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ON MICROLOCAL 6-FUNCTION

BY

MORIHIKO SAITO

RESUME. — Soit / un germe de fonction holomorphe en n variables. En utilisant
des operateurs differentiels microlocals, on introduit la notion de 6-fonction microlocale
bf(s) de /, et on demontre que (s +!)&/(«) coincide avec la 6-fonction (i.e. Ie polynome
de Bernstein) de /. Soient Rf les racines de bf(—s), Qf = mmRf et ma(f) la multi-
plicite de a C Rf. On demontre Rf C [ctf,n — af] et ma^f) <^ n — af — a + 1
(< n — 2ay +1). Le theoreme de type Thom-Sebastiani pour fc-fonction est aussi
demontre sous une hypothese raisonnable.

ABSTRACT. — Let / be a germ of holomorphic function of n variables. Using
microlocal differential operators, we introduce the notion of microlocal 6-function
bf(s) of /, and show that (s -j- l)6j(s) coincides with the 6-function (i.e. Bernstein
polynomial) of /. Let Rf be the roots of bf(—s), af •==- mmRf, and moc{f} the
multiplicity of a € Rf. Then we prove Rf C [aj, n — ay] and ma(f) <n—af—a+1
(< n—2af +1). The Thom-Sebastiani type theorem for b- function is also proved under
a reasonable hypothesis.

Introduction

Let / be a holomorphic function defined on a germ of complex manifold
(X,x). The 6-function (i.e., Bernstein polynomial) bf{s) of / is defined
by the monic generator of the ideal consisting of polynomials b(s) which
satisfy the relation

(0.1) b^f^Pf^ in OxAr'W

for P € "Dx^}' Let 6(t—f) denote the delta function on X7 := Xx C with
support {/ == t}, where t is the coordinate of C. Then, setting s == —Oft,
f8 and 6(t — f) satisfy the same relation (see for example [8]). So f8

in (0.1) can be replaced by 6(t - /), and /s+l by t6(t - f). We define the
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164 M. SAITO

microlocal b-function bf{s) by the monic generator of the ideal consisting
of polynomials b(s) which satisfy the relation

(0.2) b(s)6(t -f)= PQ^6(t - f) in OxA^9^(t - f)

for P G T>x,x[9r1 ̂ s } ' Here we can also allow for P a microdifferential
operator [4], [6], [17] satisfying a condition on the degree of t and 9t
(see (1.4)). We have :

PROPOSITION 0.3. — bf(s) = (s + l)bf(s).

See (1.5). The microlocal 6-function bf(s) is sometimes easier to treat
than the b- function bf(s). Let Rf be the roots of bf (—5), Of = mmRf,
ma(f) the multiplicity of a € Rf, and n = dimX. Then, using the duality
of filtered P-Modules [15] and the theory of Hodge Modules [12], we prove

THEOREM 0.4. — Rf C [af.n — Of}.

THEOREM 0.5. — ma(f) <^n— Of — a + 1 (< n — 2af + 1).

See (2.8), (2.10).
The estimate (0.4) is optimal because moxRf = n — Of in the quasi-

homogeneous isolated singularity case. See also remark after (2.8) below.
Note that Rf C Q and ay > 0 by [4], and (0.5) is an improvement of
^a(f) <: n — ^o;,i (with <^i Kronecker's delta) which is shown in [9] as
a corollary of the relation with Deligne's vanishing cycle sheaf ^pfCx [2]
(see also [5]). This relation implies for example that exp(27rza) for a C Rf
are the eigenvalues of the monodromy on ^pfCx- But ^pfCx cannot be
replaced with the reduced cohomology of a Milnor fiber at x as in the
isolated singularity case, because we have to take the Milnor fibration at
several points of Sing /^(O) even when we consider the b- function of /
at x. See (2.12) below.

Let Tu and Ts denote respectively the unipotent and semisimple part
of the monodromy T on (pfCx- Let ^Cx = Ker(Ts — exp(—27^^Q/))
(as a shifted perverse sheaf), and N = \ogTu/2m. In the proof of (0.5),
we get also :

PROPOSITION 0.6. — We have TV7^1 = 0 on (pjCx for a G [07, Of + 1)
and r = [n—af —a}. In particular, N7'^1 = 0 on (^f Cx for r = [n— 2af}.

For the proof of (0.4)-(0.6), we use the filtration V (similar to that
in [5], [9]) defined on the Vx ,x[t^ 9ti 9'h1} -module Bf generated by the
delta function 8(1 — f). Note that (0.3) may be viewed as an extension
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MICROLOCAL 6-FUNCTION 165

of Malgrange's result [8] to the nonisolated singularity case (see (1.7)
below), and in the isolated singularity case, (0.4)-(0.6) can be deduced
from results of [8], [19], [20] (and [18]) using an argument as in [14]. In the
nondegenerate Newton boundary case [7], we get an estimate of a/ using
the Newton polyhedron (see (3.3)). The idea of its proof is essentially
same as [16].

