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Abstract. —We study in this paper a notion of pseudo-spectrum in the semi-classical
setting called injectivity pseudo-spectrum. The injectivity pseudo-spectrum is a subset
of points in the complex plane where there exist some quasi-modes with a precise rate
of decay. For that reason, these values can be considered as some ‘almost eigenvalues’
in the semi-classical limit. We are interested here in studying the absence of injectivity
pseudo-spectrum, which is characterized by a global a priori estimate. We prove in
this paper a sharp global subelliptic a priori estimate for a class of pseudo-differential
operators with respect to the regularity of their symbols. Our main result extends the
a priori estimate of Dencker, Sjöstrand and Zworski for a class of pseudo-differential
operators with symbols of limited smoothness violating the condition (P ).

Résumé (Pseudo-spectre d’une classe d’opérateurs semi-classiques)
Nous étudions dans cet article une notion de pseudo-spectre semi-classique appelée

pseudo-spectre d’injectivité. Le pseudo-spectre d’injectivité d’un opérateur désigne
l’ensemble des points du plan complexe qui sont des « presque valeurs propres » dans
l’asymptotique semi-classique, au sens où il existe en ces points des quasi-modes semi-
classiques avec des taux précis de décroissance. Nous nous intéressons ici à l’étude
de l’absence de pseudo-spectre d’injectivité, et nous démontrons une estimation sous-
elliptique globale pour une classe d’opérateurs pseudo-différentiels dont les symboles
ont une régularité limitée. Ce résultat généralise dans un cadre de régularité limitée
l’estimation a priori démontrée par Dencker, Sjöstrand et Zworski pour une classe
d’opérateurs pseudo-différentiels violant la condition (P ).
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1. Introduction

1.1. Miscellaneous facts about pseudo-spectrum. — In recent years, there has
been a lot of interest in studying the pseudo-spectrum of non-self-adjoint oper-
ators. We first recall some classical and known facts about pseudo-spectrum.
The study of pseudo-spectrum has been initiated by noticing that for certain
problems of science and engineering involving non-self-adjoint operators, the
predictions suggested by spectral analysis do not match with the numerical
simulations. To supplement the lack of information given by the spectrum,
some new subsets of the complex plane called pseudo-spectra have been de-
fined. The main idea is to study not only points where the resolvent is not
defined, i.e., the spectrum, but also where the resolvent is large in norm.

We refer the reader to Trefethen’s article [11] (1) for the definition of the
ε-pseudo-spectrum Λε(A) of a matrix or an operator A,

Λε(A) = {z ∈ C, ‖(zI −A)−1‖ ≥ ε−1}.

By convention, we write ‖(zI − A)−1‖ = +∞ if z belongs to the spectrum
of A. The ε-pseudo-spectrum of A is non-decreasing with ε. All these subsets
contain the spectrum of the operator. In an equivalent way, pseudo-spectra
can be defined in term of the spectra of perturbations. Indeed, for any matrix
we have

Λε(A) = {z ∈ C, z ∈ σ(A+B) for some B with ‖B‖ ≤ ε}.

It follows that a number z belongs to the ε-pseudo-spectrum of A if and only
if it belongs to the spectrum of some perturbed operator A + B with ‖B‖ ≤
ε. From this second description, we understand the interest in studying such
subsets. Indeed, if we want to compute numerically some eigenvalues, we start
by discretizing the operator. This discretization and inevitable round-off errors
will generate some perturbations of the initial operator. Eventually, algorithms
for eigenvalues computing determine the eigenvalues of a perturbation of the
initial operator, i.e., a value in some ε-pseudo-spectrum and not necessarily
a spectral value. In the self-adjoint case, the spectrum is stable under small
perturbations. In fact, this stability is a consequence of the spectral theorem.
The spectral theorem implies that Λε(A) is exactly the set of points in C at
distance less than or equal to ε from the spectrum of A. However this property
of stability is not true in the non-self-adjoint case in which the spectrum could
be very unstable under small perturbations. To illustrate this fact, we recall a
suggestive example pointed out by Davies in [3] and Zworski in [12].

(1) The reader will find in this paper more details about interest, history and general prop-
erties of pseudo-spectra.
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Example. — Let us consider the rotated harmonic oscillator in one dimension

Pα = − d2

dx2
+ eiαx2 where − π < α < π.
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Figure 1. Computation of ε-pseudo-spectra for the rotated har-
monic oscillator Pα with α = 0. The right column gives the corre-
sponding values of log10 ε.

This operator Pα is self-adjoint only for α = 0. Its spectrum is composed of
the following eigenvalues (see Theorem 3.3 in [6]),

ei
α
2 (2n+ 1), n ∈ N.

We can try to compute numerically the spectrum and some ε-pseudo-spectra
for some small values of the parameter ε. Computations are performed on the
discretization (

(PαΨi,Ψj)L2(R)

)
1≤i,j≤N ,

where N is an integer taken equal to 50 and (Ψj)j∈N∗ stands for the basis of
L2(R) of Hermite functions. Numerical results illustrate the spectral stability in
the self-adjoint case. We also notice a strong instability in the non-self-adjoint
case, which leads to the computation of ‘false eigenvalues’ for high energies. In
this last case, the resolvent may be very large in norm far from the spectrum.

1.2. Definition of the pseudo-spectra and injectivity pseudo-spectra. — Our inter-
est in this article is to study some notion of semi-classical pseudo-spectrum. In
order to justify the definition in the semi-classical setting, we start again with
the last example of the rotated harmonic oscillator. Following Zworski in [12],
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Figure 2. Computation of ε-pseudo-spectra for the rotated har-
monic oscillator Pα with α = π

4
. The right column gives the corre-

sponding values of log10 ε.

we rephrase the problem of finding eigenvalues for operator Pα by a change of
scaling. Setting y = h1/2x where h is a positive parameter, one has

Pα − λ = − d2

dx2
+ eiαx2 − λ =

1

h

(
− h2 d

2

dy2
+ eiαy2 − hλ

)
=

1

h

(
Pα(h)− z

)
where z = hλ and

Pα(h) = −h2 d
2

dy2
+ eiαy2.

Since we are interested in the behaviour of the resolvent for large values of λ,
we can work in the semi-classical limit, i.e., h → 0, with z fixed. We can now
extend in a natural way the definition of pseudo-spectrum in the semi-classical
setting as follows

Definition 1.2.1. — Let (Ph)0<h≤1 be a semi-classical family of operators on
L2(Rn) defined on a domain D, for all µ ≥ 0 the set

Λsc
µ (Ph) = {z ∈ C : ∀C > 0,∀h0 > 0,∃ 0 < h < h0, ‖(Ph−z)−1‖ ≥ Ch−µ},

is called the pseudo-spectrum of index µ of the family (Ph)0<h≤1 (we write
by convention ‖(Ph − z)−1‖ = +∞ if z belongs to the spectrum of Ph). The
pseudo-spectrum of infinite index is defined by

Λsc
∞(Ph) =

⋂
µ≥0

Λsc
µ (Ph).
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With this definition, the points in the complement of Λsc
µ (Ph) are the points

of the complex plane where we have the following control of the resolvent’s
norm for h sufficiently small

∃C > 0,∃h0 > 0,∀ 0 < h < h0, ‖(Ph − z)−1‖ < Ch−µ.

In this paper, we are interested by the study of slightly different sets from these
pseudo-spectra, which are made of points where we can find some quasi-modes
with a precise decay in the semi-classical limit. We call these sets the injectivity
pseudo-spectra.

Definition 1.2.2. — Let (Ph)0<h≤1 be a semi-classical family of operators on
L2(Rn) defined on a domain D, for all µ ≥ 0 the set

λsc
µ (Ph) = {z ∈ C : ∀C > 0,∀h0 > 0,∃ 0 < h < h0,

∃u ∈ D, ‖u‖L2 = 1, ‖(Ph − z)u‖L2 ≤ Chµ},

is called the injectivity pseudo-spectrum of index µ of the family (Ph)0<h≤1.
The injectivity pseudo-spectrum of infinite index is defined by

λsc
∞(Ph) =

⋂
µ≥0

λsc
µ (Ph).

The injectivity pseudo-spectrum of index µ is by definition the set of points
in the complex plane which are some ‘almost eigenvalues’ with a decay in
O(hµ) when h → 0. We notice that the injectivity pseudo-spectra as the
pseudo-spectra are non-increasing with the index. The absence of injectivity
pseudo-spectrum at a given point is easily characterized by an a priori estimate
on the operator. Indeed, there is no injectivity pseudo-spectrum of index µ at
z if and only if we have

(1) ∃C > 0,∃h0 > 0,∀ 0 < h < h0,∀u ∈ D, ‖(Ph − z)u‖L2 ≥ Chµ‖u‖L2 .

We say that there is no loss of any power of h, respectively a loss of at most hµ

for the points in the complement of the injectivity pseudo-spectrum of index
0, respectively of index µ when µ is positive. We have the following inclusions

∀µ ≥ 0, λsc
µ (Ph) ⊂ Λsc

µ (Ph),

but to obtain the equality, we need an additional property of surjectivity for
the operators, which is fulfilled for instance if we deal with Fredholm operators
of index 0. We can also notice that if Ph − z is a closed operator with a dense
domain and that z 6∈ λsc

µ (P ∗h ), the estimate (1) for the operator P ∗h − z implies
the surjectivity for the operator Ph − z if h is sufficiently small. Under these
previous assumptions, z ∈ Λsc

µ (Ph) implies that z ∈ λsc
µ (Ph).

In fact, if we suppose that Ph − z is a closed operator, the absence of injec-
tivity pseudo-spectrum in z for the operator Ph gives a control for the norm of
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the left inverse (Ph − z)−1 : Ran(Ph − z) → D since the estimate (1) induces
that the range Ran(Ph − z) is closed in L2(Rn). These above definitions differ
from one given in [5] for a semi-classical pseudo-differential operator. We pre-
fer here to give a definition, which depends on the properties of the operator
rather than on its symbol in order to study some geometrical conditions on the
symbol giving the existence or the absence of pseudo-spectrum or injectivity
pseudo-spectrum.

1.3. Remark. — The spectrum of a self-adjoint operator is purely real, this
property is also true for the injectivity pseudo-spectrum of a family of self-
adjoint operators.

Proposition 1.3.1. — Let (Ph)0<h≤1 be a semi-classical family of self-
adjoint operators on L2(Rn) defined on a dense domain D then

(2) ∀z ∈ C,∀u ∈ D, ‖Phu− zu‖L2 ≥ | Im z|‖u‖L2 .

Thus, there is no loss of any power of h in C\R and in particular for all µ ≥ 0

the injectivity pseudo-spectrum of index µ of (Ph)0<h≤1 is contained in R.

Proof. — Let z be in C \ R, the estimate follows from the Cauchy-Schwarz
inequality

| Im z|‖u‖2L2 ≤ Re
(
Phu− zu,−isgn(Im z)u

)
L2 ≤ ‖Phu− zu‖L2‖u‖L2 ,

where sgn(x) denotes the sign of x.

In fact, under the assumptions of the previous proposition we have for all µ
non negative that λsc

µ (Ph) = Λsc
µ (Ph). Indeed, we have on one hand by (2) that

∀z ∈ C \ R, ‖(Ph − z)−1‖ ≤ | Im z|−1

since the spectrum of Ph is real by self-adjointness. On the other hand, if z
is in λsc

µ (Ph)c ∩ R, a previous remark shows that z 6∈ Λsc
µ (Ph) since we have in

this case
z = z 6∈ λsc

µ (P ∗h ) = λsc
µ (Ph).

1.4. Examples. — The first example is the harmonic oscillator

−h2 d
2

dx2
+ x2.

The injectivity pseudo-spectrum of infinite index is in this case R∗+ and one has
in the complement in C of R∗+ the following estimates

∀h > 0,∀u ∈ C∞0 (R),
∥∥− h2 d

2u

dx2
+ x2u

∥∥
L2(R)

≥ h‖u‖L2(R),

∀z 6∈ R+,∃C > 0,∀h > 0,∀u ∈ C∞0 (R),
∥∥−h2 d

2u

dx2
+x2u−zu

∥∥
L2(R)

≥ C‖u‖L2(R).
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For the example of the rotated harmonic oscillator

Pα(h) = −h2 d
2

dx2
+ eiαx2,

with 0 < α < π, Davies has proved in [4] (Theorem 1) that

λsc
∞
(
Pα(h)

)
⊂ {z ∈ C∗ : 0 < argz < α}.

In fact, the injectivity pseudo-spectrum of infinite index is exactly

{z ∈ C∗ : 0 < argz < α}.

Indeed for all µ ≥ 0, λsc
µ

(
Pα(h)

)
is contained in the numerical range

Σ(Pα) = {z ∈ C∗ : 0 ≤ argz ≤ α} ∪ {0}.

