BULLETIN DE LA S. M. F.

MORIHIKO SAITO On microlocal *b*-function

Bulletin de la S. M. F., tome 122, nº 2 (1994), p. 163-184 <http://www.numdam.org/item?id=BSMF_1994__122_2_163_0>

© Bulletin de la S. M. F., 1994, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 122, 1994, p. 163–184.

ON MICROLOCAL *b***-FUNCTION**

 $\mathbf{B}\mathbf{Y}$

MORIHIKO SAITO

RÉSUMÉ. — Soit f un germe de fonction holomorphe en n variables. En utilisant des opérateurs différentiels microlocals, on introduit la notion de b-fonction microlocale $\tilde{b}_f(s)$ de f, et on démontre que $(s+1)\tilde{b}_f(s)$ coïncide avec la b-fonction (i.e. le polynôme de Bernstein) de f. Soient R_f les racines de $\tilde{b}_f(-s)$, $\alpha_f = \min R_f$ et $m_{\alpha}(f)$ la multiplicité de $\alpha \in R_f$. On démontre $R_f \subset [\alpha_f, n - \alpha_f]$ et $m_{\alpha}(f) \leq n - \alpha_f - \alpha + 1$ ($\leq n - 2\alpha_f + 1$). Le théorème de type Thom-Sebastiani pour b-fonction est aussi démontré sous une hypothèse raisonnable.

ABSTRACT. — Let f be a germ of holomorphic function of n variables. Using microlocal differential operators, we introduce the notion of microlocal b-function $\tilde{b}_f(s)$ of f, and show that $(s+1)\tilde{b}_f(s)$ coincides with the b-function (i.e. Bernstein polynomial) of f. Let R_f be the roots of $\tilde{b}_f(-s)$, $\alpha_f = \min R_f$, and $m_\alpha(f)$ the multiplicity of $\alpha \in R_f$. Then we prove $R_f \subset [\alpha_f, n - \alpha_f]$ and $m_\alpha(f) \leq n - \alpha_f - \alpha + 1$ ($\leq n - 2\alpha_f + 1$). The Thom-Sebastiani type theorem for b-function is also proved under a reasonable hypothesis.

Introduction

Let f be a holomorphic function defined on a germ of complex manifold (X, x). The b-function (i.e., Bernstein polynomial) $b_f(s)$ of f is defined by the monic generator of the ideal consisting of polynomials b(s) which satisfy the relation

(0.1)
$$b(s)f^s = Pf^{s+1}$$
 in $\mathcal{O}_{X,x}[f^{-1}][s]f^s$

for $P \in \mathcal{D}_{X,x}[s]$. Let $\delta(t-f)$ denote the delta function on $X' := X \times \mathbb{C}$ with support $\{f = t\}$, where t is the coordinate of \mathbb{C} . Then, setting $s = -\partial_t t$, f^s and $\delta(t-f)$ satisfy the same relation (see for example [8]). So f^s in (0.1) can be replaced by $\delta(t-f)$, and f^{s+1} by $t\delta(t-f)$. We define the

^(*) Texte reçu le 21 février 1992, révisé le 6 décembre 1992.

M. SAITO, RIMS, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-01, Japon.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037–9484/1994/163/5.00 © Société mathématique de France

microlocal b-function $\tilde{b}_f(s)$ by the monic generator of the ideal consisting of polynomials b(s) which satisfy the relation

(0.2)
$$b(s)\delta(t-f) = P\partial_t^{-1}\delta(t-f) \quad \text{in } \mathcal{O}_{X,x}[\partial_t,\partial_t^{-1}]\delta(t-f)$$

for $P \in \mathcal{D}_{X,x}[\partial_t^{-1}, s]$. Here we can also allow for P a microdifferential operator [4], [6], [17] satisfying a condition on the degree of t and ∂_t (see (1.4)). We have :

PROPOSITION 0.3. — $b_f(s) = (s+1)\tilde{b}_f(s)$.

See (1.5). The microlocal *b*-function $\tilde{b}_f(s)$ is sometimes easier to treat than the *b*-function $b_f(s)$. Let R_f be the roots of $\tilde{b}_f(-s)$, $\alpha_f = \min R_f$, $m_{\alpha}(f)$ the multiplicity of $\alpha \in R_f$, and $n = \dim X$. Then, using the duality of filtered \mathcal{D} -Modules [15] and the theory of Hodge Modules [12], we prove

Theorem 0.4. — $R_f \subset [\alpha_f, n - \alpha_f].$

Theorem 0.5. — $m_{\alpha}(f) \leq n - \alpha_f - \alpha + 1 \quad (\leq n - 2\alpha_f + 1).$

See (2.8), (2.10).

