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change for automorphic representations of GL(n) over a number field. Our proof is more
direct and elementary than Arthur and ClozePs one, although based on a similar method: a
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INTRODUCTION

Let G be an inner form of a reductive quasi-split group H , defined over a global
field F . Let E / F be a finite field extension. According to the Langlands philosophy
there should exist a base change correspondence between automorphic representations
of H{Ap) and G'(A^) . To prove the existence of such a correspondence when E / F
is a cyclic extension of degree t , one may use a technique due to Saito Shintani and
Langlands : a term by term comparison of two trace formulas.

In the case of number fields, this has been worked out for inner forms of GL[n) in
[AC] and for unitary group in three variables attached to a quadratic extension E / F
in [Rog]. Let 0 be a generator for the Galois group of E over F . Roughly speaking,
one first shows the equality of the geometric expansions of the stable trace formula for
H and of the stable trace formula for L == R€SE/F G ^ 0 when applied to pairs (/, (/))
of associated functions f G C^°(H(AF)) and (j) G C^°(L(A^)) . The correspondence
(f) \—»- f is a particular case of twisted endoscopic transfer whose existence has to be
established; moreover one has to show that association is compatible with base change
for functions in the unramified Hecke algebras. This is the fundamental lemma for the
stable base change, now proved in general in [Clo] for fields of zero characteristic, and
in [Lab2]. This allows to separate unramified infinitesimal characters (i.e. characters
of the unramified Hecke algebras) and one deduces from this the matching of the
various terms in the spectral expansions of the two trace formulas; this yields the
base change correspondence for automorphic representations.

Even in the case H = GL(n) which is particularly simple since, for such a group,
conjugacy and stable conjugacy coincide, the term by term comparison of the geomet-
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ric expansions in the two trace formulas applied to pairs of associated functions (/, (f>)

is not straightforward. The main difficulty arises from the following fact : the trace

formula is obtained by a truncation process which is noninvariant under conjugacy,

while the concept of association allows only comparison between invariant distribu-

tions. The standard procedure is to put the trace formula into an invariant form.

The existence of such an invariant form is proved in [A8] but uses long and difficult

prerequisites ([A6], [A9], etc.) Moreover, it is not easy to compare the invariant dis-

tributions iM^^f) and I ] ^ [ L ( S ^ ( / ) ) - constructed from the weighted orbital integrals

^M^if) ̂ d ^M^^^) - ̂ na^ ^ow up in the invariant trace formula, since they are
defined in a rather implicit way if M -^- H . Another difficulty is that the contribu-

tions (invariant or not) of non-semisimple conjugacy classes are very complicated and

a direct comparison seems hopeless. These are the reasons for the quite intricated

and difficult arguments in [AC] chapter 2.

Our aim is to suggest a way to bypass these difficulties and to test this program in

the case of GL(n) . The main simplification is that we compare directly the primitive

- noninvariant - form of the two trace formulas. This is made possible by using a
noninvariant endoscopic transfer we call strong association.

Another simplification is that we do not use any analysis, locally or globally, of

the behaviour of orbital integrals near the singular set. Globally this is because we

may use, at some place, pairs of functions with regular support: doing so we kill the

singular terms in the geometric expansion of the trace formula, but fortunately we

do not lose any spectral information. Locally, besides the noninvariant fundamental

lemma for units in the unramified Hecke algebras, we only need the noninvariant

endoscopic transfer for functions with regular support; this is enough thanks to the

very strong finiteness results which follow from the rigidity of cuspidal automorphic

representations o fG= GL(n) . Unfortunately, for other groups, such finiteness results

may not be available right away and it might turnout that one would have to rely

more on noninvariant harmonic analysis for groups over local fields.

This paper is an expanded version of a preprint [Lab3] that has been circulated

in 1992. We have strived to make the paper self-contained from our starting point:
the trace formula as obtained in the early papers by Arthur. To make the paper more

accessible we even review the definition of the distributions that show up in the trace

formula and we sketch the proof of the properties we need. As a result, most of the
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material in chapter I and a large part of chapter II is borrowed from Arthur's papers,

but we believe it more convenient for the reader to have it reviewed in some detail

here. Many techniques are borrowed from [AC], this is acknowledged case by case, but
we have tried not to rely on references to [AC]. This is so with few exceptions, where

we have only quoted some results whose proof do not depend of the main body of

[AC]: in 1.8.2, the first step in the construction of a function on a Cartan subalgebra

is borrowed from the chapter 2 of [AC] but this is an elementary result; in III. 1.5

we refer to the first few pages of the first chapter of [AC] for the classical properties

of the norm map; the most significant borrowed result is the compatibility of local

L-functions with the local base change, the proof of which occupies a large part of
the last two sections of the first chapter of [AC]; this is our proposition VI.5.2. Let
us now describe the contents of the paper.

In chapter I we give the definitions and review the basic properties of the distri-

butions that show up in the geometric and the spectral expansions of the noninvariant

trace formula. The last two sections contain new material.

In chapter II we review the noninvariant trace formula itself. The absolute con-

vergence of the spectral expansion of the trace formula is stated as a conjecture

(Conjecture A) in section 11.2. We hope that conjecture A will follow from work in

progress by W. Miiller. We recall an estimate, due to Arthur, that can be used to sep-

arate infinitesimal characters, via multipliers, at archimedean places. This estimate

is a weak form of the conjectural absolute convergence of the spectral expansion.

In section 11.4, a particular case of conjecture A which is enough for our needs is
established.

In chapter III we begin the study of base change; to avoid stabilization problems

we restrict ourselves to groups G that may show up as Levi subgroups of inner forms

of GL{n) . We introduce a refined version of the concept of association: we consider

pairs of functions / and (j) such that not only orbital integrals but also weighted orbital

integrals JM^I, f) and J^L (S, (f)) are equal, if 7 is the norm of S , at least when these

elements are regular semisimple. Moreover the weighted orbital integrals of / have to

satisfy some vanishing properties if 7 is not a norm. Such pairs of functions will be

called strongly associated. The best we hope, as regards this noninvariant endoscopic

transfer, is stated as conjecture B. The existence of pairs of strongly associated func-
tions with regular support is easy to establish. At the end of chapter III we prove the
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conjecture B for split places.

In chapter IV we study unramified places: we have to show that the noninvariant

endoscopic transfer is compatible with the base change map between unramified Hecke

algebras. The key observation is that, thanks to a result of Kottwitz, a noninvariant

fundamental lemma holds for units in the unramified Hecke algebras and yield pairs

of strongly associated functions. We first recall the definition of elementary functions

and we show that they are closely related to functions bi-invariant under an Iwahori

subgroup. We show that elementary functions give rise to pairs of strongly associated

functions. Moreover, strong association of elementary functions is compatible with

base change for weighted characters; this allows to prove a noninvariant form of the

fundamental lemma for all functions in the unramified Hecke algebra. Most of the
proof of these last two results is postponed to chapter V.

In chapter V we state our base change identity. The matching of the regular

semisimple terms in the two trace formulas for pairs of strongly associated functions

is obvious. For pairs of strongly associated functions (/,<^) , with regular support at

one place, the contributions of non-semisimple conjugacy classes vanish and we get
the equality of two noninvariant trace formulas :

j^/) - ./L^) .

As a first consequence of this identity we prove a twisted version of a noninvariant form

of Kazdan's density theorem. Then we show how to use conjecture B2 to refine the

spectral identity for pairs of strongly associated functions by separating infinitesimal

characters at archimedean places. This is applied to the proof of the noninvariant

fundamental lemma. The proof is based on a refinement of the local-global argument
used in [Lab2].

In chapter VI, we deal with the base change of automorphic representations. We

first refine the spectral identity for pairs of strongly associated functions by separat-

ing infinitesimal characters at unramified places. If conjecture B2 holds (in particular

if G = GL(n) and E / F splits over archimedean places) we may first separate the

archimedean infinitesimal characters and we are left, for a given conductor, with a fi-

nite set of automorphic representations; using pairs of associated elementary functions

or the noninvariant fundamental lemma, we may separate finite sum of unramified
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infinitesimal characters. In general, since we do not know that strong association at

archimedean places is compatible with multipliers, we have to separate infinite families

of unramified infinitesimal characters. This could be done directly, using the funda-

mental lemma, if we knew that the spectral expansion of trace formula is absolutely

convergent (conjecture A); the particular case established in chapter II is enough to

conclude if we may choose the normalizing factors for intertwining operators to be

compatible with the weak base change. To finish the proof of the existence of base

change and of his properties for GL{n) we use in an essential way, as in [AC], the

strong finiteness properties that follow from Jacquet-Shalika's theorem on L-functions

of pairs, in particular the rigidity (or strong multiplicity one) for cuspidal automorphic

representations of GL(n) . Thus we obtain a new proof of Arthur- ClozePs theorem.

Our result is slightly more general since, thanks to Moeglin-Waldspurger^s description

of the discrete spectrum, it is no more necesary to restrict oneself to automorphic

representations "induced from cuspidal". For inner forms we cannot use a priori the

rigidity, although it can be deduced from the properties of the endoscopic correspon-

dence. Hence, to extract the expected informations on the endoscopic correspondence
from our noninvariant trace formula identity, without using the rigidity, one would

need either a weaker form of it, namely some a priori finiteness result (conjecture C),

or further local results.

We observe that, if the trace formula for groups over function fields were available,

our proof should extend easily to the case where t is prime to the characteristic of

the function field.

Acknowledgements. It is my pleasure to thank the "Universite du Quebec a Montreal" and the "Katholis-
che Universitat Eichstatt", for their hospitality during the preparation of a preliminary version of this paper.
I must also thank Guy Henniart and the referee for many very useful critical remarks and suggestions.
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I. - SOME NONINVARIANT DISTRIBUTIONS

In this chapter we review results of J. Arthur on weighted orbital integrals and

weighted characters. Notation and conventions for the nonconnected situation, in

particular the concepts of Levi subsets, parabolic subsets and of regular elements,

are borrowed from the first paragraph of [A6]. But we shall not adopt systematically

Arthur's notation. The reader should be warned that our definitions of L(Ap)1 (the

kernel of the HL map) and of the normalized weighted orbital integrals JM(^-> f) 5 do

not coincide with those of Arthur in the nonconnected case. We need the notion of

(L, M)-family introduced in [A2] sections 6 and 7, as well as the descent and splitting

formulas to be found in [A7] section 7, but we shall not use the invariant distributions

defined there. In the last section we construct multipliers that will be used to separate

infinitesimal characters at archimedean places.

I.I - (Z/,M)-families.

Unless otherwise stated, F is a local or a global field of zero characteristic. Let L

be a reductive group defined over F , and L° the connected component of the neutral

element. Let L be a connected component of L defined over F ; assume that L(F)

is nonempty. We denote by L^~ the group generated by L and let t be the order of

the cyclic group LQ\L'}' . Let P° be a parabolic subgroup of L° , denote by P the

normalizer of P° in L ; if the intersection P = L D P is nonempty we say that P is a

parabolic subset of L ; we denote by P4" the subgroup generated by P . Let M° be a

Levi subgroup of a parabolic subgroup P° of L° ; denote by M the normalizer of M°
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in L . The intersection M = P H M is by definition a Levi subset of P ; we denote by

M^ the subgroup generated by M . The maximal split torus in the center of M^ is

denoted by AM '' this is the split component of M . Let Q be a parabolic subset. We

denote by C^(M) the set of Levi subsets M\ contained in Q and containing M . We

denote by PQ(M) the set of parabolic subsets P C Q with Levi subset M . We fix a

minimal Levi subset MQ . The Levi subsets containing MQ are called semistandard.

A parabolic subset P containing Mo has a unique Levi subset M containing MQ ; it

will be called the Levi subset of P .

Let P be a parabolic subset. Denote by X(P)p the group ofF-rational characters

of P~^~ and let

dp=Hom(^(P)p,R).

Its dimension equals the dimension of AM if M is a Levi subset of P and dp = OM

Its dual is cTp = X(P)p (g) R . Given ^ € X(P)p we denote by ^(^) its image in cTp .

Let F be a global field. One defines L(AF)^ as the subgroup of ]~[ L^~(Fv)

generated by L°(Ap) and L~^(F) , endowed with the topology such that the inclusion

L°(Ap) —>• I^Ap)4' is an open map. There is a map

HL : L(Ap)^ ^OL

such that, for any ^ G X(P)p and any x 6 Z/(Ap)~1" :

\^x)\=e<^-HL^>.

We denote by L(Ap)1 the kernel of the restriction of HL to L°(Ap) . Observe that,

in general, I/^Ap)1 ^ L(Ap)1 . If M is a Levi subset one has a natural direct sum

decomposition ([A6] p. 228-229)

OM = ^M ^aL'

An (L,M)-family is a collection of smooth functions cp(A) for P C PL(M) and

A G ictM such that cp^(A) = cp^A) if Pi and P-z are defined by adjacent chambers
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and A lies in the wall between the two chambers. For each P 6 V^(M) one defines

a function 0p on a^ 0 C :

^(A)=(a^)-1 n A(d)
aCA^

where Ap is the set of simple roots defined by P in (d^)* and a ' is the covolume of

the coroot lattice in a^ (see [A6] §1 p. 229).

I.I.I. Lemma. - The function

4(A)= ^ cp(A)^(A)-1

pe^^M)

denned for A -not in a wall, extends to a continuous function on ia*^ . The value of

c^(A) at A = 0 is denoted c^ :

^=1^0 E ^(A)^(A)-1.
PG^CM)

Let p == dim a^ , then for any regular A one has

'&4 E (.••°i(^CA))^A)-.A pe•p(3(M) v v / /

Proof. The first assertion is lemma 6.2 p. 37 of [A2]. The second is also quoted from

[A2] p. 37.
D

Let LQ be the Levi subset of Q which contains M . For any R G P1'^ (M)

there is a unique parabolic subset Q(R) G 'P^{M) such that Q(R) H LQ = R ; the

functions ep = CQ(^) define an (LQ^M) family and numbers e^ = c ' . We shall

sometimes write c^ instead of c-^ if this number is independent of the parabolic

subset Q with Levi subset LQ . On the other hand if P C Q the restriction of cp to

iaQ , is independent of P and will be denoted CQ . This gives rise to an (L, Z/Q)-family

and to numbers c^ .^Q
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Given Z/i and Z/2 two Levi subsets in £^{M) , Arthur introduces in [A7] p. 356

numbers <% (1/1,1/2) • They are nonzero if and only if a^ Q a^ = a^ . They show

up in the descent and splitting formulas.

Each Weyl chamber in a^ defines a parabolic subset Qi with Levi subset L\ .

Let 6 be a subspace of OM , such that OM = a ] ' (B b . A point ^ 6 dM -> in general

position, projects along b inside some Weyl chamber of a^ . Hence (" and b define

a section L\ \-^ Q\ of the natural map which associates to a parabolic subset Qi

contained in Q and containing M , its Levi subset L\ 6 C^(M) ([A7] p. 355-357).

1.1.2. Lemma. - Let L\ G CQ(M) . Fix a point ^ 6 d^ in general position; one

has :

<€= E 4(^i ̂ 2) 42
L^CQ{M}

where Q-z is the parabolic subset with Levi subset L^ corresponding to the Weyl

chamber containing the intersection ofC+ dLi with a^ . The Weyl chamber is well

defined ifd^L^L^) ̂  0 .

Proof. This is Corollary 7.2 p. 357 of [A7] in the particular case where b = a^i •
D

Given two (L, M)-families {cp|P € PL(M)} and {ep\P G PL(M)} one has a

splitting formula :

1.1.3. Lemma. - Let c and e be two (L^M)-families. Fix ( 6 d^ in general posi-

tion, one has

(<^= E 4(^2) 41^2
Li^e^M)

where the parabolic subsets Qi with Levi subsets Li correspond to the Weyl chambers

containing the points ^ G d j ' . such that (^ = ̂  — ("2 ; they are well defined whenever

4(Li,L2)^0.

Proof. This is Corollary 7.4 p. 358 of [A7].
D
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1.2 - Maximal compact subgroups.

Let F be a global field. We fix, for each place v , a maximal subgroup K^° of

L°^ - often simply denoted by Ky - assumed to be special (cf. [T]) for all finite places

v . The algebraic variety L is obtained from a scheme, again denoted by L , over 0s

the ring of elements of F that are integer outside S , some finite set of places. We

assume that Ky = L°(0v) tor almost all places v ^ S . We say that a pair ( L y ^ K v )

is unramified if

(i) L°^ is quasi-split, split over an unramified extension

(ii) Kv is an hyperspecial subgroup of L°^ ,

(iii) the normalizer K^ of Ky in L^ is such that K^ := K^T\L(Fv) is nonempty.

1.2.1. Lemma. - At almost all places the pair ( L y . K y ) is unramified.

Proof. The first two conditions are well known to hold almost everywhere. Consider

e G L(F) , and let €v be the image ofe via the injection of L(F) in Ly . Observe that

£v 6 L(0v) and Ky = L°(0v) for almost all places v . For such places the group K~^

is generated by Kv and Cv and hence (iii) holds almost everywhere.
D

The groups L°j , Kv , M^ and Nv , are endowed with Haar measures normalized

so that vol {Kv) = 1 and such that dx = dmdndk if x = mnk is an Iwasawa

decomposition. Note that if v is a finite place Kv is open; this will be used to

normalize the Haar measures on L°, and Ny .

Let S be a set of places of a global field F . We shall use a lower index S to

denote objects over S i.e. restricted products (with respect to some family of open

compact subsets) over places v 6 S of local objects; for example Ap,s (or FS if S is

finite) is the restricted product over places v 6 S of the local fields Fy . We shall use

an upper index S for objects outside of 5 : the restricted product over places v (jf. S .

For example K3 is the product of the maximal compact subgroups Kv for all v ^ S .

We shall omit the upper index S when S is the empty set. For example K will denote

the product of Kv for all v .
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For each parabolic subset P of L with Levi decomposition P = MN , the Iwasawa

decomposition L^ = NvM^Kv allows one to extend the map HM from M°(AF) to

OM to a function

Hp : L°(AF)^aM

such that Hp(nmk) = HM(rn) for k ^ K , m <E M°{AF) and n C A^Ap) .

1.3 - Weighted orbital integrals.

The weights Vj^ , that are used to construct weighted orbital integrals, are func-

tions on L°(AF,S) defined by the (I/, M) -family :

vp(A,x)=e-<A-HP^>

([A2] p. 40-41); and hence

^(x) =^ ^ vp(^x)e^A)-1.V^(X) = ̂

~^ PeP^(M)

Notice that v^ = 1 if M is the Levi subset of Q ; these weights will be called trivial

weights.

1.3.1. Lemma. - For all m G M°{AF,S) and k G KS

v^(mxk) =v^(x);

moreover V^k) = 0 for all k G KS unless M is the Levi subset ofQ . In particular

the nontrivial weights are linearly independent from the trivial one.

Proof. The first assertion is proved in [A2] p. 41. The second follows from I.I.I applied

to the trivial (L, M) family cp = 1 , since H p [ k ) = 0 for k G KS •
D

Let F be a local or a global field. Consider 7 G L(F) ; the connected component

of 1 in the centralizer 2^(7) of 7 m -^+ wlu be denoted by L^ or L° since it is also

the connected component of 1 in the centralizer Z^o^) of 7 in L° . We denote by

^(7) the index of L-y in Z^o^) . Recall that 7 € L(F) is said to be regular if the
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number of eigenvalues equal to 1 for the adjoint action of 7 in the Lie algebra of L°

is minimal. Such a 7 is semisimple, and the connected component T containing 7 in

^(7) is by definition a maximal torus in L. It is the translate of a torus in the usual

sense : T = ̂ L^ . The group L^ is a torus in L° whose centralizer Z/-y in L° is a

maximal torus, in the usual sense, in L° (cf. [A6] p. 227-228). Denote by A(7) the

maximal split torus in the center of L^ . Let M be a Levi subset. If 7 G M(F) is

such that A(7) = AM we say that 7 is elliptic in M . Let 7 be regular in L , then 7 is

elliptic in M if and only if M is minimal among Levi subsets containing a conjugate

of 7 .

Let F be a global field. The basic ingredients of the geometric side of the trace

formula are the weighted orbital integrals. Let M be a Levi subset, Q a parabolic

subset containing M . Let 7 G M(F) be regular in L(F) . Given fs G C^°(AF^) , a

smooth compactly supported function on the groups of 5'-points of L , its weighted

orbital integral for the triple (7, M, Q) is the integral

^(7,/5) = I fs(x-^x) v^(x) dx.
JL^(AF,S)\L°{AF,S)

This integral makes sense more generally for 7 € M(Fs) if 5' is finite. We shall

sometimes omit the upper index if Q = L . It is convenient to normalize the weighted

orbital integrals so that they satisfy simple compatibility formulas with constant terms

(see 1.6.4). It is classical to use \DL(^)\g/ as normalizing factor with

^(^det^l-Ac^lt/Lj

where [ is the Lie algebra of L° and l-y the Lie algebra of L^ . But, in the base change

situation, D1'^) may contain parasitic powers of £ ([AC] chap. 2 lemma 1.1 p. 80).

