E.A.M. Hornix
 The Milnor ring of a local ring

Mémoires de la S. M. F., tome 48 (1976), p. 35-44
http://www.numdam.org/item?id=MSMF_1976__48_35_0
© Mémoires de la S. M. F., 1976, tous droits réservés.
L'accès aux archives de la revue « Mémoires de la S. M. F. » (http://smf. emath.fr/Publications/Memoires/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Col. sur les Formes Quadratiques (1975, Montpellier)
Bull. Soc. Math. France
Mémoire 48, 1976, p. 35-44

THE MILNORRING OF A LOCAL RING
par
E. A. M. HORNIX

Let F be a field. Milnor defined a ring $k_{*}(F)$, and in the case that characteristic $(F) \neq 2$ he studied maps between $k_{*}(F)$, and groups or rings which play a role in the theory of quadratic forms. The aim of this talk is to extend some of his definitions and results to local rings. We do not suppose thaht 2 is a unit of the local ring. The only restriction for the local rings is, that the residue field has more than 3 elements.
Sections 1,2,3 give a survey of [3], though the definitions of [3] are a bit generalized. In section 4, the analogue of Milnor's map s_{*} is given, and section 5 covers the example of a field of characteristic 2.

1. We repeat some of the definitions given by Milnor [6]. Let F be a field, denote $U(F)=\{x \in F \mid x$ is invertible $\}$ 。Let M be the \mathbb{Z}-module $U(F)$, and denote $T(M)$ for the tensoralgebra of M. We write $\ell: M \rightarrow T(M)$ for the imbedding of M in $T(M)$. $K_{*}(F)$ is defined as $T(M) \bmod I$, and I is the two-sided ideal of M, generated by $\{\ell(a) \ell(1-a) \mid a, 1-a \in U(F)\}$. Remark thaht $\langle-a, 1\rangle \otimes\langle-(1-a), 1\rangle \cong 2 H$, as soon as $a, 1-a \in U(F)$ and $2 \neq 0 \in F \cdot K_{*}(F)=\mathrm{Z} \oplus K_{1}(F) \oplus K_{2}(F) \oplus \ldots$, and here $K_{n}(F)=\ell(M) \otimes \ldots \otimes \ell(M) \bmod \ell(M) \otimes \ldots \otimes \ell(M) \cap I$.
The elements of $K_{n}(F)$ are again denoted as sums of terms $\ell\left(a_{1}\right) \ldots \ell\left(a_{n}\right)$. Finally, $k_{*}(F)$ is defined as $Z \oplus K_{1}(F) / 2 K_{1}(F) \oplus K_{2}(F) / 2 K_{2}(F) \oplus \ldots$ (1). We remark that for $a \in U(A)$ and $x \in k_{*}(F)$, the element $\bar{\ell}\left(a^{2}\right) x=2 \bar{\ell}(a) x=0 \in k_{*}$ (F). In fact, the defining relations for $\mathbf{k}_{*}(F)$ are :

$$
\begin{array}{ll}
\bar{l}(a b)=\bar{l}(a)+\bar{l}(b) & a \in U(A), b \in U(A) \\
\bar{l}(a) \bar{l}(1-a)=0 & a, 1-a \in U(A) \\
2 \bar{\ell}(a)=0 & a \in U(A)
\end{array}
$$

Suppose now that $\operatorname{char}(F) \neq 2$. We write Quad(F) for the Grothendieck monoïde of finite-dimensional quadratic spaces over F. Milnor proved, that there exists a well-defined map

$$
\begin{aligned}
& S W: Q u a d(F) \rightarrow k_{*}(F) \quad \text { such that } \\
& S W\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left(1+\bar{\ell}\left(a_{1}\right)\right) \ldots\left(1+\bar{l}\left(a_{n}\right)\right)
\end{aligned}
$$

(1) Write $\bar{l}(a)$ for the class of $\ell(a)$ in $K_{1}(F)$, etc.

We denote the Grothendieck-Writting of finite-dimensional quadratic spaces over F by $W(F)$, and we write $I(F) \subset W(F)$ for the kernel of the dimension $\operatorname{map} W(F) \rightarrow \mathbb{Z} / 2 \mathbb{Z}$. Milnor proved also, that there exists a homomorphism

$$
\begin{aligned}
& s_{*}: k_{*}(F) \rightarrow \oplus_{n}^{\oplus} I^{n}(F) / I^{n+1}(F) \text { such that } \\
& s_{n}: K_{n}(F) / 2 K_{n}(F) \rightarrow I^{n}(F) / I^{n+1}(F) \text { and } \\
& s_{n}: \bar{\ell}\left(a_{1}\right) \ldots \bar{l}^{n}\left(a_{n}\right)=\left(\left\langle a_{1}\right\rangle-1\right) \ldots\left(\left\langle a_{n}\right\rangle-1\right)+I^{n+1}(F) \quad .
\end{aligned}
$$

2. Let A be a local ring with maximal ideal m. Denote $U(A)=\{a \in A \mid$ a has inverse in $A\}$. If $2 \in \underline{m}$, then every nondegenerate quadratic form on A of finite dimension has even dimension.