Let g be a holomorphic function on a germ of complex manifold (V, y).
Let Z = X x V, z = (x, y), and h = f + g e Oz,z' We define Rg.Rh as
above. Then we have :

PROPOSITION 0.7. — Rf + Rg c Rh + Z^o, Rh C Rf + Rg + Z>o.
THEOREM 0.8. — Assume there is a holomorphic vector field S, such

that ^g = g. Then we have Rf + Rg = R^, and

m^(h) = max {rria(f) + m^g) - l}.
o;+/5=7

See (4.3)-(4.4). Here Z>o (or Z<o) is the set of nonnegative (or non-
positive) integers. In the case where / and g have isolated singularities,
(0.7)-(0.8) can be easily deduced from results of MALGRANGE [8], [10]
(see (4.6) below), and (0.8) was first obtained by [21] in this case.
Note that (0.8) is not true in general if the hypothesis is not satisfied.
See (4.8) below.

1. Microlocal b-function

1.1. — Let X be a complex manifold of pure dimension n, and x e X.
Let 0 = Ox,x^ = ̂ x,x- We define rings 7Z, U by

(1.1.1) ^ = p[t, ̂ ], n = p[t, Qt, a,-1],
where t, ̂ satisfy the relation Qft — t9t = 1, and P[t, Qf] = T> (g)c C[t, 9f],
etc. We define the filtration V on 7^, 7^ by the differences of the degrees
of t and 9t :

(1.1.2) Vpn= ̂  W9{ (same for U).
i-3>P

Then we have :
- ypn = ̂ y°7z = vQmp (p > o),

(1.1.3) < y-^ = E ̂ y0^ = E y0 '̂ (^>0)'
0<j^p Q^j<p

^ ypn = Q^pv^n = v°n9,rP.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



166 M. SAITO

1.2. — Let / G 0 such that /(O) = 0 and / ^ 0. Let

(1.2.1) ^=0[W-/), ^=<9[0^-1]^-/),

where 0[9^(t-/) is a free module of rank one over 0[9t] (= 0^cC[9t})
with a basis 6{t — f) (similarly for Bf). Here 6(t — f) denotes the delta
function supported on {/ = t} (see remark below). We have a structure
of 7^-module and 7^-module on Bf and Bf respectively by

f ^(a9l6(t - /)) = (m8(t -f)- (WaQ^^t - /),
(1.2.2) {

[ t(a9i6(t - /)) = fa9^(t - f) - ̂ a9^16(t - f)

for a e 0 and ^ € Ox,x- We define a decreasing filtration G on B^ Bf by

(1.2.3) CT^ = ¥^6(1 - /), ^^j = V^d - f),

and an increasing filtration -F by

(1.2.4) FpBf = Q) 09\6{t - /), F^Bf = ̂ ) OQ^t - f)
0<^i<p • i<p

Then we have :

(1.2.5) Q^.G^Bf^G^Bf^ 9l:F,Bf^F^Bf^

(1.2.6) Vx^[s](FpBf) c G^Bf.

Remark. —The 7^-module Bf is identified with the germ at (x, 0) of the
direct image of Ox as P-Module by the closed embedding if defined by the
graph of /, where t is identified with the coordinate of C. See [4] and [17].

1.3 Definition. — The b-function bf{s) (resp. microlocal b-function
bf(s)) is defined by the minimal polynomial of the action of s := —9tt on
Gr^ (resp. Gr^B;).

REMARK. — Since Gr^TZ = Gr^TZ = V[s\, bf(s) (resp. bf{s)) is the
monic generator of the ideal consisting of polynomials b(s) which satisfy
the relation

(1.3.1) b{s)6(t-f)=P6(t-f)
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MICROLOCAL 6-FUNCTION 167

for P e V^ (resp. y1^). For bf(s), we may assume P = tQ with
Q e ?[.§] using (1.1.3) and (1.2.2). So the above definition coincides with
the usual definition of b- function (i.e., Bernstein polynomial), because
6(t — f) and f8 satisfy the same relation (see [8]).

1.4. — Let X1 == X x C, and £ the germs of microlocal differential
operators at p ;== (a;,0;0,d^) € T*^ (see [17], [4]). Let Cf be the micro-
localization of the ' V x ' , x 1 -module Bf at p € T*X7 (see [4], [17]), where
x ' == (x,0). It is an f-module, and we have an isomorphism

(1.4.1) C^0{{9^}}[9t}^t^f)^

where the <f-module structure is defined as in (1.2.2). Here 0{{9^1}} is
defined by

(i.4.2) {E^r.-E^60^'}-
i>0 i>0

We have the filtration V on £ by the difference of the degrees of 9t and t
as in (1.1.2), and define the nitrations G, F on Cf by

(1.4.3) G^=y^^-/), FpCf=0{{9^}}a^{t-f).

Let ^(.s) be the minimal polynomial of the action of s on Gr^Cf. See
also [6]. Then we have :

(1.4.4) bf(s) =6^).

In fact, it is enough to show the canonical isomorphism :

(1.4.5) G^Bf-^Gx^Cf.

We have Gi^Bf == Gr^Cy, FoCf C GQCf and (1.2.6). So the assertion is
reduced to the isomorphism :

(1.4.6) G°Bf/FoBf -^ G°Cf/FoCf.

Both terms are identified with subspaces of Cf/FoCf (= 0[9t}9t6(t - /)),
and it is enough to show the surjectivity. Using local coordinates, we can
check

(1.4.7) V°£ = ̂ £(0)9^t9tY = ̂ ^(^)^(0),
l^,Z V.t

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



168 M. SAITO

where <f(0) denotes the microdifferential operators of degree ^ 0 (see
[17], [4]), and Q^ is as in the proof of (1.6) below. So we get (1.4.6),
because £(0)6{t - f) = FoCf.