Instead, we shall use

^(7) = det {(1 - Ad 7)|(A}

where Ly is the Lie algebra of L^ . This discriminant has a simpler behaviour with

respect to norm maps (III. 1.8). Our normalized orbital integrals are the following

distributions

J^fs)=\DL(^/2^,fs).

We hope that the use of Arthur's notation Jj^^i^fs) for a- slightly different object is

harmless and will cause no confusion.
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1.4 — Weighted characters.

Let F be a global field. The basic ingredients of the spectral side of the trace

formula are the weighted characters; they are constructed with an (L, M) -family

introduced and studied first in [A4] p. 1313-1323. Denote by H(M(A^s)) the set of

equivalence classes of admissible irreducible representations of

M(AF,S)^ = MO(AF^)M+(F)

that remain irreducible when restricted to M°(Ap,s) ' Any representation TT in

n(M(A^5-)) has a restriction to M°(AF^) which is a tensor product of represen-

tations TTv of M°(Fv) . Since M^ (Fy) / M° (Fv) is cyclic, TT^ can be extended, in a

noncanonical way, to a representation of M^^Fy) . Given TT in II(M(Ap s)) and

A € d^ 0 C , one defines as usual a representation TTA by :

^(n^e^^^T^m).

Let P be a parabolic subset with Levi subset M ; the representation TTA , extended triv-

ially on the unipotent radical, defines a representation still denoted TTA of P(Ap s)^

Denote by ZJ^TI-A,-) the representation of L(AF,S)~^~ unitarily induced from the rep-

resentation TTA of P(A^5•)-t" . This procedure is called parabolic induction.

Assume for a while S to be finite. Given P and P' two parabolic subset with a

common Levi subset M ; as in [A9] we denote by Jp'\p{^\) the usual intertwining

operator between ZJ^TTA,') and ZJ^TTA,-) . It will be written as the product of a

meromorphic scalar function rp/[p(7TA) , the normalizing factor, and of a normalized

meromorphic operator -Rp/|p(7TA) :

J p ' \ p ( ^ A ) = 'rpi\p(7r^)Rp^p(7r^) .

The two factors have to satisfy various requirements discussed in [CLL] lecture 15 (see

[A9] p. 28-29). In particular if (Lv.Ky) is an unramified pair, normalized intertwin-

ing operators Rp'\p(7r^) are scalars independent of A on the Kv -fixed vectors. The

existence of normalizing factors has been first proved by Langlands in [CLL] Lecture

15 (theorem 2.1 in [A9]). The operator Jp/|p and the normalizing factor rp/|p have
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global analogues when TT is automorphic (i.e. when the restriction of TT to M°(AF) is

an irreducible automorphic representation). It should be possible to define canonical

normalizing factors in terms of L-functions; at unramified places for unramified rep-

resentations this is a part of the definition; this has been checked in some other cases,

in particular for archimedean places in [A9] section 3. If L° is a product of groups

GL(rii) this possible thanks to results of Shahidi ([Shah2] [Shah3]).

The normalized intertwining operators -Rp/[p(7TA) define an (L^M) family :

np^A,7^,P)=Rp,\p(7^)-lRp.\p(7^^ .

This allows one to define (see [A7] p. 335) a generalized logarithmic derivative of

normalized intertwining operators :

U^P) =^ ^ 7Zp,(A,7r,P) 0%(A)-1 .
p'epQ^M)

1.4.1. Lemma. - The operator 7?^(7r,P) commute with l^p^k) for k C Ks .

Proof. The operator l^^.k) for k 6 Ks is independent of A and commutes with
Rp^A,7T,P) .

D

The weighted characters are the following distributions :

J^sjs) == trace (^(TT^Z^TT^)) .

To make sense it is not necessary to assume S to be finite. In fact, outside a finite

set T,(fs,7rs) of places in S , the functions fy are the characteristic functions of

K^ nZ/v and the normalized intertwining operators leave invariant the A^-fixed vector

in the space of TT^ . If S is any finite subset of S of places containing T,{fs^s) the

distribution J^(7rs;,./s) is independent of S and one let

^(^/5)=^(7TS,/E).

These distributions are known to be independent of the parabolic subset P C Q with
Levi subset M ([A2] p. 43).
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If the restriction of TTA to M°(AF) is an irreducible automorphic representation,

the product over all places of the local normalizing factors can be defined by mero-

morphic continuation and we get global meromorphic normalizing factors rp^p^TT^) .

As above we form the corresponding (Z/, M)-family

rp/(A,7r,P) = rp.^^rp,^^)

and one can define ([A8] p. 519)

4(7r) =^ ^ rp,(A,7r,P) e%(A)-1 .
p'e'pQ(M)

In 11.2 we shall define numbers ^fsc(71") • I11 ̂ ne spectral expansion of the trace

formula the following distributions, that are a mixture of 5-local and global objects,

will show up :

J^fs)=a^) ^ r ^ ^ J ^ s J s ) .
M'€^(M)

1.5 — Unramified characters.

Let F be a non archimedean local field and let (L, K) be an unramified pair.

We say that a representation TT C H(L(F)) is unramified if the space of TT contains a

nonzero A"-invariant vector.

1.5.1. Lemma. - Let h be a compactly supported function bi-invariant by K . Then

J^h)=0

unless M is the Levi subset ofQ and TT is unramified.

Proof. By definition of normalizing factors, since (Z/, K) is an unramified pair, the

normalized intertwining operators -Rp'jp(7TA) are scalars independent of A on the Af-

fixed vectors; hence on the A-fixed vectors the derivatives that occur in I.I.I vanish

(cf. [A7] lemma 2.1 p. 334).
D
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Let us denote by Tlnr(L(F)) the set of equivalence classes of irreducible repre-

sentations ^ of L°(F) that are restrictions of unramified representations TT of ̂ (F) .

A given ip has a unique extension TT with a nonzero .7<4'-invariant vector. Denote by

U^ the unramified Hecke algebra i.e. the convolution algebra of compactly supported

function on L°(F) , bi-invariant by K . The group K ^ ~ / K acts on the unramified

Hecke algebra. Given h € T-L^ we denote by h its scalar Fourier transform :

fa(^) = trace (^(h)) .

An element ^ € Hnr(L(F)) defines a character

^ ̂  /z(^)

of the unramified Hecke algebra. Conversely any A^/J^-invariant character of the

unramified Hecke algebra is obtained in this way. Such characters will also be called

unramified infinitesimal characters (since they define characters of Bernstein's center).

There is a natural topology on Hnr(L(F)) for which the functions

h : ^ ̂  h{^)

are continuous. The subset of unitary unramified representations I[nr,u(L(F)) is a

compact subspace of Hnr{L(F)) . For h C U^ let

ML = sup \hW\ .
^erinr.uW^))
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1.6 — Formal properties.

Let F be a global field, and let S be a set of places of F .

1.6.1. Lemma. - Let w G KS ? such that w normalizes MQ . Then

J^.fs)=J^w^s)

J^sJs)=J^^Js)

J^fs)=J^WJs)

where ̂ w = w-^w , Mw = w-^Mw , Qw = w-^Qw and ̂ (x) = 7r(wxw~1) .

Proof. Remark first that all distributions under consideration are invariant under

J<s-conjugacy of fs : the weights are right J<s-invariants (lemma 1.3.1) and the

logarithmic derivatives commute with KS (lemma 1.4.1). On the other hand if at

the same time we replace fs , M , P , Q , TTS and 7 by their conjugates under

some w G KS that normalizes MQ the distributions are preserved by this transport of

structure. The lemma follows from these two remarks.
D

The descent and splitting formulas for weighted orbital integrals and weighted

characters are particular cases of the first step ([A7] (8.2) p. 362) in the proof of

theorem 8.1 of [A7] and of the first step ([A7] (8.6) p. 367) in the proof of theorem 8.4

of[A7].

1.6.2. Lemma. - Given 7 G M(Ap,s) regular locally everywhere in L(Ap,s) , one
has for any Levi subset Z/i G C^(M)

J^Js) = ^ 4(^2) J^{^fs) .
L^eCQ^M)

JfTTi is a representation in II(Z/i(A^5-)) obtained, via parabolic induction, from TT in

II(M(AF^)) one has

J^l.fs) = ^ 4(^1^2) J^^fs) .
L^CQ{M)

The section L^ —^ Q^ depends on the choice of a generic element ( in OM •

Proof. This is an immediate consequence of the descent formula for (L, M)-families

(lemma 1.1.2).
D



SOME NONINVARIANT DISTRIBUTIONS 19

In particular, if Q is a parabolic subset with M as Levi subset

JL(^fs)=J^,fs).

1.6.3. Lemma. - Choose ^ a generic point in a M • IfS == 5'iU5'2 andfs = fs^ 0/S2

J^.fs) = E ^1^2) ̂ (7,^) ^(7,/sJ
LI ,1/2

^(^^)== E ̂ ^i-^)^^,^)^^^,^)Li.Ls
and if7T is automorphic on M

j^fs) = E ̂ (^2) ̂ (^^i) ̂ (^j^).
Ll,L2

The parabolic subsets Qi with Levi subsets Li are attached to points ^ C off. such

that C = Ci - €2 •

Proof. This is an immediate consequence of the splitting formula for (L, M)-families

(lemma 1.1.3).
D

If M is a Levi subset of a parabolic subset P = MN in L one defines the constant

term of fs along P as the function on M defined by

fs,p(m) = <^,p(m)1/2 ( [ fs(k~lmnk) dn dk
J h ' s ^ N S

where SS,P is the usual modulus function for P :

<^,p(m) = | del (Ad(m}\LieN)\s .

1.6.4. Lemma. - Given Zq D Mi D M consider Q E ^(Z/i) and JZ G ^(Mi) .

There is a parabolic subset Q(R) € ^(Mi) such ^hat Q(^) H Z/i = 7? .

^ Jf7G M(A^5') is regular in L(Ap^s)

J^fs^^J^^^s).
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(ii) KTTS € H(M(AF,S))

J^S,fs.Q}=J^R)^S,fs)

(iii) HTT is au torn orphic on M

J^fs,Q}=J^R\^fs).

Proof. Our assertions follow from standard changes of variables : cf. [A2] (8.1) p. 46-

47 and lemma 7.1 p. 44.
D

Let I be an invariant distribution. We shall sometimes write I(fM) instead of

I(fq) to emphasize that its value is independent of the choice of the parabolic subset

Q with Levi subset M . For example, with such a convention, we may write

^(^/Q) = trace ^(/M) .

1.6.5. Corollary. - Let S be a set of places ofF outside of which (Lv^Ky) is un-

ramified. Let f == fs 0 h with fs € C^°(L(AF,S)) and h G C^°{L(AJ.)) bi-invariant

under A'^5 . Then for TT G n(M(Ap))

J^J) = J^sjs) trace (Tr5^))

and if7T is automorphic on M

J^.f} = J^fs) trace (Tr5^)) .

Proof. This is a particular case of the lemma 1.6.3 using that J^f^^h) = 0 unless

M is the Levi subset of R (lemma 1.5.1) in which case

J^TT^h) = J^(7r5,/^) = trace (^(AM)) .

D
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1.6.6. Proposition. - IfS is a finite set of places of a global field F . Consider a

pair of functions fs and (f)s that have the same weighted characters

J^^s)=J^Js)

for all representations TT C H(M(Fs)) , all Levi subset M and all parabolic subset Q ,

then fs and (f>s have the same weighted orbital integrals :

J^,4>s)=J^fs)

for regular elements 7 G L(Fs) .

Proof. This follow from 11.2.2 and 11.1.3.
D

Remark. - Using the local trace formula J. Arthur has established, for connected

reductive groups, that the weighted orbital integrals have a spectral expansion in term

of weighted characters ([A10] Corollary 4.2). In particular this gives, for connected

groups, a local proof of this noninvariant Kazdan's density theorem. Conversely,

weighted characters have a geometric expansion ([A10] Corollary 4.4), but we shall

not use this fact.

1.7 - Functions with vanishing weighted orbital integrals.

Let -F be a local field. Two smooth compactly supported functions / and // on

L(F) are said to be equivalent if they have the same normalized (ordinary) orbital

integrals for regular semisimple elements 7 :

JL(^f)=JL(-r,f).

1.7.1. Lemma. - Given / a smooth function on L(F) , with compact support in

the set of regular semisimple elements, there exists a smooth compactly supported

function f with vanishing weighted orbital integrals for nontrivial weights, and which
is equivalent to f .

Proof. Let TF be a set of representatives of L°(.F)-conjugacy classes of J^-maximal

tori in L . Given T € TF and 7 € T(F) we have T(F) = T°(F).-f where T° is a torus
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in L° . The set L(F)reg of regular elements in L(F) is a disjoint union of open sets

L(T, F} where T runs through 7p and where L(T, F) is the set of conjugacy classes

of regular semisimple elements 7 G Z/(F) whose conjugacy class meets T(F) . Let

T{F)reg == ^(^)reff H T(F) and consider

£(T,F) := T(F)^ x (r°(F)\L°(F)) .

The map

7 x a; !->• ^"^a*

from L(T,F) to L(T^F) is an etale covering whose fibers are orbits under a finite

group W1' (T) : the quotient of the normalizer of T(F) in L°(F) by its centralizer

r°(F) (i.e. the Weyl group of T if L = L° ). The weighted orbital integrals of / , are

indexed by triples (7,M,Q) where 7 is an L-regular semisimple element in M(F)

A triple will be said to be primitive if 7 is M-elliptic. This is equivalent to say that

T is M-elliptic; given T such a Levi subset M is unique. By the descent formula

1.6.2 one can express any weighted orbital integrals as a sum of weighted integrals

attached to primitive triples. The weights v^ are functions on M° {F)\L° {F) / K and

lemma 1.3.1 shows that v^^mk) = 0 for any k € K and m G M°(F) unless M is the

Levi subset of Q in which case v^ = 1 . There exist a compactly supported function

OT on T°(F)\L°(F)/K , leftinvariant under ^"(T) and whose integrals against all

nontrivial weights vanish :

/ ar^) v^(x) dx = 0
./r^F^z/^F)JT°(F)\L°{F)

unless M is the Levi subset of Q , in which case it has an integral equal to 1

/ ar(x) dx = 1.
JT°(F)\L°(F)JT^F^L^F)

The ordinary orbital integral of / defines, for each T G 7p , a H^^-invariant

smooth compactly supported function on T(F)reg ''

7 ̂  JL{7,f) .
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The function on Z(T, F) :

7 x x ^aT(x)JL^.f)

is W1' (T)-invariant. Hence there exist a smooth compactly supported functions //

whose restriction to L(Ty F) is such that

f'{x-^x)=aT(x}J^J) .

It has the same ordinary orbital integrals as / but has vanishing weighted orbital

integrals for all nontrivial weights i.e. for triples (7, M, Q) if M is not the Levi subset

o f Q .
D

Remark. - This lemma, which appeared as lemma 2.1 in [Lab3], is quoted at the

end of section 3 in [A 10].

1.8 - Infinitesimal characters and multipliers.

In this section F is an archimedean field. Let ()o be the Lie algebra of a maximal

split torus in L°(F) considered as a real Lie group. Let to be a Cartan subalgebra in

a maximal compact subgroup of the centralizer of ()o in L°(F) . The abelian algebra

()(L) =()oe^io

(simply denoted by () if no confusion may arise) is a real form of a Cartan subalgebra

in the complexified Lie algebra of L°(F) . The infinitesimal character of an irreducible

unitary representation TT of L°(F) is an orbit under We = W^° , the complex Weyl

group of L°(F) , of an element ̂  in ()^ = ()* 0C the complex dual of () . Given a Levi

subset M there is a natural map from \) onto OM and a]^ 0 C acts by translations in

b£.
Unitary representations have infinitesimal characters defined by Wc-orbits in ()y ,

the set of v G ()^ such that v = —sv for some s 6 We of order 2. (Note that the

minus sign is forgotten in [A8] p. 356). The subset ()„ has a natural description via

Chevalley's theorem: there is a real vector space V , and a surjective polynomial map

^ : ^£ -^ v 0 c
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whose fibers are the Wc-^bits, and such that ^>~1(V) = it)u .

Given a A'-finite function / € C^°(L(F)) and a G f'^)^ a compactly supported

Wc-mvariant distribution on () , the theory of multipliers ([A5], [Delorme]) shows that

there exist a function fa G C^°(L(F)) such that, for any irreducible admissible repre-

sentation TT of L^^F) whose restriction to L°(F) is irreducible and whose infinitesimal

character is the Wc-0^!! of v^ G ̂  , one has

(1) ^) - ̂ )TT(f)

where a is the Fourier transform of a . Similarly given / , a compactly supported In-

finite distribution on L(F) , and a € C^^)^ there exist a function /„ C C^°(L(F))

satisfying (1) .

1.8.1. Lemma. - Given a K -finite function f C C^°(L{F)) there exists a K -finite

function f G C^°(L(F)) and functions Oj G C^W^ with j = 1,2 such that

f=f^+f.^

Proof. Let A be the laplacian for a TVc-Variant metric on I) and S the Dirac measure.

By Dixmier-Malliavin's key lemma in the proof of their factorization theorem ([DM]

lemma 2.5) there exists sequences of real numbers o,n and functions aj G C^50^)14^ ,

such that
p=n

(2) S = lim V dp^ * ai + 02 ;
p=o

moreover the sequence On may be chosen sufficiently rapidly decreasing so that, given

/ , there exists a function // G C^°(L(F)) such that

lim ̂  a^ * / = /'
p=o

where Sl denotes the operator in the center of the envelopping algebra corresponding

to A , via Harish Chandra's isomorphism. The aj define multipliers and (2) shows

that

J = Jai + 7^2 •01 ' JOC-2 •

D
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Remark. - This is an elaboration using [DM] of lemma 6.4 in [A8].

I 8 2 Lemma. - Let ̂  € ̂  and r > 0 . There exist a function a € (-(f))^

whose Fourier transform a is real valued on !)„ and such that on the subset .€( ) „ ,

\Re(v)\ < r one has :

(i) a(^) ^ 1 •
^ &M = 1 if^d only ifr. belongs to the orbit of^ under the complex Weyl

group.

(iii) Ifa{v} = 1 and M € r is such that v + IOM C f)u then

a(^+iA)=l-OM,^(A)+o(l|A||)2 for A <= OM

where QM,^ is a positive definite quadratic form on C^ .

Proof Let b be a subspace of ()* such that .0 + ̂  is a subset of !)„ . A function

^ ^ ^oo((^ that satisfies (i) and (ii) is constructed in [AC] chapter 2, lemma

15 2 p. 182; the construction is based on Chevalley's theorem. By hypothesis ̂  is a

maximum for a, in an open neighbourhood of ̂  in f). , hence for A € b :

^(^+iA)=l-Oi(A)+o(||A||)2

where Q, is a quadratic form positive on b . We are to construct a new function a

such that the corresponding quadratic form is positive definite. Consider a positive

definite Wc-invariant quadratic form Qo on h* . Choose a polynomial Po on h- such

that

(i) P^ + iA) = Qo(A) + o(||A||2) for A € f)*

(ii) Po(u^o) = 1 if w ^ Wc(^o) , the stabilizer of VQ in We .

^^-.A.^.e^/01"8"''

This is a Wc-in^1^ polynomial on f)* such that

p^+,A)=l-Oo(A)+o(| |A||2) for A € f ) * .
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Consider now

P{v) = (P,(vW^)) .

Since Pi is Wc-mvariant the polynomial P is TVc-mvariant an(! takes positive real

values on [)u . Since —77o =6^0 for some s G We one has

P(^+iA)= l-40o(A)+o(||A||2) for A e ( ) * n ^ .

Let n be an integer; since P is a IVc-mvariant polynomial on ()* , there exist a function

o. 6 C^0^)1^ whose Fourier transform is

a^)=P(ly)a^)n .

