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QUADRATIC FORMS AND SESQUILINEAR FORMS
IN INFINITE DIMENSIONAL SPACES

WITT TYPE THEOREMS IN SPACES
OF DENUMERABLY INFINITE DIMENSION

par

H. GROSS

0. - Introduction

All forms considered here are forms over divisionrings.
If 0 : E x E -> k isa sesqui linear form on the vector-space E over

the divisionring k (with antiautomorphism a -> a*) then we shall always tacitly
assume 0 to be orthosymmetric, i . e . 0 ( x , y ) =0 if and only if 0 ( y , x ) = 0. Pro-
vided that dim E/E is at least 2 the automorphism a •> a** 1st then inner and
there exist nonzero y € k such that 0y is hermitean or antihermitean (with res-
pect to an involution of k ) . An e-hermitean form 0 ( i . e . 0 ( y , x ) = e0(x,y)* for
some e € center(k) and all x , y ) is said to be tracevalued iff for every x € E
there is a € k such that 0( x , x ) = a + ea*. An arbitrary form ip on a space F
with dim F/F ^2 is said to be tracevalued iff some (and hence every) e-
hermitean multiple {py, y 7̂  0, is tracevalued,

If $ is a form on the space E then | | 0 | | or | | E J | is the set
i 0 ( x , x ) | x € EJ ; an alternate form has \\(f>\\ = J O J .

Here I shall mainly be concerned with Witt-type theorems. The .celebrated
theorem of Witt states that an isometry, T : F -> F between finite dimensional sub-
spaces of a non degenerate tracevalued sesquilinear space E always extends to a
metric automorphism on allot E ( [ 3 ] , p. 7 1 ) . The classical theory of forms and its
associated groups pivots on this theorem ; it is therefore not necessary to discuss
the importance of our matter,

It is easy to discover that the theorem as stated above is false when
dim F is infinite ( [ 9 ] , chap. 3 ) . When trying to describe the state of affairs in
this case it is first of all necessary to distinguish between two problems of a ra-
ther different nature ;

Problem 1 . Given isometric subspaces F,F of a sesquilinear space E when does
there exist a metric automorphism T of E with TF = ¥ ? In other words, when
will there be at least some isometry T : F -> F which extends to all of E ?o
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Problem 2p Describe c-'nditions which are sufficient for a given isometry T :
F -> F to admit an extension to all of E.

Theorems 1 , 2 , 10 below concern Problem 1 , theorems 6 , 7, 11 and Remark 4
concern Problem 2. *

We shall consider two extreme situations here. On one hand v/e shall dis-
cuss forms which admit "many" isotropic vectors ; on the other hand we shall dis-
cuss definite forms over ordered fields. The differences as regards the answers to
Problem 1 and Problem 2 are astonishingly different for the two classes of sesqui-
lineare spaces (see e . g . Remark 6 below)„

I. - Witt type theorems in the case of many isotropic vectors

I. 1 . The Main Theorem

Let E be a noii degenerate sesquilinear space of dimension J\̂  and
L(E) the lattice of all subspaces of E. Consider sublattices [^T^ of E that
are stable under the operation .L (taking the orthogonal). We are interested in
situations where lattice isomorphisms T : V -> ̂  must be induced by metric auto-
morphisme of the sesquilinear space E. For this to be the case there are many ob-
vious conditions ; we mention two of them
(0) (X^ = (X^7)-1- , X £ IT

( 1 ) dim X/Z [ Y £ir|YC X } . = dim xVs ̂ IYG Xj , X € ̂

Notice that ^r is not assumed to be complete, so S EY CL^YC XJ is a subspace
of E which need not be an element of ''{^'. 7

In the proof of the main theorem the elements X € 1̂  with
(2) X ̂ Z ?Y €^YC X]

are of primary importance (they might be called '^-inaccessible" elements and must
not be confused with the join-inaccessible elements of [ 2 ] ) . We shall impose the
following condition on the lattices l̂ .
( 3 ) For all X € V satisfying ( 2 ) the principal filter generated by X in ̂  is
prime.

