
Bull. Soc. math. France
131 (1), 2003, p. 41–57

ON SYSTEMS OF LINEAR INEQUALITIES

by Masami Fujimori

In celebration of the 70th birthday of Professor Genjiro Fujisaki

Abstract. — We show in detail that the category of general Roth systems or the cat-
egory of semi-stable systems of linear inequalities of slope zero is a neutral Tannakian
category. On the way, we present a new proof of the semi-stability of the tensor prod-
uct of semi-stable systems. The proof is based on a numerical criterion for a system
of linear inequalities to be semi-stable.

Résumé (Sur certains systèmes d’inégalités linéaires). — On démontre en détail que
la catégorie des systèmes de Roth généraux ou la catégorie des systèmes semi-stables
d’inégalités linéaires de pente zéro est une catégorie tannakienne neutre. En chemin,
on présente une nouvelle preuve de la semi-stabilité du produit tensoriel de systèmes
semi-stables. La preuve découle d’un critère numérique pour qu’un système d’inégalités
linéaires soit semi-stable.

Introduction

Let f1, . . . , fn be absolutely linearly independent linear forms in n variables
T1, . . . , Tn with real algebraic coefficients; c(1), . . . , c(n) real numbers such that
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42 FUJIMORI (M.)

c(1)+· · ·+c(n) = 0; and Q, δ positive real numbers. We are primarily interested
in properties of the rational integral solutions to the system of inequalities

∣∣fi(T1, . . . , Tn)
∣∣ < Q−c(i)−δ (Q > 1; i = 1, . . . , n)

when δ is fixed. For example, finiteness of the number of solutions.
Let L be the subfield of the field of real numbers generated by all the co-

efficients of f1, . . . , fn. If we do not seek sharp estimates, then it seems that
the nature of the system comes from a descending filtration on the L-vector
space LT1 ⊕ · · ·⊕LTn: the family f1, . . . , fn is a basis which induces a basis of
the associated graded vector space. The number c(i) is the weight of fi with
respect to the filtration. In fact, one sees easily that finiteness of the number
of solutions is independent of choices of such a basis (modulo replacement of δ
by a slightly larger exponent). A system with finitely many solutions has been
called a general Roth system.

From the viewpoint of filtrations, Faltings and Wüstholz [4] gave a projec-
tive geometric picture of the set of (rational) solutions to a (related) system
of inequalities. In particular, it is coordinate-free. Faltings [3] has found a re-
semblance between filtered vector spaces and filtered isocrystals and he called
semi-stable (of slope zero) a filtered vector space which gives rise to a general
Roth system.

In the present article, we aim at proving that the category of general Roth
systems, namely, the category of semi-stable filtered vector spaces of slope zero
forms a neutral Tannakian category. It means that the category is equivalent
to the category of finite dimensional representations of an affine group scheme
over the base field. A key lemma is the one stating that a tensor product of
semi-stable filtered vector spaces is again semi-stable. The lemma was used for
a second proof of the subspace theorem of Schmidt and Schlickewei by Faltings
and Wüstholz [4].

Reversing the order of reasoning, we obtain a new proof of the key lemma
which depends on the subspace theorem. Note that it is not a tautology, be-
cause the original proof of Schmidt and Schlickewei does not require the key
lemma. The subspace theorem provides us with a simple numerical criterion
(Theorem 2.8) for a filtered vector space to be semi-stable. The key lemma is
then a consequence (Corollary 2.9) of the criterion.

Our proof is elementary. The difficult parts are hiding in the subspace
theorem and in Minkowski’s theorem on the geometry of numbers. In Section 1,
we make precise various definitions. The section is expositary. In Section 2, we
give the new proof of the key lemma.

Notation. — Let R be the field of real numbers. By i " 0, we mean a real
number i is large enough according to the context. The symbol ‘◦’ indicates
composition of morphisms.
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LINEAR INEQUALITIES 43

1. Category of linear inequalities

Let k be a finite extension field of the rational number field and let L be an
algebraic extension field of k.