It satisfies (i) and (ii) if n is large enough; it satisfies also (iii) since the quadratic

form QM,a,v induced by Q = 4Qo + nQ\ on a^ is a positive definite quadratic form.
D

1.8.3. Lemma. - Let i/o and a as in 1.8.2. Let g be a continuous and integrable

function on d^ . Fix v G \)u and let NM(^O^) be the set of elements A G a^ such

that v + iA belongs to the Wc-orbit ofz/o • Then

( i——^ dim OM /. __ / A \

lim ./m) / a-(.+^),(A')dA'= ^ ., gw

z-^oo V ^ / Ja^ A€NM(.O,.) V^ QM^^iA

Proof. Recall that a restricted to v + ?a^ is positive, bounded by 1 . Let v9 = v + %'A

with A G NM(^O^) ' F01* A' sufficiently small

a^1 + iA') = exp (-QM,^(A') (1 + e(A')))

with e(A') -4- 0 as A' —> 0 . Denote by \u the characteristic function of U a sufficiently

small open neighbourhood of 0 in a^ . If A' is outside of the union of the A + U

where A runs over NM^O, ̂ ) we have a{y + z'A') < c < 1 . Using changes of variable

A' —> A + -^= we see that\/m

[ a^+iA^A') (M/
«^a^
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equals the sum over A 6 NM^OI ^) of

7 ^ ^dimOM y. / .„ x .„ „

[~^) / exp (-Q^^^) ( l+e(-7=)) ^(A+—=)w(——) ^A"
\Vm/ Ja^ \ V^ / VW7 y772

up to an exponentially small error term o^) . Since g is continuous and integrable,

dominated convergence shows that

^oo/̂ P (-<?M^A(A") (1+^(^))) 5(A+^)^(^) dA"

equals
(V^)^^ ^^) ^

^/det QM,a^iA

D
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II. - THE TRACE FORMULA

In this chapter we first review the basic results on the trace formula established in

[Al] [A3] and [A4], that have been extended to the nonconnected case in [CLL]. Some

reformulations are borrowed from [A8], but we shall neither use the fine geometric

expansion nor the invariant form of the trace formula. The absolute convergence of

the spectral expansion is then stated as conjecture A, that will be proved in some

particular cases. We also recall Arthur's substitute for absolute convergence that can

be used to separate infinitesimal characters at archimedean places via multipliers.

11.1 - Trace formula and geometric expansion for regular functions.

Let F be a global field. The right regular representation of -L°(A^)1 in

L^L^F^L^ApY)

may be extended to a representation, denoted by p1 , of the group L^^F)!^0^?)1

using that

LO(F)\LO(AF)1^L^(F)\L^(F)LO(AF)1 .

The operator pl(fl) defined by the restriction /1 to L(Ap) H ^(^^(Ap)1 of a

function / € C^°(L(AF)) acting by p1 in L2(LO{F)\LO(AF)1) is not in general of

trace class and the integral over the diagonal of the kernel associated to pl(fl) is

divergent. J. Arthur has shown how to construct a truncated version of the restriction

to the diagonal of this kernel, whose integral is convergent and defines a noninvariant
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distribution JL(f) that can be used as a substitute to the trace (cf. [Al] and [CLL]).

If Q is a parabolic subset with Levi subset Lq we define J^(f) by

JQ(f)=JL^(fQ).

The noninvariant trace formula is the equality of a geometric and a spectral expansions

for JL{f) . Let 7 be a regular element in L(F) ; let

^(7) = W vol (A^(F)\M^)1)

if 7 is M-elliptic and 0^(7) = 0 otherwise. Given M 6 C denote by

{M(F)}^eg

a set of representative of M°(.F)-conjugacy classes of L-regular elements in M(F) .

11.1 .1 . Definition. - We shall say that a smooth compactly supported decompos-

able function

fs = ̂ v^sfv

is regular if for (at least) one place v e S the support of fv is contained in the open

set of regular elements in Lv = L(F^) .

Let w^ denote the cardinal of the Weyl set W^ of automorphism of a" induced

by elements in Q(F) .

11.1.2. Proposition. - Let f be a regular function.

_ ^/t _

^-E ̂  E ^(7)^(7J).
Mec 7e{M(F)}^_,eg

Proof. The contribution of strongly regular elements to the geometric expansion is

computed in [Al] for connected groups; this has been extended to all regular elements

in the nonconnected case in [CLL] (see also [Labi]). Since we work with regular

functions we do not need the more advanced results on the fine geometric expansion to

compute the contributions of conjugacy classes of nonregular elements : they vanish.
D
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11.1.3. Proposition. - Let S be a finite set of places of a global field F . Consider

a pair of functions fs and cf>s such that for any parabolic subset Q C L :

^(<A) = ̂ (/)

whenever f = fs 0 f3 and (f) = (f>s ^) f3 ; then fs and (f>s have the same weighted

orbital integrals for regular elements 7 € L(Fs) .

Proof. If at some place v ^ S the support of fv is small enough, only one conjugacy

class may contribute non trivially to the geometric expansion. This, together with

the splitting formula 1.6.3, yields the proposition. For a more detailed account of the

proof in a similar but more complicated situation we refer the reader to the proof of

V.2.1 and its corollary; the norm map there has to be replaced here by the identity

map.
D

11.2 — The spectral expansion.

The fine spectral expansion has been established in [A4] for connected groups,

and was extended to the nonconnected case by Langlands in [CLL] Lecture 15. To

state it, we use the notation of [A8]; in particular we define numbers ̂ isc^) folk^mg

[A8] p. 516-517.

We say that a representation TT G II(Z/(A^)) occurs in the discrete spectrum for L

if its restriction to L°(AF) is an irreducible direct factor of 'L2(LO(F)\LO(AF)1) and

one denotes by i^^sc^) ^s multiplicity. By Langlands theory ofEisenstein series, we

know that any automorphic representation TT in the discrete spectrum for L° comes

from iterated residues of Eisenstein series attached to some pair (M, a) where a is a

cuspidal representation for a Levi subgroup M of L° . The conjugacy class \ of the

pair (M, a) is called a -cupidal datum.

Let C° be the set of Levi subgroups in L° containing M^ and let Qo be a parabolic

subgroup of L° with Levi subgroup Lo G C° . We shall denote by s the section of the

map

HLQ : Lo(Ap) -^ OLo
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such that s(ctLo) ls ^ne connected component of 1 of the group of the real points in the

split component of Res^yQ-Lo , the group deduced from LQ by restriction of scalars

from F to Q . In particular

Lo(Ap) ̂  LO(AFY X 5 ( d L o ) .

Denote by p^0 the representation of Z/o(A^) in

LLc,x(s(BLo)W)\£o(A^))

the sum of representations in the discrete spectrum attached to some cuspidal datum

\ . Denote by y9Qo^(A) the representation of L°(AF} unitarily induced from the

representation of Qo{Ap) denned by p^0 shifted by the character defined by A G z'a^

and extended trivially on the unipotent radical. Consider w 6 L(F) which normalizes

Z/o and fixes A and denote by s the image of w in W^ /W^° . Let x 6 L(Ap) act on

the right and w~1 on the left. This defines an operator pQo,^(s^ ^? x) i wnlcn depends

only on s , from the space of pQo^(A) to the space of psQo^(A) . Let us denote

by MQ^Q^A) the intertwining operator between these two representation spaces (in

the notation of [A4]). The discrete part of the trace formula, relative to \ , is the

following expression :

J^U)= E ^El^^-^J^^^^okQa^W^OJ))
LQ^C° S

where the second sum is over the subset of s G WL(aLo) such that :

del (s - I)^L ^ 0 .
^

One denotes by IIdisc(^x) ^ne se^ °f equivalence classes of representations TT of

L(AF)~^ that contribute non trivially to the spectral expansion of J^ (f) . If

TT belongs to IIdisc(^5X) ? tne number ^isc(7^) is defined by the spectral expansion of
jL

°'disc,x • J^ (/) = E G^c(7^)trace w)) •
7r€ndisc(^,x)

We say that a representation TT G II(-L(AF)) occurs discretely in the trace formula for

L if a^is^71') 7^ 0 • Note that only representations TT of L(AF)~^~ whose restriction to
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L°(AJF) remain irreducible may contribute nontrivially to the spectral expansion of

J^sc,x(f) ^or / supported on L(Ap) . By construction of the representations pQo,xW

the restriction of TT to -Si(a^o) must be a multiple of the trivial representation. Observe

that the representations which contribute nontrivially to J^ , need not occur in

the discrete spectrum for L° - this is already the case for L == GL(2) - and the

numbers a^sc^) neec^ n0^ be positive integers. We may now state the so-called fine
^-expansion.

11.2.1. Proposition. - The distribution J^ (f) can be expressed as a series indexed
by cuspidal data:

JQU)=EJ^
x

of finite sums over Levi subsets M :

,,,M
W)= E ^AW

MCCQ

of absolutely convergent expressions

^x^ E / J^f)dA.
7rendisc(M,x) ^M

Proof. This is nothing but a reformulation of the main result of [A4] extended to the

nonconnected case by Langlands in [CLL]. A variant of our formula for J^ occurs at

the bottom of p. 521 in [A8] :
_ _ ^/t _ ,.

•W) - E E ^Q E / . ^scW ^'(-A) ̂ «,/) dA .
M^C, M'eCQ{M) 7rWdisc(M,x) aM

Here TT^ is the representation in IT^M^A^)) obtained from TTA by parabolic induction.

Our assertion is obtained using distributions ^M^^if) instead of their developped

expression in term of logarithmic derivatives of normalized intertwining operators and

normalizing factors:

j^f) = ̂ scW E ^(7r) ̂ (^ •
M'eCQ(M)

D
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Remark. - The special case L = M is of particular importance; to simplify the

notation let us assume that OL = d^o so that .L(Ap)1 = L°(Ap)1 ; denote by 7r1 the

restriction of TT to L(Ap)1 . We have

^x^)" E ^iscW/ trace TTA (/) cZA
7T(=ndi3c(L,X) lal

= E ^Tisc M trace 7T1 ( /1 ) .
7reridisc(^,x)

11.2.2. Corollary. - Assume that fs and (j)s have the same weighted characters

J^^s)=J^,fs)

for all representations TT 6 H(M(Fs)) all parabolic subset Q and all Levi subset M ,

then

J Q ( c f > s 0 f s ) = J Q ( f s ^ f s ) .

Proof. This is an immediate consequence of the spectral expansion 11.2.1 and of the

splitting formula 1.6.3 for the weighted characters.
D

11.2.3. Proposition. - Let S be a set of places, containing all archimedean ones,

and outside of which (Lv,Kv) is unramified. Let f = fs 0 h be a smooth compactly

supported function where h is a K s-bi-in variant function on L(A^) , then

^xC^ E 4(^2) j^u)
^1,1/2

where

t7MlxQ2^) = E ^c(^) / ^ r^{7r^J^(^s.fs) trace Trf^) dA .
7rendisc(M,x) ia^

Proof. This follows from the spectral expansion 11.2.1, the descent formula 1.6.2 and

1.6.5.
D
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11.2.4. Conjecture A. - The triple sum and integral over \ , TT and A , in the

spectral expansion of
T ^ i , Q 2 / r \ _ V ^ T^ i ,Q2/ r \JM U ) — / . ^M,^ ^^

x

is absolutely convergent.

For Q-rank one groups, conjecture A is an immediate consequence of a result of

Langlands (Assertion D in [Lan2] p. 118). A first step toward a proof of conjecture

A for arbitrary groups is the proposition 11.4.1, due to W. Muller [Mu]. This will

allow us to establish particular cases of the conjecture (proposition 11.4.5). For the

general case one would need moreover some control on the constants in the estimates

of logarithmic derivatives of L-functions proved in [A4] lemma 8.4 p. 1330.

11.3 - Estimates and multipliers.

An estimate is proved in [A8] Corollary 6.5, for the invariant form of the trace

formula. The proof there applies almost verbatim to the proof of 11.3.1 below but

of course, since we work with the noninvariant trace formula, we do not need the

arguments - in the middle of p. 536 of [A8] - used to show that this estimate is also

valid for the invariant distributions ! To separate the contribution, to the spectral

expansion, of representations with infinitesimal character v at archimedean places,

one may use this estimate as a substitute for the conjectural absolute convergence of

the spectral expansion of the trace formula. It is quite powerful when used with the

multipliers constructed in 1.8.2.

We may group together the contribution of the cuspidal data \ defined by the

conjugacy classes of pairs (M, cr) whose archimedean component have an infinitesimal

character ̂  := v^^ such that ||3m(^)|| = i . We thus define distributions

J^) = E -W) •
||:Tm(^)||=t

Let C^^)^ be the space of Wc-invariant smooth functions with support in the ball

of radius N .
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11.3.1. Lemma. - Given a K -finite function f G C^°(L(AF)) , there exist constants

C , k , and r such that for any T > 0 any a C ̂ (1))^ o^e has

^ ̂ (/Jl < Ce^sup^Ml^eM^)}.
f^r

where f)u(r,T) is the set o f ^€ ( )u such that Re(i/) < r and 3m (i/) > T .

Proof. A first approximation of the estimate we need, for distributions J^fa) , is

given in the course of the proof of lemma 6.3 of [A8] p. 535; it can then be refined

using lemma 6.4 of [A8] (see 1.8.1); repeating the proof of Corollary 6.5. of [A8] we

get the final form of our estimate.
D

Let us denote by a*171 = a. * . . . * a the m-th convolution power of a .

11.3.2. Corollary. - Given a J<-finite function / € C^(L(AF)) , a G ̂ (l))^ , and

T large enough, the trace formula for fa*rn has the following asymptotic expansion

when m —> oo :

^CW^j^CM+o^"1)
t<T

for some 0 < c < 1 .

Proof. Remark that a is rapidly decreasing at infinity in the vertical strip |Re(z/)[ < r .

We choose T > 0 big enough so that, with the notation of the previous lemma

e^sup^aMl^eM^K^l •

Since the support of a is contained in a ball of radius N the support of a*771 is

contained in a ball of radius mN ; we now apply 11.3.1 to

El^-)!'
t>T

D
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Remark. - Given a A'-finite function / and T G R , there is only a finite set of

cuspidal data \ such that

||3m(^)||<T

which may give a nonvanishing contribution to the ^-expansion of JL(f) (cf [A8]

lemma 4.2 p. 517) and hence the spectral expansion of

E^)
t<T

is absolutely convergent.

11.4 — More on absolute convergence.

As in [A2] section 5, consider A'̂  a left invariant self-adjoint positive elliptic

operator of order 2 that commutes with Koo 5 more precisely, a suitable linear combi-

nation of the Casimir operators 0^ and Oj<- for the derived groups of L°^ and Koo 5

and of positive self-adjoint elliptic operators of order 2 on their center. If TT is an ir-

reducible unitary representation of L°(Foo) we denote by ||7r|| the smallest eigenvalue

of Tr(A^) ; similarly if r is an irreducible unitary representation of Koo one defines

||r|| . Let AL =14- A^ . If A is an operator in a Banach space we denote by ||A||

the operator norm.

Denote by ^fisc^71"1) ^ne multiplicity of the representation 7r1 of ^(Ap)1 in the

discrete spectrum L^(L°(F)\L°(AF)1) .

11.4.1. Proposition. - The operator, induced in the discrete spectrum by a smooth

compactly supported function f 6 C^°(L°(AF)) , is of trace class :

EmdLisc(^)|t^ace(7^1(/l))| <<x) .

Proof. If our function /oo is A'oo-finite this is Muller's theorem [Muj. If we remove

the J^oo-fmiteness assumption, the result is stated as '^conceivable" in [Mu] and an

argument is outlined. The details have now been checked by Miiller (private com-

munication). We shall give an independent proof in the case L = L° = GL(n) using
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Moeglin-Waldspurger's description of the discrete spectrum for GL(n) ([MW]). The

discrete spectrum is the direct sum of the generalized Speh representations that are

defined as follows. Let Pi be a parabolic subgroup whose Levi subgroup Mi is a

product of r groups M-z = GL(d) with n = dr , and a ' = a 0 ... 0 a where a is a

cuspidal representations of M^ . The generalized Speh representation :

TT == Speh(a)

is the Langlands quotient of the parabolically induced representation

I ^ 0 S } / 2 ) .

This last representation is not unitary if Pi ^ L . Let g°° be the caracteristic function

of a small enough open compact subgroup, divided by its volume, over the finite adeles

such that / * g°° = / . We have

I trace 7r{f)\ ̂  ||7r(/*A2)|| trace 7r(A^ 0 g°°) < ||/*A2||i trace 7r(A^ 0 g°°) .

Since TT is unitary the minimal eigenvalue ||7Too|| of 7!-oo(A^) is positive; on the other

hand the minimal eigenvalue ofZ^ (<r^ 0^2, A'J occurs for the minimal K^-types',

since the minimal Koo-types occur in the Langlands quotient 71-00 , all eigenvalues are
positive and hence

trace ̂ (A^ 0 g°°) ^ trace Z^ (a 0 <^2, A^" 0 g°°) .

Given an integer r , if n is large enough, by a standard parametrix construction, there

exist compactly supported functions ^1,00 C C^(L°^) and ^2,00 C ^(Z/^,) such that

J = A ^ * ̂ 1,00+^2,00

where J is the Dirac measure. Let ^ = g,^ 0 ̂ °° ; since ||Z^ (cr^ 0 ̂ 2, A^")!! < 1

we get

trace 1^ (<7' 0 J^2, A^ 0 ̂ 00) ^ ̂  | trace Z^ (a' 0 ̂ 2,^)!
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Now we have

trace l^p ( a ' 0 6p ,^i) = trace c r ' ( S p </z,Pi)

where gi,p^ is the constant term of Q{ along Pi . Summing up we have proved that

| trace 7r(/)| ^ ||/ * A^II ̂  | trace a'(S^^,pj| .
i

Hence we are reduced to show that convolution operators by sufficiently regular func-

tions in the cuspidal spectrum yield trace class operators: this is well known.
D

11.4.2. Lemma. - Given a smooth and compactly supported function f there is a

positive definite smooth and compactly supported function g such that for any unitary

representation TT one has

| trace 7r(/)| < trace 7r(g) .

By Dixmier-Malliavin's factorisation theorem [DM] we may write / as a finite

sum of convolution products / == ̂  fj */'• ; each product fj^f'j is a linear combination

of positive definite functions gk * gk where gk = (fj d= f'A or (fj ± if.) and

hence

The function

9k(x) =gk(x-1) ;

/ = ̂  Afe gk * gk .

9= ̂ \>k\9k ^9k

D
is a solution.

11.4.3. Lemma. - Ifn is large enough, the operator norm

||7Z^(7r^,P)Z^(7roo,A^")||
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has a bound independent of the unitary representation TT .

Proof. The derivatives of the matrix coefficients of operators Rpi\p(^oo} restricted to

a A'oo-type r are rational functions of A that have bounds of the form

G(l+HT-ID^I+11^11)^

(see [A2] (7.6) p. 42). Using the definition of numbers c^ attached to (I/,M) families

in term of derivatives of the c^(A) (lemma I.I.I), this yields similar estimates for the

matrix coefficients of Kj^(7Too^P) . Given r , the eigenvalue of Z^ (71-00, A^) on the

subspace defined by the Koo-type r is, for n large enough, bounded by a constant

times

(l+||T||)- r(l+ IMP-.
So, for n large enough

||7Z^(7roo,P)Z^(7roo,A^")||

is uniformly bounded.
D

Remark. - The above proof is reminiscent of the proof of proposition 9.1 in [A2].

11.4.4. Corollary. - There exist a positive definite function g^o G C^°{L°(Foo))

such that

l^^oo,/oo)| < C trace ZJ^TToo.^oo) = C trace 7Too(^oo,p)

where M is a Levi subset ofPcQ and goo.p is the constant term of goo along P° .

Proof. Since

\J^ooJoc)\ < llT^Tro^Z^Tr^A^III trace Z^TTooJoo * A^l .

By 11.4.3, for n large enough, there is a constant C such that :

|^(7Toc,/oo)| ^C\ traceZ^(7rooJoo*A^)| .

We conclude by applying 11.4.2 to the function /oo * A^ .
D
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11.4.5. Proposition. - Conjecture A holds for Z/i = M :

E c^^ = E E l^scWI / ^ I^A,5,/5) trace 7^(^)1 dA
X X 7r€ndisc(M,x) '^M

is convergent.

Proof. The splitting formulas allow us to write the above expression as a sum of

integrals of products of terms at finite and infinite places. The finite places are easily

dealt with: they give uniformly bounded contributions since unitary representations

with a nonzero fixed vector under some fixed open compact subgroup form a quasi-

compact set. Hence, by 11.4.4, there exist a smooth positive definite function g on

Z/°(AF) compactly supported such that

|^(7TA,oo,/oo)| < Ci trace l^p^g) = Ci trace TT^(gp)

where g p is the constant term along P of g . This shows that

E ̂ W = E l^scMI / \J^A,s Js) trace 7rf(/^)| dA
x 7rendisc(M,x) '^M

< G! E E l^scMI / ^ trace Tr^gp) dA .
X 7r(Eridisc(M,x) ^M

Moreover

I trace Tr^(gp) dA = trace Tr1^^)
^^M

where 7r1 and g^p are the restrictions of TT and ^p to the kernel of the map

M°(AF) -^dM .

We get

E C^U) ̂ C^ ^ \a^(n)\ trace Tr1^) .
X X 7r6ndisc(M,x)

The representations TT that occur discretely in the trace formula for M are constituents

of the extension to M(A^)~1" of representations ̂ M = Zj^ (TTi) parabolically induced
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from representations 71-1 in the discrete spectrum of M^ , a Levi subgroup of Pi . Let

Qi C P° be the parabolic subgroup of L° such that Pi = Qi H M . We have

^^ trace 7r(gp) == trace Zj^ (^i-,gp) = trace TTi (^Q^ ) .

