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ON MEROMORPHIC FUNCTIONS DEFINED BY

A DIFFERENTIAL SYSTEM OF ORDER 1

by Tristan Torrelli

Abstract. — Given a germ h of holomorphic function on (Cn, 0), we study the con-
dition: “the ideal AnnD1/h is generated by operators of order 1”. We obtain here full
characterizations in the particular cases of Koszul-free germs and unreduced germs of
plane curves. Moreover, we prove that this condition holds for a special type of hyper-
plane arrangements. These results allow us to link this condition to the comparison of
de Rham complexes associated with h.

Résumé (Sur les germes de fonctions méromorphes définis par un système différentiel

d’ordre 1)

Étant donné un germe de fonction holomorphe h défini au voisinage de l’origine de
Cn, nous étudions la condition : « l’idéal AnnD1/h est engendré par des opérateurs
d’ordre 1 ». Nous obtenons ici des caractérisations complètes dans le cas des germes
Koszul-libres et dans celui des germes de courbes planes non réduits. De plus, nous
montrons que cette condition est vérifiée pour un type particulier d’arrangements d’hy-
perplans. Ces résultats nous permettent de relier cette condition à la comparaison de
complexes de de Rham associés à h.
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CNRS – INRIA – UHP, B.P. 239, 54506 Vandoeuvre-lès-Nancy Cedex (France)
E-mail : torrelli@math.unice.fr • Url : http://www.iecn.u-nancy.fr/

2000 Mathematics Subject Classification. — 32C38, 32S25, 14F10, 14F40.

Key words and phrases. — Germs of meromorphic functions, D-modules, free divisors, ar-
rangements of hyperplanes, logarithmic de Rham complex, logarithmic comparison theorem.

I thank the support of the P.A.I. 02577 RG Systèmes différentiels et singularités.
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1. Introduction

Let h ∈ O = C{x1, . . . , xn} be a nonzero germ of holomorphic function such
that h(0) = 0. We denote by O[1/h] the ring O localized by the powers of h.
Let D = O〈∂/∂x1, . . . , ∂/∂xn〉 be the ring of linear differential operators with
holomorphic coefficients and F

•
D its filtration by order. As usual, we identify

grFD with the polynomial ring O[ξ] = O[ξ1, . . . , ξn].

Given a/h` ∈ O[1/h] nonzero, we consider the following condition:

The left ideal AnnD a/h` ⊂ D of operators annihilating a/h` is generated
by operators of order 1.

This condition appears when studying the elements of the holonomic
D-modules O[1/h] and O[1/h]/O (see [18]). Moreover, it is directly linked to
the so-called “Logarithmic Comparison Theorem” (see below). The aim of this
work is to explicit this condition. First we remark the following fact.

Proposition 1.1. — Let a, h ∈ O be germs of holomorphic functions without
common factor. If the ideal AnnD a/h is generated by operators of order 1,
then a is a unit.

So, without loss of generality, we will suppose that a = 1. When h defines
a hypersurface with isolated singularity, we have obtained in [18] the following
characterization.

Theorem 1.2. — Let h ∈ O be a germ of a holomorphic function defining
an isolated singularity. Let ` ∈ N∗ be a nonnegative integer. Then the ideal
AnnD 1/h` is generated by operators of order 1 if and only if the following
conditions are verified:

(a) the germ h is weighted-homogeneous,

(b) the smallest integral root of the Bernstein polynomial of h is strictly
greater than −` − 1.

We recall that a nonzero germ h is weighted-homogeneous of weight d ∈ Q+

for a system α ∈ (Q∗+)n if there exists a system of coordinates in which h
is a linear combination of monomials xγ1

1 · · ·xγn
n with

∑n
i=1 αiγi = d. More-

over, the condition (b) means that 1/h` generates the D-module O[1/h] (see
[11, Prop. 6.2] and [2, Prop. 6.1.18, 6.3.15 & 6.3.16]; for the definition of the
Bernstein polynomial, see the beginning of part 2).

What does remain true without any assumption on h ? First of all, the
condition (b) is always necessary.

Proposition 1.3. — Let h ∈ O be a nonzero germ of holomorphic func-
tion with h(0) = 0. Let ` ∈ N∗ be a nonnegative integer such that the ideal
AnnD 1/h` is generated by operators of order 1. Then the smallest integral root
of the Bernstein polynomial of h is strictly greater than −`− 1.
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On the other hand, h is not always weighted-homogeneous (Example 1.5).
So, let us denote the condition:

(a′) h belongs to the ideal of its partial derivatives.

In other words, there exists a vector field v ∈ D such that v(h) = h, and we
will say that h is Euler-homogeneous. In the case of hypersurfaces with isolated
singularities, K. Saito has proved that these two conditions coincide (see [13]).
We conjecture the following fact.

Conjecture 1.4. — If there exists a nonnegative integer ` ∈ N∗ such
that AnnD 1/h` is generated by some operators of order 1, then h is Euler-
homogeneous.

Reciprocally, conditions (a′) and (b) are not always enough to have
AnnD 1/h` generated by operators of order 1 (see Example 1.9). Neverthe-
less, they are sufficient when the ideal AnnD hs is generated by operators of
order 1 (this is true in the case of isolated singularities (see [12, p. 117], or [23,
Thm 2.19])). Indeed, if h is Euler-homogeneous, then we have a decomposition:

AnnD[s] h
s = D[s](s − v) + D[s] AnnD hs;

moreover, with the condition (b), AnnD 1/h` is obtained by fixing s = −`
in a system of generators of AnnD[s] h

s (see [18, Prop. 3.1]). Finally, the fact

that AnnD 1/h` is generated by operators of order 1 does not imply that so
is AnnD hs.

Example 1.5 (see [3], [4], [6]). — Let h = x1x2(x1 + x2)(x1 + x2x3). It is an
Euler-homogeneous polynomial which is not weighted-homogeneous. Indeed, if
there exists a change of coordinates ϕ = (ϕ1, ϕ2, ϕ3) – with ϕ(0) = 0 – such
that h ◦ ϕ is a weighted-homogeneous polynomial for α ∈ (Q∗+)3, then its
factors are weighted-homogeneous too. Thus the polynomials ϕ1, ϕ2 and ϕ2ϕ3

must have the same weight, and this is absurd.
The ideal AnnD 1/h is generated by the operators:

S1 = (x1 + x2x3)
∂

∂x3
+ x2,

S2 = x2(x1 + x2)
∂

∂x2
− x1(x3 − 1)

∂

∂x3
+ x1 + 3x2,

S3 = x1
∂

∂x1
+ x2

∂

∂x2
+ 4.

The O-module AnnD hs ∩ F1D is generated by:

Q1 = 4S1 − x2S3, Q2 = 4S2 − (x1 + 3x2)S3
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and it defines an ideal I ⊂ D which does not coincide with AnnD hs. Indeed,
one can verify that the following operator:

P = 2x2
2

∂

∂x1

∂

∂x2
− 2x2

2

∂2

∂x2
− 2(x1 + 3x2)x3

∂

∂x1

∂

∂x3

+2(x1 − 2x2 + 5x2x3)
∂

∂x2

∂

∂x3
+ 8(1 − x3)x3

∂2

∂x3

−x1
∂

∂x1
− x2

∂

∂x2
− 4(2x3 + 1)

∂

∂x3

annihilates hs. But P does not belong to I because the ideal grF I is generated
by the principal symbols σ(Q1), σ(Q2), and in particular grF I ⊂ (x1, x2)O[ξ]
even if σ(P ) 6∈ (x1, x2)O[ξ].