Definition 1.1 (filtration, slope, and weight [9, p. 82])
For a finite dimensional k-vector space V , a family F • of L-vector spaces

F iV ⊂ L ⊗k V (i ∈ R)

is called an L-filtration on V if and only if the conditions

F iV ⊃ F jV (i ≤ j),
F−iV = L ⊗k V, F iV = 0 (i " 0) and

F iV =
⋂

j<i

F jV

are satisfied. We denote the associated graduation by

grw(V, F •) = FwV/Fw+0V (w ∈ R),

where
Fw+0V =

⋃

j>w

F jV.

The slope M of the filtration is a real number

M(V, F •) =
1

dimk V

∑

w∈R

w dimL grw(V, F •).

The slope of the zero-dimensional vector space is not defined. The real num-
bers w such that grw(V, F •) )= 0 are called the weights of the filtration. We often
say V is an L-filtered k-vector space, instead of saying that (V, F •) is a k-vector
space with an L-filtration. Similarly, we omit F • from M(V, F •) or grw(V, F •)
and abbreviate F iV to V i.

Definition 1.2 (subfiltration and quotient filtration). — Let W be a sub-
space over k of V . The L-filtration on W given by

W i = (L ⊗k W ) ∩ V i (i ∈ R)

is the sub-L-filtration on W of V . The L-filtration on V/W defined as

(V/W )i = (V i + L ⊗k W )/L ⊗k W (i ∈ R)

is the quotient L-filtration on V/W of V .

Lemma 1.3 (see [4, p. 116]). — Let W be a proper subspace over k of V , and
F • an L-filtration on V . If we endow W with the subfiltration and V/W with
the quotient filtration, then we have

M(V ) dimk V = M(W ) dimk W + M(V/W ) dimk(V/W ).
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44 FUJIMORI (M.)

Proof. — By definition, the sequences

0 → Ww −→ V w −→ (V/W )w → 0,

0 → Ww+0 −→ V w+0 −→ (V/W )w+0 → 0
are both exact. By diagram chase,

0 → grw W −→ grw V −→ grw(V/W ) → 0

is exact, too. The above equality follows at once.

Example 1.4. — Let v and u be non-zero elements of a k-vector space V such
that

V = kv ⊕ ku.

We attach to V the following filtration:

V i =






L ⊗k V for i ≤ 0,
L(v + u) for 0 < i ≤ 1,
0 for i > 1.

The subfiltration on W = kv is

W i =
{
L ⊗k W for i ≤ 0,
0 for i > 0.

For the subspace U = ku, the quotient filtration on V/U becomes

(V/U)i =
{
L ⊗k (V/U) for i ≤ 1,
0 for i > 1.

This is especially telling that although there is a canonical isomorphism of
W = W/W ∩ U onto V/U = (W + U)/U as vector spaces, they are not iso-
morphic as filtered vector spaces. In general, a subquotient filtration is not
necessarily defined.

Remark 1.5. — As is easily seen, in the case U ⊂ W ⊂ V , the subquotient
L-filtration on W/U of V is well-defined.

Definition 1.6 (filtered homomorphism [4, p. 117]). — For L-filtered k-
vector spaces V and W , a filtered homomorphism f : V → W is a k-linear map
such that

f(V i) ⊂ W i (i ∈ R)
when extended over L. It is said to be strict if

f(V i) =
[
L ⊗k f(V )

]
∩ W i (i ∈ R).

The strictness of f means that the k-vector space V/ Ker f with the quotient fil-
tration of V (the coimage Coim f of f) is isomorphic to the k-vector space f(V )
with the subfiltration of W (the image Im f of f).
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Remark 1.7. — For a subspace W over k of V , the canonical maps W → V
and V → V/W are strictly filtered with respect to the induced filtrations.
A composition of filtered homomorphisms is filtered. In Example 1.4, the
canonical map W → V/U is filtered but not strict. In Remark 1.5, the canonical
map W → V/U is strict.

Lemma 1.8. — If a filtered homomorphism f : V → W is bijective as a
k-linear map, then

M(V ) ≤ M(W ).
Moreover, the equality is valid if and only if it is an isomorphim of filtered
vector spaces.

Proof. — Induction on the number of weights of V . First note that for the
proof, the case L = k is sufficient.

