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EXISTENCE OF COMPACT QUOTIENTS OF

HOMOGENEOUS SPACES,

MEASURABLY PROPER ACTIONS, AND

DECAY OF MATRIX COEFFICIENTS

BY GREGORY MARGULIS (*)

ABSTRACT. — The main purpose of the present paper is to give a new approach for
constructing examples of homogeneous spaces G / H with no compact quotients where G
is a Lie group and H is a closed noncompact subgroup. This approach is based on the
study of the restriction to H of matrix coefficients of unitary representations of G.
A similar method also gives a criterion when the restriction to H of an action of G on
a locally compact space X with a (^-invariant infinite measure is measurably proper in
the sense that, for almost all x € X, the natural map h i-̂  hx of H onto Hx is proper.

RESUME. — Le but principal de cet article est de donner une nouvelle methode pour
construire des exemples d'espaces homogenes G / H qui n'admettent pas de quotients
compacts ou G est un groupe de Lie et H est un sous-groupe ferme non compact.
Cette methode est basee sur 1'etude de la restriction a H des coefficients matriciels de
representations unitaires de G. Une methode similaire donne un critere pour que la
restriction a H d'une action de G sur un espace localement compact X qui admet une
mesure G-invariante infinie soit mesurablement propre ce qui veut dire que P application
naturelle H •—> Hx, h \—> hx, est propre pour presque tout x € X.

Let G be a Lie group, and H a closed subgroup of G. There is a natural
question: when does G/H have a compact quotient? More precisely when
can one find a discrete subgroup F of G such that r acts properly on G/H
and the quotient space F\G/H is compact? If G is semisimple and H
is compact then according to a theorem of Borel G/H always has a
compact form. But if H is not compact the answer to the question is
unknown even for semisimple G. For a connected semisimple group G and
a connected reductive subgroup H all known examples of homogeneous
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448 G. MARGULIS

spaces G/H which have compact quotients by discrete subgroups are
based on the following construction. Suppose that there exists a connected
closed subgroup F c G such that G = F • H and F H H is compact.
Then G / H is naturally isomorphic to F / ' F Fl H. In particular if F is
semisimple or, more generally, reductive we can use BoreRs theorem to
construct a compact quotient of G / H by a discrete subgroup.

On the other hand, there are many examples of homogeneous spaces
G/H without compact quotients (see surveys [I], [2] and references
therein). To prove that G/H has no compact quotients several criteria
are used. These criteria are mostly based on considerations from topology,
ergodic theory and the theory of linear groups. In this paper we give a
new criterion which is based on the study of the restriction to H of matrix
coefficients of unitary representations of G. This criterion gives many new
examples of homogeneous spaces G / H without compact quotients.

The study of matrix coefficients also gives a criterion when the res-
triction to H of an action of G' on a locally compact space X with a G-
invariant (infinite) measure p, is measurably proper (in the sense that for
almost all x C X, the natural map h »—^ hx of H onto Hx is proper).

ACKNOWLEDGEMENTS. —This work was completed during the author's
stay at the University of Bielefeld in June-July, 1997. This stay was
supported by the Humboldt Foundation. The author is grateful to Hee OH
who made many useful comments on the preliminary version of the paper.

1. (G ^ K ^ H)-tempered actions

In this section G is a locally compact group, K is a compact subgroup
of G, and H is a closed subgroup of G. Let 0 denote a (left invariant)
Haar measure on H.

Let G act continuously by measure preserving transformations on a
(noncompact) locally compact space X with an infinite regular Borel
measure p,. Consider the regular unitary representation p of G on L^(X^ /^):

{p(g)f)(x) = f^xY g e G, x e X, / e L\X^).

DEFINITION 1. — We say that the action of G on X is (G,K,H)-
tempered if there exists a (positive) function q G L^(H ,0) such that

(1) <PWAJ2) <q(h)\\fi\\' ||/2||

for any h G H and any p(Jf)-invariant functions /i,/2 ^ L2^,^).

PROPOSITION 1. — If the action of G on X is {G,K ,H) -tempered then
/j,(X — HM) > 0 and^ consequently^ HM ^ X for any compact subset M
ofX.
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EXISTENCE OF COMPACT QUOTIENTS OF HOMOGENEOUS SPACES 449

Proof. — Let M be a compact subset of X. Then there exists a non-
negative 7^-invariant continuous function / on X with compact support
such that f(x) > 1 for any x <E M. Consider a function

^= ( p(h)fd0(h)^ y(x) = [ f(h-lx)d0(h).
J H J H

(The function ^ can be infinite, and if HM is not compact then usually ^
is not in L^X,/^).) Since / is continuous, M is compact and f(x) > 1 for
any x G M, there exists a neighborhood W of e in ̂  such that f(w~lx)> -
for all x G M and w C TV. Now if x e HM then (p(x) > |>(9(TV) (because
if h-^x C M then /((/iw)-1^) > |, for any w e TV). Thus

(2) ^p(x) > ^0(W) for any x G ^M.