We can prove the a priori estimates (see [10])

∀h > 0,∀u ∈ C∞0 (R),
∥∥− h2 d

2u

dx2
+ eiαx2u

∥∥
L2(R)

≥ 1 + cosα

2
h‖u‖L2(R),

and for all z in C∗ such that arg(z) ∈ {0, α}, there exist some positive constants
Cz and h0 such that

∀ 0 < h < h0,∀u ∈ C∞0 (R),
∥∥− h2 d

2u

dx2
+ eiαx2u− zu

∥∥
L2(R)

≥ Czh
2
3 ‖u‖L2(R).

2. Statement of the main result

2.1. The estimate. — In the following statement, we give an a priori estimate,
which characterizes the absence of injectivity pseudo-spectrum in 0 for the
semi-classical operator,

hDt + iq(t, x, hξ)w,

where the function q is a real-valued function such that

(3) q(t, x, ξ) ∈ C2[n/2]+4
b (Rt × Rnx × Rnξ ,R).

The notation Ckb stands for the space of Ck functions, which are bounded as
well as their derivatives of order lower than or equal to k, [m] stands for the
integer part of m and q(t, x, hξ)w denotes the Weyl quantization of the symbol
q(t, x, hξ). We assume that for all X = (x, ξ) ∈ R2n,

(4) q(t,X) > 0 and s > t⇒ q(s,X) ≥ 0.

This hypothesis means that for all X ∈ R2n, the function t 7→ q(t,X) can
only change sign from negative values to positive ones. We also assume that
for all X ∈ R2n, the function t 7→ q(t,X) only vanishes in a fixed compact
set [−A,A], A > 0, exactly N times, N ∈ N∗, and that these roots are some
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Lipschitz functions with respect to the variable X. More precisely, we assume
that

(5) ∃A > 0, inf
|t|≥A,X∈R2n

|q(t,X)| > 0

and

(6) ∃N ∈ N∗,∀t ∈ [−A,A],∀X ∈ R2n, q(t,X) = e(t,X)
N∏
j=1

(
t− αj(X)

)
,

where e is a positive function on R2n+1 such that

(7) M0 = inf
|t|≤A,X∈R2n

e(t,X) > 0

and αj , j = 1, ..., N , are some real-valued Lipschitz functions on R2n such that

(8) ‖αj‖L∞(R2n) ≤ A, j = 1, ..., N.

Theorem 2.1.1. — Under these assumptions, there exist some constants C >

0 and 0 < h0 ≤ 1 such that for all u ∈ C∞0 (Rt × Rnx) and 0 < h < h0,

(9) ‖hDtu+ iq(t, x, hξ)wu‖L2(Rn+1) ≥ Ch
N
N+1 ‖u‖L2(Rn+1).

Thus, there is no injectivity pseudo-spectrum of infinite index in 0. More pre-
cisely, there is a loss of at most hN/(N+1) in 0.

2.2. Remarks. — We can first notice that under the assumptions of Theorem
2.1.1, there is also no injectivity pseudo-spectrum of infinite index in z for all
z in R, and that the loss in these points is also of at most hN/(N+1). This fact
is a direct consequence of Theorem 2.1.1 and of the following identity

Th
(
hDt + iq(t, x, hξ)w − z

)
T−1
h = hDt + iq(t, x, hξ)w,

where Th is the unitary operator on L2(Rn+1) defined by

Thu(t, x) = e−
2iπ
h ztu(t, x).

Let us now make some comments about the class of pseudo-differential oper-
ators we study. The interest of studying such a class is that given a pseudo-
differential operator with a principal symbol satisfying the principal-type con-
dition

r(y, η) = 0⇒ dr(y, η) 6= 0,

we can by multiplication to left and right with some elliptic Fourier integral
operators obtain a pseudo-differential operator with a principal symbol, which
is microlocally of the type hDt + iq(t, x, hξ)w. To interpret the assumptions
of Theorem 2.1.1 in a more general setting, we can notice that the assumption
(4) means that the principal symbol satisfies the condition (Ψ) (see Definition
26.4.6 in [7]). If we make more assumptions of smoothness on the function e,
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the assumption (6) implies in terms of iterated Poisson brackets that for all
(t, x, τ, ξ) ∈ R2n+2, there exists an integer 0 ≤ l ≤ N such that

H l
Rep Im p(t, x, τ, ξ) 6= 0,

if p(t, x, τ, ξ) = τ + iq(t, x, ξ). This means that every point in p(R2n+2) are of
finite type with an order bounded above by the fixed integerN . The assumption
(5) of ellipticity outside of the set [−A,A] × R2n allows us to obtain a global
subelliptic a priori estimate without conditions on the supports’ size for the
functions u in C∞0 (Rn+1). Dencker, Sjöstrand and Zworski have proved in
Theorem 1.4 in [5] an absence’s result of pseudo-spectrum of infinite index
for a general class of pseudo-differential operators. Under the assumptions of
Theorem 1.4 in [5], they reduce their study by a symplectic change of variables
to the study of the local model hDt + iq(t, x, hξ)w and prove for this model
the a priori estimate (5.9) in [5]. This a priori estimate (5.9) is sufficient to
obtain the resolvent’s estimate (1.11) in Theorem 1.4 because the assumptions
of this theorem 1.4 for getting the a priori estimate (5.9) are also fulfilled for the
formal adjoint hDt− iq(t, x, hξ)w, which shows the surjectivity of the operator
hDt + iq(t, x, hξ)w if the domains are suitably chosen and h sufficiently small.
In this case, there is no pseudo-spectrum and no injectivity pseudo-spectrum
of infinite index in 0. The loss is of at most hN/(N+1). In the case studied by
Dencker, Sjöstrand and Zworski, the condition (P ) is fulfilled (see Definition
26.5.1 in [7]). More precisely, in this case the function q does not change sign
on R2n+1. Our result shows that if we are only interested in obtaining the a
priori estimate characterizing the absence of injectivity pseudo-spectrum with
a loss of at most hN/(N+1), we can obtain a similar a priori estimate as (5.9) for
a particular class of pseudo-differential operators violating the condition (P )

since we only assume in Theorem 2.1.1 that the condition (Ψ) is fulfilled.
Another main difference between our result and the result of Dencker, Sjös-

trand and Zworski is that we consider here some symbols with limited smooth-
ness. Although our result does not deal with the general subelliptic case (see
Proposition 27.6.1 in [7]) in a setting of limited smoothness - indeed, we make
a strong assumption of Lipschitz regularity for the roots αj in (6) - we feel
that our sharp estimate of the regularity needed for symbols to obtain result
of subellipticity is worth noticing and also that it is interesting to have a proof
of subelliptic a priori estimates for a class of operators violating the condition
(P ), which is quite simple in comparison with the proof of the general case
given by Hörmander in [7] (Proposition 27.6.1), even if this class is particular
and that our result does not deal with the general subelliptic case.

2.3. The structure of the proof. — The first step in the proof of Theorem 2.1.1 is
to change the quantization and to prove a similar a priori estimate in another
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quantization. As pointed out before, our assumption on the symbol’s sign is
essential. To take advantage of this assumption, we use the Wick quantization,
which has the main property of being a positive quantization. The next section
recalls some results in the Wick quantization, in particular its link with the
Weyl quantization. To prove the a priori estimate in the Wick quantization,
we need first to use a phase space cut-off to study separately different regions
depending on the size of the function q′t,

(10) h
N
N+1 ‖u‖2L2 = h

N
N+1 (HWick

1 u, u)L2 + h
N
N+1 (HWick

2 u, u)L2 ,

where H1 + H2 = 1, supp H1 ⊂ {q′t ≥ ε0} and supp H2 ⊂ {q′t ≤ 2ε0}, ε0 > 0.
The estimate of the first term in the right-hand-side of the previous equality is
easier than the second one. We only use for this first term an expansion of a
L2-norm square and some results of symbolic calculus in the Wick quantization
to take advantage of the size of the function q′t in Lemma 4.2.1. For the second
term, the proof’s core of its estimate is the following L2-norm splitting

h
N
N+1 (HWick

2 u, u)L2 = h
N
N+1

∫
R2n+1

H2|Wu|2 dt dX

= h
N
N+1

∫
{|q|<hN/(N+1)}

H2|Wu|2 dt dX+h
N
N+1

∫
{|q|≥hN/(N+1)}

H2|Wu|2 dt dX,

where Wu stands for the wave packets transform of u defined in the next
section; and we estimate the two terms of the right-hand-side of the following
inequality

(11) h
N
N+1 (HWick

2 u, u)L2 ≤ h
N
N+1

∫
{|q|<hN/(N+1)}

H2|Wu|2 dt dX

+

∫
R2n+1

H2|q||Wu|2 dt dX,

in Lemma 4.2.2 and Lemma 4.2.6. To estimate the second term of the right-
hand-side of (11), we use some techniques developed by Lerner in [8].

3. Preliminaries

3.1. Notations and a few facts about the Weyl quantization. — We give in this
paragraph the notations and normalizations used in this paper. The scalar
product on L2(Rn) is denoted by

(u, v)L2(Rn) =

∫
Rn
u(x)v(x)dx,
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|·| stands for the Euclidean norm and Dx = ∂x/(2iπ). The definition of the
Fourier transform chosen here is, for u in the Schwartz space S(Rn),

û(ξ) =

∫
Rn
u(x)e−2iπx.ξdx,

where x.ξ denotes the canonical scalar product on Rn of x and ξ. For a classical
Hamiltonian a(x, ξ) defined on Rnx × Rnξ , the Weyl quantization defines the
operator aw by the following formula

(awu)(x) =

∫
R2n

e2iπ(x−y).ξa
(x+ y

2
, ξ
)
u(y)dydξ.

In the statement of Theorem 2.1.1, the variable t is seen as a parameter in the
symbol of the operator q(t, x, hξ)w, i.e.,

q(t, x, hξ)wu(t, x) =

∫
R2n

e2iπ(x−y).ξq
(
t,
x+ y

2
, hξ
)
u(t, y)dydξ.

A nice feature of the Weyl quantization is the fact that real Hamiltonians get
quantized by (formally) self-adjoint operators. The composition formula in the
Weyl quantization, awbw = (a# b)w, is given by

(12) (a# b)(X) = 22n

∫
R4n

e−4iπσ(X−Y,X−Z)a(Y )b(Z) dY dZ,

where σ(·, ·) stands for the symplectic form on Rn×Rn defined for allX = (x, ξ)

and Y = (y, η) by σ(X,Y ) = ξ.y − η.x.

3.2. Wick calculus. — The purpose of this second paragraph is to recall the
definition and some basic properties of the Wick quantization following [9].
We also prove here some results of symbolic calculus we need in the proof
of Theorem 2.1.1. The main reason to introduce this new quantization is its
property of positivity, i.e., that non-negative Hamiltonians define non-negative
operators

q ≥ 0⇒ qWick ≥ 0.

This property of positivity is not satisfied in the case of the Weyl quantization
(see [9] for an example of non-negative Hamiltonian defining an operator, which
is not non-negative). This property is essential in our approach and permits us
to use some sign’s hypothesis made on the symbol of studied pseudo-differential
operator.
Setting for x, y and η in Rn,

ϕy,η(x) = 2n/4e−π(x−y)2

e2iπ(x−y).η,

where x2 = x2
1 + ... + x2

n, the following lemma introduces the wave packets
transform.
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Lemma 3.2.1. — Let u ∈ S(Rn), we define

Wu(y, η) = (u, ϕy,η)L2(Rn) = 2n/4
∫

Rn
u(x)e−π(x−y)2

e−2iπ(x−y).ηdx, (y, η) ∈ R2n.

The mapping u 7→Wu is continuous from S(Rn) to S(R2n) and isometric from
L2(Rn) to L2(R2n). Moreover, we have the reconstruction formula

∀u ∈ S(Rn),∀x ∈ Rn, u(x) =

∫
R2n

Wu(y, η)ϕy,η(x)dydη.

See Lemma 2.1 in [9] for a proof.
Let Y = (y, η) ∈ R2n, we denote by ΣY the operator defined in the Weyl

quantization by the symbol

(13) pY (X) = 2ne−2π|X−Y |2 .

This operator is a rank-one orthogonal projection. Indeed, a direct computation
gives

(14)
(
ΣY u

)
(x) = Wu(Y )ϕY (x) = (u, ϕY )L2(Rn)ϕY (x).

Definition 3.2.1. — Let a ∈ L∞(R2n), the Wick quantization of a is defined
as

aWick =

∫
R2n

a(Y )ΣY dY .