7rC<°

Let ^i denote the integral of gq^ on ^(a^o) 5 this is a function on M^(Ap) such that

^ la^LWI trace Tr1^)^ m^^) tracer),
^c^°

where TT^ and g\ denote the restriction to M^(Ap)1 . We conclude using 11.4.1.
D

11.5 - Absolute convergence and measures on the unramified dual.

Let S be a finite set of places, containing all archimedean ones, and outside of

which (Lv, Kv) is unramified. Let us denote by Hnr,u(L(A^)) the space of equivalence

classes of unitary unramified representations of L°(A^) , restrictions of representa-

tions of L(A^)^~ . This compact space is the product for v ^ S of the Hnr,u(Lv) . We

denote by 7^L(A^) the restricted product of unramified Hecke algebras outside S .

11.5.1. Proposition. - Let ho be a smooth compactly supported function on L(A^)

bi-invariant under K8 . Assume that conjecture A holds for the pair (L-^^Q^). The

linear form on the space of Fourier transform h of functions h in the unramified Hecke

algebra 'HL(Ajr) , denned by the composition of the inverse Fourier transform and

the series of terms J^ "2 in the spectral expansion of the trace formula

^E^2^®^ */»)),
x

has a unique extension to a Radon measure on the compact space Hnr,u(L(AJr)) .

Proof. We have

E l^2^ ® (^o * h))\ $ ̂  C^Us ® ho) \\h\\L
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where C^^(fs 0 ho) equals

E / , ̂ (^{^^(^sjs) trace 7rf(^o,M)| dA .
7r<Eridisc(M,x) la^

Conjecture A for (L^.Q-z) tells us that

E^2^0^) < +^-'M,;
X

On the other hand, the algebra of functions h : Tr3 ^ trace ^{h) is self-adjoint,

contains the scalars and separates the points on the compact space Hnr,u(L(A^)) ;

by Stone-Weierstrafi theorem, this is a dense subalgebra in the algebra of continuous

functions on this space. The linear form extends uniquely by continuity.
D
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III. - NORM MAP AND ENDOSCOPIC TRANSFER

In this chapter F is a global or a local field of characteristic zero. Let E be a

cyclic Galois algebra over F of degree £ =• t^ . The algebra E is a direct sum £-2

copies of a cyclic field extension Ei of F of degree ^i . Let 0 be a generator of the

Galois group; 0 acts as follows :

xi,...,x^) = (x2,...,Xty,0i(xi))^
where (?i is a generator of the Galois group E\ / F . Let

H ='[[GL(m)
i

be a product of linear groups and let G be an inner form of H over F ; we denote by
rj the isomorphism

T ] : G - , H

over the algebraic closure. Denote by ResE/pG the group scheme obtained by restric-

tion of scalars from E et F . We want to compare the trace formula and the harmonic

analysis for the component

L = HesE/pG xi 0

of the nonconnected reductive group

L^ = ResE/pG x Gal(E/F) ,
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and on the reductive groups H which is the only endoscopic group for L . We refer

to [KS1] and [KS2] for the definition and the properties of twisted endoscopy. Let us

introduce a notation that will appear from time to time : if A is an -F-algebra, and

given a function / defined on L° (A) , one defines a function fe on L{A) by

fe(x x e) = f(x) .

The comparison of the geometric expansions of two trace formulas, in the base change

situation we are to study, will be quite simple thanks to two facts :

1 - The derived group of GL(n) being simply connected, the centralizers in L° of

semisimple elements are connected; in particular centralizers of regular elements

are tori.

2 - Conjugacy and stable conjugacy coincide in L(F) .

III.l - Stable conjugacy and the norm map.

The definition of stable conjugacy, and the basic study of the norm map is to be

found in [Kol]. The derived group of GL(n) being simply connected we may use the

following definition. Let F be the algebraic closure of F .

III.1.1. Definition. - We say that two elements S and 8' in L(F) are stably con-

jugate if they are conjugate by an element x in L°(F) .

III.l .2. Lemma. - Two elements S and S' in L(F) are stably conjugate if and only

if they are already conjugate by an element y in L°(F) = G(E) .

Proof. If S = x ^ S ' x then for any o- in the Galois group (S = Gal(F/F) :

S=a(x)~lSfa(x)

and hence a i—>- x~la•(x) is a 1-cocycle with value in the centralizer LS . It suffices to

show that there exist u € -Ls(F) such that y = ux 6 L° (F) . But this follows from

the triviality of H1 (0, Ls) the first Galois cohomology group with value in LS ; this in

turn uses that such a centralizer L§ is the multiplicative group of a finite dimensional

algebra over F ([S] Exercice 2 p. 160).
D
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The norm map J ^ E / F between conjugacy classes in L(F) and stable conjugacy

classes in H(F) is induced by the £-th power in L~^ : the conjugacy class of S € L(F)

under L°(F) , is mapped to the intersection of H(F) with the stable conjugacy class

of S^ . In fact 0(8^) is stably conjugate to S1 , and since H is split with a simply

connected derived group, this intersection is non empty [Kol]. It is a single H(F)-

conjugacy class since, according to III. 1.2, stable conjugacy and ordinary conjugacy

coincide.

III. 1.3. Lemma. - Let F be a local or a global field. The norm map induces an

injection from the set of conjugacy classes of regular elements in L(F) into the set of

conjugacy classes of regular elements in H(F) .

Proof. The stable conjugacy class ofS1 contains some 7 6 H(F) , and the centralizer of

6 in L°(F) is isomorphic to an inner form of the centralizer of 7 in H(F) . In particular

S is regular if and only if 7 is also regular, and in such a case their centralizers being

tori are isomorphic : LS ^ H^ = T is a maximal -F-torus in H ; the centralizer of S^

in L°(F) is isomorphic to T(E) and conjugation by 8 induces a Galois automorphism

denoted OT on T(E) . Again the triviality of the first Galois cohomology group with

value in the centralizers shows that the norm map induces an injection from the set

of conjugacy classes under L°(F) == G(E) in L(F) into the set of conjugacy classes

in H(F) (cf. [Lani] lemma 4.2 p. 33).
D

III. 1.4. Lemma. - Let F be a local field. A regular element 7 G H{F) which is

elliptic is a norm from L(F) if and only if ̂ (7) G NE/F^^ ^or au F-rational characters

^ e X(H)F .

Proof. We refer to [A7] lemma 10.4 page 376.
D

The next lemma is an elaboration for inner forms of GL(n) of the well known

similar result for GL(\) : given a cyclic global field extension E / F , an element in

Fx is a norm from E^ \i and only if it is a norm locally everywhere.
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111.1.5. Lemma. - If F is global, a regular element in H(F) is a norm from L(F)

if and only if it is a norm locally everywhere.

Proof. We refer to [Lani] lemma 4.9 p. 37 or [AC] chapter 1 lemma 1.2 p. 4 for the

split case G = H . For the general case we refer to [KS2] lemma 6.3.A.
D

111.1.6. Lemma. - Let F be a local field and asume that G = H. There is an open

neighbourhood of the identity in H(F) in which any element is a norm from L(F).

Proof. Since G = H there is an injection

H ( F ) ^ 0 ̂  L(F)

and the norm map is induced by the ^-th power; but the map 7 h-> 7^ induces a

diffeomorphism of a small enough neighbourhood of 1 in H{F) onto its image.
D

111.1.7. Lemma. - Let F be a local field and let G = H. An admissible irreducible

representation TT of H(F) has a character distribution Oyr that does not vanish iden-

tically on the set of regular elements that are norms of elements in L(F) .

Proof. According to III. 1.6 there is a neighbourhood U of the identity in H{F) which

contains only norms from L(F) . Let f = f\ * /i be a function of positive type; here

f^(x) = fi(x~1) . If the support of/i is small enough trace 7r(/) is strictly positive

and the support of / is in U . It suffices now to recall that the character distribution

is defined by a function in L]^(H(F)) and that the set of regular elements is open

and dense.
D

111.1.8. Lemma. - Let F be a local or a global field. If^ is stably conjugate to 5s

D L ( S ) = D H ^ ) .

Proof. In fact since (<$ ^ Ly 0 E this follows from the following elementary calculation.

Let V be a finite dimensional vector space over F ; consider a G GL(V) and

b e GL{V 0 E) x e
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such that a == V- ; we want to compare del (1 — a\V) and del (1 — b\V 0 E). Over

the algebraic closure F one has

V (g) E 0p F ̂  (V (g) F/

the factors being cyclicly permuted by ^ and one can write 6 as a bloc-matrix

( 0 0 ... 0 &A
6i 0 ... 0 0 1t= : ; ; ;
0 0 ... ^-1 0 /

with the bi 6 GL(V 0 F) - An elementary computation shows that

del (1 - b\V 0 E) = del (1 - 6^-i ... 61 \V (g) F) .

Now a = (/ is conjugate to 6^-1 . . . &i and hence del (1 — a\V) = del (1 — b\V 0E).
D

Remark. - A similar lemma holds for the normalizing factors used by Arthur and

Clozel but powers of £ show up (cf. [AC] p. 80).

We have fixed once for all a minimal Levi subset M^ in L and a minimal Levi

subgroup M^ in H . The isomorphism T) induces an injection M i-̂  ^/^(M) of the

set /^(M^) of semistandard F-Lev'i subsets in L into the set ^(M^) of semistan-

dard Levi subgroups in H ; this is, a bijection if G is quasi-split. Given M G £^(Mj^)

we shall denote by M2' the preimage of M via T J E / F 5 this preimage may be empty.

In particular (Mj^)2' is empty if G is not quasi-split. If the preimage of M is empty
QL

distributions J^L are understood to be zero. If M belongs to the range of r ] E / F

the isomorphism 77 induces a bijection of the set P^M) of .F-parabolic subsets in L

with Levi subset M onto the set P H ( ' ^ ^ E / F ( ^ / f ) ) of parabolic subgroups Q in H with

Levi subgroup r f E / F ( ^ ) • Again the preimage of Q is denoted by (^L . The isomor-

phism 77 induces an isomorphism r)H '' an —^ ^L - More generally we have a canonical

isomorphism
o o o1'

^M '• ^M -> ̂
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if M and Q are in the range of T J E / F • We shall use T]^ to transfer Haar measures.

The covolumes that showed up in I.I match : a^ = a^ . Let M1^ be a Levi subset

of L , we also have

^(Li,^)^^,^).

There is an other isomorphism induced by the norm map a^ —>• a^ ; the map ^Q

followed by the norm map is the multiplication by £ on a^ . This introduces factors

£dlmaM in the transfer of Haar measures on the duals via the norm map.

III.2 - Endoscopic correspondence.

Let F be a local field. Dual to the concept of norm map for conjugacy classes is

the concept of endoscopic correspondence (or base change) for representations; it is

defined, at least for tempered representations, by a character identity which relates

values of characters at points connected by the norm map.

III.2.1. Definition. - Let TT be an admissible irreducible representation of H(F) ;

denote by 0^ its character distribution. An admissible irreducible representation TT'

of L(F)~{' with character distribution Q^i is said to be a strict base change lift ofn if

there is a nonzero constant e such that

Q^(x)=eQ^(y)

whenever y G H(F) is regular and stably conjugate to the £-th power of x 6 L(F) .

Remarks.

(i) It is usual to be more precise and to ask that the constant e is the Kottwitz

constant, a sign which depends only on the local group L(F) (cf. [AC] p. 78). In

particular if L° is split the Kottwitz constant is 1 . If e is chosen to be the Kottwitz

constant we say that TT' is the canonical base change of TT . Otherwise a base change

TT' of TT , if it exists, is only defined up to a twist by a character of L°(F)\L^'(F)

and the constant e is the Kottwitz constant up to an ^-th root of unity. Nevertheless

all base change lifts have the same restriction T ^ E / F ^° L°(F) .

(ii) While a character identity is the usual definition for tempered representations, the

base change correspondence, in general, connects the Langlands quotients of standard
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representations (i.e. representations parabolically induced from quasi-tempered ones)

that satisfy the character identity. Writing a representation as a linear combination

of standard representations one can show that a strict base change is a base change'

the converse need not be true for nontempered representations.

III.3 - Endoscopic transfer.

We now recall the definition of the endoscopic transfer, also called association in

our setting.

III.3.1. Definition. - A pair of smooth compactly supported functions f and (j)

on H(F) and L(F) respectively, are said to be associated, if for any regular element

7 € H(F)

<7H(7j)=^A^(7,<?)J^).
8

where Aj^(7,J) =lif^ is stably conjugate to S^ and equals 0 otherwise; the sum is

over a set of representatives of L°(F)-conjugacy classes in L(F) . We assume that

the choice ofHaar measures on the centralizers LS and H^ , implicit in the definition

of orbital integrals, is compatible with the natural isomorphism between centralizers

if S^ is conjugate to 7 .

Remarks.

(i) In the above definition it is equivalent to deal with orbital integrals instead of the

normalized ones. This follows from lemma III.1.8.

(ii) We say that the endoscopic transfer holds if: given <^ there exist an associated

function fv , and given fv with vanishing orbital integrals for elements that are not

norms there exists an associated function <^ . It is shown in [AC] chapter 1 section 3

that the endoscopic transfer holds at least when either G = H or E == F . We shall

prove the particular cases we need.

We shall now introduce a noninvariant avatar of the concept of association.
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III.3.2. Definition. - Let F be a local field. Two functions f and <f> on H(F) and

L(F) respectively are called strongly associated if for all Levi subgroup M G C11 and

all parabolic subgroup Q ofH , one has

(i) If 7 € M(-F) is stably conjugate in M to S6 with 5 C ML(F) the weighted orbital

integrals match :

J^.f)=ji^4>)

(ii) If the value at 7 of some F-rational character ^ G X(Q)p is not a norm

$(7) i NE/F^}
or if Q does not belong to the image ofrjE/F then

J^J)=Q.

Remarks.

(i) To check that two functions / and (f> are strongly associated, it is enough, thanks

to the descent formula (lemma 1.6.3), to establish the matching statement

^(7J)=^£(<^)

when 7 is the norm of S , and the vanishing statement, for a Levi subgroup M in

which 7 is elliptic.

(ii) Given a pair (f^(f>) of strongly associated functions, the same is true for pairs

(fpi ^P1-) °f constant terms.

111.3.3. Lemma. - Strongly associated functions are associated.

Proof. We have to check the vanishing property. Consider a regular element 7 in

H(F) elliptic in M. It is a norm if and only if ^(7) is a norm for all ^ G X(Q)p where

Q is a parabolic subgroup with M as Levi subgroup (lemma III. 1.4). But

JL(^,f)=J^f)

if Q is parabolic subgroup with M as Levi subgroup. In particular, if (/, (f)) are

strongly associated JL^-> f) = 0 if 7 is not a norm.
D
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III.3.4. Lemma. - Let F be a local field. Let M be a Lev! subgroup in the image

o f r j E / F ' Let 7 € Mi(F) C M(F) such that ^(7) is a norm for all ^ G X(M)p. Let f

be in a pair (f,(f>) of strongly associated functions. Then J^^.f) = 0 if $(7) is not
a norm for some $ G X(Mi)p.

Proof. By the descent formula one has

J^f)=^^(M,L,)J^f)

Observe that the natural map

X(Qi}F © X(M)p -^ X{M^F

is surjective. Hence if ^(7) is not a norm for some ^ G X(M\)p then ^1(7) is not a

norm for some ^ G X{Q\)p and hence J^1 (7, /) = 0.
D

Remark. - In the proof of V.I.4 this lemma will play a role similar to proposition

10.2 page 373 of [A7] in the proof of proposition 8.1 p. 542 in [A8].

To separate infinitesimal characters it is convenient to deal with pairs compatible

with multipliers.

III.3.5. Definition. - Let F be an archimedean field and let (f,(f)) be a pair of

K-finite strongly associated smooth and compactly supported functions on H(F) and

L(F) respectively. We say that the pair (/, <f>) is compatible with multipliers iff? and

(f)a are strongly associated whenever a and /3 are compatible with base change i.e.

/3(z/) = a ^ E / p )

where V E / F ls tne composition of v with the map induced by the norm.

We hope that the endoscopic transfer can be supplemented in the following way

to yield a noninvariant endoscopic transfer compatible with multipliers.
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III.3.6. Conjecture B. - Let F be a local field and let (f,(f>) be a pair of associated

smooth and compactly supported functions on H(F) and L(F) respectively.

(Bl) There exists a pair (//,^') of strongly associated smooth compactly supported

functions, with f equivalent to f and (f)1 equivalent to (f> .

(B2) If F is archimedean and iff and (f> are K-finite the functions f and (j)' may be

chosen K-finite and such that the pair (//,^') is compatible with multipliers.

Remarks.

(i) One could formulate an analogue of B2 for nonarchimedean fields, with distribu-

tions in Bernstein's center playing the role of multipliers.

(ii) For functions with regular support, Bl follows from proposition III.4.1.

(iii) At split places, we shall prove Bl for J<-finite functions, and B2 (III.5.5).

(iv) If E = F and G is a division algebra conjecture B holds since associated functions

are automatically strongly associated.

III.4 - Regular transfer and base change.

III.4.1. Proposition. - Let F be a local field. Given (f> a smooth function on

L(F) , compactly supported supported inside the open set of regular elements, there

exists a pair of smooth compactly supported function <j)' on L{F) and f1 on H(F)

strongly associated with ( j ) 1 equivalent to (f) . Conversely if the orbital integrals of

f vanish whenever 7 G H(F) is not stably conjugate the £-th power of an element

S G L(F) , and if f has a regular support there exist (f)' and f strongly associated

with f equivalent to f .

Proof. Given (f) lemma 1.7.1 proves the existence of <^' equivalent but with vanishing

weighted orbital integrals for nontrivial weights. Now any regular 8 defines a torus

T{F) in L{F) and its norm 7 defines a torus To(F) in H(F) and T°(F) ^ To(F) .

The image of the norm map is a finite covering from T(F)reg onto the open set of

£-th powers elements in To(F)reg and is a injection from the set of W1' (T)-orbits into
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the set of Ty^Tc^-orbits (lemma III. 1.3) and hence (j)' defines a smooth compactly

supported TV^CTo^invariant function

^)=^ALH^S)J^6^)
6

on To(F) . The lemma 1.7.1 or rather its proof allows one to construct a function

// on H(F) with vanishing weighted orbital integrals for nontrivial weights and with

ordinary orbital integrals given by y . The other half of the proposition is proven

similarly.
D

III.4.2. Corollary. - Let TT G Tl{H(F)) and let TT' G H(L(F)) . Assume there is a

nonzero constant c , such that for all pairs (/, (f)) of strongly associated functions with

regular support

trace 7r'(<^) = c trace 7r(f) .

Then TT' is a strict base change lift of TT .

Proof. We want to prove that

Qn'(x)=eQ^{y)

whenever y G H(F) is regular and stably conjugate to the £-th power of a; € L(F) .

This is an immediate consequence of WeyFs integration formula, using III. 1.8 and

III.4.1.

Remark. - The two constants c and e differ by a power of \i\p'
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III.5 — Strong association at split places.

Let F be a local field. If E / F splits and if G = H , the construction of strongly

associated pairs can be made quite explicit thanks to the next lemma.

III.5.1. Lemma. - Let fi be smooth compactly supported functions on H(F) , and

consider (j) = (/i 0 f-z 0 ... 0 f^)e on L(F) . Let M be a Levi subgroup in H and let

Q be a parabolic subgroup containing M . Consider S G M1'^) regular in L(F) :

(^==(71, . . . ,7^) x < 9 ,

and let 7 = 71 ... 7^ . The weighted orbital integral ^ ' L (^ ̂  equals

I I . . . / fi(x^...x^^)f2(x2)...Mxe)
JM{F)\H(F) J H { F ) J H { F }

^L

VJ^L (x! ? xlx2 - > ' ' ' ? x! ' - ' Xf) dx\ dx'z ... dxf, .

Proof. By definition

<^^(<^) = / /l(^717l^l)/2(a l^ l72a'2)•••^(a'7- ll7^^)
JM(F)\L°(F)

QL dx^ dx-2 ... dxf
V ^ L [ X i , X ' 2 , . . . , X ^ ) —————,——————— .

The desired formula follows from simple changes of variables using the left invariance

of the weight under M(F) x ... x M(F) .
D

The lemma shows that a function / on H(F) is associated to <f) if and only if / is

equivalent to /' = /i *.. .*/^ . Observe that any smooth compactly supported function

on H(F) can be written as a finite sum of convolution products. This follows from

Dixmier-Malliavin's factorization theorem [DM] for the group H(F) . This shows

that given / there exist (f> such that (/, (f)) are associated and conversely. To obtain

strongly associated pairs of functions one has to specify the /, .

The lemma also shows that, at split places, weighted orbital integrals still make

sense if one replaces

f2(x2)dx-z 0... (g) fi{Xt)dX(,
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by a tensor product of compactly supported Radon measures ̂  0 . . . (^) /^ .

