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THE MILNORRING OF A LOCAL RING

par

E. A, M, HORNIX

Let F be a field. Milnor defined a ring k^(F) , and in the case that

characteristic (F) 7^ 2 he studied maps between k^ . (F ) , and groups or rings which

play a role in the theory of quadratic forms. The aim of this talk is to extend so-

me of his definitions and results to local rings. We do not suppose thaht 2 is a

unit of the local ring. The only restriction for the local rings is, that the resi-

due field has more than 3 elements.

Sections 1,2,3 give a survey of [3], though the definitions of [3] are a bit genera-

lized. In section 4, the analogue of Milnor 's map s,,, is given, and section 5 co-

vers the example of a field of characteristic 2.

1 o We repeat some of the definitions given by Milnor [6]. Let F be a field, de-

note U(F) = [x € F x is invertible}, Let M be the Z-module U ( F ) , and denote

T(M) for the tensoralgebra of M. We write Ji : M -> T(M) for the imbedding of M

in T(M). K^(F) is defined as T(M) mod I, and I is the two-sided ideal of M,

generated by \tW ^(1-a) [ a, 1-a E U ( F ) j . Remark thaht <-a,1>0 <-(1-a) , 1 > ^ 2(H,

as soon as a,1-a 6 u(F) and 2 ^ 0 € F. K^ (F) = Z © K (F) ® K (F) © . . . , and here

K^(F) = tW ® . .. 0 JLW mod tW 0 ... 0 iW U I.

The elements of K (F) are again denoted as sums of terms /(a ) ... ^(a ). Final-

ly, k^(F) is defined as Z © K^ (F) / 2K (F) © K (F) / 2K (F) © ... (1). We remark

that for a € U(A) and x € k^(F) , the element Ida2 )x = 2?(a)x = 0 C k,(F). In

fact, the defining relations for k^(F) are :

Z(ab) = Z(a) + Z(b) a € U ( A ) , b £ U ( A )

Z(a) Z(1-a) = 0 a,1-a £ u (A)

2Z(a) = 0 a £ u(A)

Suppose now that char(F) -/= 2. We write Quad(F) for the Grothendieck

monoide of finite-dimensional quadratic spaces over F. Milnor proved, that there

exists a well-defined map

SW : Quad(F) -» k^(F) such that

SW <a ,...,a > = (1 + Z(a )) ... (1 + Z(a )) .
i n 1 n

( 1 ) Write Z(a) for the class of ^(a) in K , ( F ) , etc.
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We denote the Grothendieck-Writting of finite-dimensional quadratic spa-

ces over F by W(F), and we write I(F) C W(F) for the kernel of the dimension

map W(F) -> Z/2 Z. Milnor proved also, that there exists a homomorphism

s^ : k^(F) -> ® In(F) / I^CF) such that
n ^ 1

s^ : K^(F) / 2K^(F) -> In(F) / I^CF) and

s : Z(a.) ... Z(a ) = «a > - 1 ) ... «a > - 1 ) + I^1 (F) .n 1 n 1 n

2. Let A be a local ring with maximal ideal m. Denote U(A) == |a £ A | a has

inverse in A]. If 2 € m, then every nondegenerate quadratic form on A of finite

dimension has even dimension,

We denote (a,b,c) for the form q which has a basis e,f satisfying

q(e) = a, q(f) = b, ( e, f) == c. The form (a,b,c) is nondegenerate if and only if

4ab - c2 € U(A). If [ A mod m[ > 3 then we may choose a,b,1 such that a,b £ U(A).

In that case (a,b,1) = a ( 1 , a b , 1 ) and ab determines an invariant of (a,b,1)

which we will describe now.

The following notions can be found in the notes of the 1968 Montpellier

conference, Micali, Villamayor [4].

Let A be an arbitrary ring, define A = [a. € A | 1-4a £ U(A) . A is a group

under o : A x A -> A , a ^ b = a+b-4ab.

The inverse of a in A is the element „ . Define J(A) == |x - x | 1-2x £ U(A)j .