In the two following parts, we try to extend to other situations the charac-
terization given by Theorem 1.2. We begin with the case of plane curves.

Theorem 1.6. — Let h ∈ C{x1, x2} be nonzero with h(0) = 0, and let ` ∈ N∗

be a nonnegative integer.

(i) The ideal AnnD 1/h` is generated by operators of order 1 if and only if h
is weighted-homogeneous.

(ii) Let N ∈ N∗ be a nonnegative integer greater than or equal to 2. Let b̃(s) ∈
C[s] be the reduced Bernstein polynomial of h. Then the ideal AnnD 1/(h+xN

3 )`

is generated by operators of order 1 if and only if the following conditions are
verified:

(a) the germ h is weighted-homogeneous,

(b) ` ≥ 2, or ` = 1 and −2 is not a root of a polynomial b̃(s + i/N), for
1 ≤ i ≤ N − 1.

If h is reduced, it is a very particular case of Theorem 1.2 (for another proof
of (i), see [6]). We use that the Euler-homogeneous germs of plane curves are
weighted-homogeneous (Proposition 3.4), which comes from K. Saito ([13]).

Another part is devoted to a variant of Theorem 1.2, where the assumption
on h is replaced by a condition on the graded ideal of AnnD 1/h`.

Theorem 1.7. — Let h ∈ O be a nonzero germ such that h(0) = 0, and ` ∈ N∗.
Suppose that the O-module AnnD 1/h` ∩ F1D is generated by operators
Q1, . . . , Qw such that: grF D(Q1, . . . , Qw) =

(
σ(Q1), . . . , σ(Qw)

)
grFD. Then

the ideal AnnD 1/h` is generated by a system of operators of order 1 if and
only if the following conditions are verified:

(a) the germ h belongs to the ideal of its partial derivatives,

(b) the smallest integral root of the Bernstein polynomial of h is strictly
greater than −` − 1,

(c) the ideal AnnD hs is generated by operators of order 1.
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Moreover, AnnD hs is also generated by Qj(1)Qi − Qi(1)Qj , 1 ≤ i ≤ w, i 6= j,
where j is such that Qj(1) is a unit.

It is not easy to find a family of germs which verify this assumption. Except
for the case of weighted-homogeneous isolated singularities (see [19, Prop. 4.3]),
one can prove that it is also verified for a particular type of free germs – in the
sense of K. Saito [14]: the so-called Koszul-free germs.

Recall that a reduced germ h ∈ O is free if the O-module Der(log h) ⊂ D of
vector fields v such that v(h) ∈ hO is free (its rank is also equal to n). The
germ h is said to be Koszul-free if there exists a basis {δ1, . . . , δn} of Der(log h)
such that the sequence of principal symbols (σ(δ1), . . . , σ(δn)) is grFD-regular
(see [3]). For example, germs of reduced plane curves and locally weighted-
homogeneous free germs are Koszul-free (see [14, Cor. 1.7] and [4]).

Corollary 1.8. — Let h ∈ O be a Koszul-free germ. Then the ideal
AnnD 1/h is generated by operators of order 1 if and only if the following
conditions are verified:

(a) the germ h is Euler-homogeneous,

(b) −1 is the only integral root of the Bernstein polynomial of h,

(c) the ideal AnnD hs is generated by operators of order 1.

Suppose furthermore that h is Euler-homogeneous. Let {δ1, . . . , δn} be a basis
of Der(log h) such that δ1(h) = h and δi(h) = 0, 2 ≤ i ≤ n. Then condition (c)
is equivalent to:

(c′) the sequence (h, σ(δ2), . . . , σ(δn)) is grFD-regular.

The following example shows that condition (c) is neither a consequence of
the assumption of Theorem 1.7 on grF AnnD 1/h` nor a consequence of condi-
tions (a) and (b) for a Koszul-free germ.

Example 1.9. — Let h̃ = x5
1+x5

2+x2
1x

2
2. It is a Koszul-free germ which is not

Euler-homogeneous. Let h = exp(x3)h̃. Using Saito criterion (see [14]), it is
easy to see that the Euler-homogeneous germ h is Koszul-free. Up to a unit, h
and h̃ are equal ; so they have the same Bernstein polynomial. In particular,
−1 is the only integral root of the Bernstein polynomial of h. So h verifies
conditions (a) and (b), but not (c). Indeed, condition “AnnD 1/h is generated
by operators of order 1” only depends on the hypersurface germ defined by h,
and it is not verified by h̃ (see Theorem 1.6).

Let us remark that this characterization can not be extented to the case of
free germs (since the germ of Example 1.5 is free).

In the last part, we study the case of a hyperplane arrangement defined
by h = 0 in Cn. Indeed, A. Leykin has proved the following fact.
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Proposition 1.10 ([21, Thm 5.1]). — The Bernstein polynomial of any ar-
rangement has only −1 as integral root.

Is the ideal AnnD 1/h generated by operators of order 1 ? We prove here that
it is true for the union of a generic hyperplane arrangement with a hyperbolic ar-
rangement (Theorem 5.2). Moreover, our geometric proof gives an explicit sys-
tem of generators of AnnD 1/h. In the particular case of a generic central hyper-
plane arrangement (Corollary 5.3), this answers a conjecture of U. Walther [21].

We end this introduction by linking these results to the Logarithmic Com-
parison Theorem. For any hypersurface D ⊂ Cn, we denote by Ω•(?D) the
de Rham complex of differential meromorphic forms with poles along D and by
Ω•(log D) its subcomplex of logarithmic forms, introduced by K. Saito ([14]).
One says that the Logarithmic Comparison Theorem (LCT) holds for D if the
inclusion:

(1) iD : Ω•(log D) ↪−→ Ω•(?D)

is a quasi-isomorphism. Indeed, according to Grothendieck Comparison The-
orem (see [9]), the complex Ω•(log D) computes also the cohomology of the
complementary of D ⊂ Cn. So, it is natural to search for conditions on D
such that the LCT holds for D. For instance, F.J. Castro-Jiménez, D. Mond
and L. Narváez-Macarro have proved that it is true for all locally weighted-
homogeneous free divisors (i.e. free and weighted-homogeneous at all their
points) (see [5]). We conjecture that the following fact is always true.

Conjecture 1.11. — Let hD ∈ O be a reduced equation of (D, 0). Then
the ideal AnnD1/hD is generated by operators of order 1 if and only if the
Logarithmic Comparison Theorem holds for (D, 0).

Let us give now three significant results at the origin of this assertion. First,
using F.J. Calderón-Moreno works on differential logarithmic operators rela-
tive to a free divisor (see [3]), F.J. Castro-Jiménez and J.M. Ucha-Enŕıquez
have proved that for a locally weighted-homogeneous free divisor, the de Rham

complex of the holonomic D-Module: M̃ log = D/Ĩ log, where Ĩ log is the left
ideal generated by AnnD 1/hD ∩ F1D, is quasi-isomorphic to Ω•(log D) ([7]).
Moreover, using the de Rham functor, the morphism:

φD : M̃ log −→ O(?D), P + Ĩ log 7−→ P ·
1

hD

is an isomorphism if and only if the morphism iD of (1) is a quasi-isomorphism.
The same result for a Koszul-free divisor is announced by L. Narváez-Macarro.