Let r be a finite dimensional irreducible representation of K11 , denote by er the

measure on L(F) , supported on K11 , defined by :

^'^^L^trace T(fc) dk •
This is an idempotent in the convolution algebra. The sum over a finite set F of

inequivalent irreducible r is again an idempotent

e=J^er ,
rer

that will be called an elementary idempotent. A function / is A^-finite if and only if

there is an elementary idempotent e such that f ^ e = e ^ f = = f .

111.5.2. Lemma. - Let f be a K -finite smooth compactly supported function on

H(F) and let e be an elementary idempotent such that

e ^ f = f ^ e = f .

Then f and (f (g) e ( g ) . . . (g) e)e are strongly associated.

Proof. Since v ' ' L ( x l - > x l ^ ' ' ' 1 x l ) = ^M^) ^ls follows from III.5.1, using the right

invariance of weights under

A^0 = K" x ... x K11

D

This shows that Bl holds for split nonarchimedean places. Assume from now on

that F is archimedean. For archimedean fields e is not a smooth function; we shall

use multipliers to transform measures into functions. We need a lemma.

111.5.3. Lemma. - Let (f> = (/i (g) f^ 0 . . . (g) fi)e ' Consider multipliers defined by

a = (a i , . . . , Q^) and a' = (a[ , . . . , o^) such that

o;i * ... * Of = a[ * ... * a\ = (3 .
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For any S G ML(F) regular in L(F)

ji(S,^) = J^(J,<M .

Proof. By proposition 1.6.6 it suffices to show that the functions (f>a and (j)^ have the

same weighted characters. If the restriction of T T ' to H(E) = H(FY equals 7r(g).. .(g)7r ,

the weighted characters are of the form

JM^'^a)= trace (JiTT'^))

where R is a sum of decomposed operator

R = ̂  J?i (g) ̂  ( g ) . . . (g) ̂  .
2

Since ^'(0) permutes the factors cyclicly

trace (RTF^^)) =

^ ai (^)... a^) trace (J?i ̂ (/i)^ 7r(/2)... ̂  7r(/,))

and hence

=/3(^) trace (^ TT'^))

J^t^^)=J^(7^t^^ .

D

III.5.4. Proposition. - Le^ a = (ai , . . . ,o^) be a family of smooth Wc-invariant

compactly supported functions on (), let f3 = ai * ... * 0.1 and

^a = (/ai 0 602 0 ... 0 e^)^ .

The functions <^ and /^ are smooth K-finite compactly supported functions on L(F)

and H(F) respectively. They are strongly associated.

Proof. Consider a sequence g^ for n G N of smooth functions on H(F) , with support

in a fixed compact set such that the sequence of measures g^\x) dx is a sequence of
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Radon measures with bounded norm that converge to the measure e as n —>• oo , in

the weak topology. In particular g^ 0 ... (g) g^ converges in the weak topology to

e 0 ... (g) e . Consider the distribution a' such that a' = (/?, 1,. . . , 1) and let

^n) = (^ ̂ (n) ̂  • • . W'V

Lemma III.5.2 shows that

J^,M=\imJ^(S,4>y).

Now let

^-(/Ol®^®...®^^.

According to lemma III.5.3

ji(s,^) = j^s^y).
To conclude we observe that g^- tends to e^, in ^(H^F)) when g^ tend to e and

hence

limJ^(^^)=J^(^^).

D

III.5.5. Proposition. - Conjecture B2 holds for split archimedean places.

Proof. Consider a pair of associated functions / and <f) = (/i 0 . . . 0 f^)ff ; this means

that / is equivalent to /' = /i * . . . * ft . Lemma 1.8.1 and the factorization theorem

[DM] for functions on () shows that / is a finite sum of functions of the form g^ where

/? is a convolution products of S factors a\ * ... * ai . Now proposition III.5.4 allows

us to construct a AT-finite function (f)' equivalent to (f) such that (/, <^') is a pair of

strongly associated functions compatible with multipliers.
D
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IV. - UNRAMIFIED PLACES

In this chapter F is a nonarchimedean local field, E is an unramified Galois

algebra of degree £ over F , the group G is a product of groups GL(ni) ; in particular

G is split

H(F)=G(F)='[[GL(m,F)

and

L°(F) =G{E) ='[[GL{n.,E).

Elementary functions were introduced in [Lab2] and used to prove the fundamental

lemma for stable base change. Here we show that the various properties established

there have noninvariant analogues. We show that pairs of elementary functions defined

by semisimple elements connected by the norm map are in fact strongly associated.

Moreover we show that weighted characters for elementary functions connected by

the norm map are compatible with base change. This uses that elementary functions

are closely related to functions bi-invariant under Iwahori subgroups. At the end of

this chapter we state a noninvariant form of the "fundamental lemma".
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IV.1 - Elementary functions and Iwahori subgroups double cosets.

Following Deligne [Deligne] and Casselman [Casi], to any semisimple element y

in L(F) we associate a parabolic subset P^'^F) in L(F) : the subset of x G L(F)

such that ynxy~n remains bounded for n G N . This parabolic subset has a Levi

decomposition P^^ = M^^N^^ with Levi subset M^^(F) , the subset of

x C L(F) such that ynxy~n remains bounded for n G Z . The nilpotent radical

7V(^2/) is often simply denoted N^ . We shall denote by N^ the opposite unipotent

subgroup. The Levi subgroup of L° defined by y will be denoted M^ ^ or simply

^f(y) , These Levi subsets need not be semistandard.

Denote by Op the ring of integers in F and let ^p = ^OF denote its maximal

ideal where w is an uniformizing parameter in Op . Assume that L° is a quasi-split

scheme over Op split over an unramified field extension F^ of F so that the subgroup

K = L°(OF) is an hyperspecial maximal compact subgroup. We assume that some

(and hence any) e € Mo(Op) normalizes K . In the terminology of section 1.2 the

pair ( L ^ K ) is uramified. This applies in particular to our situation: G is split, and

L = Res^/^G x 6 where E is an unramified Galois algebra of degree £ over F , whose

Galois group is generated by 0 and e = 1 x 0 . To y is associated a parahoric subset

Q(L,y) ̂ j ̂  parahoric subgroup B^ ^ , also sometimes denoted B^ , with Iwahori

decomposition
^(L,y) ̂ ^(^M^^OF^^DF) .

Let Ao be the split component of the minimal Levi subset MQ . The image of the

map

Ho : Ao(F) -^ do

is a lattice X^ isomorphic to the group of one parameter subgroups in Ao . There is a

natural section of the map Ao(F) —>• X^ up to the choice of a uniformizing parameter.

Given r G Xo we denote by to = w'1' its image by the section in Ao(-F) . Choose a

minimal Levi subset Po = MoNo . We say that t = toe is antidominant if |^°'| < 1 for

all roots a of Ao in No . This is equivalent to say that r is dominant : < r, a >> 0 for

all a . The Levi subset M^^ is the centralizer of to in L(F) . We say that t is very

regular if l^) ^ 1 for all roots a . If t is antidominant and very regular P^'^ = Po

the minimal parabolic subset and B^ = Bo is an Iwahori subgroup.
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Let B be an open compact subgroup of K such that B H M^^F) satisfies the

Kottwitz5 conditions ([Ko2] p. 240 or [Lab2] p. 520). Let us denote by Char (X) the

characteristic function of X . The elementary function f3 is defined as follows :

fB = i^ Char^-Wfclfce^ , m^B^M{t\F)} .

Here we shall consider elementary functions defined by taking -B to be a standard

parahoric subgroup for L(F) i.e. parahoric subgroups of L°(F) defined from a stan-

dard parabolic subset (i.e. containing Po ). It B = K and we shall sometimes write

f^ instead of f^ . As in [Lab2] only the two extreme cases will be used : either t

is very regular and M^ = M^ , or t = e and M^ = L° . We begin by exhibiting

the close connection between elementary functions and function in the Hecke-Iwahori

algebra i.e. compactly supported functions bi-invariant under an Iwahori subgroup.

IV.1.1. Proposition. - ( i ) If B is a standard parahoric subgroup for L(F) such

that B C B^ , the elementary function f3 is the characteristic function of the
double-coset BtB divided by the volume of B .

(ii) IfB D B^ the elementary function is the caracteristic function of a disjoint union

of conjugates by a set of representatives of B^^B of the double-coset B^ t B^
divided by the volume of B .

f^^B) E Char(^W)6).
v / bCB^B

Proof. Assume first that B C B^ . Let A^ = M^(F) H B C M^^Op) . This is a

parahoric subgroup in M^\F) . Consider the map

(6,m) 1-4- b^mtb

from B x A^ to B.t.B . It induces a map

Ct : A^\(B xA^) ->B.t.B

where A^ acts by left translation on B and by ^-twisted conjugacy on the second

factor A^ . This is a bijection onto the double coset B.t.B . We prove first that c<

is an injection : let 6 G B such that

b~lmtb = m\t
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with m and mi in A^ ; then fbt^ is bounded for all n G N ; hence b belongs to the

Levi subgroup M^F) denned by t ; this implies b G A^ and proves the injectivity

of Cf . To see that Cf is a surjection it suffices for example to show that the volume of

the image of the map Cf (which is open and compact) equals the volume of (B.t.B) .

But the volume of the image of c< is vol (B) \DL(t)\ since the Jacobian is \DL(t)\ .
On the other hand

vol ( B t B ) = vol (B) Card^VJ?)

where C^ = B H t B t~1 . This is an open subgroup of B with an Iwahori decompo-

sition

C^) = N^(^F) A^ t N^(Op) t-1 .

The covolume of C^ is Jp(Q (t)~1 . The surjectivity of c< follows from the equality

Sp^(t)-l=\DL(t)\=\DH(te)\.

This proves (i). Assertion (ii) is an easy consequence of (i).
D

IV.1.2. Corollary. - Let TT be an irreducible admissible representation of L~^~(F) in

a vector space V , let K be an endomorphism of V that commutes with the restriction
OITT toK . IfB CB^

trace (^(/f)) = Sp^(t)-1 trace (T^TT^))

where Ti3 and 7TB are the operators in the space V B of B-invariant vectors in V ,

deduced from K and TT by left and right multiplication by the projector on V3 . If
B D B^ one has

trace (T^/5)) == Sp^(t)-1 trace (TZ^Tr5^)) .

D
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From the IV. 1.1 we deduce also a noninvariant version of proposition 5 of [Lab2].

IV.1.3. Proposition. - Let TT bean irreducible admissible representation of L'}~(F),
then

^(/<)=0

unless the restriction of7r to L°(F) is a sum of sub quotients of unramified principal
series.

Proof. Observe that the only representations of L°(F) , with nonzero vectors fixed

under an Iwahori subgroup, are subquotients of unramified principal series.
D

Any w G W^ can be written w = s^ xi 0 with s^ <E W^ ; the map w ̂  s^ is a

bijection between W^ and the Weyl group W^ . For w G W^ let ^w = w^tw .

IV.1.4. Lemma. - Let \ be an unramified character of M^(F) . Let TV be a sub-

quotient of the principal series representation Z^(A) of M(F)^~ defined by X . There
is a subset W(7r) C W^ such that, as a function oft , for t antidominant with respect
to PQ and very regular,

J^Jt)= ^ ^tw)P^log^(t)^..,log^(t))
weww

where P^ is a polynomial and the vi are positive real valued characters. If moreover

X is regular (i.e. w(\) = A implies w = 1 )

^(^/t)== ^ c^(w,A,Po)A(n
w€W(?r)

where the c'^(w^ A) are analytic functions of A in the regular set.

Proof. We assume t antidominant and very regular; and hence B^ = BQ . It follows
from IV. 1.2 that

jQ ( fB\ _ jQ / rBo\
^M^^t ) — ^ M V ^ ^ J t )

where -Bo is the Iwahori subgroup. Now the convolution subalgebra of the Hecke-

Iwahori algebra generated by the /Bo with t antidominant is abelian :

fBo rBo _ rBo
•/tl • Jt-2. ~~ Jt\t'2 '
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The set of operators 7r(ft) is a finitely generated commutative family of finite rank

operators. There is a basis in which they are simultaneously upper triangular. This

representation can be computed using the Jacquet module for Mo whose semisimplifi-
cation is the sum over W(7r) of characters t ̂  A(^) . Moreover if A is regular the
Jacquet module is semisimple.

D

IV.2 - Elementary functions and constant terms.

In this section we establish a compatibility between elementary functions and
constant terms. The elementary functions f3 with B = K1'0 the hyperspecial max-

imal compact subgroup will also be denoted f^ . We assume that t = toe is very
regular. Let M be a semistandard Levi subset of a parabolic subset P = MN .

IV.2.1. Lemma. - Consider n 6 N(F) and m regular in M(F) . Then, f^(mn) ̂
0 if and only if

mn ==p-l^o;P

with rj 6 K1' n Mo(F) for some w in K normalizing Mo and p € K H P°(F) .

Proof. Since t is very regular M^^ = Mo . If f^{mn) -^ 0 then, by definition of f^ ,

x = mn = k^rjotok

for some k € K and Y]Q G ^L H Mo(F) . The Levi subset M^^ defined by x in L ,
contains the Levi subset defined by x in P . Up to conjugacy by an element po of

P°(F) we may assume that the latter is the minimal Levi subset Mo , and hence

poM^^po-1 = Mo ,

and there exists mo C Mo(F) such that

x = mn = p^mopo == k~1 rjotok .

Hence y = pok~1 normalize Mo ; we may write y = m-^w with w G K normalizing

Mo and mi € Mo(F) . Let p = m^po ; we get that f^mn) is nonzero only if

mn = P"1^^?

with rf = w^rjow = K1' D Mo(F) and p = w^k C K H P°(F) . The converse is
clear.

D
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Let W^ denote the "quotient" W^\W^ . The quotient is denned using the

bijection between W^ and the Weyl group W^ . For m regular in M(F) let

, 1 , , |P'-("-)|^""'p"^'
IV.2.2. Proposition. - We assume thatt is very regular. The constant term along

P of /L is a linear combination of elementary functions on M(F) :

f^= ^ A^(r)1/2^.
w€^

In particular f^p is independent of the parabolic subset P with Levi subset M .

Proof. Recall that the Haar measures at finite places are normalized so that

vol (J<) = vol (A^0) == vol (N{F) H K) == 1 .

Consider m 6 M(F) regular semisimple, we want to compute the constant term

f^p{m)=8p{m)11'1 I I f^k^mnk) dndk .
J K J N { F }

This can be rewritten :

^p(m) = At,(m)1/2 / f^n^mn,) dn, .
J N ( F }

f^(m) = At,(m)1/2 / .^^-1-
/N(F)

But IV.2.1 shows that /^(n^mni) ̂  0 if and only if n^mni = run == p""1^^? with

T] G ^L H Mo(F) for some w G W^ and p € A" H P(F) . This implies HI G J< 0 ^V(F)

and
A^m)1/2^^1")1/2.

We get

^p(m) = A^(r)1/2

if m = k^rjt^k for some A: € J< H M°(F) , some 77 G A"2- 0 Mo(F) and some w € A'

normalizing Mo ; it vanishes otherwise.
D
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IV.3 - Elementary functions and noninvariant endoscopic transfer.

In this section E is a field extension of F . As already suggested in [Lab2] p. 522,

the proof of proposition 3 of [Lab2] can be generalized to weighted orbital integrals.

If t is very regular the proof relies on the surjectivity of the norm map from D^ onto

D^ ; in general, the basic ingredient in the proof is the non abelian analogue of this

fact, due to Kottwitz [Ko2].

Let F^ be the maximal unramified extension of F . Let M be a semistandard

Levi subgroup of H . Let w be a function on G(Fnr) right invariant by G^Opnr)

and left invariant by M^F^) . Denote by B1' the translate by £ of a standard

parahoric subgroup B . The elementary function f3 is the characteristic function of

^L divided by its volume. Given S € ML(F) regular in L{F) we denote the weighted

orbital integral of the function ff with the weight w by ^(S^ ^L, w) :

^(S,BL,w)= j fB{x~lSx)w(x)dx^L .n\ - ^ fB(^-l,

/L,(F)\LO(F)./L,(F)\LO(F)

Similarly f3 is the characteristic function of BH = BC}H(F) divided by its volume.

IV.3.1. Lemma. - Given S G M^F) and rj <E M(F) such that S^ is stably conju-

gate to 7 , then

^(S,BL,w)=^^,BH,w) .

Proof. This is stated and proved by Kottwitz in [Ko2] p. 248-249; recall that M(OE}^

B satisfies Kottwitz5 conditions and that conjugacy and stable conjugacy coincide for

our groups.
D

IV.3.2. Lemma. - Let M <E C11(M^) . Given S e ML(F) such that x^Sx <E K1'

for some x G L°(F) then there exist m G M°(E) such that m^Sm = v e M^O^)

Proof. By Iwasawa decomposition one has x = mnk with k G K1' , n G N(E) and
m 6 M°(E) . Hence

n~~lm~lSmn = m~lSmn^ G K

for some HI e N(E) . This implies m^Sm € K1' H M^F) = M^^p).
D
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IV.3.3. Proposition. - The characteristic function of B1' divided by its volume

and the characteristic function of B11 divided by its volume are strongly associated.

Proof. According to Kottwitz [Ko2] the norm map from B1' into the set of conjugacy

classes in B11 , is surjective, the proposition is an immediate consequence of the above

two lemmas since the weights v^ are the restriction to L(F) of weights which satisfy

the assumptions of lemma IV. 3.1.
D

Remark. - This proposition proved in Kottwitz [Ko2] is also stated as lemma 4.3 in

[AC] chapter 2 p. 103. A more general result is true; before proving it, we need some

lemmas.

IV.3.4. Lemma. - Assume that for some x € L°(F) , and some v € M^^tOs}

one has x^Sx = i^to . The weighted orbital integrals for f^ can be rewritten as a

weighted orbital integral on M^^ the Levi subset defined by t in L

^(SJtB)=^(^M^t\F)^}BL^wx)

with the weight w^^^y) = v^^xy) .

Proof. By hypothesis

<.(V5) - I ftB(y~l^oy)v^(xy)dy .
JL^o(F)\L^F)

By lemma 1 in [Lab2] /B(2/-l^o2/) 7^ 0 only i f ? /= mk with k G B and m e M^^E) .

The weight being right invariant under K , we may reduce the above integral to a

weighted orbital integral for the weight wx(y) = v^(xy) over the Levi subset M^^ .

In fact, integrating first over M^\E) and then over M^\E)\L0 (F) the above integral

equals :

vol (B)
/ /t^772 lvtom)wx{m)dm .vol (M^(E)nB) JL^(F)\M^(E)

To conclude we remark that Lyfo = -W •

JL.tr.(F}\M^(E}

D
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IV.3.5. Lemma. - Let 7 € M(F) . Assume that x € H(F) , and 77 e M^Dp)

are such tha^ a*""^ = 77^ . We may find 71 G M(F) conjugate to 7 by an element of

M(F) and 771 G M^(Dp) conjugate ^o 77 by an element ofM^(Op) and such that

^rSi^i = ̂ i^) ̂  some a-i G ^(F) and such that moreover Mi = x^Mx^ H M^
is a Levi subgroup containing MQ .

Proof. By conjugacy of 7 by some 772 C M(F) we may assume that 71 = m^^m

is such that M(F) H M^0 is a Levi subgroup containing MQ . There is s 6 ^(^)

representing an element in the Weyl group W^ such that 72 = ^"^i^ belongs to

M^^F) and is conjugate to 77^ by some m1 G M^^F) . We conclude using lemma

IV.3.3.
D

IV.3.6. Proposition. - The elementary functions f3 on L(F) and f311 on H ( F )
are strongly associated.

Proof. Let Q be a parabolic subgroup of H with Levi subgroup M . Consider 6 G

ML(F) , regular in L(F) . The weighted orbital integral ̂ ^ (J, /B) is not zero only

if for some x 6 L°(F) , and some v C M^'^^D^) one has x^Sx = yto . In such a

case by lemma IV. 3.4

^?/B)=^,M^(F)n5L,wa;) .

Consider now 7 € ^(F) , x € ^(F) and 77 e M^)(F) H B^ such that x-^x = 77^

then by the same lemma

^(7, fT ) = ̂ (^, M^)(F) H BH^X) .

Since parahoric subgroups satisfy the Kottwitz5 conditions ([Ko2] p. 240), one can find

v C M^^(E) H^ so that (^ = 77 ; then S = xi^tox-1 is such that ^ = 7 6 M(F) ;

in particular 7 is a norm. Note that the function y ^ v^(xy) is the restriction to

M^\E) of a function on M^^F^) that is M^^Dpnr) invariant on the right and

M^F^Y invariant on the left. But according to lemma IV.3.5 7 , 77 , i/ and x may

be replaced by 71 etc..., without changing the value of the weighted integrals, and
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so that the subgroup Mi = M^1 H M^ is a Levi subgroup containing MQ . Since

^i € M^Dp) and 771 € Mi(Op) we may apply lemma IV.3.1 and we get

^(^,M(L-t\F)nBL,wxl)=^(r]^M<<t\F)nBH,wxl) .