Take a compact subset L of H such that

(3) / q(h)d^(h)< ———0(W)J H - L m\\
where ||/|| = sup {f(x) x <E X}. Since the measure jji is Borel and infinite
and the support supp/ of / is not compact, there exists a JC-invariant set
A C X such that /^(A) = 1 and (L • supp/) n A = 0. Let \A denote the
characteristic function of A. Then using (1) and (3) we get

(4) [ ^(x)d^(x) = I ^ • XA)(x)d^x)
JA Jx

= I ( I {(PWf)XA){x)d^x)}d0(h)J H ^ J x /

= / {pWf^A}d0(h) = [ {p(h)f^A}d0(h)
J H J H - L

< I QW\\f\\. \\XA\\d0(h) = 11/H / q(h)d0(h)
J H - L J H - L

< ^(TV).

The equality /^(A) = 1 and the inequalities (2) and (4) imply that
/^(A - HM) > 0 and, consequently ^(X - HM) > 0. []

PROPOSITION 2. — Let A be a bounded Borel subset of X. For any
x € X , let ^A(x) denote the 0-measure of the set {h G H \ hx G A}.
Suppose that the action of G on X is (G,K ,H)-tempered.
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450 G. MARGULIS

(a) The function ^4 is locally integrable, that is

\ ^A(x)dp.(x)
JB

x)dfJi[x) < oo

for any bounded Borel subset B of X.
(b) If X is a-compact then ^A(^) < oo for almost all x e X .

Proof. — Clearly (a) implies (b). Let us prove (a). Replacing A by KA
and B by KB, we can assume that A and B are J^-invariant. Let
XA and \B denote the characteristic functions of A and B. It is easy
to see that

^A= I p(h)xAdO(h).
JH

Then using (1) we get

/ ^A(x)d^i(x) = (^XB) = I {p(h)xA.XB}d0{h)
JB JH

^ I q(h)(xA^XB)d0(h)<oo. D
JH

2. (G,K)-tempered subgroups
In this section G, K, H and 0 denote the same as in §1.

DEFINITION 2. — We say that H is (G,K)- tempered if there exists a
function q e L^^H ,0) such that

(5) |(^)wi,W2)|^gW||wi||.||w2||

for any h G H, any ^(J^-invariant vectors Wi and w^ and any unitary
representation TT of G without non-trivial 7r(G)-invariant vectors.

REMARK 1. — As in §1 let us consider a continuous action of G by
measure preserving transformations on a locally compact space X with
an infinite regular Borel measure /^, and let us denote by p the regular
representation of G on ^(X,^). If a > 0,f e L2^,^) and p{G)f = f,
then the sets

{x G X f{x) > a} and {x C X \ f(x) < -a}

have finite measure and they are (7-invariant (modulo sets of measure 0).
Hence if X has no G-invariant subsets of finite nonzero measure and the
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subgroup H is (G, ̂ -tempered then the action of G on X is (G, K, H)-
tempered.

REMARK 2. — Let
7T= / 7Tyd(T(y)

^y
be a decomposition of TT into a continuous sum of irreducible unitary
representations, and let

W= Wyda(y), wi = / w^yda(y), w^ = w'2yda(y),
JY JY Jy

^iy, ^2y ^ Wy, be corresponding decompositions of the space W of the
representation TT and of vectors wi, ws G W. Suppose that for all y e Y

\(7ry(h)w^y,W2y)\ < g(/i)||wij| • \\w^y\\.

Then using Cauchy-Schwartz inequality we get

|(7r(/i)wi,W2)| - / {/7^y(h)wly,W2y}da(y)\
l JY I

<^q(h) [ \\w,y\\'\\w^y\\da(y)
JY

^q(h)J I \\w,y^da(y) f \\w,y\\^da(y)
V JY JY

=qW\\w,\\^\w,\\.

Thus H is (G, Jf)-tempered if and only if the inequality (5) is true for
any h G H , any 7r(^)-invariant vectors wi and w^ and any non-trivial
irreducible unitary representation TT of G.

Let us now give some examples of (G, JC)-tempered subgroups. We give
only indications of the proofs because more precise and general results are
obtained by Hee Oh (see [3]).