When V has only one weight, the whole claim is almost trivial.
Suppose V has plural weights and w is the largest among them. Let the inclu-

sion map be g : V w → V . We endow V/ Im g and W/ Im f ◦g with the respective
quotient filtrations (the cokernels Coker g and Coker f ◦ g). The number of
weights of Im g is one, and the number of weights of Coker g is fewer than the
number of weights of V . The inductive assumption yields

M(Im g) ≤ M(Im f ◦ g) and M(Coker g) ≤ M(Coker f ◦ g).

From Lemma 1.3 we get the inequality we wanted. Furthermore, when we have
M(V ) = M(W ), the above inequalities must be equalities. By the inductive
hypothesis,

Im g - Im f ◦ g and Coker g - Coker f ◦ g.

In particular,

gri Im g - gri Im f ◦ g and gri Coker g - gri Coker f ◦ g (i ∈ R).

By the third exact sequence in the proof of Lemma 1.3, we obtain

gri V - gri W (i ∈ R),

hence V - W .

Lemma 1.9. — If a filtered homomorphism f : V → W is injective as a k-
linear map, then

M(V ) dimk V ≤ M(W ) dimk W.

Proof. — By definition, the induced morphism

V → Im f

is filtered. Since it is also an isomorphism of k-vector spaces, we obtain
by Lemma 1.8 M(V ) ≤ M(Im f). From Lemma 1.3, we get the desired in-
equality.
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Definition 1.10 (direct sum). — Let V and W be L-filtered k-vector spaces.
The k-vector space V ⊕ W with an L-filtration

(V ⊕ W )i = V i ⊕ W i (i ∈ R)

is the L-filtered direct sum of V and W . We simply call it direct sum and
write it V ⊕W . It is obvious that the inclusion maps and the projection maps
are strictly filtered. By Lemma 1.3,

M(V ⊕ W ) dimk(V ⊕ W ) = M(V ) dimk V + M(W ) dimk W

when V and W are not 0-dimensional.

Definition 1.11 (tensor product). — Let V and W be L-filtered k-vector
spaces. The k-vector space V ⊗k W with an L-filtration

(V ⊗k W )i =
∑

j∈R

V j ⊗L W i−j (i ∈ R)

is the L-filtered tensor product of V and W . We simply call it tensor product
and write it V ⊗ W .

Lemma 1.12. — One has

M(V ⊗ W ) = M(V ) + M(W )

when V and W are not 0-dimensional.

Proof. — Induction on the number of weights of V. We may suppose that
L = k. When V has only one weight m, we have

(V ⊗ W )i =
∑

j≤m

V ⊗ W i−j = V ⊗ W i−m (i ∈ R).

Hence
gri(V ⊗ W ) - V ⊗ gri−m W (i ∈ R),

in particular

dimgri(V ⊗ W ) = dimV · dimgri−m W (i ∈ R).

Multiplying i on both sides,

i dimgri(V ⊗ W ) = m dimV · dimgri−m W

+ dimV · (i − m) dim gri−m W (i ∈ R).

Summing up and dividing by dim(V ⊗ W ) = dimV · dimW each side,

M(V ⊗ W )

= m
1

dimW

∑

i∈R

dim gri−m W +
1

dimW

∑

i∈R

(i − m) dim gri−m W

= m + M(W ) = M(V ) + M(W ).
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When V has plural weights, let w be the biggest. We have a (non-canonical)
isomorphism of filtered vector spaces

V - V w ⊕ (V/V w).

By definition, this induces a filtered isomorphism

V ⊗ W - [V w ⊗ W ] ⊕
[
(V/V w) ⊗ W

]
.

Since the number of weights of V w or V/V w is smaller than the number of
weights of V , we obtain

M(V ⊗ W )

= M(V w ⊗ W )
dimV w

dimV
+ M

(
(V/V w) ⊗ W

)dim(V/V w)
dim V

=
M(V w) dimV w + M(V/V w) dim(V/V w)

dimV
+ M(W ).

Lemma 1.3 completes the proof.

