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THE STACK OF MICROLOCAL PERVERSE SHEAVES

by Ingo Waschkies

Abstract. — In this paper we construct the abelian stack of microlocal perverse
sheaves on the projective cotangent bundle of a complex manifold. Following ideas
of Andronikof we first consider microlocal perverse sheaves at a point using classical
tools from microlocal sheaf theory. Then we will use Kashiwara-Schapira’s theory
of analytic ind-sheaves to globalize our construction. This presentation allows us to
formulate explicitly a global microlocal Riemann-Hilbert correspondence.

Résumé (Le champ des faisceaux pervers microlocaux). — Nous construisons le
champ abélien des faisceaux pervers microlocaux sur le fibré cotangent projectif d’une
variété analytique complexe. Suivant des idées d’Andronikof, nous considérons d’abord
les germes de faisceaux pervers microlocaux en un point en utilisant les outils clas-
siques de la théorie microlocale des faisceaux. Ensuite nous utilisons la théorie des
ind-faisceaux analytiques de Kashiwara-Schapira pour globaliser notre construction.
Cette présentation nous permettra de formuler explicitement une version globale de la
correspondance de Riemann-Hilbert microlocale.
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1. Introduction

In [8] Kashiwara constructed the stack of microdifferential modules on a
complex contact manifold, generalizing the stack of modules over the ring of
microdifferential operators EX on the projective cotangent bundle P ∗X of a
complex manifold X . In his discussion Kashiwara asked for the construction of
a stack of microlocal perverse sheaves that should be equivalent to the stack of
regular holonomic modules by a microlocal Riemann-Hilbert correspondence.
Such a stack should be defined over any field k, but the Riemann-Hilbert mor-
phism only makes sense over C.

There have been several attempts to construct a local version of such a stack.
In [1] Andronikof defined a prestack on P ∗X and announced the microlocal
Riemann-Hilbert correspondence on the stalks. However, at that time there
did not exist tools to define a global microlocal Riemann-Hilbert morphism.
Another topological construction was proposed in [6], but to our knowledge
this project has neither been completed nor published.

Our approach makes use of the theory of analytic ind-sheaves, recently intro-
duced in [12] by Kashiwara and Schapira. Hence, microlocal perverse sheaves
on a C×-conic open subset U ⊂ T ∗X will be ind-sheaves (or more precisely ob-
jects of the derived category of ind-sheaves) on U contrary to the construction
of [1], in which microlocal perverse sheaves on U ⊂ T ∗X were represented by
complexes of sheaves on the base space X . The theory of ind-sheaves provides
us with a nice representative of the stack associated to the prestack of [1] and al-
lows us to use the machinery developed in [12]. The essential tool in this descrip-
tion is Kashiwara’s functor of ind-microlocalization µ : Db(kX )→ Db(I(kT∗X))
of [9]. This functor enables us to define explicitly a global Riemann-Hilbert
morphism when k = C.

In the future, we will hopefully show that we can actually patch (a twisted
version of) this stack on a complex contact manifold and prove the Riemann-
Hilbert theorem in the complex case.

In more detail, the contents of this paper are as follows.
In Section 2 we recall first the theory of microlocalization of [11] on a real

manifold X . We do not review in detail the theory of the micro-support of
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sheaves but concentrate on the definition of the microlocal category Db(kX , S)
where S ⊂ T ∗X is an arbitrary subset. It is defined as the localization of the
category Db(kX ) by the objects F ∈ Db(kX ) whose micro-support does not
intersect S. For any F,G ∈ Db(kX) we get a natural morphism

HomDb(kX ,S)(F,G) −→ H0
(
S, µhom(F,G)

)
.

In the case where S = {p}, p ∈ T ∗X the category Db(kX , p) has been inten-
sively studied in [11], and in particular it is proved that the morphism above
is an isomorphism. We will show that this result is still valid in the category
Db(kX , {x}× δ̇) where x is a point of X , δ ⊂ T ∗

xX a closed cone and δ̇ = δ\{0}.
Later we will be mainly interested in the case where δ is a complex line. The
main tool is the refined microlocal cut-off lemma for non-convex sets, which we
recall adding a few comments. We will also need the cut-off functor in Section 5.

Section 3 extends the definitions and results of Section 3 first to R-
constructible then to C-constructible sheaves. There are two natural ways to
define the microlocalization of the derived category of R-constructible sheaves.
We either localize the category Db

R-c(kX ) by sheaves whose micro-support does
not intersect S or we take the full subcategory of Db(kX , S) whose objects are
represented by R-constructible sheaves. Following [2] we will use the first defi-
nition. One important question is whether or not the two definitions coincide.
The main result of this section is that this is the case when S = {x} × δ̇.

In Section 4 we show that the constructions of Section 3 are locally“invariant
under quantized contact transformations”.

Section 5 is devoted to the study of microlocally C-constructible sheaves
in the category Db(kX ,C

×p). In Section 4 we have shown that the category
Db

C-c(kX ,C
×p) is invariant by quantized contact transformation. Hence we are

reduced to study microlocally C-constructible sheaves in generic position, i.e.,
complexes of sheaves whose micro-support is contained in T ∗

ZX for a complex
(not necessarily smooth) hypersurface Z in a neighborhood of p. We give a
complete proof that microlocally C-constructible sheaves in generic position
may be represented by C-constructible sheaves (as announced in [1]).

Following [1], we define in Section 6 the category of microlocal perverse
sheaves as a full subcategory of Db

C-c(kX ,C
×p). An object F ∈ Db

C-c(kX ,C
×p)

is perverse if for any non-singular point q ∈ SS(F) in a neighborhood of C×p
the complex F is isomorphic in Db(kX ,C

×q) to a constant sheaf MY [dY ] sup-
ported on a closed submanifold Y ⊂ X . This definition is natural in view of
the microlocal characterization of perverse sheaves of [11] and also leads to the
definition of a prestack of microlocal perverse sheaves on P ∗X . Then we prove
that the category Db

perv(kX ,C
×p) is abelian as has been announced in [1]. Our

proof gives a refined result which allows us to conclude that the stack associ-
ated to this prestack is abelian. This stack is the stack of microlocal perverse
sheaves on P ∗X .
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In Section 7 we finally define microlocal perverse sheaves as particular objects
of the derived category of ind-sheaves on conic open subsets of T ∗X . In Section 6
we have constructed the category of microlocal perverse sheaves at any p ∈ P ∗X
(or on C×p ⊂ Ṫ ∗X) which will be equivalent to the stalk of the stack µPerv
of microlocal perverse sheaves. The idea of the construction of µPerv is to use
the fact Kashiwara’s functor µ of ind-microlocalization induces a fully faithful
functor from Db

perv(kX ,C
×p) into the stalk of the prestack of bounded derived

categories of ind-sheaves on C×-conic subsets of T ∗X . Then we can define a
microlocal perverse sheaf on a conic open subset U ⊂ T ∗X as an object of
Db(I(kU )) that is isomorphic to a microlocal perverse sheaf of Db

perv(kX ,C
×p)

at any point of p ∈ U . We show that the stack of microlocal perverse sheaves is
canonically equivalent to the stack associated to the prestack of the last section.
Finally, we state without proof the microlocal Riemann-Hilbert theorem which
will be the subject of a forthcoming paper.

Appendix A recalls the concepts of 2-limits and 2-colimits in the category of
all small categories.

Appendix B gives a short introduction to stacks with emphasis on the special
properties resulting from the fact that we work on a topological space. Then
we give a criterion for subprestacks of the prestack of derived categories of
ind-sheaves on a manifold to be stacks. It is a generalization of a proof of [11]
showing that the prestack of perverse sheaves is a substack of the prestack
of derived categories of sheaves with C-constructible cohomology. Then we
investigate abelian stacks on a topological space. Roughly speaking, an additive
stack on a topological space is abelian if and only if its stalks are abelian
categories and we have a “lifting property” for kernels and cokernels.

We would like to thank P. Schapira both for having suggested this subject
to us, and for always having been ready with precious help, guidance and en-
couragement throughout the last three years. Secondly, our gratitude goes
out to M. Kashiwara with whom we had many invaluable conversations. We
would particularly like to thank him for having shared with us his unpub-
lished work on the microlocalization of ind-sheaves. It goes without saying, of
course, that we could never have been able to complete this work without either
of them. Finally, we would like to thank A. D’Agnolo, P. Polesello, F. Ivorra
and D.-C. Cisinski for many useful discussions.

2. Microlocalization of sheaves

2.1. Notations. — Let R+ denote the group of strictly positive real numbers
and C× the group of non-zero complex numbers. We will mainly work on a
fixed complex manifold(1) X of complex dimension dimCX = dX . Let T ∗X be

(1) All manifolds (complex or real) in this paper are supposed to be finite dimensional with
a countable base of open sets.

tome 132 – 2004 – no 3



THE STACK OF MICROLOCAL PERVERSE SHEAVES 401

its cotangent bundle and T ∗
XX the zero section. Set Ṫ ∗X = T ∗X \ T ∗

XX and

let P ∗X = Ṫ ∗X/C× be the projective cotangent bundle. We denote the natural
map by

γ : Ṫ ∗X −→ P ∗X.

If Λ ⊂ Ṫ ∗X is a subset, we define the antipodal set Λa as

Λa =
{
(x; ξ) | (x;−ξ) ∈ Λ

}
,

and we set

R+Λ =
{
(x; ξ) ∈ Ṫ ∗X | ∃α ∈ R+, (x;αξ) ∈ Λ

}
.

We define similarly C×Λ. Hence C×Λ = γ−1γ(Λ). If Λ = {p} is a point, we
will write C×p instead of C×{p}.

We say that a subset Λ ⊂ Ṫ ∗X is R+-conic (resp. C×-conic) if it is stable
under the action of R+ (resp. C×), i.e. if R+Λ = Λ (resp. C×Λ = Λ).

In the sequel, we will often deal with R+-conic subsets that are only locally
C×-conic. More precisely, a subset Λ ⊂ Ṫ ∗X is called C×-conic at p ∈ Ṫ ∗X if
there exists an open neighborhood U of p such that U ∩ C×Λ = U ∩ Λ. Note
that this definition still makes sense if Λ is a germ of a subset at p. An open
subset is always C×-conic at each p ∈ U .

Let S ⊂ Ṫ ∗X be another subset, and suppose that Λ is defined on a germ of
a neighborhood of S. Then we say that Λ is C×-conic on S if it is C×-conic at
every point of S. Clearly this is equivalent to the statement that there exists
an open neighborhood U of S such that U ∩ C×Λ = U ∩ Λ. In particular, Λ
is C×-conic on Ṫ ∗X if and only if it is C×-conic.

Finally we call the following easy topological lemma to the reader’s attention.

Lemma 2.1.1. — Let S ⊂ Ṫ ∗X be a C×-conic set and U ⊃ S an R+-conic open
neighborhood. Then there exists a C×-conic open set V such that S ⊂ V ⊂ U .

Now let us fix the conventions for sheaves. All sheaves considered here are
sheaves of vector spaces over a given field k. We will consider the following
categories:

• Db(kX) is the derived category of bounded complexes of sheaves of k vector
spaces;

• Db
R-c(kX) is the full subcategory of Db(kX ) whose objects have R-

constructible cohomology;
• Db

C-c(kX) is the full subcategory of Db
R-c(kX ) whose objects have C-

constructible cohomology;
• Perv(kX ) is the full abelian subcategory of Db

C-c(kX) whose objects are
perverse sheaves. We will follow the conventions for the shift of [11], which
imply that a perverse sheaf is concentrated in degrees −dX to 0.

We will not recall the construction of these categories here, for more details
see for instance [11].
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2.2. Microlocalization of sheaves. — In this section we recall the con-
struction and some properties of the microlocalization of Db(kX ) on a subset
S ⊂ T ∗X (see [11, Section VI]) which we will then discuss from the (pre)stack-
theoretical point of view. Note that all definitions and statements below which
do not involve C×-conic subsets of T ∗X are valid on a real manifold.

Recall that if F ∈ Db(kX ), then one can associate to F a closed R+-conic
involutive subset SS(F) of T ∗X called the micro-support of F. The theory of
the micro-support can be found in [11]. It is the set of codirections in which
F “does not propagate”. More precisely, a point p ∈ T ∗X is not a point of the
micro-support if and only if there exists an open neighborhood U of p such that
for any x ∈ X and any real map ψ of class C1 with ψ(x) = 0 and (dψ)x ∈ U
we have (

RΓ{x|ψ(x)>0}(F)
)
x
' 0.

Let S ⊂ T ∗X be an arbitrary subset. Set

NS =
{
F ∈ Db(kX ) | SS(F) ∩ S = ∅

}
.

It is easily verified that NS defines a full triangulated subcategory of Db(kX).
Note that if x ∈ S ∩ T ∗

XX then F ∈ NS implies F ' 0 in a neighborhood of x.

Definition 2.2.1. — The microlocalization of Db(kX) on S is the localization
of the triangulated category Db(kX ) by the full triangulated subcategory NS ,
which we denote by

Db(kX , S) = Db(kX)/NS .

If S = {p}, we will write Db(kX , p) for Db(kX , {p}).

Note that an object F in Db(kX , S) is isomorphic to zero if and only if F ⊕
F[1] ∈ NS and since SS(F⊕F[1]) = SS(F) this is equivalent to SS(F) ∩ S = ∅.

A morphism F → G of Db(kX) is called an isomorphism on S if it is an
isomorphism in Db(kX , S). This is equivalent to the existence of a distinguished
triangle in Db(kX )

F −→ G −→ H
+
−→

with SS(H) ∩ S = ∅. From this it follows easily that if F
∼
→ G is an isomor-

phism in Db(kX , S), then SS(F) ∩ S = SS(G) ∩ S. Hence the micro-support of
F ∈ Db(kX , S) is well-defined in a germ of a neighborhood of S.

Let F,G ∈ Db(kX , S). By definition we have

HomDb(kX ,S)(F,G) ' lim
−→

F′ ∼→F

on S

HomDb(kX)(F
′,G).

Consider x ∈ X . For any open neighborhood U 3 x one gets a functor

Db(kU ) −→ Db(kX , x) ' Db
(
kX , π

−1(x)
)
−→ Db

(
kX , π̇

−1(x)
)
.

These functors define

Db(kX )x −→ Db(kX , x) −→ Db
(
kX , π̇

−1(x)
)
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where Db(kX )x denotes the stalk at x of the prestack U 7→ Db(kU ). Set

LCx =
{
F ∈ Db(kX )x | SS(F) ⊂ T ∗

XX in a neighborhood of x
}
.

Clearly, LCx defines a full triangulated subcategory of Db(kX )x and we easily
get

Lemma 2.2.2. — The diagram

Db(kX)x
∼

Db(kX , x)

Db(kX )x/LCx ∼ Db(kX , π̇
−1(x))

commutes up to isomorphism and the horizontal functors are equivalences of
categories.

Remark 2.2.3. — Note that by Proposition 6.6.1 of [11] the objects of LCx
are precisely the germs of local systems at x, hence

LCx =
{
F ∈ Db(kX)x | ∃U 3 x, ∃M ∈ Db(Vect(k)) : F 'MX in Db(kX )x

}
.

We will have constant recourse to the following easy lemma.

Lemma 2.2.4. — Let S ⊂ Ṫ ∗X be any subset. Consider a morphism F → G

of Db(kX ) that is an isomorphism on S. Then there exists an R+-conic open
neighborhood U of S such that F → G is an isomorphism on U . In particular
SS(F) ∩ U = SS(G) ∩ U . If moreover S is C×-conic, then we can choose U
to be C×-conic.

Proof. — By hypothesis there exists a distinguished triangle in Db(kX)

F −→ G −→ H
+
−→

such that SS(H) ∩ S = ∅. Since ṠS(H) is a closed R+-conic subset of Ṫ ∗X ,

the set U = {ṠS(H) is an open and R+-conic neighborhood of S such that
SS(H)∩U = ∅. Now suppose that S is C×-conic. To prove the last statement
we use the fact that every R+-conic open neighborhood V of S contains a C×-
conic open neighborhood of S.

Recall that to any F,G ∈ Db(kX) we can associate the object µhom(F,G) ∈
Db(kT∗X) (see [11], Section IV). This complex satisfies

supp
(
µhom(F,G)

)
⊂ SS(F) ∩ SS(G).

Therefore µhom(F,G)S is well-defined for F,G ∈ Db(kX , S).

For an arbitrary subset S there is a natural morphism

(2.2.1) HomDb(kX ,S)(F,G) −→ H0
(
S, µhom(F,G)

)
.
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Let us recall its construction. For any two objects F1,F2 ∈ Db(kX ) we have a
canonical isomorphism

HomDb(kX )(F1,F2) ' H0
(
T ∗X,µhom(F1,F2)

)

which defines a morphism

HomDb(kX )(F1,F2) −→ H0
(
S, µhom(F1,F2)

)
.

Now if F′ → F is an isomorphism on S we get an induced isomorphism

H0
(
S, µhom(F,G)

) ∼
−→ H0

(
S, µhom(F′,G)

)
.

Thus we get morphisms

HomDb(kX )(F
′,G) −→ H0

(
S, µhom(F,G)

)

which induce the morphism (2.2.1).

There is a well-known situation in which this morphism is an isomorphism
(see [11], Theorem 6.1.2).

Proposition 2.2.5. — Let p ∈ T ∗X and F,G ∈ Db(X, p). Then the morphism
(2.2.1)

HomDb(X,p)(F,G) −→ H0µhom(F,G)p

is an isomorphism.

The idea is to calculate both sides by using microlocal cut-off functors.
We will show that a similar strategy works in the case of a closed cone in Ṫ ∗

xX ,
x ∈ X .

However, the morphism (2.2.1) is not an isomorphism in general (cf. [11,
Exercise VI.6], which gives a counter-example on an open subset).

Remark 2.2.6. — The correspondence

T ∗X ⊃ U 7−→ Db(kX , U)

defines a prestack on T ∗X , which we will usually denote by Db(kX , ∗). Further,
we denote by Db(kX , ∗)p its stalk at p ∈ T ∗X . Note that γ∗D

b(kX , ∗)|Ṫ∗X

defines a prestack on P ∗X .

Proposition 2.2.7. — Let S be a subset of Ṫ ∗X. Then the natural functor

2 lim
−→

S ⊂ U ⊂ Ṫ∗X

U R
+-conic

Db(kX , U) −→ Db(kX , S)

is an equivalence.
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Proof. — The functor is obviously essentially surjective. Let us show that it is
fully faithful. Let F,G ∈ Db(kX). By Lemma 2.2.4 we get

Hom2 lim
−→

S⊂U⊂Ṫ∗X

U R
+-conic

Db(kX ,U)(F,G) ' lim
−→

S⊂U⊂Ṫ∗X

U R
+-conic

HomDb(kX ,U)(F,G)

' lim
−→

S⊂U⊂Ṫ∗X

U R
+-conic

lim
−→

F
′ ∼→F

on U

HomDb(kX )(F
′,G)

' lim
−→

S⊂U⊂Ṫ∗X

lim
−→

F
′ ∼
→ F

on U

HomDb(kX)(F
′,G)

' HomDb(kX ,S)(F,G).

Corollary 2.2.8. — Let S be a C×-conic subset of Ṫ ∗X and p ∈ T ∗X.