Examples where ( 3 ) always holds are provided by the distributive latti-
ces : for, every X € ̂  with ( 2 ) is a join-irreducible element of 2̂  and in a dis-
tributive lattice a principal filter is prime if and only if the generator is join-
irreducible.

A condition on T which is quite obvious is that q; preserve indices,
i . e . dimensions of quotients of neighbouring elements in ?/.

The easiest spaces to work with when discussing Wilt-type theorems are
the alternate spaces (since E is non degenerate the involution must be the*iden-
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tity and thus k commutative). For non alternate spaces the following imposes a
restriction (cf. [ 8 ] , p. 159) :
( 4 ) The set | | E | | = [ 0 ( x , x ) | x C EJ is an additive subgroup of k. If W is any
degenerate infinite dimensional subspace of D, D € l^, then for every a £ H E | | the-
re is a w 6 W with $ ( w , w ) = a»

For traceyalued forms $ condition (4) may be formulated more convenien-
ly by postulating that every W contain a totally isotropic subspace of infinite
dimension. However, it turns out that in the tracevalued case this condition would
be unnecessarily severe ; it will be sufficient to require
^tr^ If dim D//D n D = ^o* D ̂  D* then there ̂ t̂s an infinite dimensional to-
tally isotropic subspace Y C D with (D1 H D) F\ Y = (0) or else D = D1-1- and
the principal ideal generated by D in the lattice V^ is [ D , D 1 , ( 0 ) j .

For the sake of easier formulation of our results we put down one more
condition (cf. remark 1 ) .
( 5 ) If the form is not alternate then dim D/D̂  n D € [ 0 , ̂  ] for all D € ^".

Theorem 1 ("Main theorem"). Let E be a non degenerate sesquilinear space of di-
mension -iX-. Let u s-nd \y be lattices of subspaces of E which contain the spa-
ces ( 0 ) , E and with every element X the space X as well. Assume (4 ) or -if
the form is tracevalued- (4^). Let T : l̂ ' -> lY be a lattice isomorphism which res-
pects indices and satisfies (0) and ( 1 ) . In order that T be induced by a metric
automorphism of E it is sufficient that V satisfies ( 3 ) , ( 5 ) and the descending
chain condition.

Remark 1 . In applications of the main theorem condition ( 5 ) can often be bypassed
by chopping off finite dimensional orthogonal summands. A good example is theorem
2 below.

Remark 2. There are many involutorial divisionrings k such that every form on an
^-dimensional k-space will automatically satisfy condition ( 4 ) . We shall list a
few examples here. For the sake of illustration we shall stick to symmetric forms
(see [ 6 ] for further examples) ; the (commutative) fields which we shall mention all
share the following condition (mentioned in Theorem 3 of [ 1 0 ] ) .
( 6 ) There exists m £ N depending on k solely such that every symmetric form in
n > m variables possesses a non banal zero.

Example 1 . All fields k with "char k -^ 2 ^ k non formally real ^ k*/k*2

(the multiplicative group of k modulo square factors) finite". Here m is the or-
der of the group k^/k* (necessarily a power of 2 ) . Fields of power series provi-
de examples for k*/k* [ any power of 2. Further examples are the HilbertfieIds
of [ 5 ] .
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The lattice V^V) of Chap. 1 . 2 . generated by a
subspace V of the non degenerate sesquilinear
space E.
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Example 2. The functionfields k in r variables over a finite constant field.

Here m == 2 (for r = 1 this is a classical result of Hasse theory, for arbi-

trary r it is a result of [ 1 2 ] ) .

