X \V)) < dist {x, X \ (U H V)) .

Therefore /o belongs to F {X^tiom(Cu^)). Similarly define /i € ^^(V) by

f(l-^r))/(^ i f ^ e t / n y ,
f^(a;) = ^J v / [o, if ev\u.

Then /i belongs to F (X;^^^,^^)) and / = a(/o C /i). Q

By the proposition above and Proposition 1.4, we can extend the functor
^fiom^Cu^) to

(10.5) ^m^^) : D^_,(Cx) ^ D^R-Cons^)) -^ D^Sx).

Namely, the functor ^(U) = r^fom(C[7,ce^)) can be extended to a contravariant
functor ^: M-Cons(X) -^ Mod(®x) and ^m^,^) is its right derived functor.
By Proposition 1.4, we have:

(10.6) H3^rr&wl(F,<e(^)) = 0 for any F e M-Cons(X) and j + 0,1,
(10.7) H^^liom^Cu^^)) = 0 for any open subanalytic set U and j ̂  0.

We can see easily that there is a sequence of morphisms

C î) ̂  -^ ̂ ^(Cc/,^) -^ crfom^, CDfcx).
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This induces functorial morphisms in D^®^)

(10.8) D^(F)S ̂  -^ ^hom^F^) -> ^fiom^F^bx) .

Proposition 10.4. — We have a functorial morphism in F, G € D^_^(C^)

(10.9) ^tiom^F, c^) (1)̂  ((F (g) G)^) ̂ )-^ G^) ̂  .

Proof. We can easily reduce the proof to the case where F = Cjj and G = Cy for
open subanalytic subsets U and V. Then we have

(10.10) ^om{F^)^ ((F0G)^ ̂ ) = Crfom^,^) ̂  {Cunv^ ̂ )

-^ ̂ ^(C^ny^?) ̂ x (Ct/nv^ ̂ ^) •
w

For / G ^^(C^nv,^^) and g € Q/ny^) ^^5 the product fg belongs to
Cur\v^ C6^• Hence it defines

(10.11)
W W W W

^fiom{Cunv^) 0^x (C^/ny^ ̂ ) ̂  C[/ny(3) ̂ ^ ̂  Cy(g) ̂ ^ =00^^.

Composing (10.10), (10.11) and
L w w

^om{F^) 0^ ((F (g) G)0 c^) ̂  ̂ fiom{F^) 0^ ((F 0 G)0 ^g^),

we obtain the desired morphism. D

10.3 Complex Case
Now we assume that X is a complex manifold.

Theorem 10.5. — For any F C D^_^(Cx), the morphism

R Jiomc^^ (Oj^cr/zom^^)) -^ R Jfomc^ (Qx^fiom^F^bx))

is an isomorphism in D^S^c).

Proof. The morphism is constructed in (10.8). As the question is then local, we
may assume that X = C71 and F = Cu for a subanalytic open subset U. Let
A be the differential operator Y^=i cP'/QxiQxi. There exists an exact sequence of
3) x^ -modules:

o ̂ - ®x, ̂  Gx ^- (Sxjax.A)^0 ̂ - (axjax.A)0^ ̂ -.. • .
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This sequence is constructed from a free resolution of
C[9i,... ,9n,9i,.. . A]/(9i,... A) as a module over C[9i,... ,9n,9i, . . . ,9n]/(A).
Hence it is enough to show that the vertical arrows in the following diagram give a
quasi-isomorphism from the complex of the top row to the one of the bottom row.

0 ———> ^fiom{Cu^) -A-> ^fiom^Cu^) ———> 0i i i i
0 ———> ^fiom^Cu^bx) A ) ^fiom^Cu^bx) ———> 0.

It is well-known that ^om^Cu.'Dbx) -^ ^['tlom(Cu,rDbx) is an epimorphism.
Let us prove the surjectivity of A : ^fiom^Cu^) -^ ^TIiom{Cu^). For
g G ^rfiom^Cu,^) let us take / G Dbx such that g = A/. Then by Proposition
10.1, / belongs to G^m(Q/ ,^).

Hence it is enough to show that if / G ^Tfiom^Cu^bx) satisfies A/ = 0 then /
belongs to ^/^(Cc/,^). This also follows from the same proposition. D

This proposition says that to define ^om^F.Gx), we can use the Dolbeault
complex o{^tiom{F^) instead of ^/^(F^x).

Proposition 10.6. — There exist functorial morphisms in F, G € D^_^(Cx).'
L w w

/̂lom ,̂ Ox) ®Cx {(F ® G)® ̂ ) -^ G® ̂  ,
L w w

^ (̂F, Ox) 0©x ((F ̂  G) (8) Ox) -> G (g) Ox .

Proo/. It is enough to apply the functor RJ{om^^{Qx^ ' ) to the morphism in
Proposition 10.4. D

In the following theorem, (10.14) and (10.15) are due to J. E. Bjork [Bj, Th.
7.9.11]. We denote by D^(®x) the full subcategory of D^Sx) consisting of
objects with regular holonomic 3)x-modules as cohomologies. We set Sol(W) =
R J&mo)^ (9JT, Ox). Then Sol is a contravariant functor from D^(®x) to D^(Cx).