We denote (a, b, c) for the form q which has a basis e,f satisfying $q(e)=a, q(f)=b,(e, f)=c$. The form ($a, b, c)$ is nondegenerate if and only if $4 a b-c^{2} \in U(A)$. If $|A \bmod \underline{m}|>3$ then we may choose $a, b, 1$ such that $a, b \in U(A)$. In that case $(a, b, 1) \cong a(1, a b, 1)$ and $a b$ determines an invariant of $(a, b, 1)$ which we will describe now.

The following notions can be found in the notes of the 1968 Montpellier conference, Micali, Villamayor [4].
Let A be an arbitrary ring, define $A^{\circ}=\left\{a \in A \mid 1-4 a \in U(A)\right.$. A° is a group under $0: A^{\circ} \times A^{\circ} \rightarrow A^{\circ}, a \quad b=a+b-4 a b$.
The inverse of a in A^{0} is the element $\frac{-a}{1-4 a}$. Define $J(A)=\left\{x-x^{2} \mid 1-2 x \in U(A)\right\}$. If $a \in A^{0}$, then $a \quad a \in J(A)$. $J(A)$ is a subgroup of A°, we denote $G(A)=$ $=A^{\circ} \bmod J(A)$. There exist homomorphisme $\sigma: A^{\circ} \rightarrow U(A), \sigma(a)=1-4 a$, $\bar{\sigma}: G(A) \rightarrow U(A) \bmod U(A)^{2}, \bar{\sigma}(a \circ J)=(1-4 a) U(A)^{2}$.
Examples. (1) If $2 \in U(A)$ then $\bar{\sigma}$ is an isomorphism..
(2) If $2=0$ then $A=A^{0}$ and $a \circ b=a+b, G(A)=A^{+} \bmod p(A)$.

Let A be a local ring. The quadratic form $a(1, d, 1)$ is nondegenerate if and only if $a \in U(A), d \in A^{\circ}$. The class $d o J(A)$ is an invariant for the iso metry class of $a(1, d, 1)$, for the proof see [3]. In general, we have the following result : Suppose that q is a nondegenerate quadratic form of dimension 2 n . Then

$$
q \cong \bigoplus_{i=1}^{n} a_{i}\left(1, d_{i}, 1\right)
$$

$a_{i} \in U(A), d_{i} \in A^{o}, 1 \leqslant i \leqslant n \quad$ and $d_{1} \circ d_{2} \circ \cdots d_{n} \circ J(A)$ is an invariant for the isometry class of q.
Examples. (1) F is a field of characteristic $\neq 2, q \cong \oplus_{i=1}^{n} a_{i}\left(1, d_{i}, 1\right)$, then $\bar{\sigma}\left(d_{1} \ldots \ldots 0 d_{n} \circ J(A)\right)$ is the discriminant of q.
(2) F is a field of characteristic 2, q as before. Then
$d_{1} 0 \ldots 0 d_{n} \circ J(A)$ is the Arf invariant of q.
3. Suppose again that A is a local ring。 $|A \bmod m|>3$. It is clear, that for the determination of the isometry class of $a(1, d, 1)$ a role is played by $d \rho J(A)$ and by $a \in U(A)$. So in the definition of the Milnorring of $A, G(A)$ and $U(A)$ should play a role. In the case of a fields of char $\neq 2$ it seemed important to reme.rk that

$$
\langle-a, 1\rangle \otimes\langle-(1-a), 1\rangle \cong 2 H \quad, \quad a, 1-a \in U(A)
$$

We translate that remark :
if $a \in U(A) \cap A^{\circ}$ then $\left(\begin{array}{cc}-a & 0 \\ 0 & 1\end{array}\right) \otimes(1, a, 1) \cong 2$ H. Here $\left(\begin{array}{cc}-a & 0 \\ 0 & 1\end{array}\right)$ denotes
a symmetric bilinear form, and we use the tensorproduct which is defined for symmetric bilinear forms and quadratic forms by H. Bass [1].

We now give a construction of the ring $g_{*}(A)$, which is almost equivalent to the construction of $k_{*}(A)$.
We start with the \mathbb{Z}-module $M=A^{O} \oplus U(A)$, and we denote $\omega(a)=(a, 0)$ for $a \in A^{\circ}$ and $\gamma(a)=(O, a)$ for $a \in U(A)$. $T(M)$ is again the tensor algebra of M. I is the two-sided ideal of $T(M)$ generated by

$$
\begin{aligned}
\left\{\omega(\mathrm{a}) \gamma(\mathrm{a}) \mid \mathrm{a} \in \mathrm{~A}^{\mathrm{O} \cap \mathrm{U}(\mathrm{~A})\}}\right. & \cup\left\{\gamma(\mathrm{a}) \omega(\mathrm{a}) \mid \mathrm{a} \in \mathrm{~A}^{\mathrm{O} \cap \mathrm{U}(\mathrm{~A})\} \cup}\right. \\
& \cup\{\omega(\mathrm{a}) \mid \mathrm{a} \in \mathrm{~J}(\mathrm{~A})\} .
\end{aligned}
$$