Io 2. Witt 's Theorem

As an application to Theorem 1 we let ^=t*fv) be the lattice generated

by one single subspace V of the sesquilinear space E under the operations +,

(^f JL • l^tv) contains 14 elements [10] ; in fact, it is the union of two chains,

(7) Wv) =E(O) c v n v^c (v n v1)'1-1'^ (v^n v11-) c v^c v + v-^ v1^
+ v^c (v + v1)1-1- c (v n v-S^c E] u [v c v + (v n v1)1'^ v +
+ (v^n v^) c v1^

so that ^(F) must be distributive. From the main theorem one can deduce the fol-

lowing result concerning Problem 1 of the introduction (an earlier more direct al-

though less perspicuous proof of Theorem 2 is contained in [s]) :

Theorem 2. Let E be a non degenerate sesquilinear space of dimension j^ , V and

V isometric subspaces of E satisfying

0) v ^ V ^ (isometrically)

1 ) dim(V U V-1-)11^ r\Vl-= dim(7 n V1)-11/^ n V-1-

2) dima^n v-11)/^ n v-1)1-1^ dinKv^n ^^-^/(v'n 7•l)il

3) dim(V-L+ V-L1)/(V-L+ V) = dim(V-L+ V' l^)/(V i+ V)

4) dim(V + V i) ly(V-L+ V11) = dim(V + V"1)11/^1 + V"11)

In order that there exist a metric automorphism T of E with TV = V the follo-

wing conditions are sufficient

5) if dim V/V n V-= ^ then condition (4) is satisfied with D = V or

-if the form is tracevalued- (4 ) holds for D = V or V=2 [ Z€ ^(V) | z CV\

6) if dim vVv^U V^--^ ̂  then condition (4) is satisfied with D = V or

-if the form is tracevalued- (4 ) holds for D=V.o r V=2 [ ZC'D'(V) | Z CV}

Remark 3. Conditions 0) though 4) are obviously necessary for an automorphism of

the required sort to exist. They are not, in general, sufficient. See § 3.7 in [8] .

Corollary 1 . Let V be a subspace of the nondegenerate alternate space E, dim E =

= A^. The finitely many cardinal numbers defined by the lattice T?tv) (dimensions

of quotients of neighbouring elements) are a complete set of orthogonal invariants

for the subspace V.

This proves (cf. 8 , p. 162) an old conjecture of Kaplansky ( [10] , p. 1 1 X

The corresponding statement is false when dim V > ̂  , counter examples may be

found in ([7], p. 132) (cf. question 3 in [10] ) .
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Corollary 2 [10]. Let E be a non degenerate tracevalued sesquilinear space of

dimension 1C and R a totally isotropic subspace. If R == R then there

exists a totally isotropic subspace R * C E such that R + R ' is an orthogonal

summand of E ("Witt decomposition")^ R + R 1 is then a sum of hyperbolic planes

with R , R 1 spanned by the two halves of a symplectic basis.

The two corollaries are typical for a host of applications which can be

made of Theorem 2. We shall proceed with further applications of the Main Theorem.

I. 3. Orthogonal and Symplectic Separation

Notation, If in a direct sum F ® F of sesquilinear spaces both summands F. ,F
———————————————————- 1 2 Q 1 &

are totally isotropic we shall v/ri-te 'F © F" .

Definition. Let F, ,F be subspaces of the nondegenerafe sesquilinear space E.

The pair F,,F is said to be orthogonally [resp. symplectically] separated in E1 2 j_ o
if and only if there exists a decomposition E = E, ® E [resp. E = E. (±) E ] with

F^ C E^ (i = 1,2).

Notice that F ,F_ are separated if and only if F^,F1^ are separa-
1 2 1 2

fed (in either sense) ; we shall therefore assume without loss of generality that
F — p^"^- F — •p'-1-—

1 1 ' 2 - '2
In order that F. ,F be separated in either sense it is evidently necessary that

F, Pi F — (0) ("disjoint pair") and

(8) (F^+ F^-^F^ F^

(9) F1 + F1- = E(== (F U F ^± )

(8) and (9) may conveniently be interpreted in the lattice L , , (E) of all -L-

closed subspace X of E(X - = = X ) . We first remark that L. . (E) happens to be a

sublattice of the lattice L(E) of all subspaces of E if and only if trivially

so by the following.

Theorem 3, Let E be any nondegenerate sesquilinear space. L, i (E) is modular if

and only if dim E is finite.