Theorem 10.7. — Let W € D^(2)x) and F e D^_^(Cx). We have canonical
isomorphisms in D^Sx)

(10.12) R Jiom^^ (mi, F§ ̂ ) ̂  {SoW 0 F) ̂  ce^,
w w

(10.13) ^ J&m^ (mi, F (g) Ox) ̂  {Sol(W) 0 F) 0 Ox,

and

(10.14) m (|)(̂  ^fiom{F,T)bx) ̂  ^fiom^olCW) (g) F.CDfcx),
(10.15) mt 0c^ ^tiom{F, Ox) ^ ̂ om^o^W) (g) F, Ox).
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Proof. The isomorphisms (10.14) and (10.15) are proved in [Bj]. Let us prove
the others by duality. Set G = Sol{m). Then 9JI = ^fiom^G.Gx) by [Kas]. By
Proposition 10.6, there exists a morphism 3DT(g)c^ ((G (g) F)§ C6^)) —^ F^ <e^>. This
gives

(10.16) (G 0 F)^) ̂  -^ a Jfome^ (2Jt, F^ ̂ ).

Let us prove that this is an isomorphism.
For any open subset U, RT(U; (G 0 F)^ ̂ ) is the dual of RF^U^fiom^G 0

F.^Db^)). If £/ is sufficiently small, there exists a bounded exact complex of
Ox-modules on U

0 —— 9Jt ^— 0^° .— Cl71 ^— ... ,

where Io,h,... are countable sets. Hence RT(U',R J&mc^(9Jt,F^ ^^)) is the
dual offirc(<7;9Jt0c^ Thom^F^b^)). Since (10.14) implies that

firc(^;^wi(G0F,T^)) <-firc(£/;9}T(t)^ ^fiom{F^bx))

is an isomorphism, we conclude by duality that
w w

Rr(U; (G 0 F)(g) ̂  -^Rr(U',R Jfcrnc^ (mi, F0 ^g^))

is an isomorphism. This shows that (10.16) is an isomorphism. Thus we obtained
(10.12). To obtain (10.13), it is enough to apply the functor R ^Hom^^(Q^,' ) to
(10.12). D

10.4 Integral Transformations
Let us consider the following situation. Let X, Y and 5 be complex manifolds,

and let dxi dy and ds be their dimension. Let us consider a diagram of morphisms
of complex manifolds.

5
/ / \.

Let m € D^_g^(®x), G C D^(Cy) and Z e D^(a^). Set L = Sol^). We
assume that

(10.17)
/ 1 supp(SDT) D supp(£) is proper over V,
g~1 supp(G) H supp(£) is proper over X.

We define

(10.18) 9Jt o £ = ̂  (/-^ 0e^ £)
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and

(10.19) L o G = R f\{L 0 g^G).

Theorem 10.8. — We have isomorphisms:

(10.18) RT(x^R J&m<^ (9Jt, (L o G) ̂  Ox)) [ds]

^Rr(Y',RJ{om^(yjlo^G^ Cy))[dy],

(10.19) Rrc(x'^om (L o G, ̂ x) ̂ x ̂ ) [^x]

^^^c(y;rrfom(G^Y)(|)a^ (mio^))^].

and there are similar formulas by exchanging F and Fc.

Proof. Theorem 7.3 implies

Rr(Y', R Jtom^ (^(/-'W 0e^ £), G S Ov) ) [dy]

^^r^^jfoTn^^'mt^c^^-^S o^))^].

We have

JRJfom^^(/-lmt(|)©^^-lG§C5)^^^^s(/-l^^^^©^(^^ ^)) •

Theorem 10.7 implies
-, w - w

RJ{om^^,g G(^ Qs)r^(L^g~lG)® 6 s '

Hence we obtain

Rr(Y',RJ{om^(Wo^G^ Oy))[dy]

^ Rr^RJiom^ (/-'mi, (L (g^G) ̂  0^) ) [^].

We have by Theorem 7.2

ar^^j&m^^/-1^,^^^-^)^ o^))
^J?r(x;aj&m^ (W^Rf^L^g^G)^) Gx) ) .

Thus we obtain (10.18). The other isomorphism is similarly proved. D
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Remark 10.9. By replacing • ̂  Gx and ^liom{-, 0x) with • (g)©x and R J{om(',6x),
the similar formulas to those in Theorem 10.8 hold under conditions different from
(10.17). Instead of (10.17), assume that 9Jt C D^(3)x) and

( f~1 supp(2Jl) H supp(£) is proper over Y,
(10.20) 9JI is non characteristic with respect to /,

Char^"^) H Char(/C) c T^S.

Then we have

(10.21) RTc (X^R Jtomc,^ (9Jt, (L o G) 0 ©x) ) [^]

^ R Fc (r; ̂  Jfom^^ (mi o ̂ , G (g) Cy) ) [dy],

(10.22) J?r(x;J? J{om (L o G, ̂ x) ̂ x ̂ ) [^x]

^ ̂ r(r;^ Mom(GW ̂  (Wo^[ds}.