The estimate (0.4) is optimal because max $R_f = n - \alpha_f$ in the quasihomogeneous isolated singularity case. See also remark after (2.8) below. Note that $R_f \subset \mathbb{Q}$ and $\alpha_f > 0$ by [4], and (0.5) is an improvement of $m_{\alpha}(f) \leq n - \delta_{\alpha,1}$ (with $\delta_{\alpha,1}$ Kronecker's delta) which is shown in [9] as a corollary of the relation with Deligne's vanishing cycle sheaf $\varphi_f \mathbb{C}_X$ [2] (see also [5]). This relation implies for example that $\exp(2\pi i\alpha)$ for $\alpha \in R_f$ are the eigenvalues of the monodromy on $\varphi_f \mathbb{C}_X$. But $\varphi_f \mathbb{C}_X$ cannot be replaced with the reduced cohomology of a Milnor fiber at x as in the isolated singularity case, because we have to take the Milnor fibration at several points of Sing $f^{-1}(0)$ even when we consider the *b*-function of fat x. See (2.12) below.

Let T_u and T_s denote respectively the unipotent and semisimple part of the monodromy T on $\varphi_f \mathbb{C}_X$. Let $\varphi_f^{\alpha} \mathbb{C}_X = \text{Ker}(T_s - \exp(-2\pi i\alpha))$ (as a shifted perverse sheaf), and $N = \log T_u/2\pi i$. In the proof of (0.5), we get also :

PROPOSITION 0.6. We have $N^{r+1} = 0$ on $\varphi_f^{\alpha} \mathbb{C}_X$ for $\alpha \in [\alpha_f, \alpha_f + 1)$ and $r = [n - \alpha_f - \alpha]$. In particular, $N^{r+1} = 0$ on $\varphi_f \mathbb{C}_X$ for $r = [n - 2\alpha_f]$.

For the proof of (0.4)–(0.6), we use the filtration V (similar to that in [5], [9]) defined on the $\mathcal{D}_{X,x}[t,\partial_t,\partial_t^{-1}]$ -module $\widetilde{\mathcal{B}}_f$ generated by the delta function $\delta(t-f)$. Note that (0.3) may be viewed as an extension

томе 122 — 1994 — N° 2

of Malgrange's result [8] to the nonisolated singularity case (see (1.7) below), and in the isolated singularity case, (0.4)–(0.6) can be deduced from results of [8], [19], [20] (and [18]) using an argument as in [14]. In the nondegenerate Newton boundary case [7], we get an estimate of α_f using the Newton polyhedron (see (3.3)). The idea of its proof is essentially same as [16].

Let g be a holomorphic function on a germ of complex manifold (Y, y). Let $Z = X \times Y, z = (x, y)$, and $h = f + g \in \mathcal{O}_{Z,z}$. We define R_g, R_h as above. Then we have :

Proposition 0.7. — $R_f + R_g \subset R_h + \mathbb{Z}_{<0}, R_h \subset R_f + R_g + \mathbb{Z}_{>0}.$

THEOREM 0.8. — Assume there is a holomorphic vector field ξ such that $\xi g = g$. Then we have $R_f + R_g = R_h$, and

$$m_{\gamma}(h) = \max_{\alpha+\beta=\gamma} \{m_{\alpha}(f) + m_{\beta}(g) - 1\}.$$

See (4.3)–(4.4). Here $\mathbb{Z}_{\geq 0}$ (or $\mathbb{Z}_{\leq 0}$) is the set of nonnegative (or nonpositive) integers. In the case where f and g have isolated singularities, (0.7)–(0.8) can be easily deduced from results of MALGRANGE [8], [10] (see (4.6) below), and (0.8) was first obtained by [21] in this case. Note that (0.8) is not true in general if the hypothesis is not satisfied. See (4.8) below.