Now we try to define the category of linear inequalities. We take into account
several filtrations simultaneously. The relation between filtered vector spaces
and systems of linear inequalites is made clear at the top of the next section.

Let M(k) be the set of places of k.

Definition 1.13 (category of linear inequalities). — Let C be the following
category: an object is a finite dimensional k-vector space V equipped with an
L-filtration V •

v at each place v ∈ M(k) such that for except a finite number
of v ∈ M(k),

V 0
v = L ⊗k V and V 0+0

v = 0.

For such V and W , the set of morphisms Hom(V, W ) is the set of k-linear maps
filtered for every v ∈ M(k) (call them filtered, simply):

Hom(V, W ) ⊂ Homk(V, W )

It is a linear subspace over k. The composition of morphisms is well-defined and
associative. It is also bi-linear. Identity maps are filtered and become identity
morphisms in C. The zero dimensional vector space 0 is the unique zero object
in C. The filtrations on a direct sum as k-vector spaces of objects are the direct
sums of L-filtrations for all v ∈ M(k). The inclusion maps and the projection
maps are (strictly) filtered and it defines a direct sum and a direct product in C.
For a morphism f , we have the kernel Ker f , the coimage Coim f , the image
Im f , and the cokernel Coker f .

We define the tensor product of objects as tensor product of k-vector spaces
with the tensor product of L-filtrations for each v ∈ M(k). The tensor product
gives a bi-linear functor

⊗ : C × C −→ C.
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We denote by I a one-dimensional vector space endowed with filtrations such
that Mv(I) = 0, where Mv is the slope of filtration for v ∈ M(k). There exists
an isomorphism I → I ⊗ I in C. The object I is an identity object of (C,⊗):

End(I) = k idI - k

The action of End(I) is canonically identified with the original k-action.
Thus the category C is a k-linear additive tensor category.
Let Vk be the category of finite dimensional vector spaces over k. The

forgetful functor
ω : C −→ Vk

is a tensor functor.

Remark 1.14. — It is not abelian as exemplified in Example 1.4. Namely,
the coimage and the image of a morphism are not always isomorphic.

Definition 1.15 (semi-stability [4, p. 116]). — The slope of an object V
in C is

M(V ) =
∑

v∈M(k)

Mv(V ).

An object V is semi-stable if and only if it is not 0 and satisfies the inequality

M(W ) ≤ M(V )

for any non-zero subspace W over k of V with the sub-L-filtrations (i.e., for
any subobject W of V ). Equivalently, thanks to Lemma 1.3, it is semi-stable
if and only if it is not 0 and

M(V ) ≤ M(Q)

for any non-zero quotient space Q over k of V with the quotient L-filtrations
(i.e., for any quotient object Q of V ).

Lemma 1.16. — If V and W ∈ C are both semi-stable, then so is V ⊗ W .

Proof. — Several proofs exist. See [4], [8], [3], [9], and [5]. Another proof is
presented in the next section (Corollary 2.9).

Definition 1.17 (category of general Roth systems). — Let Css
0 be the

(strictly) full subcategory of C whose objects are the semi-stable objects with
slope zero (and with integral or rational weights) and the zero-dimensional
vector space. It is immediate to check that Css

0 is a k-linear tensor subcategory.

Lemma 1.18. — The category Css
0 is additive.
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Proof. — What has to be proved is that the direct sum of objects in Css
0 is

semi-stable. Let V and W be any objects in C and let S be any subobject
of V ⊕ W . From Lemma 1.9, we see

M(S) dimk S ≤ M(V ⊕ W ) dimk(V ⊕ W ).

As we saw earlier in Definition 1.10, the right hand side equals

M(V ) dimk V + M(W ) dimk W.

If M(V ) = M(W ) = 0, then

M(S) ≤ 0 = M(V ⊕ W ),

which means V ⊕ W ∈ Css
0 . Note that when the weights of V and W are all

integral or rational, the weights of V ⊕ W are respectively also integral or
rational by definition.

Lemma 1.19 (see [3, p. 649]). — The category Css
0 is abelian.