In the case where /C = Gs (10.21-22) was obtained in [D'A-Si]. Such formulas
have nice applications (see e.g. [D'A-Si], [D'A-S2]).
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A. Almost Free Resolutions

A.I General Theory
In this appendix, we shall show that a complex with coherent cohomology groups

has a resolution by "almost free" modules. In order to see this, we first discuss the
problem in a general setting.

Let us denote by Ab the category of abelian groups. Let P be an additive
category and A an abelian category. We are given an additive functor L : P —^ A,
an additive bifunctor H : P0^ x A —^ Ab, and a morphism of bifunctors
ax,M : H(X, M) -^ HomA(^(X), M) in X G P and M G A.

For X <E P and M G A, we call an element ^ € H(X, M) a morphism from X
to M and write ^ : X —> M. Then we can consider the composition ^ o / : Y —> M
for a morphism / : Y —^ X in P and the composition u o ^ : X -> N for a
morphism u : M -> N. In fact ^ o / = H(L(f),M)W and u o ̂  = H(X,u){^).
We have (u o ̂ ) o f = u o (^ o /). In another word, P U A is a category. We have
a{u o ̂ ) = u o a(^) and a{^ o f) = a(^) o !/(/).

For morphisms f : X -^Y and g : Y — Z in P, we say that X —>• Y -4 Z is exact
if g o f = 0 and L{X) -Lu^ L(Y) -^ L(Z) is exact. Similarly for a morphism
/ : X -> Y in P and (p : Y — M with M € A, we say that X -4 Y -^ M is exact if
(p o f = 0 and L(X) -L(J\ L(Y) -°^\ M is exact. For a morphism / : X -^ Y in P,
we say that X is a cover of Y if L(X) ——^ L(Y) is an epimorphism. Similarly for
X e P, M C A and y : X -> M, we say that X is a cover of M if L{X) a-^ M is
an epimorphism.

We assume that these data satisfy the following four axioms.

(A.I) For any X G P, the functor H{X, M) is left exact in M <E A.

(A.2) For any morphism g : Y —> Z in P, there exists a morphism / : X — Y in P
such that X -^ Y -4 Z is exact.
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(A.3) For any epimorphism u: M —^ N in A, V e P and ^ C H(Y, TV), there exist
a cover g : X —^ Y of Y and (^ e ^(^C, M) such that ^o g =uoy.

(A.4) For any X,V e P and ^ C H{X, L(Y)) there exist a cover / : X' — X of X
and a morphism ^ : X' -)- Y such that L(^) == a(^o/) in HomA(I/(-^'), ̂ (^)).

We say that an object M of A is P-coherent if M satisfies the following two
conditions.

(A.5) There exists a cover / : X —> M of M.

(A.6) For any Y —^ M in H(Y^ M), there exists a morphism X —> Y in P such that
X —^ Y -> M is exact.

We shall denote by ̂  the full subcategory of A consisting of P-coherent objects.

Proposition A.I. — ^ is stable by kernels, cokernels and extensions.

Proof. Let O — ^ J ^ - ^ M - ^ T V b e a n exact sequence in A and assume that M
and N are P-coherent. Let us show that K is P-coherent. Let us take a cover
^ : X —^ M of M. Then there exists Y e P and an exact sequence Y -^ X -> N.
By (A.I) there exists (p : Y —^ K such that u o (p = -0 o g. It is easy to see that
a((^) : L(Y) — ^ J C i s a n epimorphism. Therefore K satisfies (A.5).

Now X e P and (p : X —>• K are given. Then there exists f :Y —> X such that
Y -> X —^ M \s exact. Then by (A.I), (p o f = 0 and L(V) -4- L(X) -^ K is exact.
Hence X is in c^.

To see that ^ is stable by taking the cokernel, it is enough to show that for an
exact sequence Q — ^ K - ^ M - ^ - N — ^ O ^ i f K and M are P-coherent, then N is
P-coherent. It is obvious that N satisfies the condition (A.5).

To see (A.6), let X e P and ^ : X —> N . Then by (A.3), there exists a cover
/ : Y —> X of X and (p : Y -4- M such that '0 o / = v o ^?. Let us take $ : Z —> K
such that L{Z) —> K is an epimorphism. Let us consider Z 0 Y —>• M given by ^
and (^. Then there exists /i : W -> Z 9 Y such that T y — ^ Z e Y ^ M i s exact.
Then W —^ X —^ N is exact. Hence TV is P-coherent.