For char k 7^ 2 and hermitean forms this was proved in [11] ; using the

same technique a proof can also be given in the general case. This theorem conside-

rably generalizes a fact well known in the case of Hilbertspace (cf. Thm (32.17) in

[13]). Now (P) and (9) say that F , ,F_ is a disjoint modular and dual modular pair1 &•
in the lattice L . j _ ( E ) (cf. Thm (33.4) in [13]).

Our result is that under certain general conditions such pairs F. ,F

must always be separated. In order to obtain this result via Theorem 1 we need

Theorem 4 [4], Let E be a nondegenerate sesquilinear space of dimension j^

and F ,F an orthogonal [resp. totally isotropic] modular and dual modular pair



Quadratic Forms and Sesquilinear Forms

The lattice (T(F,G) of Theorem 4. iTis generated by an ortho-

gonal pair F,G of subspaces of the sesquilinear space E (E

non degenerate and of countably infinite dimension) with

(F+G)-^ F1^ G11 and F^^- G1 = E.

(Abbrev. R^ F1 0 F , R^= F^^H F1 , S^ G1 U G , S^= G^O G1-)
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in L (E). Let WF ,F ) be the smallest sublaftice of L(E) (the lattice of all

subspaces of E) which is stable under the operation JL and which contains (0),

E, F,,F.. y"(F,,F.) is finite and distributive, in fact, it has 100 elements (in
1 2 I £1

general) and is generated by two chains.

For F, and F arbitrary subspaces of E the lattice ^(F ,F ) will

not, in general, be finite [6].

Theorem 5. Let E be a horde^ererafe alternate space of dimension ^ and

F,,F -L -closed subspaces with F -L F [resp. F _L F , F _L F ]. If (8) and (9)

are satisfied then F.,F is orthogonally [resp. symplectically] separated.

From Theorem 5 we obtain an answer to question 4 in [ 10 ] , namely

Corollary 1 . Let E be as in the theorem. If F,,F is a disjoint modular and

dual modular pair and F. J- F- [resp. F. _L F , F 1. F-] then the finitely many
1 d \ \ 6 6

cardinal numbers defined by the lattice V^¥ ,F ) are a complete set of orthogonal

invariants for the pair F.,F .
i 2

One may also formulate theorem 5 for non alternate spaces ; one then has

to put down some conditions in the vein of (4) or (4 ). Direct proofs for these si-

tuations as well as for theorem 5 are given in [4].

Remark 4. Theorem 5 can be used to solve Problem 2 of the introduction for alge-

braic isometrics T ; F -> F C E whose polynomials split into different linear

factors. See chap. n in [4],

I. 4. Extending Isometries

We give here some results concerning Problem 2 of the Introduction. We

shall make use of the weak linear topology cr(E) of a sesquilinear space E ; cr(E)

has ^ X ^ X linear subspace of E ^- dim X < oo] as a 0-neighbourhoodbasis. A li-

near subspace Y of E is o'(E)-closed if and only if it is J.-closed (Y = Y).

Theorem 6 ([I], P. 8). An isometry T : F -> F between JL-closed subspaces F,F

of the nondegenerate -̂ l -dimensional alternate space E can be extended to all of

E if and only if the following two conditions hold.

(10) T is homeomorphic with respect to o"(E)o
( 1 1 ) dim F-VF-^-n F = dim F-VF-^-n ~F

Theorem 7 ( [ 1 ] » P. 16). Let E be as in Thm 6 and T : F -> F an isometry bet-

ween -L-dense subspaces (i.e. F =F = (0)). T can be extended to an isometry of

all of E if and only if

(12 ) U-^- and (T U)^- are isometric for all U C F with dim F/U ^2.
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Remark 5. Theorem 6 can be generalized to non alternate forms $. The following

conditions, together with (10) and ( 1 1 ) , prove sufficient for an extension of T

to exist

(13) If dim F^/F^n F < oo then F-^- and F^" are isometric and $ is tracevalued.