Proof. — Let V and W be objects in Css
0 and let f ∈ Hom(V, W ). We have

M(Coim f) ≤ M(Im f),

for the induced morphism Coim f → Im f is filtered. In addition, the semi-
stability of V and W implies

0 = M(V ) ≤ M(Coim f) and M(Im f) ≤ M(W ) = 0.

We get
M(Coim f) = M(Im f) = 0.

From Lemma 1.8, we see that Coim f and Im f are isomorphic. Since a quotient
object Q of Coim f is a quotient object of V and since a subobject S of Im f
is a subobject of W ,

M(Q) ≥ M(V ) = M(Coim f) and M(S) ≤ M(W ) = M(Im f),

which shows Coim f and Im f are semi-stable. Furthermore, Lemma 1.3 implies

M(Ker f) = M(Coker f) = 0.

We observe similarly that Ker f and Coker f are semi-stable.

Remark 1.20. — In particular, every element of Hom(V, W ) is strict (for
all v ∈ M(k)).

Proposition 1.21. — The category Css
0 is a neutral Tannakian category.

Proof. — According to the paper [2, Prop. 1.20], the forgetful functor

ωss
0 : Css

0 −→ Vk

is a fiber functor.
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2. Semi-stability and succesive minima

Throughout this section, the field k will be assumed to be a finite extension
of the rational number field.

Let V be an n-dimensional vector space over k; T1, . . . , Tn a basis of V over k;
and L an algebraic extension field of k. We denote by M(k) the set of places
of k. We fix an extension of each v ∈ M(k) to L once for all and denote it by
the same letter v.

Suppose that for each v ∈ M(k), we are given L-linearly independent vec-
tors f1 v, . . . , fn v of L ⊗k V and real numbers c(1; v), . . . , c(n; v), almost all of
which satisfy

fi v = Ti and c(i; v) = 0.

Define kA as the adèle ring of k and V ∗ as the dual space Homk(V, k) to V
over k. For a positive real number Q, let Π be the parallelotope in kA ⊗k V ∗

given by ∣∣〈fi v, tv〉
∣∣
v
≤ Q−c(i;v) (tv ∈ kv ⊗k V ∗).

Here kv is the completion of k at v ∈ M(k); | · |v is the valuation on the
completion Lv of L at v normalized so that

if v is real, |2|v = 2, if v is complex, |2|v = 22 = 4,

so that
∏

v∈M(k) | · |v satisfies the product formula on k; and 〈. , .〉 is the canon-
ical pairing between the elements of Lv ⊗k V and of Lv ⊗k V ∗. We denote
by λ1, . . . ,λn the succesive minima for Π with respect to V ∗ [1, p. 18]. We
regard λi = λi(Q) as a function of the parameter Q.

For each v ∈ M(k) and j ∈ R, let V j
v be the subspace over L of L ⊗k V

spanned by
fi v with c(i; v) ≥ j,

which leads to a family of L-filtrations on V (Definition 1.1) indexed by M(k).
The slope of filtration for v ∈ M(k) becomes

Mv(V ) =
1
n

n∑

i=1

c(i; v)

and the slope as an object of the category C of linear inequalities (Definition 1.13
and Definition 1.15) is

M(V ) =
∑

v∈M(k)

Mv(V ) =
1
n

∑

v∈M(k)

n∑

i=1

c(i; v).

Remark 2.1. — In the paper [3] of Faltings and in the paper [5] of Ferretti,
the weight ‘of fiv’ is

1 + c(i; v).
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Hence our M(V ) and the invariant µ(V ) in [3] or [5] are related by the equation

µ(V ) = 1 + M(V ).

Remark 2.2. — When V is semi-stable (Definition 1.15), the system
(fi v; c(i; v))i,v is called a general (v-adic) Roth system (cf. e.g. [6, Satz 1.2]).

Theorem 2.3 (Minkowski). — There exist positive real numbers A(k, n) and
B(k, n) depending on the number field k and on the dimension n such that

A(k, n) ≤ (λ1 · · ·λn)[k:Q] vol(Π) ≤ B(k, n).

Proof. — See [1, Theorems 3 and 6].

Theorem 2.4 (Schmidt, Schlickewei). — Suppose there exist a natural num-
ber d with 1 ≤ d < n, a positive number δ, and an unbounded set N of positive
real numbers such that

λd < λd+1 Q−δ (Q ∈ N).