1. Microlocal *b*-function

1.1. — Let X be a complex manifold of pure dimension n, and $x \in X$. Let $\mathcal{O} = \mathcal{O}_{X,x}, \mathcal{D} = \mathcal{D}_{X,x}$. We define rings $\mathcal{R}, \widetilde{\mathcal{R}}$ by

(1.1.1)
$$\mathcal{R} = \mathcal{D}[t, \partial_t], \quad \widetilde{\mathcal{R}} = \mathcal{D}[t, \partial_t, \partial_t^{-1}],$$

where t, ∂_t satisfy the relation $\partial_t t - t\partial_t = 1$, and $\mathcal{D}[t, \partial_t] = \mathcal{D} \otimes_{\mathbb{C}} \mathbb{C}[t, \partial_t]$, etc. We define the filtration V on $\mathcal{R}, \widetilde{\mathcal{R}}$ by the differences of the degrees of t and ∂_t :

(1.1.2)
$$V^{p}\mathcal{R} = \sum_{i-j \ge p} \mathcal{D}t^{i}\partial_{t}^{j} \quad (\text{same for } \widetilde{\mathcal{R}}).$$

Then we have :

(1.1.3)
$$\begin{cases} V^{p}\mathcal{R} = t^{p}V^{0}\mathcal{R} = V^{0}\mathcal{R}t^{p} \quad (p > 0), \\ V^{-p}\mathcal{R} = \sum_{0 \le j \le p} \partial_{t}^{j}V^{0}\mathcal{R} = \sum_{0 \le j \le p} V^{0}\mathcal{R}\partial_{t}^{j} \quad (p > 0), \\ V^{p}\widetilde{\mathcal{R}} = \partial_{t}^{-p}V^{0}\widetilde{\mathcal{R}} = V^{0}\widetilde{\mathcal{R}}\partial_{t}^{-p}. \end{cases}$$

1.2. — Let $f \in \mathcal{O}$ such that f(0) = 0 and $f \neq 0$. Let

(1.2.1)
$$\mathcal{B}_f = \mathcal{O}[\partial_t]\delta(t-f), \quad \widetilde{\mathcal{B}}_f = \mathcal{O}[\partial_t, \partial_t^{-1}]\delta(t-f),$$

where $\mathcal{O}[\partial_t]\delta(t-f)$ is a free module of rank one over $\mathcal{O}[\partial_t]$ (= $\mathcal{O} \otimes_{\mathbb{C}} \mathbb{C}[\partial_t]$) with a basis $\delta(t-f)$ (similarly for $\widetilde{\mathcal{B}}_f$). Here $\delta(t-f)$ denotes the delta function supported on $\{f = t\}$ (see remark below). We have a structure of \mathcal{R} -module and $\widetilde{\mathcal{R}}$ -module on \mathcal{B}_f and $\widetilde{\mathcal{B}}_f$ respectively by

(1.2.2)
$$\begin{cases} \xi \left(a \partial_t^i \delta(t-f) \right) = (\xi a) \partial_t^i \delta(t-f) - (\xi f) a \partial_t^{i+1} \delta(t-f), \\ t \left(a \partial_t^i \delta(t-f) \right) = f a \partial_t^i \delta(t-f) - i a \partial_t^{i-1} \delta(t-f) \end{cases}$$

for $a \in \mathcal{O}$ and $\xi \in \Theta_{X,x}$. We define a decreasing filtration G on $\mathcal{B}_f, \mathcal{B}_f$ by

(1.2.3)
$$G^{p}\mathcal{B}_{f} = V^{p}\mathcal{R}\delta(t-f), \quad G^{p}\widetilde{\mathcal{B}}_{f} = V^{p}\widetilde{\mathcal{R}}\delta(t-f),$$

and an increasing filtration F by

(1.2.4)
$$F_p \mathcal{B}_f = \bigoplus_{0 \le i \le p} \mathcal{O}\partial_t^i \delta(t-f), \quad F_p \widetilde{\mathcal{B}}_f = \bigoplus_{i \le p} \mathcal{O}\partial_t^i \delta(t-f)$$

Then we have :

(1.2.5)
$$\partial_t^i : G^p \widetilde{\mathcal{B}}_f \xrightarrow{\sim} G^{p-i} \widetilde{\mathcal{B}}_f, \quad \partial_t^i : F_p \widetilde{\mathcal{B}}_f \xrightarrow{\sim} F_{p+i} \widetilde{\mathcal{B}}_f,$$

(1.2.6)
$$\mathcal{D}_{X,x}[s](F_p\widetilde{\mathcal{B}}_f) \subset G^{-p}\widetilde{\mathcal{B}}_f.$$

Remark. — The \mathcal{R} -module \mathcal{B}_f is identified with the germ at (x, 0) of the direct image of \mathcal{O}_X as \mathcal{D} -Module by the closed embedding i_f defined by the graph of f, where t is identified with the coordinate of \mathbb{C} . See [4] and [17].

1.3 Definition. — The *b*-function $b_f(s)$ (resp. microlocal *b*-function $\tilde{b}_f(s)$) is defined by the minimal polynomial of the action of $s := -\partial_t t$ on $\operatorname{Gr}^0_G \mathcal{B}_f$ (resp. $\operatorname{Gr}^0_G \widetilde{\mathcal{B}}_f$).