$g_{*}(A)=T(M) \bmod Y, g_{*}(A)$ is isomorphic with $Z \oplus g_{q}(A) \oplus g_{2}(A) \oplus \ldots$, $g_{i}(A)=M \otimes \ldots \otimes M / M \otimes \ldots \otimes M \cap J^{*}$
We denote $\bar{g}(a)$ for the image of $\gamma(a) \quad(a \in U(A))$ in $g_{*}(A)$. We write $\bar{O}(A)$ for the image of $\omega(a) \quad\left(a \in A^{\circ}\right)$ in $g_{*}(A)$. In fact, $g_{*}(A)$ satisfies the following defining relations :

$$
\begin{array}{ll}
\bar{g}(a b)=\bar{g}(a)+\bar{g}(b), & a \in U(A), b \in U(A) \\
\bar{O}(a \circ b)=\bar{O}(a)+\bar{O}(b), & a, b \in A^{\circ} \\
\bar{g}(a) \bar{O}(a)=\bar{O}(a) \bar{g}(a)=0, & a \in A^{O} \cap U(A) \\
\bar{O}(a)=0, & a \in J(A)
\end{array}
$$

We would like to define a map

$$
S W: \operatorname{Quad}(A) \rightarrow g_{*}(A)
$$

The analogue of Milnor's definition is for even dimensional forms:
(DEF) : $\quad S W\left(a_{1}\left(1, d_{1}, 1\right) \oplus a_{2}\left(1, d_{2}, 1\right) \oplus \ldots \oplus a_{n}\left(1, d_{n}, 1\right)\right)=$

$$
\begin{aligned}
=(1 & \left.+\bar{g}(-1)+\bar{O}\left(d_{1}\right)+\bar{g}\left(a_{1}\right) \bar{O}\left(d_{1}\right)\right) \ldots\left(1+\bar{g}(-1)+\bar{O}\left(d_{n}\right)+\right. \\
& \left.+\bar{g}\left(a_{n}\right) \bar{O}\left(d_{n}\right)\right) .
\end{aligned}
$$

This definition works for $n=1$: if $a(1, d, 1) \cong a_{1}\left(1, d_{1}, 1\right)$ then $d \quad J(A)=$ $=d_{1} \circ J(A)$, so $\bar{O}(d)=\bar{O}\left(d_{1}\right)$, and it can easiry be proved that $\bar{g}(a) \bar{O}(d)=$ $=\bar{g}\left(a_{1}\right) \bar{O}\left(d_{1}\right)$.

For the proof that the definition works for $n=2$, we have to impose some extra conditions. Some of these come from the commutativity of Quad(A). The more important conditions are :

$$
\begin{aligned}
& W_{2}: \bar{g}(1-4 a) \bar{O}(b)-\bar{O}(a) \bar{O}(b) \text { should be equal to } O \text {, as soon as } a \in A^{\circ}, \\
& b \in U(A) \cap A^{\circ} . \\
& W_{7}: \bar{g}(a) \bar{g}(a) \bar{O}(b) \bar{O}(d)-\bar{g}(a) \bar{O}(b) \bar{O}(d) \bar{O}(d) \text { should be equal to } O \text { for } \\
& a \in U(A), b \in A^{\circ} \cap U(A), d \in A^{\circ} .
\end{aligned}
$$

So we consider the ring $g_{*}(A) \bmod \mathrm{Cg}_{\boldsymbol{*}}(\mathrm{A}), \mathrm{Cg}_{\boldsymbol{*}}(\mathrm{A})$ being the ideal in $\mathrm{g}_{\boldsymbol{*}}$ (A) generated by the elements mentionel in W_{2}, W_{7} and by some more elements. For an explicit and precise definition see [3].
Let us denote $\overline{\mathrm{g}}(\mathrm{a})$ for $\overline{\mathrm{g}}(\mathrm{a})+\mathrm{Cg}_{*}(\mathrm{~A}), \overline{\mathrm{O}}(\mathrm{a})$ for $\overline{\mathrm{O}}(\mathrm{a})+\mathrm{Cg}_{*}(\mathrm{~A})$.
Suppose that $2 \in \underline{m}$. Then one can prove that the map $S W: Q u a d(A) \rightarrow g_{*}(A) \bmod$ $\mathrm{Cg}_{⿻}$ (A) as proposed in (DEF), is well-defined.