But, from Proposition 1.3 and diagram M̃ log
� D1/hD ↪→ O(?D), it is clear

that φD is an isomorphism if and only if AnnD 1/hD is generated by operators
of order 1. In particular, Corollary 1.8 gives a characterization of the LCT in
the case of Koszul-free germs.
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Moreover, M. Holland and D. Mond have obtained some characterizations
of the LCT for weighted-homogeneous hypersurface with isolated singularity
(see [10]). In terms of weight of elements of a weighted-homogeneous co-basis
E of the jacobian ideal of hD, they have obtained the following condition: there
is no vector e ∈ E whose weight belongs to the set {i% − |α|; 1 ≤ i ≤ n − 2}
(where α ∈ (Q∗+)n is the weight system and % ∈ Q∗+ is the weight of hD).
Using the formula of Bernstein polynomial of a weighted-homogeneous isolated
singularity (see [23, §11]), it is also easy to check that this is equivalent to the
fact that −1 is the only integral root of the Bernstein polynomial of hD. So,
from Theorem 1.2, our conjecture is verified.

Finally, H. Terao and S. Yuzvinsky conjecture that the LCT holds for any
central hyperplane arrangements in Cn. They have proved it when n ≤ 5, and
for special types of arrangement (see [22]). So, Theorem 5.2 agrees with our
assertion.

2. Two necessary conditions

In this part, we prove Propositions 1.1 and 1.3. First, we recall some ele-
mentary facts about Bernstein polynomials.

Given a nonzero germ of holomorphic function f ∈ O, there exists functional
equations:

(2) b(s)f s = P (s)f s+1

in O[1/f, s]f s, where b(s) ∈ C[s] and P (s) ∈ D[s] = D ⊗ C[s] are nonzero
(see [11]). The Bernstein polynomial of f at the origin is the unitary polyno-
mial b(s) of smallest degree which verifies such an identity. When f is not a
unit, it is easy to remark that −1 is a root of b(s). So, we call the reduced

Bernstein polynomial, denoted by b̃(s), the quotient of b(s) by s + 1.

The proof of Proposition 1.1 uses the following fact.

Proposition 2.1. — Let a ∈ O be a nonzero germ. Then a is a unit if and
only if the annihilator in D of a, AnnD a, is generated by operators of order 1.

Proof. — If a is a unit, it is obvious that AnnD a is generated by the oper-
ators (∂/∂xi)a

−1, 1 ≤ i ≤ n. Now, let us suppose that AnnD a is generated
by Q1, . . . , Qw ∈ F1D and that a is not a unit. Thus s + 1 is a factor of the
Bernstein polynomial of a, denoted by b(s).

Using a Bernstein equation of a, we get:

b(s)b(s + 1)as = P (s)as+2
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where P (s) ∈ D[s]. As −1 is a root of b(s), the operator P (−1) annihilates a.
So it may be written P (−1) =

∑w
i=1 AiQi with Ai ∈ D. Thus, we have:

P (s) = (s + 1)P ′(s) +
w∑

i=1

AiQi,

with P ′(s) ∈ D[s], and the previous identity becomes:

b(s)b(s + 1)as = (s + 1)
[
P ′(s)a +

w∑

i=1

Ai[Qi, a]
]
as+1.

By division by s + 1, we deduce that b̃(s)b(s + 1) is a multiple of the Bernstein
polynomial of a. But this is absurd: the multiplicity of the root −1 in b(s)

is strictly greater than the one of b̃(s)b(s + 1) because b(0) 6= 0 (the roots of
the Bernstein polynomial of any germ are strictly negative, see [11]). Hence,
a must be a unit.

Proof of Proposition 1.1. — If h is a unit, the assertion is a direct conse-
quence of the previous result. So, we will suppose that h(0) = 0. Let ã, h̃
be holomorphic functions which define a, h on a neighborhood U ⊂ Cn of the
origin. Up to a restriction of U , we may assume that the zero set V (ã, h̃) ⊂ U

has codimension 2, and that the annihilator of ã/h̃ is generated by operators

on U of order 1. Then, at any point M ∈ U such that h̃(M) 6= 0, the anni-
hilator of ã verifies the same property, and from the previous proposition, we
have ã(M) 6= 0. Thus, ã has no zero in the complementary of V (ã, h̃) ⊂ U ,
and then no zero at all in U . Hence, the germ a is a unit.

Finally, let us give the proof of Proposition 1.3.

Proof. — Let h ∈ O be not a unit, and ` ∈ N∗ such that AnnD 1/h` is generated
by operators Q1, . . . , Qw of order 1. For 1 ≤ i ≤ w, we denote by qi the germ
Qi(1) ∈ O and by Q′

i ∈ D the vector field Qi − qi ; thus we have `Q′
i(h) = qih,

1 ≤ i ≤ w. Let us suppose that the Bernstein polynomial of h, denoted b(s),
has an integral root strictly smaller than −`. We denote by k ∈ Z − N, the
greatest root of b(s) verifying this condition. Using a Bernstein equation which
gives b(s), we get:

b(s) · · · b(s − ` − k − 1)hs = P (s)hs−`−k

where P (s) ∈ D[s]. Thus P (k) annihilates h−`, and so, it may be written
P (k) =

∑w
i=1 AiQi with Ai ∈ D, 1 ≤ i ≤ w. If P ′(s) ∈ D[s] is the quotient

of P (s) by s − k, the previous equation becomes:

b(s) · · · b(s − ` − k − 1)︸ ︷︷ ︸
c(s)

hs = (s − k)
[
P ′(s) +

1

`

w∑

i=1

Aiqi

]
h−`−k−1 · hs+1
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where −`−k−1 ≥ 0 and the multiplicity of k in c(s) is the same in b(s). Then,
by division by s− k, we get a functional equation of the form (2) such that the
polynomial in the left member is not a multiple of b(s). But this is not possible,
because b(s) is the Bernstein polynomial of h. Hence we have the result.

3. The case of plane curves

The aim of this part is the proof of Theorem 1.6, which extends to the case
of non reduced planes curves the characterization given by Theorem 1.2. First,
we recall some results of K. Saito on the weakly weighted-homogeneous power
series and the formal differential operators of order 1 (see [13]).

3.1. Normal form of formal differential operators of order 1. — Let

D = a1
∂

∂x1
+ · · · + an

∂

∂xn

be a formal differential operator with ai(0) = 0, 1 ≤ i ≤ n. We denote
∂D/∂x the jacobian matrix of (a1, . . . , an). The operator D is semi-simple in
the coordinates x1, . . . , xn if ∂D/∂x is a diagonal matrix. The operator D is
nilpotent if the eigenvalues of (∂D/∂x) 0 are zero.