REMARK. — Since $\operatorname{Gr}_V^0 \mathcal{R} = \operatorname{Gr}_V^0 \widetilde{\mathcal{R}} = \mathcal{D}[s]$, $b_f(s)$ (resp. $\tilde{b}_f(s)$) is the monic generator of the ideal consisting of polynomials b(s) which satisfy the relation

(1.3.1)
$$b(s)\delta(t-f) = P\delta(t-f)$$

томе 122 — 1994 — n° 2

for $P \in V^1 \mathcal{R}$ (resp. $V^1 \widetilde{\mathcal{R}}$). For $b_f(s)$, we may assume P = tQ with $Q \in \mathcal{D}[s]$ using (1.1.3) and (1.2.2). So the above definition coincides with the usual definition of *b*-function (i.e., Bernstein polynomial), because $\delta(t-f)$ and f^s satisfy the same relation (see [8]).

1.4. — Let $X' = X \times \mathbb{C}$, and \mathcal{E} the germs of microlocal differential operators at $p := (x, 0; 0, dt) \in T^*X'$ (see [17], [4]). Let \mathcal{C}_f be the microlocalization of the $\mathcal{D}_{X',x'}$ -module \mathcal{B}_f at $p \in T^*X'$ (see [4], [17]), where x' = (x, 0). It is an \mathcal{E} -module, and we have an isomorphism

(1.4.1)
$$\mathcal{C}_f = \mathcal{O}\{\{\partial_t^{-1}\}\}[\partial_t]\delta(t-f),$$

where the \mathcal{E} -module structure is defined as in (1.2.2). Here $\mathcal{O}\{\{\partial_t^{-1}\}\}$ is defined by

(1.4.2)
$$\Big\{\sum_{i\geq 0}g_i\partial_t^{-i}:\sum_{i\geq 0}\frac{g_it^i}{i!}\in \mathcal{O}_{X',x'}\Big\}.$$

We have the filtration V on \mathcal{E} by the difference of the degrees of ∂_t and t as in (1.1.2), and define the filtrations G, F on \mathcal{C}_f by

(1.4.3)
$$G^{p}\mathcal{C}_{f} = V^{p}\mathcal{E}\delta(t-f), \quad F_{p}\mathcal{C}_{f} = \mathcal{O}\{\{\partial_{t}^{-1}\}\}\partial_{t}^{p}\delta(t-f).$$

Let b'(s) be the minimal polynomial of the action of s on $\operatorname{Gr}_G^0 \mathcal{C}_f$. See also [6]. Then we have :

(1.4.4)
$$\tilde{b}_f(s) = b'(s).$$

In fact, it is enough to show the canonical isomorphism :

(1.4.5)
$$\operatorname{Gr}_{G}^{0}\widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} \operatorname{Gr}_{G}^{0}\mathcal{C}_{f}.$$

We have $\operatorname{Gr}_p^F \widetilde{\mathcal{B}}_f = \operatorname{Gr}_p^F \mathcal{C}_f$, $F_0 \mathcal{C}_f \subset G^0 \mathcal{C}_f$ and (1.2.6). So the assertion is reduced to the isomorphism :

(1.4.6)
$$G^0 \widetilde{\mathcal{B}}_f / F_0 \widetilde{\mathcal{B}}_f \xrightarrow{\sim} G^0 \mathcal{C}_f / F_0 \mathcal{C}_f.$$

Both terms are identified with subspaces of C_f/F_0C_f (= $\mathcal{O}[\partial_t]\partial_t\delta(t-f)$), and it is enough to show the surjectivity. Using local coordinates, we can check

(1.4.7)
$$V^{0}\mathcal{E} = \sum_{\nu,i} \mathcal{E}(0)\partial^{\nu}(t\partial_{t})^{i} = \sum_{\nu,i} \partial^{\nu}(t\partial_{t})^{i}\mathcal{E}(0),$$

where $\mathcal{E}(0)$ denotes the microdifferential operators of degree ≤ 0 (see [17], [4]), and ∂^{ν} is as in the proof of (1.6) below. So we get (1.4.6), because $\mathcal{E}(0)\delta(t-f) = F_0C_f$.