Remark 3.1. — More generally if a belongs to S ′(R2n), the operator aWick

can be defined for all u and v in S(Rn) by

< aWicku, v >S′(Rn),S(Rn)=< a(Y ), (ΣY u, v)L2(Rn) >S′(R2n),S(R2n),

where the notation < ·, · >S′,S denotes the duality bracket between the spaces
S ′ and S.

Proposition 3.2.1. — Let a ∈ L∞(R2n), then

aWick = W ∗aµW, 1Wick = idL2(Rn),

where W is the isometric mapping from L2(Rn) to L2(R2n) defined in Lemma
3.2.1 and aµ denotes the operator of multiplication by a in L2(R2n). Moreover,
one has

‖aWick‖L(L2(Rn)) ≤ ‖a‖L∞(R2n) and a ≥ 0⇒ aWick ≥ 0.

See Proposition 3.2 in [9] for a proof.

Remark 3.2. — We can notice that the previous proposition implies that real
Hamiltonians get quantized in the Wick quantization by formally self-adjoint
operators.
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Definition 3.2.2. — Let k ∈ N and l ∈ R, the symbol class Sk(Λl,Λ−1dX2)

denotes the set of Ck functions a defined on R2n × [1,+∞[ such that

∀ 0 ≤ j ≤ k, γl,j(a) = sup
X∈R2n,Λ≥1

Tp∈R2n,|Tp|=1

|Λ−l+
j
2 a(j)(X,Λ)(T1, ..., Tj)| < +∞

and the symbol class S(Λl, dX2) denotes the set of C∞ functions a such that

∀j ∈ N, γ̃l,j(a) = sup
X∈R2n,Λ≥1

Tp∈R2n,|Tp|=1

|Λ−la(j)(X,Λ)(T1, ..., Tj)| < +∞.

Proposition 3.2.2. — Let a ∈ L∞(R2n), b ∈ S2(Λ,Λ−1dX2), be some real-
valued functions then

aWickbWick =
[
ab− 1

4π
a′.b′ +

1

4iπ
{a, b}

]Wick
+ S1,

Re(aWickbWick) =
[
ab− 1

4π
a′.b′

]Wick
+ S2,

with ‖Sj‖L(L2(Rn)) ≤ dn‖a‖L∞γ1,2(b), j = 1, 2, where the derivatives of a are
taken in the distribution sense, {a, b} stands for the Poisson bracket of a and
b. Here γ1,2(b) denotes the semi-norm of b defined in Definition 3.2.2, dn is
a positive constant depending only on the dimension n and the distribution
∂Xja ∂Xlb is defined as

∂Xja ∂Xlb := ∂Xj (a ∂Xlb)− a ∂2
Xj ,Xl

b ∈ S ′(R2n).

See Proposition 3.4, its proof and the remark following this proposition in
[9] for a proof.

Lemma 3.2.2. — If a ∈ S1(Λl,Λ−1dX2), then the Weyl symbol ã of aWick,
aWick = ãw, is equal to the function a ∗ Γ where Γ(X) = 2ne−2π|X|2 , and
verifies

ã ∈ S(Λl, dX2) and ∇X ã ∈ S(Λl−
1
2 , dX2).

Proof. — From Definition 3.2.1 and (13), one has aWick = ãw with

(15) ã(X) =

∫
R2n

a(Y )2ne−2π|X−Y |2dY = (a ∗ Γ)(X).

Since for all α ∈ N2n,

∂αã = a ∗ ∂αΓ, ‖∂αã‖L∞ ≤ ‖a‖L∞‖∂αΓ‖L1 and ‖∂αΓ‖L1 < +∞,

we first get that ã ∈ S(Λl, dX2) because from Definition 3.2.2, one has

‖a‖L∞ ≤ γl,0(a)Λl.
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Then, since from Definition 3.2.2, ∇Xa ∈ S0(Λl−
1
2 ,Λ−1dX2), we deduce from

the identity, ∂αX(∇X ã) = ∇Xa ∗ ∂αΓ, using the same estimate as before that

∇X ã ∈ S(Λl−
1
2 , dX2).

Lemma 3.2.3. — If a ∈ S(Λl1 , dX2) and b ∈ S(Λl2 , dX2) then the symbol

R(X) =

∫ 1

0

∫
R4n

e−
4iπ
θ σ(X−Y,X−Z)a(Y )b(Z) dY dZ

dθ

θ2n
,

belongs to S(Λl1+l2 , dX2).

Proof. — Setting for θ ∈]0, 1],

Rθ(a, b)(X) =

∫
R4n

e−
4iπ
θ σ(X−Y,X−Z)a(Y )b(Z)

dY dZ

θ2n
,

we deduce from the theorem 18.5.4 in [7] that the bilinear map (a, b) 7→ Rθ(a, b)

from S(Λl1 , dX2)×S(Λl2 , dX2) to S(Λl1+l2 , dX2) is weakly continuous. Let us
assume that a and b belong to the Schwartz space S(R2n). Using a change of
variables, we obtain that

Rθ(a, b)(X) =

∫
R4n

e−4iπσ(Y,Z)a(
√
θY +X)b(

√
θZ +X) dY dZ.

Since an explicit computation gives

1

1 + |Y |4n+2 + |Z|4n+2

(
1 +
|DY |4n+2

24n+2
+
|DZ |4n+2

24n+2

)
e−4iπσ(Y,Z) = e−4iπσ(Y,Z),

we obtain that

Rθ(a, b)(X) =

∫
R4n

(
1 +
|DY |4n+2

24n+2
+
|DZ |4n+2

24n+2

)[
e−4iπσ(Y,Z)

]
× a(

√
θY +X)b(

√
θZ +X)

1 + |Y |4n+2 + |Z|4n+2
dY dZ

and we can make some integrations by parts to obtain that

Rθ(a, b)(X) =∫
R4n

e−4iπσ(Y,Z)
(

1 +
|DY |4n+2

24n+2
+
|DZ |4n+2

24n+2

)[a(
√
θY +X)b(

√
θZ +X)

1 + |Y |4n+2 + |Z|4n+2

]
dY dZ.

It follows that we can write

Rθ(a, b)(X) =

∫
R4n

e−4iπσ(Y,Z)

1 + |Y |4n+2 + |Z|4n+2

×
∑

α,β∈N2n

|α|,|β|≤4n+2

fα,β(Y, Z)
√
θ
|α|+|β|

∂αa(
√
θY +X)∂βb(

√
θZ +X) dY dZ,
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where fα,β are some C∞b (R4n) functions. Since a ∈ S(Λl1 , dX2), b ∈
S(Λl2 , dX2) and ∫

R4n

dY dZ

1 + |Y |4n+2 + |Z|4n+2
< +∞,

we can differentiate with respect to X the integral of the previous identity and
we obtain after these differentiations that for all γ ∈ N2n, X ∈ R2n, Λ ≥ 1 and
θ ∈]0, 1],

|∂γXRθ(a, b)(X)| ≤ (4n+2)4n
(∫

R4n

dY dZ

1 + |Y |4n+2 + |Z|4n+2

)
sup

α,β∈N2n

|α|,|β|≤4n+2

‖fα,β‖L∞

× sup
j≤4n+2+|γ|

γ̃l1,j(a) sup
j≤4n+2+|γ|

γ̃l2,j(b) Λl1+l2 .

Using the weakly continuity of the map (a, b) 7→ Rθ(a, b), we deduce from
these estimates that the symbol Rθ(a, b) belongs uniformly to the class
S(Λl1+l2 , dX2) with respect to θ ∈]0, 1] if a ∈ S(Λl1 , dX2) and b ∈ S(Λl2 , dX2).
It follows that R ∈ S(Λl1+l2 , dX2).

Lemma 3.2.4. — If a ∈ S1(Λ,Λ−1dX2) and b ∈ S1(1,Λ−1dX2) then there
exists a positive constant C such that for all Λ ≥ 1,

‖[aWick, bWick]‖L(L2) ≤ C,

where [aWick, bWick] denotes the commutator of the operators aWick and bWick.

Proof. — We get from Lemma 3.2.2 that

(16) [aWick, bWick] = [ãw, b̃w] = ãw b̃w − b̃wãw = (ã# b̃− b̃# ã)w,

where ã ∈ S(Λ, dX2) and b̃ ∈ S(1, dX2) are some symbols verifying

(17) ∇X ã ∈ S(Λ
1
2 , dX2) and ∇X b̃ ∈ S(Λ−

1
2 , dX2).

The composition formula (12) and some results of calculus in the Weyl quan-
tization (see the formula following (5) in [1]) show that in the normalization
chosen here, one has
(18)

(ã# b̃)(X) = 22n

∫
R4n

e−4iπσ(X−Y,X−Z)ã(Y )b̃(Z) dY dZ = ã(X)b̃(X) +R1(X),

where
(19)

R1(X) = 22n

∫ 1

0

∫
R4n

e−
4iπ
θ σ(X−Y,X−Z)iπσ(DY , DZ)

[
ã(Y )b̃(Z)

]
dY dZ

dθ

θ2n
.
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We deduce from the lemma 3.2.3, (17) and (19) that R1 ∈ S(1, dX2). In the
same way, one has

(20) b̃# ã = ãb̃+R2,

where R2 is a symbol in the class S(1, dX2). It follows from (16), (18) and (20)
that

[aWick, bWick] = Rw with R = R1 −R2 ∈ S(1, dX2),

which by using the Calderón-Vaillancourt theorem proves the lemma 3.2.4.

Lemma 3.2.5. — If a ∈ S2(1,Λ−1dX2) and b ∈ S2(Λ,Λ−1dX2) are some real-
valued functions then there exists a positive constant C such that for all Λ ≥ 1,

‖aWickbWickaWick − (a2b)Wick‖L(L2) ≤ C.

Proof. — We can apply Proposition 3.2.2 to obtain that

(21) aWickbWick =
[
ab− 1

4π
a′.b′ +

1

4iπ
{a, b}

]Wick
+ S1,

where ‖S1‖L(L2) ≤ dnγ0,0(a)γ1,2(b) and dn is a positive constant depending
only on the dimension n. Let us denote

(22) c = − 1

4π
a′.b′ +

1

4iπ
{a, b}.

Since a ∈ S2(1,Λ−1dX2) and b ∈ S2(Λ,Λ−1dX2), we get that c ∈
S1(1,Λ−1dX2). It follows from Proposition 3.2.1, (21) and the use of the
triangular inequality that

‖cWickaWick + S1a
Wick‖L(L2) ≤ ‖cWick‖L(L2)‖aWick‖L(L2) + ‖S1‖L(L2)‖aWick‖L(L2)

(23)

≤ ‖c‖L∞‖a‖L∞ + dnγ0,0(a)γ1,2(b)‖a‖L∞(24)

≤
(
γ0,0(c) + dnγ0,0(a)γ1,2(b)

)
γ0,0(a) < +∞.(25)

Since Λ−1ab ∈ S2(1,Λ−1dX2) and Λa ∈ S2(Λ,Λ−1dX2), another use of Propo-
sition 3.2.2 gives

(ab)WickaWick = (Λ−1ab)Wick(Λa)Wick(26)

=
[
a2b− 1

4π
(ab)′.a′ +

1

4iπ
{ab, a}

]Wick
+ S2,(27)

where ‖S2‖L(L2) ≤ dnγ0,0(Λ−1ab)γ1,2(Λa) < +∞. According to our assump-
tions, the symbol

− 1

4π
(ab)′.a′ +

1

4iπ
{ab, a},
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belongs to the class S1(1,Λ−1dX2) and it follows from Proposition 3.2.1 that

(28) ‖[−(4π)−1(ab)′.a′ + (4iπ)−1{ab, a}]Wick‖L(L2)

≤ γ0,0

(
− (4π)−1(ab)′.a′ + (4iπ)−1{ab, a}

)
.

Since we have from (21), (22) and (26),

aWickbWickaWick−(a2b)Wick = (ab)WickaWick+cWickaWick+S1a
Wick−(a2b)Wick

=
[
− 1

4π
(ab)′.a′ +

1

4iπ
{ab, a}

]Wick
+ S2 + cWickaWick + S1a

Wick,

we deduce from (23), (26), (28) and the use of the triangular inequality that
there exists a positive constant C such that for all Λ ≥ 1,

‖aWickbWickaWick − (a2b)Wick‖L(L2) ≤ C.

Lemma 3.2.6. — If a ∈ S2[n/2]+4(Λ,Λ−1dX2) where [n/2] stands for the inte-
ger part of n/2 then there exists a positive constant C such that for all Λ ≥ 1,

‖aWick − aw‖L(L2) ≤ C.

Proof. — As in (15), one has aWick = ãw where

(29) ã(X) =

∫
R2n

a(Y )2ne−2π|X−Y |2dY .