Suppose $2 \notin \underline{m}$. If A is a field, then $g_{*}(A)$ and $k_{*}(A)$ are not isomorphic. We should have identified A° and $U(A)$. More precisely, choose
$M=U(A) \oplus A^{O} \bmod \left\{\gamma(1-4 a)-\omega(a) \mid a \in A^{0}\right\}$ and repeat the definition of $T(M)$ mod J, hence the defining relations for $T(M) \bmod y$ are

$$
\begin{array}{ll}
\bar{g}(1-4 a)=\bar{O}(a), & a \in A^{\circ} \\
\bar{g}(a b)=\bar{g}(a)+\bar{g}(b), & a, b \in U(A) \\
\bar{g}(a) \bar{O}(a)=\bar{O}(a) \bar{g}(a), & a \in A^{\circ} \cap U(A) \\
\bar{g}(a)=0, & a \in U(A)^{2}
\end{array}
$$

In fact, this was the definition, proposed in [3] for any local ring A with 2 unit in A.
It is then easily proved that $\operatorname{Cg}_{*}(A)=0$, and that $S W$ is defined on all of Quad(A), such that
(*) : $S W\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left(1+\bar{g}\left(a_{1}\right)\right) \ldots\left(1+\bar{g}\left(a_{n}\right)\right) \quad$.
For isometry classes of even dimension, the definitions (*) and (DEF) coincide. There are situations in which we have that $2 \in U(A)$ and that we want to restrict ourselves to isometry classes of even-dimensional forms. It is possible to define $g_{*}(A)$ based on $M=U(A) \oplus A^{\circ}$. The map $S W$ can be defined as proposed in (DEF). For proving this, the proofs in [3] can completely be repeated. The map $S W$. as proposed in (*) cannot be defined, since $2 \bar{g}(a)$ (a $\in U(A)$) is not necessarily equal to 0 .
4. We give now the analogue for the map s_{*}. For convenience, we work with rings $g_{*}(A)$, based on $M=U(A) \oplus A^{0}$ 。
$W_{q}(A)$ is the Witt-group of free finite-dimensional nondegenerate quadratic forms on A. W(A) is the Wittring of free finite-dimensional nondegenerate symmetric bilinear forms on $A, I(A) \subset W(A)$ is the ideal of forms of even dimension. We denote the class of a form in $W_{q}(A), W(A)$ by square brackets. $W_{q}^{O}(A) \subset W_{q}(A)$ is the Witt-group of forms of even dimension.

It is well known that $W_{q}(A)$ can be considered as an $W(A)$-module. According to definitions given by Micali + Villamayor [5], we give $W_{q}(A)$ a structure of ring by defining :

$$
q_{1} \cdot q_{2}=(,)_{q_{1}} \otimes q_{2}
$$

This definition induces a structure of ring on $\underset{n \geqslant}{\oplus} I^{n}(A) W_{q}^{o}(A) \bmod I^{n+1}(A) W_{q}^{o}(A)$. In analogy with Milnor's definition, we would like to define a homomorphism of rings $S_{*}: g_{*}(A) \bmod C_{*}(A) \rightarrow \oplus I^{n}(A) W_{q}^{o}(A) \bmod I^{n+1}(A) W_{q}^{o}(A) \oplus \quad I^{n}(A) \bmod I^{n+1}(A)$ For $a \in A^{0}$, we propose to define $s, \bar{O} \bar{O}(a)=[-1,-a, 1]+I(A) w_{q}^{0}(A)$. If $a \in U(A)$ we would like to define

$$
s_{1} \bar{g}(a)=\left[\begin{array}{cc}
-1 & 0 \\
0 & a
\end{array}\right]+I^{2}(A)
$$

The map s_{1} can be extended to a homomorphism of rings, if the image of s_{1} satisfies the defining relations of $g_{*}(A) \bmod \mathrm{Cg}_{*}(A)$. It is clear that the following results hold :
4.1. $\left[\begin{array}{cc}-1 & 0 \\ 0 & a\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ 0 & b\end{array}\right] \in\left[\begin{array}{cc}-1 & 0 \\ 0 & a b\end{array}\right]+I^{2}(A), \quad a, b \in U(A)$
4.2. $[-1,-a, 1]+[-1,-b, 1] \in[-1,-a \circ b, 1]+I(A) w_{q}^{0}(A) \quad, \quad a, b \in A^{0}$
4.3. $\left[\begin{array}{cc}-1 & 0 \\ 0 & a\end{array}\right] \cdot[-1,-a, 1]=0 \quad, \quad a \in U(A) \cap A^{0}$.

For proving the other relations, we derive some formulas.
4.4. Suppose $2 \in \underline{m}$. Let $1-p q \in U(A), d \in U(A) \cap A^{\circ}$. Then

$$
\left[\begin{array}{ll}
p & 1 \\
1 & q
\end{array}\right] \cdot[-1,-d, 1]=\left[\begin{array}{cc}
d(p q-1) & 0 \\
0 & 1
\end{array}\right] \cdot\left[\frac{p d}{1-4 d}, \frac{q}{1-p q}, 1\right]
$$

Proof. Let e, f be a basis of V, let (,) be a symmetric bilinear form on V such that $(e, e)=p,(f, f)=q,(e, f)=1$. Let x, y be a basis of $w, q: W \rightarrow A$ a quadratic form and $q(x)=-1, q(y)=-d,(x, y)=1$.