D

Remark. - For t very regular, one has M^ = Mo and the above proof shows that in

fact, thanks to 1.3.1, the weighted orbital integral vanish if the weight v^ is nontrivial

(i.e. M is not the Levi subset of Q ).

IV.4 - Elementary functions and base change for weighted characters.

In this section assumptions are the same as in IV. 3. We assume moreover that t is

very regular. Let M be a Levi subgroup of H ; we denote by 5(M(.F))^y. the group of

unramified characters of M(F) of order t. Let X be an unramified character of Mo (F) ;

denote by X E / F ^ne composition with the norm map N E / F : Mo(25) -> Mo(F) . It

has a canonical extension to M^F)^ : we let \E/F(1 x ^) = 1 .

IV.4.1. Lemma. - For any unramified character \ of Mo{F)

^imaMoJ^(A^,^)= ^ ^(A^^) •

^€=(Mo(F))^,

Proof. Any unitary unramified character for a local field can be extended to an au-

tomorphic character and any unramified extension of local fields can be embedded

into a cyclic extension of global fields that splits at archimedean places. Hence, the

expected equality follows from V.5.1.
D

Remark. - For GL(2) it is an exercise to prove the lemma by a direct computation

using Casselman's explicit description of intertwining operators [Cas2].

Let M be a Levi subgroup of H and Po a minimal parabolic subgroup of M

containing Mo . Let Z^(A,-) be the unramified principal series representation of
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M(F) defined by A , i.e. the representation induced from X considered as a character

of Po(F) a minimal parabolic subgroup in M . The unramified principal series rep-

resentation of M(E) defined by X E / F nas a canonical extensions to a representation

^ ( X E / F , •) of ML(F)^ denoted simply by Z^

IV.4.2. Corollary. - Consider Q some parabolic subgroup of H containing M .

Then
y d i m a M ̂  fT^ fL} — V^ fQ (TM fH\t ^M^AB/^Jf ) — / , ^ M ^ X ^ J t 1 ) '

$€2(M(F))^

Proof. The formation of constant terms IV.2.2 of elementary functions is compatible

with the norm map thanks to III. 1.8. The compatibility of distributions Jj^ with

constant terms (1.6.4) on one hand, the descent formulas (1.6.2) on the other hand,

reduce the proof to the particular case Q = H and M = MQ the minimal Levi

subgroup; our assertion follows from IV.4.1.
D

We say that a character A of Mo(F) is M-anti dominant, with respect to some

Weyl chamber, if the linear form /^(A) 6 d^ defined by

|A(m)| ̂ ^(^^(m^

is negative i.e. < ^(A), o. ><: 0 for any positive coroot a of MQ in M .

IV.4.3. Proposition. - Let X be a character of MQ and let t be very regular. As-

sume that X and t are both M-antidominant with respect to the same Weyl chamber.

Let TT\ be the unramified representation ofM defined by X . The coefficient ofXE/pW

in :
1- L-4. /?dimciM 7-Q1' / fL\

• " ^A^ V^B/I^ ̂  )

considered as a function oft , equals the coefficient ofA(^) = XE/FW m

^ E ^(^j^).
^=(M(F)^,

Proof. Observe that since X E / F ls M-antidominant with respect to some Weyl cham-

ber the unramified subquotient ^ x ^ / p °f ^M , the character X E / F occurs in the
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semisimplification of the Jacquet module attached to the same Weyl chamber of T^x^i?

and for no other subquotient of the principal series representation denned by X E / F

([Lab2] proposition 8). Our proposition now follows from the previous corollary since

the function 11->- XE/FW ls linearly independent from the other terms in the expres-

sion for t ̂  J^ (^\E/F ^ f^) ^lve11 ̂  IV.1.4.
D

IV.5 - A noninvariant fundarnental lenima for base change.

In this section we state a noninvariant form of the fundamental lemma for base

change: pairs of functions in the unramified Hecke algebra connected by base change

are strongly associated. The vanishing result IV.5.1 has a simple local proof. To

prove the matching result we use in V.6.3 a local-global argument similar to those of

[Clo] and [Lab2].

For any unramified character A of Mo(F) let X E / F De the composition of A and the

norm map. Denote by b E / F ^ne base change homomorphism between the unramified

Hecke algebras HE := ̂  on L°(F) = H(E) and Up := U^ on H{F)

bE/F '- ^E ——> T~ip •

The map ^EfF ls sucn that, for any h € "HE

trace I ^ L ^ X E / F ^ ) = trace I^(X,bE/FW) .

We observe that the base change map is clearly compatible with constant terms:

^/E^Q1-) = bE/pWQ .

IV.5.1. Lemma. - The normalized weighted integral of functions in the unramified

Hecke algebra obtained by base change from E vanish :

J^bE/F(h))=0

if 1^(7) ^ NE/F(EX) for some F-rational character ^ € X(H)p .

Proof. We first show that

^(7,^/rW)=0
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if $(7) ^ N E / F ^ E ^ } for some ^-rational character ^ 6 X(H)F . It suffices to remark

that

h E / F ( x ) := bE/pW(x) = 0

if ^(x) is not a norm for some $ . It is equivalent to show that

^ E / F ( x ) =x{x)hE/F(x)

if \ is any complex valued character of H(F) trival on norms from L(F) . The

scalar Fourier transform is enough to characterize functions in the unramified Hecke

algebra; hence it is enough to show that HE I F anc! \ ^ E / F have the same scalar Fourier

transform. If A is an unramified character of the minimal Levi subgroup and TT\ is

the unramified representation defined by A one has

trace ^(x^/p) = trace (^ 0x)(^£;/r) = trace ^(A^^/F) •

Since \ is trivial on the norms (A 0 x ) E / F = ^ E / F ^d hence

trace 7T\^(hE/F) = trace ^Xs/pW = trace 7r\(hE/F) '

The general case where Q ^ H follows from the compatibility with constant terms

(lemma 1.6.4).
D

Remark. - This is the kind of proof suggested by Clozel in a footnote in [Clo] §6

p. 294, and used in [AC] lemma 1.4.11 p. 46.

IV.5.2. Theorem. - Given h 6 HE , then bE/pW anc^ he are strongly associated.

Proof. The vanishing statement - assertion (ii) in the definition III.3.2 of strong as-

sociation - is our lemma IV.5.1. The matching when E is a field will be established

as proposition V.6.3. Let us show how the case of an unramified cyclic Galois algebra

E of degree £ = ̂ 1^2 algebra over a local field F is reduced to the case where E is a

field. The algebra E is a direct sum ^2 copies of a cyclic field extension -£'1 of F of

degree t\ . Let 6 be a generator of the Galois group; 6 acts as follows :

0{x^,...,xe^) = (rc2, . . . , . r^ ,^l(a l l ) )
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where 6^ is a generator of the Galois group E^F . One defines 6^ as follows :
given hi C UE^ for i = 1,. . . , ̂

^/p(^i 0 ... 0 ̂ ) = bE,/F(h^) * ... * bE,/F(h^) = bE,/F(h^ * ... * ̂ ) .

Now if ^2 = ... = hi = ho the unit in U^ , then he = (/^i 0 /io 0 ... (g) ho)e

and b E / F ( h ) = ^^/^(^i) are strongly associated. This follows immediately from

the theorem assumed to hold for E ^ / F , a cyclic field extension, and of III.5.2. We
conclude using the following lemma.

D

IV.5.3. Lemma. - The functions he = (fei 0 ̂  0 ... 0 fa^ and h^ = (^ * ̂  *
• . . * ̂  0 ^o 0 ... 0 ho)ff have the same weighted orbital integrals.

Proof. This follows from proposition 1.6.6 using that he and h^ have the same weighted
characters.

D
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V. - THE BASE CHANGE IDENTITY: FIRST APPLICATIONS

In this chapter F is a global field. We state the base change identity V.I.2: the

equality of the trace formula for L and H when applied to pairs (<^, /) of rationally

strongly associated functions. Then we show how to use conjecture B2 to refine this

identity. This is used to give global proofs for local results stated in the previous

chapters.

V.I — The base change identity.

We first define a global noninvariant endoscopic transfer.

V.I.I. Definition. - A pairs of functions (f^(j>) is said to be rationally strongly

associated if, for any Levi subgroup M € ^(M^) , any parabolic subgroups Q

containing M and any semisimple elements 7 € M(F) , regular in H ( F ) one has :

^f)=^^L^S)J^(S^)
6

the sum being over the 6 G ML modulo conjugacy under MLC\F) and where M1' and

QL are preimage ofM and Q via T ] E / F ; ^e subsets ML and QL exist if 7 is a norm.

V.I.2. Proposition. - Ifcf) on L(Ap) and f on H(Ap) are rationally strongly as-

sociated regular functions one has

JQLW=JQ(f).
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Proof. If<^ is stably conjugate to 7 regular, the centralizers Lg and H^ are inner forms

of the same torus and hence are isomorphic. The choice for Haar measures implicit

in the definition of rational strong association is compatible with this isomorphism.
We get

aML(S)=aM^.

On the other hand, the functions being rationally strongly associated we have

^(7J)=EA^L(^J)t7£(J^)•
6

We conclude the proof using the proposition 11.1.2 and the lemma III. 1.3.
D

V.I.3. Definition. - Let F be a global Geld and let S be a set ofplaces of F . Two

decomposable functions fs = 0v(Esfv and (f>s = ^v^s<t>v are said to be S-strongly

associated, or even simply - strongly associated - if(f^,(f)v) are strongly associated
for all v C S .

V.1.4. Proposition. - If f = 0/^ and cf) = (g)<^ are strongly associated locally

everywhere, then f and (j) are rationally strongly associated.

Proof. The splitting formula 1.6.3 can be generalized to products over all places and
can be written

^(7,/) - E^^})!! '̂̂ )
v

the sum is over collections {Qv} of parabolic subgroups with Levi subgroups Ly

indexed by places; the numbers c^({^v}) are non zero only when

^ ̂  W OM"-e^-
Similarly

J^ ̂  ̂  = E <^r({^}) II J^ ̂  ̂
v

The global matching ji(s^)=j^j)
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if 7 is the norm of S follows from the local ones via these splitting formulas. We also

have to prove that ^(7, /) = 0 if 7 is not a norm. Consider $ G X(M)p' If $(7) ls

not a global norm then locally it is not a norm at some place say v. We have

^(7J)=E^(JL^JL2)^1(7J.)^2(7J^;) .

Observe that the natural map

X{Q^F@X(Q^F-^X(M)F

is surjective. We may write $ = $1^2 with ^ 6 X(Qi)p. Then either $1(7)1; is not a

norm and then J ^ ^ i f v ) = 0 or $2(7)1; is not a norm but then $2(7)w is not a norm

for some place w -^ v and hence J^2^^ fv) =0. Hence o%(7, /) = 0 unless $(7) is a

norm for all $ € X(M)p. Using III.3.4 and III.1.4 we see that 0^(7,/) = 0 unless 7

is norm locally everywhere but, by III. 1.5, this equivalent to say that 7 is a norm.
D

Remarks.

(i) The proof of the vanishing statement is similar to the proof of proposition 8.1

p. 542 in [A8].

(ii) There are other ways to construct pairs of functions that are rationally strongly

associated. For example, if for all places v the functions /„ and (f)y are (simply)

associated and if for v in a finite set S of places, of cardinal greater than 2, the

functions /„ and (f>v are very cuspidal - i.e. their constant terms along all proper

parabolic subgroups vanish - then (/, (f>) are rationally strongly associated.
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V.2 - A twisted noninvariant version of Kazdan's density theorem.

In the proof of V.6.3 we need a partial converse to proposition V.I.2.

V.2.1. Proposition. - Let S be a finite set of places of a global field F . Consider

a pair of functions fs and (f>s such that, for any parabolic subgroup Q C H :

JQL^)^JQ(f^

whenever f = fs ® f8 and (f) = (f>s 0 (j)8 with fy and ̂  strongly associated for all

v ^ S and regular at some place v ^_ S . Then

^(7,/s) -^>j^(^) J^4,s)
6

for all 7 e M(F) regular in H(F) and such that 7^ is a norm for all v ^ S .

Proof. Consider 7 C M(F) semisimple, H regular. By descent (1.6.2) it is enough to

prove the assertion when 7 is M-elliptic and Q = H. Let S be a set of places which

contains S and all the ramified places. The set S is taken big enough so that 7^ 6 K^

for all v ^ S . Let /s (resp. (f^ ) be the product of the characteristic function of K11

(resp. K^ ) divided by its volume, for v outside of S ; these functions are strongly

associated according to a result of Kottwitz recalled in lemma IV.3.3. Let Si be the

complement of S in S . Take fs^ and <^ to be a pair of strongly associated functions

with regular support, the existence of such pairs follows from lemma III.4.1. We may

assume that the function f3 is such that

J^(7^)=^(7j^0

if M is the Levi subgroup of Q . Assume that at one place v G 5i the function /,; has

its support in a small enough neighbourhood of 7 so that, the geometric expansion

of the trace formula reduces to the contribution of the conjugacy class of 7 which,

using the invariance under the Weyl group of weighted orbital integrals (1.6.1), can
be written :

^(/)- ^(7)^(7, /S®/5),
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and similarly at most one conjugacy class contributes, the conjugacy class of some 6
if 7 is a global norm to the geometric expansion of J^) :

^W = ̂  Aj^ (7, S) a^ (S)J^ (^ ̂  0 ̂ ) .
6

Since a^ (S) == 0^(7) if 7 is the norm of 8 , the equality of the two trace formulas

can be written, using the splitting formula (1.6.3) :

^ d^L,) (j^^fs) - E^M^W) J^,f3) = 0 .
Li.L^ \ 6 )

If we assume the proposition to hold for any Levi subgroups Zq C; L , and we get

(J^fs) -E^^S^S^s)} J^f3) = 0 .
\ 6 )

We have chosen the function / s so that ^(7, / s ) ^ 0 if M is the Levi subgroup of
Q and hence

^(7, fs) = ̂  A^' (7, S)J^ (^ ̂ ) .
s

Since we have assumed that the trace formula identity holds for all constant terms

the proposition follows by induction on L .

D

Remark. - The proof extends immediately to the case where the pair of functions

(/^ (f>3) may only vary in a subset of strongly associated regular pairs provided that

given any regular semisimple point 7 , this subset allows one to take functions f^ ,

at some place v ^ S , with support in arbitrary small neighbourhoods of 7 and such

that the ordinary orbital integrals J^(7,/5') does not vanish.

V.2.2. Corollary. - IfS is a finite set of places of a global field F . Consider a

pair of functions fs and (f>s are such that for any parabolic subgroup Q C H :

^(^^^J^/^/5)
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whenever f3 and (j)3 are strongly associated regular outside of S . Then for all

8 G M{Fs) regular in L(Fs) with norm 7 € H(Fs) :

J^Js)=ji(S^s).

Proof. The proposition V.2.1 shows that fs and (j>s have matching weighted orbital

integrals for pairs (7, S) if 7 is the norm of a regular element S G L(F) , but these

elements are dense in the set of regular elements in L(Fs) .
D

V.3 — Separation of infinitesimal characters via multipliers.

In this section we deal with pairs of rationally strongly associated regular func-

tions, that are J<-finite and compatible with multipliers at archimedean places. This is

useful if, in particular, conjecture B2 holds at archimedean primes; for example, when

-L°(Fco) ^ H(Foo Y . Let () = I)(L) and consider/^ € ()£ , we denote by IIdiso^,!/,^)

(or simply IIdisc^?^) ^ ̂ L = ^ ) tne set °^ representations TT that occur discretely
in the trace formula for M1' and such that the representation of L°(Foo) obtained

from TToo by parabolic induction has an infinitesimal character given by the orbit of

IJL under the complex Weyl group of L°(Foo) . We denote by U.E{F ^ ^(H)* 0 C the

composition of JJL with the map induced by the norm.

V.3.1. Proposition. - Let (/,<,&) be a pair of K-finite, rationally strongly associ-

ated, regular functions compatible with multipliers at archimedean places. Given

^ G ^)(L)* 0 C and M , for any A G OM one has

/?dimaM V^ ^Q1' /_/ i \ _ \^ \~^ rrQf f\
^ 2^ JM^ ^E/F^) - Z^ Z^ JM^^^f}'

7^/e^disc(ML,L,^) {V\VEIF-=^} 7rendisc(M,H,i/)

Proof. Let a and /? be a pair of multipliers compatible with the base change. By

hypothesis (</>a*m, f^m) are rationally strongly associated regular functions for all

777 . By proposition V.I. 2 we have,

JQL{^m)-JQ(f^m)=0.
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By lemma 11.3.2, for T large enough

_ _ ^

E Z ̂  (^cw - ̂ ,<cw) = o^)
t<TMeC a7 v /

with c < 1 . Let J^(/,<^A) be defined by

/pdimaM V^ ^Q1' ( i ^ v-^ Y-^ ^
" L. -W^A./.^)- ^ ^ ^(TTA,/),

^endisc(M^L,/.) M^/.F=^}7r<=ndisc(M,j^)

where A£;/^ is the composition of A with the map induced by the norm. These

functions are analytic on OM . For each t , taking into account the factor ^dim a^ due
to the transfer of measures, we have

E f^,^-) - <^(W) = E / am^ +^A£;/F)^,(/^,zA) AV
t<T [lam/ziKr^M

so that

_ j^f

E ^Q- E / am^+^A^/F)^(/^^'A)rfA ^O^).
vic^r \\^^..\\^rr Ja\, • 'M^C w ||am^||<T ^"M

Let ^o € ()n and let a be chosen as in 1.8.2. We have by 1.8.3 an estimate as m -^ oo :

^ / ^m(^+.A^)^(/^,^A)JA=
ll^m^lKT^M

( /——\ dimaM __

Vm) E E / d e t O 1 - A ^/.^ ̂ ZA) + °(1))/ |pm/z||<T AeNM(^o,/.) V VM,a,/H-zA^

but of course the integral vanishes if ^(/,<^A) is identically 0 . Assume for a
while that some term does not vanish and let

d = M^CQ {dim aM 5 such that A ̂  ̂ M^ ^ZA) is not identically 0} .

Denote by Cd the set of Levi subgroups containing MQ such that dim OM = d . Let

Q(/,<^o)= y 5" WM y 1 ^o r^M^z-^ 2-̂  W^ ^̂  /,q^ f\————————- ^M.uU^^^)
||3m^||<T MCCd A€NM^O^) V aeT; ^M,a^iAE/F "
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then

(Q(/,<^o)+o(l))f——) =0^).
Wm/

This implies Cd(/,<^,^o) = 0 for all choices of ^o (and a ). Take p,o = p, + if^E/F

with A G OM for some /2 6 ()u and M G £d and such that ^§«(/,^>^A) ^ 0 .

There is an open set of A so that, for no other couple (^',M') there exist A' 6 a " ,

with w{j,o == a1 + A' for some w G w^ and ,7^/ .(/,<^,zA') ^ 0 (recall that the

set of such couples is finite), unless this couple is deduced form (^,M) by some

w' 6 W^ . Modulo W^4 this can be achieved by a w11 6 W^ . For such a choice

of UQ = fJ, + i ^ E / F -> taking into account the invariance of the family of distributions

J^ (/, (f>^ iA) under the Weyl group (1.6.1) we see that Cd{f^4>^o) is proportional,

by a non zero constant, to J^ (/,<^,iA) ; this is a contradiction.
D

V.4 - Some auxiliary results.

In this section E / F is a cyclic extension of global fields and G = H . Let M

be a Levi subgroup of H . Let us denote by 2(M)^/^ the group of characters of

M(Ap) trivial on M(F) and the norms of elements in ML(AE) . Recall that if v is a

place such that E 0 Fv is an unramified field extension of Fy we denote by E(MvYnr

the group of unramified characters of Mv of order i . Let Z/i and 1/2 be two proper

Levi subgroups of H containing MQ and let Q\ and Q^ the corresponding parabolic

subgroups by the sections defined by some generic C e d^ .

V.4.1. Lemma. - Let E/F be a cyclic extension of global fields, let v be a place

where E 0 Fv is an unramified field extension of Fy .

(i) The cardinal of the set ofE(M)E/F equals ̂ ^M .

(ii) The restriction map

E(M)E/F -^ 2WL

is bijective.

(iii) Assume that a^ ® a^ = a^ . TAe map

E(M)E/F/^WE/F -^ (^(M)E/FW,)E/F) © (^(M)E/FW2)E/F)
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induced by the diagonal map

E(M)E/F -^ ̂ WE/F @^(M)E/F

is bijective.

Proof. Statements (i) and (ii) follow from class field theory since E / F and E y / F v are

cyclic of order £ . Statement (iii) follows from [A7] lemma 10.1 together with (i) (see

also [AC] p. 126).
D

We shall now study distributions attached to representations of the minimal Levi

subgroup MQ ; this is a split torus and irreducible representations are one dimensional.

The base change of a character Trofa split torus is simply the character TV E / F obtained

by composition of TT with the norm map; this character has a canonical extension

denoted again T T E / F to tne semidirect product with the Galois group. We first draw

some further consequences of IV.4.1.