Finally let us show that ^ is stable by extensions. Let O — ^ - K - ^ M - ^ N — ^ O
be an exact sequence and assume that K and N are P-coherent. Let us show that
M satisfies (A.5). There exists a cover X —^ N of TV. By (A.3), replacing X with
its cover, we may assume that X —> TV decomposes into X —> M —> N . Let us take
a cover Z —> K of K. Then L(Z ® X) —)- M is an epimorphism. Hence M satisfies
(A.5).
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In order to see that M satisfies (A.6), let y? : X —^ M be an element of H{X, M).
Let us take Y -> X such that Y -> X -u0^ N is exact. Then by (A.I), Y -> M
decomposes into Y -> K —^ M. Let us take an exact sequence Z —^ Y —> K. Then
Z —^ X -> M is exact. D

The functor L : P —^ A induces a functor K~(P) —^ K~{A). Let us denote by
J^T(P) the full subcategory of K~(P) consisting of complexes X such that L(X) is
exact. Then we can easily see that ^(P) is a null system (see [K-S, Def. 1.6.6]). We
define D~(P) the quotient of K~(P) by J^(P). The category D~(P) is described
as follows. We say that a morphism / : X —^ Y in K~(P) is a quasi-isomorphism
if I-r^I^X)) —>• jr^I^y)) is an isomorphism for every n. The set of objects of
D~(P) is the same as the one of K~~{P) and

HomD-(P)(X,y)= Urn Rom^-^X^Y)
x'->x

= Inn Hom^p^X'.Y')
X'-fX.Y-^Y'

= lim Homj<-(p)(X,y').
Y-^V

Here X' —> X and Y —^ Y ' range over the sets of quasi-isomorphisms. Then L
induces a functor

L:D-(P) -^D-(A).

Let us denote by D^(A) the full subcategory of D~(A) consisting of the objects
whose cohomology groups are P-coherent. By the preceding proposition, D^(A)
is a triangulated category. Similarly, let us denote by D^(P) the full subcategory
of D~(P) consisting of objects X such that H'^^L^X)) is P-coherent for every n.
Then it is also a triangulated category and we have a functor

^D^(P)^IWA).

We shall show that it is an equivalence of categories. The following proposition says
that it is essentially surjective.

Proposition A.2. — Let M9 be a complex in A. Assume that Jf^M*) is P-coherent
for every n and IT^M*) = 0 for n > 0. Then there exists X* C C~(P) and
'0 : X* —^ M9 such that a(^) : L(X9) —^ M* is a quasi-isomorphism.

Proof. Let us denote by Zn the kernel of d^ : M^ —t M"^ and by Bn the image
of <%~1 : M72"1 —^ M71. Assume that we have constructed a commutative diagram

•yn _____i ~\/"n-}-l _______^. 'vn-\-'2 _______i

1 1 1
... ———^ M^ ———> Mn ———> M^ ———> M^2 ———> ' ' •
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such that ^(X*) —^ Hk(M9) is an isomorphism for k > n and an epimorphism for
k = n. Let us take an exact sequence W -> X71 ->• X^1. Then TV -^ X71 -^ Mn

decomposes into W -> Z71 -)• M71. By the assumption W -> Z" -> ^{X9)
is an epimorphism. Since ^(M9) is P-coherent, there is an exact sequence
V -> W -^ JT^M*). Then Y -, W -^ Zn decomposes into Y -^ Bn -^ Z1^.
By (A.3), replacing Y with its cover, we may assume that Y —^ Bn factors through
y -> M71-1 -. B71.

Take a cover U -^ H^^M9) oiH^^M9). By (A.3), replacing U with its cover,
we may assume that U -> Jf-^M*) decomposes into U -> Z7'"1 — H"-1^9).
We set X71-1 = UOY. We define d^~1 : X71-1 -> X71 by the zero morphism U -> X71

and Y -> W -^ X" on Y. Define ^n-1 : X71-1 -> M71-1 by U -> Z71"1 -^ M71-1

and Y -^ M71-1. Then ̂ od^-1 = d^o^-1. Furthermore, ^(X*) -> ^(M*)
is an isomorphism for k = n and an epimorphism for k = n — 1. Thus the induction
proceeds and we can construct a desired complex X* and X* —> M9. D

Proposition A.3. — Let Y\Z9 e G-(P). Le^ n : L(y) -^ L(Z*) 6e a morphism
in C~~(A). Assume that the cohomology groups of L(Y9) are P-coherent. Then
there are X9 e C~(P) and a quasi-isomorphism f : X9 —^ Y* and g : X9 -» Z9

such that L(g) = u o L(f) e RomA(L(X9), L(Z9)).

Proposition A.4. — Let g : Y9 —^ Z9 be a morphism in C~(P). Assume that the
cohomology groups of L(Y9) are P-coherent. If L(g) : L(Y9) —^ L{Z*} is homotopic
to 0, then there exists a quasi-isomorphism f : X9 —^ Y* such that g o f : X9 —> Z9

is homotopic to 0.

We shall give the proofs of these two propositions in §A.4.
Now we are ready to prove the following main result in this subsection.

Theorem A.5. — D^(P) —>• D^(A) is an equivalence of triangulated categories.

Proof. We saw already that this functor is essentially surjective. Hence it is enough
to show that for any X9 ,Y9 e C~{P\

Hom^p^,^) -^ Hom^-^ W\L(Y9))

is bijective.
Injectivity. Let / : X9 —^ Y9 be a morphism in C~(P) such that L(/) vanishes as
an element of Hom^- /^ {L(X9),L(Y9)). Then there exists a quasi-isomorphism

coh v •'

u : M9 -^ L{X9) in C-(A) such that the composition M9 A L(X9) -L(J\ L(Y9)
is homotopic to 0. By Proposition A.2, we may assume that M9 = L(Z9) for some
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y G C~{P). By Proposition A.3, there exist a quasi-isomorphism g : W* -> Z*
and a morphism h: W* —> X* such that

L(K) = u o L{g) : L(W9) -^ L(X9) .