The bilinear form and the quadratic form are nondegenerate. Choose $X=e \otimes(2 d x+y), Y=(-q e+f) \otimes x, S=f \otimes y, T=(-e+p f) \otimes(x+2 y)$. since $2 \in \underline{m}$, we have that X, Y, S, T is a basis of $V \otimes W$. Moreover, $\langle X\rangle+\langle Y\rangle \mathcal{L}\langle S\rangle+\langle T\rangle$. It is
clear that $\langle X\rangle+\langle Y\rangle \cong\left(\frac{p d}{1-4 d}, \frac{q}{1-p q}, 1\right)$ and that
$\langle S\rangle+\langle T\rangle \cong\left(-q d, \frac{-p}{(1-4 d)(1-p q)}, 1\right)$.
4.5. Lemma. $I(A) W_{q}^{o}(A)$ is generated as an additive group by elements of the form $\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right][1, d, 1], a \in A^{0}, d \in A^{0} \cap U(A)$ 。
4.6. Let $a \in A^{\circ}, d \in U(A) \cap A^{\circ}$. Then we have that

$$
\left[\begin{array}{cc}
1-4 a & 0 \\
0 & -1
\end{array}\right] \cdot[-1,-d, 1]-\left[\begin{array}{rr}
-2 & 1 \\
1 & -2 a
\end{array}\right] \cdot[-1,-d, 1] \in I^{2}(A) w_{q}^{\circ}(A)
$$

Proof. If $2 \notin \underline{m}$ then this statement is easily proved. So suppose $2 \in \underline{m}$. Applying (4.4.) we find that

$$
\begin{aligned}
& {\left[\begin{array}{rr}
-2 & 1 \\
1 & -2 a
\end{array}\right] \cdot[-1,-d, 1]=\left[\begin{array}{cc}
d(4 a-1) & 0 \\
0 & 1
\end{array}\right] \cdot\left[\frac{-2 d}{1-4 d}, \frac{-2 a}{1-4 a}, 1\right]=} \\
& =[\rho] \cdot\left[\begin{array}{cc}
d(4 a-1) & 0 \\
0 & 1
\end{array}\right] \cdot\left[-1, \frac{-4 a d}{(1-4 d)(1-4 a)}, 1\right] \text { for certain } \rho \in U(A)
\end{aligned}
$$

Now we consider the form $\left[\begin{array}{cc}1-4 a & 0 \\ 0 & -1\end{array}\right] \cdot[-1,-d, 1]$.
Let e, f be a basis of V, and let (,) be a symmetric bilinear form satisfying $(e, e)=1-4 a,(f, f)=-1,(e, f)=0$.
Let x, y be a basis of w, and let q be a quadratic form such that $q(x)=-1$, $q(y)=-d,(x, y)=1$. Denote $A=e \otimes y, B=(e+f) \otimes(x+2 y), c=f \otimes x$,
$D=(e+(1-4 a) f) \otimes(2 d x+y)$.
A, B, C, D is a basis for $V \otimes W$ and $\langle A\rangle+\langle B\rangle \perp\langle C\rangle+\langle D\rangle$ 。
$\langle A\rangle+\langle B\rangle \cong\left(\frac{-d}{1-4 a}, \frac{-4 a}{1-4 d}, 1\right) \cong-d(4 a-1)\left(-1, \frac{-4 a d}{(1-4 a)(1-4 d)}, 1\right)$
$\langle C\rangle+\langle D\rangle \cong\left(1, \frac{4 a d}{(1-4 a)(1-4 d)}, 1\right) \cong-\left(-1, \frac{-4 a d}{(1-4 a)(1-4 d)}, 1\right)$
Hence $\quad V \otimes W \cong(-1)\left(\begin{array}{cc}d(4 a-1) & 0 \\ 0 & 1\end{array}\right) .\left(-1, \frac{-4 a d}{(1-4 a)(1-4 d)}, 1\right)$.
Now it is easily proved that

$$
\begin{aligned}
& {\left[\begin{array}{cc}
1-4 a & 0 \\
0 & -1
\end{array}\right] \cdot[-1,-d, 1]-\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 a
\end{array}\right] \cdot[-1,-d, 1]=} \\
& \quad=\left[\begin{array}{cc}
\rho & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
d(4 a-1) & 0 \\
0 & 1
\end{array}\right] \cdot\left[-1, \frac{-4 a d}{(1-4 a)(1-4 d)}, 1\right]
\end{aligned}
$$

4.7. $\left[\begin{array}{rr}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{rr}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{rr}-2 & 1 \\ 1 & -2 b\end{array}\right] \cdot[-1,-c, 1]-\left[\begin{array}{ll}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{rr}-2 & 1 \\ 1 & -2 b\end{array}\right] \cdot$

$$
\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 c
\end{array}\right] \cdot[-1,-c, 1] \in I(A)^{4} W_{q}^{o}(A), a \in U(A), b \in U(A) \cap A^{o} \text {, }
$$