(i) The natural functor

2 lim
−→

S⊂U⊂Ṫ∗X

U C
×-conic

Db(kX , U) −→ Db(kX , S)

is an equivalence.
(ii) The natural functor

Db(kX , ∗)p −→ Db(kX , p)

is an equivalence. If moreover p ∈ Ṫ ∗X then

γ∗
(
Db(kX , ∗)|Ṫ∗X

)
γ(p)
' Db

(
kX , γ

−1γ(p)
)

= Db(kX ,C
×p).

Proof. — Part (i) follows from the proposition by Lemma 2.2.7 and (ii) follows
from Lemma 2.2.7 and (i).

2.3. Refined microlocal cut-off. — Let us recall the basic idea of a mi-
crolocal cut-off functor. Let X be a finite dimensional real vector space, U 3 0 a
relatively compact open neighborhood of 0 and consider an open cone γ ⊂ X∗.

Definition 2.3.1. — A microlocal cut-off functor on U × γ is a functor

ΦU,γ : Db(kX ) −→ Db(kX )

such that

(i) SS(ΦU,γ(F)) ⊂ X × γ;

(ii) SS(ΦU,γ(F)) ∩ U × γ = SS(F) ∩ U × γ;
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(iii) ΦU,γ is equipped with a morphism of functors α : ΦU,γ → Id such that
α induces an isomorphism in Db(kX , U × γ) which can be visualized by

Db(kX )
ΦU,γ

Db(kX)

Db(kX , U × γ)
ΦU,γ ' Id

Db(kX , U × γ).

Note that condition (iii) implies (ii).

If the cut-off functor ΦU,γ allows us to estimate the micro-support of ΦU,γ(F)
in the fiber {0} ×X∗, we usually call it a refined microlocal cut-off.

A cut-off functor is easily constructed in the case of a convex open cone (see
Proposition 5.2.3 of [11]). A generalization to non-convex cones is stated in Ex-
ercise V.8 of [11] (for a proof see [4]). These tools will allow us in Section 2.4 to
calculate sections of µhom along a complex line (or more generally along closed
cones of T ∗

xX where x ∈ X). The result will imply that the morphism (2.2.1)
is an isomorphism in this case.

Later we will need to construct a functor Db
C-c,Λ(kX ,C

×p)→ Db
C-c(kX , π(p))

if Λ is in generic position at p (Section 5.1). For this purpose we will need
the refined microlocal cut-off of [4]. It is an extension of the classical “refined
microlocal cut-off lemma” (Proposition 6.1.4 of [11]) to non-convex cones with
a good estimate for the micro-support.

Let us recall the cut-off functor of [11], Exercise V.8. Let X be a real, finite

dimensional vector space, Ẋ = X \ {0}, U ⊂ X an open subset and γ ⊂ X∗ an
open cone.

We have the following natural morphisms:

X ×X
q1

ss̃
q2

X X X

where q1 and q2 are the natural projections and

s : X ×X −→ X, (x, y) 7−→ x+ y;

s̃ : X ×X −→ X, (x, y) 7−→ x− y.

We define the functor ΦU,γ by setting for any F ∈ Db(kX)

ΦU,γ(F) = k∧

γa ∗ FU = Rs!(q
−1
1 k∧

γa ⊗ q−1
2 FU ),

where (.)∧ denotes the Fourier-Sato Transformation (see [11]). It can be shown
that ΦU,γ is a microlocal cut-off functor in the sense of Definition 2.3.1. Let us
add two easy lemmas which will be useful in the next section.
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Lemma 2.3.2. — Let F,G ∈ Db(kX ). Then we have a canonical isomorphism

Rs!(q
−1
1 F ⊗ q−1

2 G) ' Rq1!(s̃
−1F ⊗ q−1

2 G)

Lemma 2.3.3. — Let γ1, γ2 ⊂ X∗ be two open cones and U ⊂ X open. Then
there is a natural distinguished triangle

ΦU,γ1∩γ2(F) −→ ΦU,γ1(F) ⊕ ΦU,γ2(F) −→ ΦU,γ1∪γ2(F)
+
−→ .

Next, we recall D’Agnolo’s condition under which the cut-off functor ΦU,γ

is refined. These results will not be needed until Section 5.1.

Definition 2.3.4. — If γ ⊂ X∗ is an open cone, set

∂◦γ = πχ
(
SS(Cγ) \ {0; 0}

)

where χ : T ∗X∗ → T ∗X is defined by χ(ξ;x) = (x;−ξ).

One says that (U, γ) is a refined cutting pair at 0, if U ⊂ X is a relatively

compact open neighborhood of 0 and for any x ∈ ∂U ∩ ∂◦γ there exists ξ ∈ Ẋ
such that N∗

x(U) = R>0ξ and χ(SS(kγ))∩π−1(x) = R60ξ. Here N∗
x(U) denotes

the conormal cone to U at x.

This allows one to give a good estimate of the micro-support of ΦU,γ(F) at
the origin.

Proposition 2.3.5. — Let (U, γ) be a refined cutting pair at 0. Then

SS
(
ΦU,γ(F)

)
∩ π̇−1(0)

⊂
{
ξ ∈ γ | (0; ξ) ∈ SS(F)

}
∪

{
ξ ∈ ∂γ | ∃x ∈ U : (x, ξ) ∈ SS(F)

}
.

Let us add a useful corollary:

Corollary 2.3.6. — Let (U, γ) be a refined cutting pair at 0 and suppose that
SS(F)∩(U×∂γ) = ∅. Then there exists an open neighborhood V of 0 such that

SS
(
ΦU,γ(F)

)
∩ π̇−1(V ) = SS(F) ∩ (V × γ).

Proof. — Since SS(ΦU,γ(F)) ⊂ X × γ and

SS
(
ΦU,γ(F)

)
∩ (U × γ) = SS(F) ∩ (U × γ),

it is enough to show that SS(ΦU,γ(F))∩ V × ∂γ = ∅ for some neighborhood V
of 0. D’Agnolo’s estimate of the micro-support implies that this is at least
true at 0.

Now suppose that such a neighborhood V does not exist. Then we can con-
struct a sequence (xn, ξn) such that xn → 0 and ξn ∈ SSxn

(ΦU,γ(F)) ∩ ∂γ.
Since both sets are invariant by R>0 we can assume that |ξn| = 1, hence by ex-
tracting a subsequence we can suppose that ξn → ξ. Since ∂γ and SS(ΦU,γ(F))

are closed we get by the estimate of the micro-support that there exists x ∈ U
such that (x, ξ) ∈ SS(F) which is impossible by hypothesis.
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Finally, let us state an existence lemma for refined cutting pairs.

Lemma 2.3.7. — Let X be a real vector space and L ⊂ X a subspace of X.
Then there exists a fundamental system of open conic neighborhoods γ of
(Ṫ ∗
LX)0 such that for each γ there exists a fundamental system of open

neighborhoods U of 0 in X such that (U, γ) is a refined cutting pair.

Proof. — This lemma is shown in [4] during the proof of Corollary 3.4 using
Lemma 3.3.

2.4. Morphisms in Db(kX , {x} × δ̇). — In this section we will show that
the natural morphism

HomDb(kX ,{x}×δ̇)
(F,G) −→ H0

(
{x} × δ̇, µhom(F,G)

)

is an isomorphism, where x ∈ X and δ ⊂ T ∗
xX is a closed cone. In order to

prove this, we will first consider the composition

(∗)δ lim−→
U,γ

H0 RHom
(
ΦU,γ(F)U ,G

)
−→ HomDb(kX ,{x}×δ̇)

(F,G)

−→ H0
(
{x} × δ̇, µhom(F,G)

)

and show that it is an isomorphism. Here U runs through the family of rela-
tively compact open neighborhoods of 0 and γ through the set of open cones
containing δ̇.

Lemma 2.4.1. — Let X be a real vector space and consider a closed convex
proper cone δ ⊂ X∗. Then the natural morphism

(∗)δ lim
−→
U,γ

HnRHom
(
ΦU,γ(F)U ,G

)
−→ Hn

(
{0} × δ̇, µhom(F,G)

)

is an isomorphism. Here U runs through the family of relatively compact open
neighborhoods of 0 and γ through the set of open cones containing δ̇.

Proof. — First note that since µhom(F,G) is conic, we have

Hn
(
{0} × δ̇, µhom(F,G)

)
' lim
−→
U,γ

Hn
(
U × γ, µhom(F,G)

)
.

Since γ is open, convex and proper, we have by [11], Theorem 4.3.2

Hn
(
U × γ, µhom(F,G)

)
' lim
−→
V,Z

Hn
Z∩V

(
V,RHom(q−1

2 F, q!1G)
)
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where V runs through the family of open subsets of T∆X
(X × X) ' X × X

such that V ∩ ∆X = U (i.e. q1(V ) = U) and Z through the family of closed
subsets such that the inclusion C∆X

Z ⊂ U × γ◦ holds(2) .

We have the following chain of isomorphisms

RΓZ∩V

(
V,RHom(q−1

2 F, q!1G)
)
' RΓ

(
V,RΓZ∩V RHom(q−1

2 F, q!1G)
)

' RΓ
(
V,RHom((q−1

2 F)Z∩V , q
!
1G)

)
' RΓ

(
U ×X,RHom((q−1

2 F)Z∩V , q
!
1G)

)

' RΓ
(
U,RHom(Rq1!(q

−1
2 F)Z∩V ,G

)
' RHom

(
(Rq1!(kZ∩V ⊗ q

−1
2 F)U ,G

)
.

Hence we have

Hn
(
{0} × δ̇, µhom(F,G)

)
' lim
−→
U,γ

lim
−→
V,Z

HnRHom
(
(Rq1!(kZ∩V ⊗ q

−1
2 F))U ,G

)
.

Now fix U, γ and V, Z. Then V contains a small relatively compact open neigh-
borhood of 0 of type U ′×U ′. Moreover we may assume by cofinality that Z is
of the form s̃−1γ◦ in a neighborhood of 0. Hence Z∩V contains s̃−1γ◦∩U ′×U ′.
We can therefore remove the second limit by replacing V ∩Z with s̃−1γ◦∩U×U .
Then we get

RHom((Rq1!(kZ∩V ⊗ q
−1
2 F))U ,G) ' RHom((Rq1!(s̃

−1kγ◦ ⊗ q−1
2 FU ))U ,G)

' RHom((Rs!(q
−1
1 k∧

γa ⊗ q−1
2 FU ))U ,G) ' RHom(ΦU,γ(F)U ,G).

Therefore

Hn
(
{0} × δ̇, µhom(F,G)

)
' lim
−→
U,γ

Hn RHom
(
ΦU,γ(F)U ,G)

)
.

Lemma 2.4.2. — For any closed cone δ ⊂ X∗ consider the morphism (∗)δ.
Let δ1, δ2 ⊂ X∗ be two closed cones such that the morphisms (∗)δ1 , (∗)δ2 and
(∗)δ1∩δ2 are isomorphisms. Then (∗)δ1∪δ2 is an isomorphism.

Proof. — By Lemma 2.3.3 we get a morphism of distinguished triangles such
that the vertical morphisms are given by (∗)δ1∩δ2 , (∗)δ1 ⊕ (∗)δ2 and (∗)δ1∪δ2 .
Then the lemma follows from the Five Lemma.

Proposition 2.4.3. — Let X be a real vector space and consider a closed cone
δ ⊂ X∗. Then the natural morphism

(∗)δ lim
−→
U,γ

HnRHom
(
ΦU,γ(F)U ,G

)
−→ Hn

(
{0} × δ̇, µhom(F,G)

)

(2) Here C∆X
Z denotes the normal cone to Z along the diagonal ∆X (see [11], Def. 4.1.1)

and γ◦ denotes the polar cone of γ, i.e.,

γ◦ = {x ∈ X∗ | 〈y, x〉 > 0 for all y ∈ γ}.
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is an isomorphism. Here U runs through the family of relatively compact open
subsets of 0 and γ through the set of open cones containing δ̇.

Proof. — First suppose that δ can be written as a finite union of closed convex
proper cones. Note that the intersection of two proper, closed, convex cones
is again proper, closed and convex. Therefore, if δ′ is the union of n closed,
convex, proper cones then the intersection of a closed, convex, proper cone
with δ′ can be written as a union of n closed convex proper cones. Using
Lemma 2.4.1 and the previous lemma we can then easily show the proposition
by induction on the number of closed, convex, proper cones that cover δ.

Now let us consider the general case. Every closed cone is a decreasing
intersection of closed cones δi that can be covered by a finite number of closed
convex proper cones(3). Then (∗)δ = lim

−→
(∗)δi

is an isomorphism.

Theorem 2.4.4. — Let X be a real manifold, x ∈ X and δ ⊂ T ∗
xX a closed

cone. Then the natural morphism

HomDb(kX ,{x}×δ̇)
(F,G) −→ H0

(
{x} × δ̇, µhom(F,G)

)

is an isomorphism.

Proof. — By Proposition 2.4.3 we know that the morphism (∗)δ is an isomor-
phism. Therefore the morphism of the theorem is surjective.

Let us prove that it is injective. Let F → G be a morphism of Db(kX , {x}×δ̇)
that is zero in H0({x}× δ̇, µhom(F,G)). Then we may represent this morphism
by a morphism F′ → G in Db(kX ) and a morphism F′ → F that is an isomor-

phism on {x} × δ̇. We get a commutative diagram

Hom
Db(kX )

(
F′,G

)

Id

Hom
Db(kX ,{x}×δ̇)

(
F,G

)

o

lim
−→
U,γ

R0 Hom
(
ΦU,γ(F)U ,G

)

o

Hom
Db(kX )

(
F′,G

)
Hom

Db(kX ,{x}×δ̇)

(
F′,G

) lim
−→
U,γ

R0 Hom
(
ΦU,γ(F

′)U ,G
)
.

Using the diagram, we see that there exists (U, γ) such that ΦU,γ(F
′)U → F′ → G

is the zero map in Db(kX). But ΦU,γ(F
′)U → F′ is an isomorphism on {x}× δ̇,

and therefore F′ → G represents the zero morphism in Db(kX , {x} × δ̇).

(3) The proof is done by a simple compacity argument in Ẋ/R+. For every p ∈ δ choose a
closed convex proper cone with angle ε that contains p. Then a finite number of these cones,
say γ1, γ2, . . . , γn, will cover δ and we set δ1 =

⋃
i=1,...,nγi. The next cone δ2 is constructed

by choosing for each point a closed convex proper cone with angle 1
2
ε. Again a finite number

will cover δ, say γ′
1, . . . , γ′

m. Then we define δ2 as the union of all intersections γi ∩γ′
j and we

proceed by induction. It is clear by construction that the intersection of the δi is the cone δ.
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3. Microlocalization of constructible sheaves

3.1. Microlocalization of R-constructible sheaves. — Consider the full
triangulated subcategory Db

R-c(kX ) ⊂ Db(kX ) and a subset S ⊂ T ∗X . There
are two obvious ways to define the microlocalization of the derived category
of R-constructible sheaves on S that we recall now. Set

NR-c,S = NS ∩ Db
R-c(kX ).

Then the inclusion Db
R-c(kX) ⊂ Db(kX) induces a triangulated functor

(3.1.1) Db
R-c(kX , S) −→ Db(kX , S).

Clearly the objects of the image of this functors are complexes in Db(kX , S)
with R-constructible cohomology. But the functor is not fully faithful in gen-
eral, and therefore another possible definition of microlocal R-constructible
sheaves would be the full subcategory of Db(kX , S) defined by its image. For
our purpose it will be convenient to work with the category Db

R-c(kX)/NR-c,S

as does Andronikof in [1], [2].

Definition 3.1.1. — We set

Db
R-c(kX , S) = Db

R-c(kX )/NR-c,S .

Remark 3.1.2. — Note that although the natural functor Db
R-c(kX , S) →

Db(kX , S) is not fully faithful we have nevertheless by definition that F ' 0 if
and only if SS(F) ∩ S = ∅. Hence if F → G is a morphism in Db

R-c(kX ) we get
that F → G is an isomorphism in Db

R-c(kX , S) if and only if it is an isomorphism
in Db(kX , S), hence if and only if there is a distinguished triangle in Db

R-c(kX)

F −→ G −→ H
+
−→

such that SS(H) ∩ S = ∅. More generally we get

Proposition 3.1.3. — The natural functor

Db
R-c

(kX , S) −→ Db(kX , S)

is conservative, i.e., a morphism F → G of Db
R-c

(kX , S) is an isomorphism
in Db

R-c
(kX , S) if and only if it is an isomorphism in Db(kX , S).

Proof. — We embed F → G in a distinguished triangle

F −→ G −→ H
+
−→

in Db
R-c(kX , S). If F → G is an isomorphism in Db(kX , S) then H ' 0 in

Db(kX , S). Hence SS(H)∩S = ∅. Therefore H ' 0 in Db
R-c(kX , S) and F → G

is an isomorphism in Db
R-c(kX , S).

However there are some situations when the functor (3.1.1) is fully faithful.
For instance, Andronikof remarked that the proof of Proposition 2.2.5 holds in
the constructible case, hence
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Proposition 3.1.4. — Let F,G ∈ Db
R-c

(kX , p). Then there is a canonical
isomorphism

HomDb
R-c

(kX ,p)(F,G)
∼
−→ H0µhom(F,G)p

and the natural functor Db
R-c

(kX , p) −→ Db(kX , p) is fully faithful.

3.2. The category Db
R-c

(kX , {x} × δ̇). — We will see that the natural
morphism (3.1.1) is a an isomorphism for orbits of C× and more generally for

closed cones δ̇ in Ṫ ∗
xX for some x ∈ X .

Proposition 3.2.1. — Let F,G ∈ Db
R-c

(kX ). Then the natural morphism

HomDb
R-c

(kX ,{x}×δ̇)
(F,G) −→ HomDb(kX ,{x}×δ̇)

(F,G)

is an isomorphism.

Proof. — We may assume that X is a vector space. Note that if F ∈ Db
R-c(kX),

then ΦU,γ(F)U is R-constructible for any relatively compact subanalytic open
subset U 3 0 and any subanalytic open cone γ ⊂ X . Then the results of Sec-
tion 2.4 hold in the R-constructible case. More precisely, we see first (as in
Proposition 2.4.3) that the composition

lim
−→
U,γ

H0 RHom
(
ΦU,γ(F)U ,G

)
−→ HomDb

R-c(kX ,{x}×δ̇)
(F,G)

−→ HomDb(kX ,{x}×δ̇)
(F,G) −→ H0

(
{x} × δ̇, µhom(F,G)

)

is an isomorphism and then (as in Theorem 2.4.4) that the composition

HomDb
R-c(kX ,{x}×δ̇)

(F,G)→ HomDb(kX ,{x}×δ̇)
(F,G)→ H0

(
{x}× δ̇, µhom(F,G)

)

is an isomorphism. Since the second morphism of the last composition is an
isomorphism, we get the result.

Combining Proposition 3.2.1 and Theorem 2.4.4 we get the following theo-
rem.

Theorem 3.2.2. — Let δ ⊂ T ∗
xX be a closed cone. Then the natural functor

Db
R-c

(
kX , {x} × δ̇

)
−→ Db

(
kX , {x} × δ̇

)

is fully faithful. Moreover for every F,G ∈ Db
R-c

(kX , {x} × δ̇) we have

HomDb
R-c

(kX ,{x}×δ̇)
(F,G)

∼
−→ H0

(
{x} × δ̇, µhom(F,G)

)
.
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3.3. Microlocally C-constructible sheaves. — Recall the microlocal
characterization of complexes with C-constructible cohomology sheaves given
in [11, Theorem 8.5.5].

Proposition 3.3.1. — A complex F in Db(kX) has C-constructible cohomol-
ogy if and only if F ∈ Db

R-c
(kX ) and SS(F) is a C×-conic subset of T ∗X.