(14) If dim FVr1?! F = oo then ||E|| is an additive subgroup of k. If a € ||E||,

H a finite dimensional subspace of E and W a subspace of F with

dim F^W + (F^-n F) < oo there exists x € W n H1 with $(x,x) = a (if $ is tra-

cevalued this condition is equivalent to the existence of an infinit-e dimensional

totally isotropic subspace G C F1- with G U (F1 n F), = (0)).

Ho - Witt type theorems in the case of definite forms

1 1 . 1 . Definite Forms

Let (k,*) be an involutorial divisionring and (k ,<) an ordered sub-

divisionring. If (E,$) is a hermitean space over (k,*) such that J J E J J C k then

we say that $ is definite on the line k(x ) C E ( O ^ x £ E) if and only if

$(x ,x ).$(Ax ,Xx ) > 0 for all 0 7^ \ £ k. We say that 0 is positive definite

if 0(x,x) > 0 for all nonzero x £ E.

There exist non commutative involutorial divisionrings (k,*), * 7^ H,

which are ordered and which have the property '^ A .A* = 0 ==> \. •== 0" ([6]), Clear-

ly, such fields admit anisotropic hermitean forms, however, they do not admit defi-

nite forms by the following

Theorem 8 ([6]), Let (k,*) and k be as above and (E,0) a non degenerate her-

mitean space over k with ||E|| C k , If * 7^ H then the following are equivalent.

(i) 0 is definite on all lines of E. (ii) ^ is anisotropic and definite on at

least one line of E. (iii) 0 is definite and either (k,*) is a quaternion al-

gebra (a2^-) with a,6 < 0 and * the usual "conjugation" or else (k,*) is com-ic
o

mutative and a quadratic extension of k , k == k (t/y) for some y < 0 and

(a + p /y")* = a - P -fy for all a,/9 £ k . If on the other hand * = 1 then k is

commutative and k = (k ,<) is ordered.

In [6] we have treated Problem 1 of the introduction for arbitrary sub-

spaces of definite spaces as defined here. As we can give but an illustration in

this short survey we shall make the following simplifications here :

1 . k is archimedean ordered, hence k C_R without loss of generality ;

2. k = k and the form is symmetric.

Finally we put down the following condition (cf. Theorem 4 in [10]).
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(15) There exists m 6 B\f depending on k solely such that every positive symme-

tric form in n ^ m variables represents 1 or -1 (or both).

Examples. Algebraic numberfields (m == 4).

A consequence of (14) is that every j^ -dimensional positive definite space admits
an orthonormal basis.

II. 2. Invariants for J. -dense subspaces

The general case is treated in [6] ; here we shall merely consider sub-

spaces V,V of a positive definite space (E,$) which satisfy ^^-='\/'^= (0). By

a standardbasis for the embedding V C E we mean a basis <% = ( v . ) . U ( f / ) ,
i ifcIN • r ^. JON"

such that (v-,^ is an orthonormal basis for V and (f, ) an orthonormal basis

for some supplement of V in E. With respect to a fixed basis (R) we set

(16) a/, i = ̂ ^'^ € k ( /- £ J ; i € K)
n

(17) \ ^n = ̂  OL, i^i6 k ^ ^ £ J ; n € ff0

(18) \. = lim A / ^ K- (^ € J)
"• n -> oo ' f"

One proves that the real matrix A --= (A ) is positive definite and
/- ^ jxj

A - fl is negative semidefinite. V/e call A the matrix associated with (P) . A may
be interpreted as a point with coordinates A , in a real sDace of dimension
1 r X '
-. n(n+1) where n = card J = dim E/V ^ J:Y . Thus to every standardbasis there cor-

responds a point of the convexe region K which is the intersection of the two
cones

C, : (A ) positive definite
(19) ' y x

Cg : (A ) - 1̂ negative semidefinite.

Conversely one proves the following

Theorem 9 ( [ l4] , [6]). Let A be any positive Jxj matrix over R, card J < ^
such that A - H is negative semidefinite. There exists a positive definite symme-

tric space (E,0) over k which contains a standardbasis 9) = ( v . ) . U (f )
i i€N r /'CJCIN^

with -L--dense span of the v. and with A the associated matrix.