1.5 Proof of 0.3. — We show first

(1.5.1) (s^l)bf(s)\bf(s).

It is well known that bf{s) is divisible by s + 1 (by substituting s = —1
to bf^s)/8 = P/5"^1). This can be verified also by restricting X to the
complement of Sing /"^(O^ed- By (1.3.1) for bf(s), we get

(1.5.2) (. + 1) (^ + Q^Q) 6(1 - f) = 0,

because s + 1 = —t9t, and P = tQ for Q € ^[s\. So the assertion is
reduced to the injectivity of the action of t on Bf. We may replace Bf
by Gr^ Bf, and the action of t on Gr^ Bf is the multiplication by /. Then
the assertion is clear.

For the converse of (1.5.1), we use (1.3.1) for bf(s). By the next lemma,
we may assume P G Q^1VQ'R,. So we get the assertion by multiplying
s+l=-t9t.

LEMMA 1.6. — With the above notation^ we have

(1.6.1) 9^1Von6(t-f)nO[9t}6{t-f)=9^1Von6(t-f)nO[9t}6(t-f).

Proof.— Since V°n = (Vonn9t/R.)-\-Vx,x[t,9i~l}, it is enough to show

Q^Vx^Q^t - f) H 0[9t}6(t -f)c Vx^^t - f).

We have Vx^Q^t - f) = Vx^F1}^ - f) by (1.2.2). So the
assertion is reduced to

^x^-^(i - f) n 0[9t}9^6(t - f) c Vx^6{t - f)

by decreasing induction on j > 0. Let (a;i , . . . ,Xn) be a local coordinate
system of X, and 9, = 9/9x^9^ = fL ̂  for ^ = (^i,. . . ,^). Take
p = E^ ̂ Qv ^ ^x^x such that

P9^-16(t - f) c 0[W^(t - /).

By (1.2.2), the condition is equivalent to OQ = 0, and the assertion follows.
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1.7 Remark. — Assume / has isolated singularity, and n > 2. Let Lf
denote Brieskorn's module ̂ ^/d/Ad^^2 (see [1]). Then it was shown
by MALGRANGE [10] and PHAM [11] that Lf is a free A-module of rank /-A,
where A = C{{<9^1}}, and p. is the Milnor number of /. MALGRANGE [8]
also showed

(1.7.1) -——— is the minimal polynomial of
(5 + 1} - _

the action of — Qft on L f / 9 ^ L f ,

where Lf is the saturation of Lf (see (4.7) below). So (0.3) may be viewed
as an extension of (1.7.1) to the nonisolated singularity case, because
the Gauss-Manin system associated with a Milnor fibration does not
provide enough information of ^-function in general. See (2.12) below.
Note that (0.4)-(0.6) can be easily deduced from (1.7.1) combined with
[19], [20] (and [18]). See also [14].

2. Filtration V

2.1. — With the notation of paragraph 1, let V denote the filtration of
Kashiwara [5] and Malgrange [9] on Bf indexed by Q (see also [12, (3.1)]
and [13]). Here we index V decreasingly so that the action of 9ft - a
on Gr^Bf is nilpotent, where Gr^ = V^/V^ with V>oi = |L>^ V^.
In particular, we have isomorphisms for a -=f=- 0 :

't'.G^Bf^Gr^Bf^

Ot-.G^Bf^G^Bf.

By negativity of the roots of ^-function [4], we have :

(2.1.1)

(2.1.2) FoBf c V>°Bf.

See (1.2.4) for FpBf. We define the filtration V on Bf by

f V^Bf + O^"1]^-1^ - /) for a < 1,
(2.1.3) VaBf={ _ J ^

[ Q^V^Bf for a > 1, 0 < a - j < 1.

Then we have filtered isomorphisms

(2.1.4) (G4 B^ F) -^ (G4 Bf^ F) for a < 1.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



170 M. SAITO

LEMMA 2.2. — For any a € Q anc? ^ > 0, we have isomorphisms :

(2.2.1) 9{ : V^Bf -^ V^Bf.

Proof. — It is enough to show the surjectivity of (2.2.1) for 0 < a < 1.
Let u e V^^Bf. Since the action of 9f on Bf is bijective, there exists
uniquely v € Bf such that u == (9,?'y, and we have to show v € VaBf.
Assume v € V^Bf and v ^ V>f3Bf for /? < a < 1. By (2.1.2)-(2.1.3), we
have :

(2.2.2) F_^Bf CV^Bf.

So there exists v/ <E V^Bf such that Gry z; = Gry ̂  in Gv^Bf. Then
Gry (9^ ^ 0 in Gr^' ̂  by (2.1.1) and (2.1.4). This is contradiction.

REMARK. — By (1.2.5) (2.2.1), we have isomorphisms :

(2.2.3) 8{ : FpV'^Bf -^ Fp^V^Bf.