If a £ A , then a o a £ J(A). J(A) is a subgroup of A , we denote G(A) =

= A mod J(A). There exist homomorphisme cr : A -> U(A), a-(si) == 1-4a,

? : G(A) -> U(A) mod U(A)2, ^(a o J) = (1-4a) U(A)2.

Examples. ( 1 ) If 2 £ U(A) then o- is an isomorphism..

(2) If 2 = 0 then A = A° and a p b = a+b, G(A) = A'1" mod '? (A).

Let A be a local ring. The quadratic form a (1 ,d ,1 ) is nondegenerate

if and only if a £ U(A), d £ A°. The class d o J(A) is an invariant for the iso-

metry class of a ( 1 , d , 1 ) , for the proof see [3],

In general, we have the following result : Suppose that q is a nondegenerate qua-

dratic form of dimension 2n. Then
n

q = © a . (1 ,d . , 1 )
i=1

a. £ U(A), d. £ A°, 1 ^ i ^ n and d o ^ o • •. o, d o J^) is an invariant for

the isometry class of q.

Examples. ( 1 ) F is a field of characteristic 7^2. q= ® a . ( 1 , d . , 1 ) , then
_ i=1 1 1

cr(d, o « - * o d o J(A)) is the discriminant of q.

(2) F is a field of characteristic 2, q as before. Then

d« c r - * o d o J(A) is the Art invariant of q.
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3. Suppose again that A is a local ringo | A mod mj > 3. It is clear, that for the

determination of the isometry class of a ( 1 , d , 1 ) a role is played by d o J(A) and

by a € U ( A ) . So in the definition of the Milnorring of A, G(A) and U ( A ) should

play a role. In the case of a fields of char 7^ 2 it seemed important to reme-rk

that
<-a,1> 0 <-(1-a),1> ^ 2 (H , a , 1-a 6 U ( A ) .

We translate that remark :

/ -a 0 \ / -a 0 \
if a 6 U(A) n A° then ( ] 0 (1 ,a, 1 ) ^ 2 IH. Here ) denotes

\ 0 1 ) \ 0 1 /

a symmetric bilinear form, and we use the tensorproduct which is defined for symme-

tric bilinear forms and quadratic forms by H. Bass [1].

We now give a construction of the ring g^(A) , which is almost equivalent

to the construction of k^(A) .

We start with the Z -module M = A° © U ( A ) , and we denote o)(a) = (a,0) for a £ A°

and y(a) = (0,a) for a 6 U ( A ) . T(M) is again the tensor algebra of M. ^ is the

two-sided ideal of T(M) generated by

|&)(a) y(a) | a 6 A° n U ( A ) ] U E y ( a ) ^j(a) | a € A° n U ( A ) ] U

U E o ) ( a ) a 6 J(A)J .

g^(A) == T(M) mod C7, g^ (A) is isomorphic with Z © g (A) © g (A) ® .. . ,

g , ( A ) = M ® . . . ® M / ^ _ _ ^ ^ .

We denote g^a) for the image of y(a) (a £ U(A)) in g^(A). We write 0(A) for

the image of &}(a) (a £ A°) in g^.(A). In fact, g,,, (A) satisfies the following

defining relations :

g'(ab) = i'(a) + g"(b) , a £ U ( A ) , b £ U ( A )

0"(a o b) = 0(a) + 0(b) , a,b £ A°

g"(a) 0(a) == 0(a) g'(a) = 0 , a £ A° n U(A)

0(a) == 0 , a £ J(A)

We would like to define a map

SW : Quad(A) -> g^(A).