If S ⊂ T ∗X is a not necessarily C×-conic subset, then this suggests the
definition of a microlocally C-constructible sheaf on S as follows:

Definition 3.3.2. — (i) An object F ∈ Db
R-c(kX ) (or Db

R-c(kX , S
′) for

S′ ⊃ S) is called microlocally C-constructible on S if SS(F) is C×-conic on S.
(ii) We denote by Db

C-c(kX , S) be the full subcategory of Db
R-c(kX , S) con-

sisting of microlocally C-constructible sheaves on S.

Remark 3.3.3. — Note that the category of microlocally C-constructible
sheaves (on S) is different from the category Db

C-c(kX)/(NS ∩ Db
C-c(kX)) (i.e.,

the microlocalization of C-constructible sheaves). There is a natural functor

Db
C-c(kX )/(NS ∩Db

C-c(kX)) −→ Db
C-c(kX , S),

but in general, an object in Db
C-c(kX , S) cannot be represented by a complex

with C-constructible cohomology sheaves. One shall keep in mind that by
definition an object in Db

R-c(kX , S) (the microlocalization of R-constructible
sheaves) is represented by an R-constructible sheaf on X .

Remark 3.3.4. — Of course Definition 3.3.2, (i) is equivalent to the statement

(i) A sheaf F ∈ Db
R-c(kX ) (resp. F ∈ Db

R-c(kX , S
′) for S′ ⊃ S) is microlocally

C-constructible on S if for every point p of S there exists an open neighborhood
U of p such that U ∩ SS(F) = U ∩ C× SS(F).

Obviously Db
C-c(kX , T

∗X) = Db
C-c(kX) and if x ∈ X , then F ∈ Db

R-c(kX)
defines an object of Db

C-c(kX , x) if and only if F|V is C-constructible for some

neighborhood V of x. However the category Db
C-c(kX , S) is not very easy to

understand in general, especially if S is not C×-conic.

Lemma 3.3.5. — Let F ∈ Db
R-c

(kX) and S ⊂ Ṫ ∗X.

(i) The object F is microlocally C-constructible on S if and only if F is
microlocally C-constructible on R+S.

(ii) Suppose that S ⊂ Ṫ ∗X is C×-conic. Then F is microlocally C-con-
structible on S if and only if F is microlocally C-constructible in γ−1(U) where
U is a germ of a neighborhood of γ(S) in P ∗X.

Proof. — Statement (i) is a consequence of Lemma 2.2.4 and (ii) follows
from (i) and the fact that any R+-conic neighborhood of S contains a C×-conic
neighborhood.
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Remark 3.3.6. — There is an obvious functor Db
C-c(kX ,C

×S)→ Db
C-c(kX , S).

One might ask the question whether or not a sheaf F of Db
C-c(kX , S) can be lifted

to Db
C-c(kX ,C

×S) and if there is a tool to produce an object of Db
C-c(kX ,C

×S)
that is isomorphic to F on S.

There does not seem to be an obvious answer as the following example shows:
Consider X = C2 and the sheaf F = CC×{(0,0)} ⊕ C{0}×R×R×{0}. Then

SS(F) = T ∗
C×{(0,0)}X ∪ T

∗
{0}×R×R×{0}X.

Take p = ((0, 0, 0, 0); (0, 0, 1, 1)) ∈ Ṫ ∗X . Then SS(F) = C×p in a neighbor-
hood of p. But if U ⊃ C×p is an arbitrary neighborhood of C×p, SS(F) is not
C×-conic on U , hence F is microlocally C-constructible at p but not on C×p.
However F is isomorphic in Db

R-c(kX , p) to the sheaf CC×{(0,0)} which is glob-
ally C-constructible. The problem is how to construct CC×{(0,0)} functorially
from F. It cannot be done by a cut-off functor which will always preserve the
micro-support in a neighborhood of C×p.

Hence microlocally C-constructible sheaves should be defined on P ∗X rather
then T ∗X and Definition 3.3.2 will mostly be used for a C×-conic subset X .

3.4. The category Db
C-c

(kX , {x}×δ̇). — The results from Section 2.4 hold
in the C-constructible case. We get:

Proposition 3.4.1. — The natural functors

Db
C-c

(
kX , {x} × δ̇

)
−→ Db

R-c

(
kX , {x} × δ̇

)
−→ Db

(
kX , {x} × δ̇

)

are fully faithful. Moreover for every F,G ∈ Db
R-c

(kX , {x} × δ̇) we have

Hom
Db

C-c

(
kX ,{x}×δ̇

)(F,G)
∼
−→ H0

(
{x} × δ̇, µhom(F,G)

)
.

Proof. — The first functor is fully faithful by definition, the second by Theo-
rem 3.2.2. The second part follows again from Theorem 3.2.2.

4. Invariance by quantized contact transformations

Let ΩX ⊂ T ∗X be an open subset of a real manifold X . In [11], Kashiwara-
Schapira showed that the category Db(kX ,ΩX) (or more generally the prestack
Db(kX , ∗)|ΩX

) is invariant under “quantized contact transformations”.

Let us briefly explain this statement. Consider real manifolds X,Y of the
same dimension and open subsets ΩX ⊂ Ṫ ∗X , ΩY ⊂ Ṫ ∗Y . An R+-homoge-
neous symplectic isomorphism

χ : ΩX
∼
−→ ΩY

is often called a contact transformation (although strictly speaking, the contact
structures are defined on the projective bundles). Invariance under “quantized
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contact transformations”means that locally we can construct from χ an equiv-
alence of categories

ΦK : Db(kX ,ΩX)
∼
−→ Db(kY ,ΩY ).

The equivalence ΦK is explicitly given by an integral transform and depends
on the choice of a kernel K ∈ Db(kY×X). The main result [11, Cor. 7.2.2] is:

Theorem 4.0.2. — Let X,Y be two real manifolds, ΩX ⊂ T ∗X, ΩY ⊂ T ∗Y
open subsets and χ : ΩX −→ ΩY a real contact transformation. Set

Λ =
{
((y; η), (x; ξ)) ∈ ΩY × ΩaX | (y, η) = χ(x,−ξ)

}
.

Let pX ∈ ΩX and pY = χ(pX).

There exist open neighborhoods X ′ of π(pX), Y ′ of π(pY ), Ω′
X of pX , Ω′

Y

of pY with Ω′
X ⊂ T

∗X ′ ∩ ΩX , Ω′
Y ⊂ T ∗Y ′ ∩ ΩY and a kernel K ∈ Db(kY ′×X′)

such that:

1) χ induces a contact transformation Ω′
X

∼
→ Ω′

Y ;

2) for every open subsets Ω′′
X ⊂ Ω′

X and Ω′′
Y = χ(Ω′′

X),
(
(Ω′′

Y × T
∗X ′) ∪ (T ∗Y ′ × Ω′′

X
a
)
)
∩ SS(K) ⊂ Λ ∩ (Ω′′

Y × Ω′′
X
a
);

3) composition with K induces an equivalence of prestacks

ΦK = K◦ : χ∗D
b(kX′ , ∗)|Ω′

X
−→ Db(kY ′ , ∗)|Ω′

Y
,

a quasi-inverse being given by ΦK∗ with K∗ = r∗ RHom(K, ωY ×X|X) where
r : Y ×X → X × Y switches the factors;

4) SS(ΦK(F)) ∩ Ω′′
Y = χ(SS(F) ∩ Ω′′

X);

5) χ∗µhom(F,G)|ΩX′ ' µhom(ΦK(F),ΦK(G))|ΩY ′ .

Now let us consider constructible sheaves. It is not immediately obvious
that the equivalence 3) of Theorem 4.2.1 should induce an equivalence on the
microlocalization of R-constructible (resp. on microlocally C-constructible or
later on microlocally perverse) sheaves

χ∗D
b
R-c(kX , ∗)|ΩX

?
−→ Db

R-c(kY , ∗)|ΩY

since the functor ΦK is not well defined on R-constructible sheaves. This prob-
lem can be solved at a point p ∈ T ∗X by using the microlocal composition
of [11]. In [2], Andronikof uses this tool to construct the functor Φµ

K
. Then

one can treat a variety of kernels K but a priori, one can no longer work in
an open neighborhood.

However, under the hypothesis of Theorem 4.0.2, we do not need to use the
microlocal composition of kernels. We can always define the functor

χ∗D
b
R-c(kX , ∗)|ΩX

−→ χ∗D
b(kX , ∗)|ΩX

ΦK

−−→ Db(kY , ∗)|ΩY
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and hope that it factors through Db
R-c(kY , ∗)|ΩY

. However, one has to be-

ware that Db
R-c(kY , ∗)|ΩY

is not a full subprestack of Db(kY , ∗)|ΩY
, hence it

is not sufficient to show that ΦK(F) is isomorphic to an R-constructible sheaf
in Db(kY , ∗)|ΩY

. We encounter this problem in Section 4.1 (see Theorem 4.1.2).

4.1. Quantized contact transformations and R-constructible sheaves

Recall the definition of the full subcategory N(Y,X,ΩY ,ΩX) of the category
Db(kY×X ,ΩY × T ∗X). Its objects are kernels K on Y ×X such that

(i) SS(K) ∩ (ΩY × T
∗X) ⊂ ΩY × ΩaX ,

(ii) the projection p1 : SS(K) ∩ (ΩY × T ∗X)→ ΩY is proper.

If V = πX(ΩX ) is a subanalytic relatively compact open subset of X we set

NR-c(Y,X,ΩY ,ΩX) = N(Y,X,ΩY ,ΩX) ∩ Db
R-c(kY×X ,ΩY × T

∗X).

Definition 4.1.1. — Let K ∈ NR-c(Y,X,ΩY ,ΩX). We define the functor

ΦR-c
K : Db

R-c(kX ,ΩX) −→ Db
R-c(kY ,ΩY ), F 7−→ K ◦ FV .

Note that K ◦ FV is R-constructible since V is subanalytic and relatively
compact. We may visualize the situation by the following diagram

Db
R-c(kX ,ΩX)

ΦR-c
K

Db
R-c(kY ,ΩY )

Db(kX ,ΩX)
K◦

Db(kY ,ΩY ).

The square is commutative up to natural isomorphism since the natural mor-
phism F → FV induces an isomorphism K ◦ F

∼
→ K ◦ FV in Db(kY ,ΩY ).

Now suppose that K ∈ NR-c(Z, Y,ΩZ ,ΩY ) and L ∈ NR-c(Y,X,ΩY ,ΩX).
Then their composition K ◦ L is well defined in N(Z,X,ΩZ ,ΩX) but
not necessarily in NR-c(Z,X,ΩZ ,ΩX). Note however that by definition
L ∈ Db(kY×X ,ΩY × T ∗X). Hence, if we set W = πY (ΩY ), we do not distin-
guish between L and LW×X in L ∈ N(Y,X,ΩY ,ΩX). In other words we get a
natural isomorphism

K ◦ L
∼
−→ K ◦ LW×X

in Db(kZ×X ,ΩZ × T ∗X). Then we get natural isomorphisms

ΦR-c
K ΦR-c

L (F) ' K ◦ (L ◦ FV )W ' (K ◦ LW×X) ◦ FV ' ΦR-c
K◦LW×X

(F).

Hence, the theory of microlocal kernels (Section 7.1. of [11]) works well in the
R-constructible case if we restrict ourselves to relatively compact subanalytic
open sets.
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Finally suppose that Ω′
X ⊂ ΩX , Ω′

Y ⊂ ΩY and that K ∈ NR-c(Y,X,ΩY ,ΩX)∩
NR-c(Y,X,Ω

′
Y ,Ω

′
X). Then we get a diagram

Db
R-c(kX ,ΩX)

ΦR-c
K

Db
R-c(kY ,ΩY )

Db
R-c(kX ,Ω

′
X)

ΦR-c
K

Db
R-c(kY ,Ω

′
Y )

that is commutative up to natural isomorphism induced by (FV )V ′ ' FV ′

where V ′ = π(Ω′
Y ).

Now suppose that we are given a contact transformation

χ : ΩX
∼
−→ ΩY

where we assume that π(ΩX ), π(ΩY ) are relatively compact subanalytic open
sets. If there exists an object K such that K ∈ NR-c(Y,X,Ω

′
Y ,Ω

′
X) for all open

subsets Ω′
X ⊂ ΩX and Ω′

Y = χ(Ω′
X) then we get a commutative diagram of

functors of prestacks

Db
R-c(kX , ∗ )|ΩX

ΦR-c
K

Db
R-c(kY , ∗ )|ΩY

Db(kX , ∗ )|ΩX

ΦK
Db(kY , ∗ )|ΩY

All compatibility conditions are easily verified by diagram chases.

We are now ready to quantize contact transformations for R-constructible
sheaves. All we need to know is that the kernel produced in Theorem 4.0.2 can
be taken R-constructible.

Theorem 4.1.2. — Theorem 4.0.2 holds when replacing Db(kX , S) by
Db

R-c
(kX , S) and ΦK by ΦR-c

K
.

Proof. — Let us show that in the situation of Theorem 4.0.2 we can choose the
kernel K to be R-constructible.

First assume that Λ is the conormal bundle of a smooth hypersurface S ⊂
Y ×X . Then one can take the kernel K = kS (cf. [11], Corollary 7.2.2). Recall
that locally χ may be decomposed as

χ = χ1 ◦ χ2 : ΩX −→ ΩZ −→ ΩY

where the Lagrangian manifold Λi associated to the contact transformation χi
is the conormal bundle to a smooth hypersurface Si. By shrinking ΩX and ΩY
we may assume that πZ(ΩZ) is subanalytic and relatively compact. Then
kS1 ◦ kS2∩(πZ(ΩZ)×X) is R-constructible and satisfies 1), 2), 4) and 5) of the
theorem (cf. [11, Cor. 7.2.2]).
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Moreover we know that ΦR-c
K

and ΦR-c
K∗ are well-defined and that they are

quasi-inverse functors in the non-constructible case. By definition, we have

ΦR-c
K ◦ ΦR-c

K∗ ' ΦR-c
K◦K∗

V ×Y

.

Recall that there is a natural isomorphism

k∆X
−→ K ◦K∗

in Db(kX ,ΩX). Hence we get an isomorphism

(4.1.1) k∆X
−→ K ◦K∗ −→ K ◦K∗

V×Y

in Db(kX ,ΩX). It is sufficient to prove that this morphism is well-defined in
Db

R-c(kX ,ΩX).

Denote by q12, q13, q23 the obvious projections from X ×X × Y . We get a
commutative diagram

k∆X Rq12∗ RHom(q−1
13 K, q!23K) K ◦K∗

Rq12∗ RHom(q−1
13 K, q!23KV×Y ) K ◦K∗

V×Y

that is defined in Db(kX ). Note that the lower part is well-defined in Db
R-c(kX).

All morphisms become isomorphisms in Db(kX ,ΩX) (cf. [11], Theorem 7.2.1).
Since the natural functor Db

R-c(kX ,ΩX) → Db(kX ,ΩX) is conservative, this
shows that (4.1.1) is a well-defined isomorphism in Db

R-c(kX ,ΩX).
Similarly one shows that the kernel r−1 RHom(K, ωX×Y |X) defines a right

inverse of K which proves that ΦR-c
K

is an equivalence. Then ΦR-c
K∗ is actually a

quasi-inverse since it is a left inverse of an equivalence.

4.2. Quantized contact transformations and C-constructible sheaves.
— It is now easy to transfer the results of the last section to microlocally
C-constructible sheaves. Consider complex manifolds X,Y of the same di-
mension and open C×-conic subsets ΩX ⊂ Ṫ ∗X , ΩY ⊂ Ṫ ∗Y . We will call a
C×-homogeneous symplectic isomorphism

χ : ΩX
∼
−→ ΩY

a contact transformation (omitting “complex” since we will never consider
real contact transformations when dealing with microlocally C-constructible
sheaves). Then we get the analogous statements of Theorems 4.0.2 and 4.1.2
by replacing open sets with C×-conic open sets.

Theorem 4.2.1. — Let X and Y be two complex manifolds, ΩX ⊂ Ṫ ∗X,
ΩY ⊂ Ṫ ∗Y open subsets and

χ : ΩX −→ ΩY
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a homogeneous complex contact transformation. Then Theorem 4.0.2 holds
when replacing Db(kX , S) by Db

C-c
(kX , S).

Proof. — Since by definition Db
C-c(kX ,Ω

′′
X) is a full subcategory of Db

R-c(kX ,Ω
′′
X),

it is enough to show that for any F ∈ Db
C-c(kX ,ΩX) the object ΦR-c

K
(F) is an

object of Db
C-c(kY ,ΩY ). Hence we have to show that SS(Φ(F)) is C×-conic

on ΩY . Since χ is C×-homogeneous this is easily verified by the formula

SS
(
ΦR-c

K (F)
)
∩ Ω′′

X = χ(SS(F) ∩ Ω′′
Y ).

5. Microlocally complex constructible sheaves on C×p

Let p ∈ Ṫ ∗X . As a special case of Proposition 3.4.1 we get that the natural
functor

Db
C-c(kX ,C

×p) −→ Db(kX ,C
×p)

is fully faithful. Moreover, morphisms in Db(kX ,C
×p) between microlocally C-

constructible sheaves F,G ∈ Db
C-c(kX ,C

×p) are given by sections of µhom(F,G)
on C×p.

In this section we will give a description of the objects of Db
C-c(kX ,C

×p)
using quantized contact transformation and the generic position theorem. More
precisely, we will show in Section 6.1 that if F is microlocally C-constructible
on C×p and SS(F) is in generic position (i.e., SS(F)∩C×p is isolated in π−1π(p))
then F is isomorphic in Db(kX ,C

×p) to an object of Db
C-c(kX).

It will often be convenient to fix an R+-conic Lagrangian variety Λ in T ∗X
and to consider only sheaves whose micro-support is contained in Λ. We intro-
duce the following categories:

Definition 5.0.2. — Let Λ ⊂ T ∗X be an R+-conic Lagrangian variety defined
in a neighborhood of a subset S ⊂ T ∗X . Then we define the following two
categories:

1) Db
R-c,Λ(kX , S) ⊂ Db

R-c(kX , S) is the full subcategory of Db
R-c(kX , S) whose

objects F satisfy SS(F) ⊂ Λ in a neighborhood of S.

2) Db
C-c,Λ(kX , S) = Db

C-c(kX , S) ∩ Db
R-c,Λ(kX , S).

Of course, the second definition is mainly of interest when S is C×-conic
and Λ is C×-conic on the subset S.

5.1. Microlocally complex constructible sheaves in generic position

In this section we will show that at a generic point of its micro-support a
microlocally complex constructible sheaf is naturally isomorphic to a complex
constructible sheaf.
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Definition 5.1.1. — Let p ∈ Ṫ ∗X and Λ ⊂ T ∗X be an R+-conic Lagrangian
subset such that Λ is C×-conic in a neighborhood of C×p. We say that Λ is in
generic position at p if

Λ ∩ π−1
(
π(p)

)
⊂ C×p

in a neighborhood of C×p.

Remark 5.1.2. — If Λ is in generic position at p, then Λ is C×-conic in a
neighborhood of C×p by definition. Hence either Λ ∩ π−1

(
π(p)

)
= C×p or

Λ ∩ π−1
(
π(p)

)
= ∅ in a neighborhood of C×p. Moreover, being in generic

position is an open property. Also note that if Λ is in generic position then it
is in generic position in the sense of [10, Section I.6], where Λ is supposed to
be only locally C×-conic in a neighborhood of p.