2.3. — We say that L is a lattice of Bf if L is a finite y°7^-submodule
of Bf, which generates Bf over 7^. For two lattices L, V of Bf, we have

(2.3.1) LcQiL' for j > 0,

because K == |jj ̂ V0^ by (1.1.3). By the same argument as in [5], the
filtration V on Bf is uniquely characterized by the conditions :

(i) VmVaBf C V^Bf,

(ii) V^Bf are lattices of Bf,

(iii) s + a is nilpotent on Gr^ £^-,
(see also [12, (3.1.2)]). Here we assume that the filtration V is indexed
by Q discretely (see [loc. cit.]).

For a lattice L oiBf, we define a filtration G on By by G'Bf = 9^L,
and the b- function bi,{s) by the minimal polynomial of the action of s
on Gi^Bf. By (2.3.1), the induced filtration on Gr^Bf by V is a
finite filtration, and 6L(5) 1s the product of the minimal polynomial of s
on each Gr^Gr^Bf = Gr^Gr^By (which is a power of 5 + a), and
hence b^s} is nonzero. Note that, for a given number OQ, the 6-function
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is determined by the induced nitration G on Gr^- Bf (with the action of s)
for OQ < a < OQ + 1, using isomorphisms :

(2.3.2) Q\ : GT°G Gr^ Bf -^ Gr^ Gr^ ̂ .

For two lattices L, L' of Bf such that L C L^ let J?^ be the roots of b^—s)
(similarly for RL'}' Then

(2.3.3) RL C RL' + Z>o, PL' C RL + Z<o,

where Z>o,Z<o are as in (0.7). In fact, setting G^Bf = <9^Z/, we have
G1 C G'1 on each Gr^ By, and the assertion is checked using (2.3.2).

PROPOSITION 2.4. — With the notation of (2.1), we /^are :

(2.4.1) GT^Bf=Vx,.{FpG^Bf) if F-^iGr^^O.

Proof. — Choosing a local coordinate system (a;i , . . . ,Xn), we have
an involution of T>x such that {9/QxiY = —9/Oxi^ (a^)* = xi, and
(PQ)* = Q*p* (see [17]), and it identifies left and right Pjc-Modules.
(For simplicity, we do not shift the nitration F in the transformation of
left and right Pjc-Modules as in [13].) Let D denote the dual functor for
filtered P-Modules [12, §2]. We define a filtration F on Ox (identified
with a right P^-module ujx) by F-\0x = 0, FoOx = Ox- Then we have
a natural duality isomorphism

(2.4.2) ^{Ox^F)={Ox^F[-n}}^

which gives a polarization of Hodge Module (see remark 2.7 below), where
(F[m])p = Fp-m- (Note that {ujx -> F) [n] underlies the dualizing complex,
and (ujx^F) has weight —n.) Since ( B f ^ F ) is identified with the direct
image of ( O x ^ F ) as filtered right P-modules (see remark after (1.2)), we
get

( D(Gr^ Bf, F) = (Gr^ Bf, F[l - n\) for 0 < a < 1,
(2.4.3)

D(G4^,F)=(G4^,F[-n]),

by the duality for vanishing cycle functors [15]. (See also (2.7.2) and
(2.7.5)-(2.7.6) below.) So we have

(2.4.4) D(G4 Bf, F) = (Gr^ Bf, F) for any a,

by (2.1.4) (2.2.3), and the assertion is reduced to the following :

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



172 M. SAITO

LEMMA 2.5. — Let (M,F) be a holonomic filtered right Vx -Module
such that D(M,F) is a filtered Vx-Module {i.e., M is holonomic and
Gr^M := ^GrfM is coherent and Cohen-Macaulay over GTFT>x)•
Assume F-p-iDM = 0. Then :

(2.5.1) M=Vx{FpM).

Proof. — Let DR(M, F) be as in the remark below. Then it is enough
to show

(2.5.2) Gif DR(M, F) = 0 for q > p,

because this implies (Gr^_i M)Qx = Gr^ M (for q > p). We have

(2.5.3) DR(M, F) = D(DR(D(M, F)))

by (2.6.5)-(2.6.6) below, and

(2.5.4) Gr^D(DR(D(M,F))) = DGr^(DR(D(M,F)))

by (2.6.7). So it is zero for q > p, and the assertion follows.

2.6 Remark.—Let (M, F) be a filtered right Px-Module. The filtered
differential complex DR(M, F) associated with (M, F) is defined by

(2.6.1) FpDR(M)1 = Fp^M 0 A-^x,

(see [12, §2]), where Qx is the sheaf of holomorphic vector fields. The
differential is defined like the Koszul complex associated with the action
of 9/Qxi on M if we choose local coordinates. This induces an equivalence
of categories

(2.6.2) DR(M) : D^F(Vx) —— D^F^Ox. Diff),

(see [12, 2.2.10]), where the right hand side is the derived category
consisting of bounded coherent filtered differential complexes with finite
filtration. We have the dual functor

(2.6.3) D : D^F(px) -^ D^F(Vx^

(2.6.4) D : D^Ff(Ox. Diff) —. D^F^Ox. Diff),

TOME 122 — 1994 — ?2
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such that

(2.6.5) D R o D = = D o D R ,

(2.6.6) D2 = id,

(see [12], 2.4.5 and 2.4.11). By construction, we have

(2.6.7) GrfD(L,F)=DGr^(L,F)

for (L,F) € D^F^^Diff), where D denotes also the dual functor
for C^c-Modules.