Using a change of variables and a Taylor formula at the second order, we obtain
from (29) that

(30)

ã(X) =

∫
R2n

a(Y +X)2ne−2π|Y |2dY = a(X) +

∫
R2n

a′(X).Y 2ne−2π|Y |2dY

+

∫ 1

0

∫
R2n

(1− θ)a′′(X + θY )Y 22ne−2π|Y |2dY dθ.

Since ∫
R2n

Y e−2π|Y |2dY = 0,

it follows from (30) that

(31) aWick − aw = ãw − aw = Rw,

where

(32) R(X) =

∫ 1

0

∫
R2n

(1− θ)a′′(X + θY )Y 22ne−2π|Y |2dY dθ.

Since a ∈ S2[n/2]+4(Λ,Λ−1dX2) and∫
R2n

|Y |2e−2π|Y |2dY < +∞,
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we deduce from (32) that R ∈ S2[n/2]+2(1,Λ−1dX2) and we can apply the L2

estimate for Weyl quantization of Boulkhemair (Theorem 1.2 in [2]) to obtain
the existence of a positive constant C such that for all Λ ≥ 1,

‖Rw‖L(L2) ≤ C.

In view of (31), this ends the proof of Lemma 3.2.6.

3.3. Another preliminary lemma

Lemma 3.3.1. — If F ∈ C1(R,C), α is a real-valued Lipschitz function and
G = F ◦ α then one has

(33) G′(x) = F ′
(
α(x)

)
α′(x),

for a.e. x in R if G′, resp. α′, stands for the derivative of G, resp. α, in the
distribution sense.

Proof. — To prove this lemma, it is sufficient to show that for all R > 0, the
identity (33) is fulfilled a.e. on ] − R,R[. Let us consider R > 0. Since α′ is
a L∞(R) function because α is a Lipschitz function, we can find a sequence of
C0(R,R) functions (un)n∈N such that for all n ∈ N,

(34) ‖un‖L∞([−R,R]) ≤ ‖α′‖L∞([−R,R]) and lim
n→+∞

un(x) = α′(x),

for a.e. x in [−R,R]. We define for all n ∈ N,

(35) αn(x) = α(0) +

∫ x

0

un(t)dt, x ∈ R,

and we obtain from (34) that αn is a C1(R,R) function, which verifies for all
n ∈ N,

(36) ‖α′n‖L∞([−R,R]) ≤ ‖α′‖L∞([−R,R]) and lim
n→+∞

α′n(x) = α′(x),

for a.e. x in [−R,R]. Since we can easily check that the derivative in the
distribution sense of the function∫ x

0

α′(t)dt,

is equal to α′, we deduce from the continuity of the function α that for all
x ∈ R,

(37) α(x) = α(0) +

∫ x

0

α′(t)dt.

Using now (34), (35) and (37), we obtain from the Lebesgue convergence the-
orem that for all x ∈ [−R,R],

(38) lim
n→+∞

αn(x) = α(x).
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If ϕ is a C∞0 (]−R,R[,C) function and < ·, · >D′,D denotes the duality bracket
between the distribution space D′ and the space of test functions D, one has

< G′, ϕ >D′,D= − < G,ϕ′ >D′,D = −
∫

R
F
(
α(x)

)
ϕ′(x)dx(39)

= − lim
n→+∞

∫
R
F
(
αn(x)

)
ϕ′(x)dx,(40)

where the last equality is a consequence of the Lebesgue convergence theorem
since on one hand, the continuity of F and (38) prove that for all x ∈ R,

lim
n→+∞

F
(
αn(x)

)
ϕ′(x) = F

(
α(x)

)
ϕ′(x),

because supp ϕ ⊂]−R,R[ and that on the other hand, one has for all n ∈ N,

(41)
∣∣F (αn(x)

)
ϕ′(x)

∣∣ ≤ sup
[−M,M ]

|F | |ϕ′(x)| ∈ L1,

because it follows from (34), (35) and the use of the triangular inequality that

(42) ‖αn‖L∞([−R,R]) ≤ |α(0)|+R‖un‖L∞([−R,R]) ≤M,

ifM := |α(0)|+R ‖α′‖L∞(R). We can now deduce from an integration by parts
and (39) that

< G′, ϕ >D′,D= lim
n→+∞

∫
R
F ′
(
αn(x)

)
α′n(x)ϕ(x)dx =

∫
R
F ′
(
α(x)

)
α′(x)ϕ(x)dx,

where the last equality is still a consequence of the Lebesgue convergence the-
orem since on one hand, one has from (36) and (38),

(43) lim
n→+∞

F ′
(
αn(x)

)
α′n(x)ϕ(x) = F ′

(
α(x)

)
α′(x)ϕ(x),

for a.e. x in R because F ′ ∈ C0(R,C) and supp ϕ ⊂]−R,R[; and that on the
other hand, one has from (36),∣∣F ′(αn(x)

)
α′n(x)ϕ(x)

∣∣ ≤ sup
[−M,M ]

|F ′| ‖α′‖L∞([−R,R])|ϕ(x)| ∈ L1,

where M is the constant defined in (42). This proves that G′ = (F ′ ◦ α)α′ a.e.
on [−R,R] and ends the proof of Lemma 3.3.1.

4. Proof of Theorem 2.1.1

4.1. A preliminary reduction. — To prove Theorem 2.1.1, it is sufficient to prove
the following estimate : there exist some constants C > 0 and Λ0 ≥ 1 such
that for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ0,

(44) ‖Dtu+ iΛq(t,Λ−
1
2X)Wicku‖L2(Rn+1) ≥ CΛ

1
N+1 ‖u‖L2(Rn+1),
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where the variable t is seen as a parameter in the Wick quantization of the
symbol q(t,Λ−

1
2X) (see Definition 3.2.1),

q(t,Λ−
1
2X)Wick =

∫
R2n

q(t,Λ−
1
2X)ΣXdX.

Indeed, let us assume that the estimate (44) holds and set

(45) Q(t,X,Λ) = Λq(t,Λ−
1
2X).

We deduce from (3) and (45) that the function Q(t, ·) belongs to the symbol
class S2[n/2]+4(Λ,Λ−1dX2) uniformly with respect to the parameter t in R (see
Definition 3.2.2),

(46) Q ∈ S2[n/2]+4(Λ,Λ−1dX2).

It follows from Lemma 3.2.6 that there exists a positive constant c0 such that
for all Λ ≥ 1,

(47) ‖QWick −Qw‖L(L2) ≤ c0.
We deduce from (44), (45), (47) and the use of the triangular inequality that
for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ0,

‖Dtu+ iQwu‖L2(Rn+1) ≥ ‖Dtu+ iQWicku‖L2(Rn+1) − ‖QWicku−Qwu‖L2(Rn+1)

≥ (CΛ
1

N+1 − c0)‖u‖L2(Rn+1).

This estimate induces that there exists Λ̃0 ≥ Λ0 such that for all u ∈ C∞0 (Rn+1)

and Λ ≥ Λ̃0,

(48) ‖Dtu+ iΛq(t,Λ−
1
2X)wu‖L2(Rn+1) ≥

C

2
Λ

1
N+1 ‖u‖L2(Rn+1).

By setting h0 = Λ̃−1
0 and h = Λ−1, we get from (48) that in the semi-classical

setting, one has for all u ∈ C∞0 (Rn+1) and 0 < h < h0,

(49) ‖hDtu+ iq(t, h
1
2X)wu‖L2(Rn+1) ≥

C

2
h

N
N+1 ‖u‖L2(Rn+1).

To obtain an analogous estimate for the operator hDt + iq(t, x, hξ)w, we use
the following symplectic linear mapping

χh(x, ξ) = (h1/2x, h−1/2ξ), (x, ξ) ∈ R2n.

Using the symplectic invariance of the Weyl quantization, it follows that

(50) hDt + iq(t, h1/2x, h1/2ξ)w = U−1
h

(
hDt + iq(t, x, hξ)w

)
Uh,

where Uh is the unitary operator of L2(Rn+1), Uhv(t, x) = h−
n
4 v(t, h−1/2x).

Eventually, we deduce from (49) and (50) that for all u ∈ C∞0 (Rn+1) and
0 < h < h0,

‖hDtu+ iq(t, x, hξ)wu‖L2(Rn+1) ≥
C

2
h

N
N+1 ‖u‖L2(Rn+1),
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which proves the estimate of Theorem 2.1.1.

4.2. Proof of the estimate (44). — To prove the estimate (44), we need to use a
phase space cut-off to study separately different regions depending on the size
of the function Q′t. Let us consider χ a C∞(R, [0, 1]) function such that

(51) χ = 0 on ]−∞, 1], χ = 1 on [2,+∞[,

and let us define the following C∞(R, [0, 1]) functions

(52) χ1 = χ2 and χ2 = 1− χ2,

which verify

(53) χ1 + χ2 = 1 on R, χ1 = 0 on ]−∞, 1], χ1 = 1 on [2,+∞[ and

χ2 = 1 on ]−∞, 1], χ2 = 0 on [2,+∞[.

Since the functions αj , j = 1, ..., N , appearing in (6) are supposed to be Lips-
chitzian, we can choose a positive constant ε0 such that

(54) 4N sup
j=1,...,N

‖α′j‖2L∞(R2n) ε0 < 1,

where α′j stands for the gradient in the distribution sense of the function αj
and ‖α′j‖L∞(R2n), the L∞-norm of its Euclidean norm. We define the following
symbols

(55)
h1(t,X,Λ) = χ

(
Q′t(t,X,Λ)ε−1

0 Λ−1
)
, H1(t,X,Λ) = χ1

(
Q′t(t,X,Λ)ε−1

0 Λ−1
)

and H2(t,X,Λ) = χ2

(
Q′t(t,X,Λ)ε−1

0 Λ−1
)
.

It follows from (3), (45) and (53) that

(56) H1 +H2 = 1 and h1, H1, H2 ∈ S2[n/2]+3(1,Λ−1dX2),

uniformly with respect to the parameter t ∈ R, and we deduce from (53) and
(55) that

(57) supp H1 ⊂ {(t,X) ∈ R2n+1 : Q′t(t,X,Λ) ≥ ε0Λ} and
supp H2 ⊂ {(t,X) ∈ R2n+1 : Q′t(t,X,Λ) ≤ 2ε0Λ}.

Step 1. The following lemma gives an estimate of the first term of the right-
hand-side of (10).

Lemma 4.2.1. — There exists a positive constant c1 such that for all u ∈
C∞0 (Rn+1) and Λ ≥ 1,

(58) c1Λ(HWick
1 u, u)L2(Rn+1) ≤ ‖Dtu+ iQWicku‖2L2(Rn+1) + ‖u‖2L2(Rn+1).
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Proof of Lemma 4.2.1. — By expanding the following L2-norm, we obtain that

‖(Dt + iQWick)hWick
1 u‖2L2 = ‖Dth

Wick
1 u‖2L2 + 2Re(Dth

Wick
1 u, iQWickhWick

1 u)L2

(59)

+‖QWickhWick
1 u‖2L2 ≥ 2Re(Dth

Wick
1 u, iQWickhWick

1 u)L2(60)

= ([Dt, iQ
Wick]hWick

1 u, hWick
1 u)L2 ,(61)

since Dt and iQWick are respectively formally self-adjoint and anti-self-adjoint
operators because Q is a real-valued function (see the remark following the
proposition 3.2.1). Since according to (3) and (45), Q′t ∈ S2[n/2]+3(Λ,Λ−1dX2),
it follows from Lemma 3.2.5 and (56) that there exists a positive constant c2
such that for all Λ ≥ 1,

(62) ‖hWick
1 (Q′t)

WickhWick
1 − (h2

1Q
′
t)

Wick‖L(L2) ≤ c2.

Using that hWick
1 is a formally self-adjoint operator because h1 is real-valued

function, we deduce from the Cauchy-Schwarz inequality and (62) that

(63) ([Dt, iQ
Wick]hWick

1 u, hWick
1 u)L2 =

1

2π

(
(Q′t)

WickhWick
1 u, hWick

1 u
)
L2

=
1

2π

(
hWick

1 (Q′t)
WickhWick

1 u, u
)
L2 ≥

1

2π

(
(h2

1Q
′
t)

Wicku, u
)
L2 −

c2
2π
‖u‖2L2 .