The analogue of Milnor's definition is for even dimensional forms ;

(DEF) : SW(a (1 ,d,,1 ) © a (1 , d . 1 ) ® ... ® a (1 ,d , 1 ) ) =1 1 a a n n

= (1 + g"(-1) + 0(d.) + i(a ) 0(d , ) ) ... (1 + g(-1) + 0(d ) +i l l n

+ i(a ) 0(d )) .n n

This definition works for n = 1 : if a(1 ,d, 1 ) ^ a (1 ,d , 1 ) then d o JC^ =

== d. o JC^y s° 0(d) = 0(d.) , and it can easily be proved that g(a) 0(d) =

= ^(a^) 0(d ).
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For the proof that the definition works for n = 2, we have to impose some extra
conditions. Some of these come from the commutativity of Quad(A). The more impor-
tant conditions are :

W,, : g^1-4a) 0(b) - 0(a) 0(b) should be equal to 0, as soon as a £ A ° ,2 •
b € U(A) n A°.

W : g"(a) g(a) 0(b) 0(d) - i"(a) 0(b) 0(d) 0(d) should be equal to 0 for

a £ U ( A ) , b £ A° n U(A) , d € A°.

So we consider the ring g^ (A) mod Cg^(A) , Cg^ (A) being the ideal in g^(A) gene-

rated by the elements mentionel in W , W and by some more elements. For an expli-

cit and precise definition see [3],

Let us denote g(a) for g(a) + Cg^ (A), 0(a) for 0(a) + Cg^(A) .

Suppose that 2 £ m . Then one can prove that the map SW : Quad(A) -> g ,̂, (A) mod

Cg^(A) as proposed in (DEF), is well-defined.

Suppose 2 ^ in . If A is a field, then g^(A) and k (A) are not isomorphic. We

should have identified A and U(A) . More precisely, choose

M = U(A) ® A° mod [y(1-4a) - ^(a) a £ A°] and repeat the definition of T(M)

mod y , hence the defining relations for T(M) mod C7 are

g0-4a) =0(a ) , a £ A°

g^(ab) = g'(a) + g"(b) , a,b € U ( A )

g"(a) 0(a) = 0(a) 'g(a) , a £ A° n U(A)

i(a) = 0 , a £ U(A) 2

In fact, this was the definition, proposed in [ 3] for any local ring A with 2
unit in A.

It is then easily proved that Cg^(A) = 0, and that SW is defined on all of
Quad(A), such that
(*) : SW <a^,...,a^> = (1 + g(a^)) ... (1 + g(a^)) .

For isometry classes of even dimension, the definitions (*) and (DEF) coi'ncide.
There are situations in which we have that 2 £ U(A) and that we want to

restrict ourselves to isometry classes of even-dimensional forms. It is possible to
define g^ (A) based on M = U(A) © A°. The map SW can be defined as proposed in

(DEF). For proving this, the proofs in [3] can completely be repeated. The map SW
as proposed in (*) cannot be defined, since 2 g(a) (a £ U(A)) is not necessarily
equal to 0.

4. We give now the analogue for the map s^, For convenience, we work with rings
g^(A), based on M = U(A) © A°.
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W (A) is the Witt-group of free finite-dimensional nondegenerate quadra-

tic forms on A. W(A) is the Wittring of free finite-dimensional nondegenerate sym-

metric bilinear forms on A, I(A) C W(A) is the ideal of forms of even dimension.

We denote the class of a form in W (A), W(A) by square brackets. W°(A) C W (A) is
q q q

the Witt-group of forms of even dimension.

It is well known that W (A) can be considered as an W(A)-module. Accor-

ding to definitions given by Micali + Villamayor [5], we give W (A) a structure of

ring by defining :

q^S = ( , \^^ .

This definition induces a structure of ring on © I^A) W°(A) mod I11'^1 (A) W°(A)
n ^ O q q *

In analogy with Milnor's definition, we would like to define a homomorphism of rings

s. : g.(A) mod Cg,(A) -> © I^A) W°(A) mod I11''1 (A) W°(A) ® © I^A) mod I^1 (A)
v a v i ^ ° q- q n ̂  1

For a € A , we propose to define s. 0(a) = [-l,-a,1] + l(A) W°(A).