Proposition 3.1. — Let D = a1(∂/∂x1) + · · · + an(∂/∂xn) be a formal dif-
ferential operator with ai(0) = 0, 1 ≤ i ≤ n. Then there exist coordinates such
that D is a sum D = DS + DN where DS is a semi-simple operator, DN is a
nilpotent operator and DSDN = DNDS.

Proposition 3.2. — Let D = a1(∂/∂x1) + · · · + an(∂/∂xn), be a formal dif-
ferential operator with ai(0) = 0, 1 ≤ i ≤ n. Let D = DS + DN be its normal
form in the coordinates x1, . . . , xn. Let f ∈ C[[x1, . . . , xn]] and λ ∈ C. Then
Df = λf if and only if DSf = λf and DNf = 0.

Definition 3.3. — A formal power series f ∈ C[[x1, . . . , xn]] is weakly
weighted-homogeneous of type (α0, α1, . . . , αn) ∈ Cn+1 if we have:

α1γ1 + · · · + αnγn = α0

for all monomial xγ which appears with a nonzero coefficient in the power
expansion of f .

In other words, f is an eigenfunction of the operator
∑n

i=1 αixi(∂/∂xi) for
the eigenvalue α0.

From the previous propositions, we get the following result which is specific
to dimension 2.

Proposition 3.4. — Let h ∈ C{x1, x2} be a nonzero germ such that h(0) = 0.
The following conditions are equivalent:
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1) the germ h is weighted-homogeneous,

2) the germ h is Euler-homogeneous,

3) there exists a formal change of coordinates φ such that h ◦ φ is a weakly
weighted-homogeneous power series.

Proof. — The implication 1) ⇒ 2) is clear. Let us prove 2) ⇒ 3). If h is Euler-
homogeneous, there exists D = a1(∂/∂x1) +a2(∂/∂x2) ∈ D such that Dh = h.
If a1 and a2 are not units, the previous proposition implies the result. Other-
wise, up to a change of coordinates, we may assume that a1 = 1, a2 = 0,
and then h = exp(x1)v with v ∈ C{x2} i.e. h = ux`

2 where u ∈ O is a unit.
In particular, h is weakly weighted-homogeneous (and weighted-homogeneous
in fact).

Finally we prove 3) ⇒ 1). Let D = α1x1(∂/∂x1) + α2x2(∂/∂x2) be a semi-
simple operator such that Dh = dh with d ∈ C. Without loss of generality, we
may assume that α1, α2, d ∈ Z are integers.

Observe that, up to a change of coordinates, h is a weighted-homogeneous
polynomial. Indeed, it is clear if α1 and α2 are nonzero and have the same
sign. Otherwise, if α1 = 0 then h = vxa2

2 with v ∈ C[[x1]], i.e. h = uxa1

1 xa2

2

with u unit. Finally, when α1 · α2 < 0, the resolution of the Bezout identity
α · γ = d gives h = xγ0v where v ∈ C[[xa1

1 xa2

2 ]], γ0 · α = d and a1α1 + a2α2 = 0
with a1, a2 ∈ N∗, gcd(a1, a2) = 1.

Hence, according to a theorem of Artin ([1]), there exists a convergent change

of coordinates φ̃ such that h ◦ φ̃ is a weighted-homogeneous polynomial.

3.2. Results on the suspension of a germ of plane curve. — An im-
portant fact in the proof of Theorem 1.6 is the explicit knowledge of the anni-
hilators of hs and (h + xN

3 )s, N ∈ N∗, in the case of a germ h of a plane curve
(reduced or not).

Lemma 3.5. — Let h ∈ C{x1, x2} be a nonzero germ with h(0) = 0. Let a1

(resp. a2) denote the quotient of h′
x1

(resp. h′
x2

) by gcd(h′
x1

, h′
x2

).

(i) The ideal AnnD hs is generated by a2(∂/∂x1) − a1(∂/∂x2).

(ii) For all N ∈ N∗, the ideal AnnD(h + xN
3 )s is generated by

NxN−1
3 (∂/∂x1) − h′

x1
(∂/∂x3),

NxN−1
3 (∂/∂x2) − h′

x2
(∂/∂x3),

a2(∂/∂x1) − a1(∂/∂x2).

Proof. — As the first point is easier than the second one, we will only prove (ii).
Let us denote I ⊂ D, the ideal generated by the given operators S1, S2, S3. The
inclusion I ⊂ AnnD(h + xN

3 )s is obvious, so let us prove the reverse inclusion
by induction on the order of operators.
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Let P ∈ AnnD(h + xN
3 )s be nonzero, of order d. As d = 0 implies P = 0, we

will assume that d ≥ 1. By division of P by S1, S2, we get R ∈ Fd′D, d′ ≤ d,
with P − R ∈ I and such that σ(R) ∈ O[ξ] may be written:

σ(R) = vξd′

3 +
d′∑

i=1

N−2∑

j=0

Υi(ξ1, ξ2)x
j
3ξ

d′−i
3

with v ∈ O and Υi ∈ C{x1, x2}[ξ1, ξ2] are zero or homogeneous in (ξ1, ξ2) of
degree i. Remark that R annihilates (h + xN

3 )s. If d′ < d, then R belongs
to I by induction, and so does P . Otherwise, by an easy computation, we
get σ(R)(h′

x1
, h′

x2
, NxN−1

3 ) = 0. Thus, studying the coefficient of the pow-
ers of x3, we have v = 0 and the homogeneous polynomials Υi(ξ1, ξ2) are
zero on (h′

x1
, h′

x2
), i.e. on the regular sequence (a1, a2). Hence, the polyno-

mials Υi(ξ1, ξ2) are multiples of σ(S3) and there exists a homogeneous polyno-

mial A ∈ O[ξ] such that σ(R) = Aσ(S3). If Ã ∈ Fd−1D is such that σ(Ã) = A,

then R − ÃS3 belongs to Fd−1D and annihilates (h + xN
3 )s. By induction,

it belongs to I , and so do R and P .

Now we give a result on the Bernstein polynomial of the suspension of a
weighted-homogeneous plane curve.

Lemma 3.6. — Let h ∈ C{x1, x2} be a weighted-homogeneous germ and

N an integer greater than or equal to 2. Let us denote by b̃(s) (resp.

b̃N (s)) the reduced Bernstein polynomial of h (resp. h + xN
3 ). Then

b̃N (s) divides
∏N−1

i=1 b̃(s + i/N), and b̃N(s) is a multiple of the polynomi-

als b̃(s + i/N), 1 ≤ i ≤ N − 1. In particular,
∏N−1

i=1 b̃(s + i/N) and b̃N (s) have
the same roots.

Proof. — Let χ ∈ D̃ = C{x1, x2}〈∂/∂x1, ∂/∂x2〉, be the Euler-vector field such
that χ ·hs = shs. Using the results recalled in §2 and the previous lemma, it is
easy to check that the functional equations defining b̃(s) and b̃N(s) may be
written:

c(χ) ∈ D̃
(
h′

x1
, h′

x2
, a2

∂

∂x1
− a1

∂

∂x2

)
= Ĩ

and

c
(
χ +

x3

N

∂

∂x3

)
∈ D

(
h′

x1
, h′

x2
, xN−1

3 , a2
∂

∂x1
− a1

∂

∂x2

)
= I.(3)

In particular, b̃(χ) ∈ I . Hence, in order to get the first point, we just have

to prove that P =
∏N−1

i=1 b̃(χ + (x3/N)(∂/∂x3) + i/N) belongs to I . Observe
that P may be written:

N−1∏

i=1

b̃
(
χ+

∂

∂x3

x3

N
+

i−1

N

)
=

[ N−1∏

i=2

b̃
(
χ+

∂

∂x3

x3

N
+

i−1

N

)] ∑

k≥0

b̃(k)(χ)

k!