Since from (52) and (55), h2
1 = H1, we obtain from Proposition 3.2.1 and (57)

that (
(h2

1Q
′
t)

Wicku, u
)
L2(Rn+1)

=
(
W ∗(h2

1Q
′
t)Wu, u

)
L2(Rn+1)

= (h2
1Q
′
tWu,Wu)L2(R2n+1) =

∫
R2n+1

H1(t,X,Λ)Q′t(t,X,Λ)|Φ(t,X)|2 dt dX

≥ ε0Λ

∫
R2n+1

H1(t,X,Λ)|Φ(t,X)|2 dt dX

and∫
R2n+1

H1(t,X,Λ)|Φ(t,X)|2 dt dX = (H1Wu,Wu)L2(R2n+1)

= (W ∗H1Wu, u)L2(Rn+1) =
(
HWick

1 u, u)L2(Rn+1),

if Φ(t,X) = W
(
u(t, ·)

)
(X) where W stands for the wave packets transform in

the variable x. We deduce from (59), (63) and the two last formulas that

(64) ε0Λ
(
HWick

1 u, u)L2 ≤ 2π‖(Dt + iQWick)hWick
1 u‖2L2 + c2‖u‖2L2 .
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Using now the proposition 3.2.1 and the triangular inequality, we obtain that

‖(Dt + iQWick)hWick
1 u‖2L2

(65)

≤ 2‖hWick
1 (Dt + iQWick)u‖2L2 + 2‖[Dt + iQWick, hWick

1 ]u‖2L2

(66)

≤ 2‖hWick
1 ‖2L(L2)‖Dtu+ iQWicku‖2L2 + 4‖[Dt, h

Wick
1 ]u‖2L2

(67)

+ 4‖[QWick, hWick
1 ]u‖2L2

≤ 2‖h1‖2L∞‖Dtu+ iQWicku‖2L2 + 4‖[Dt, h
Wick
1 ]u‖2L2

(68)

+ 4‖[QWick, hWick
1 ]u‖2L2 ,

where [P,Q] stands for the commutator of P and Q. Using again Proposition
3.2.1, we get that

(69) ‖[Dt, h
Wick
1 ]u‖L2 =

1

2π
‖(∂th1)Wicku‖L2 ≤ 1

2π
‖∂th1‖L∞‖u‖L2 .

Then, we deduce from Lemma 3.2.4, (46) and (56) that there exists a positive
constant c3 such that for all Λ ≥ 1,

(70) ‖[QWick, hWick
1 ]‖L(L2) ≤ c3.

Since from (3), (45), (51) and (55),

(71) 0 ≤ h1 ≤ 1 and ∂th1 ∈ S2[n/2]+2(1,Λ−1dX2),

uniformly with respect to the parameter t in R, it follows from (65), (69) and
(70) that there exists a positive constant c4 such that for all u ∈ C∞0 (Rn+1)

and Λ ≥ 1,

(72) c4‖(Dt + iQWick)hWick
1 u‖2L2 ≤ ‖Dtu+ iQWicku‖2L2 + ‖u‖2L2 .

Then, we get (58) from (64) and (72). This ends the proof of Lemma 4.2.1.

Step 2. In this second step, we estimate the second term of the right-hand-side
of (11). This part of the proof uses some techniques developed by Lerner in [8].

Lemma 4.2.2. — There exists a positive constant c5 such that for all u ∈
C∞0 (Rn+1) and Λ ≥ 1,

(73) c5

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2dtdX

≤ ‖Dtu+ iQWicku‖L2‖u‖L2 + ‖u‖2L2 ,

if Φ(t,X) = W
(
u(t, ·)

)
(X).
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Proof of Lemma 4.2.2. — For X ∈ R2n and Λ ≥ 1, we define

(74) θ(X,Λ) = inf{t ∈ R : Q(t,X,Λ) > 0},

if the set {t ∈ R : Q(t,X,Λ) > 0} is not empty, otherwise we set

(75) θ(X,Λ) = +∞.

According to (45), the assumption (4) of Theorem 2.1.1 implies that for all
X ∈ R2n and Λ ≥ 1,

(76) Q(t,X,Λ) > 0 and s > t⇒ Q(s,X,Λ) ≥ 0.

It follows from (74), (75) and (76) that for all (t,X) ∈ R2n+1 and Λ ≥ 1, one
has

(77) Q(t,X,Λ)sgn
(
t− θ(X,Λ)

)
= |Q(t,X,Λ)|,

where the function sgn is defined by

(78) sgn(x) =
x

|x|
, x ∈ R∗, sgn(0) = 0, sgn(−∞) = −1 and sgn(+∞) = 1.

We can now introduce the following multiplier

(79) S(t,X,Λ) = sgn
(
t− θ(X,Λ)

)
H2(t,X,Λ), (t,X) ∈ R2n+1, Λ ≥ 1.

For u in C∞0 (Rn+1), we obtain by the Cauchy-Schwarz inequality

(80) |Re(Dtu+ iQWicku, iSWicku)L2 | ≤ ‖Dtu+ iQWicku‖L2‖SWicku‖L2

≤ ‖Dtu+ iQWicku‖L2‖u‖L2 ,

because it follows from Proposition 3.2.1, (52), (55), (78) and (79) that for all
t ∈ R,

(81) ‖SWick(t, ·)‖L(L2(Rn)) ≤ ‖S(t, ·)‖L∞(R2n) ≤ 1.

Since S is a real-valued function, SWick is a self-adjoint operator and we have

(82) Re(QWicku, SWicku)L2 = Re(SWickQWicku, u)L2

=
(

Re(SWickQWick)u, u
)
L2 .

Since from (46) and (81), S ∈ L∞ and Q ∈ S2[n/2]+4(Λ,Λ−1dX2), we can apply
the proposition 3.2.2 to obtain using (81) and (82) that for all u ∈ C∞0 (Rn+1)

and Λ ≥ 1,

(83) Re(Dtu+ iQWicku, iSWicku)L2(Rn+1) = Re(Dtu, iS
Wicku)L2(Rn+1)

+
(
(SQ)Wicku, u

)
L2(Rn+1)

− 1

4π
< [Q′X(t, ·).S′X(t, ·)]Wicku, u >S′(Rn+1),S(Rn+1)

+

∫
R

(
R(t)u(t, ·), u(t, ·)

)
L2(Rn)

dt,
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where for all t ∈ R,

‖R(t)‖L(L2(Rn)) ≤ dn‖S(t, ·)‖L∞(R2n)γ1,2(Q) ≤ dnγ1,2(Q)

and

(84) Q′X .S
′
X :=

∂

∂X
.
(
S
∂Q

∂X

)
− S Trace(Q′′XX) ∈ S ′(R2n+1).

Let us now estimate the four terms of the right-hand-side of (83). Using the
Cauchy-Schwarz inequality and the previous estimate, we get for the last one
that for all u ∈ C∞0 (Rn+1) and Λ ≥ 1,

(85)
∣∣∣∣∫

R

(
R(t)u(t, ·), u(t, ·)

)
L2(Rn)

dt

∣∣∣∣ ≤ dnγ1,2(Q)‖u‖2L2(Rn+1).

For the first term, we obtain from Proposition 3.2.1 that

(86) Re(Dtu, iS
Wicku)L2(Rn+1) = Re(Dtu, iW

∗S Wu)L2(Rn+1)

= Re(DtWu, iS Wu)L2(R2n+1) = Re(DtΦ, iS Φ)L2(R2n+1),

if Φ(t,X) = W
(
u(t, ·)

)
(X). A direct computation using (79) and an integration

by parts gives

(87)

Re(DtΦ, iS Φ)L2(R2n+1) =
1

2π

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX

+
1

4π

∫
R2n+1

∂tH2(t,X,Λ)sgn
(
t− θ(X,Λ)

)
|Φ(t,X)|2 dt dX.

Since from (3), (45), (53) and (55), one has for all (t,X) ∈ R2n+1 and Λ ≥ 1,∣∣∂tH2(t,X,Λ)sgn
(
t−θ(X,Λ)

)∣∣ = ε−1
0 |q′′tt(t,Λ−

1
2X)| |χ′2

(
Q′t(t,X,Λ)ε−1

0 Λ−1
)
|

≤ ε−1
0 ‖q′′tt‖L∞‖χ′2‖L∞ < +∞,

we first obtain that there exists a positive constant c6 such that for all u ∈
C∞0 (Rn+1) and Λ ≥ 1,

(88)
∣∣∣ 1

4π

∫
R2n+1

∂tH2(t,X,Λ)sgn
(
t− θ(X,Λ)

)
|Φ(t,X)|2 dt dX

∣∣∣
≤ c6‖Φ‖2L2(R2n+1) = c6‖Wu‖2L2(R2n+1) = c6‖u‖2L2(Rn+1),

because according to Proposition 3.2.1,W is an isometric mapping from L2(Rnx)

to L2(R2n
X ) and we deduce from (86), (87) and (88) that

(89) Re(Dtu, iS
Wicku)L2 ≥

1

2π

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX − c6‖u‖2L2 .
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For the second term, we deduce from Proposition 3.2.1 that

(90)
(
(SQ)Wicku, u

)
L2(Rn+1)

= (W ∗SQ Wu, u)L2(Rn+1)

= (SQ Wu,Wu)L2(R2n+1) =

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2 dt dX,

if Φ(t,X) = W
(
u(t, ·)

)
(X), because according to (77) and (79),

SQ = H2 sgn
(
t− θ(X,Λ)

)
Q = H2|Q|.

For the third term, we first deduce using the triangular inequality, (46) and
(81) that

(91) ‖S Trace(Q′′XX)‖L∞(R2n+1) ≤ 2nγ1,2(Q).

Using the Cauchy-Schwarz inequality, the proposition 3.2.1 and (91), we get
that for all u ∈ C∞0 (Rn+1) and Λ ≥ 1,

| < [S Trace(Q′′XX)]Wicku, u >S′,S | = |([S Trace(Q′′XX)]Wicku, u)L2 |(92)

≤ ‖[S Trace(Q′′XX)]Wicku‖L2‖u‖L2 ≤ ‖[S Trace(Q′′XX)]Wick‖L(L2)‖u‖2L2(93)

≤ ‖S Trace(Q′′XX)‖L∞‖u‖2L2 ≤ 2nγ1,2(Q)‖u‖2L2 .(94)

In the following, we need to study the distribution

∂

∂X
.
(
S
∂Q

∂X

)
,

to estimate the term

(95) <
[ ∂

∂X
.
(
S
∂Q

∂X

)]Wick
u, u >S′(Rn+1),S(Rn+1) .

Let χ0 : R→ [0, 1] be a C∞ function such that

(96) χ0 = 1 on [−1, 1] and supp χ0 ⊂ [−2, 2].

Setting

(97) τ0 =
∂

∂X
.
(
χ0(|Q′X |2)S

∂Q

∂X

)
and τ1 =

∂

∂X
.
(
w0(|Q′X |2)S

∂Q

∂X

)
,

where w0 = 1− χ0, one has

(98)
∂

∂X
.
(
S
∂Q

∂X

)
= τ0 + τ1,

with τ0 ∈ S ′(R2n+1) and τ1 ∈ S ′(R2n+1).
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Estimate of < τWick
0 u, u >S′,S . We deduce from (97) and the remark following

the definition 3.2.1 that

< τWick
0 u, u >S′(Rn+1),S(Rn+1)

(99)

=

∫
R
<

∂

∂X
.
(
χ0(|Q′X |2)S

∂Q

∂X

)
,
(
ΣY u(t, ·), u(t, ·)

)
L2(Rn)

>S′(R2n
Y

),S(R2n
Y

) dt

(100)

= −
∫

R2n+1

χ0(|Q′X |2)S
∂Q

∂X
.
∂

∂X

[
(ΣXu(t, ·), u(t, ·))L2(Rn)

]
dt dX.

(101)

To evaluate (99), we need to use the following lemma.

Lemma 4.2.3. — There exists a constant Dn depending only on the dimension
such that for all α in L∞(R2n) and for all j = 1, ..., 2n,∥∥∥∥∫

R2n

α(Y )
∂

∂Yj
(ΣY )dY

∥∥∥∥
L(L2(Rn))

≤ Dn‖α‖L∞(R2n).

See (6.10) in [8] for a proof of this lemma.

Since from (96), supp χ0 ⊂ [−2, 2], we notice from (81) that one has

(102) ‖χ0(|Q′X |2)S |Q′X | ‖L∞ ≤
√

2‖χ0‖L∞ .

Then, using successively the triangular inequality, the Cauchy-Schwarz inequal-
ity, Lemma 4.2.3 and (102), we deduce that there exists a positive constant c7
such that for all u ∈ C∞0 (R2n+1) and Λ ≥ 1,

∣∣∣∣∫
R2n+1

χ0(|Q′X |2)S
∂Q

∂X
.
∂

∂X

[
(ΣXu(t, ·), u(t, ·))L2(Rn)

]
dt dX

∣∣∣∣
(103)

=
∣∣∣([ ∫

R2n

χ0

(
|Q′X(t, ·)|2

)
S(t, ·) ∂Q

∂X
(t, ·). ∂

∂X
(ΣX)dX

]
u, u

)
L2(Rn+1)

∣∣∣
(104)

≤
2n∑
j=1

∣∣∣([ ∫
R2n

χ0

(
|Q′X(t, ·)|2

)
S(t, ·) ∂Q

∂Xj
(t, ·) ∂

∂Xj
(ΣX)dX

]
u, u

)
L2(Rn+1)

∣∣∣
(105)
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≤
2n∑
j=1

∥∥∥∫
R2n

χ0

(
|Q′X(t, ·)|2

)
S(t, ·) ∂Q

∂Xj
(t, ·) ∂

∂Xj
(ΣX)dX

∥∥∥
L(L2)

‖u‖2L2(Rn+1)

(106)

≤ c7‖u‖2L2 .

