M. KAROUBI
 Torsion of the Witt group

Mémoires de la S. M. F., tome 48 (1976), p. 45-46
http://www.numdam.org/item?id=MSMF_1976__48__45_0
© Mémoires de la S. M. F., 1976, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Col. sur les Formes Quadratiques (1975, Montpellier)
Bull. Soc. Math. France
Mémoire 48, 1976, p. 45-46

TORSION OF THE WITT GROUP

by
M. KAROUBI

The purpose of this paper is to give an elementary proof of the following theorem (well known if A is a field).

Theorem. Let A be a commutative ring and let $\Gamma(A)$ be the subring (= subgroup) of the Witt ring $W(A)$ generated by the classes of projective modules of rank one. Then the torsion of $\Gamma(A)$ is 2-primary.

Proof. Let $L(A)$ be the Grothendieck group of the category of non degenerated bilinear A-modules. Let $x=\left[L_{1} \oplus \ldots \oplus L_{n}\right] \in L(A)$ where L_{i} are projective of rank one and let us assume that the class of $p x$ in $W(A)$ is zero, p being an odd prime. We want to show that the class of x in $W(A)$ is equal to 0 . We need the following lemma :

Lemma. Let Γ_{o} be the subring of $W(A)$ generated by the $\left\langle L_{i}\right\rangle$ and let $y \in \Gamma_{o}$ such that $p y=0$ in $W(A)$ with p an odd prime. Then $y \in p \Gamma_{o}$.

Proof of the lemma. Let $y=\left\langle R_{1} \oplus \ldots \oplus R_{m}\right\rangle \in \Gamma_{o}$ where the R_{i} are projectives of rank one and monomial of the L_{i} and L_{i}^{-}. Let $\bar{\Gamma}_{o}$ be the subring of $L(A)$ generated by the L_{i} and L_{i}^{-}and $\frac{1}{y}$ be the class of $R=R_{i} \oplus \ldots \oplus R_{m} \quad$ in $L(A)$. Following Grothendieck we write

$$
\lambda_{t}(\bar{y})=1+t \lambda^{1}(\bar{v})+\ldots+t^{m} \lambda^{m}(\bar{y}) \in L(A)[t] \quad\left(\text { note that } \lambda^{i}(\bar{y}) \in \bar{\Gamma}_{o}\right)
$$

Since $\lambda_{t}(u+v)=\lambda_{t}(u) \lambda_{t}(v)$ according to the general properties of the exterior powers, we have

$$
\lambda_{t}(\overline{p y})=\left(\lambda_{t}(\bar{y})\right)^{p}=1+t^{p} \lambda^{1}(\bar{y})^{p}+\ldots+t^{m p} \lambda^{m}(\bar{y})^{p} \bmod \cdot p \bar{\Gamma}_{0}
$$

Moreover,

$$
\begin{aligned}
\lambda^{1}(\bar{y})^{p}=\left[R_{1} \oplus \ldots \oplus R_{m}\right]^{p}=\left[R_{1}^{p} \oplus \ldots \oplus R_{m}^{p}\right] & =\left[R_{1} \oplus \ldots \oplus R_{m}\right]= \\
& =\bar{y} \bmod \cdot p \bar{\Gamma}_{o}
\end{aligned}
$$

because $\left[R_{i}\right]^{2}=1$. It follows from this computation that $\lambda^{p}(p \bar{y})=\bar{y} \bmod . p \bar{\Gamma}_{0}$. Since $p \bar{y}$ is stably metabolic and since p is odd, $\lambda^{p}(p \bar{y})$ is stably metabolic. Hence $y=0$ mod. $p \Gamma_{o}$.

Proof of the theorem (followed). Since $\left[L_{i}\right]^{2}=1, \Gamma_{o}$ is a finitely generated $\mathbb{Z}-$ module. From the lemma it follows that the p-torsion of is zero if p is odd. Hence the torsion of Γ_{o} is 2-primary which implies $x=0$ as required.

Part of these considerations can be generalized for rings with involution. Of course we have not necessarily $[L]^{2}=1$ if L is projective of rank one (except if A is local). However, we can consider the subring $\Gamma^{q}(A)$ of $W(A)$ generated by the classes of projective modules of rank one such that $[L]^{q}=1$ (see the example below). Then I claim that the torsion of $\Gamma^{q}(A)$ is $2 q$-primary (i.e. $p x=0$ implies $x=0$ if p is prime to $2 q$). The proof is along the same lines as the proof of the first theorem. If we write $x=\left\langle L_{1} \oplus \ldots \oplus L_{n}\right\rangle$ we can consider the subring Γ_{o}^{q} of $\Gamma^{q}(A)$ generated by the L_{i} and the subring $\bar{\Gamma}_{o}^{q}$ of $L(A)$ generated by the L_{i} and L_{i}^{-}. Let α be an integer such that $p^{\alpha}-1$ is divisible by q (for instance the Euler indicator). Then, with the notations of the lemma we have $\lambda_{t}\left(p^{\alpha} \bar{y}\right)=1+t^{p^{\alpha}} \lambda^{1}(\bar{y})^{p^{\alpha}}+\ldots \bmod . p \bar{\Gamma}_{o}^{q} \cdot$ Hence

$$
\lambda^{p^{\alpha}}\left(p^{\alpha} \bar{y}\right)=\lambda^{1}(\bar{y})^{p^{\alpha}}=\left[R_{1}^{p^{\alpha}} \oplus \ldots \oplus R_{m}^{p^{\alpha^{\alpha}}}\right]=\left[R_{1} \oplus \ldots \oplus R_{m}\right]=\bar{y} \quad \bmod . p \bar{\Gamma}
$$

(because $R_{i}^{q}=1$). Therefore the p-torsion of Γ_{o}^{q} is p-divisible which implies $\mathrm{x}=0$.

Example. Let A be the ring of complexe continuous functions on the lens space $\chi=\mathrm{s}^{2 \mathrm{n}+1} / \mathbb{Z}_{\mathrm{q}}$ where $\mathrm{s}^{2 \mathrm{n}+1}$ is the $2 \mathrm{n}+1$-dimensional sphere imbedded in $\mathbb{c}^{\mathrm{n}+1}, \mathbb{Z}_{\mathrm{q}}$ acting by the action of $q^{\text {th }}$ roots of the unity. If we provide A with the complex conjugation involution, the Witt ring $W(A)$ can be identified with the complex K theory $K_{C}(X)$ of the space X (this is true for any compact space X). This complex K-theory is generated by the trivial bundles and by the line bundle $L=s^{2 n-1} \times C$. If we put $t=\langle L\rangle$ we have in fact $W(A)=\mathbb{Z}[t] / I$ where I is \mathbb{Z}_{1} the ideal generated by the polynomials $t^{q}-1$ and $(t-1)^{n}$. Hence

$$
W(A)=\Gamma^{q}(A)=\mathbb{Z} \oplus T
$$

where T is a torsion group which is q-primary.

Remark. If we consider the ring B of real continuous functions on X, it is not hard to show that $W(B) \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ is isomorphic to the invariant part of $W(A) \otimes \mathbb{Z}\left[\frac{1}{2}\right]$ by the action of \mathbb{Z}_{2} acting by $t \rightarrow t^{-1}=t^{q-1}$. Hence $W(B)$ can have arbitrary torsion (not just 2-torsion).

U.E.R. de Mathématiques
Tour 45-55 5è étage Université PARIS VII
2, Place Jussieu
75230 PARIS CEDEX OS
FRANCE