V.4.2. Lemma. - Let (/, (f>) be a pair of K-finite strongly associated regular func-

tions, compatible with multipliers at archimedean places. Assume that IV.4.1 hold;

then if TO E / F ls tne Dase change of an automorphic character of TV ofMo(Ap) and if

Q is a parabolic subgroup of H containing MQ we have

e^^J^E/p^) = E J^^^f) •
^(Mo)E/F

Proof. The descent formula 1.6.2 and the compatibility with constant terms 1.6.4

shows that it is enough to prove the lemma when Q = H . Proposition V.3.1 shows

that

^dimaMo ^ ^(^^)= ^ J^A^)-

^endis^M^L^js/j.) 7rendisc(Mo,H,i/)

For w outside a finite set S of places ̂  = h^ the translate by 6 of the unit in the

unramified Hecke algebra and

^ ̂ '^EIP . ̂  = ̂  ̂ '^EIF ^ ̂ s)
^Q - / - - ^Q
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if TT' is unramified outside of 5 . Replace the pair (f8,^) by a strongly associated

pair of elementary functions: this is possible by IV.3.6. Assume inductively that the

lemma is proved for parabolic subgroups Q ^ H . Using the splitting formula 1.6.3

for / = fs 0 f8 , the inductive assumption and IV.4.1, we may use lemma V.4.3 to

cancel all terms but those where Qi = H or Q-z = MQ and we are left with :

£dlmaMO E J^'^^s) trace 7r^(^J
TT'^n^M^L^E/F)

E ^a^fs) trace TTA^).
7rendisc(Mo,H,^)

Now we may separate W11-orbits of characters by varying the functions outside S

among pairs of associated elementary functions (IV.3.6 and IV.1.4). By 1.6.1 our

distributions are W^-invariant. We have

trace TT'A^^J = trace ̂ (/^J ,

and the lemma now follows from the properties of base change for split tori.
D

V.4.3. Lemma. - Let v be a place where E 0 Fv is an unramified field extension

of Fv . Assume that lemma IV.4.1 hold for all Levi subgroups L c G . Assume

that d^ C a^ = a^ . Let (f^^} be a pair of K-finite strongly associated regular

functions outside v , compatible with multipliers at archimedean places. At the place

v consider a pair of elementary functions f^ and f^f . Let TT be an automorphic

character ofMo(Ap) with base change - K E / F ? ^et ^ = ̂ v • If Li ^ G we have

^imaM0^4(7^£;/F^) ̂ l^/^)
= E ^(^^n^o^^/^)-

^(Mo)E/F

Proof. Using the compatibility with constant terms (1.6.4), lemma V.4.2 for I/i , and

proposition IV.4.3 for L^ , we see that if TT lifts to T T E / F

/)2dimciMo ^T^i (»r A^\ 7^2 / \ {L\
' o-fM^E|F^ ) J^^E^/F^ft )y^E/F^J^
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equals

E -^^n E t7^(A^^)•
^e2(Mo)£;/i. f€2(Mo,z,)^

Note that characters ^ 6 2(Li)^;/7? act trivially in the first factor and that characters

e € 2(2^2 )^r ac^ ^ivially in the second. The assertion follows from lemma V.4.1.
D

V.5 - Proof of a spectral matching.

In this section we establish the spectral matching result, for weighted characters

and elementary functions, used in IV.4.1.

V.5.1. Proposition. - Let E fF is a cyclic extension split at archimedean places

and unramified at v. Let X be an unramified character of Mo(Fv) which is the com-

ponent at v of an automorphic character. Then

^imaMoJ^(A^/^,^)= ^ ^(A^^) •

£€S(Mo(F.))^

Proof. Let (/, cf>) be a pair of A'-finite, strongly associated, regular functions, compat-

ible with multipliers at archimedean places. Since the hypothesis of V.3.1 are satisfied

we have

^dimOMo ^ ^(^^= ^ J^A,/).

^Wdisc^M^L^E/F) 7TWdisc(Mo,H,v)

Consider functions / and (f> bi-invariant under a fixed open compact subgroup at fi-

nite places; since at archimedean places the representations have a fixed infinitesimal

character, only a finite number of terms in the sum above do not vanish. As already

observed, MQ is abelian and irreducible automorphic representations are simply char-

acters. Let S be a finite set of places outside of which Ew/Fw is unramified and fix

v ^ S . By lemma IV. 1.4 we may, at any place v1 ^ S U {v} , separate a finite set of

W11-orbits of liftings of unramified characters of Mo(Fy) by varying ((f>v', f v ' ) among

pairs of elementary functions attached to very regular elements tv> and t^i . By rigid-

ity we may choose a finite set of places S ' disjoint from S U {v} , large enough so
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that, in the above identity considered as an identity between linear forms on regular

elementary functions over Sf , we may separate the contributions of the various W11-

orbits of liftings T^EfF °f automorphic characters TT . Recall that our distributions are

W^-invariant (1.6.1). Consider an automorphic character TT of Mo(Ap) , unramified

at v . Given an open compact subgroup Uw at each finite places w G S U {v} we may

find 5" such that

^dim »Mo^(^^^ (g) ̂  0 <^) = E J^(7T 0 ̂ ,/S 0 fs' 0 /.)

^es(Mo)jE/j.
where (f>s 0 (f>v and fs 0 /v may vary among pairs of strongly associated functions

bi-invariant under the fixed open compact subgroup at finite places; the functions (f)s'

and fs1 may vary among tensor products over w G S ' of elementary functions f^

and / H with tw very regular. Assume that Uv is the Iwahori subgroup. In particular
"w

(1) ^^J^EfF^S 0 ̂  0 /.L) = ^ J^(7T 0^/50 /5' 0 /<?)

^(Mo)E/F

Denote by h^ the characteristic function, of the maximal compact K^ divided by its

volume and by h^ the characteristic function of K^ divided by its volume, we also

have

(2) ^^J^E/F^S 0 <t>S' 0 ̂ ) = ^ J^(7T 0 ̂ fs 0 /^ 0 ̂ )
$e2(Mo)^/F

Let Po be a parabolic subgroup; if TT is an automorphic character we have

^(^^ trace 7r(/Mo) .

We shall assume that all archimedean primes of F split completely in E . Proposition

III.5.5 shows that we may find a pair of functions {fs 0 fs'^S 0 ^ s ' ) such that the

hypothesis of V.3.1 are satisfied and such that moreover

(3) J^E/F^s^<f>s')=J^^)^fs 0 / ^ ) ^ 0 .

Applying the splitting formula 1.6.3 we get

^dimaMo ̂  ^JI/1,L2)^(7T^,^0^)^(A^/^,^)

^1,^2

= E ̂ 0(^1^2) E ^(^^^/50^)<7^(A0^,/^) .
1/1,1/2 $€5(Mo)£;/j.1
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Assume by induction that lemmas IV.4.1 (and hence also V.4.2) holds for Levi subset

Li (- H . This implies that in the above equation all terms cancel except maybe

those with Li = M or H . The equation (2) above can also be written

(2') ^maMoJ^(7rE/F^s^4>s')= ^ J^^^fs^fs') .
^(Mo)E/F

Taking into account the compatibility with contant terms 1.6.4 and IV. 2.2, we have

(4) jS^E./F^ft} = J^(X^eJ^) ,

for any e 6 S(Mo(^y))^ • Multiplying equations (25) and (4) we see that terms with

Li = G and L^ = M also match. We are left with

^dimaMo ^(7T^^0<M ̂ (^/F.J^=

E J^^^f^fs')J^{\^^f^}.
^(Mo)E/F

Using the nonvanishing condition (3) above and V.4.1 (ii) we get the expected equality.
D

V.6 — Proof of a geometric matching.

In this section E / F is a cyclic extension of global fields and v is a place where

Ev = E 0 Fv is an unramified field extension of Fv . Moreover assume that all

archimedean primes of F split completely in E . In particular conjecture B2 holds.

Given a pair of representations TTv ^ n(Jfv) and TT'^ 6 H{Lv) and if ̂  is a char-

acter of the unramified Hecke algebra 7i^ , we define ^(^vi^v) (resp. S^TT^^v) )

to be 1 if :

trace ^v(^>E/FW) = ^(^v)

(resp. trace 7r1\(h) = h(^v) )• Let S^^v^v) = 0 otherwise. Given A G OM -> we

denote by IIciisc(^ H^ ^, A) the set of representations TTA with TT e IIdisc(^ -^ ^) •
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V.6.1. Lemma. - Assume that theorem IV.5.2 holds. Let S be a finite set of places,

containing ramified places for E/F and archimedean places. Let (fs^ (f>s) be a pair of

K-finite strongly associated regular functions compatible with multipliers. For any

character z/^v of the unramified Hecke algebra T-L^ we have

^dimOM ^ ^(Tr'^^J^'^s)

"•'€^,^„c(ML,£,;t,AB/F)

= E E ^T(^^)^JS).
[v | VE/F^P'} ^Wdisc{M,H^,A)

Proof. Proposition V.3.1 allows us to separate infinitesimal characters at archimedean

places and yields identities where only finite sets of representations may contribute

if we work with pairs of strongly associated functions invariant by some fixed open

compact subgroup at the finite places. Since we assume that theorem IV.5.2 holds we

may construct strongly associated pairs of functions using at unramified places, for

example at v , pairs of functions in the unramified Hecke algebra connected by the

base change and hence the characters of the Hecke algebra T-L^ can then be separated;

this allows us to separate W1^-orbits of characters of the unramified Hecke algebra

T-iy ; we conclude using 1.6.1.
D

Let Z/i and Z/2 be two Levi subgroups in £^(M) and let Qi and Q-z be the

corresponding parabolic subgroups via the sections defined by some generic (^ G d^ .

Assume that a^ © a^J = a^ . The next lemma is a generalization of V.4.3.

V.6.2. Lemma. - Assume that theorem IV. 5.2 hold for all proper Levi subgroups

of H . Consider (fs^s) a pair of strongly associated regular functions as above.

Choose a Weyl chamber in d^ . -For v (f. S consider associated elementary functions

ft and ftt with t very regular M-antidominant. Consider Qi 7^ H and X the M-

antidominant character of Mo(Fv) defined by zf^v ' The coefficient of \E/F(^) m :

^^dnnOM ^ J^'^s}J^'.,ft)

Tr'endi.ciM'-.L^^E/f.)



THE BASE CHANGE IDENTITY: FIRST APPLICATIONS 91

equals the coefficient of \(t1) = \E/pW m

^ E E ^l(^)^2(^^)•
{v I V E I F = ^ } 7rendisc(M,H,^,A)

Proof. Let ^v be a character of the unramified Hecke algebra "H^ . Using the

compatibility with constant terms 1.6.4 and lemma V.6.1 for L\ , and using IV.4.3 for

Z/2 , we get that the coefficient of A(^) = \E/pW m

^2dimaM ^ ^V^) ̂ (^5) J^.Jt)

7^'€^disc(ML,L,^,A^/J.)

equals the coefficient of A(^) in

E E ^L(^^.)^1(^^) E ^(^^^^)-
{y\VE/F=^} 7rendisc(M,H,i/,A) ^€S(M^)^

We conclude using lemma V.4.1.
D

We are now in position to give a proof of the matching of weighted orbital integrals

for functions in the unramified Hecke algebra connected by the base change map :

V.6.3. Proposition. - Let h 6 %^ . If 7 € M(F) is the norm of 8 then for any

Q e ̂ (M)
J^bW) = Jf^he) .

Proof. By induction we assume that theorem IV. 5.2 holds for Levi subgroups L\ ̂  H .

Consider a pair of strongly associated regular functions ̂  and / v outside v compatible

with multipliers, and at v elementary regular associated functions; we have

/?dimaM V^ /ft ( T T \ \^ qQ\(-l MV\ fQ'2 ( I f\€ ^"MV^l'^J / ^ ^M1-^ ' i9 ) -M1'^ vi J t )
^eIldisc(A^,L,/A,A£/^)

=^4(Li,^) ^ ^ j^(^n ̂ (^j^).
{tf\VE^F=^JL} 7r€ndisc(M,^,^,A)

Since infinitesimal characters are fixed we are left with finite sums and, according to

IV. 1.4, we may decompose each term into a finite sum of characters evaluated at i ,
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times polynomials of linear forms of t , when t varies among very regular antidominant

elements. By inductive assumption, using V.6.2, and the compatibility with constant

terms, we see that if X is antidominant the coefficients of ^Ev/FvW anc^ °^ ^(^) are

already known to match in all terms unless maybe if Qi = L\ = H and hence the

matching also holds for these remaining terms. This shows that the coefficients of

^E^/F^W in

^imaM E A^) trace (^(^M.))
^endis^M^L^A^)

equals the coefficients of A(^) in

E E ^(^r)t^e(7r,(^,M)).
M^js?/p==^} 7rendisc(M,H,i/,A)

Proposition 8 of [Lab2] allows us to substitute pairs (he^ b(h)) where h is a function in

the unramified Hecke algebra for L°^ , to our pair of associated elementary functions

in this identity and, taking into account lemma 1.5.1, we get :

^dimaM ^ J^TT',^®^)

T'€ndi.c(M^-,£,^,AE/F)

= E E ^(^r®^)).
{v I VE/F=^} 7rCndisc(M,H,i/,A)

Using the spectral expansion 11.2.1 this shows that

JQ(fv^b{h))=J^L(<t>v^he)

whenever, outside v , the functions / v and ̂  are strongly associated regular and A"-

finite. We conclude the proof using corollary V.2.2 (or rather, its variant for A'-finite

functions which holds thanks to III.5.5).
D

Remarks.

(i) For GL(2) the matching of weighted orbital integrals V.6.3 has been proved by a

direct local computation in [Lani] (lemma 5.11 p. 74).
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(ii) One can deduce V.6.3 from the main theorems in [AC]. Recall that he and b^/FW

are already known to be associated. Observe also that normalized weighted orbital

integrals J ] ^ L of functions in the unramified Hecke algebra, coincide with invariant

distributions I^L :

JML(S,he) =:lML(S,he) .

This is an immediate consequence of 1.5.1 (cf. [A7] lemma 2.1). To prove the matching

- assertion (i) in the definition III.3.2 of strong association - we embbed our local

situation in a global one : our local field is now the completion at a place v of a

global field F . Theorem A of [AC], chap. 2 p. 108, tells us that for pairs of associated

functions (/, (f>) over H(Fs) and L(Fs) , for a large enough finite set of places S , the

invariant distributions IM match i.e.

J^((^)=JM(7,/)

if 7 is stably conjugated to S1 . We may apply this statement also to pairs

(/^)
and

(f0bE,/F.W,(f>(S)he) .

Assuming by induction the result proved for all smaller Levi subgroups, and using the

descent and splitting formulas we see that the invariant distributions -/M(7i ^Eu/Fy W)

and I ] ^ L (<?, he) also match.

(iii) The local-global argument that has been used to prove the matching V.6.3 does

not yield, right away, the vanishing IV.5.1. In fact such an argument based on the

equality of two trace formulas for pairs of functions (/, (f>) only yields the vanishing of

distributions J^^i fs) where S contains the set of all places where 7 is a not a norm.

In particular S has at least two elements. G. Henniart has shown me how to build

a global situation in which Jn^^fs) is a product over v G S of local distributions

JH^-, fv) independent of v € S . This would allow one to establish the vanishing for

ordinary orbital integrals, but this is not enough for our needs.
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VI. - BASE CHANGE FOR AUTOMORPHIC REPRESENTATIONS

In this chapter F is a global field and E is a cyclic algebra over F. An auto-

morphic representation TT' is said to be a base change of TT if T T ' y is a base change of

TTv for all places v . We would like to prove that if TT' occurs discretely in the trace

fromula for L then there exist TT that occurs discretely in the trace formula for H and

such that TT' is the base change of TT. Conversely, if the character of TT does not vanish

on norms, there should exist TT' that occurs discretely in the trace formula for L and

such that TT' is the base change of TT.

In the first section we prove our main technical result: a refined base change

identity VI. 1.4 in which the unramified infinitesimal characters are separated. We give

a first proof using the noninvariant fundamental lemma IV. 5.2. If the full conjecture

A was known to hold this would be easy. We only have at hand the particular

case 11.4.5 of conjecture A. We shall in fact prove a stronger result VI. 1.3, which is

tantamount to a compatibility of weighted characters with base change, provided that

the normalizing factors are compatible with the weak base change. A simpler proof is

also given using a preliminary separation of infinitesimal characters at archimedean

places and then elementary functions at unramified places but, for the first step, we

need conjecture B2.

If G is split i.e. G = H , using rigidity properties, we may extract the spectral

informations coded in the identity VI. 1.4; this yields our main theorem VI.4.1. Un-

fortunately such rigidity properties are not a priori available for inner forms and we

are not able to complete the proof of the analogue of VI.4.1 in general.
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VI. 1 - Separation of unramifled infinitesimal characters.

Given a pair of representations TT G IIdisc(^) and TT' G IIdisc(-^) let

<^(^')=1,

if 7T7v is the base change of TTv for almost all v and let

JjK^)=o

otherwise.

VI.1.1. Definition. - If8^(7^,7^f) = 1 we say that TT' is a weak base change ofn.

Similarly, given ^ a character of the unramified Hecke algebra ^(Aj.) outside

of S , a finite set of places containing all ramified places, we define <^(TT,^) (resp.

^(TT',^) ) to be 1 if :

trace ̂ (^(/i)) =/z(^)
(.> /\

(resp. trace TT' (h) = h(^) ), and SJ^^TT^) = 0 otherwise.

VI.1.2. Definition. - We shaJJ say that the normalizing factors are compatible

with the weak base change if

^^^(^ ^ ^(7T00

^WE/F/^WE/F

whenever Sj^ (TI",^') = 1.

VI.1.3. Proposition. - Assume that the normalizing factors are chosen to be com-

patible with the weak base change. Let S be a finite set of places outside of which

E / F is unramified. Given a Levi subgroup M consider a character ^ of the unram-

ified Hecke algebra ̂ M (Aj,) . If (fs,(f>s) is a pair of strongly associated regular
functions one has

^ima- ^ .̂v^) '̂) ji^'^s)
w'endi.^M1-)

- E ^(^^scM^Js).
'rendi.c(M)
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Proof. By proposition V.I.2 we have

J^)=jQ(/)

for pairs (/, (f>) of strongly associated regular functions. Recall that according to 11.2.3

^)= E E $ E ̂ {w j^w
X' M^C 1/1,2.2

where

r L /-\L
^LI\ '(<2 (M\ _
"M,^ W —

^ ^cM / ^OT'A^) ̂ 1(^^,5,^) trace TT^ (h^) dA .
^endisc(M^,xO '^M

Assume that a^1 6 a^2 = a^ and assume inductively that VI. 1.3 holds for parabolic

subgroups Q-2 ^ Q . Using V.4.1 and the compatibility of normalizing factors with

weak base change, we see that

^dima- ^ ^(^^).rc(^)^(^) ̂ î '̂ )
^€ndisc(M^)

equals

E ^(7r^) ^scM^W ̂ 2^/).
7reridisc(AQ

'^Qi^ Q ' Hence we may cancel all terms attached to pairs (L^,Q^) in the difference

of spectral expansions provided Q^-^Q and we are left with the identity

Y" WM. fy^^^) V TM-Q(f}\ -0Z^ ^Q Z^ "M^ W - Z^ ^M,x U) - u •
MecH \ x' x )

Consider h in the unramified Hecke algebra %Z/(A^) and let ms{(f)s, fs\ h) be defined

by
,,,M ( r r \

E -^ E ̂  (^ ̂  M - E ̂ (^ ® ̂ /.(^)) •
Me^^ \ x1 x j

By proposition II.4.5 the spectral expansion recalled above, for the right hand side of

this equation is absolutely convergent and thanks to 11.5.1 it defines a Radon measure
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on the unramified unitary dual outside S : the compact space Tlnr,u(L(A%)) . We

have an explicit expression for this measure : ms{(|)s, fs\h) can be written
_ j^t < _
E ̂  E^^^^^A^^^-c^A;^)) W^)dA

M^C,H ^^M ^ /

where ^ runs over character of the unramified Hecke algebra U^ (AJ.) and

c^.A;^) = ^ < ;̂(̂ ) a&') J^'^s}
^€ndisc(M^)

4(^,A;/5) = ^ ^M) ^(TT) ^(TTA,^) .

Trendisc(M)

We have used that

^M^A^^F^ trace TT'^^(^^L) = trace ^(^/^(/I^L))

if

^(^^)=^ (7T^)=1 .

But, thanks to theorem IV.5.2 pairs of functions (/^, ̂ £;/p(^)) are strongly associated

and hence, if /5- and (f>s are strongly associated and regular

m5^/^)^

for all /i G <HL(A^) . The associated Radon measure also vanishes. As in the proof of

V.3.1 we may first separate the various contributions according to the dimension d of

dimaM by varying the functions at one place. Continuous functions on Tlnr,u(L(Af))

separate only the Weyl group orbits of characters of unramified Hecke algebra at-

tached to the various M . Hence the sum over Weyl group orbits of coefficients of

^M^^A^/jJ ? considered as functions on ia*^ , must vanish almost everywhere; they

are analytic and hence vanish everywhere. But, taking into account the invariance

under the Weyl group of distribution J^ (lemma 1.6.1) we get

^^C^^AE/F'.^-C^A'JS)^^

for any character ^ of the unramified Hecke algebra ^ML (A^) .