$c \in A^{\circ}$.
Proof. Since $b \in U(A) \cap A^{O}$ we have that
$\left[\begin{array}{cc}-2 & 1 \\ 1 & -2 b\end{array}\right] \cdot[-1,-c, 1]=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2 c\end{array}\right] \cdot[-1,-b, 1] \in\left[\begin{array}{cc}1-4 c & 0 \\ 0 & -1\end{array}\right] \cdot[-1,-b, 1]+$

$$
+I^{2}(A) W_{q}^{O}(A)
$$

It is clear that $\left[\begin{array}{cc}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{cc}a & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{cc}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right] \cdot$
Now we calculate : $\left[\begin{array}{rr}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{rr}a & 0 \\ 0 & -1\end{array}\right] \cdot\left[\begin{array}{rr}-2 & 1 \\ 1 & -2 b\end{array}\right] \cdot[-1,-c, 1]-$

$$
\begin{aligned}
& -\left[\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 b
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 c
\end{array}\right] \cdot[-1,-c, 1] \in \\
& {\left[\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 c
\end{array}\right] \cdot[-1,-b, 1]-\left[\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
-2 & 1 \\
1 & -2 c
\end{array}\right] \cdot } \\
\cdot & {\left[\begin{array}{cc}
1-4 c & 0 \\
0 & -1
\end{array}\right] \cdot[-1,-b, 1]+I^{4}(A) w_{q}^{0}(A)=(\operatorname{applying}(4.4 .))=} \\
= & {\left[\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
1-4 c & 0 \\
0 & -1
\end{array}\right] \cdot[-1,-b, 1]-} \\
& -\left[\begin{array}{cc}
a & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
1-4 c & 0 \\
0 & -1
\end{array}\right] \cdot\left[\begin{array}{cc}
1-4 c & 0 \\
0 & -1
\end{array}\right] \cdot[-1,-b, 1]+I^{4}(A) w_{q}^{o}(A)= \\
= & I^{4}(A) w_{q}^{o}(A) .
\end{aligned}
$$ tions, which have been mentioned explicity in the definition of $g_{*}(A) \bmod _{\mathrm{m}_{*}}(A)$. The other relations have to do with commutativity. Now,

 respect to multiplication. So we have verified that the defining relations for $g_{*}(A) \bmod C g_{*}(A)$ also hold for the image of s_{1}. Hence the following theorem is proved :
4.8. Theorem. There exists a well-defined homomorphism of rings
$\mathbf{s}_{*}: \overline{g_{*}(A) \bmod C_{*}(A) \rightarrow \underset{n}{ } \oplus I^{n}(A) W_{q}^{o}(A) \bmod I^{n+1}(A) W_{q}^{o}(A) \oplus}$
$\oplus \stackrel{\oplus}{\oplus} I^{n}(A) \bmod I^{n+1}(A)$, such that

$$
\begin{array}{ll}
s_{1} \bar{g}(a)=\left[\begin{array}{ll}
-1 & 0 \\
0 & a
\end{array}\right]+I^{2}(A), & a \in U(A) \\
s_{1} \bar{o}(a)=[-1,-a, 1]+I(A) w_{q}^{o}(A), & a \in A^{\circ}
\end{array}
$$

We denote s_{n} for the restriction of s_{*} to $g_{n}(A) \bmod C g_{*}(A) \cap g_{n}(A)$.
We denote $\theta(A) \subset g_{*}(A) \bmod \mathrm{Cg}_{*}$ (A) for the two-sided ideal, generated by $\left\{\bar{O}(a) \mid a \in A^{\circ}\right\}$ 。 Let us write $\theta_{n}(A)$ for the intersection of $\theta(A)$ with $g_{n}(A) \bmod \mathrm{Cg}_{*}(A) \cap g_{n}(A)$.

Denote s_{n} for the restriction of s_{*} to $\theta_{n}(A)$, and denote the restriction of s_{*} to ${ }^{n}(A)$ by s_{*}.
4.9. Theorem. $\mathrm{s}_{*}: \theta(A) \rightarrow \underset{\mathrm{n} \geqslant}{\oplus} \mathrm{O}^{\mathrm{n}}(\mathrm{A}) \mathrm{w}_{\mathrm{q}}^{\mathrm{o}}(\mathrm{A}) \bmod \mathrm{I}^{\mathrm{n}+1}(\mathrm{~A}) \mathrm{w}_{\mathrm{q}}^{\mathrm{o}}(\mathrm{A})$ is a surjective homomorphism of rings.
Proof. The elements of $\sigma(A)$ are of the form $\sum_{i=1}^{n} x_{i} \bar{O}\left(a_{i}\right) y_{i}$, with $a_{i} \in A^{o}$, $x_{i}, y_{i} \in g_{*}(A) \bmod C g_{*}(A)$.
So $s_{*} \theta(A) \subset{ }_{n}{ }^{\oplus} 0 I^{n}(A) W_{q}^{o}(A) \bmod I^{n+1}(A) W_{q}^{o}(A)$.
Lemma (4.5) proves that s_{*} maps $\theta(A)$ surjectively on

$$
\mathrm{n} \geqslant 0 \mathrm{I}^{\mathrm{n}}(\mathrm{~A}) \mathrm{w}_{\mathrm{q}}^{\mathrm{o}}(\mathrm{~A}) \bmod \mathrm{I}^{\mathrm{n}+1}(\mathrm{~A}) \mathrm{w}_{\mathrm{q}}^{\mathrm{o}}(\mathrm{~A})
$$