Then L(f oh) = L{f) ouo L(g) is homotopic to 0. Hence by Proposition A.4, there
exists a quasi-isomorphism U* —> W9 such that U9 -> W9 —^ Y* is homotopic to 0.
Since the composition U9 -> W -^ V is equal to U9 -> W -> X9 — V and V -4-
W9 —> X9 is a quasi-isomorphism, / is 0 as an element of Hom^- /pJX^y*).

coh v -

Surjectivity. Let us consider a morphism L(X9) —^ L(Y9) in D^(A). Then there
is a quasi-isomorphism u : M9 —)• L(X9) and a morphism v : M9 —>• L(Y*) in (7~(A)
such that v o u~1 is the given morphism L(X9) —>• L(Y9) in D^(A). There exist
Z* G C~(P) and a quasi-isomorphism w : L(Z*) —^ M9. Then by using Proposition
A.3, there is a quasi-isomorphism / : W9 —> Z9 together with morphisms g : W9 —>•
X9 and h : W -^ V such that L{g) = uow o L(f) : L(W9) -^ L(X9) and
L(h) = v o w o L(f) : L(W9) —^ L(X9). Then g is a quasi-isomorphism and the
morphism h o g~1: X9 —^ Y* in D^(P) is sent to v o u~1 in D^(A). D

A.2 Almost Free Resolutions of Coherent Modules
Let us apply the theory above to the situation of coherent modules. Let X be a

paracompact and locally compact space and s^i a sheaf of rings on X (with 1 but not
necessarily commutative) which is coherent as a left ^-module. Let us take a set £f
of relatively compact open subsets of X. We assume the following two conditions
ony.
(A. 7) For any x € X, {U G ^f\x € U} is a neighborhood system of x.

(A.8) For Uy G y, U H V is a finite union of open subsets belonging to y.

Let us take Mod(,sA) as A in the situation of the last subsection. We define P(,s4)
as follows. The set of objects of P(,sA) is the set of locally finite families of open
subsets in y. For two objects U = {Ui}z^i and V = {^'}j'eJ °f P^)^ we define

Homp^)(U,2J)=nf e W^))
,ej ̂ uicvj '

== [(aij)i^ij^j',aij G r(^;.sA) and a^j = 0 unless Ui C Vj} .

Note that for any i e J, {j C J; ̂  C Vj} is a finite set. For 2H = {W/c}A;eK5 we

define the composition c = (c^) C Homp(^)(it,2n) of a = (a^j) C Homp(^)(il,^)
and b = (&j,fc) e Homp(^)(^2]J) by

cz,fc = ̂ a^-(^fc ^) e r(I^;^).
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The sum ranges over the j e J with Ui CVj CWk. It is easy to see that P(^) is
an additive category.

We define the functor L^ : P(.sA) -> Mod(,s4) by

ww = ® ̂
t€^

for il = {Ui}i^i. We can easily see that it is well defined.
We define the bifunctor H : P(^)°PP x Mod(^) -^ Ab by

^(U,M)=J]r(^;M).
iei

We can easily see that it is a well-defined functor. We define

OU,M : H{ii, M) -, Honu(J^(U), M)

by the restriction map ]~[ r(Z^;M) — n r(^;M) ^ Hom^ (L^ (U), M).
%eJ zeJ

Proposition A.6. — TAe axioms (A.1)-(A.4) hold.

Proof. The axiom (A.I) is obvious.
In order to prove the other axioms, we shall prepare the following lemma.

Lemma A.7. — Let K be a compact subset ofX and W a neighborhood of K. Then
for any U € y, there exists a finite family {Vj} of open subsets belonging to ^ such
that

unK cUjVj c unw.

Proof. By (A.7) , there exists a finite family {Vj} of open sets in ^f such that

K CUjVj CW.

Since U D Vj; is a union of finite subsets belonging to £f by (A.8), we obtain the
desired result. D
Proof of (A.2). Let us take U = {Ui}i^i and W = {Vj}j^j and a morphism
/ = (dij) : ii -> V. For any x C X, set I{x) = {i e I\x e Ui}. Then there
exists a neighborhood W{x) of x such that W{x} D Ui = 0 for any i G 7" \ J(a;). By
shrinking IV(rr), we may assume that a^j extends to dij G T(U~iUW{x);sS.). Then
for any subset G of I(x\ dij defines a morphism .s^00! / . —^ ̂ J Since sl
is coherent, its kernel is finitely generated on a neighborhood of x. Hence shrinking
W(x) if necessary, we may assume that there are a finite index set N{G, x) and an
exact sequence

^@N{G,x) ^^G\ ^(BJ\
^ w { x ) 7 s i iwW^ \ww

MEMOIRE 64



MODERATE AND FORMAL COHOMOLOGY. . . 67

There exists a locally finite covering {Wk}k^K of X such that Wk € ^ and there
exists Xk with Wk C W(xk). Write Wk W^G u^ = UmeC(fc,G) W(k,G,m) for a
finite index set C(k, G) and IV(A;, G, m) € y. We set