2.7 Remark. — Let X' = X x C as in 1.4. Let (M,F) be a filtered
right Pjc'-Module underlying a polarizable Hodge Module of weight n
(see [12]). Then a polarization of Hodge Module induces an isomorphism :

(2.7.1) D(M,F)= (M,F[n]).

See [12, 5.2.10]. The nearby and vanishing cycle functors are defined by

f^(M,F)= Q) Gr^(M,F[l]),
(2.7.2) < -Ka<0

[(^i(M,F)=Gr^(M,F),

where t is the coordinate of C, and V is the filtration of Kashiwara [5]
and Malgrange [9] along X x {0} such that the action of N := t9f — a
on Gr^ M is nilpotent locally on X. Here V is indexed increasingly, and
we put V 0 ' = V-a. By [15, 1.6], we have the duality isomorphisms :

(2.7.3) ^B(M.F) = (D^(M,F))(1),

(2.7.4) (^iD(M.F) =D^,i(M,F).

Combined with (2.7.1), they imply the self duality :

(2.7.5) D^(M, F) = ̂ (M, F)(n - 1),

(2.7.6) D^,i(M,F) = ^,i(M,F)(n).

Let W be the monodromy filtration of M associated with the action
of N . This is uniquely characterized by the properties NWz C H^-2?
N J : Gr^ ^ Gr^. (.7 > 0). Then W[n - 1] (resp. W[n]) gives the
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weight filtration of mixed Hodge Modules on '0t(M, F) (resp. (/^i(M, -F)).
Since N underlies a morphism of mixed Hodge Modules, N3 induces
filtered isomorphisms

(2.7.7) N^ : Grf ̂ (M, F) -^ Gr̂ , ̂ (M, F[-j])

(same for (/^i(M,F)) by [12, 5.1.14]. We have the duality isomorphisms

(2.7.8) D Gr^ ̂ (M, F) = Gr̂ . ̂ (M, F)(n - 1),

(2.7.9) DGrf^l(M,F)=GrH;•^l(M,F)(n),

because IV is self dual. Note that these are used for the inductive definition
of polarization in [12].

2.8 Proof of (0.4). — Since G1 Gr^ Bf D PX,^-I Gr^ Bf) by
(1.2.6), it is enough to show Gr^ Bf = PX^(F-I Gr^ Bf) for a > n - Of
by (2.3). We have

(2.8.1) FoGi^Bf =G°Gr^Bf =0 for a < ay

by (1.2.6) and (2.3). So the assertion follows from (2.4) with p = -1.

REMARK. — We have maxJPy = n — Of if / is quasihomogeneous
and Sing /^(O) is isolated. This follows for example from [8] together
with Brieskorn's calculation of Gauss-Manin connection (unpublished).
See also [13, (3.2.3)].

PROPOSITION 2.9. — Let (M,F) be a filtered Vx-Module with a mor-
phism N : (M, F) —^ (M, F[—l]). Let W be the monodromy filtration of M
associated with the action of N. See (2.7). Assume

(2.9.1) N3 : Fp Grf M -^ F^, Gr^. M(j > 0)

for any p, and there exist integers 9, r such that^ for any j :

(2.9.2) F^_i Grf M = 0, Gr^ M = Px(Fg+r Gr^ M).

T/ien A^^1 = 0 on M, and AT-1 = 0 on M/Px[A^](Fg+zM).

Proof. — We may assume g = 0 by replacing F with F[—^]. We
apply (2.9.2) to Gr^. M, and get

(2.9.3) Gr^ M = Vx{Fr-j Gr^ M) for j > 0,
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using (2.9.1). In particular, Grj^ M = 0 for j > r, and the first assertion
follows. For the second assertion, it is enough to show the inclusion

(2.9.4) Wi.rM C Vx [N] (F,M)

and the surjectivity of

(2.9.5) Wr-i-iM/Wi-rM —— M/Vx[N](F,M),

because N^1 == 0 on Wr-i-iM/W^rM. We have, by (2.9.3) :

(2.9.6) Gr^- M = N3 Gr^(^x(^M)) for j > r - z.

So (2.9.4) follows taking Gr^. for -j < i - r. The surjectivity of (2.9.5)
is equivalent to that of

(2.9.7) Vx[N](F,M) —— M/Wr-z-iM^

and follows from (2.9.3), taking Gr^ of (2.9.7) for j > r - i.

2.10 Proof of (0.5) and (0.6). — For (0.5), it is enough to show

(2.10.1) ^m+l = 0 on Gr^ Bf/Vx[N}{F^ Gr^ Bf)

form = [n—af—a] by (1.2.6), where N = s+a. Take/? e [ay.aj-4-1) such
that k := a - (3 € Z. By (2.2.3) and (2.8.1), we have F-/c-i Gr^ Bf == 0.
Applying (2.9) to (Gr^- B f ^ F ) ^ q = —k and % == A1 — 1, it is enough to show

(2.10.2) GrfGr^ ̂  = Vx {Fm GrfGr^ ̂ )

for 771 as above (i.e., (2.9.2) is satisfied for r = [n — Of — /?]). Here the
condition (2.9.1) is satisfied by (2.7.7). Furthermore, we have the duality

(2.10.3) DGrf(Gr^5y,F) == Gr^Gr^-0 B f ^ F )

using (2.7.8)-(2.7.9). We have F-p_i Gr^"^ = 0 for p = m by (2.2.3)
and (2.8.1), because n - a - p - 1 < a / . So (2.10.2) follows from (2.5).