If a € U(A) we would like to define

r"1 °i 2s, g(a) = + r(A) .
L 0 aj

The map s. can be extended to a homomorphism of rings, if the image of s satis-

fies the defining relations of g^(A) mod Cg^(A). It is clear that the following re-

sults hold :

r-i o-i [-1 o] r-i oi
4.1. + € + I (A) ' ^b € U(A)

[ 0 aj [_o bj L 0 abj

4.2. [-1,-a,1] + [-1,-b,1] € [-1,-aob,1] + I (A)W°(A) , a,b € A°

[-1 0-1
4.3. . [ - 1 , - a , 1 ] = 0 , a e U(A) n A° .

L O aj

For proving the other relations, we derive some formulas.

4.4. Suppose 2 £ m . Let 1-pq £ U(A) , d £ U(A) n A°. Then

P 11 rd(pq-l) 0"|

, J -C-'.-.'l^ „ ,j . [A-A." •

Proof. Let e,f be a basis of V, let ( , ) be a symmetric bilinear form on V

such that (e,e) = p, ( f , f ) = q, (e , f ) = 1. Let x,y be a basis of W, q : W -> A

a quadratic form and q(x) == -1, q(y) = -d, (x,y) = 1.

The bilinear form and the quadratic form are nondegenerate. Choose

X = e 0 (2dx+y), Y = (-qe+f) 0x , S = f ( g ) y , T = (-e+pf) ® (x+2y). Since 2 € m, we

have that X, Y, S, T is a basis of V 0 W. Moreover, <X> + <Y>-L <S> + <T>. It is
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clear that <X> + <Y> ^ ( pd , q , 1) and that1 —4d i —pq

<S>^<T>- ( -qd , ̂ ^^, 1 ) .

4.5. Lemma, I (A) W (A) is generated as an additive group by elements of the form

Fa 0}
[1 ,d , l ] , a £ A°, d € A° n U ( A ) .

[o ij

4.6. Let a 6 A°, d £ U(A) n A°. Then we have that

n-4a o'[ r-2 11
. [-1,-d,1] - . [-1,-d,1] £ r(A) W°(A) .

L 0 -1 J [ 1 -2aJ q

Proof. If 2 ^ m_ then this statement is easily proved. So suppose 2 € in. Applying

(4.4.) we find that

^2 1 1 rd(4a-1) 0 - P [[, -J-1-1-'"^ » , _ • [ ^ • ^ • v \ -
fd(4a-1) 01

= [ p ] . . [-1 , d.4d^(l-4a) ' 1] for certain P € U < A )

|1-4a o 1
Now we consider the form , [-1,-d,1],

L 0 -1 .1

Let e,f be a basis of V, and let ( , ) be a symmetric bilinear form satisfying

(e,e) = 1-4a, (f,f) = -1 , (e,f) = 0.

Let x,y be a basis of W, and let q be a quadratic form such that q(x) = -1,

q(y) = -d, (x,y) = 1. Denote A = e ® y, B = (e+f) 0 (x+2y), C = f 0 x,

D = (e + (1-4a)f) 0 (2dx+y).

A, B, C, D is a basis for V (g) W and <A> + <B>JL <C> + <D>,

<A> . <B>- <^ , ̂  , 1 ) - -d(4a-1)(-1 , ̂ ^ . 1 )

^^^ 'TT^T^dy D"-^ . (1-4a^1-4d) ' 1 )

/ d(4a-1) o \
Hence V ® W - (-1) (̂  ^ J. (-, , ̂ _^_^ , ,) .

Now it is easily proved that

| 1-4a 0"[ [-2 l1
. [-1,-d,1] - . [-1,-d,1] =

L 0 -ij [ 1 -2aJ

- [P °1 \d^ °1 r,, -4ad .
~ 0 -1 • 0 1 • - (T-4aK-r--4d) - ^ •
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4.7.
-2 1 1 I-a 01

. [-l.-cJ ]-
LO -ij

r-2
1 -2b| 0 -1J

. [-1,-C,1] € I (A)4 W°(A), a € U ( A ) , b € U ( A ) n A°,
1 -2cj q

c £ A°.