EXAMPLES.
(a) Let G be a connected semisimple Lie group having Kazhdan's

property (T) and K a maximal compact subgroup of G. Then any
commutative diagonalizable subgroup H of G is (G, ̂ -tempered. To
show this it is enough to use Howe-Moore estimates which provide uniform
exponential decay for matrix coefficients corresponding to JC-mvariant
vectors and irreducible nontrivial unitary representations of semisimple
groups with property (T).
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452 G. MARGULIS

(b) Let G = SLn(K), K = S0(n), and an the n-dimensional irreducible
representation of SL2(M). Suppose that n ^ 4. Then the subgroup
H = o^(SL(2,IR)) is (G, J^)-tempered. Let us show this in the case
where n = 4 and

(e3^ 0
. , . , ( ^ 0 \ e1

a^dt)=rt, dt= , , r, = ,
\ u - / e

0 e-3^

It is well known that the restriction of any nontrivial irreducible unitary
representation TT of SL4(R) to the subgroup

F={^ ? ) l A e S L 2 ( M ) }

does not contain complementary series. But r^ belongs to the subgroup

' a 0 0 b\

S A E! i^w, (; S)68^
< c 0 0 d )

which is the direct product of two conjugates of F.
Using these facts and formulas for matrix coefficients of the princi-

pal series of unitary representations of SL2(M) we easily get that for
some c > 0

| (7r(^)w, w) | ^ ce-^ t2 • | (w, w) \, t > 0,

for any 7r(X)-invariant vector w. Now it remains to notice that the
function

f{k^dtk^ = e-4^2, A-i, A-2 G 80(2), t ̂  0,

is integrable on SL2(R) because the Haar measure of the set

[k^dtk^ | A;i,A;2 € S0(2), 0 S t <, T}

is asymptotically ce271 when T -^ +00.
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(c) Let L be a connected simple Lie group, n ^ 3, ( p : L — SL^(IR) an
n-dimensional representation of L, and (p = ^p\ (B • • • (B ̂  a decomposition
of y? into the sum of irreducible representations of L. Let us denote by /3
the sum of the positive roots of L with respect to a maximal R-split
torus S C L and an ordering on the character group X{S) of 5, and
by \j the highest weight of the representation ( p j , 1 < j <^ i. Then using
arguments similar to those from the example (b) one can prove that the
subgroup ^p(L) is (SL^(IR), S0(n))-tempered whenever

(*) ^ Xj > ̂ (1 + £) for some e > °^ where J = ̂  I dim(^ ^ 2}'
je.7

From this we easily deduce the existence of N > 0 such that if

V^ dim ^pj > N
3^J

then ^p(L) is (SL^(M), S0(n))-tempered. (Let us note that ^ dim^j is
j'ej-

the codimension in IR72 of the subspace of (^(L)-invariant vectors.)

3. Compact quotients of homogeneous spaces
As usual we say that a continuous action of a locally compact group G

on a locally compact space X is properly for every compact subset L C X,
the set {g e G \ gL Fl L -^ 0} is compact. If G acts properly on X then
the quotient space G\X is Hausdorff. We say that the action of G on X is
cocompact if there exists a compact subset L of X such that X = GL. For
proper actions this property is equivalent to the compactness of G\X.

It is well known and easy to check that, for any locally compact group G
and any closed subgroups P and Q of G, the following conditions are
equivalent:

(I) the action of P on G/Q by left translations is proper (resp.
cocompact);

(II) the action of Q on P\G by right translations is proper (resp.
cocompact);

(III) the action (j), q)g = pgq~1, p G P, q G Q^ g G C7, of P x Q on G is
proper (resp. cocompact).

It is natural to call the equivalence (I) <=^ (II) the duality principle.

THEOREM 1. — Let G be a unimodular locally compact group, H a
closed subgroup of G, and F a closed subgroup of H. Suppose that H is
(G, K) -tempered for some compact subgroup K of G.
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454 G. MARGULIS

(a) Iff is a discrete subgroup of G such that the volume ofT\G with
respect to Haar measure is infinite then the action of F on G/F by left
translations is not cocompact.

(b) If F is not compact then there are no discrete subgroups T of G
such that r acts properly on G/F by left translations and the quotient
F\(G/F) is compact

Proof.
(a) The group G is unimodular. Therefore the action of G on F\G by

right translations preserves Haar measure /-A. Since ^(T\G) = oo there are
no (^-invariant subsets in F\G of finite measure. Hence (see Remark 1 after
Definition 2) the action of G on F\G is (G, K, H)-tempered. Now applying
Proposition 1 we get that the action of H on F\G and, consequently,
the action of F on F\G are not cocompact. From this, using the above
mentioned duality principle, we deduce that the action of F on G / F is
not cocompact.