Proposition 5.1.3. — Let Λ ⊂ T ∗X be an R+-conic Lagrangian variety that
is C×-conic in a neighborhood of C×p. Suppose that Λ is in generic position
at p. Then there exists a fundamental system of conic open subanalytic neigh-
borhoods γ of C×p in Ṫ ∗

π(p)X and for each γ a fundamental system of open

relatively compact subanalytic neighborhoods U of π(p) such that

1) the microlocal cut-off functor ΦU,γ : Db(kX)→ Db(kX ) induces a functor

ΦU,γ : Db
C-c,Λ(kX , U × γ) −→ Db

C-c
(kX ,C

×p),

and this functor factors as

ΦU,γ : Db
C-c,Λ(kX , U × γ) −→ Db

C-c
(kX )π(p)/LCπ(p) −→ Db

C-c
(kX ,C

×p);

2) there is an isomorphism of functors ΦU,γ
∼
−→ ι where

ι : Db
C-c,Λ(kX , U × γ) −→ Db

C-c
(kX ,C

×p)

is the natural functor;

3) SS
(
ΦU,γ(F)

)
∩ π̇−1(V ) = SS(F) ∩ (V × γ) for sufficiently small open

neighborhoods V of π(p);

4) SS
(
ΦU,γ(F)

)
∩ π̇−1π(p) ⊂ C×p.

Proof. — Since the functor ΦU,γ sends Db
R-c(kX ) to Db

R-c(kX) (cf. Prop. 3.2.1),
it induces

ΦU,γ : Db
R-c(kX , U × γ) −→ Db

R-c(kX , U × γ).

Since SS(ΦU,γ(F))∩U ×γ = SS(F)∩U ×γ the functor ΦU,γ preserves microlo-
cally C-constructible sheaves and we get the functor of (1) as

ΦU,γ : Db
C-c(kX , U × γ) −→ Db

C-c(kX , U × γ) −→ Db
C-c(kX ,C

×p).

Recall that there exist a fundamental system of conic subanalytic open neigh-
borhoods γ of C×p and for each γ a fundamental system of relatively compact
subanalytic open neighborhoods U of π(p) such that (U, γ) is a refined cutting
pair. If γ is sufficiently small then γ ∩ π−1π(p) ∩ Λ = C×p. Next we choose U
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sufficiently small such that U ∩ ∂γ ∩ Λ = ∅. Then 2) follows from the refined
microlocal cut-off lemma, 3) from Corollary 2.3.6 and 4) from 3).

Finally let us prove the factorization of 1). For this purpose let us first write
Db

C-c,Λ(kX , U × γ) as a localization of a full subcategory of Db
R-c(kX).

Denote by Db
R-c,Λ,U×γ(kX ) the full subcategory of Db

R-c(kX ) such that

SS(F) ∩ U × γ ⊂ Λ.

The category Db
R-c,Λ,U×γ(kX ) is obviously a full triangulated subcategory. Now

we localize Db
R-c,Λ,U×γ(kX ) by complexes whose micro-support is disjoint from

U × γ (hence by NR-c,U×γ). Then we get a natural functor

(5.1.1) Db
R-c,Λ,U×γ(kX )/NR-c,U×γ −→ Db

R-c,Λ(kX , U × γ).

If F ∈ Db
R-c,Λ,U×γ(kX ) and (SS(F) ∩ U × γ) ⊂ (Λ ∩ U × γ), then any object F′

that is isomorphic to F on U × γ is also an object of Db
R-c,Λ,U×γ(kX). Hence

we get that (5.1.1) is an equivalence.

By assumption Λ is C×-conic in a neighborhood of C×p. Hence we may
assume that Λ is C×-conic on U × γ. One can show that if SS(F) ⊂ Λ then
SS(F) is C×-conic on U × γ (cf. Theorem 8.5.5 of [11]). Let us recall the idea
of the proof. First one shows that SS(F) is open in Λ (on U × γ) and therefore
locally C×-conic, i.e., for every C×-orbit S the set SS(F) ∩ S ∩ U × γ is open
in S ∩ U × γ (Lemma 8.3.14 of [11]). Then, by Proposition 8.5.2 of [11], one
gets that Λ is C-analytic on U × γ. Hence Λ is C-analytic and R+-conic and
therefore C×-conic. Thus, we get the equivalence

Db
R-c,Λ,U×γ(kX )/NR-c,U×γ ' Db

R-c,Λ(kX , U × γ) ' Db
C-c,Λ(kX , U × γ).

By 3) and the assumption that Λ is C×-conic in a neighborhood of C×p we get
the functor

Db
R-c,Λ,U×γ(kX)

ΦU,γ
−−−→ Db

C-c(kX )π(p)

for sufficiently small (U, γ). If F ∈ Db
R-c,Λ,U×γ(kX )∩NR-c,U×γ then again by 3)

we have SS(ΦU,γ(F)) ⊂ T ∗
XX in a neighborhood of π(p), hence ΦU,γ(F) is

constant in a neighborhood of π(p) which implies the factorisation 1).

Lemma 5.1.4. — In the situation of Proposition 5.1.3, suppose that we have
two pairs (V, δ) ⊂ (U, γ) such that 1), 2), 3), 4) are satisfied. Then the natural
morphism

ΦV,δ(F) −→ ΦU,γ(F)

is an isomorphism in Db
C-c

(kX)π(p)/LCπ(p).

Proof. — Embed the morphism in a distinguished triangle

ΦV,δ(F) −→ ΦU,γ(F) −→ H
+
−→
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in Db
R-c(kX ). Note that we have SS(H)∩V ×δ = ∅ because ΦV,δ(F)→ ΦU,γ(F)

is an isomorphism on V × δ. By 4), we get

SS(H) ∩ π̇−1π(p) ⊂ C×p ⊂ V × δ.

Hence SS(H) ∩ π−1π(p) ⊂ T ∗
XX in a neighborhood of π(p) and H is constant

in a neighborhood of π(p).

Theorem 5.1.5. — Suppose that Λ is in generic position at p. Then the mi-
crolocal cut-off functors induce a fully faithful functor

Φ : Db
C-c,Λ(kX ,C

×p) −→ Db
C-c

(kX)π(p)/LCπ(p)

Proof. — We obviously have the equivalence

2 lim
−→

C×p∈U×γ

Db
C-c,Λ(kX , U × γ)

∼
−→ Db

C-c,Λ(kX ,C
×p).

We may assume by cofinality that (U, γ) is a sufficiently small refined cutting
pair such that Proposition 5.1.3 holds. By Lemma 5.1.4 the functors ΦU,γ of
Proposition 5.1.3 induce a functor

Φ : Db
C-c,Λ(kX ,C

×p) −→ Db
C-c(kX)π(p)/LCπ(p).

Let us show that Φ is fully faithful.

Let F,G ∈ Db
C-c,Λ(kX ,C

×p). Note that by Proposition 5.1.3, 3) if H → F is

an isomorphism on C×p then ΦU,γ(H)→ ΦU,γ(F) is an isomorphism on π̇−1(V )
for sufficiently small (U, γ) and V 3 π(p). In particular, ΦU,γ(H) → ΦU,γ(F)
is an isomorphism in Db

C-c(kX )π(p)/LCπ(p). Consider the following chain of
morphisms:

HomDb
C-c(kX ,C×p)(F,G) = lim

−→
H→F

iso on C×p

HomDb(kX )(H,G)

−→ lim
−→

V,ΦU,γ (H)→ΦU,γ (F)

iso on π̇−1(V )

HomDb(kX )

(
ΦU,γ(H)|V ,ΦU,γ(G)|V

)

−→ lim
−→

V,H′→ΦU,γ(F)

iso on π̇−1(V )

HomDb(kX )

(
H′

|V ,ΦU,γ(G)|V
)

= HomDb
C-c(kX )π(p)/LCπ(p)

(
ΦU,γ(F),ΦU,γ(G)

)

' HomDb
C-c(kX )π(p)/LCπ(p)

(
Φ(F),Φ(G)

)
.

We have to check that the composition is an isomorphism.

To prove that this map is surjective it is sufficent to note that if we consider
a morphism H′ → ΦU,γ(G) and an isomorphism H′ → ΦU,γ(F) on π̇−1π(p),
then H′ → F is an isomorphism on C×p and the morphism H′ → G defines a
morphism in Db

C-c(kX ,C
×p) which is sent to the same morphism Φ(F )→ Φ(G)

as H′ → ΦU,γ(G).
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Let us show that the map is injective. If ΦU,γ(H) → ΦU,γ(G) is zero in
Db

C-c(kX , π̇
−1π(p)) then there exist K and an isomorphism K → ΦU,γ(H) →

ΦU,γ(F) on π̇−1π(p) such that K→ ΦU,γ(H)→ ΦU,γ(G) is the zero morphism.
Then K→ ΦU,γ(H)→ H→ F is an isomorphism on C×p and K→ ΦU,γ(H) →
H → G is zero hence H→ G is zero in Db

C-c(kX ,C
×p).

5.2. The generic position theorem. — Let us recall Kashiwara-Kawai’s
generic position theorem (cf. [10, Section I.6]).

Proposition 5.2.1. — Let p ∈ Ṫ ∗X and Λ ⊂ T ∗X be an R+-conic Lagrangian
subset such that Λ is C×-conic in a neighborhood of C×p. Then there exists a
complex contact transformation χ : T ∗X −→ T ∗X, defined in a neighborhood
of C×p, such that χ(Λ) is in generic position at q = χ(p).

Proof. — Kashiwara-Kawai show this result on a neighborhood of p for locally
C×-conic Lagrangian varieties assuming only that Λ ∩ π−1π(p) = C×p in a
neighborhood of p. Hence if we suppose that Λ is C×-conic in a neighborhood
of C×p, we get that χ(Λ) is in generic position at q since χ is C×-homogeneous.

Remark 5.2.2. — Let F ∈ Db
C-c(kX ,C

×p). By the generic position theorem
and invariance under quantized contact transformations we can find a contact
transformation χ : T ∗X → T ∗X defined in a neighborhood of C×p and an
equivalence of categories

ΦC-c
K : Db

C-c(kX ,C
×p)

∼
−→ Db

C-c(kX ,C
×q)

such that SS(ΦC-c
K

(F)) = χ(SS(F)) is in generic position at q. Then ΦC-c
K

(F) is
functorially isomorphic in Db

C-c(kX ,C
×q) to an object of Db

C-c(kX )π(q) (modulo

constant sheaves). Hence many problems in Db
C-c(kX ,C

×p) can be reduced to
the study of germs of complex constructible sheaves in generic position.

6. Microlocal perverse sheaves in Db
R-c

(kX , S)

6.1. Andronikof’s prestack of microlocally perverse sheaves

In this section we will first recall Andronikof’s definition of the prestack
of microlocal perverse sheaves. In [2] he suggests a definition of a microlocal
perverse sheaf on an arbitrary subset S of T ∗X which is based on the microlocal
characterization of perverse sheaves (see Proposition 6.1.1 below). However, he
is not very precise concerning C×-conicity. In particular the proof of his main
tool (Proposition 3.2) is incomplete under the given assumptions. Hence we
will recall a slightly more precise version of his prestack and we will restrict
ourselves from the beginning to C×-conic sets. Moreover we will add complete
proofs to the statements of [2] which hold in this case. Also, while Andronikof
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restricts his studies to points and C×-orbits we will work from the beginning
with the entire prestack.

In [12] we find the following microlocal characterization of perverse sheaves.

Proposition 6.1.1. — Let F ∈ Db
C-c(kX ). Then we have equivalence between

(P1) F is a perverse sheaf.

(P2) For every non-singular point p of SS(F) such that the projection π :
SS(F)→ X has constant rank on a neighborhood of p, there exist a submanifold
Y ⊂ X and an object M ∈ Mod(k) such that F 'MY [dim Y ] in Db(kX , p).

(P3) The assertion (P2) is true for some point p of any irreducible compo-
nent of SS(F).

This naturally leads to the following

Definition 6.1.2. — Let S ⊂ Ṫ ∗X be a C×-conic subset.

(i) A sheaf F ∈ Db
R-c(kX ) is called microlocally perverse on S, if it is microlo-

cally C-constructible on S and there exists an open neighborhood U of S such
that (P2) is satisfied on U , i.e., for every non-singular point p of SS(F) ∩ U
such that the projection π : SS(F) → X has constant rank on a neighborhood
of p, there exists a submanifold Y ⊂ X and an object M ∈ Mod(k) such that
F 'MY [dimY ] in Db(kX , p).

(ii) We will denote by Db
perv(kX , S) the full subcategory of Db

C-c(kX , S)
whose objects are perverse on S (i.e., which may be represented by a mi-
crolocally perverse sheaf on S).

(iii) In particular if Ω ⊂ Ṫ ∗X is an open C×-conic subset, we get the category
Db

perv(kX ,Ω). Clearly this defines a prestack of categories on P ∗X , denoted by

Db
perv(kX , ∗). This is Andronikof ’s prestack of microlocal perverse sheaves.

(iv) Let Λ ⊂ T ∗X be an R+-conic Lagrangian variety that is C×-conic in a
neighborhood of C×p. Then we set

Db
perv,Λ(kX ,C

×p) = Db
C-c,Λ(kX ,C

×p) ∩ Db
perv(kX ,C

×p).

Proposition 6.1.3. — Let p ∈ Ṫ ∗X. The stalk of Andronikof ’s prestack
at γ(p) is naturally equivalent to the category Db

perv(kX ,C
×p).

Proof. — Consider the functor

2 lim
−→

C×p⊂U⊂Ṫ∗X

U C
×-conic

Db
perv(kX , U) −→ Db

perv(kX ,C
×p).

It is essentially surjective by definition of Db
perv(kX ,C

×p). The proof that it is
fully faithful is analogous to Proposition 2.2.7 and Corollary 2.2.8.
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Proposition 6.1.4. — The duality functor

D : Db
R-c

(kX ) −→ Db
R-c

(kX ), F 7−→ RHom(F, ωX )

induces contravariant equivalences of prestacks

D : Db
C-c

(kX , ∗) −→ Db
C-c

(kX , ∗), D : Db
perv(kX , ∗) −→ Db

perv(kX , ∗).

Proof. — The first functor is well-defined because SS(DF) = SS(F). Let p
in SS(F) such that F ' MY [dimY ] in Db(kX , p). Then DF ' DMY [dimY ]
in Db(kX , p) since D is an anti-equivalence in Db(kX , p). But DMY [dim Y ] '
MY [dimY ]. Hence the second functor is well-defined.

The two functors are equivalences because D2 ' Id in Db
R-c(kX).

Andronikof’s prestack is invariant by quantized contact transformations:

Theorem 6.1.5. — Let X and Y be two complex manifolds, ΩX ⊂ Ṫ
∗X, ΩY ⊂

Ṫ ∗Y open C×-conic subsets and χ : ΩX
∼
→ ΩY a contact transformation. Then

Theorem 4.0.2 holds when replacing Db(kX , S) by Db
perv(kX , S).

Proof. — It is enough to show the proposition in the case in which Λ is the
conormal bundle to a smooth hypersurface S and we can choose K ' kS .
Then the fact that ΦC-c

K
preserves microlocal perverse sheaves follows from

Proposition 7.4.6 of [11].

6.2. The abelian category Db
perv

(kX , C×p). — In general, one does not

know much about the category Db
perv(kX , S) even if S is C×-conic. In [2], it is

announced that if p ∈ Ṫ ∗X , then Db
perv(X, p) and Db

perv(X,C
×p) are abelian.

While we do not know if this is true for Db
perv(X, p), we will give a proof here

for the category Db
perv(X,C

×p).

Let D be a triangulated category with a t-structure and heart C. Recall
that if N ⊂ D is a full triangulated category that is stable under truncation
functors, then N ∩ C is a thick subcategory of C and we get a fully faithful
functor

C/N ∩ C −→ D/N

where C/N ∩ C the localisation of C by morphisms whose kernel and cokernel
are objects of N (in particular C/N ∩ C is abelian (see [5])).

We will fix a point p ∈ Ṫ ∗X and an R+-conic Lagrangian subvariety Λ which
is C×-conic in a neighborhood of C×p.

Proposition 6.2.1. — Suppose that Λ is in generic position at p. Then the
functor Φ of Theorem 5.1.5 induces a commutative diagram of fully faithful
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functors

Db
C-c,Λ(kX ,C×p)

Φ
Db

C-c
(kX)π(p)/LCπ(p)

Db
perv,Λ(kX ,C

×p) Perv(X)π(p)/LCπ(p).

Proof. — It is sufficient to prove that if F ∈ Db
perv(kX ,C

×p) then Φ(F) is
perverse in a neighborhood of π(p). Since we have

SS
(
Φ(F)

)
∩ π̇−1(V ) = SS(F) ∩ (V × γ)

for some small neighborhood V × γ of C×p, we get the result by the character-
ization of perverse sheaves (cf. Proposition 6.1.1).

Also note that Db
perv,Λ(kX ,C

×p) is additive. Hence Db
perv,Λ(kX ,C

×p) is a

full additive subcategory of Perv(X)π(p)/LCπ(p). In order to prove that it is
actually a full abelian subcategory, we will need two lemmas:

Lemma 6.2.2. — Let ϕ : F → G be a morphism of perverse sheaves such that
SS(F)∪SS(G) ⊂ Λ in a neighborhood of p. Then SS(ker(ϕ))∪SS(coker(ϕ)) ⊂ Λ
in a neighborhood at p.

Proof. — Recall (see [11, Exercise X.6]) that the micro-support of a C-
constructible sheaf F ∈ Db

C-c(kX) can be calculated as

SS(F) =
⋃

i∈Z

pSS
(
Hi(F)

)

where pHi(F) denotes the i-th perverse cohomology sheaf of F. Now let ϕ :
F → G be a morphism of perverse sheaves. We embed it into a distinguished
triangle

F −→ G −→ H
+
−→ .

Then we consider the canonical distinguished triangle

pτ6−1(H) −→ H −→ pτ>0(H)
+
−→

where pτ6−1, pτ>0 denote the perverse truncation functors. Then pτ6−1(H)[−1]
is the kernel and pτ>0(H) is the cokernel of ϕ. Therefore

SS(kerϕ) ∪ SS(cokerϕ) = SS(H) ⊂ SS(F) ∪ SS(G).

Lemma 6.2.3. — Let Λ be in generic position at p. Consider a morphism
F → G of Db

perv,Λ(kX ,C
×p). Let Φ(F)→ Φ(G) be the corresponding morphism

in Perv(kX)π(p)/LCπ(p) and L→ Φ(F) a kernel (resp. Φ(G)→ L′ a cokernel) in
Perv(kX)π(p)/LCπ(p). Then Φ(L) → L (resp. Φ(L′) → L′) is an isomorphism
in Perv(kX )π(p)/LCπ(p).
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Proof. — Fix U, γ such that Φ(F) ' ΦU,γ(F), Φ(G) ' ΦU,γ(G) and
Φ(L) ' ΦU,γ(L). Embed ΦU,γ(L)→ L in a distinguished triangle

ΦU,γ(L) −→ L −→ H
+
−→ .

Then there is an open neighborhood V ⊂ U of π(p) such that

SS
(
ΦU,γ(L)

)
∩ π̇−1(V ) = SS(L) ∩ V × γ.

Moreover, by Lemma 6.2.2, we have

SS(L) ∩ π̇−1(V ) ⊂
(
SS(ΦU,γ(F)) ∪ SS(ΦU,γ(G)

)
∩ π̇−1(V ) ⊂ Λ ∩ V × γ.