K' = {{k, G, m, n)',keK,Gc I(xk), m € G(G, fe), n e -/V(G, x^}

and W(fc,G,m,n) = TV(fc,G,m). Then 22? = {^(^G.m.n)}^^^)^ is an
object ofP(,sA). The morphism

^ = ̂ L^) ̂  ̂ N(G>a;fc) H )̂ ̂  MeG!^) ̂  ̂ w H )̂

gives C(fc^,n),z ^ r(TV(A:,G,m,n) ;.s4). This defines a morphism from 2CT -^ It. By
the construction, it satisfies the desired conditions: W —^ it —^ V vanishes and
L^(an) -^ Z^(U) -^ L^(2T) is exact.
Proof of (A.3). Let u : M —^ N be an epimorphism in Mod(^), il = {Ui}i^i
an object of P(^) and y? : U -^ TV an element of H(ii,N). Set (^ = (^)zei
with s^ G r(U~i;N). For any a;, we define I(x} C J as above and take an open
neighborhood W(x) of a- such that W{x) H l^ = 0 for i ^ I{x). Shrinking W(x)
again, there exists t^ € T{W{x)\M) such that ^(^(2^))|iv^)n^ = ^w^w
Then take a locally finite covering {Wk}k^K of X such that Wfc C W(xk) for some
a^fc and Wk € y. Write W/, n Ui = UneC(fe,z) W(A;' ̂  n) with a finite index set c(k^z)
and W{k,i,n) C y. Then set K ' = {(k,i,n)',k e K, i ^ I{xk), n C G(M)}
and 2? = {W(k,i,n)}^n^K'- Then ^(,^^) gives a morphism 2U ^ M and
^{k,i,nYi' = ^a' ^ T(W{k,i,n)', sl) defines a morphism 21? —^ U. We can easily
see that

an ——> u

M ———> N

is commutative and 1/̂ (211) —^ L^(U) is an epimorphism.
Proof of (A.4). Let us take objects il = {Ui}^i and 9? = {^}jeJ of P(0 and
(^ : U ̂  L^(2T). We have H{^ L^W)) = n, IW; ©,My,) ^ nzj W; ̂ •)• Let
a^j € r(Ui',slvj) be the element corresponding to (p. Then supp(a^) is a compact
subset of Vj. Hence by Lemma A.7, there exists a finite family {^,j,n}ne^(z,j) suc^
that Wij^n ^ y and

U, F| supp(a,,,) C |j Wi^n C ̂  H V, .
n€X(z,j)
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By the same lemma, there is also a finite covering {W^^}^K'{i^ such that
TT7~f ^- CD 1W[^ G y and

Ui \ [ IJ w^} c U ^rn C U, \ SUpp(a^) .
\neK{iJ) j m^K^iJ)

Set K = {{iJ,n)',UinVj ^0, n e K{ij)} and JT = {(z , j ,m) ;^ny, 7^ 0, m G
lT(z,j)}. Set SJ = {H^,n}(zj,n)eK and SH' = {V^J(^>z)e^ They are objects
of P(,sA). Define 2H ^ U by ^»,z/ == ^ G r(l^^;.s4) and 2U -4- 2T by
^n)^ = ̂ J ^ r(W^;.s4). Define W -^ U by V^J^^, = ^/ e r(l^;^)
and W -> ^ by 0. Then 2H © 2U' ^ II and 2J C SH' ^ 2T satisfy the desired
conditions. D

Proposition A.8. — An si-module M is coherent if and only ifM is P(.sA)- coherent.

Proof. First let us show that a coherent ^-module M is P(,sd)-coherent. The
property (A.5) for coherent sheaves is obvious. Let us show (A.6). The proof
is similar to the proof of (A.2). Let U = {Uz}i^i be an object of P(^A) and let
ip : 11 —> M be given by Sz G r(L^; M). For x e X, let us define I{x} as in the proof
of (A.2) and a neighborhood W(x) of x such that W(x) D Ui = 0 for i ^ I(x). We
may assume that Si is extended to W(x) U Ui. For G C I(x), let us take an exact
sequence, by shrinking W(x) if necessary, ̂ ^'^l^^ -^ ^°\w(x} -> M\w(x}' ^s

the rest of the arguments is similar to the proof of (A.2), we shall omit it.
Let us show that a P (.^-coherent .sA-module M is coherent. Let us take

U = (Ui)i^i and a cover (p = (^)^j : il —^ M. For any x in X, s^ € r(L^;M)
extends to a neighborhood W of .r. Then L^(U)|^ —> M\ decomposes as
L^(il)|^ —> sl@N ^ —> M\^ for some integer N . Hence M is locally finitely
generated. We may assume further that W is in y. Set 2U == {W}. Then we have
^TQ@N _^ j^^ which is surjective on W. There is an exact sequence ^XT —^ W@N —)• M.
By a similar argument as above, the kernel of L^(W@N) —^ M is finitely generated
on a neighborhood of x. Hence M is coherent. D

Let us denote by D^(,sA) the full subcategory of D~(,sA) consisting of objects
with coherent cohomology groups. Similarly, we denote by D^(P(,s4)) the full
subcategory of D~(P(^)) consisting of objects Y such that L^(Y) has coherent
cohomology groups. Then Theorem A.5 implies the following theorem.