Proof. Since b £ U ( A ) Fl A we have that

1-2 1 1 1-2 1 1
. [-1,-C;1] = . [-1,-b,1] 6 [-1,-b,1]

1 -2b 1 -2c| -1

1-4c

+ I^A) W°(A)
q

. [-1,-c,l] -

-:
[-1,-b,1] + I (A) W (A) = (applying (4 .4 . ) ) =

. [ - 1 , - b , 1 ] + I " ( A ) W ° ( A ) =

= I4(A) W°(A).

The relations (4.1), (4.2), (4.3), (4.6), (4.7) are translations of rela-

tions, which have been mentioned explicity in the definition of g,, (A) mod Cg^(A).

The other relations have to do with commutativity. Now,

® I^A) W°(A) mod ^(A) W°(A) © ® ^(A) mod I114'1 (A) is commutative with
n ^ O q q n ^ 1
respect to multiplication. So we have verified that the defining relations for

g^(A) mod Cg^(A) also hold for the image of s,. Hence the following theorem is

proved :

4.8. Theorem. There exists a well-defined homomorphism of rings

s^ : g^(A) mod Cg^(A) -> ® I^A) W°(A) mod I^1 (A) w°(A) ©
n > 0 q q
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© © I^A) mod I114'1 (A), such that

n ^ l „ I--1 °1 2
s! e(a) = + I^(A) , a € U(A)

L 0 aj

s^ 0(a) = [-1,-a,1] + I(A) W°(A) , a 6 A°

We denote s^ for the restriction of s^ to g^(A) mod Cg^ (A) n g (A).

We denote ©-(A) c g^(A) mod Cg^ (A) for the two-sided ideal, generated by

i0(a)|a £ A0]. Let us write ^(A) for the intersection of (9-(A) with

g^(A) mod Cg^(A) n g (A).

Denote s^ for the restriction of s, to (T/A), and denote the res-

triction of s^ to (^(A) by s .

4.9. Theorem, s^ : (T(A) -> ® In(A) W°(A) mod I114-1 (A) W°(A) is a surjective
n ̂  0 q ^

homomorphism of rings.

n
Proof. The elements of (^(A) are of the form ^ x. 0(a.)y., with a. 6 A°

xi»y^ € g^(A) mod Cg^(A).

So s^^(A) C © I^A) W°(A) mod I114'1 (A) W°(A).
n ̂  0 q q

Lemma (4.5) proves that s^ maps (T(A) surjectively on

© ^(A) W°(A) mod I114'1 (A) W°(A)
n ̂  0 q q

We will now prove, that s^ is an injective map on Qr (A).

4.10. There exists a homomorphism of groups

discr : W°(A) -> G(A) , satisfying

discr [a] [1,d,1] = d o J(A) , a € U ( A ) , d € A°.

The following sequence is exact :

discr
1 -> I (A) W°(A) -> W°(A) ————> G(A) -> 1

proof< The existence of the homomorphism discr follows from what is said in sec-

tion 2. The map discr is surjective since discr [ l ,d,1] = d o J(A), d £ A°. Lem-

ma (4.5) shows that I(A) W°(A) is generated by elements of the form

[o J • t 1^^ ] ' a € ̂ ^ d € A°. Hence I(A) W^(A) c ker(discr). Suppose that

^ [\] [ 1 , ^ , 1 ] € W^(A) and that d^ , .... d^ o J(A) = J(A). Then we have that

^ [a,] [1 ,d, ,1 ] =^ [a^] [l,d^,l] © [aj [l,d^ o ... , d^]. Applying (4.2) we

find that ^ [a^][l,d^l] € ^ [a^][ l ,d^,1] © n©1 [a^][l,d^1] + I(A) W°(A) =

= I(A)W°(A) .
q
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Remark. Compare Knebusch [2], (7.10).