( ∂

∂x3

x3

N

)k
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using the Taylor formula. So, up to a multiple of b̃(χ), P may be rewritten:

∂

∂x3

[ ∑

k≥1

b̃(k)(χ)

k!

( ∂

∂x3

x3

N
−

1

N

)k−1]
·
[ N−2∏

i=1

b̃
(
χ +

∂

∂x3

x3

N
+

i − 1

N

)]x3

N
·

Iterating this process, we check that P belongs to D(b̃(χ), xN−1
3 ) ⊂ I .

Now we prove the last part. Multiplying identity (3) by xi−1
3 on the left,

1 ≤ i ≤ N − 1, we get:

b̃N

(
χ +

∂

∂x3

x3

N
−

i

N

)
xi−1

3 ∈ I.

Thus, using Taylor’s formula, we have b̃N (χ − i/N)xi−1
3 ∈ I + Dxi

3. Observe
that each element of I + Dxi

3 may be written in a unique way:

Pxi
3 +

J∑

j=0

i−1∑

k=0

( ∂

∂x3

)j

Pj,kxk
3 ,

where P ∈ D, Pk,j ∈ Ĩ , j ∈ N. Hence the operator b̃N (χ − i/N) belongs to Ĩ ,

i.e. the polynomials b̃(s + i/N), 1 ≤ i ≤ N − 1, divide b̃N (s).

3.3. Proof of Theorem 1.6. — Again we only prove (ii). Without loss of
generality, we will assume that h is singular (since the assertion is clear when
h + xN

3 is smooth).
We recall that roots of the Bernstein polynomial of a holomorphic function

on Cn are included in ] − n, 0[ (see [15], [20]). In particular, the condition (b)
means that the smallest integral root of the Bernstein polynomial of h + xN

3 is
strictly greater than −` − 1 (see Lemma 3.6). Moreover, as AnnD(h+ xN

3 )s is
generated by operators of order 1 (Lemma 3.5), the condition on 1/(h+ xN

3 )`

is true when h is weighted-homogeneous (see the introduction).
Conversely, let us assume that AnnD 1/(h + xN

3 )` is generated by the op-
erators Q1, . . . , Qw ∈ F1D. From Proposition 1.3, we have to prove that h is
weighted-homogeneous. Let qi be the germ Qi(1) ∈ O and Q′

i ∈ D the vector
field Qi − qi. Then we have:

(4) −` Q′
i(h + xN

3 ) + (h + xN
3 ) qi = 0, 1 ≤ i ≤ w .

On the other hand, from Lemma 3.3 of [18], there exists an operator R in
AnnD(h + xN

3 )s such that R = 1 +
∑w

i=1 Aiqi, with Ai ∈ D. It comes from
the division by Q1, . . . , Qw of a good operator of AnnD[s](h + xN

3 )s (see [11,

Thm 6.3]), i.e. of the form sN +
∑N−1

i=0 siPi with Pi ∈ FN−iD, 0 ≤ i ≤ N − 1.
Considering the constant coefficient of R in the writting with coefficients on
the right, we get:

1 ∈
(
q1, . . . , qw, xN−1

3 , a1, a2,
∂(a2)

∂x1
−

∂(a1)

∂x2

)
O

tome 132 – 2004 – no 4



ON MEROMORPHIC FUNCTIONS 603

with the help of the determination of AnnD(h + xN
3 )s (Lemma 3.5). Thus, at

most one of the generators of this ideal is a unit. If qi is a unit, from (4), the
germ h + xN

3 is Euler-homogeneous and so does h. We conclude with Proposi-
tion 3.4.

If a1 or a2 is a unit, the operator D = a2(∂/∂x1) − a1(∂/∂x2) ∈ AnnD h is
regular. So, up to a change of coordinates, h belongs to C{x2}, and so it
is weighted-homogeneous.

Finally, let us suppose that D is singular with ∂(a2)/∂x1 − ∂(a1)/∂x2 a
unit. Thus, the formal operator D is not nilpotent. From Proposition 3.1,
there exists a formal change of coordinates such that D = DS + DN with
DS = α1x̃1(∂/∂x̃1)+α2x̃2(∂/∂x̃2) 6= 0. Thus, as Dh = 0, h is weakly weighted-
homogeneous of type (0, α1, α2) in the coordinates (x̃1, x̃2) (Proposition 3.2).
In particular, h is weighted-homogeneous (Proposition 3.4).

4. A companion piece to Theorem 1.2

In this part, we adapt the proof of Theorem 1.2 in order to characterize the
germs h ∈ O such that AnnD 1/h` is generated by operators of order 1 in some
cases where h has non isolated singularities. First we prove Theorem 1.7, where
we take good assumptions on grF AnnD 1/h` in order to have a division with
control of the orders (see §3.3). Then we get a full characterization in the case
of Koszul-free germs (Corollary 1.8).

4.1. Proof of Theorem 1.7. — According to the introduction, it is enough
to check the following result.

Proposition 4.1. — Let h ∈ O be a nonzero germ with h(0) = 0, and let
` ∈ N∗ be a nonnegative integer. Let us suppose that AnnD 1/h` is generated
by some operators Q1, . . . , Qw ∈ D of order 1 such that:

grFAnnD 1/h` = (σ(Q1), . . . , σ(Qw)) grFD.

Then the following conditions are verified:

(a) the germ h belongs to the ideal of its partial derivatives,

(b) the smallest integral root of the Bernstein polynomial of h is strictly
greater than −` − 1,

(c) the ideal AnnD hs is generated by operators of order 1.

Moreover, AnnD hs is also generated by Qj(1)Qi − Qi(1)Qj , 1 ≤ i ≤ w, i 6= j,
where j is such that Qj(1) is a unit.

Proof. — First, it is easy to check that the assumption on grFAnnD 1/h` means:
every P ∈ AnnD 1/h` of order d may be written P =

∑w
i=1 AiQi where AiQi

belongs to FdD.
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The first part of the proof uses the main idea of Lemma 3 of [18]. For
1 ≤ i ≤ w, let us denote by qi the germ Qi(1) ∈ O and by Q′

i ∈ D the vector
field Qi − qi. Thus we have:

(5) ` Q′
i(h) − qih = 0, 1 ≤ i ≤ w.

Let P0(s) ∈ D[s] be a good operator in s of order N such that P0(s) · h
s = 0

(see [11]). By division, it may be written:

P0(s) = (s + `)R0(s) + P0(−`),

where R0(s) is a good operator of order N − 1 and P0(−`) annihilates 1/h`.

So P0(−`) is equal to
∑`

i=1 AiQi with Ai ∈ FN−1D, 1 ≤ i ≤ w. Hence:

(s + `)R0(s)h
s +

(s + `)

`

w∑

i=1

Aiqih
s = 0.