We will now prove, that s_{1} is an injective map on $\theta_{1}(A)$.
4.10. There exists a homomorphism of groups

$$
\begin{aligned}
& \text { discr : } w_{q}^{\circ}(A) \rightarrow G(A), \quad \text { satisfying } \\
& \operatorname{discr}[a][1, d, 1]=d \rho J(A), \quad a \in U(A), d \in A^{\circ} \text {. }
\end{aligned}
$$

The following sequence is exact :

$$
1 \rightarrow I(A) W_{q}^{o}(A) \rightarrow W_{q}^{o}(A) \xrightarrow{\text { discr }} G(A) \rightarrow 1 \text {. }
$$

Proof. The existence of the homomorphism discr follows from what is said in section 2. The map discr is surjective since discr $[1, d, 1]=d \rho J(A), d \in A^{0}$. Lemma (4.5) shows that $I(A) W_{q}^{0}(A)$ is generated by elements of the form $\left[\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right] \cdot[1, d, 1], a \in U(A), d \in A^{0}$. Hence $I(A) w_{q}^{0}(A) \subset \operatorname{ker}(\operatorname{discr})$. Suppose that $\underset{i=1}{\oplus}\left[a_{i}\right]\left[1, d_{i}, 1\right] \in w_{q}^{\circ}(A)$ and that $d_{1} \circ \ldots \circ d_{n} \circ J(A)=J(A)$. Then we have that
 find that $\underset{i=1}{\oplus}\left[a_{i}\right]\left[1, d_{i}, 1\right] \in \underset{i=1}{\oplus}\left[a_{i}\right]\left[1, d_{i}, 1\right] \oplus \underset{i=1}{\oplus-1}\left[a_{n}\right]\left[1, d_{i}, 1\right]+I(A) W_{q}^{O}(A)=$ $=I(A) W_{q}^{0}(A)$.

Remark. Compare Knebusch [2], (7.10).
4.11. Theorem. $s_{1}: \theta_{q}(A) \rightarrow W_{q}^{O}(A) \bmod I(A) W_{q}^{O}(A)$ is an isomorphism of additive groups.

Remark. We cannot repeat Minor's proof for the injectivity of s_{2}, since we do not work with 1-dimensional quadratic forms.
5. Example. F is a field of characteristic 2, $F \neq F_{2}$.

We have $U(F)=\{a \in F \mid a \neq 0\}, F^{0}=F$.
The most important defining relations for $g_{\mu}(F) \bmod \mathrm{Cg}_{\boldsymbol{*}}(\mathrm{F})$ are

$$
\begin{array}{ll}
\bar{g}(a b)=\bar{g}(a)+\bar{g}(b), & a, b \neq 0 \\
\bar{o}(a+b)=\bar{o}(a)+\bar{o}(b), & a \neq 0 \\
\bar{g}(a) \bar{o}(a)=0, & \\
\bar{o}(a) \bar{o}(b)=0 . &
\end{array}
$$

The elements of $g_{n}(F) \bmod C g_{*}(F) \cap g_{n}(F)$ can be written as sums of alements of the type

$$
\overline{\mathrm{g}}\left(\mathrm{a}_{1}\right) \ldots \overline{\mathrm{g}}\left(\mathrm{a}_{\mathrm{n}}\right), \overline{\mathrm{g}}\left(\mathrm{a}_{1}\right) \ldots \overline{\mathrm{g}}\left(\mathrm{a}_{\mathrm{n}-1}\right) \overline{\mathrm{O}}(\mathrm{~b}) .
$$

The elements of $\quad \sigma_{n}(F) \bmod \operatorname{Cg}_{*}(F) \cap \sigma_{n}(F)$ are sums of terms $\bar{g}\left(a_{1}\right) \ldots \bar{g}\left(a_{n-1}\right) \overline{0}(b)$.

$$
\begin{gathered}
\text { Let } \stackrel{\oplus}{\oplus} a_{i=1}\left(1, d_{i}, 1\right) \text { be a quadratic form. } \\
\operatorname{SW}\left(\underset{i=1}{\oplus} a_{i}\left(1, d_{i}, 1\right)\right)=1+\bar{O}\left(d_{1} \circ \cdots \circ d_{n}\right)+\sum_{i=1}^{n} \bar{g}\left(a_{i}\right) \bar{O}\left(d_{i}\right) \quad .
\end{gathered}
$$

Hence, $S W(\mathbb{H})=0$, and we can extend $S W$ to a map

$$
S W: W_{q}(F) \rightarrow \theta(F) \bmod \operatorname{Cg}_{*}(F) \cap \underset{n}{\theta}(F) .
$$