4.11. Theorem, s, : Q^. (A) -> W°(A) mod I (A)W°(A) is an isomorphism of additive—————— 1 1 q q
groups.

Remark. We cannot repeat Milnor's proof for the injectivity of s-, since we do•————— 2
not work with 1-dimensional quadratic forms.

5. Example. F is a field of characteristic 2, F 7^ IF-.
•————————•— £1

We have U(F) = [a. € F a ^ 0} , F == F.

The most important defining relations for g^(F) mod Cg.,, (F) are

g'(ab) = i(a) + g'(b) , a,b ^ 0

0(a+b) == 0(a) + 0(b) ,

g'(a) 0(a) = 0 , a ^ 0

0(a) 0(b) = 0 .

The elements of g (F) mod Cg^ (F) n g (F) can be written as sums of ele-n ''• n
ments of the type

g'(a^) ... g'(a^) , i(a^) ... i'(a^ ) 0(b) .

The elements of fir" (F) mod Cg^ (F) n ff (F) are sums of terms g"(a )...^(a )?(b).

n
Let © a . ( 1 , d . , 1 ) be a quadratic form.

i=1 x x
n n

SW( ® a.(1,d. ,D) = 1 + 0(d o • • • o d ) + y g^.) 0(d. ) .
i=1 1 1 ' n î l 1 :L

Hence, SW(IH) = 0, and we can extend SW to a map

SW : W (F) -> Q"(F) mod Cg^(F) n 0"(F) .

We calculate the action of SW on Î F) W (F).q
SW [ l ,d ,1] == 1 + 0(d)

f 1 °1 - -SW [1,d,1] = 1 + g(a) 0(d) .
LO aj

H 0-1 | 1 01
SW [ 1 , d , 1 ] = 0

LO aj [p bl
Hence, SW acts trivially on I2(F)W (F).

Q

We calculate s. : 0"'(F) -> © In(F)W (F) mod I^1 (F)W (F).
n > 0 q q» •

s^O(a) = [1,a,1] + I (F)W (F) .

"a 0~1n _ _ n i
s«( ® g(a.) 0 (d . ) ) = © [ l ,d . ,1 ] + I-(F)W (F).

i=1 i=1 0 1 J 1 q

It is easy to see, that :
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SW o s (x) = 1 + x , x € ^(F)/Cg^(F) C\ <^(F).

This proves that s is a monomorphism.

There are no results about the injectivity of s. , i ^? 3.

s« : ^(F) mod 0-(F) H Cg,(F) -> I (F)W (F) mod I2(F)W (F)2 2 z '*' q q
is an isomorphism of additive groups.

We refer to another description of I (F)W (F) mod I^DW (F) by C.H. Sah,

[7].

Let Cl[M,q] denote the class of the Clifford algebra of (M,q) in the ungraded

Brauergroup of F. Cl[M,q] is an element of Br(F), the subgroup generated by the

elements of order 2 of Br(F). Cl induces a split exact sequence :

2 cl
0 -> I (F)W (F) -> I (F )W (F) ——^Br(F) -> 0

Hence, Cl induces an isomorphism

cT : I(F)W (F) mod I^DW (F) -> _Br(F)q q 2

In proving this theorem, C.H. Sah uses the follov/ing result :

Denote (a,d] for the F-algebra H with F-basis 1, u, v, uv and
2 / 2

with relations u = a ^ 0 , v + v = d , u v + v u = = 1 .

H is a quaternion algebra with norm form

( 3 - °\ / a °\) . ( 1 , d , 1 ) . The class of the Clifford algebra of / I. ( 1 , d , 1 ) is
\, o 1 I \ 0 1 /

equal to the class [H] of H in the Brauer group.

Combining these results, we find that
cl" o 80 ! ^(F) mod ©-(F) n Cg^(F) -> -Br(F)

& a £1 ^ &

is an isomorphism of groups.
n n

Cl o BO^ © gC2 1 . ) 0 (d . ) ) == 0 [ ( a . » d . ] ] , since tensor product induces
2 1=1 z x i=1 1 1

multiplication in Br(F),
6
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