So P1(s) = R0(s) + (1/`)
∑w

i=1 Aiqi is a good operator in s of order N − 1
such that P1(s) · hs = 0. Iterating this process, we may assume N = 1. So
there exists ai ∈ O such that 1 +

∑w
i=1 aiqi = 0 ; in particular, at most one of

the qi is a unit. From (5), we deduce that h belongs to the ideal of its partial
derivatives. Without loss of generality, we will assume that q1 = 1.

Now, we will prove the assertion about AnnD hs. As the given operators
clearly annihilate hs, it is enough to prove that every P ∈ AnnD hs belongs to
the ideal generated by Qi − qiQ1, 2 ≤ i ≤ w. We do it by induction on the
order d ∈ N of P .

If d = 0, then P = 0 and the assertion is true. Otherwise, as P annihi-
lates 1/g`, we have:

P =

w∑

i=1

A
(0)
i Qi =

w∑

i=2

A
(0)
i (Qi − qiQ1) +

(
A

(0)
1 +

w∑

i=2

A
(0)
i qi

︸ ︷︷ ︸
P ′

)
Q1

with P ′, A
(0)
1 , . . . , A

(0)
w ∈ Fd−1D. Remark that P ′∈AnnD hs (since Q1(h

s) = shs).
Iterating this process, we get:

P =

w∑

i=2

d−1∑

k=0

A
(k)
i (Qi − qiQ1)Q

k
1

︸ ︷︷ ︸
P̃

+ p Qd
1

with A
(k)
i ∈ Fd−k−1D and p ∈ O. But p must be zero because P, P̃ ∈ AnnD hs.

Thus:

P =

w∑

i=2

d−1∑

k=0

A
(k)
i Qk

1(Qi − qiQ1) +

w∑

i=2

d−1∑

k=0

A
(k)
i [Qi − qiQ1, Q

k
1 ]

︸ ︷︷ ︸
R

with R ∈ AnnD hs ∩ Fd−1D. We conclude by induction.
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Remark 4.2. — In fact, we have proved that grFAnnD hs is generated by the
principal symbols of the given operators.

4.2. The case of Koszul-free germs. — First we prove that the Koszul-
free germs verify the assumption of Theorem 1.7.

Lemma 4.3. — Let h ∈ O be a Koszul-free germ. Then there exists
Q1, . . . , Qn ∈ F1D generating AnnD 1/h ∩ F1D, such that:

grFD(Q1, . . . , Qn) =
(
σ(Q1), . . . , σ(Qn)

)
grFD.

Proof. — Let {δ1, . . . , δn} be a basis of Der(log h) such that {σ(δ1), . . . , σ(δn)}
is a grFD-regular sequence. For 1 ≤ i ≤ n, let ai ∈ O be the germ defined
by δi(h) = aih and let Qi ∈ AnnD 1/h ∩ F1D be the operator δi + ai. Using
that δ1, . . . , δn generate Der(log h), it is easy to check that Q1, . . . , Qn gen-
erate AnnD 1/h ∩ F1D. On the other hand, grFD(Q1, . . . , Qn) is generated
by σ(Qi) = σ(δi), 1 ≤ i ≤ n, because this family defines a regular sequence
(see [3, Prop. 4.1.2] and [17, Lemma 2]).

Let us recall some facts about logarithmic operators (see [3, §1.2]). Given
a nonzero germ h ∈ O such that h(0) = 0, a differential operator P ∈ D is
logarithmic with respect to h if P · hkO ⊂ hkO for all k ∈ Z. Let us denote
by Vh

0 (D) ⊂ D the subring of differential logarithmic operators. When h is
free, Vh

0 (D) is a coherent sheaf of rings ([3, Cor. 2.1.7]).

Now we characterize the condition (c) for Euler-homogeneous free germs.

Proposition 4.4. — Let h ∈ O be an Euler-homogeneous free germ, and
let {δ1, . . . , δn} be a basis of Der(log h) such that δ1(h) = h and δi(h) = 0
for 2 ≤ i ≤ n. We denote by I ⊂ D the ideal generated by δ2, . . . , δn. The
following conditions are equivalent:

1) the ideal AnnD hs is generated by operators of order 1,

2) the ideal AnnD hs is generated by logarithmic differential operators,

3) the ideal AnnD hs coincides with the ideal I.

Moreover, if grF I is generated by σ(δ2), . . . , σ(δn), then these conditions are
equivalent to:

4) the sequence (h, σ(δ2), . . . , σ(δn)) is grFD-regular.

Proof. — The implication 2) ⇒ 3) is a consequence of Lemma 4.6. As 3) ⇒ 1)
is obvious, let us remark that 1) implies 2). Indeed, if P ∈ F1D annihilates hs,
then, for all a ∈ O, k ∈ Z, we have P (ahk) = P (a)hk.

Now, we prove 4) ⇒ 3). Observe that condition 4) implies grF I =
(σ(δ2), . . . , σ(δn)) grFD (see [17, Lemma 2]). Let P ∈ D be an operator anni-
hilating hs. So there exists N ∈ N such that hNP ∈ Vh

0 (D), hence hNP ∈ I
by Lemma 4.6. If N = 0, the assertion is obvious. Otherwise, from our
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assumption, the endomorphism of grF D/ grF I induced by h is one to one. We
deduce that hN−1P ∈ I with the help of the following result:

Lemma 4.5 ([16, Lemme 4.3.2.6]). — Let U ∈ D and let I ⊂ D be an ideal,
such that the endomorphism of grFD/ grF I induced by the multiplication by
σ(U) in grFD is one-to-one. If R ∈ D is such that UR ∈ I, then R ∈ I.

Therefore, P ∈ I by induction on N .

Finally, we prove the implication 3) ⇒ 4) under the following assumption:

grF I =
(
σ(δ2), . . . , σ(δn)

)
grFD.

Let us recall that the characteristic variety of Dhs is the relative conormal space
associated with h, which is the subspace Wh ⊂ T ∗Cn defined as the closure in
T ∗Cn of {(x, λdh(x)) ; λ ∈ C} ([11]). In particular, Wh is irreducible of pure
dimension n + 1. From the principal ideal theorem, W0(h) = Wh ∩ {h = 0}
has pure dimension n. So, if I = AnnD hs then grF I + h grFD defines W0(h)
and (h, σ(δ2), . . . , σ(δn)) is a regular sequence.

Lemma 4.6. — Let h ∈ O be an Euler-homogeneous free germ, and let
{δ1, . . . , δn} be a basis of Der(log h) such that δ1(h) = h and δi(h) = 0 for
2 ≤ i ≤ n. Then the ideal AnnVh

0
(D) hs coincides with Vh

0 (D)(δ2, . . . , δn).

Proof. — From the structure theorem of logarithmic operators (see [3,
Thm 2.1.4]), each logarithmic operator of order d may be written in a unique
way

∑
|γ|≤d aγδγ1

1 · · · δγn
n , aγ ∈ O. Thus the assertion is a consequence of the

identities δ1 · h
s = shs and δi · h

s = 0, 2 ≤ i ≤ n.

Remark 4.7. — We do not know if condition (b) of Corollary 1.8 is – or not –
always true when h is Koszul-free, or Koszul-free and verifying (a) & (c).