For (0.6), let a = f3 C [aj, aj+1). Then the assertion follows from (2.9)
using the remark below.
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REMARK. — Let (pfOx = (Bo<o-<i ̂ .̂f as in (2-7-2)- By Kashi-
wara [5] and Malgrange [9], we have an isomorphism

(2.10.4) DRx(^fOx) = ̂ PfCx[n - 1]

such that the action of ex.p(2ms) on the left hand side corresponds to the
monodromy T on the right hand side, where DRx is the de Rham functor
[loc. cit.}, and ^p/Cx is Deligne's vanishing cycle sheaf complex [2].

2.11 Remark. — We can consider bf(s) at each point y of Y :=
Sing/'^O), and ma(f) determines a function ma(f^y) on V. By defini-
tion ma(f^y) is upper semicontinuous.

Let S = {Sj} be a Whitney stratification of Y such that W(pfCx\s-
are local systems (e.g., a Whitney stratification satisfying Thorn's Af-
condition). Then, for a subquotient K of ^pfCx (as a shifted perverse
sheaf), 7-̂  X [5. are also local systems. Applying this to DRjc(Gr^ Gr^- Bf\
we see that the restriction of ma(f^y) to Sj is locally constant (in parti-
cular, ma(f^y) is a constructible function).

Furthermore, at y € 5j, THEOREMS (0.4)-(0.5) hold with n repla-
ced by (n — r), where r = dim5j. In fact, it is enough to show
that (2.4.1) holds with FpGr^Bf replaced by Fp-rGr^Bf (or equiva-
lently, F-p^Gr^Bf by F-p-i Gr^-^ Bf, using (2.2.3)). This can
be checked by restricting to a smooth submanifold Z of X, which inter-
sects Sj transversally (at a general point y of S^-), because the restriction
to Z is noncharacteristic, and is given by the tensor of Oz-

2.12 Remark. — Let E{^pfCx^T) be the eigenvalues of the action
of the monodromy T on ^fifCx (as shifted perverse sheaf), where X is
restricted to a sufficiently small neighborhood of x. Then we have

(2.12.1) exp(27r^) = E(^fCx^T)

by (2.3) and (2.10.4). See [9]. (Note that T is defined over Z, and that
E^fCx^T)=E(yfCx^T-1).)

Let X(/, y) denote a Milnor fiber of a Milnor fibration defined around
y e V, and define £'(^(X(/,^/), C),r) as above. Then we have an
isomorphism

(2.12.2) ^^fCx)y =ir(x(/,^),c),
and we get

(2.12.3) exp(27rz^) = JE(^(X(/,%), C),T)
^j
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for yj e Sj with S = {Sj} as in (2.11), where Sj are assumed connec-
ted. But

(2.12.4) exp(2mRf) = |j^(^(X(/^), C),T)
i

is notjrue. For example, let / = xy3 on C2. Then X(/,0) ^ C*, and
U^(^(WO),C),r) = {1}. But bf(s) = (5+ j ) (^+ j)(5+ 1).

3. Nondegenerate Newton boundary

^•1- — Let (0:1,... ,;r^) be a local coordinate system around x C X
so that 0 = C{a;} (:= C{x^... ,Xn}). We have a Taylor expansion
/ = E^-^ where v = (z / i , . . . , z^) and x^ = }\x^. Let r+(/) be
the convex full of v + (]R>o)71 for a^ ^ 0. We define f^ = ̂ ^ a^ for a
face a of F+(/). We say that / has nondegenerate Newton bomidary with
respect to the coordinate system [7], if <9^ (1 ̂  i < n) have no common
zero in (C*)72 for any compact face a- of F+(/), where 9, = 9/9xi. For
a face a- of r+(/), let C(a) denote the closure of the cone over a, and
C(a)° = C(a) \ ̂ r<a C(T)^ where r < a means that r is a face of a.
Let Aa denote the C-subalgebra of C{x} generated topologically by x"
for v e C(a\ and B^ the ideal generated by xv for v e C(cr)°. By 6.4
in [7], / has nondegenerate Newton boundary if and only if

(3-1-1) dimcA,/^^(cy,)A, < oo
i

for any compact face a. (In fact, if 9,f^ (1 ^ i <, n) have no common
zero in (C*)71, we have x- G Ez^(^/<r)C[^] for some v, and then
xl/ ^ E, Xi(9ifa)Aa- by replacing ;/.)

For an (n - l)-dimensional face a of r+(/), let ^ denote the linear
function whose restriction to a is one. We define a function a : N71 —> Q by
a(u) = min{^(^)}, and a : 0 -^ Q by a^c^) = min{a(^) : c^ ^ 0}.
This induces a filtration V on 0 by l^O = [g e 0 : a(g} ^ a}.

PROPOSITION 3.2. — Assume f has nondegenerate Newton boundary
with respect to the coordinate system. Then V^B^ is generated over
^x,x[9t~\s} by x^9^(t - f) for a(v + 1) - i ̂  a, where 1 = (1 , . . . , 1).

