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TORSION OF THE WITT GROUP

by

M. KAROUBI

The purpose of this paper is to give an elementary proof of the following
theorem (well known if A is a field).

Theorem. Let A be a commutative ring and let r(A) be the subring (== subgroup)

of the Witt ring W(A) generated by the classes of projective modules of rank one.

Then tte torsion of r(A) is 2-primary.

Proof, Let L(A) be the Grothendieck group of the category of non degenerated bi-

linear A-modules. Let x = [L © ... ® L ] € L(A) where L. are projective of

rank one and let us assume that ths class of px in W(A) is zero, p being an

odd prime. We want to show that the class of x in W(A) is equal to 0. We need

the following lemma :

Lemma, Let r be the subring of W(A) generated by the <L.> and let y € r——— —— o ————————————— ————————————— i ————— o
such that py = 0 in W(A) with p an odd prime. Then y £ p r .

Proof of the lemma. Let y = <R. ® ... © R > € r where the R. are projectives—————————————— i m o i
of rank one and monomial of the L. and L.. Let r be the subring of L(A) ge-

nerated by the L. and L. and y be the class of R = R © . .. ® R in L(A).

Following Grothendieck we write

^(7) = 1 + t ^(v) + ... + t"1 ^(y) C L(A) [t] (note that ^(y) £ F ).

Since \ (u + v) = A , ( u ) A , ( v ) according to the general properties of the exterior

powers, we have

X . ( p y ) = (^.(y))13 = 1 + t13 \\y^ + ... + t^ ^(y^ mod. p r .
T T 0

Moreover,

^(y)13 = [R^ ® ,.. ©R^ = [R^® ... ®R^] = [R^ ® ... ©Rj =

= y mod. p I^ ,

because [R. ] = 1, It follows from this computation that ^(py") = y" mod. p T .

Since py is stably metabolic and since p is odd, A^Cpy) is stably metabolic.

Hence y = 0 mod, p r •

o
Proof of the theorem (followed)o Since [L.] = 1 , r is a finitely generated Z-

module. From the lemma it follows that the p-torsion of is zero if p is odd. Hen-
ce the torsion of r is 2-primary which implies x = 0 as required.
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Part of these considerations can be generalized for rings with involution.
Q

Of course we have not necessarily [L] = 1 if L is projecfive of rank one (ex-

cept if A is ^.ocal). However, we can consider the subring r^A) of W(A) gene-

rated by the classes of protective modules of rank one such that [L] = 1 (see the

example below)„ Then I claim that the torsion of r (A) is 2q-primary (i.e.

px == 0 implies x = 0 if p is prime to 2q). The proof is along the same lines

as the proof of the first theorem. If we write x = <L, © ... © L > we can consi-
1 n

der the subring r of r (A) generated by the L. and the Subring F1 of L(A)

generated by the L. and L.. Let a be an integer such that p0^- 1 is divisible

by q (for instance the Euler indicator). Then, with the notations of the lemma we

have X.CP^^ 7) = 1 + ^p X1 (y)13 + ... mod. p ?1. Hence
-a _ 4 _ a a a _ _

A* dp^ y) = X (y)' = [R^ © ... © R^ ] == [R^ © ... © Rj = y mod. p r

(because R? = Do Therefore the p-torsion of T^ is p-divisible which implies

x = 0.

Example. Let A be the ring of complexe continuous functions on the lens space

Y = S n /Z where S n+ is the 2n+1-dimensional sphere imbedded in ^n+ , Z
q th q

acting by the action of q roots of the unity. If we provide A with the complex

conjugation involution, the Witt ring W(A) can be identified with the complex K-

theory K ( X ) of the space X (this is true for any compact space X). This com-

plex K-theory is generated by the trivial bundles and by the line bundle
2'n— 1

L == S x C. If we put t = <L> we have in fact W(A) =Z[t]/ I where I is
z,

the ideal generated by the polynomials t01- 1 and (t-1 )1'1. Hence

w(A) = r^A) =Z © T

where T is a torsion group which is q-primary.

Remark. If we consider the ring B of real continuous functions on X, it is not

hard to show that W(B) 0Z[—] is isomorphic to the invariant part of W(A) ®Z[-1-]
— 4 4 2

by the action of Z- acting by t -> t" = t4" . Hence W(B) can have arbitrary&
torsion (not just 2-torsion).
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