(107)

Eventually, we deduce from (99) and (103) that for all u ∈ C∞0 (Rn+1) and
Λ ≥ 1,

(108) | < τWick
0 u, u >S′(Rn+1),S(Rn+1) | ≤ c7‖u‖2L2(Rn+1).

Estimate of < τWick
1 u, u >S′,S . Let us set

(109) S̃(t,X,Λ) = sgn
(
t− θ(X,Λ)

)
.

We get from (79) that S = H2S̃, and we deduce from (97) and the fact that S̃
is a zero order distribution that

(110) τ1 =
∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃ + w0(|Q′X |2)H2

∂Q

∂X
.
∂S̃

∂X
.

Since from (96) and (97), the support of the function w′0 is contained in [−2, 2]

and 0 ≤ w0 ≤ 1, we get using the triangular inequality, (46) and (56) that for
all (t,X) ∈ R2n+1 and Λ ≥ 1,

∣∣∣ ∂
∂X

.
(
w0(|Q′X |2)H2

∂Q

∂X

)∣∣∣ ≤ 2|w′0(|Q′X |2)H2 Q
′′
XX(Q′X , Q

′
X)|

(111)

+ |w0(|Q′X |2)H2 Trace(Q′′XX)|+
∣∣∣w0(|Q′X |2)

∂H2

∂X
.
∂Q

∂X

∣∣∣(112)

≤ 4‖w′0‖L∞γ0,0(H2)γ1,2(Q) + 2n‖w0‖L∞γ0,0(H2)γ1,2(Q)(113)

+ ‖w0‖L∞γ0,1(H2)γ1,1(Q) < +∞.(114)

It follows from (109) and (111) that there exists a positive constant c8 such
that for all Λ ≥ 1,

(115)
∥∥∥ ∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃
∥∥∥
L∞(R2n+1)

≤ c8.
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We deduce using the Cauchy-Schwarz inequality, Proposition 3.2.1 and (115)
that for all u ∈ C∞0 (R2n+1) and Λ ≥ 1,∣∣∣ < [ ∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃
]Wick

u, u >S′(Rn+1),S(Rn+1)

∣∣∣(116)

=
∣∣∣([ ∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃
]Wick

u, u
)
L2(Rn+1)

∣∣∣(117)

≤
∥∥∥[ ∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃
]Wick

u
∥∥∥
L2(Rn+1)

‖u‖L2(Rn+1)(118)

≤
∥∥∥[ ∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃
]Wick∥∥∥

L(L2)
‖u‖2L2(Rn+1)(119)

≤
∥∥∥ ∂

∂X
.
(
w0(|Q′X |2)H2

∂Q

∂X

)
S̃
∥∥∥
L∞(R2n+1)

‖u‖2L2(Rn+1) ≤ c8‖u‖
2
L2(Rn+1).(120)

To study the second term in the right-hand-side of (110), we first prove the
following lemma.

Lemma 4.2.4. — One has the following inclusions

supp S̃′X ⊂ {(t,X) ∈ R2n+1 : Q(t,X,Λ) = 0}

and

(121) supp
(
w0(|Q′X |2)H2

∂Q

∂X
.
∂S̃

∂X

)
⊂

K = {(t,X) ∈ R2n+1 : Q(t,X,Λ) = 0, |Q′X(t,X,Λ)| ≥ 1 and Q′t(t,X,Λ) ≤ 2ε0Λ}.

Moreover, the distribution δ(Q)w0(|Q′X |2) is well defined on R2n+1 and one has

w0(|Q′X |2)H2
∂Q

∂X
.
∂S̃

∂X
= 2δ(Q)|Q′X |2w0(|Q′X |2)H2.

Proof of lemma 4.2.4. — Since from (77) and (109), S̃ = 1 on {Q > 0} and
S̃ = −1 on {Q < 0}, the support of S̃′X is included in {(t,X) ∈ R2n+1 :

Q(t,X,Λ) = 0}. Moreover, since from (96) and (97), supp w0 ⊂] −∞,−1] ∪
[1,+∞[, and from (57),

supp H2 ⊂ {(t,X) ∈ R2n+1 : Q′t(t,X,Λ) ≤ 2ε0Λ},

we deduce that the support of the distribution

w0(|Q′X |2)H2
∂Q

∂X
.
∂S̃

∂X
,

verifies the inclusion (121). Since from (5), (6), (7), (8) and (45), one has

{(t,X) ∈ R2n+1 : Q(t,X,Λ) = 0} =
N⋃
j=1

{(
αj(Λ

− 1
2X), X

)
: X ∈ R2n

}
,
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it follows that for all Λ ≥ 1 the Lebesgue measure in R2n+1 of the set

{(t,X) ∈ R2n+1 : Q(t,X,Λ) = 0},

is zero and we get from (77) and (109) that S̃ is equal to the L∞ function
Q/|Q| and

(122) w0(|Q′X |2)H2
∂Q

∂X
.
∂S̃

∂X
= w0(|Q′X |2)H2

∂Q

∂X
.
∂

∂X

Å
Q

|Q|

ã
.

We denote by δ(Q) the pullback of δ0 the Dirac measure at 0 in D′(R) by Q.
This distribution δ(Q) = Q∗δ0 is well defined on

(123) Ω = {(t,X) ∈ R2n+1 : |Q′X(t,X,Λ)| > 0}
and one has on Ω,

∂

∂X

Å
Q

|Q|

ã
=

∂

∂X
(Q∗sgn) =

∂Q

∂X
Q∗(∂sgn) = 2

∂Q

∂X
δ(Q),

which induces from (122) that

(124) w0(|Q′X |2)H2
∂Q

∂X
.
∂S̃

∂X
= 2δ(Q)|Q′X |2w0(|Q′X |2)H2,

on Ω. Since from (96), (97) and (123),

(125) supp w0(|Q′X |2) ⊂ Ω,

we deduce that the distribution 2δ(Q)|Q′X |2w0(|Q′X |2)H2 is well defined on
R2n+1 and that the identity (124) is fulfilled on R2n+1.

We deduce now from the remark following the definition 3.2.1 and Lemma
4.2.4 that

<
[
w0(|Q′X |2)H2

∂Q

∂X
.
∂S̃

∂X

]Wick
u, u >S′(Rn+1),S(Rn+1)(126)

= < w0(|Q′X |2)H2
∂Q

∂X
.
∂S̃

∂X
,
(
ΣXu(t, ·), u(t, ·)

)
L2(Rn)

>S′(R2n+1),S(R2n+1)

(127)

= < 2δ(Q)|Q′X |2w0(|Q′X |2)H2, |Φ|2 >S′(R2n+1),S(R2n+1)

(128)

because
(
ΣXu(t, ·), u(t, ·)

)
L2(Rn)

= |Φ(t,X)|2 according to Lemma 3.2.1 and
(14) if Φ(t,X) = W

(
u(t, ·)

)
(X). To estimate (126), we need to prove the

following lemma.

Lemma 4.2.5. — For all Λ ≥ 1 and (t,X) ∈ {Q = 0 and |Q′X | > 1/2}, we
have

1

2
< |Q′X(t,X,Λ)| ≤ Λ−

1
2 sup
j=1,...,N

‖α′j‖L∞(R2n)Q
′
t(t,X,Λ).
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Proof of Lemma 4.2.5. — Let (t0, X0) ∈ R2n+1 such that

(129) Q(t0, X0,Λ) = 0 and |Q′X(t0, X0,Λ)| > 1

2
.

It follows from (5), (6), (7) and (45) that there exists j0 ∈ {1, ..., N} such that

(130) t0 = αj0(Λ−
1
2X0).

Since from (6), (8) and (45), one has for all j ∈ {1, ..., N}, X ∈ R2n and Λ ≥ 1,

(131) Q
(
αj(Λ

− 1
2X), X,Λ

)
= 0,

we obtain from Lemma 3.3.1 that

(132) Q′t
(
αj(Λ

− 1
2X), X,Λ

)
α′j(Λ

− 1
2X)Λ−

1
2 +Q′X

(
αj(Λ

− 1
2X), X,Λ

)
= 0,

for a.e. X in R2n, which induces that
(133)∣∣Q′X(αj(Λ− 1

2X), X,Λ
)∣∣ ≤ Λ−

1
2 sup
j=1,...,N

‖α′j‖L∞(R2n)

∣∣Q′t(αj(Λ− 1
2X), X,Λ

)∣∣,
for a.e. X in R2n. Then, we first notice that the continuity of the functions
in the previous estimate proves that in fact this estimate is fulfilled for all
X ∈ R2n. We obtain from (129), (130) and (133) that

1

2
< |Q′X(t0, X0,Λ)| ≤ Λ−

1
2 sup
j=1,...,N

‖α′j‖L∞(R2n)|Q′t(t0, X0,Λ)|.

To end the proof of this lemma, it is sufficient to check that Q′t(t0, X0,Λ) ≥ 0.
This is the case because if Q′t(t0, X0,Λ) < 0, we would deduce from (45) and
(129) that the function

t 7→ q(t,Λ−
1
2X0),

would change sign from positive values to negative ones at the first order in t0,
which is not possible in view of the assumption (4).

Since from (52), (55), (96) and (97),

(134) 0 ≤ H2 ≤ 1, 0 ≤ w0 ≤ 1 and supp w0 ⊂]−∞,−1] ∪ [1,+∞[,

we deduce from Lemma 4.2.5 that

0 ≤ < 2δ(Q)|Q′X |2w0(|Q′X |2)H2, |Φ|2 >S′,S(135)

≤ 2Λ−1 sup
j=1,...,N

‖α′j‖2L∞ < δ(Q)(Q′t)
2w0(|Q′X |2)H2, |Φ|2 >S′,S(136)

≤ 4ε0 sup
j=1,...,N

‖α′j‖2L∞ < δ(Q)Q′tw0(|Q′X |2)H2, |Φ|2 >S′,S ,(137)

because according to (57), Q′tH2 ≤ 2ε0ΛH2. Let (t0, X0) ∈ R2n+1 and Λ ≥ 1

such that

(138) Q(t0, X0,Λ) = 0 and |Q′X(t0, X0,Λ)| ≥ 1

2
.
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The result of the lemma 4.2.5 implies that

(139) Q′t(t0, X0,Λ) > 0.

Since from (46), Q ∈ C2[n/2]+4(R2n+1), we can apply the implicit function
theorem to get θ̃Λ a C2[n/2]+4 function defined on an open neighbourhood V0

of X0 such that for all X ∈ V0,

(140) Q
(
θ̃Λ(X), X,Λ

)
= 0 with t0 = θ̃Λ(X0).

Using a Taylor formula at the first order, we deduce from (140) that for all
(t,X) ∈ R× V0,

Q(t,X,Λ) = Q(t,X,Λ)−Q
(
θ̃Λ(X), X,Λ

)
(141)

=

Ç∫ 1

0

Q′t
(
(1− s)θ̃Λ(X) + st,X,Λ

)
ds

å (
t− θ̃Λ(X)

)
.(142)

Setting

(143) g(t,X,Λ) =

∫ 1

0

Q′t
(
(1− s)θ̃Λ(X) + st,X,Λ

)
ds,

we deduce from (138), (139) and (140) that there exists an open neighbourhood
Ω0 of the set {Q = 0 and |Q′X | ≥ 1/2} such that

(144) Ω0 ⊂ {|Q′X | > 0},

(145) g ∈ C2[n/2]+3(Ω0), g > 0 on Ω0 and Q(t,X,Λ) = g(t,X,Λ)
(
t−θ̃Λ(X)

)
,

on Ω0. It follows from (77) and (145) that for all (t,X) ∈ Ω0 and Λ ≥ 1,

θ̃Λ(X) = θ(X,Λ) and Q(t,X,Λ) = g(t,X,Λ)
(
t− θ(X,Λ)

)
.