Proof.—It is enough to show that the filtration V defined by the above
condition satisfies the condition of filtration V in (2.3). The argument is
essentially same as [12, 3.6] and [16, (3.3)]. For an (n - l)-dimensional
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face cr, let {c^} be the coefficients of ^-, and ^ = ^c^XiOi so that
<^T/T = fr for T < a. Then we have :

(3.2.1) ^c^Xi(x^(t-f))=£^+l)x^{t-f)-(^f)9tX^(t-f).
i

We have ^a(^+^) > ^a(^) ifc^i 7^ 0. So we can check the nilpotence of the
action of s + a on Gr^ 23^ by induction on m(^) := #{cr : 4r(^) == o^)},
and it remains to show that VaBf is finitely generated over T>x,x[9^1, s}.
Let x = x\ • • ' Xn- By (1.2.2), the assertion is reduced to the surjectivity of

(3.2.2) ^>z(<9J) : @V^{xO) —— V^\x0} for a » 1.
i i

Since V^^xO) is finitely generated over 0, we may replace Va(x0),
V^^xO) by G4(a;0) and Gr^^xO) respectively, using Nakayama's
lemma. Taking the graduation of the filtration induced by m(v), these
terms are further replaced by (B^ D x^x])0', (Ba H xC^})^1 (where the
superscript a denotes the degree a part), and / by fa. Here we may
assume that a- is not contained in the coordinate hyperplanes of W1.
Since Ay is noetherian, we can replace B^r\xC[x] by A^. So the assertion
follows from hypothesis if a is compact. In the noncompact case, let

J(a) = {z :a+e , Co}, H(a) = ̂  M^o^,
^J(a)

where e^ € M77' is the z-th unit vector (i.e. its j-ih component is 1 for j = %,
and 0 otherwise). Then H((T)+C((T) C C{a) (in particular, H(a) C C(a))
and a is the union of r + H(a) for r compact faces of a. We define subsets
of H{a) by :

U^H(a)={^r^:^>f3}^

U>^H(a)={^r^:^>f3}.

Let U/3C(a) = U^H^+C^a), and U^A^ the ideal ofA^ generated by ̂
for ^ € U^C^a) (similarly for ^^'^(^(cr) and [/^A^). By Nakayama's
lemma, the assertion is reduced to the surjectivity of

(3.2.3) ^ x,(9^) : (3) Gr^A,)0 —. Gr^A,)^1 for a » 1.
i i

Let OU^H(a) = U^H(a) \ U>^H(a) (similarly for <9^G(a)). Then
(QU^H^} + ^[/"(^(cr)) H Z" is covered by a finite number of parallel
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translates of 9U°C(a) n Z^ (using a partition of OU^C^)). So Gr^(A^)
is finitely generated over Gr^(A^), and we can restrict to the case (3=0.
Then the assertion is reduced to the a compact case by the same argument
as above (using the filtration induced by m(i/)), because Gr^(AJ is the
sum of Ar for r compact faces of cr. So the assertion follows.

COROLLARY 3.3. — We have Of > l./t for (t,... ,t) e <9r+ (/).

REMARK. — In the isolated singularity case, it is known that the
equality holds by [3], [16] (and [20] in the case Of < 1) combined with [8].

4. Thom-Sebastiani type theorem

4.1. — Let Y be a complex manifold, y e Y, and g € Oy,y. Let
Z = X x Y,z = (x, y ) , and h = f +g e Oz^z- We define Bg, BH as in (1.2).
Then we have a short exact sequence

(4.1.1) 0 ̂  Bf m Kg —> Bf M Bg -^ Bk -^ 0

with L, T] defined by

i(a^6(t - f) 0 b9i6(t - g)) = ̂ ^(t - f) 0 bQi6{t - :g)

-aOWt-f^bO^^t-g)^

rf(a9l6(t - f) 0 W^{h - g)) = ab9^6(t - h)

for a € Ox,x, b € Oy^. Here the external product M ̂  N for an Ox x-
module M and an (^y^-module N is defined by

(4.1.2) Oz^z ^Ox^cOY,y {M (g)c N) (= (Oz,z (S)ox,. M) (^ovy N).

It is an exact functor for both factors (using the second expression) and
commutes with inductive limit. By definition, we have

f Qt^u (g) v} = r]{9tU (g) v) == ri(u (g) <9^),
(4.1.3) < tr]{u 0 v) = rj(tu 0 v) + ̂ (n (g) ̂ ),

[ P77(^ (g) v) = r)(Pu (g) ^), Qrj(u (S) v) = r](u 0 Qz;),

for ueBf.v e ̂ , P € Px,^ Q G Py^. In particular, we have :

(4-1-4) srj{u (g) v) = 77(5^ (g -y) + ̂ (zA 0 s^).
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We define a filtration G on Bf IE! Bg by

(4.1.5) G^Bf ̂  Bg) = ̂  G^f ̂  G^Bg,
2+J=fc

and a filtration G' on BH by G^BH = rjG^Bf ^ Bg). By Lemma (4.2)
below, we have :

(4.1.6) Gi^Bf ̂  Bg) = (]) Gi^Bf ̂  G^Bg.
i+3=k

Then GIG i : Gr^1^ ^ 2^) -^ Gr^Bf ^ Bg) is injective (i.e., L is
strictly injective), and we get an isomorphism

(4.1.7) GTG r] : GT°G Bf ̂  GT°G Bg ̂  Gr^(^)

by taking the graduation of (4.1.1). Furthermore, the action of s on the
right hand side corresponds to that of s [3 id + id ^ s on the left.