5. The case of generic arrangements of hyperplanes

The purpose of this part is to prove that AnnD 1/h is generated by operators
of order 1 when h ∈ C[x1, . . . , xn] defines a particular type of central hyperplane
arrangement A ⊂ Cn (Theorem 5.2). As the case n = 2 is a consequence of
Theorem 1.6, we will assume that n ≥ 3.

Recall that a (central) hyperplane arrangement defined by
∏p

i=1 `i = 0,
with p ≥ 2 and `i ∈ (Cn)∗, is:

• generic if p ≥ n and if, for all 1 ≤ i1 < · · · < in ≤ p, (`i1 , . . . , `in
) defines

the origin;

• hyperbolic if `i ∈ C`1 + C`2 for 3 ≤ i ≤ p.

Notation 5.1. — Let f = (f1, . . . , fr) : Cn → Cr, 1 ≤ r < n, be an an-
alytic morphism. For every multi-index K = (k1, . . . , kr+1) ∈ Nr+1 where
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1 ≤ k1, . . . , kr+1 ≤ n and ki 6= kj for i 6= j, let ∆f1,...,fr

K ∈ D denote the vector
field:

r+1∑

i=1

(−1)imK(i)(f)
∂

∂xki

=

r+1∑

i=1

(−1)i ∂

∂xki

mK(i)(f),

where K(i) = (k1, . . . , ǩi, . . . , kr+1) ∈ Nr and mK(i)(f) is the determinant of
the r × r matrix obtained from the jacobian matrix of f by deleting the k-th
columns with k 6∈ {k1, . . . , ǩi, . . . , kr+1}.

In the particular case r = n−1, the only vector field is denoted by ∆f1,...,fr .

Theorem 5.2. — Let A ⊂ Cn, n ≥ 3, be a central generic arrangement of
hyperplanes, defined by h =

∏p
i=1 `i, p ≥ n. Let A′ ⊂ Cn be a hyperbolic

arrangement defined by: h′ =
∏q

i=1 `′i , q ≥ 2, and such that `′ih = 0 defines a
generic arrangement for all 1 ≤ i ≤ q.

Then AnnD 1/h′h is generated by
∑n

i=1 xi(∂/∂xi) + p + q and by:

∆h′,`i1
,...,`in−2 ·

∏

i6=i1,...,in−2

`i & ∆`′1,`′2,`i1
,...,`in−3 ·

∏

`i /∈C(`′
1
,`′

2
,`i1

,...,`in−3
)

`i

for all family of distinct indexes 1 ≤ i1 < · · · < in−3 ≤ p, 1 ≤ in−2 ≤ p, such
that (`′1, `

′
2, `i1 , . . . , `in−2

) defines the origin.

As an easy consequence, we have the following result.

Corollary 5.3. — Let A ⊂ Cn, n ≥ 3, be a central generic arrangement
of hyperplanes, defined by h =

∏p
i=1 `i, p ≥ n. Then the ideal AnnD 1/h is

generated by
∑n

i=1 xi
∂

∂xi
+ p and by the operators:

∆`i1
,...,`in−1 ·

∏

i6=i1 ,...,in−1

`i

for all 1 = i1 < · · · < in−1 ≤ p.

The proof of Theorem 5.2 needs the following technical computation.

Proposition 5.4. — Let `1, . . . , `p ∈ (Cn)∗, 3 ≤ n ≤ p, be linear forms which
define a generic arrangement and h ∈ C[x1, . . . , xn] be the product

∏p
i=1 `i. Let

g ∈ C{x1, x2} be a reduced germ such that (g, `i1 , . . . , `in−1
) defines the origin

for all 1 ≤ i1 < · · · < in−1 ≤ p. Then the ideal AnnD(1/h)gs is generated by
the operators:

∆g,`i1
,...,`in−2 ·

∏

i6=i1 ,...,in−2

`i and ∆x1,x2,`i1
,...,`in−3 ·

∏

`i /∈C(x1,x2,`i1
,...,`in−3

)

`i

for all sequence of distinct indexes i1, . . . , in−2 such that (x1, x2, `i1 , . . . , `in−2
)

defines the origin.
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Remark 5.5. — If `i1 , . . . , `ik
, 1 ≤ k ≤ n − 3, are some linear factors of h

such that the family (x1, x2, `i1 , . . . , `ik
) is free, then there exists at most one

form `i, i 6= i1, . . . , ik, such that `i belongs to the space C(x1, x2, `i1 , . . . , `ik
) =

Cx1 + Cx2 + C`i1 + · · ·+ C`ik
⊂ (Cn)∗. Indeed, if `ik+1

and `ik+2
are two such

forms, then C(x1, x2, `i1 , . . . , `ik
) = C(`i1 , . . . , `ik+2

) since A is generic. And
this is not possible because (g, `i1 , . . . , `ik+2

) is O-regular (and g ∈ C{x1, x2}).
Conversely, if there exists a form `i, i 6= i1, . . . , ik (with k ≤ n − 2), such
that `i ∈ C(x1, x2, `i1 , . . . , `ik

), we prove by a similar argument that the family
(x1, x2, `i1 , . . . , `ik

) must be free.

Proof of Proposition 5.4. — Let us denote I ⊂ D the left ideal generated by
the given operators and I ⊂ O[ξ1, . . . , ξn] the ideal generated by their principal
symbols. First we prove the following fact.

Assertion 1. — The ideal I contains the operators of the form:

v ·
∏

i6=i1,...,ik

`i,

with 0 ≤ k ≤ n − 2, 1 ≤ i1 < · · · < ik ≤ p, and v ∈ D is a vector field
annihilating g, `i1 , . . . , `ik

.

Proof. — Two cases are possible.

First, let us suppose that the family (x1, x2, `i1 , . . . , `ik
) is free. If k < n−2,

we can find some other linear forms `ik+1
, . . . , `in−2

of the arrangement such
that (x1, x2, `i1 , . . . , `in−2

) defines the origin (Remark 5.5). Then we have:

v = v1 +

n−2∑

j=k+1

v(`ij
)

∆x1,x2,`i1
,...,ˇ̀ij

,...,`in−2 (`ij
)
∆x1,x2,`i1

,...,ˇ̀ij
,...,`in−2

︸ ︷︷ ︸
v2

where v1 annihilates g, `i1 , . . . , `in−2
; thus v1 ∈ O∆g,`i1

,...,`in−2 by an easy com-
putation in the coordinates (x1, x2, `i1 , . . . , `in−2

). In particular, v1

∏
i6=i1,...,ik

`i

belongs to:

D
( n−2∏

i=k+1

`i

)
∆g,`i1

,...,`in−2

( ∏

i6=i1,...,in−2

`i

)
⊂ I.

By similar computations, we check that v2

∏
i6=i1,...,ik

`i belongs to I ; thus so

does v
∏

i6=i1,...,ik
`i.