Hence if V is sufficiently small we get

SS(L) ∩ π̇−1(V ) ⊂ Λ ∩ V × γ.

Since ΦU,γ(L)→ L is an isomorphism on U×γ we get that SS(H)∩V ×γ = ∅

and therefore SS(H) ⊂ T ∗
XX on V and H is constant in a neighborhood of π(p).

The proof for the cokernel is similar.

Proposition 6.2.4. — The additive category Db
perv,Λ(kX ,C

×p) is equivalent

to an abelian subcategory of Perv(kX )π(p)/LCπ(p).

Proof. — By Lemma 6.2.3 the full additive subcategory Db
perv,Λ(kX ,C

×p) is
stable by kernels and cokernels. Since it is a full subcategory, it is abelian.

Lemma 6.2.5. — Let Λ be a C×-conic Lagrangian variety (we do not ask Λ to
be in generic position at p). Then Db

perv,Λ(kX ,C
×p) is abelian. Moreover if Λ′

is another C×-conic Lagrangian variety with Λ ⊂ Λ′, then the natural functor

Db
perv,Λ(kX ,C

×p) −→ Db
perv,Λ′(kX ,C

×p)

is exact.

Proof. — Consider Λ ⊂ Λ′. Let χ be a canonical transformation such that
χ(Λ′) is in generic position at q = χ(p). Then χ(Λ) is also in generic position
at q and we get a diagram

Db
perv,Λ(kX ,C

×p)
∼

α

Db
perv,χ(Λ)(kX ,C

×q)

β

Perv(kX )π(q)/LCπ(q)

Db
perv,Λ′(kX ,C

×p)
∼ Db

perv,χ(Λ′)(kX ,C
×q) Perv(kX)π(q)/LCπ(q).

This diagram is commutative up to isomorphism. The horizontal func-
tors are exact and fully faithful. By Proposition 6.2.4, the categories
Db

perv,χ(Λ)(kX ,C
×q) and Db

perv,χ(Λ′)(kX ,C
×q) are abelian subcategories

of Perv(X)π(q)/LCπ(q). Hence β (and therefore α) is exact.
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Proposition 6.2.6. — The category Db
perv(kX ,C

×p) is abelian. Moreover,

for every germ of a C×-conic Lagrangian variety Λ ⊂ T ∗X defined in a neigh-
borhood of C×p, the inclusion functor

Db
perv,Λ(kX ,C

×p) −→ Db
perv(kX ,C

×p)

is exact.

Proof. — We have the equivalence

2 lim
−→
Λ⊃C×p

Db
perv,Λ(kX ,C

×p)
∼
−→ Db

perv(kX ,C
×p).

Filtered 2-colimits of abelian categories with exact restriction functors are
abelian.

Now let us prove the following “lifting property” for kernels and cokernels of
microlocal perverse sheaves:

Proposition 6.2.7. — Let ϕ : F → G be a morphism in Db
perv(kX ,C

×p).

Then there exists a neighborhood V of C×p, objects K,K′ ∈ Db
perv(kX , V ) and

morphisms K→ F, G→ K′ in Db
perv(kX , V ) such that these morphisms induce

kernel and cokernel of ϕ in Db
perv(kX ,C

×q) for all q ∈ V .

Proof. — Choose a Lagrangian variety Λ such that SS(F) ∪ SS(G) ⊂ Λ in a
neighborhood of C×p. By the generic position theorem, we can find a contact
transformation defined in a C×-conic open neighborhood of C×p

χ : (T ∗X,C×p) −→ (T ∗X,C×p′)

such that χ(Λ) is in generic position at p′. Then χ(Λ) is isomorphic to the
conormal bundle to a closed hypersurface in a neighborhood of C×p′. In par-
ticular, there exists a C×-conic open neighborhood V ′ of χ(Λ) such that χ(Λ)
is in generic position at any point of χ(Λ) ∩ V ′.

Hence, by Theorem 6.1.5, we can assume that Λ is in generic position at any
point in a C×-conic neighborhood Ω of C×p. Consider the functor

Φ : Db
perv,Λ(kX ,C

×p) −→ Pervπ(p) /LCπ(p).

Note that Pervπ(p) /LCπ(p) ' 2 lim−→U3xPerv(kU )/LC(U) (where LC(U) is the
thick subcategory of local systems) and that we can find (U, γ) such that the
morphism Φ(F)→ Φ(G) is defined as ΦU,γ(F)→ ΦU,γ(G) in Perv(V )/LC(V ) for
some small neighborhood V of π(p). Let L → ΦU,γ(F) (resp. ΦU,γ(G) → L′)
be a kernel (resp. a cokernel) in Perv(V )/LC(V ). Choose a C×-conic open
neighborhood of C×p such that Ω′ ⊂ Ω∩V ×γ. We will show that L→ ΦU,γ(F)
(resp. ΦU,γ(G)→ L′) is a kernel (resp. a cokernel) in Db

perv,Λ(kX ,C
×q) for all q

in Ω′. We have distinguished triangles in Db
C-c(kV )/LC(V )

ΦU,γ(F) −→ ΦU,γ(G) −→ H
+
−→ and L[1] −→ H −→ L′ +

−→ .
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Now let q be a point of Λ ∩ Ω′. Since Λ is in generic position at q we get the
functor

Φq : Db
perv,Λ(kX ,C

×q) −→ Pervπ(q) /LCπ(q).

Applying Φq to the two triangles, we get distinguished triangles

ΦqΦU,γ(F)→ ΦqΦU,γ(G)→ Φq(H)
+
→ and ΦqL[1]→ ΦqH → ΦqL′ +

→ .

Since Φq(L) and Φq(L′) are perverse in a neighborhood of π(q) we get (by con-
struction of kernels (resp. cokernels) in Pervπ(q) /LCπ(q)) that Φq(L) →
ΦqΦU,γ(F) (resp. ΦqΦU,γ(G) → Φq(L′)) is a kernel (resp. cokernel) in
Db

perv,Λ(kX ,C
×q). Finally since Φq is a cut-off functor we have Φq(L) ' L

in Db
perv,Λ(kX ,C

×q).

Theorem 6.2.8. — The stack associated to Andronikof ’s prestack of microlo-
cal perverse sheaves is abelian.

Proof. — We have shown that the stalks of this additive prestack are abelian
categories (Proposition 6.2.6). Further, we have shown that kernels and cok-
ernels in the stalks may be lifted to small open neighborhoods (Proposition
6.2.7). Therefore the conditions of Proposition B.7.1 are satisfied, and the
stack of microlocal perverse sheaves is abelian.

7. Microlocal perverse sheaves on P ∗X

7.1. Microlocal perverse sheaves. — We are now ready to give a first
definition of the stack of microlocal perverse sheaves.

Definition 7.1.1. — The stack of microlocal perverse sheaves on P ∗X is the
stack associated to Andronikof’s prestack.

By Theorem 6.2.8 we know that the stack of microlocal perverse sheaves is
abelian. Furthermore, since the underlying prestack is invariant by quantized
contact transformations (by Theorem 6.1.5) we easily get that the stack of
microlocal perverse sheaves is invariant by quantized contact transformations.

7.2. Kashiwara’s functor of ind-microlocalization. — We will give an
explicit description of microlocal perverse sheaves in terms of ind-sheaves. For
this purpose we will construct a subprestack

µPerv ⊂ γ∗
(
Db

(
I(k∗)

)
|Ṫ∗X

)
.

Here, γ∗(D
b(I(k∗))|Ṫ∗X) is the prestack of bounded derived categories of ind-

sheaves on C×-conic open subsets of Ṫ ∗X . Then we will show that µPerv is
actually a stack and construct a morphism µ : Db

perv(kX , ∗) → µPerv that
induces equivalences in the stalks. Hence µPerv can be identified to the stack
associated to Db

perv(kX , ∗). In particular it is an abelian stack.
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Recall that one denotes by Ind C the full subcategory of Ĉ formed by
small filtered colimits of representable objects and calls it the category of
ind-objects of C. Then Ind C admits all small filtered colimits. If C is abelian
then Ind C is abelian and the Yoneda-functor induces an exact fully faithful
functor C → Ind C.

Now let X be a locally compact topological space with a countable base of
open sets and fix a field k. One sets (cf. [12])

I(kX) = IndModc(kX )

whereModc(kX ) denotes the full subcategory ofMod(kX) formed by sheaves
with compact support. We call I(kX ) the category of ind-sheaves (of k-vector
spaces). One can show that the prestack X ⊃ U 7→ I(kU ) is a proper stack, in
particular it is an abelian stack. One identifiesMod(kX ) with a full subcategory
of I(kX ) by the fully faithful exact functor

ι :Mod(kX ) −→ I(kX), F 7−→ “ lim
−→

”
U⊂⊂X

FU .

In [9], Kashiwara establishes the following theorem

Theorem 7.2.1. — There exists a functor

µ : Db
(
I(kX )

)
−→ Db

(
I(kT∗X )

)

such that for any F,G ∈ Db(kX ) we have a natural isomorphism

RHom(µF, µG) ' RHom(π−1F, µG) ' µhom(F,G).

Remark 7.2.2. — Note that if F ∈ Db(kX ), then

supp(µF) = supp
(
RHom(µF, µF)

)
= supp

(
µhom(F,F)

)
= SS(F).

The construction of µ and the proof of the theorem is rather straightforward
using the machinery developed in [12] which we will not recall here. Let us
state the definition of µ with the notations of loc. cit.

The normal deformation of the diagonal in T ∗X × T ∗X can be visualized by
the following diagram

TT ∗X
∼

T∆T∗X
(T ∗X × T ∗X)

τT∗X

s ˜T ∗X × T ∗X

p

Ω
j

p̃

T ∗X
∆T∗X T ∗X × T ∗X

Note that p̃ is smooth but p is not. Also, the square is not Cartesian. Set

KX = Rp!!

(
kΩ ⊗ β(kP )

)
⊗ β(ω⊗−1

∆T∗X |T∗X×T∗X)

where the set P ⊂ TT ∗X is defined by

P =
{
(x, ξ; vx, vξ) | 〈vx, ξ〉 > 0

}
.
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Definition 7.2.3. — Kashiwara’s functor of ind-microlocalization is de-
fined as

µ : Db
(
I(kX )

)
−→ Db

(
I(kT∗X)

)
, F 7−→ µF = KX◦π

−1F.

Lemma 7.2.4. — Let S ⊂ T ∗X be an arbitrary subset. Then µ defines functors

µ : Db(kX , S) −→ Db
(
I(kS)

)
.

If one considers these functors for open subsets U ⊂ T ∗X, they define functors
of prestacks.

Proof. — It is enough to show the existence of the first functor. If µ(F)|S ' 0,
then supp(µ(F)) ∩ S = ∅, hence SS(F) ∩ S = ∅ and µ(.)|S factors through

Db(kX , S).

7.3. The stack of microlocal perverse sheaves. — Kashiwara’s functor
of ind-microlocalization naturally leads to the following definition:

Definition 7.3.1. — Let Ω ⊂ P ∗X be an open subset.

1) An object F ∈ Db(I(kγ−1Ω)) is microlocally perverse (on Ω) if for all
p ∈ γ−1(Ω) there exist a C×-conic neighborhood V ⊃ C×p and an object
G ∈ Db

perv(kX , V ) such that µG|V ' F|V .

2) We denote by µPerv(Ω) the full subcategory of Db(I(kγ−1Ω)) whose ob-
jects are microlocally perverse.

Remark 7.3.2. — The functor µ induces a functor in the stalks

µ : Db
perv(kX ,C

×p) −→ γ∗D
b
(
I(k∗)

)
γ(p)

and the definition of a microlocal perverse sheaf is clearly equivalent to

1′) An object F ∈ Db(I(kγ−1Ω)) is microlocally perverse (on Ω) if for all

p ∈ γ−1(Ω) there exists an object G ∈ Db
perv(kX ,C

×p) such that µG ' F in

γ∗D
b(I(k∗))γ(p).

Here, one shall keep in mind that the natural functor

γ∗D
b
(
I(k∗)

)
γ(p)
−→ Db

(
I(kC×p)

)

is not fully faithful. Therefore germs of microlocal perverse sheaves should not
be interpreted as complexes of ind-sheaves on C×p.

Remark 7.3.3. — Note that in order to formulate Definition 7.3.1 it is not
necessary to construct the categories Db

perv(kX , S) for any C×-conic subset

S ⊂ T ∗X but only the categories Db
perv(kX ,C

×p). However, the prestack

Db
perv(kX , ∗) can sometimes be useful to define functors on microlocal perverse

sheaves and therefore we decided to include it in our presentation.
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Clearly µPerv(Ω) is an additive subcategory of Db(I(kγ−1(Ω))), and the cor-
respondence

P ∗X ⊃ Ω 7−→ µPerv(Ω)

defines an additive prestack on P ∗X . Hence µPerv is a full additive subprestack
of γ∗D

b(I(k∗)), and we can see directly from the construction that it is defined
by a local property. Moreover, by definition, for any open subset Ω ⊂ P ∗X the
functor µ induces a natural functor

Db
perv

(
kX , γ

−1(Ω)
)
−→ µPerv(Ω).

These functors define a functor of prestacks

(7.3.1) µ : Db
perv(kX , ∗) −→ µPerv .

We want to show that the functor (7.3.1) induces equivalences of categories in

the stalks. Let p ∈ Ṫ ∗X . The definition of µPerv immediately implies that

µ : Db
perv(kX ,C

×p) −→ µPervγ(p)

is essentially surjective.

Proposition 7.3.4. — (i) Let F,G ∈ µPerv(Ω) and p ∈ γ−1(Ω). Let

F̃ and G̃ be two objects of Db
perv(kX ,C

×p) such that µF̃ ' F and µG̃ ' G

in µPervγ(p). Then we have

HomµPervγ(p)
(F,G) ' H0

(
C×p, µhom

(
F̃, G̃)

)
.

(ii) Let F,G ∈ Db
perv(kX ,C

×p). Then

HomµPervγ(p)
(µF, µG) ' HomDb

perv(kX ,C×p)(F,G).

(iii) The functor µ induces a canonical equivalence of categories

Db
perv(kX ,C

×p)
∼
−→ µPervγ(p) .

Proof. — Note that the functor of (iii) is obviously essentially surjective. Hence
(iii) follows from (ii). Moreover (ii) follows from (i) and Proposition 2.4.4.
Let us prove (i). We have

HomµPervγ(p)
(F,G) ' lim

−→
γ(p)∈V⊂P∗X

HomDb(I(k
γ−1(V )))

(
F|γ−1(V ),G|γ−1(V )

)

' lim
−→

γ(p)∈V⊂P∗X

HomDb(I(k
γ−1(V )))

(
µF̃|γ−1(V ), µG̃|γ−1(V )

)

' lim
−→

γ(p)∈V⊂P∗X

H0
(
V,RHom(µF̃, µG̃)

)

' lim
−→

γ(p)∈V⊂P∗X

H0
(
V, µhom(F̃, G̃)

)
' H0

(
C×p, µhom(F̃, G̃)

)
.
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Proposition 7.3.4 implies that if µPerv is a stack then it is equivalent to the
stack associated to Db

perv(kX , ∗). In order to prove that µPerv is a stack we
will apply the general results of Section 2.

Let us recall the following well-known proposition with a partial proof.

Proposition 7.3.5. — Let F,G be two perverse sheaves on X. Then the sheaf
µhom(F,G)[dX ] is perverse and µhom(F,G) is concentrated in positive degrees.

Proof. — According to [11, Cor. 10.3.20], µhom(F,G)[dX ] is a perverse sheaf
on T ∗X . Hence for any complex analytic subset S of T ∗X we have

Hj+dX

S

(
µhom(F,G)

)
|S
' 0

if j < − dimS. Now recall that supp(µhom(F,G)) ⊂ SS(F)∩ SS(G). Since F,G
are perverse sheaves their micro-supports are Lagrangian subsets of T ∗X , hence
are of dimension dX . Therefore Hj(µhom(F,G)) ' 0 for j < 0.

Proposition 7.3.6. — The prestack µPerv of microlocal perverse sheaves is
separated.

Proof. — Let F,G be two microlocal perverse sheaves of µPerv(Ω). Recall that
F,G ∈ Db(I(kγ−1(Ω))) and that we have by definition

HomµPerv(F,G) ' γ∗HomDb(I(k∗))(F,G).

Hence it is sufficient to prove that HomDb(I(k∗))(F,G) is a sheaf.

We will first show that the complex RHom(F,G) is concentrated in positive

degrees. This is a local question, hence we may assume that F ' µF̃, G ' µG̃

for two objects F̃, G̃ of Db
perv(kX , γ

−1(Ω)). Since

RHom(µ(F̃), µ(G̃)) ' µhom(F̃, G̃)

we are reduced to study µhom(F̃, G̃)p for any p ∈ γ−1(Ω). By invariance of

quantized contact transformation (cf. Theorem 6.1.5) we may assume that F̃

and G̃ are perverse sheaves on a neighborhood of π(p). Hence µhom(F̃, G̃)p is
concentrated in positive degrees by the last proposition.

Therefore RHom(F,G) is concentrated in positive degrees. Then the
presheaf HomDb(I(k∗))(F,G) is a sheaf since

HomDb(I(k∗))(F,G)(V ) ' H0
(
V,RHom(F,G)

)
' Γ

(
V,H0 RHom(F,G)

)
.

Theorem 7.3.7. — The prestack µPerv on P ∗X is an abelian stack. More-
over the functor µ induces an equivalence of abelian stacks

Db
perv(kX , ∗)

‡ ∼
−→ µPerv,

where Db
perv(kX , ∗)

‡ denotes the stack associated to Db
perv(kX , ∗).
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Proof. — Since microlocal perverse sheaves form a separated subprestack of
the prestack of ind-sheaves and are obviously defined by a local property, they
form a stack. Moreover, Proposition 7.3.4 states that the functor of prestacks

µ : Db
perv(kX , ∗) −→ µPerv

induces equivalences of categories in the stalks. Hence µ identifies µPerv with
the stack associated to Db

perv(kX , ∗).

7.4. Autoduality. — The stack of microlocal perverse sheaves is autodual,
i.e., it is equivalent to its opposite stack.

Proposition 7.4.1. — Let F,G ∈ µPerv(Ω). Then RHom(F,G)[dX ] is a per-
verse sheaf on γ−1(Ω).

Proof. — Locally we can find F̃, G̃ ∈ Db
R-c(kX) such that

RHom(F,G) ' µhom(F̃, G̃).

By invariance of quantized contact transformations we may assume that F̃, G̃

are perverse sheaves. Then the result follows from the fact that µhom(F̃, G̃)[dX ]
is a perverse sheaf (see [11, Cor. 10.3.20]).

Proposition 7.4.2. — The stack µPerv is autodual, i.e., it is equivalent to
its opposite stack. More precisely, there exists a contravariant functor of stacks

D : µPerv −→ µPerv

such that

(i) D ◦D ' Id;

(ii) RHom(F,G) ' RHom(DG, DF);

(iii) if F ∈ µPerv(Ω) is isomorphic to µF̃ and F̃ ∈ Db
perv(kX , γ

−1(Ω)) then

we have a natural isomorphism DF ' µRHom(F̃, ωX).

Proof. — Recall that the functor D = RHom(. , ωX) induces a contravariant
equivalence of prestacks

D : Db
perv(kX , ∗) −→ Db

perv(kX , ∗).

Hence we get a contravariant equivalence D on the stack associated to
Db

perv(kX , ∗) which satisfies by definition (i) and (iii).