LEMMA 4.2. — For an Ox.x-module M and an Oy^y -module N with an
exhaustive filtration G, we define a filtration G on M Kl N as in (4.1.5).
Then (4.1.6) holds with Bf^Bg replaced by M,N.

Proof. — Since the external product is exact, we can replace M,N by
GPM, G^TV, considering inductive systems (G-^M, F), {G~PN, F). So we
may assume GPM = M, GPN = N for p < 0. Then the summation in
(4.1.6) is a finite direct sum, and we get the assertion taking the graduation
of the filtration G on M, because (^(Gr^ M ̂  N) = Gr^ M Kl G^N.

4.3 Proof of (0.7). — By (1.2.5) (4.1.3), we have

(4.3.1) G^BH = rj^Bf ̂  G^Bg).

By [^G°Bf = Vx^[s]6(t - f) (resp. G°Bf = E^a^G°Bf) is finite
over Vx,x (resp. over Vx^x^1]). So we get

(4.3.2) G^Bh are lattices of BH (see (2.3)),

(4.3.3) G^Bh D G^,

using (4.1.3). Then the assertion follows from (2.3).
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4.4 Proof of (0.8). — Since s6(t - g) = ̂ 6(t - g), we have

G°Bg=VY,y[9^}6(t-g),

and, by (4.1.4),

(4.4.1) ^6(1 - /) 0 6(t - g)) = s^-^^t - f) 0 6(t - g))
-^-^(t-^^^t-g)).

So we get the equality :

(4.4.2) G^Bh = GkBH.

Taking Gry of (4.1.7), we have an isomorphism

(4.4.3) (3) Gr^ Gr^ Bf ̂  G^y Gr^ Bg = Gr^ Gr^ BH
Q'+/3=7

by (4.2), because Gr^ Gr^- B^ is identified with the a-eigenspace of Gr^- Bf
by the action of —s. So the assertion follows.

4.5 Remark. —The short exact sequence (4.1.1) is due to a discussion
with J. STEENBRINK in 1987 at MPI. It is used to prove the Thom-
Sebastiani type theorem for the vanishing cycles of filtered regular holo-
nomic P-Modules. This subject will be treated in a joint paper with him.

4.6 Remark. — In the isolated singularity case, MALGRANGE [10]
showed essentially the natural isomorphism

(4.6.1) L h = L f ( S ) A L g ,

with the notation of (1.7) and (4.7) below. Using this and (1.7.1), we
can easily check (0.7-8) in the isolated singularity case. This also gives
an example such that (0.8) does not hold in the non quasi-homogeneous
singularity case. See (4.8) below.

4.7 Remark. — In this paragraph, we denote by 8 the ring of micro-
differential operators of one variable ^{t}^^1}}^], and let 8(0) =
C{t}{{<9^1}} the subring of microdifferential operators of order < 0.
See [4], [17]. We define subrings of 8 by

K=C{{Q^}}[9^ A=C{{OF1}}.
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Let M be a regular holonomic ^-module. An <f(0)-submodule L of M
is called a lattice if it is finite over <f(0) and generates M over ^. The
saturation L of £ is denned by

(4.7.1) L = Y^tQtfL.
i>0

Note that L is also a lattice of M by regularity.
Let Mj (j = 1, 2) be two regular holonomic ^-modules, and Lj a lattice

of Mj.. Let

(4.7.2) M = Mi (g)^ M2,, L = Li. (g)A La-

Then M is a regular holonomic ^-module, and L is a lattice of M, where
the action of t on M is denned by

(4.7.3) t(u 0 v) = tu (g) v + n (g) ̂  for 'u e Mi, v e Ms.

However, we have

(4.7.4) £^£. i0AZ2

in general. For example, consider the case Mi = Ms, T^i = Ls, and Lj has
a generator ei, 62 over A such that 9ttei = ei + 9^2, <9^e2 = 2e2. Then L
is generated over A by ei(g)ei, <9t(ei(g)e2+e20ei), Q^e^^e^} and ei(g)e2,
and Lj by ei and ^62.

4.8 Example. — Consider the singularity of type Tp^r '•

/ = ̂  + ^^ + ^r + xyz for p~1 + q~1 + r"1 < 1.

Then Lf is generated over A by e, e' and Ca,i (1 < a < 3, 0 < i < pa) such
that

9,te = e + ^e7, 3^ = 2e', 9,^,z = (1 + i/pa)e^

where pi = p, p2 = ^S P3 = 'r- This can be checked for example using
[14, 3.4]. In particular, we get by (1.7.1) :

(4.8.1) bf{s).=(s^lf Y[ (s+l+i /p) i f p = g = r .
0<i<p
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Let h = f+g as in (4.1). Assume /, g singularities of type Tp,p,p and Tq^q^q
respectively, and (p, q) = 1. Then

(4.8.2) W = {s + 2)3^ + 3) ]J (^ + 2 + i/p + j/g)
o<i<p
0<j<g

n(.+2+z/p)2 ]J(,+2+j79)2.
0<%<p 0<7<g

This gives a counter example to (0.8) in the non quasi-homogeneous case.
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