D
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Remark. - A variant of the above argument is used in Langlands' original proof of

the base change for GL(2) [Lani]. A similar argument is also used in [Rog].

VI.1.4. Proposition. - Let S be a finite set of places containing the archimedean

ones. Assume that E / F is unramified outside S and consider a pair (fs,(f>s) of

strongly associated regular functions. Assume that either

(a) the normalizing factors may be chosen to be compatible with the weak base

change,

or

(b) the functions are K -finite and the pair is compatible with multipliers at

archimedean places.

Let ^ be a character of the unramified Hecke algebra ̂ (AJr) , then

^lmaH E ^(7r/^) îscM trace TT's{<f>s)
^eridiscW

= "E ^M) ^LcW trace TTs(fs) .
TreridiscW

Proof. In case (a) the assertion is the particular case M = H ofVI.1.3. Consider now

the case (b). If at archimedean places the functions are J<-finite and that the pair is

compatible with multipliers, we may use V.3.1 to separate infinitesimal characters at

archimedean places and we get

^dim ,„ ^ ^^ ̂ , ̂  ̂  ̂

^endisc^^B/.F)

$^ ^s^) trace 7r{fs (g) /5) ,
7rendisc(^,^)

where ( ^ E / F ^ ) ls a pair of infinitesimal character associated by base change at

archimedean places. The infinitesimal characters V E / F and v being prescribed, only

a finite set of representations may contribute nontrivially to both side if we consider

pairs of functions left and right invariant at finite places under some fixed open com-

pact subgroup. We may use associated elementary functions to separate unramified

infinitesimal characters ([Lab2] proposition 8).
D
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Remarks.

(i) A similar result, with a proof as in case (b), is true for pairs of functions (/s, (f>s) ?

that give rise to rationally strongly associated pairs (/, <^>) compatible with multipliers

at archimedean places, whenever (f3^3) are associated. It suffices for example that

at two places v 6 S the functions in the pairs {fvi^v) are very cuspidal. Cuspidal

functions at two places is even enough but the proof uses the invariant form of the

trace formula.

(ii) If we assume that conjecture A holds, an argument similar to the proof of

V.3.1, but using the noninvariant fundamental lemma IV.5.2 instead of multipliers at

archimedean places, yields a simple proof of the separation of unramified infinitesi-

mal characters for the discrete part of the base change identity for pairs of strongly

associated regular functions.

In some cases one may relax the regularity assumption in the base change iden-

tities.

VI.1.5. Proposition. - Let (/,<^) be a pair of strongly associated functions. As-

sume that either

(a) G = H ,

or

(b) the functions are K -finite and the pair is compatible with multipliers at

archimedean places.

Then

^W = j^f).
Under the same assumptions, the regularity assumption can be removed from V.3.1

or VI. 1.4.

Proof. Consider a pair of strongly associated function and let v be an unramified

place for E / F such that fv and (f)y are the characteristic functions of K^ and K^

respectively. Substitute at the place v associated regular elementary functions; then

by V.I.2 the identity between trace formulas hold

^(^/^^CT^).
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By VI. 1.3 in case (a) using moreover the rigidity VI.2.2 or by V.3.1 in case (b),

this identity can be refined into an identity for each Levi subgroup M and with

infinitesimal character at archimedean places in a finite set. This being done, the

conductor being fixed, we deal with a finite set of representations and we may separate

unramified infinitesimal characters at the place v ([Lab2] proposition 8); as in the

proof of IV.5.2 we may now reverse the process and substitute back the original

functions in the unramified Hecke algebra to our elementary functions; then using

11.2.3 we recover an identity between trace formulas.

D

VI.2 - L-functions and rigidity.

In this section G = H . Recall that a representation TT' e II(I/(AF)) is said

to occurs in the discrete spectrum for L if its restriction to L°(A^) is an irreducible

direct factor o{L2(LO(F)\LO(AF)l) and one denotes by m^(7r') its multiplicity. The

multiplicity one theorem for the cuspidal spectrum of GL{n) [Shal], which readily

extends to the discrete spectrum by [MW] , tells us that m^(Tr') 6 {0,1} . As a

supplement to the multiplicity one theorem one has rigidity properties VI.2.2 that

follow from the next theorem.

VI.2.1. Theorem. - Let 71-1 and TT-^ be two cuspidal unitary automorphic repre-

sentations for GL(n) ; denote by TT the contragredient of TT . Let S be a finite set

of places containing the archimedean ones and outside of which the representations

are unramified. The partial L-function of pairs L3^^^ x TT^) is regular nonzero for

Re(^) > 1 ; it has a simple pole at s = 1 if 71-1 c^ TT^ ; otherwise it is regular and
nonzero at s = 1 .

Proof. This follows from theorems of Jacquet and Shalika [JS] and Shahidi [Shahl]

(see [AC] chapter 3 p. 200).

D

The numbers c^^Tr') have been defined in 11.2. We may be more explicit in the

case G = GL(n) . We say that a representation TT' G II(L(AF)) occurs discretely in
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the trace formula for L if a^g^Tr') ^ 0 . This is the case only if the restriction TT of TT'

to L°(Ap) is a constituent of a representation parabolically induced from a unitary

representation TTQ of a Levi subgroup L^ that occurs discretely in L^Z/^.F^Z/^Aj?)1)

and if there is an element s in the Weyl group that normalizes L^ which is such that :

(i) del (5-1U ^0 ,
^0

(ii) let w = s x 6 , then w stabilizes TTQ .

Since we are working with GL[n) unitary parabolic induction preserves irreducibility.

Condition (i) is equivalent to say that

Lo = L? x ... x L?

and that w permutes transitively the m factors L^ = GL{n\) with n = mn-t . We

know by [MW] that 71-0 is a tensor product of Speh representations

TTi = Speh(o-i) 0 ... 0 Speh(<7yn)

where the (TI are unitary cuspidal representations of M^ = GL(d) with n = mdr .

Condition (ii) tells us that the representation TTQ can be extended to a representation

7!-o of the semidirect product Z/o(AF)~1" of L^(AF) by the cyclic group generated by s .

This is possible if and only if

cr = <TI 0 ... (g) 0'm

is extendable to a representation a ' of Mi(A^)"1" the semidirect product of

M? = M^ x ... x 2̂°

by the cyclic group generated by s . Observe that in the case L == H this implies

that the a~i are all equal; moreover the intertwining operators that show up in the

defintion of numbers a^g^^) m 11-2 are scalars since unitary parabolic induction

preserves irreducibility; these scalars are roots of unity.

VI.2.2. Proposition. - (i) Consider two automorphic representations TTI and -K^ of

H(AF) that occur discretely in the trace formula for H and let ^ be a character of

-H^Ai,) then

JJK^)=^2^)=1
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if and only if there exist a character ^ 6 'E(H)E/F such that TT^ = TTI 0 ̂  .

(ii) Consider two automorphic representations TT'I and TT^ or-L°(A^) <Aa^ occur dis-
cretely in the trace formula for L and let ^ be a character of^^A^) then

St(n'^)=S^',,^=l

if and only JITT'I = 7r'2 •

Proof. It suffices to consider the case H = GL{n) . If the two representations TT, with

i = 1,2 occur discretely in the trace formula for H , they are parabolically induced

from two automorphic representations that are tensor products of mi copies of Speh

representations Speh(<7i) constructed from two unitary cuspidal representations o~i

for some Mi = GL(di) . We have n = m^r, . The relation ^(TTI,^) = ^-(^2?^)

implies the following identity between products of partial -L-functions:

JJZ^.Cri X TTi X <Q = J'J^^Cri X 7T2 X <^) ;

^ ^

where ^ runs over GroBencharactere of-F trivial on the norms from E . By VI.2.1 the

left hand side has, a pole of order m\ at s = 1 + LL^l' an(^ ls analytic for

Re(s) > 1 + r-^- .

The same must be true for the right hand side. This implies mi = 7722 , c?i = d^ and

o-i = era 0 <^ for some ^ and hence TT^ = TTi 0 <^ . The proof of (ii) is similar except

that the two inducing representations need not be isotypic products; using VI.2.1 one

shows that, up to a permutation of the factors, the inducing representations are equal;

the induced representations are equal.
D

Observe that tensorisation by a unitary automorphic character ^ trivial on a^an)

preserves the discrete part of the trace formula:

^LW=^sc(^0-
Given TT 6 Tldisc(H) ? let c ( n ^ E / F ) be cardinal of the subgroup of characters

^ 6 ' E ( H ) E / F sucn that TT (g) $ = TT . We shall use a variant of numbers a^ :

a^(7r,E/F) = F^ ^^Tr.E/F)-1 ^ ^(TT^O = c(7r,E/F)-1 a^} .
^WE/F
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VI.3 — Normalizing factors and base change.

If G = H one can use the canonical normalization of global intertwining op-

erators by global L-functions. This is possible thanks to Shahidi's results ([Shah2]

and [Shah3]). Moreover the L-functions are compatible with base change since this

is true locally everywhere (VI.5.2) and hence the canonical normalizing factors are

compatible with the base change.

VI.3.1. Proposition. - IfG = H the canonical normalizing factors are compatible
with the base change:

^ ima£r^(7^/)= ^ ^00

^WE/F/^WE/F

if7T' is a base change of 'K.

Proof. IfP and Q have Levi M , the canonical factors rp\q['K^ are products of terms

indexed by a set, depending on P and Q , of roots a of M of functions r^^) which

in turn can be expressed in term of L-functions of pairs. Hence if we use canonical

global normalizing factors rp\q{'K^} , the factor r^(7r) is the product of a constant

times logarithmic derivatives of ^/-functions of pairs (this is proposition 7.5 of [A4]

p. 1323). The constant is a^ the covolume of the coroot lattice in aj^ introduced in

I.I. One has similar expressions for L . The lemma follows from the compatibility

of L-functions of pairs with base change (VI.5.2) up to the power of t\ the factor

^d l m a M shows up since we use the norm map to transfer linear forms A to compute

the logarithmic derivatives; note that characters in ' E ( H ) E / F act trivially.
D

Remarks.

(i) This proposition is nothing but lemma 11.1 of [AC] chapter 2 p. 147.

(ii) It is proved in [AC], using lemma 2.2.1 page 88, that one can also define for inner

forms normalizing factors compatible with the base change. The definition relies on

the local correspondence for which Arthur and Clozel refer to [DKV].
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VI.4 — Cyclic base change for GL(n).

We may now state and prove our main theorem. In [AC] a similar theorem

is proved only for automorphic representations induced from cuspidal ones ([AC]

chapter 3, theorem 4.2 and 5.1). This restriction can be lifted thanks to [MW].

VI.4.1. Theorem. - Let F be a global Geld and let E be a cyclic algebra over F .

Assume that G = H .

(i) Given T!-' G Hdisc(L) there exist TT € Tld\sc(H) such that ^(TT, TT') == 1 . Moreover

such a representation TT is unique up to twists by characters ^ 6 ' E ( H ) E / F '

(ii) Given TT 6 IIdisc(^) there exist a unique TT' 6 IIdisc(I/) such that ^(TT,^) = 1 .

(iii) Let TT' G Tld'isc(L) and TT G Hdisc(H) '-> if ^iK^?7r/) == 1 ̂ ne representation TT' is a

strict base change of TT .

Proof. Assume inductively that VI.4.1 (iii) holds for proper Levi subgroups; hence

weak base change and base change coincide for them. Then VI.3.1 shows that the

canonical normalizing factors are compatible with the weak base change and hence

we may use VI. 1.4. This inductive step is not necessary if conjecture B2 holds. Now

VI. 1.4 and proposition VI.2.2, show that given a representation TT' such that

^isc(0^0

then, for S finite large enough and for any pair (fs^ <f>s) of strongly associated func-

tions, we have

^(TT') trace ^s^s) = ^ ^(^)^lLcW trace Trs(fs) .
Trendisc(H)

We want to show the existence of TT such that <^(7r,7r') = 1 and c^fs^^) 7^ 0 . It

suffices to exhibit a strongly associated pair {fs^s) such that trace TT's{^s) 7^ 0 .

Let So G Lv be a regular semisimple point for which the character of T r ' v does not

vanish. Proposition III.4.1, allows one to construct a pair of strongly associated

functions (fv^v) with trace TT''v((f>v) 7^ 0 by taking (f)y with support in a small enough

neighbourhood of So with positive ordinary orbital integrals JL(^<^) nonvanishing
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at So . The uniqueness of TT up to twists follows from VI.2.2. This proves (i). Assume

now that TT € Hd\sc(H) . We get using VI.1.4 and VI.2.2 :

^ ^K^^is^') ^ace Tr's(^) = a^(7r,E/H) trace 7^/5) .
^eridiscW

We have to exhibit a pair (fs,(f>s) such that the right hand side of does not vanish.

Lemma III. 1.7 shows that any representation TT^ has a character distribution that does

not vanish identically on the set of regular elements that are norms of elements in

Lv . Let 70 be a regular norm where the character of ir^ does not vanish. Proposition

III.4.1, allows one to construct a pair of strongly associated functions (fv,(f>v) with

trace TTv(fv) -^ 0 by taking fv with support in a small enough neighbourhood of 70

with positive ordinary orbital integrals Jn^.fv) nonvanishing at 70 . This proves

(ii). Consider TT such that a^(7r) ^ 0 and TT' such that a^(Tr') -^ 0 . Assume

moreover that ^(T^TT') == 1 . Let c(7r,7i-') e Cx such that

c^^f)a^(7^t)=a^(7^^E/F).

For any large enough finite set S of places, VI.1.4 and VI.2.2 show that

trace T r ' s ^ s ) = C^TT') trace Trs(fs)

for all pairs of strongly associated functions with regular support. Assertion (iii) now
follows from III.4.2.

a

VI.4.2. Proposition. - Assume that TT' and TT are both in the discrete spectrum
for L and H respectively. Jfj^(7r,7r') = 1 then

c(7T,7r ' )= l .

Proof. Recall that

^^^isc^^ a ^ ( ^ E / F ) .

Since T V ' and TT are both in the discrete spectrum, we know by VI.2.2 that

^isc(^) = ̂ isc(^) = 1 = ̂ LW = ̂ fscW .
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But ifTT' is in the discrete spectrum, by [MW] it is a Speh representation TT' = Speh^')

where a ' is cuspidal on some other group Gi . We may assume that G = GL(n) and

that Gi = GL(di) with n = nc?i . The partial L-function Ls(s,7^f x TT') is the

product of Ls(s - k.a1 x ?') where k is an integer with \k\ ^ r^ - 1 and the L-

function Ls(s, TT' x TT') has a simple pole at s = ri . One has also TT = Speh(cr) where

a is cuspidal on some other group C?2 = &L(c?2) and one has a similar expression for
Ls(s, TT x 7r) . Moreover

L^TT' X 7T') = JjL^TT X 7T X 0

^
is regular nonzero for Re{s) > ri and has a simple pole at s = ri . This implies in

particular that c?i = d^ and that TT -^ TT 0 ̂  unless ^ = 1 i.e. c(7r, E/F) = 1

D

Remark. - The local components of 71-' are not canonically defined a priori. The

previous proposition allows one to show that TT\ can be taken to be the canonical

base change of TT^ at all places. We refer the reader to [AC] section 1.6.3 p. 56 for a
proof.

VI.4.3. Corollary. - Assume that G = H . Let S be a finite set of places outside

of which E / F is unramified. Given a Levi subgroup M , consider TT' and TT that

occur in the discrete spectrum for M1' and M respectively. Assume that TT' and TT are

unramified outside S and such that S^ (TT, TT') = 1 . If (fg, cf>s) is a pair of strongly
associated functions one has

^^J^^s)- ^ J^^^fs)
^WE/F/^WE/F

Proof. It follows from VI.4.1 (iii) and VI.3.1 that the canonical normalizing factors

are compatible with the weak base change. Hence we may use VI. 1.3 when G = H.
The corollary now follows from VI.1.3, VI.2.2 and VI.4.2.

D
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VI.5 - The local base change.

The base change theorem for automorphic representations yields the local base

change. Let F be a local field and E a cyclic algebra over F.

VI.5.1. Theorem. - Assume that G = H . Any TT G H(H(F)) has a base change

T T ' G II(Z/(JF)) and conversely any TT' 6 H(L(F)) is a base change of some TT.

Proof. Using the Langlands classification and since, for our groups, representations

unitarily induced from tempered ones are irreducible, we are reduced to consider dis-

crete series (resp. ^-discrete series.) We refer the reader to [AC] section 1.6.2 for a

detailed account of this reduction step. One may now embed the local situation in a

global one and one observes that any discrete series (resp. ^-discrete series) represen-

tation occurs as the local component of a cuspidal automorphic representation. This

is classical and is an easy consequence of the existence of pseudo-coefficients. For

local components of cuspidal representations the theorem follows immediately from

our main theorem VI.4.1.
D

VI.5.2. Proposition. - Let o- and r be irreducible admissible representations of

GL(n^,F) and GL(n'z,F) with base change O - E / F ^d T E / F - Then

L ( S , ( T E / F x r E / p ) = n^^ x T x 0 5
^

where ^ runs over characters of Fx trivial on the norms from Ex .

Proof. For unramified situations this is clear. Using this and a local-global argument,

which relies on the functional equation of L-functions, the assertion can be shown to

be true for any non archimedean field using the properties of the local base change.

We refer the reader to the proof of proposition 1.6.9 of [AC] p. 60. For archimedean

fields this can be checked directly.
D

This compatibility has been used in the proof of VI.4.1, inductively for proper

Levi subgroups via VI.3.1.
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VI.6 - Inner forms.

We return to the global field case. We believe that our main theorem VI.4.1

should hold in general, when G is an inner form of ff, except that (ii) should read:

(ir) Given TT C IIdisc(-ff) there exist a unique TT' G IIdisc(^) such that ^(T^T!"') = 1 if

and only if for any place v the character of TT^ does not vanish almost everywhere

on regular norms from L(Fv).

But the proof given for VI.4.1 does not extend readily: there we use the rigidity. We

do not know an a priori proof of the rigidity for inner forms, and in fact we want to

deduce it from the endoscopic correspondence. The result of [MW] would also have

to be extended. When G is a non split inner form of H we have this partial results.

VI.6.1. Proposition. - Assume that E = F and that L = G is an inner form

of H. Assume moreover that conjecture B2 holds or that one can use normalizing

factors compatible with the weak base change. Then, given TT G 'n.disc(H) there exist

^' e IIdisc(^) such that ^(Tr^TT') = 1 if and only if for any place v the character of

7Tv does not vanish almost everywhere on regular norms from L(Fv).

Proof. For S large enough, proposition VI. 1.4 shows that

E ^(7r/^) ^isc(^) trace TT'^)
^eridiscW

E ^(7r^) ^scW ^^ ^s{fs) .
^IIdiscW

If a^(7r) ^ 0 then VI.2.2 tells us that

E ^ '̂̂ isc )̂ trace (TT^(^)) = a )̂ trace (Trs(fs)) .
^endiscW

We see that, if there exists a pair (fs^s) of strongly associated functions such that

trace TTs(fs) ̂  0 ,

then there exist TT' with nonzero multiplicity in the discrete part of the trace formula

such that <^(7r, TT') == 1 . Such a pair of functions will exist if and only if the character

of TTS does not vanish almost everywhere on norms from L(Fs)reg •
D
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Remark. - We observed that one can use normalization factors compatible with

base change. One would need moreover the rigidity for proper Levi subgroups to

show they are compatible with the weak base change. In the particular case where G

is the multiplicative group of a division algebra there is nothing to prove.

One can think of different approaches to prove in general the analogue of VI.4.1.

Starting again from VI. 1.4 one may try to use the linear independence of characters

of inequivalent representations in a finite set against functions with regular support.

But, to do this, we need some a priori finiteness of the number of non trivial terms in

the sum. This in turn would follow from a fairly general conjecture, which is a weak
form of the rigidity:

VI.6.2. Conjecture C - Given ^ an unramified infinitesimal character outside

some finite set S of places, then there is a finite set of representations 71-' unrami-

fied outside S such that J^(TT',^) == 1 .

An other way would be to establish the noninvariant endoscopic transfer (without

support restrictions). For the groups we study, the ordinary endoscopic transfer can

be established thanks to results of Shelstad and Vigneras. This is used in [DKV] and

in [AC]. To be used in our setting we need moreover conjecture Bl. If for example,

H = GL(2) and if L = G is a quaternion algebra, conjecture Bl holds trivially: pairs

of associated functions are automatically strongly associated. This kind of argument

is used by Jacquet and Langlands in [JL] chapter 16. But in general a proof of
conjecture Bl will require more work.
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