Theorem A.9. — D^^(P(^)) — D^^(^) is an equivalence of triangulated
categories.
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Let us define the additive category P(0 by Ob(P(0) =Ob(P(^)) and

Homp^(U,2T) = Honu(L(il),L(2T)).

Then P(^) is a full subcategory of Mod(,sd). We can define similarly D^(P(.s4)).
The following theorem is also easy to prove.

Theorem A.10. — D^(P(,s4)) —> D^(M) is an equivalence of triangulated
categories.

We call a complex M* of ^-modules almost free if each component M71 is
isomorphic to ^zsiui for a locally finite family {Ui} of relatively compact open
subsets of X in if. Then the above theorem says that any complex of ^-modules
with coherent cohomology groups is quasi-isomorphic to an almost free complex.

A.3 ffi-Constructible Case
Let X be a real analytic manifold of dimension dx- Let y be a set of open

subanalytic subsets of X. We assume that any relatively compact open subanalytic
subset is a finite union of open subsets in £f. For example we can take as if the set of
open subanalytic subsets U of X such that (U, OU) is homeomorphic to (Bdx, S d x )
(by the subanalytic triangulation theorem). Here Bdx is the dx -dimensional ball
and Sdx is its boundary. Let us take ]R-Cons(X) as A. We define the category
P(X) as follows. The set of objects of P(X) is the set of locally finite families of
open subsets belonging to if. For il = {Ui}i^i G P(^0, we set

LcW = OieiCu,

and set
Homp(x)(U^) = Hom(L(U),L(2J))

and
^(U,F)=Hom(L(U),F)

for ii,2T G P(X) and F <E R-Cons(X). Hence P(X) is a full subcategory of
IR-Cons(X). Remark that any F G IR-Cons(X) has an epimorphism Lc(it) —^ F for
some -U € P(^0. By this, we can easily check that (A.1)-(A.4) are satisfied. We see
also that any R-constructible sheaf is P(X)-coherent. Thus we obtain the following
proposition.

Theorem A.ll. — D-(P(X)) -> D'QR-ConspC)) -^ D^_^(Cx) are equivalences
of categories.
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Remark that we have
D^(L(U))^©^C^

forU= {Ui}i^i C P(X) such that every (Ui.QUz) is homeomorphic to {B^.S^).

A.4 Proofs of Propositions A.3 and A.4
We shall remark first the following lemma.

Lemma A.12. — Let f , g : X — > Y b e morphisms in P. If L{f) = L{g), there exists
a cover h : X' —^ X such that f o h = g o /.

Proof. By (A.2), there exists an exact sequence

X' ̂ x^Y.

Then L(h) : L(X') —^ L{X) is an epimorphism and f o h = g o h. D
Proof of Proposition A.3. We shall construct X9 e (7~(P), a quasi-isomorphism
/ : X9 -> V, ip : X9 — L(Y9) and g : X9 — Z9 such that

(A.9) L{g) = u o L(f) : L(X9) -^ L(Z9)

and

(A.10) L{f) = a(y) : L{X') -^ L(Y9) .

Assume that we are given

^n ———^ X^ ———> ' • •

[fn [fn+l
N^ ^

_____, yn—1 _____v yn _____. yn+1 _____^

x" ——> x^ ——> • • •
I ̂  I ̂ +

•4^ N^

... ———> HY71-1) ———> L(y71) ———> HY^}

and

X71 ———> X^1 —

[•• ['•"N^ '*"

_____, i7n—\ _____v ^n _____v 7'n+l __
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such that they satisfy (A.9) and (A.10). We assume further that ^(Lp^)) ->
^(Z^y*)) is an isomorphism for k > n and an epimorphism for k = n.
Let us take an exact sequence U -^ X71 -> X^. Set ^(I^V)) =
Ker (^y.) : L(Y71) -^ I^V7^1)) and

BnW)} = Im (d^.^.L^-1)^!.^)). Then £7 -> X- ^> L^)
decomposes into U —> Z^I^Y*)) —> L(y71). By the assumption, the composition
U -> Zn{L{Y9)) -^ IT^y)) is an epimorphism. Since ̂ (I^V)) is P-coherent,
there is an exact sequence V -^ U -^ iT^y*)). Then V -^ U -^ ^(I^V))
decomposes into V ->• ^(I^V)) ->• ^(J^V)). Hence by replacing V with its
cover, we may assume that V -^ ^(I^V)) decomposes into V -^ I^V71"1) —
^(^(y*)). By (A.4), by replacing V with its cover, we may assume that there
exists h : V -> V71-1 such that L(h) = a(^). We have L(d^~1 o h) = L{V -> U ->
Xn -^ Y") € HomA(^(^),^(yn)). Hence by Lemma A.12, replacing V with its
cover, we may assume that