Then there exist a d-dimensional subspace S∗ of V ∗ over k and an unbounded
subset N′ of N such that the first d successive minima for Π(Q ∈ N′) are
attained in S∗.

Proof. — See [7, Theorem 3], [6, Satz 2.1], and other papers of Schmidt and
Schlickewei.

Lemma 2.5. — The following conditions are equivalent:
1) V is not semi-stable (Definition 1.15).
2) There exist a natural number d with 1 ≤ d < n, a positive number δ, and

an unbounded set N of real numbers such that

λd < λd+1 Q−δ (Q ∈ N).

Proof. — Suppose V is not semi-stable. Then there exists an m-dimensional
subspace U of V over k with 1 ≤ m < n such that

M(V/U) < M(V ).

By the definition of the quotient filtration (Definition 1.2), there exist for each v,
indices j(1; v), . . . , j(n−m; v) such that fj(1;v) v, . . . , fj(n−m;v) v modulo U form
a basis of L ⊗k (V/U) and

Mv(V/U) =
1

n − m

n−m∑

r=1

c
(
j(r; v); v

)
.

Let
(V/U)∗ =

{
t ∈ V ∗ | 〈f, t〉 = 0 for all f ∈ U

}

be the dual space to V/U in V ∗ and let δ be a positive number such that

M(V/U) + nδ ≤ M(V ) − nδ.
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We have a family of positive constants K(v) (v ∈ M(k)) depending only
on U and f1 v, . . . , fn v, which coincide with 1 except for at most finitely many
places v, such that the (n − m)-dimensional parallelotope Π̃ in kA ⊗k (V/U)∗
given by

∣∣〈fj(r;v) v, tv〉
∣∣
v
≤ K(v)Q−c(j(r;v);v)

(
tv ∈ kv ⊗k (V/U)∗; r = 1, . . . , n − m

)

is contained in the intersection of kA ⊗k (V/U)∗ across Π. Let λ̃1 be the first
minimum for Π̃ with respect to (V/U)∗. Then

λ1 ≤ λ̃1.

Since the (n − m)-dimensional volume of QM(V/U)+ 1
2nδΠ̃ is big for sufficiently

large Q,
λ̃1 ≤ QM(V/U)+ 1

2nδ (Q " 0)

(Minkowski’s theorem). On the other hand, the volume of QM(V )− 1
2nδΠ

is small for sufficiently large Q. We obtain

QM(V )− 1
2nδ < λn (Q " 0).

Consequently

λ1 Q
1
2nδ ≤ QM(V/U)+nδ ≤ QM(V )−nδ < λn Q− 1

2nδ (Q " 0),

that is,
λ1 < λn Q−nδ (Q " 0).

For Q large enough, there is thus an integer d(Q) < n such that

λd(Q) < λd(Q)+1 Q−δ;

by the box principle, there certainly exists an integer d < n and an unbounded
set N such that for every Q ∈ N, the above inequality holds.

Conversely, on the latter assumption, Theorem 2.4 tells us that there exist
a d-dimensional subspace S∗ of V ∗ over k and an unbounded subset N′ of N
such that the first d successive minima for Π(Q ∈ N′) are attained in S∗.
Let Π̆ be the d-dimensional parallelotope kA ⊗k S∗ ∩ Π and λ̆1, . . . , λ̆d the
successive minima for Π̆ with respect to S∗. What is stated above amounts to
the equalities

λ̆1 = λ1, . . . , λ̆d = λd (Q ∈ N′).

By the definition of quotient filtrations (Definition 1.2), there exist indices
$(1; v), . . . , $(d; v) such that f"(1;v) v, . . . , f"(d;v) v are linearly independent when
restricted on L ⊗k S∗ and

Mv(V/W ) =
1
d

d∑

r=1

c
(
$(r; v); v

)
,
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where W = {f ∈ V | 〈f, S∗〉 = 0}. We have

vol(Π̆) ≤ C̆ · Q− v∈M(k)
d
r=1 c("(r;v);v).