Now assume that the family (x1, x2, `i1 , . . . , `ik
) is not free. As the se-

quence (g, `i1 , . . . , `ik
) is regular, we can not have x1, x2 ∈ C(`i1 , . . . , `ik

).
So, up to exchanging x1 for x2, the family (x2, `i1 , . . . , `ik

) is free and x1 be-
longs to C(x2, `i1 , . . . , `ik

). In other words, there exists an index κ such that

tome 132 – 2004 – no 4



ON MEROMORPHIC FUNCTIONS 609

`iκ
∈ C(x1, x2, `i1 . . . , ˇ̀

iκ
, . . . , `ik

). So, let `ik+1
, . . . , `in−1

be other factors of h.

From Remark 5.5, (x1, x2, `i1 , . . . ,
ˇ̀
iκ

, . . . , `in−1
) defines the origin and we have

v =

n−1∑

j=k+1

v(`ij
)

∆x1,x2,`i1
,...,ˇ̀iκ ,...,ˇ̀ij

,...,`in−1 (`ij
)
∆x1,x2,`i1

,...,ˇ̀iκ ,...,ˇ̀ij
,...,`in−1

since the two members are equal on g, `i1 , . . . , `in−1
. Hence we conclude exactly

as above (using that ∆x1,x2,`i1
,,...,ˇ̀iκ ,...,ˇ̀ij

,...,`in−1 (`iκ
) = 0).

Of course, the inclusion I ⊂ AnnD(1/h)gs is clear. In order to get the reverse
inclusion, we will just prove that grAnnD(1/h)gs is included in I. Indeed, we
conclude also easily by induction on order of operators in I , just as in the proof
of Proposition 3.5.

Let us study charD D(1/h)gs ⊂ T ∗Cn, the characteristic variety of D(1/h)gs.
It is easy to check that O ⊂ D1/h and that:

O[1/`i1 · · · `ik
] = D1/`i1 · · · `ik

⊂ D1/h

for all 1 ≤ i1 < · · · < ik ≤ p, 1 ≤ k ≤ n − 1, under our assumption on h
(using that −1 is the only integral root of the Bernstein polynomial of a nor-
mal crossing). So the characteristic variety of D1/h contains the conormal
bundles T ∗

CnCn and T ∗
Li1

∩···∩Lik
Cn, 1 ≤ i1 < · · · < ik ≤ p, k ≤ n − 1,

where Li = ker `i ⊂ Cn. Moreover, using Proposition 2.14.4 of [8], we de-
duce that charD D(1/h)gs is the union of the subspaces Wg and Wg Li1

∩···∩Lik
,

where Wg X ⊂ T ∗Cn is the closure of {(x, ξ + λdg(x)) ; λ ∈ C, (x, ξ) ∈ T ∗
XCn}

for any subanalytic space X ⊂ Cn. The following result gives defining equations
of the spaces Wg Li1

∩···∩Lik
.

Assertion 2. — Let `i1 , . . . , `ik
∈ (Cn)∗, 1 ≤ k ≤ n− 1, be some factors of h.

(i) If k = n − 1, then Wg Li1
∩···∩Lik

is defined by `1, . . . , `n−1.

(ii) Assume that k < n − 1. If (x1, x2, `1, . . . , `ik
) is a free family, then

Wg Li1
∩···∩Lik

is defined by `1, . . . , `k, one nonzero element σ(∆
g,`1,...,`ik

K ), and

the principal symbols of n − k − 2 vector fields ∆
x1,x2,`1,...,`ik

K defining a free
family.

(iii) Assume that k < n− 1. If there exists an index κ, 1 ≤ κ ≤ k, such that
`iκ

∈ C(x1, x2, `1, . . . , ˇ̀
iκ

, . . . , `ik
), then Wg Li1

∩···∩Lik
is defined by `1, . . . , `k,

and the principal symbols of n−k−1 vector fields ∆
x1,x2,`1,...,ˇ̀iκ ,...,`ik

K defining a
free family.

Proof. — In each case, it is easy to check that the (n− 1)-given elements form
a grFD-regular sequence and define an irreducible space in T ∗Cn. Moreover,
they are zero on Wg Li1

∩···∩Lik
. So the assertion is clear, since Wg Li1

∩···∩Lik

is irreducible of dimension n + 1.
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So let P ∈ AnnD(1/h)gs be a nonzero operator of order d. Then σ(P )
is zero on charD D(1/h)gs. Let us prove that σ(P ) ∈ I. Using the inclu-
sion Wg Li1

∩···∩Lin−1
⊂ charD D(1/h)gs, we have σ(P ) ∈ (`i1 , . . . , `in−1

)O[ξ]

for 1 ≤ i1 < · · · < in−1 ≤ p. Remark that:

⋂

1≤i1<···<in−1≤p

(`i1 , . . . , `in−1
)O =

∑

1≤i1<···<in−2≤p

[ ∏

i6=i1,...,in−2

`i

]
O

(by induction on p ≥ n, using that every sequence (`i1 , . . . , `in
) is regular).

Thus, we can write:

σ(P ) =
∑

1≤i1<···<in−2≤p

A
(0)
i1,...,in−2

( ∏

i6=i1,...,in−2

`i

)

for some A
(0)
i1,...,in−2

∈ O[ξ] zero or homogeneous of degree d.

Now let `i1 , . . . , `in−2
be some factors of h such that (x1, x2, `i1 , . . . , `in−2

)
is a free family. From the inclusion Wg Li1

∩···∩Lin−2
⊂ charD D(1/h)gs and

Assertion 2, we have:

σ(P ) ∈
(
`i1 , . . . , `in−2

, σ(∆g,`i1
,...,`in−2 )

)
O[ξ].

So, using that the sequences (`i, `i1 , . . . , `in−2
, σ(∆g,`i1

,...,`in−2 )), i 6= i1, . . . , in−2,

are regular, we deduce: A
(0)
i1,...,in−2

∈
(
`i1 , . . . , `in−2

, σ(∆g,`i1
,...,`in−2 )

)
O[ξ]. Re-

mark that we get a similar result when (x1, x2, `i1 , . . . , `in−2
) is not free. Hence

σ(P ) may be written:

σ(P ) = U +
∑

1≤i1<···<in−3≤p

A
(1)
i1 ,...,in−3

( ∏

i6=i1,...,in−3

`i

)
,

where A
(1)
i1,...,in−3

∈ O[ξ] are zero or homogeneous of degree d, and U ∈ I (with

the help of Assertion 1). Up to a division by I, we will assume that U = 0.
Iterating this process with Wg Li1

∩···∩Lik
, 1 ≤ k ≤ n−2, we get σ(P )−A(n−2)h

belongs to I. Thus, using that Wg ⊂ charD D(1/h)gs, we have:

A(n−2) ∈
(
σ(∆g), ξ3, . . . , ξn

)
O[ξ].

So A(n−2)h ∈ I, and we conclude that σ(P ) ∈ I. This ends the proof.

Proof of Theorem 5.2. — From Proposition 1.10, we have D1/h = O[1/h], and
(D1/h)[1/h′] = O[1/h′h] is generated by 1/h′h. Thus, using Proposition 3.1
of [18], we deduce that AnnD 1/h′h is generated by

∑n
i=1 xi(∂/∂xi)+p+q and

the elements of AnnD(1/h)h′s. We conclude with Proposition 5.4.
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Dfs for locally quasi-homogeneous free divisors, Compositio Math., t. 134

(2002), pp. 59–74.
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612 TORRELLI (T.)
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