V ———> X71

i- [''^ ^
-Y-n—l _____^ 'yn

commutes. By the similar arguments, by replacing V with its cover, we may assume
that there exists b : V -)• Z"~1 such that L{b) = u"-1 o L{h) : L(Y) -i- -L(Z"-1)

and V ———.X"

[b [9n
4' ^

^n-1 —————^ ^n

commutes.
Since H71-1^^9)) is P-coherent, there is a cover G -^ ^-^(y)). By

replacing G with its cover we may assume that G — If^^Y9)) decomposes
into G -rL> Z^^^HY9)) -> ^^(HY9)). Then by the similar arguments as above
we may assume that, after replacing G with its cover, there exists G -^ y7^-1 such
that the composition G -^ V71-1 ̂  V71 vanishes and L(G) ^^ Z71-1 -^ L(y71-1)
coincides with L(g). Replacing again G with its cover we may assume that there
exists c : G -> Z71"1 such that G A Z71-1 -^ Z71 vanishes and L(c) = u^ o L(u) :
L(G) ̂  L(Z71-1).

We set X71-1 = G C V. Define /n-1 : X71-1 ^ V71-1 by ^ : G -^ V71-1 and
h : V -^ V71-1. Define ^n-1 : X71-1 ^ L(y71-1) by $ : V ^ ^(y71-1) and
G ̂  Zn-l(L(y•)) -^ L(y71-1). We define ^7l-1 : X71-1 -^ Z71-1 by & : V -^ Z71-1

and c : G -^ Z71-1. Then ^(^(X*)) -^ ^"(^(y)) is an isomorphism and
^^{L^X9)) —^ I:fn-l(L(ye)) is an epimorphism. Thus the induction proceeds.

SOCIETE MATHEMATIQUE DE FRANCE



72 MASAKI KASHIWARA AND PlERRE SCHAPIRA

Proof of Proposition A.4. The proof is similar to the above proof. Let s" : L(y") -r
L^Z"--1) be a homotopy. We shall construct X € C'~(P) and a quasi-isomorphism
/ : X* ̂  V, y : X* ̂  L(V) and t" : X" ̂  Z"-1 such that

(A.ll)

(A.12)

and

gnofn= d^-1 otn+1^1 o d^ ,

L(f) = a(y) : L{X') -, L(Y') .

(A.13) £(t") = s" o L(D .

Assume that we are given

X"- ——> X"+1 —

| r \/"+1
'V -4'

. . . _____^ yn-1 _____^ yn _____^ yn+1 __

J^n —————^ j^n+1

1^ 1^•4^ s^

• • • ———> HY^) ——> L^) ———> L(Y^1) ———> . . .

and tk : Xk -^ Z^-1 (k > n) satisfying the conditions (A.11)-(A.13). We assume
further that Hk{L{X•)) -^ Hk(L(Y•)) is an isomorphism for k > n and an
epimorphism for k == n. By the similar arguments with the above proof, we
can construct a : V -> X71, h : V -^ V71-1, ^ : V -> L(y71-1) such that
L(H) = a(Q : L(V) -> L^Y71-1), the composition V -> X71 -^ X^ vanishes,

V —a—> Xn

[h ['••^ '^
yn—l _____< •yn

commutes and the cohomology of L(y) —^ L^X^ — L^X^1) is isomorphic to
^(I^V)). By replacing V with its cover, we may assume that there exists
t' : V -> Z71-2 such that L(t') = s^oL^h). We have Hg^oh-d^ot'-^oa) =
L(gn-i o ̂  _ L(d^-2) o ̂ -1 o L(h) - s71 o L(/71) o L(a) = L(^-1) o L{h) - L(d^-2) o
571-1 o L{h) -sno L(c^T1) o L(K) = 0. Hence by Lemma A.12, by replacing V with
its cover, we may assume that gn~l oh— d^~2 o t' — t71 o a = 0.

As in the above proof, we can construct g : G —> y72-1 and rj : G —^ Zn~l(L(Y9))
such that the composition G ^ Z71-1^^)) -^ ^^(^(y)) is a cover of
H^W)) and L{G) L^ HY^) coincides with L(G) ̂  Z^^Y9)) -^
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j^yn-i^ gy replacing G with its cover, we may assume that there is t" : G -> Z"-2

such that L(t") : L(G) -^ L^-2) coincides with L(G) -L(^ ^V^) ^^
L(Z71-2). Set Jr1-1 = V C G. Define d^-1 : JT1-1 ^ X71 by a : V -^ X71 and
zero on G. Define /n-l : X71-1 -^ V^-1 by h : V -^ V71-1 and g : G -> Y71-1.
Define r-1 : X71-1 -> Z71-2 by ^ : V -> Z71-2 and f : G -^ Z71-2. Then,
ir^LpC')) -^ ^^(^(y)) is an isomorphism and H^^X9)) -, ̂ n-l(L(y•))
is an epimorphism. We have also ^n-l o /n-1 = d^~2 o ^n-1 + 1 ^ 0 d^"1,
L^-1) = a(^-1) and L(^-1) = 5n-l o L(/n-l). Hence the induction proceeds.
This completes the proof of Proposition A.4.
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