Here C̆ is a constant depending only on S∗ and f1 v, . . . , fn v. In addition,
Theorem 2.3 implies

A(k, d) ≤ (λ̆1 · · · λ̆d)[k:Q] vol(Π̆).

Putting together, we obtain

A(k, d)
C̆

Qd M(V/W ) ≤ (λ̆1 · · · λ̆d)[k:Q] = (λ1 · · ·λd)[k:Q] (Q ∈ N′).

On the other hand, applying Theorem 2.3 to Π, we deduce

B(k, n) ≥ (λ1 · · ·λdλd+1 · · ·λn)[k:Q] vol(Π)

≥
(
λ1 · · ·λd [λdQ

δ]n−d
)[k:Q]

vol(Π) (Q ∈ N)

≥
(
[λ1 · · ·λd]n/d Q(n−d)δ

)[k:Q]
vol(Π)

≥ A(k, d)n/d

C̆n/d
Qn M(V/W )+[k:Q](n−d)δ C Q−n M(V ) (Q ∈ N′),

where C is another constant which depends only on f1 v, . . . , fn v. Rewriting
the inequality,

QM(V/W ) ≤ B(k, n)1/nC̆1/d

C1/nA(k, d)1/d
Q−[k:Q](1−d/n)δ+M(V ) (Q ∈ N′).

We get
QM(V/W ) < QM(V ) (Q ∈ N′, Q " 0).

Therefore V is not semi-stable.

Corollary 2.6. — The following statements are equivalent:
1) V is semi-stable.
2) For any natural number d with 1 ≤ d < n and any δ > 0, if the inequality

λd < λd+1Q
−δ

is valid, then Q is bounded.

Lemma 2.7. — One has

lim
Q→∞

1
dimk V

n∑

i=1

logλi

log Q
=

M(V )
[k : Q]

·
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Proof. — We see
vol(Π) = C Q− v∈M(k)

n
i=1 c(i;v).

Here C is a constant depending only on fi v and fixed extensions of v to L. Sub-
stituting this expression for vol(Π) in the inequalities of Minkowski’s theorem
above and taking the logarithms, we obtain

log A(k, n) ≤ [k : Q]
n∑

i=1

logλi + log C −
∑

v∈M(k)

n∑

i=1

c(i; v) log Q ≤ log B(k, n).

Dividing by [k : Q]n logQ,

log A(k, n)
[k : Q]n logQ

≤ 1
n

n∑

i=1

logλi

log Q
+

log C

[k : Q]n log Q
− M(V )

[k : Q]
≤ log B(k, n)

[k : Q]n logQ
·

Let Q go to infinity!

Theorem 2.8. — The following are equivalent:
1) V is semi-stable.
2) One has

lim
Q→∞

logλ1

log Q
= · · · = lim

Q→∞

logλn

log Q
=

M(V )
[k : Q]

·

Proof. — Combine Corollary 2.6 with Lemma 2.7.

Corollary 2.9. — Let V ′ be another vector space over k with a family of
L-filtrations indexed by M(k) as those on V . If V and V ′ are both semi-stable,
then so is V ⊗ V ′.

Proof. — We denote by m the dimension of V ′ and by V ′∗ the dual vector space
to V ′ over k. Let g1 v, . . . , gm v and d(1; v), . . . , d(m; v) be respectively bases of
L⊗kV ′ and real numbers which define the given filtrations on V ′. Let Π′ be the
parallelotope in kA ⊗k V ′∗ given by the family (gj v, d(j; v))j,v and λ′

m the last
minimum for Π′ with respect to V ′∗. By definition, the filtrations on V ⊗ V ′

are given by the tuple
(
fi v ⊗ gj v, c(i; v) + d(j; v)

)
i,j;v

,

so the parallelotope Π⊗ in kA ⊗k (V ∗ ⊗k V ′∗) we take into consideration is
determined by the inequalities
∣∣∣
〈
fi v ⊗ gj v,