Thus, conversely, to every point of the convex region 5? = C n C there

corresponds a dense embedding V C E (E spanned by an orthonormal basis). The or-

thogonal invariants which we set up for the -L -dense V C E will enable us to re-

place the study of orbits in the set of -L -dense V C E under the orthogonal group

of E by the study of orbits of points in the region K under some more accessi-
ble group.

"Quantities" appropriate for the description of a -L -dense embedding
V C E are not the matrices A associated with standard bases but rather the
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matrices A - ^U. Here is how they transform :

Let ^)== ^iO^/^EJ * ^ = ^iEl^ ^EJ be two standard bases

for the embedding V C E, V-1-= (0) (over the field k ^R) . We have

v(^ ) i(Q

(20) ^ = ̂  ^.V^, ̂ i

for certain row finite matrices (y ),(^, .) over k ; (y ) is invertible. Let

furthermore (A , ) , (A ) be the matrices over R associated with ^ and d^
A ' A

respectively. Then

u(/').u0(:)
( 2 1 ) A - § . == > v (A - 8 ) y (y, E k)

/.^ / - ^ ^^ r / - u u;u u;u "^ '/.v

where (§ ) is the unit matrix.

Our principal result in the present case is

Theorem 10 ( [ 14 ] , [6]). Let V,V C E be J- -dense subspaces. There is a metric

automorphisme T of E with TV == V if and only if there are standardbases for

V C E, V C E such that ( 2 1 ) holds, i.e. if and only if the real matrices A - ^,

A - H are equivalent over the subfield k.

Corollary 1 . Let E be the usual inner product space over R of dimension ^ ,

For every n << <^ there are precisely n+1 orbits (under the orthogonal group of

E) of JL-dense subspaces V C E with dim E/V == n. The nullity of the semidefinite

nxn matrix A - D and n are the only invariants.

Corollary 2. Let E be as in Corollary 1 . Every J--dense embedding V C E

splits, i.e. E is an orthogonal sum of dim E/V copies of E with each copy con-

taining a -L-dense hyperplane V. such that V == 2 V. .

Corollary 3. If k C R then the embedding V C E splits if and only if the real

matrix A associated with any standardbasis for V in E can be diagonalized over

the subfield k.

Corollary 4. If k CR (e.g. k the real closure of %) then there are 2 ° or-

bits of -L -dense subspaces V C E with dim E/V = n ; among them there are 2

orbits whose representatives do not split.

R (^ E is a-normed vector space under the norm /<^(x,x) for x € R (g) E.
k k

We endow E with the induced topology and let V be the closure of the subspaces

V C E. Dim V/V is an obvious orthogonal invariant of the subspace V. If V = (0)

and m ̂  ^Y is the nullity of a matrix A associated with the embedding V C E

then one proves that m == dim ^/V. In particular we have
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Corollary 5. Let E be the usual inner product space over R of dimension Ŷ •
If V is a JL-dense subspace of E then the pair [dim E/V, dim V/v] is a comple-
te set of orthogonal invariants for V (here V is the closure of V in the "na-
tural" topology of E ) ,

Remark 6 . If E is the symmetric space spanned by an orthonormal basis over k = C,
then in contrast to corollary 1 there is only 1 orbit of -^--dense subspaces V C E
for each n = dim E/V <̂  ̂  . (This is an immediate consequence of Theorem 2 . )

II. 3. Extending Isometries

Let the field k C_R be as in II. 1 . and, as usual, dim E = ̂  .

Theorem 1 1 . Let V , V c E be dense subspaces with respect to the natural topology
in E. A given isometry T : V -> V admits an (isometric) extension to all of E
if and only if T is homeomorphic with respect to the weak linear topologies
0-(E)|^ , o-(E)[^- .

Even when k == R there does not seem to exist an obvious ' proof for
Theorem 11 (suggested, say, by Hilbert space arguments). A proof for Theorem 11 is
contained in [ 1 4 ] , [ 6 ] ; it proceeds by a recursive construction of the required
extension. This also explains why a topological theorem of this sort carries
along with it arithmetical assumptions such as ( 1 5 ) .
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