Let F,G ∈ µPerv(Ω). It is enough to prove (ii) locally. Hence we may

assume that there are objects F̃, G̃ ∈ Db
perv(kX , γ

−1Ω) such that µF̃ ' F and

µG̃ ' G. Recall (cf. [11, Exercise IV.4]) that on γ−1Ω we have

µhom(F̃, G̃) ' µhom(DG̃,DF̃).
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Then on γ−1Ω we get

RHom(µF̃, µG̃) ' µhom(F̃, G̃) ' µhom(DG̃,DF̃)

' RHom(µDG̃, µDF̃) ' RHom(DG,DF).

7.5. Microlocal Riemann-Hilbert correspondence. — In this section
we formulate the microlocal Riemann-Hilbert correspondance as a pair of qusi-
inverse functors between the stack of microlocal perverse sheaves and the stack
of regular holonomic microdifferential operators. The proof involves deeper
results on Kashiwara’s functor µ and is postponed to a forthcoming paper.

Let DX be the ring of holomorphic differential operators, EX be the ring
of micro-differential operators of [14] and Ot ∈ Db(I(kX )) the “ring” of tem-
pered holomorphic functions. Recall that following Kashiwara [7] the classical
Riemann-Hilbert correspondence can be translated (using [12]) as

Theorem 7.5.1. — The functors

Perv(CX)
R Hom( · ,Ot)[−dX ]

HolReg(DX).
R HomDX

( · ,OX)[dX ]

define quasi-inverse equivalences of stacks.

Recall from [12] that RIHom denotes the derived functor of the internal
Hom-functor of ind-sheaves and β : Db(kX ) → Db(I(kX ) the fully faithful left
adjoint functor of α : Db(I(kX)) → Db(kX), where α(“lim

−→
”Fi) = lim

−→
Fi. The

microlocal Riemann-Hilbert theorem can then be formulated as

Theorem 7.5.2. — The functors

µPerv
γ−1 R γ∗ R Hom( · , µOt)[−dX ]

HolReg(EX).
R IHomβEX

(β( · ), µOX ) [dX ]

define quasi-inverse equivalences of stacks.

Appendix A

2-colimits and 2-limits in CAT

In this appendix we work in CAT , the 2-category of all small categories. How-
ever this is just a precaution to avoid set-theoretical problems and we will
actually apply our results to big categories.

We do not recall the concept of a (strict) 2-category here (see [13] for exam-
ple), but all definitions given below generalize easily to the context of arbitrary
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2-categories. Since we are only interested in 2-colimits and 2-limits in the cate-
gory of all (small) categories we restrict ourselves to this case which sometimes
simplifies the notations.

We call a morphism of functors a natural transformation and an isomorphism
of functors a natural equivalence. Note that there are two compositions of
natural transformations. Following [13] we will denote vertical composition
by ‘◦’ and horizontal composition by the symbol ‘•’.

If I is a (small) category for indexing direct or inverse systems, we will use
the notation I = Ob I.

A.1. 2-functors, 2-natural transformations and modifications

We recall some definitions from the theory of 2-categories applied to CAT
mainly to fix our notations. The concepts are classical, however the notations
and terminology vary considerably in the literature (for instance, a 2-functor
is often called a pseudo-functor). A standard reference is [15].

Definition A.1.1. — Let I be a category. A 2-functor a : I → CAT is given
by the following data:

1) a category a(i) of Ob CAT for any i ∈ I ;

2) a functor a(s) : a(i) → a(j) of MorCAT for any morphism s : i → j of
MorI;

3) a natural equivalence Φ(i) : a(idi)
∼
→ Ida(i) for any i ∈ I ;

4) and a natural equivalence Φ(s, t) : a(t ◦ s)
∼
→ a(t) ◦ a(s) for any two

composable morphisms s, t ∈ MorI;

these data satisfying the following axioms:

(2F1) (a(s) • Φ(i)) ◦ Φ(idi, s) = Ida(s) and (Φ(j) • a(s)) ◦ Φ(s, idj) = Ida(s)

for all morphisms s : i→ j of MorI as visualized by

a(s) = a(idj ◦s) = a(s ◦ idi)
Φ(idi, s)
∼

Φ(s, idj) o
ida(s)

a(s)a(idi)

a(s) • Φ(i)o

a(idj)a(s)
Φ(j) • a(s)

∼
a(s).

(2F2) For any three composable morphisms s : i → j, t : j → k, u : k → `
of MorI we have

(
a(u) • Φ(s, t)

)
◦ Φ(t ◦ s, u) =

(
Φ(t, u) • a(s)

)
◦ Φ(s, u ◦ t),
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as visualized by the following commutative diagram

a(u ◦ t ◦ s)
Φ(t ◦ s, u)
∼

Φ(s, u ◦ t) o

a(u)a(t ◦ s)

a(u) • Φ(s, t)o

a(u ◦ t)a(s)
Φ(t, u) • a(s)

∼ a(u)a(t)a(s).

A 2-functor with strict identity is a 2-functor such that Φ(i) is the identity
for all i ∈ I .

A strict 2-functor is a 2-functor such that Φ(i) and Φ(s, t) are identities for
all i ∈ I and all composable s, t ∈ MorI. Hence it is just a functor from I to
the underlying 1-category of CAT .

Next we need the notion of a morphism of 2-functors (which we will call
a 2-natural transformation) and that of morphisms of such morphisms (which
are called modifications).

Definition A.1.2. — Let a, b : I → CAT be two 2-functors. A 2-natural
transformation of 2-functors f : a→ b consists of the following data:

1) a functor fi : a(i)→ b(i) of MorCAT for all i ∈ I ;

2) a natural equivalence Θf
s : b(s)fi

∼
→ fja(s) for any morphism s : i → j

of MorI

such that

(2NT1) for any i ∈ I we have the equation

(
fi • Φa(i)

)
◦Θf

idi
= Φb(i) • fi,

visualized by

b(idi)fi
Θf
idi

∼

Φb(i) • fi

∼

fia(idi)

fi • Φa(i)

∼

fi

(2NT2) for any two composable morphisms s : i→ j, t : j → k of MorI we
have

(
Θf
t • a(s)

)
◦

(
b(t) •Θf

s

)
◦

(
Φb(s, t) • fi

)
=

(
fk •Φa(s, t)

)
◦Θf

t◦s,
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as visualized by

b(t ◦ s)fi
Φb(s, t) • fi

∼

Θf
t◦s o

b(t)b(s)fi

b(t) •Θf
so

b(t)fja(s)

Θf
t • a(s)o

fka(t ◦ s)
fk • Φa(s, t)

∼
fka(t)a(s).

A strict 2-natural transformation is a 2-natural transformation such that
all Θf

s are identity transformations.

Notation A.1.3. — If f : a → a′ and g : a′ → a′′ are 2-natural transforma-
tions, there is an obvious way to define their composition gf : a→ a′′.

This composition is clearly associative, admits an identity and preserves
strict 2-natural transformations, hence gives rise to two categories:

(i) 2F(I, CAT ), the category of 2-functors with 2-natural transformations
as morphisms;

(ii) S2F(I, CAT ), the category of strict 2-functors with strict 2-natural
transformations as morphisms.

We will be primarily interested in the category 2F(I, CAT ) which we will
denote simply by 2F if the index-category I is fixed.

An isomorphism in 2F will sometimes be called a 2-natural equivalence, an
isomorphism of S2F a strict 2-natural equivalence. Although this terminology
would be parallel to the notations of CAT it might lead to confusion with
the definition of equivalent 2-functors later. Hence note that two 2-functors
a, a′ : I → CAT are called isomorphic if there exists a 2-natural equivalence
between them and not equivalent. Similarly to the situation in category theory
that we have few isomorphisms of categories there are not many 2-natural
equivalences as shown by the following lemma whose proof is straightforward.

Lemma A.1.4. — Let f : a → b be a 2-natural transformation. Then f is
a 2-natural equivalence if and only if fi : a(i) → b(i) is an isomorphism of
categories for all i ∈ I.

Definition A.1.5. — Let a, a′ : I → C be two 2-functors and f, g : a→ a′ be
two 2-natural transformations. A modification (of 2-natural transformations
of 2-functors) Λ : f→ g consists of

1) a natural transformation Λi : fi −→ gi for any object i ∈ I such that
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(M) for any morphism s : i→ j in I we have the following equation
(
Λj • a(s)

)
◦Θf

s = Θg
s ◦

(
a′(s) • Λi

)
,

visualized by the diagram

a′(s)fi
Θf
s

∼

a′(s) • Λi

fja(s)

Λj • a(s)

a′(s)gi
Θg
s

∼ gja(s).

Remark A.1.6. — One can easily define vertical and horizontal composition
of modifications and a straightforward verification shows that 2-functors,
2-natural transformations and modifications define a strict 2-category. In par-
ticular we get the category of 2-natural transformations between two 2-functors
and therefore the notion of an isomorphism of 2-natural transformations.

Definition A.1.7. — Two 2-functors a, b : I → CAT are called equivalent
if there are 2-natural transformations f : a → b and g : b → a such that the
compositions gf and fg are isomorphic to the identity.

Equivalent 2-functors are essentially the same in the framework of 2-
categories. Hence the following lemma shows that we can always work with
2-functors with strict identity.

Lemma A.1.8. — Every 2-functor is equivalent to a 2-functor with strict iden-
tity.

A.2. 2-colimits. — It is well known that the category of all small categories
admits all small limits and colimits, essentially because this is true for the
category of sets. However these objects are not of much practical use since we
rarely encounter direct or inverse systems in CAT . The reason is that we mostly
work up to equivalence of categories and not up to isomorphism and therefore
we will get direct (resp. inverse) systems up to equivalence. The universal
objects associated to such direct (resp. inverse) systems up to equivalence are
called 2-colimits (resp. 2-limits) which we now introduce in detail. Although
the (usually implicit) use of 2-limits and 2-colimits is widespread, there does
not seem to be a standard reference as [13] for category theory.

In the sequel I will denote a small category and a : I → CAT a 2-functor
which is nothing but a direct system up to equivalence. A 2-colimit of a should
be an object of CAT unique up to essentially unique equivalence of categories
that factors (up to natural equivalence) the following type of data:

(i) for any i ∈ I a functor ρi : a(i)→ C to some fixed category C and
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(ii) for any morphism s : i→ j of MorI a natural equivalence Θρ
s : ρi

∼
→ ρja(s),

visualized by

a(i)

a(s)

ρi

Θρ
s

∼ C

a(j)

ρj

Of course this data should satisfy a certain compatibility condition with the
2-functor a:

(A) (ρi • Φa
idi

) ◦Θρ
idi

= Idρi
visualized by

ρi
Θρ

idi

∼

Id
ρi

ρia(idi)

ρi • Φa
idi

∼

ρi

(B) for any two composable morphisms s : i→ j and t : j → k of MorI the
equation (

ρk • Φ(s, t)
)
◦Θρ

t◦s =
(
Θρ
t • α(s)

)
◦Θρ

s

should hold. This may be visualized by the following commutative diagram:

ρi

Θρ
t◦s o

Θρ
s

∼ ρja(s)

Θρ
t • a(s)o

ρka(t ◦ s)
ρk • Φ(s, t)
∼ ρka(t)a(s).

Note that for any category C we have a constant (strict) 2-functor, denoted
by C : I → CAT that sends every i ∈ I to C and every morphism of I to the
identity of C. The key remark to the definition of direct 2-colimits then is that
the data above just describes a 2-natural transformation a→ C.

Definition A.2.1. — Let a : I → CAT be a 2-functor. The system a admits
a 2-colimit if and only if there exists

1) a category 2 lim
−→ i∈Ia(i) and

2) a 2-natural transformation σ : a→ 2 lim
−→ i∈I

a(i),
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such that for any category C the functor

(◦σ) : Hom CAT

(
2 lim
−→ i∈Ia(i), C

)
−→ Hom 2F (a, C)

is an equivalence of categories.

We say that a 2-colimit has the strong factorisation property if (◦σ) is an
isomorphism of categories.

Let us look more in detail at the definition of 2-colimits.

First consider a 2-functor a : I → CAT . Then a has a 2-colimit in CAT if
and only if there exists

1) a category 2 lim
−→ i∈Ia(i);

2) functors σi : a(i)→ 2 lim
−→ i∈I

a(i) for any i ∈ I ;

3) and a natural equivalence Θσ
s : σi

∼
→ σja(s) for any morphism s : i → j

of MorI visualized by

a(i)

a(s)

σi

Θσ
s

∼ 2 lim
−→
i∈I

a(i)

a(j)

σj

such that σ : a→ 2 lim
−→ i∈Ia(i) is a 2-natural transformation (i.e., satisfies the

axioms (2NT1) and (2NT2) of Definition A.1.2). This data should satisfy
the following 2-universal property (here (2CL1) translates the fact that (◦σ) is
essentially surjective and (2CL2) is just the condition that (◦σ) is fully faithful):

(2CL1) For any category C, any 2-natural transformation ρ : a→ C (i.e., the
type of data described in the beginning of this section) there exists a functor

F : 2 lim
−→
i∈I

a(i) −→ C
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and an isomorphism ϕF : ρ → Fσ, which is a modification given by a natural
equivalence ϕFi : ρi

∼
→ Fσi for every i ∈ I . This may be visualized by

a(i)

a(s)

σi

ρi

Θσ
s

∼

ϕFio

2 lim
−→
i∈I

a(i) F
C

ϕFjo

a(j)

σj
ρj

The compatibility condition is given by
(
F •Θσ

s

)
◦ ϕFi =

(
ϕFj • a(s)

)
◦Θρ

s ,

which means that the following diagram commutes

ρi
ϕFi
∼

Θρ
s o

Fσi

F •Θσ
so

ρja(s)
ϕFj • a(s)

∼ Fσja(s).

The pair (F, ϕF ) is called a lax factorization (or factorization up to natural
equivalence) of the system ρ.

If the 2-colimit has the strong factorization property then there exists a
unique factorization such that ϕF is the identity.

(2CL2) Let ρ, ρ′ : a → C be two 2-natural transformations and λ : ρ →
ρ′ a modification. Then for any lax factorization F : 2 lim

−→ i∈Ia(i)→ C of ρ
and G : 2 lim

−→ i∈Ia(i)→ C of ρ′ there exists a unique natural transformation
Λ : F → G such that

ϕGi ◦ λi =
(
Λi • σi

)
◦ ϕFi ,

visualized by

ρi
λi

ϕFi o

ρ′i

ϕGio

Fσi
Λi • σi

Gσi.
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Equivalently we can state that every modification Ξ : Fσ → Gσ can be written
as λ • σ for a uniquely determined natural transformation λ : F → G. In par-
ticular this gives a precise meaning to the terminology unique up to essentially
unique equivalence.

A.3. Existence of 2-colimits in CAT . — It is well known that all small
2-colimits exist in CAT . We will recall the construction here and look more
closely to the case of filtered 2-colimits.

We will start with Grothendieck’s construction of the category
∫
Ia for any

2-functor a : I → CAT which are used to construct homotopy colimits in CAT
cf. [16]). In our terminology

∫
Ia would be a “lax” 2-colimit of a (satisfying the

strong factorization property), that factors families of functors described above
as ρ which are compatible up to natural transformation (and not necessarily
up to natural equivalence).

Then the 2-colimit is obtained by a localization of the category
∫
I
a. In the

case that I is filtered this localization is given by a calculus of fractions and
the description of the 2-colimit is particularly simple.

Notation A.3.1. — Let us recall the explicit construction of the small cate-
gory

∫
Ia. We set

Ob
(∫

I

a
)

=
{
(i,X) | i ∈ I and X ∈ Ob (a(i))

}
.

In other words the set of objects is just the disjoint union of the sets of objects
of the direct system. For any two objects (i,X), (j, Y ) ∈ Ob

( ∫
Ia

)
we set

Hom∫
I

a

(
(i,X), (j, Y )

)

=
{
(s, f) | (s : i→ j) ∈ MorI, (f : a(s)(X)→ Y ) ∈ Mor a(j)

}
.

Composition of two morphisms (s, f) : (i,X) → (j, Y ), (t, g) : (j, Y ) → (k, Z)
is defined such that the following diagram is commutative

a(t ◦ s)(X)

Φ(s, t)X o

Z

a(t)a(s)(X)
a(t)(f)

a(t)(Y )

g

hence we have to set

(t, g) ◦ (s, f) =
(
t ◦ s, g ◦ a(t)(f) ◦ Φ(s, t)X

)
.

One checks easily that the composition of morphisms is associative (using the
compatibility condition (2F2)). Furthermore for an object (i,X) ∈ Ob

(∫
I
a
)

the morphism (idi,Φ
a(i)) has the properties of an identity morphism which is

a direct consequence of axiom (2F1). Thus we defined a category
∫
Ia .
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Note that any morphism (s, f) : (i,X)→ (j, Y ) may be factored as (s, f) =
(idj , f ◦ Φa(j)) ◦ (s, ida(s)(X)).

For each i ∈ I we have a natural functor

σi : a(i) −→

∫

I

a

that maps an object X ∈ Ob (a(i)) to (i,X) and a morphism f of a(i) to
(idi, f ◦ Φa(i)). Note that for any morphism s : i → j we have σja(s)(X) =
(j, a(s)(X)), thus we get a morphism

(
s, ida(s)(X)

)
: σi(X) = (i,X) −→

(
j, a(s)(X)

)
= σja(s)(X).

Set (Φs)X = (s, ida(s)(X)) for X ∈ Ob (a(i)). One checks easily, that these
morphisms define a natural transformation Φs : σi → σja(s) and that (σ,Φ)
defines a 2-natural transformation a→

∫
Ia.

Proposition A.3.2. — Let a → C be a 2-natural transformation. Then it
factors uniquely through

∫
Ia.

Remark A.3.3. — Note that
∫
I
a is not a 2-colimit of a in general since the

natural transformations Φs : σi → σja(s) do not need to be natural equiva-
lences.

Theorem A.3.4. — Let I be a small category and a : I → CAT a 2-functor.
Then a admits a 2-colimit. Moreover one may find a class S of morphisms
in

∫
Ia such that the localization

∫
Ia[S−1] is a 2-colimit of a satisfying the

strong factorization property.
If I is filtered (resp. cofiltered) then S can be naturally chosen to be right

multiplicative (resp. left multiplicative) and left saturated (in both cases) and∫
I
a[S−1] admits a calculus of fractions.

Proof. — We localize
∫
I a with respect to the following class (actually this is

a set) of morphisms

S =
{
(s, f) : (i,X)→ (j, Y ) | f : a(s)(X)→ Y is an isomorphism

}
.

In any case (I filtered or not) we may define a small category

2 lim
−→
i∈I

a(i) =
(∫

I

a
)
[S−1].

Here we may choose the unique (up to isomorphism of categories) localization
that has the strong factorization property.

Denote by Qa :
∫
Ia→ 2 lim

−→ i∈Ia(i) the canonical functor and set

σ̃i = Qaσi : a(i) −→

∫

I

a −→ 2 lim
−→
i∈I

a(i).
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For any morphism s : i→ j of MorI we have a natural transformation

Φ̃s = Qa • Φs : σ̃i −→ σ̃ja(s)

defined by (Φ̃s)X = Qa((Φs)X) = Qa(s, ida(s)(X)) for X ∈ Ob
(
a(i)

)
. These

morphisms are isomorphisms in the localization, hence Φ̃s is a natural equiva-
lence. It can easily be shown that 2 lim

−→ i∈Ia(i) satisfies the strong factorization
property and also (2CL2), using the proposition above and the (2-) univer-
sal property of the localization of categories. If we suppose I to be filtered
(resp. cofiltered), it is not hard to show that the class S is left (resp. right)
multiplicative and moreover that

S ′ =
{
(s, ida(s)(X)) : (i,X)→ (j, a(s)(X))

}

is cofinal.