∑

h

t(h)
v ⊗ s(h)

v

〉∣∣∣
v

=
∣∣∣
∑

h

〈fi v, t(h)
v 〉 · 〈gj v, s

(h)
v 〉

∣∣∣
v
≤ Q−c(i;v)−d(j;v),

where the superscript (h) runs through a finite set:
∑

h

t(h)
v ⊗ s(h)

v ∈ (kv ⊗k V ∗) ⊗kv (kv ⊗k V ′∗) - kv ⊗k (V ∗ ⊗k V ′∗).
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We denote by λ⊗
1 , . . . ,λ⊗

mn its successive minima. Choose any set of k-linearly
independent elements x1, . . . , xn of V ∗ ∩ λnΠ and any set of k-linearly inde-
pendent elements y1, . . . , ym of V ′∗ ∩ λ′

mΠ′. The family (xa ⊗ yb)a,b is a basis
of V ∗ ⊗k V ′∗. Because of the choice, for an Archimedean place v ∈ M(k)

∣∣〈fi v, xa〉
∣∣
v
≤ λnQ−c(i;v),

∣∣〈gj v, y
b〉

∣∣
v
≤ λ′

mQ−d(j;v),

hence
∣∣〈fi v ⊗ gj v, x

a ⊗ yb〉
∣∣
v
≤ λnλ

′
mQ−[c(i;v)+d(j;v)].

Similarly, for a non-Archimedean place v ∈ M(k)
∣∣〈fi v, x

a〉
∣∣
v
≤ Q−c(i;v),

∣∣〈gj v, y
b〉

∣∣
v
≤ Q−d(j;v),

hence
∣∣〈fi v ⊗ gj v, xa ⊗ yb〉

∣∣
v
≤ Q−[c(i;v)+d(j;v)].

This means all xa ⊗ yb are in λnλ′
mΠ⊗ and we obtain inequalities

λ⊗
1 ≤ · · · ≤ λ⊗

mn ≤ λnλ
′
m.

Taking logarithms of each term and dividing by log Q, we get

log λ⊗
1

log Q
≤ · · · ≤ logλ⊗

mn

log Q
≤ log λn

log Q
+

logλ′
m

log Q
·

On the assumption that V and V ′ are semi-stable, the expression at the right
end converges when Q goes to infinity, that is,

lim sup
Q→∞

logλ⊗
1

log Q
≤ · · · ≤ lim sup

Q→∞

logλ⊗
mn

log Q
≤ M(V ) + M(V ′)

[k : Q]
=

M(V ⊗ V ′)
[k : Q]

·

On the other hand, in any case, we have by Lemma 2.7

lim
Q→∞

1
mn

mn∑

w=1

logλ⊗
w

log Q
=

M(V ⊗ V ′)
[k : Q]

·

Therefore
M(V ⊗ V ′)

[k : Q]
≤ 1

mn

mn∑

w=1

lim sup
Q→∞

logλ⊗
w

log Q
,

accordingly

lim sup
Q→∞

logλ⊗
w

log Q
=

M(V ⊗ V ′)
[k : Q]

(w = 1, . . . , mn).
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We now study the inferior limits. We see by Lemma 2.7, for any positive
number δ, if Q is sufficiently large, then

M(V ⊗ V ′)
[k : Q]

− δ

(mn)2
<

1
mn

mn∑

w=1

logλ⊗
w

log Q

<
1

mn

logλ⊗
1

log Q
+

1
mn

mn∑

w=2

(
lim sup
Q→∞

logλ⊗
w

log Q
+

δ

mn

)

=
1

mn

logλ⊗
1

log Q
+

mn − 1
mn

(M(V ⊗ V ′)
[k : Q]

+
δ

mn

)
.

Rewriting the inequality, we obtain

M(V ⊗ V ′)
[k : Q]

− δ <
log λ⊗

1

log Q
(Q " 0),

hence
M(V ⊗ V ′)

[k : Q]
≤ lim inf

Q→∞

logλ⊗
1

log Q
≤ · · · ≤ lim inf

Q→∞

log λ⊗
mn

log Q
·

The conclusion follows from the trival inequality

lim inf
Q→∞

logλ⊗
mn

log Q
≤ lim sup

Q→∞

logλ⊗
mn

log Q
=

M(V ⊗ V ′)
[k : Q]

·
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