This induces that the function (t,X) 7→ t−θ(X,Λ) is C2[n/2]+4 on Ω0 and that

(146) H
(
Q(t,X,Λ)

)
= H

(
t− θ(X,Λ)

)
,

on Ω0, where H stands for the Heaviside function. By differentiating (146)
with respect to t, we obtain according to (144) that on Ω0,

(147) Q′t δ(Q) = δ
(
t− θ(X,Λ)

)
.
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Since from (96) and (97), supp w0(|Q′X |2) ⊂ {|Q′X | ≥ 1}, we deduce from (134),
(144) and (147) that

< δ(Q)Q′tw0(|Q′X |2)H2, |Φ|2 >S′,S(148)

= < δ
(
t− θ(X,Λ)

)
w0(|Q′X |2)H2, |Φ|2 >S′,S

(149)

=

∫
R2n

w0

(
|Q′X(θ(X,Λ), X,Λ)|2

)
H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX

(150)

≤
∫

R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX.

(151)

We obtain from (126), (135) and (148) that

(152)
∣∣∣ < [w0(|Q′X |2)H2

∂Q

∂X
.
∂S̃

∂X

]Wick
u, u >S′,S

∣∣∣
≤ 4ε0 sup

j=1,...,N
‖α′j‖2L∞

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX.

Using the triangular inequality, it follows from (54), (98), (108), (110), (116)
and (152) that

∣∣∣ < [ ∂

∂X
.
(
S
∂Q

∂X

)]Wick
u, u >S′,S

∣∣∣(153)

≤ 4ε0 sup
j=1,...,N

‖α′j‖2L∞
∫

R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX(154)

+ c9‖u‖2L2(155)

≤ 1

N

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX + c9‖u‖2L2 ,(156)

where c9 = c7 + c8. Using again the triangular inequality, we obtain from (83)
and (90) that

(157)
Re(Dtu, iS

Wicku)L2 +
(
(SQ)Wicku, u

)
L2 ≤ |Re(Dtu+ iQWicku, iSWicku)L2 |

+
1

4π
| < (Q′X .S

′
X)Wicku, u >S′,S |+

∣∣∣ ∫
R

(
R(t)u(t, ·), u(t, ·)

)
L2(Rn)

dt
∣∣∣.
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Using always the triangular inequality, we deduce from (84), (92) and (153)
that

(158)
1

4π
| < (Q′X .S

′
X)Wicku, u >S′,S | ≤

1

4π

(
2nγ1,2(Q) + c9

)
‖u‖2L2

+
1

4πN

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX.

Finally, we obtain with (80), (85), (89), (90), (157) and (158) that

1

2π

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX − c6‖u‖2L2

+

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2 dt dX

≤ ‖Dtu+ iQWicku‖L2‖u‖L2 +
( n

2π
+ dn

)
γ1,2(Q)‖u‖2L2

+
1

4π
c9‖u‖2L2 +

1

4πN

∫
R2n

H2

(
θ(X,Λ), X,Λ

)
|Φ
(
θ(X,Λ), X

)
|2dX,

which induces, since from (6), N ∈ N∗, that there exists a positive constant c10

such that for all u ∈ C∞0 (Rn+1) and Λ ≥ 1,∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2 dt dX

≤ ‖Dtu+ iQWicku‖L2‖u‖L2 + c10‖u‖2L2 .

This ends the proof of Lemma 4.2.2.

Step 3. In this third step, we estimate the first term of the right-hand-side of
(11).

Lemma 4.2.6. — There exist some positive constants c11 and Λ0 ≥ 1 such
that for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ0,

(159)

Λ
1

N+1

∫
{|Q|<Λ1/(N+1)}

H2(t,X,Λ)|Φ(t,X)|2dtdX ≤ c11‖Dtu+ iQWicku‖L2‖u‖L2

+c11‖u‖2L2 +c11

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2dtdX+
1

2
Λ

1
N+1 ‖u‖2L2 ,

if Φ(t,X) = W
(
u(t, ·)

)
(X).

Proof of Lemma 4.2.6. — For Λ ≥ 1, let us consider the set

(160) EΛ = {(t,X) ∈ R2n+1 : |Q(t,X,Λ)| < Λ
1

N+1 }.
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If (t,X) ∈ EΛ, it follows from (45) that

(161) |q(t,Λ− 1
2X)| < Λ−

N
N+1 .

Since from (6), N ∈ N∗, we deduce from (5) and (161) that there exists a
constant Λ0 ≥ 1 such that for all Λ ≥ Λ0,

(162) EΛ ⊂ [−A,A]× R2n.

Then, using (6), (7), (161) and (162), we obtain that if (t,X) ∈ EΛ and Λ ≥ Λ0,

M0

N∏
j=1

|t− αj(Λ−
1
2X)| ≤ e(t,Λ− 1

2X)
N∏
j=1

|t− αj(Λ−
1
2X)| < Λ−

N
N+1 ,

which implies that there exists j0 ∈ {1, ..., N} such that

(163) M
1
N

0 |t− αj0(Λ−
1
2X)| < Λ−

1
N+1 .

Let us consider χ3 a C∞0 (R, [0, 1]) function such that

(164) supp χ3 ⊂ [−2, 2] and χ3 = 1 on [−1, 1].

We deduce from (163) and (164) that for all (t,X) ∈ EΛ and Λ ≥ Λ0,

1 ≤
N∑
j=1

χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj(Λ−

1
2X)

))
,

which implies according to (160) that

(165) Λ
1

N+1

∫
{|Q|<Λ1/(N+1)}

H2(t,X,Λ)|Φ(t,X)|2dtdX

≤
N∑
j=1

∫
R2n+1

Λ
1

N+1H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t−αj(Λ−

1
2X)

))
|Φ(t,X)|2dtdX.

Let j0 ∈ {1, ..., N}, we define the following multiplier

(166) m(t,X,Λ) = H2(t,X,Λ)

∫ t

−∞
Λ

1
N+1χ3

(
M

1
N

0 Λ
1

N+1
(
s− αj0(Λ−

1
2X)

))
ds.

Using a change of variables, we first notice from (134), (164) and (166) that
for all (t,X) ∈ R2n+1 and Λ ≥ 1,

|m(t,X,Λ)| ≤ M
− 1
N

0

∫ M
1
N
0 Λ

1
N+1 (t−αj0 (Λ−

1
2X))

−∞
χ3(u)du(167)

≤ M
− 1
N

0

∫
R
χ3(u)du < +∞,(168)

i.e.,

(169) ‖m‖L∞(R2n+1) ≤M
− 1
N

0 ‖χ3‖L1(R) < +∞.
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One has from (166) that

(170) ∂tm(t,X,Λ) = H2(t,X,Λ)Λ
1

N+1χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
+A(t,X,Λ),

where
(171)

A(t,X,Λ) = ∂tH2(t,X,Λ)

∫ t

−∞
Λ

1
N+1χ3

(
M

1
N

0 Λ
1

N+1
(
s− αj0(Λ−

1
2X)

))
ds.

Since from (45) and (55), a direct computation gives

|∂tH2(t,X,Λ)| = |χ′2
(
Q′t(t,X,Λ)ε−1

0 Λ−1
)
Q′′tt(t,X,Λ)ε−1

0 Λ−1|

= |χ′2
(
Q′t(t,X,Λ)ε−1

0 Λ−1
)
q′′tt(t,Λ

− 1
2X)ε−1

0 | ≤ ε
−1
0 ‖χ′2‖L∞(R)‖q′′tt‖L∞(R2n+1),

we deduce using the same change of variables as in (167) from (3) and (53)
that there exists a positive constant c12 such that for all Λ ≥ 1,

(172) ‖A‖L∞(R2n+1) ≤ ε−1
0 M

− 1
N

0 ‖χ3‖L1(R)‖χ′2‖L∞(R)‖q′′tt‖L∞(R2n+1) ≤ c12.

We also need to make some estimates on the gradient of the multiplier
m(t,X,Λ) with respect to X. We get from (166) that

(173) m′X(t,X,Λ) = B(t,X,Λ) + C(t,X,Λ),

where
(174)

B(t,X,Λ) = ∇XH2(t,X,Λ)

∫ t

−∞
Λ

1
N+1χ3

(
M

1
N

0 Λ
1

N+1
(
s− αj0(Λ−

1
2X)

))
ds

and

(175) C(t,X,Λ) = −H2(t,X,Λ)α′j0(Λ−
1
2X)

×
∫ t

−∞
Λ

2
N+1−

1
2M

1
N

0 χ′3
(
M

1
N

0 Λ
1

N+1
(
s− αj0(Λ−

1
2X)

))
ds.

According to (164), we can compute the integral in (175) to obtain that

(176) C(t,X,Λ) = −H2(t,X,Λ)α′j0(Λ−
1
2X)Λ

1
N+1−

1
2

× χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
,

because
d

ds

[
χ3

(
M

1
N

0 Λ
1

N+1
(
s−αj0(Λ−

1
2X)

))]
= M

1
N

0 Λ
1

N+1χ′3
(
M

1
N

0 Λ
1

N+1
(
s−αj0(Λ−

1
2X)

))
.
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Using (46), (56), (174) and the same change of variables as in (167), we get
that for all Λ ≥ 1,

‖B.Q′X‖L∞(R2n+1) ≤ γ0,1(H2)Λ−
1
2M
− 1
N

0 ‖χ3‖L1(R)Λ
1
2 γ1,1(Q)(177)

≤ γ0,1(H2)γ1,1(Q)M
− 1
N

0 ‖χ3‖L1(R) < +∞.(178)

To estimate the term ‖C.Q′X‖L∞(R2n+1), we start by using the Taylor formula
at the first order to write that

(179) Q′X(t,X,Λ) = Q′X
(
αj0(Λ−

1
2X), X,Λ

)
+
(∫ 1

0

Q′′X,t
(
(1− s)αj0(Λ−

1
2X) + st,X,Λ

)
ds
)(
t− αj0(Λ−

1
2X)

)
.

Since from (3) and (45),

(180) Q′t ∈ S2[n/2]+3(Λ,Λ−1dX2),

uniformly with respect to the parameter t in R, we deduce using the triangular
inequality and (179) that for all (t,X) ∈ R2n+1 and Λ ≥ 1,

(181) |Q′X(t,X,Λ)| ≤ |Q′X
(
αj0(Λ−

1
2X), X,Λ

)
|+ γ1,1(Q′t)Λ

1
2 |t−αj0(Λ−

1
2X)|.

Then, we obtain using (176), (181) and the triangular inequality that for all
(t,X) ∈ R2n+1 and Λ ≥ 1,

(182) |C(t,X,Λ).Q′X(t,X,Λ)| ≤ D(t,X,Λ) + F (t,X,Λ),

where

(183) D(t,X,Λ) = Λ
1

N+1−
1
2 ‖α′j0‖L∞(R2n)H2(t,X,Λ)

× χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
|Q′X

(
αj0(Λ−

1
2X), X,Λ

)
|

and

(184) F (t,X,Λ) = Λ
1

N+1 ‖α′j0‖L∞(R2n)H2(t,X,Λ)

× χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
γ1,1(Q′t)

∣∣t− αj0(Λ−
1
2X)

∣∣.
Since from (164),

Λ
1

N+1 |t− αj0(Λ−
1
2X)|χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
≤ ‖xχ3(x)‖L∞(R)M

− 1
N

0 < +∞,

we deduce from (134) and (184) that there exists a positive constant c13 such
that for all Λ ≥ 1,

(185) ‖F‖L∞(R2n+1) ≤ ‖α′j0‖L∞(R2n)‖xχ3(x)‖L∞(R)M
− 1
N

0 γ1,1(Q′t) ≤ c13.
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To get an upper bound on the L∞-norm of D, we first notice from (132) that
we have

(186) Q′t
(
αj0(Λ−

1
2X), X,Λ

)
α′j0(Λ−

1
2X)Λ−

1
2 +Q′X

(
αj0(Λ−

1
2X), X,Λ

)
= 0,

for a.e. X in R2n. It follows from (56), (183) and (186) that for all Λ ≥ 1,

(187) ‖D‖L∞(R2n+1) ≤ Λ
1

N+1−1‖α′j0‖
2
L∞(R2n)

×
∥∥H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t−αj0(Λ−

1
2X)

))
Q′t
(
αj0(Λ−

1
2X), X,Λ

)∥∥
L∞(R2n+1)

.

Since from (3) and (45),

Q′′tt ∈ S2[n/2]+2(Λ,Λ−1dX2),

uniformly with respect to the parameter t in R, we can use that

Q′t
(
αj0(Λ−

1
2X), X,Λ

)
= Q′t(t,X,Λ)

+
(∫ 1

0

Q′′tt
(
(1− s)t+ sαj0(Λ−

1
2X), X,Λ

)
ds
)(
αj0(Λ−

1
2X)− t

)
,

to obtain that for all (t,X) ∈ R2n+1 and Λ ≥ 1,

(188) Q′t
(
αj0(Λ−

1
2X), X,Λ

)
≤ Q′t(t,X,Λ) + γ1,0(Q′′tt)Λ|t− αj0(Λ−

1
2X)|.