Remark A.3.5. — Let us describe morphisms in the 2-colimit. Let I be a
filtered category. We obviously have

Hom∫
I

a

(
(i,X), (j, Y )

)
=

⊔

s:i→j

Homa(j)

(
a(s)(X), Y

)
.

Then we get

Hom
(
(i,X), (j, Y )

)
= lim

−→
(j,Y )→(k,a(s)(Y ))

⊔

t:i→k

Homa(k)

(
a(t)(X), a(t)a(s)(Y )

)
.

If we apply this formula to the special case in which I is a quasi-ordered set,
we get the following proposition:

Proposition A.3.6. — Let I be a filtered category such that between two given
objects there is at most one morphism. Let a be a 2-functor. Let X ∈ a(i),
Y ∈ a(j). Then

Hom2 lim
−→
i∈I

a(i)(X,Y ) = lim
−→
i→k
j→k

Homa(k)

(
a(k)(X), a(k)(Y )

)
.

A.4. 2-limits. — The 2-limit is the dual construction of the 2-colimit. How-
ever there are three notions of an opposite 2-category. Here we will use the
convention that in the (2-)opposite 2-category of CAT that we replace the cat-
egories Hom(C,D) by Hom(D,C)◦.

Definition A.4.1. — Let I be a category. A contravariant 2-functor b : I → C
is a 2-functor b : I◦ → CAT . Hence we also get the notion of a 2-natural trans-
formation of contravariant 2-functors and that of modifications of such trans-
formations.
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Remark A.4.2. — The 2-limit of a contravariant 2-functor is defined by du-
ality, hence it is the 2-colimit in the opposite 2-category of CAT . We will not
state the detailed description dual to Section 2.2.

As in the case of ordinary limits and colimits, 2-colimits can be defined by
using only 2-limits (see Proposition A.4.9). However we will mostly work with
2-colimits and therefore chose to present them in detail.

Lemma A.4.3. — Let f, g : a → a′ be two 2-natural transformations of 2-
functors and Λ : f → g be a modification. Then we get 2-natural transforma-
tions of contravariant 2-functors

Hom C(f, X),Hom C(g, X) : Hom C(a′, X) −→ Hom C(a, X)

and a modification

Hom C(Λ, X) : Hom C(f, X) −→ Hom C(g, X).

We will now give a very explicit description of the 2-limit in CAT . Since it
is a subcategory of the “lax”2-limit, we will start with the lax version although
we will not use it:

Notation A.4.4. — Consider a contravariant 2-functor b : I → CAT . Let us
call a bbb-admissible pair (X,ϑX) the following data:

1) an object Xi ∈ Ob b(i) for any i ∈ I ;

2) a morphism ϑXs : Xi → b(s)(Xj) for any s ∈ MorI,

such that the two following conditions hold

(A) for any i ∈ I we have Φ(i)Xi
◦ ϑXidi

= idXi
as visualized by

Xi

ϑXidi

id
Xi

b(idi)(Xi)

Φ(i)Xi

∼

Xi

(B) and for any two composable morphisms s : i→ j, t : j → k the equation

b(s)(ϑXt ) ◦ ϑXs = Φ(s, t)Xk
◦ ϑXt◦s

holds as visualized by the following diagram

Xi

ϑXs

ϑXt◦s

b(s)(Xj)

b(s)(ϑXt )

b(t ◦ s)(Xk)
Φ(s, t)Xk

∼ b(s)b(t)(Xk)
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A strictly bbb-admissible pair is a b-admissible pair (X,ϑX) such that all mor-
phisms of (B) are isomorphisms. The notion of a bbb-admissible pair is not of
much interest and will only be used in this section. The only aim of the descrip-
tion of this type of data is to give details to the formula of Proposition A.4.8.

Let (X,ϑX), (Y, ϑY ) be two b-admissible pairs. A morphism of bbb-admissible
pairs ϕ : (X,ϑX)→ (Y, ϑY ) is given by a family of morphisms ϕi : Xi → Yi of
Mor b(i) (indexed by i ∈ I) satisfying for any s : i→ j of MorI the equation

b(s)(ϕj) ◦ ϑ
X
s = ϑYs ◦ ϕi

as visualized by

Xi

ϑXs

ϕi

b(s)(Xj)

b(s)(ϕj)

Yi
ϑYs

b(s)(Yj)

A morphism of strictly bbb-admissible pairs is a morphism of the underlying
of b-admissible pairs. Configure Proposition A.4.8 for an interpretation of the
data of a b-admissible pair.

Notation A.4.5. — Denote by db/dI the category of b-admissible pairs as
defined in the notation above. Hence the objects of db/dI are the b-admissible
pairs and morphisms in db/dI are morphisms of b-admissible pairs.

Composition of morphisms is defined in an obvious way, and it is immediately
verified that the composition of a two morphisms of b-admissible pairs is in fact
a morphism of b-admissible pairs, that it is associative and finally that for any
object (X,ϑX) of Ob (db/dI) the morphisms idXi

(for i ∈ I) define the identity
morphism of (X,ϑX). Hence db/dI is a well-defined category.

For each i ∈ I there is a natural functor

πi :
db

dI
−→ b(i)

that projects an object (X,ϑX) to Xi and a morphism ϕ : (X,ϑX ) → (Y, ϑY )
to ϕi : Xi → Yi.

Let s : i→ j be a morphism of MorI and (X,ϑX) an object of Ob (db/dI).
Then we have a morphism

ϑXs : πi(X,ϑ
X) = Xi −→ b(s)(Xj) = b(s)πj(X,ϑ

X).

Put (Φs)(X,ϑX ) = ϑXs . The definition of morphisms of b-admissible pairs im-
mediately implies that Φs defines actually a natural transformation Φs : πi →
b(s)πj and one checks that (π,Φ) is a 2-natural transformation.
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Proposition A.4.6. — Let C → b be a 2-natural transformation. Then it
factors uniquely through db/dI.

Theorem A.4.7. — Let I be a small category and b : I → CAT a contravari-
ant 2-functor. Then b admits a 2-limit. Moreover one may choose the 2-limit
to be a suitable full subcategory of db/dI. In that case it will satisfy the strong
factorization property.

Proof. — Consider the category db/dI. Define dsb/dI to be the full subcate-
gory of db/dI whose objects are the strictly b-admissible pairs.

The projections πi : db/dI → b(i) induce functors πsi : dsb/dI → b(i) by
restriction. It follows immediately from the proposition above that any strictly
b-admissible family factors uniquely through dsb/dI → b(i). Moreover since
the inclusion ι : dsb/dI → db/dI is fully faithful we get the 2-property from
the 2-property of the 2-limit db/dI.

Proposition A.4.8. — Let b : I → CAT be a contravariant 2-functor. Then
we have a natural isomorphism of categories

ds
b

dI
' Hom 2F(eI , b).

(Here eI : I → CAT is the functor that associates to every i ∈ I the point
category e that has only one morphism.) Hence there is a natural equivalence:

2 lim
←−
i∈I

b(i) ' Hom 2F(eI , b)

that is an isomorphism if and only if the chosen representative of 2 lim
←− i∈Ib(i)

satisfies to the strong factorization property.

Proposition A.4.9. — Let a : I → CAT be a 2-functor and b : I → CAT a
contravariant 2-functor. Then we have canonical natural equivalences

Hom CAT

(
2 lim
−→
i∈I

a(i), C
)
' 2 lim
←−
i∈I

Hom CAT

(
a(i), C

)
,(i)

Hom CAT

(
C, 2 lim
←−
i∈I

b(i)
)
' 2 lim
←−
i∈I

Hom CAT

(
C, b(i)

)
.(ii)

Remark A.4.10. — Note that these formulas can be used to define 2-limits
and 2-colimits in any 2-categories by only using 2-limits in CAT which are
rather simple objects.

A.5. Properties of 2-colimits and 2-limits. — There are a lot of formal
consequences of the 2-universal properties of 2-limits and 2-colimits.

Proposition A.5.1. — 2-limits and 2-colimits are functorial.
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Remark A.5.2. — Actually the result can be made more precise. The cate-
gory 2F(I) naturally carries the structure of a 2-category and the correspon-
dence

2F(I) −→ CAT , a 7→ 2 lim
−→
i∈I

a(i)

can be extended to a 2-functor between 2-categories (which we did not define
here). A similar statement holds for 2-limits.

First consider a filtered category I.

Proposition A.5.3. — Let a : I → CAT be a 2-functor. Suppose that a(i)
is an additive category for any i ∈ I and that a(s) is an additive functor for
every morphism s ∈ MorI. Then 2 lim

−→ i∈Ia(i) is an additive category and the
natural functors σi : a(i)→ 2 lim

−→ i∈Ia(i) are additive.

Proof. — Finite products (resp. coproducts) can be constructed in a(i) for some
i ∈ I . Then their image will define products (resp. coproducts) in the 2-colimit.

Proposition A.5.4. — Let a : I → CAT be a 2-functor. Suppose that a(i) is
a triangulated category for any i ∈ I and that a(s) is an exact functor (i.e., it
maps distinguished triangles to distinguished triangles) for every morphism
s ∈ MorI. Then 2 lim

−→ i∈Ia(i) is a triangulated category and the natural func-
tors σi : a(i)→ 2 lim

−→ i∈Ia(i) are exact.

Proof. — A triangle in 2 lim
−→ i∈Ia(i) is distinguished if it is the image of a dis-

tinguished triangle in a(i) for some i ∈ I .

Proposition A.5.5. — Let a : I → CAT be a 2-functor. Suppose that a(i) is
an abelian category for any i ∈ I and that a(s) is an exact functor for every
morphism s ∈ MorI. Then 2 lim

−→ i∈Ia(i) is an abelian category and the natural
functors σi : a(i)→ 2 lim

−→ i∈Ia(i) are exact.

Proof. — Every morphism can be lifted to a(i) for some i ∈ I where we can
construct its kernel and its cokernel.

Appendix B

Abelian substacks of a prestack on a topological space

Perverse sheaves on a complex manifold X are local objects — they form an
abelian stack which is a subprestack of the prestack of (derived) sheaves on X
(see [3] for the general theory of perverse sheaves, see also [11], Section X, for
a microlocal approach to perverse sheaves). In Section B.5 we will generalize
the method used in [11] in order to prove that this subprestack is actually a
stack. In particular we will show that a similar method can be applied to find
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substacks of the prestack of (derived) ind-sheaves. The abelian structure of the
stack of perverse sheaves is defined by a t-structure on the triangulated prestack
of derived categories of sheaves with C-constructible cohomology. However, the
category of microlocal perverse sheaves will not be defined as the heart of a
t-structure. Our strategy is based on the idea that a stack is “almost” abelian,
if its stalks are abelian categories. Roughly speaking, an additive stack is
abelian if and only if its stalks are abelian and kernels and cokernels can be
lifted to small neighborhoods. We will investigate this statement more precisely
in Sections B.6 and B.7.

B.1. Prestacks. — A prestack is a“presheaf of categories up to equivalence”.
More precisely, let X be a topological space and denote by T (X) the category
of open sets of X . A prestack on X is just a 2-functor C : T (X)◦ → CAT . We
get immediately the notion of a functor of prestacks (being a 2-natural transfor-
mation of the underlying 2-functors) and the notion of a natural transformation
of functors of prestacks (being a modification of the underlying 2-natural trans-
formations). In particular we get the concept of an equivalence of prestacks
and we may define the (2-)category PST (X) of prestacks on X .

Remark B.1.1. — Let C be a prestack on X , U ⊂ X an open subset and
A,B ∈ ObC(U). For V ⊂ U , we set

HomC|U
(A,B)(V ) = HomC(V )(A|V , B|V )

If W ⊂ V ⊂ U the restriction functor ρWV and the natural equivalence ΦWV U

define a restriction map and one easily verifies thatHomC|U
(A,B) is a presheaf.

Let us add some notations.

Definition B.1.2. — 1) A prestack C is called additive if for any U ⊂ X
the category C(U) is additive and the restriction functors are additive.

2) An additive prestack C is called triangulated if for any U ⊂ X the category
C(U) is triangulated and the restriction functors are exact.

3) An additive prestack C is called abelian if for any U ⊂ X the category
C(U) is abelian and the restriction functors are exact.

We then get the obvious concept of an additive (resp. exact) functor between
additive (resp. triangulated or abelian) prestacks.

Let f : X → Y be a continuous map and C a prestack on X . Then there
is a natural prestack f∗C on Y defined by f∗C(V ) ' C(f−1(V )). Let D be a
prestack on Y . Then one defines a prestack f−1

p D on X by

f−1
p D(U) = 2 lim

−→
f(U)⊂V

D(V ).

These operations are adjoint:
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Proposition B.1.3. — The operations f∗ and f−1
p are (2-)adjoint to each

other, i.e., there is a (2-)natural equivalence of categories

HomPST (X)(f
−1
p D,C) ' HomPST (Y )(D, f∗C).

B.2. Stalks. — Since prestacks (and stacks) are often treated in the more
general framework of sites, we will describe here in detail the notion of a stalk
of a prestack on a topological space. Of course if p ∈ X and i : {p} ↪→ X is the
inclusion, then the stalk Cp of a prestack C at p is nothing but i−1

p C.

Definition B.2.1. — Let C be a prestack on X and p ∈ X a point. Consider
the category Tp(X) of open sets that contain the point p. Note that since the set
of open sets containing p is stable by union and intersection the category Tp(X)
is filtered and cofiltered.

The prestack C induces a 2-functor αp : Tp(X)◦→ CAT . We set

Cp = 2 lim
−→
U3p

C(U) = 2 lim
−→

U∈Tp(X)

αp(U)

and call Cp the stalk of C at p or the category of germs of C at p.

Hence the stalk of a prestack is defined up to canonical equivalence of cate-
gories. Moreover by the preceding paragraph we have a canonical construction
of the stalk at any point p that gives us even a strict 2-colimit with strong fac-
torization property. We will call this stalk the canonical stalk of C at p (which
is unique up to canonical isomorphism of categories) and is of some theoretical
use. The canonical stalk can easily be described using the explicit construction
of Theorem A.3.4 and Proposition A.3.6. We get

Ob Cp =
{
(U,A) | p ∈ U ⊂ X open and A ∈ ObC(U)

}
=

⊔

p∈U⊂X

Ob C(U).

Let (U,A),(V,B) be two objects of Cp. Then

HomCp

(
(U,A), (V,B)

)
= lim
−→

p∈W⊂U∩V

HomC(W )(A|W , B|W ).

Hence a morphism f : (U,A) → (V,B) is defined on a small neighborhood
W ⊂ U ∩ V of p. In particular we get

Proposition B.2.2. — Let C be a prestack on X, p ∈ X a point, U ⊂ X
an open set containing p and A,B ∈ ObC(U) two objects. Then we have a
canonical isomorphism

HomC|U
(A,B)p

∼
−→ HomCp

(A,B).

This isomorphism is compatible with the composition maps in C in the following
way: Let U ⊂ X be an open set containing p and A,B,C ∈ Ob C(U). Then
the morphism of sheaves

HomC|U
(A,B)×HomC|U

(B,C) −→ HomC|U
(A,C)
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induces in its stalks the composition in the stalk:

HomCp
(A,B)×HomCp

(B,C) −→ HomCp
(A,C).

Hence germs of morphisms may be seen as morphisms in the category of
germs. The compatibility with the composition map has an obvious corollary:

Corollary B.2.3. — Let C be a prestack on X, p ∈ X a point, U, V ⊂ X
two open sets containing p and A ∈ Ob C(U), B ∈ ObC(V ) two objects. Then
A and B are isomorphic in Cp if and only if they are isomorphic on an open
neighborhood of p.

Let us observe that an object A ∈ ObC(U) (with p ∈ U) is isomorphic to
all its restrictions to sets V ∈ p but there is no equivalence relation imposed
on the objects.

If A ∈ Ob C(U) we will still denote by A its image in Cp. If f : A → B is a
morphism in C(U) then we note fp : A → B its image in Cp. The reason why
we do not write Ap is given by the following remark.

Remark B.2.4. — Consider a sheaf of rings A and the stackMOD(A). One
shall beware that the natural functor

MOD(A)p −→ Mod(Ap)

is not an equivalence of categories because the morphism

HomA(F,G)p −→ HomAp
(Fp,Gp)

is not an isomorphism in general.

Proposition B.2.5. — 1) If C is additive then its stalks are additive cate-
gories and the natural functors into the stalks are additive.

2) If C is triangulated then its stalks are triangulated categories and the
natural functors into the stalks are exact.

3) If C is abelian then its stalks are abelian categories and the natural func-
tors into the stalks are exact.

Proof. — It’s a direct application of the propositions (A.5.3), (A.5.4)
and (A.5.5).

B.3. Stacks. — A stack is a “lax” version of a sheaf of categories, hence
objects and morphisms in a stack are determined up to unique isomorphism by
their local data.

Definition B.3.1. — A prestack C on X is separated if for all open subsets
U ⊂ X and all objects A,B ∈ Ob C(U) the presheaf HomC|U

(A,B) is a sheaf.

Definition B.3.2. — A prestack C on X is a stack if the following two con-
ditions are satisfied:
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(i) the prestack C is separated;

(ii) let U =
⋃
i∈I Ui be an open covering of an open subset U ⊂ X and

suppose that we are given the following data

(a) for every i ∈ I an object Ai ∈ C(Ui),

(b) for every i, j ∈ I an isomorphism σij : Aj |Uij

∼
→ Ai|Uij

such that
for any i, j, k ∈ I the equation σij ◦ σjk = σik holds on Uijk .

Then there exist an object A ∈ C(U) and isomorphisms ρi : A|Ui
→ Ai such

that σij ◦ ρj = ρi.

Proposition B.3.3. — Let C,C′ be two stacks on X. Consider a functor F :
C→ C′. Then we have

1) F is faithful if and only if Fp is faithful for all p ∈ X;

2) F is fully faithful if and only if Fp is fully faithful for all p ∈ X;

3) F is an equivalence of stacks if and only if Fp is an equivalence of cate-
gories for all p ∈ X.

Proof. — We know that F is faithful (resp. fully faithful) if and only if the
morphisms of sheaves

HomC|U
(A,B) −→ HomC ′

|U

(
F (A), F (B)

)

are monomorphisms (resp. isomorphisms). Since these two properties are veri-
fied in the stalks, we immediately get 1) and 2).

Let us prove 3). Note that the condition is clearly necessary.
Now suppose that Fp is an equivalence of categories for all p ∈ X . By 2) we

know that F is fully faithful. Hence it is sufficient to show that F is essentially
surjective for any open set U ⊂ X . Let A′ ∈ Ob C′(U). For any point p ∈ U
there is an object Ap ∈ Cp such that Fp(Ap) ' A′

p. Hence by corollary (B.2.3)

there is an open neighborhood V (p) of p, an object A(p) ∈ Ob
(
C(V (p))

)
and

an isomorphism ϑ(p) : F (A(p)) ' A′
|V (p). These isomorphisms define a cocycle

that patches together the objects F (A(p)) to an object isomorphic to A′. Since
F is fully faithful this cocycle can be lifted to a cocycle in C′ where the A(p)
patch together to an object A such that F (A) is isomorphic to A′.