(b) In view of (a) it is enough to consider the case where p.(T\G) < oo,
but in this case F can not act properly on T\G because any continuous
action of a noncompact group by transformations preserving a finite
nonzero regular Borel measure is not proper. []

Combining Theorem 1 with examples (b) and (c) from §2 we get the
following two corollaries.

COROLLARY 1. —Let On denote the n-dimensional irreducible represen-
tation o/SL2(IR). Let G = SL^(M), H = an(SL^(R)) c G, and F a closed
subgroup of H. Suppose that n > 4. Then for G^H and F the statements
(a) and (b) in Theorem 1 are true. In particular G/H has no compact
quotients by discrete subgroups.

COROLLARY 2. — Let L be a connected simple Lie group, n ^ 3, and
let (p:L —> SL^(IR) be an n-dimensional representation of L such that
the condition from example (c) of §2 is satisfied. Then the statements (a)
and (b) of Theorem 1 are true for G = SL^R),^ = ^p(L) and a closed
subgroup F of H.

4. Measurably proper actions
Let H be a locally compact second countable group acting continuously

on a locally compact second countable space X with an H -quasi-invariant
Borel measure IJL. Let 0 be a left invariant Haar measure on H. Then the
following conditions are equivalent:
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(a) for almost all (with respect to p,) points x C X, the orbit Hx is
closed in X and the stabilizer Hx = {h 6 H \ hx == x} is compact;

(b) for almost all x e X, the stabilizer Hx is compact and the natural
map hHx 1—^ to of H / H x onto Jf.r is a homeomorphism;

(c) for almost all x € X, the natural map h \—> hx of H onto 7:fa; is
proper or, in other words, the set {h 6 H \ Hx € A} is bounded in H for
any bounded subset A of X;

(d) for almost all x € X and any bounded subset A of X, the 0-
measure of the set {h G H \ hx e A} is finite.

The equivalences (a) 4=^ (b) and (b) <^> (c) are standard facts about
group actions. The implication (c) => (d) is trivial. To prove (d) =^ (c) let
us consider a bounded neighborhood U of e in H. Then

{h 6 H | hx 6 [/A} = U{h C ̂  | hx G A}.

Therefore if {/i € 71 | to e A} is unbounded then {h e H to G £/A}
has infinite measure. It remains to notice that if A is bounded then UA
is also bounded.

If the conditions (a)-(d) are satisfied then we say the action of H
on X is measurable proper. It is easy to see that if the action of H on X
is measurably proper then almost all components in the decomposition
of IJL into 7^-ergodic measures are supported on closed H -orbits Hx with
compact stabilizers Hx. In particular if the measure ^ is f^-ergodic then
there exists x G X such that f^(X — Hx) = 0, Hx is closed in X and Hx is
compact. Let us also note that if H acts measurably proper on X and F
is a closed subgroup of H then the action of F is also measurably proper.

THEOREM 2.—Let G be a locally compact second countable group acting
continuously on a locally compact second countable space X with a G-
invariant (regular infinite) Borel measure /^, let H be a closed subgroup of
G^ and K a compact subgroup of G.

(a) If the action of G on X is (G^K ^H) -tempered then the restriction
of this action to H is measurably proper.

(b) // the subgroup H is (G,K)-tempered and X has no G-invariant
subsets of finite nonzero measure then the action of H on X is measurably
proper.

Proof.
(a) follows from Proposition 2 (b). In view of Remark 1 from §2, (a)

implies (b). []
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REMARKS.

(I) In view of examples (a)-(c) from §2, Theorem 2 (b) can be applied
in the following cases:

(a) G is a connected semisimple Lie group having Kazhdan's property
(T) and H is a commutative diagonalizable subgroup of G',

(b) G = SLn(K) and H = TT^SL^R)) where n > 4 and 7^ is the
n-dimensional irreducible representation of SLaQR).

(c) G = SL^(R) and H = y(L) where L is a connected simple Lie
group and L p : L —> SL^(R) is an n-dimensional representation of L
such that the condition (*) from example (c) of §2 is satisfied.

(II) Let G be a unimodular locally compact second countable group, H
a closed subgroup of G, and F a discrete subgroup of G. Suppose that the
Haar measure of G/T is infinite and that H is (G", ̂ -tempered for some
compact subgroup K of G. Then as a corollary of Theorem 2 we have
that the action of H on G/F by left translations is measurably proper.
In particular if in addition H is not open then the action of H on G/Y
is not ergodic.
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