Now, we get from (76) that for all X ∈ R2n and Λ ≥ 1,

(189) Q′t
(
αj0(Λ−

1
2X), X,Λ

)
≥ 0,

because, if there exist X0 ∈ R2n and Λ̃0 ≥ 1 such that Q′t
(
αj0(Λ̃

− 1
2

0 X0), X0, Λ̃0

)
< 0, we will obtain from (131) that the function

t 7→ Q(t,X0, Λ̃0),

changes sign from positive values to negative ones at the first order in t =

αj0(Λ̃
− 1

2
0 X0), which is not allowed according to (76). It follows from (134),

(164), (188) and (189) that for all (t,X) ∈ R2n+1 and Λ ≥ 1,

|H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
Q′t
(
αj0(Λ−

1
2X), X,Λ

)
|(190)

= H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
Q′t
(
αj0(Λ−

1
2X), X,Λ

)(191)

≤ H2(t,X,Λ)Q′t(t,X,Λ)

(192)

+ χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
γ1,0(Q′′tt)Λ|t− αj0(Λ−

1
2X)|,(193)
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because 0 ≤ H2 ≤ 1 and 0 ≤ χ3 ≤ 1. Since from (57) and (134), one has for
all (t,X) ∈ R2n+1 and Λ ≥ 1,

H2(t,X,Λ)Q′t(t,X,Λ) ≤ 2ε0ΛH2(t,X,Λ) ≤ 2ε0Λ,

and that

χ3

(
M

1
N

0 Λ
1

N+1
(
t−αj0(Λ−

1
2X)

))
|t−αj0(Λ−

1
2X)| ≤ Λ−

1
N+1M

− 1
N

0 ‖xχ3(x)‖L∞(R),

we deduce from (164), (187) and (190) that there exists a positive constant c14

such that for all Λ ≥ 1,

‖D‖L∞(R2n+1) ≤ Λ
1

N+1−1‖α′j0‖
2
L∞
(
2ε0Λ + Λ1− 1

N+1 γ1,0(Q′′tt)M
− 1
N

0 ‖xχ3(x)‖L∞(R)

)(194)

≤ 2ε0Λ
1

N+1 ‖α′j0‖
2
L∞ + c14.(195)

It follows from (182), (185) and (194) that for all Λ ≥ 1,

(196) ‖C.Q′X‖L∞(R2n+1) ≤ 2ε0‖α′j0‖
2
L∞Λ

1
N+1 + c13 + c14.

Using the triangular inequality, we finally obtain from (54), (173), (177) and
(196) that there exists a positive constant c15 such that for all Λ ≥ 1,

‖m′X .Q′X‖L∞(R2n+1) ≤ 2ε0‖α′j0‖
2
L∞Λ

1
N+1 + c15(197)

≤ 1

2N
Λ

1
N+1 + c15.(198)

We can now use our multiplier mWick to get that

(199) 2Re(Dtu+ iQWicku, imWicku)L2 = 2Re(Dtu, im
Wicku)L2

+2Re(QWicku,mWicku)L2 = ([Dt, im
Wick]u, u)L2+2

(
Re(mWickQWick)u, u

)
L2 ,

because, since m is a real-valued function, the operators mWick and imWick

are respectively some self-adjoint and anti-self-adjoint operators. Using the
Cauchy-Schwarz inequality, we first obtain from Proposition 3.2.1 and (169)
that there exists a positive constant c16 such that for all u ∈ C∞0 (Rn+1) and
Λ ≥ 1,

(200) 2|Re(Dtu+ iQWicku, imWicku)L2 | ≤ 2‖Dtu+ iQWicku‖L2‖mWicku‖L2

≤ 2‖m‖L∞‖Dtu+ iQWicku‖L2‖u‖L2 ≤ c16‖Dtu+ iQWicku‖L2‖u‖L2 .

Then, since from Proposition 3.2.1, one has

([Dt, im
Wick]u, u)L2 =

1

2π

(
(∂tm)Wicku, u)L2 =

1

2π

(
W ∗(∂tm)Wu, u)L2(Rn+1)

=
1

2π

(
∂tm Wu,Wu)L2(R2n+1) =

1

2π

∫
R2n+1

∂tm(t,X,Λ)|Φ(t,X)|2 dt dX,
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if Φ(t,X) = W
(
u(t, ·)

)
(X), we deduce from (170) that

(201) ([Dt, im
Wick]u, u)L2 =

1

2π

∫
R2n+1

A(t,X,Λ)|Φ(t,X)|2 dt dX

+
1

2π

∫
R2n+1

Λ
1

N+1H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t−αj0(Λ−

1
2X)

))
|Φ(t,X)|2 dt dX.

Since from (172),∣∣∣ 1

2π

∫
R2n+1

A(t,X,Λ)|Φ(t,X)|2 dt dX
∣∣∣ ≤ 1

2π
‖A‖L∞

∫
R2n+1

|Φ(t,X)|2 dt dX

≤ c12

2π
‖Wu‖2L2(R2n+1) =

c12

2π
‖u‖2L2(Rn+1),

because W is an isometric mapping from L2(Rnx) to L2(R2n
X ), we obtain from

(201) that for all u ∈ C∞0 (Rn+1) and Λ ≥ 1,

(202) ([Dt, im
Wick]u, u)L2 ≥

1

2π

∫
R2n+1

Λ
1

N+1H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
|Φ(t,X)|2 dt dX

− c12

2π
‖u‖2L2 .

Now, according to (46) and (169), we can apply the proposition 3.2.2 to obtain
that

(203)(
Re(mWickQWick)u, u

)
L2 =

(
(mQ)Wicku, u

)
L2 −

1

4π

(
(m′X .Q

′
X)Wicku, u

)
L2

+

∫
R

(
R(t)u(t, ·), u(t, ·)

)
L2(Rn)

dt,

where for all t ∈ R,

(204) ‖R(t)‖L(L2(Rn)) ≤ dnM
− 1
N

0 ‖χ3‖L1(R)γ1,2(Q) < +∞.

We deduce from the Cauchy-Schwarz inequality, Proposition 3.2.1 and (197)
that ∣∣((m′X .Q′X)Wicku, u

)
L2

∣∣ ≤ ‖(m′X .Q′X)Wicku‖L2‖u‖L2(205)

≤ ‖(m′X .Q′X)Wick‖L(L2)‖u‖2L2(206)

≤ ‖m′X .Q′X‖L∞‖u‖2L2(207)

≤
( 1

2N
Λ

1
N+1 + c15

)
‖u‖2L2 .(208)
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We also deduce from (204) that there exists a positive constant c17 such that
for all u ∈ C∞0 (Rn+1) and Λ ≥ 1,∣∣∣ ∫

R

(
R(t)u(t, ·), u(t, ·)

)
L2(Rn)

dt
∣∣∣ ≤ ∫

R
‖R(t)‖L(L2(Rn))‖u(t, ·)‖2L2(Rn)dt(209)

≤ c17‖u‖2L2 .(210)

Since from Proposition 3.2.1, (134), (166) and (167),∣∣((mQ)Wicku, u
)
L2

∣∣ =
∣∣(W ∗(mQ)Wu, u

)
L2

∣∣(211)

= |(mQ Wu,Wu)L2 | =
∣∣∣ ∫

R2n+1

mQ|Φ|2 dt dX
∣∣∣(212)

≤
∫

R2n+1

H2(t,X,Λ)|Q(t,X,Λ)|M−
1
N

0 ‖χ3‖L1(R)|Φ(t,X)|2 dt dX,(213)

if Φ(t,X) = W
(
u(t, ·)

)
(X), we deduce using the triangular inequality, (203),

(205), (209) and (211) that there exists a positive constant c18 such that for all
u ∈ C∞0 (Rn+1) and Λ ≥ 1,

(214)
∣∣(Re(mWickQWick)u, u

)
L2

∣∣ ≤ c18‖u‖2L2 +
1

8πN
Λ

1
N+1 ‖u‖2L2

+ c18

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2 dt dX.

Then, using again the triangular inequality, it follows (199), (200), (202) and
(214) that there exists a positive constant c19 such that for all u ∈ C∞0 (Rn+1)

and Λ ≥ 1,

1

2π

∫
R2n+1

Λ
1

N+1H2(t,X,Λ)χ3

(
M

1
N

0 Λ
1

N+1
(
t− αj0(Λ−

1
2X)

))
|Φ(t,X)|2 dt dX

(215)

≤ c19‖Dtu+ iQWicku‖L2‖u‖L2 + c19‖u‖2L2 +
1

4πN
Λ

1
N+1 ‖u‖2L2

(216)

+ c19

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2 dt dX.

(217)

We finally deduce from (165) and (215) that there exists a positive constant
c20 such that for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ0,

Λ
1

N+1

∫
{|Q|<Λ1/(N+1)}

H2(t,X,Λ)|Φ(t,X)|2 dt dX ≤ c20‖Dtu+iQWicku‖L2‖u‖L2

+c20‖u‖2L2+
1

2
Λ

1
N+1 ‖u‖2L2+c20

∫
R2n+1

H2(t,X,Λ)|Q(t,X,Λ)||Φ(t,X)|2 dt dX,
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which ends the proof of Lemma 4.2.6.

Last step. Using the first three steps, we can now prove the estimate (44).
We first use the phase space cut-off (56) to obtain using Proposition 3.2.1 and
Lemma 4.2.1 that for all u ∈ C∞0 (Rn+1) and Λ ≥ 1,

(218) Λ
1

N+1 ‖u‖2L2 = Λ
1

N+1 (HWick
1 u, u)L2 + Λ

1
N+1 (HWick

2 u, u)L2

≤ c−1
1 Λ−

N
N+1 ‖Dtu+ iQWicku‖2L2 + c−1

1 Λ−
N
N+1 ‖u‖2L2 + Λ

1
N+1 (HWick

2 u, u)L2 .

Using Proposition 3.2.1, we get that

(219) Λ
1

N+1 (HWick
2 u, u)L2(Rn+1) = Λ

1
N+1 (W ∗H2Wu, u)L2(Rn+1)

= Λ
1

N+1 (H2 Wu,Wu)L2(R2n+1) = Λ
1

N+1

∫
R2n+1

H2(t,X,Λ)|Φ(t,X)|2 dt dX,

if Φ(t,X) = W
(
u(t, ·)

)
(X). We can now use the following L2-norm splitting

Λ
1

N+1

∫
R2n+1

H2|Φ|2 dt dX = Λ
1

N+1

∫
{|Q|<Λ1/(N+1)}

H2|Φ|2 dt dX

+ Λ
1

N+1

∫
{|Q|≥Λ1/(N+1)}

H2|Φ|2 dt dX

≤ Λ
1

N+1

∫
{|Q|<Λ1/(N+1)}

H2|Φ|2 dt dX

+

∫
R2n+1

H2|Q||Φ|2 dt dX,

to deduce from Lemma 4.2.2, Lemma 4.2.6 and (219) that there exists a positive
constant c21 such that for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ0,

(220) Λ
1

N+1 (HWick
2 u, u)L2 ≤ c21‖Dtu+ iQWicku‖L2‖u‖L2 + c21‖u‖2L2

+
1

2
Λ

1
N+1 ‖u‖2L2 .

It follows from (218) and (220) that for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ0,

(221)
1

2
Λ

1
N+1 ‖u‖2L2 ≤ c−1

1 Λ−
N
N+1 ‖Dtu+ iQWicku‖2L2

+ c21‖Dtu+ iQWicku‖L2‖u‖L2 + (c−1
1 Λ−

N
N+1 + c21)‖u‖2L2 .

Since from (6), N ∈ N∗, we deduce from (221) that there exist some positive
constants c22 and Λ1 ≥ 1 such that for all u ∈ C∞0 (Rn+1) and Λ ≥ Λ1,

c22Λ
1

N+1 ‖u‖2L2 ≤ Λ−
N
N+1 ‖Dtu+ iQWicku‖2L2 + ‖Dtu+ iQWicku‖L2‖u‖L2 ,
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i.e.,

(222) c22Λ
2

N+1 ‖u‖2L2 ≤ Λ
1−N
N+1 ‖Dtu+ iQWicku‖2L2

+ Λ
1

N+1 ‖Dtu+ iQWicku‖L2‖u‖L2 .

Since we have

Λ
1

N+1 ‖Dtu+ iQWicku‖L2‖u‖L2 ≤ c22

2
Λ

2
N+1 ‖u‖2L2 +

1

2c22
‖Dtu+ iQWicku‖2L2 ,

we deduce from (222) that there exists a positive constant c23 such that for all
u ∈ C∞0 (Rn+1) and Λ ≥ Λ1,

‖Dtu+ iQWicku‖2L2 ≥ c23Λ
2

N+1 ‖u‖2L2 ,

which in view of (45) proves the estimate (44) and ends the proof of the theo-
rem 2.1.1.
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