We calculate the action of $S W$ on $I^{n}(F) W_{q}(F)$ 。

$$
\begin{aligned}
& S W[1, d, 1]=1+\bar{O}(d) \\
& S W\left[\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right][1, d, 1]=1+\bar{g}(a) \bar{O}(d) \\
& S W\left[\begin{array}{ll}
1 & 0 \\
0 & a
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & b
\end{array}\right][1, d, 1]=0
\end{aligned}
$$

Hence, $S W$ acts trivially on $I^{2}(F) W_{q}(F)$.
We calculate $s_{*}: \theta(F) \rightarrow \underset{n}{ }{ }^{\oplus}{ }^{\oplus} I^{n}(F) W_{q}(F) \bmod I^{n+1}(F) W_{q}(F)$.

$$
s_{1} \bar{O}(a)=[1, a, 1]+I(F) W_{q}(F) .
$$

$$
s_{2}\left(\underset{i=1}{n} \bar{g}\left(a_{i}\right) \bar{o}\left(d_{i}\right)\right)=\underset{i=1}{n}\left[\begin{array}{ll}
a_{i} & 0 \\
0 & 1
\end{array}\right]\left[1, d_{i}, 1\right]+I^{2}(F) w_{q}(F)
$$

It is easy to see, that :
$S W{ }_{\circ} s_{2}(x)=1+x \quad, \quad x \in \theta_{2}(F) / \operatorname{Cg}_{*}(F) \cap \theta_{2}(F)$.
This proves that s_{2} is a monomorphism.
There are no results about the injectivity of $s_{i}, i \geqslant 3$.

$$
s_{2}: \Theta_{2}(F) \bmod \theta_{2}(F) \cap \operatorname{Cg}_{*}(F) \rightarrow I(F) W_{q}(F) \bmod ^{2}(F) W_{q}(F)
$$

is an isomorphism of additive groups.
We refer to another description of $I(F) W_{q}(F) \bmod I^{2}(F) W_{q}(F)$ by C.H. Sah, [7].
Let $C l[M, q]$ denote the class of the Clifford algebra of (M, q) in the ungraded Brauergroup of F. $C l[M, q]$ is an element of ${ }_{2} \operatorname{Br}(F)$, the subgroup generated by the elements of order 2 of $\mathrm{Br}(\mathrm{F})$. Cl induces a split exact sequence :

$$
0 \rightarrow I^{2}(F) W_{q}(F) \rightarrow I(F) W_{q}(F) \xrightarrow{C l}{ }_{2} \mathrm{Br}(F) \rightarrow 0
$$

Hence, CI induces an isomorphism

$$
\overline{C 1}: I(F) W_{q}(F) \bmod I^{2}(F) W_{q}(F) \rightarrow{ }_{2} B r(F)
$$

In proving this theorem, C.H. Sah uses the following result :
Denote (a,d] for the F-algebra H with F-basis 1, $u, v, u v$ and with relations $u^{2}=a \neq 0, v^{2}+v=d, u v+v u=1$.
H is a quaternion algebra with norm form
$\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \cdot(1, d, 1)$. The class of the Clifford algebra of $\left(\begin{array}{ll}a & 0 \\ 0 & 1\end{array}\right) \cdot(1, d, 1)$ is equal to the class [H] of H in the Brauer group.

Combining these results, we find that

$$
\overline{\mathrm{Cl}} \circ \mathrm{~s}_{2}: \theta_{2}(\mathrm{~F}) \bmod \theta_{2}(F) \cap \mathrm{Cg}_{*}(F) \rightarrow{ }_{2} \operatorname{Br}(F)
$$

is an isomorphism of groups.
$\overline{C l} \circ s_{2}\left(\underset{I=1}{n} \bar{g}\left(a_{i}\right) \bar{O}\left(d_{i}\right)\right)=\bigotimes_{i=1}^{n}\left[\left(a_{i}, d_{i}\right]\right]$, since tensor product induces multiplication in ${ }_{2} \mathrm{Br}(\mathrm{F})$ 。

BIBLIOGRAPHY

[1] H. BASS, Lectures on topics in algebraic K-theory. Tata Institute of fundamental research, 1967.
[2] M. KNEBUSCH, Bemerkungen zur Theorie der quadratischen Formen über semilokalen Ringen. Saarbrü̈cken, 1969.
[3] E.A.M. HORNIX, Stiefel-Whitney invariants of quadratic forms over local rings. J. of Algebra 26 (1973), 258-279.
[4] A. MICALI, O.E. VILLAMAYOR, Sur les algèbres de Clifford, Ann. Sc. Ec. Normale Sup., 4è série, 1 (1968), 271-304.
[5] A. MICALI, O.E. VILLAMAYOR, Sur les algèbres de Clifford II, Journal für die Reine und Andgewandte Mathematik, 242 (1970), 61-90.
[6] J. MILNOR, Algebraic K-theory and quadratic farms. Inventiones Math. 9, 318-344 (1970).
[7] C.H. SAH, Syrmetric bilinear forms and quadratic forms. J. of Algebra, 20 (1972), 144-160.