B.4. The stack associated to a prestack. — In this paragraph we will
describe the stack associated to a prestack on a topological space. As is the
case of the sheaf associated to a presheaf this can be done explicitly and is less
complicated than on an arbitrary site.

Proposition B.4.1. — Let C be a prestack on X. Then there exists a sepa-

rated prestack C† on X and a canonical functor η†
C

: C → C† that induces an
equivalence of categories on the stalks, such that any morphism C → D into a
separated prestack D factors uniquely through C† (up to unique equivalence).
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Moreover for any functor F : C→ D there exists a functor F † : C† → D† such
that the diagram commutes

C
F

D

C†
F †

D†.

Proof. — Let U ⊂ X be an open subset. Let us define a category C†(U). Set

ObC†(U) = ObC(U)

now let A,B ∈ Ob C(U) be two objects. Put

HomC†(U)(A,B) = Γ
(
U,HomC|U

(A,B)†
)
,

where HomC|U
(A,B)† is the sheaf associated to HomC|U

(A,B). Note that

we have a canonical map HomC(U)(A,B) → HomC†(U)(A,B) which is just the
natural morphism from the presheaf HomC(U)(A,B) into its associated sheaf.
The map

HomC|U
(A,B)×HomC|U

(B,C) −→ HomC|U
(A,C)

induces the composition in C†:

Hom
C

†
|U

(A,B) ×Hom
C

†
|U

(B,C) −→ Hom
C

†
|U

(A,C).

The restriction functors of C† and the equivalences can easily be constructed
by the universal property of the sheaf associated to a presheaf which also im-
plies that all the axioms are verified. The universal property of the separated
prestack associated to a prestack also follows from the universal property of
the sheaf associated to a presheaf.

Theorem B.4.2. — Let C be a prestack on X. Then there exists a stack C‡

on X together with a canonical functor of prestacks η‡
C

: C→ C‡ such that any

morphism C→ D into some stack D factors uniquely through C‡. Moreover for
any stack D and any morphism of prestacks F : C→ D there exists a canonical
functor of stacks F ‡ such that the following diagram is commutative

C
F

η‡
C

D

η‡
C

C‡
F ‡

D‡.

Finally the functor η‡
C

: C→ C‡ induces equivalences of categories on the stalks
at every point of X.
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Proof. — By the previous proposition we may assume that C is a separated
prestack, i.e., all associated presheaves are actually sheaves.

Let U ⊂ X be an open subset. We have to define a category C‡(U).
Consider families A = {(Ap, UAp )}p∈U where UAp is an open neighborhood

of p with Ap ∈ C(UAp ) and families of morphisms θA = {θApq}p,q∈U where

θApq : Aq |UA
pq

∼
→ Ap|UA

pq
is an isomorphism for all p, q ∈ U (here UApq = UAp ∩U

A
q )

satisfying the cocycle condition. During the proof let us call a pair (A, θA)
a cocycle on U .

We shall now define morphisms of cocycles. A morphism f : (A, θA) →
(B, θB) consists of a family of germs morphisms fp : (Ap, U

A
p ) → (Bp, U

B
p ) of

MorCp such that for any point p ∈ U there is an open set U fp on which fp is

represented as a morphism fp : Ap|Uf
p
→ Bp|Uf

p
(where Ufp ⊂ U

AB
p = UAp ∩ U

B
p

is an open neighborhood of p) satisfying the following compatibility condition:
the diagram

Aq|Uf
pq

θA
pq|Uf

pq

fq|Uf
pq

Ap|Uf
pq

fp|Uf
pq

Bq|Uf
pq

θB
pq|Uf

pq Bp|Uf
pq

should be commutative for all p, q ∈ U .

Now define C‡(U) to be the category of cocycles. The obvious restriction
maps define a prestack C‡ on U (which is actually a presheaf). It is now tedious
but straightforward, that C‡ is a stack that satisfies the universal property. Note
that we need the assumption that C is separated when proving the patching
condition.

Corollary B.4.3. — Let C be a stack. Then there exists a stack C′, canoni-
cally isomorphic to C, which is also a presheaf of categories.

Corollary B.4.4. — Let C be a prestack and F : C → D be a morphism
into a stack D. Suppose that F induces equivalences of categories in the stalks.
Then D is equivalent to the stack associated to C.

B.5. A criterion for substacks. — The basic definitions from the theory
of stacks (on a topological space) are recalled in Appendix B. The results on
proper stacks and ind-sheaves that we will use can be found in [12].

Definition B.5.1. — Consider a prestack C on a topological space X . We
say that a full subprestack C′ ⊂ C is defined by a local property (with respect
to C) if the following conditions are satisfied:
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(i) the prestack C′ is stable by isomorphisms, i.e., if U ⊂ X is open, A ∈
Ob C′(U) then any object B ∈ ObC(U) isomorphic to A is also an object of
Ob C′(U),

(ii) if U ⊂ X is open and A ∈ Ob C(U) then A ∈ Ob C′(U) if and only if
there is an open covering U =

⋃
i∈I Ui such that A|Ui

∈ ObC′(Ui) for all i ∈ I .

Remark B.5.2. — Consider a full subprestack C′ ⊂ C and a point p ∈ X .
Then the natural functor C′

p → Cp is fully faithful. Therefore the subprestack C′

is defined by a local property if and only if for any object A ∈ ObC(U) the
statements below are equivalent:

(a) A ∈ Ob C′(U);

(b) for every p ∈ X the object A is in the essential image of the functor
C′
p → Cp, i.e., there exists an object B ∈ ObC′

p such that A is isomorphic to
B in Cp.

Lemma B.5.3. — Let C be a triangulated prestack. Assume moreover that

1) for any V ⊂ U the restriction functor i−1
V U has a fully faithful left adjoint

iV U !
(4);

2) these functors satisfy the base change theorem, i.e., for any Cartesian
square of open subsets

U12 U1

U2

�

V

we have iU12U2!i
−1
U12U1

' i−1
U2V

iU1V !, where U12 = U1 ∩ U2.

Consider the union of two open sets U = U1 ∪ U2 and suppose that we are
given

(i) objects A1 ∈ ObC(U1) and A2 ∈ ObC(U2);

(ii) an isomorphism f21 : A1|U12

∼
−→ A2|U12

in C(U12).

Then there exist an object A ∈ Ob C(U) and isomorphisms f1 : A|U1

∼
→ A1,

f2 : A|U2

∼
→ A2 that are compatible with f21 on U12, i.e., the following diagram

commutes:

A1|U12

f21
∼ A2|U12

A|U12

f2|U12

∼

f1|U12

∼

(4) Recall that iV U! is fully faithful if and only if the adjunction morphism Id → i−1
V U

iV U!

is an isomorphism. Also note that for any three open subsets W ⊂ V ⊂ U the isomorphism
i−1
WV

i−1
V U

' i−1
WU

induces an isomorphism iWV !iV U! ' iWU!.
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Proof. — The object A is obtained by choosing a distinguished triangle

i12!(A1|U12
)

(
g1
g2

)
−−−−→ i1!A1 ⊕ i2!A2

(h1, h2)
−−−−−−→ A

+
−−−→

where the first morphism defining the triangle is given by

g1 : i12!(A1|U12
)

∼
−−−→ i1!i12,1!(A1|U12

) −−−→ i1!(A1),

g2 : i12!(A1|U12
)
−f21
−−−−→

∼
i12!(A2|U12

)
∼
−−−→ i2!i12,2!(A2|U12

) −−−→ i2!(A2).

Remark B.5.4. — In the situation of the preceding Lemma B.5.3, suppose
that we are given a full (but not necessarily triangulated) subprestack C′ ⊂ C

that is defined by a local property. Then the lemma holds in C′, i.e., if the
objects A1,A2 are in C′ then the object A lies also in C′. Indeed, we may
patch the given objects A1, A2 of C′ to an object A in the prestack C using
Lemma B.5.3. Then the axioms (cf. Definition B.5.1) immediately imply that A
is an object of C′.

Note that if moreover C′ is separated, then the object A is unique up to
unique isomorphism(5).

Let us note that we can apply Lemma B.5.3 to the prestack of bounded de-
rived categories of ind-sheaves (cf. [12]). Denote by Db(I(k∗)) the prestack U 7→
Db(I(kU )) on a locally compact space X with a countable base of open sets.

We can now state Proposition 10.2.9 of [11] in a slightly more general context
and change the proof so that we may adapt it later to the case of ind-sheaves.

Proposition B.5.5. — Let X be a locally compact paracompact space with a
countable base of open sets. Consider a proper stack(6) A such that for every
open subset U ⊂ X the category A(U) has enough injective objects. Denote by
Db(A) the associated prestack of bounded derived categories.

Let C ⊂ Db(A) be a separated full subprestack that is defined by a local
property. Then C is a stack.

Proof. — We have to show that C satisfies the patching condition (cf. Definition
B.3.2 in Appendix B). Since X is paracompact we have to verify the patching
condition only for countable coverings. Since the conditions of Lemma B.5.3 are
satisfied for the prestack Db(A) and C is defined by a local property, we know

(5) More precisely, if A′ is another object with isomorphisms f ′
i : A′

|Ui

∼
→ Ai for i ∈ {1, 2}

such that f21 ◦ f ′
1|U12

= f ′
2|U12

then there exists a unique isomorphism ϕ : A
∼
→ B such that

f ′
i ◦ ϕ|Ui

= fi for i ∈ {1, 2}.

(6) For the definition of a proper stack see [12]. A proper stack A and the associated prestack
of bounded derived categories Db(A) satisfy the hypothesis of Lemma B.5.3. Moreover for
each open subset U ⊂ X, the abelian category A(U) admits filtered exact colimits and the
restriction functors commute to such colimits.
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that C satisfies the patching condition for any covering of type U = U1 ∪ U2.
Using the fact that C is separated, we can easily verify by induction that the
patching condition is satisfied for finite coverings. Therefore, using again the
fact that C is separated, it is sufficient to prove that objects may be patched
in C for open coverings of type U =

⋃
n∈N

Un where Un ⊂ Un+1.

Consider a family of objects An ∈ ObDb(A(Un)) and isomorphisms fn−1 :

An−1
∼
→ An|Un−1

(the other isomorphisms are uniquely determined by the
cocycle condition). Denote by in : Un ↪→ U the inclusion map. Then we lift
the morphisms of the system to

gn−1 : in−1!An−1

in−1!(fn−1)
−−−−−−−−→

∼
in−1!An|Un−1

−−−→ in!An

in Db(A(U)). Hence we get a family of morphisms
{
gn−1 : in−1!An−1 → in!An

}
n>1

in Db(A(U)). Note that gn−1|Un−1
is an isomorphism by the base change the-

orem.
By hypothesis A(U) has enough injective objects and therefore we have an

equivalence of categories Kb(Inj(A(U))) ' Db(A(U)). Here Inj(A(U)) denotes
the full additive subcategory of A(U) whose objects are the injective objects

of A(U) and Kb(Inj(A(U))) is the triangulated category of bounded complexes
of Inj(A(U)) where morphisms of complexes are considered up to homotopy.

Hence there exist objects In and morphisms hn−1 : In−1 → In in Cb(Inj(A(U)))
such that the diagram {hn−1 : In−1 → In}n>1 is isomorphic (in Db(A(U))) to
the diagram {gn−1 : in−1!An−1 → in!An}n>1. Let A = lim

−→
In and consider A

as an object in Db(A(U)). Then A|Un
is quasi-isomorphic in Cb(A(U)) to In

because for m > n the morphism In → Im|Un
is a quasi-isomorphism. Hence

there are natural isomorphisms A|Un
' An in Db(A(U)), and a simple diagram

chase shows that they are compatible with the morphisms fn.

Remark B.5.6. — Note that in Proposition B.5.5 the hypothesis that the
categories Db(A(U)) possess enough injective objects can be weakened. During
the proof, we actually only use the fact that any diagram in Db(A(U)) of type

{An → An+1}n>0 can be lifted to a diagram {In → In+1}n>0 in Cb(A(U)).
We do not use the fact that the objects In are injective.

Proposition B.5.7. — Let S be a small diagram in Db(Ind(A)), i.e., S ⊂
MorDb Ind(A) is a set of morphisms. Then there exists an essentially small
full abelian subcategory B ⊂ A such that

(i) B is stable by subobject, quotient and extension in A;

(ii) IndB ⊂ IndA is stable by subobject, quotient and extension;

(iii) IndB has enough injectives;
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(iv) S is contained in the image of the natural functor

Db
(
Ind(B)

)
−→ Db

(
Ind(A)

)
.

Proof. — Follows easily from Theorem 11.2.6 of [12].

Combining Proposition B.5.5 with Remark B.5.6 and Proposition B.5.7 we
get:

Theorem B.5.8. — Let X be a paracompact locally compact topological space
with a countable base of open sets and consider a separated full subprestack
C ⊂ Db(I(k∗)) that is defined by a local property. Then C is a stack.

B.6. Limits and colimits in stacks. — Recall that if C is a prestack on
a topological space X , we denote by ρV U the restriction functor for two open
subsets V ⊂ U ⊂ X and ρUp : C(U) → Cp the canonical functor into the stalk
at p.

Definition B.6.1. — Let I be a small category. We say that C admits limits
(resp. colimits) indexed by I if for every open subset U ⊂ X the category C(U)
admits limits (resp. colimits) indexed by I such that the restriction functors
commute to these limits (resp. colimits).

Let I be a finite category. It is easy to see that if C admits limits (resp.
colimits) indexed by I, then for every p ∈ X the category Cp admits limits
(resp. colimits) indexed by I and the functor ρUp commutes to such limits
(resp. colimits).

However, the converse is not true. We cannot know simply by looking at the
stalks whether or not a prestack admits limits or colimits indexed by I (even
if C is a stack).

If C is separated we can at least see from the stalks whether or not a given
object represents a limit or colimit indexed by a finite category. By duality we
only need to consider the case of finite colimits.

Lemma B.6.2. — Let C be a separated prestack on a topological space X. Con-
sider a finite category I, an open subset U ⊂ X and a functor α : I → C(U).
Suppose given an object L ∈ Ob C(U) and morphisms σi : α(i) → L such that
for any morphism s : i → j of MorI we have σj ◦ α(s) = σi. Then the two
following assertions are equivalent:

(i) (L, {σi}i∈I) is a colimit of α in C(U) and for any open subset V ⊂ U the
pair (L|V , {σi|V }i∈I) is a colimit of ρV Uα in C(V );

(ii) (L, {(σi)p}i∈I) is a colimit of ρUp α in Cp for all p ∈ U .
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Proof. — Let V ⊂ U be an open subset. The object L ∈ ObC(U) and the
morphisms σi|V define a natural morphism of sheaves (C is separated) for any
object A ∈ ObC(V )

(B.6.1) HomC|V
(L|V , A) −→ lim

←−
i∈I

HomC|V

(
α(i)|V , A

)
.

Since I is a finite category we have for every p ∈ V
(
lim
←−
i∈I

HomC|V

(
α(i)|V , A

))
p
' lim
←−
i∈I

HomC|V

(
α(i)|V , A

)
p
.

Hence the morphism (B.6.1) induces in the stalks

(B.6.2) HomCp
(L,A) ' HomC|V

(L|V , A)p −→ lim
←−
i∈I

HomC|V

(
α(i)|V , A

)
p
.

Assertion (i) is clearly equivalent to the fact that the morphism (B.6.1) is
an isomorphism for all V ⊂ U and any A ∈ C(V ).

Assertion (ii) is equivalent to the fact that the morphism (B.6.2) is an iso-
morphism for all V ⊂ U , A ∈ C(V ) and p ∈ V .

Since C is separated the morphism (B.6.1) is an isomorphism if and only
if for every p ∈ V the morphism (B.6.2) is an isomorphism, which proves the
lemma.

Now suppose that we are given a stack C, a finite category I and a functor
α : I → C(U). In order to check that there exists a colimit of α in C(U) we
can apply Lemma B.6.2. However, in practical situations (as in Section 7.2)
it is often difficult to establish the existence of an object L defined on U that
verifies condition (ii) of Lemma B.6.2. Therefore we will use a refinement of
Lemma B.6.2 adapted to stacks which states that it is sufficient to prove the
existence of the object L locally on U .

Proposition B.6.3. — Let C be a stack on a topological space X and I be a
finite category. Suppose that for every open subset U ⊂ X and every functor α :
I → C(U) there exists an open covering U =

⋃
j∈J Uj , objects Lj ∈ ObC(Uj)

and morphisms σji : α(i)|Uj
→ Lj verifying condition (ii) of Lemma B.6.2.

Then C admits colimits indexed by I.

Proof. — Consider an open subset U ⊂ X and a functor α : I → C(U). By
hypothesis and Lemma B.6.2 there exists an open covering U =

⋃
j∈J Uj such

that ρUjUα is representable in C(Uj) by an object Lj and the restriction to
any smaller open subset W ⊂ Uj commutes to these colimits. The conditions
clearly imply that we may patch together the colimits Lj ∈ Ob C(Uj) to an
object L ∈ ObC(U). Now applying again Lemma B.6.2 we see that L is a
colimit of α and that all restrictions commute to this colimit.
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Corollary B.6.4. — Let C be a prestack, η : C→ C‡ the natural functor into
the associated stack and I be a finite category. Suppose that the stalks of C

admit colimits indexed by I. Moreover we assume that for any open subset
U ⊂ X and any functor α : I → C(U) the following statement holds:

For any point p ∈ U there exists an open neighborhood Up ⊂ U , an object
Lp ∈ C(Up) and morphisms σpi : α(i)|Up

→ Lp such that condition (ii) of

Lemma B.6.2 is verified. Then C‡ admits colimits indexed by I.

Proof. — Let α : I → C‡(U) be a functor. Consider the functors ρ‡Up α for
all p ∈ X . Since I is finite there exists an open neighborhood Up of p such
that ρ‡Up α factors through C(Up). Hence we can apply Proposition B.6.3.

In particular we get the much weaker statement that if a prestack C admits
colimits indexed by a finite category I then C‡ admits colimits indexed by I.

B.7. A criterion for abelian stacks. — We can apply the results of the
last paragraph to additive prestacks with abelian stalks. First recall that if C

is an additive prestack then C‡ is additive.

Theorem B.7.1. — Let C be an additive prestack with abelian stalks. Suppose
that for every p ∈ X and every morphism f : A→ B in Cp there exists an open

neighborhood U of p such that f may be represented by a morphism f̃ : Ã→ B̃

in C(U) and there are morphisms K → Ã, B̃ → K ′ such that K → Ã is a

kernel in Cq and B̃ → K ′ is a cokernel in Cq for any q ∈ U . Then C‡ is an
abelian stack.

Proof. — Clearly the conditions of Proposition B.6.3 and Corollary B.6.4 are
satisfied for cokernels and kernels. Hence C‡ admits cokernels and kernels.

Let f : A→ B be a morphism of C‡(U) and consider the natural morphism
coim f → im f . Since the categories of germs are abelian this morphism is
an isomorphism in the stalks. Since C‡ is separated it is also an isomorphism
in C‡(U).

Corollary B.7.2. — Let C be an additive stack on X such that all stalks
are abelian categories. Then C is an abelian stack if and only if for every
morphism f : A → B in Cp there is an open neighborhood U of p such that f

may be represented by a morphism f̃ : Ã→ B̃ in C(U) and there are morphisms

K → Ã, B̃ → K ′ such that K → Ã is a kernel in Cq and B̃ → K ′ is a cokernel
in Cq for any q ∈ U .
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