1.5 Proof of 0.3. — We show first

$$(1.5.1) (s+1)b_f(s) \mid b_f(s).$$

It is well known that $b_f(s)$ is divisible by s + 1 (by substituting s = -1 to $b_f(s)f^s = Pf^{s+1}$). This can be verified also by restricting X to the complement of Sing $f^{-1}(0)_{\text{red}}$. By (1.3.1) for $b_f(s)$, we get

(1.5.2)
$$(s+1)\left(\frac{b_f(s)}{s+1} + \partial_t^{-1}Q\right)\delta(t-f) = 0,$$

because $s + 1 = -t\partial_t$, and P = tQ for $Q \in \mathcal{D}[s]$. So the assertion is reduced to the injectivity of the action of t on $\widetilde{\mathcal{B}}_f$. We may replace $\widetilde{\mathcal{B}}_f$ by $\operatorname{Gr}_p^F \widetilde{\mathcal{B}}_f$, and the action of t on $\operatorname{Gr}_p^F \widetilde{\mathcal{B}}_f$ is the multiplication by f. Then the assertion is clear.

For the converse of (1.5.1), we use (1.3.1) for $\tilde{b}_f(s)$. By the next lemma, we may assume $P \in \partial_t^{-1} V^0 \mathcal{R}$. So we get the assertion by multiplying $s + 1 = -t\partial_t$.

LEMMA 1.6. — With the above notation, we have

(1.6.1)
$$\partial_t^{-1} V^0 \widetilde{\mathcal{R}} \delta(t-f) \cap \mathcal{O}[\partial_t] \delta(t-f) = \partial_t^{-1} V^0 \mathcal{R} \delta(t-f) \cap \mathcal{O}[\partial_t] \delta(t-f).$$

Proof. — Since $V^0 \widetilde{\mathcal{R}} = (V^0 \mathcal{R} \cap \partial_t \mathcal{R}) + \mathcal{D}_{X,x}[t, \partial_t^{-1}]$, it is enough to show

$$\partial_t^{-1} \mathcal{D}_{X,x}[t,\partial_t^{-1}]\delta(t-f) \cap \mathcal{O}[\partial_t]\delta(t-f) \subset \mathcal{D}_{X,x}\partial_t^{-1}\delta(t-f).$$

We have $\mathcal{D}_{X,x}[t,\partial_t^{-1}]\delta(t-f) = \mathcal{D}_{X,x}[\partial_t^{-1}]\delta(t-f)$ by (1.2.2). So the assertion is reduced to

$$\mathcal{D}_{X,x}\partial_t^{-j-1}\delta(t-f)\cap\mathcal{O}[\partial_t]\partial_t^{-j}\delta(t-f)\subset\mathcal{D}_{X,x}\partial_t^{-j}\delta(t-f)$$

by decreasing induction on j > 0. Let (x_1, \ldots, x_n) be a local coordinate system of X, and $\partial_i = \partial/\partial x_i, \partial^{\nu} = \prod_i \partial_i^{\nu_i}$ for $\nu = (\nu_1, \ldots, \nu_n)$. Take $P = \sum_{\nu} a_{\nu} \partial^{\nu} \in \mathcal{D}_{X,x}$ such that

$$P\partial_t^{-j-1}\delta(t-f) \subset \mathcal{O}[\partial_t]\partial_t^{-j}\delta(t-f).$$

By (1.2.2), the condition is equivalent to $a_0 = 0$, and the assertion follows.

томе $122 - 1994 - N^{\circ} 2$

1.7 Remark. — Assume f has isolated singularity, and $n \ge 2$. Let L_f denote Brieskorn's module $\Omega_{X,x}^n/\mathrm{d}f \wedge \mathrm{d}\Omega_{X,x}^{n-2}$ (see [1]). Then it was shown by MALGRANGE [10] and PHAM [11] that L_f is a free A-module of rank μ , where $A = \mathbb{C}\{\{\partial_t^{-1}\}\}$, and μ is the Milnor number of f. MALGRANGE [8] also showed

(1.7.1)
$$\frac{b_f(s)}{(s+1)}$$
 is the minimal polynomial of
the action of $-\partial_t t$ on $\bar{L}_f/\partial_t^{-1}\bar{L}_f$,

where \bar{L}_f is the saturation of L_f (see (4.7) below). So (0.3) may be viewed as an extension of (1.7.1) to the nonisolated singularity case, because the Gauss-Manin system associated with a Milnor fibration does not provide enough information of *b*-function in general. See (2.12) below. Note that (0.4)–(0.6) can be easily deduced from (1.7.1) combined with [19], [20] (and [18]). See also [14].

2. Filtration V

2.1. — With the notation of paragraph 1, let V denote the filtration of Kashiwara [5] and Malgrange [9] on \mathcal{B}_f indexed by \mathbb{Q} (see also [12, (3.1)] and [13]). Here we index V decreasingly so that the action of $\partial_t t - \alpha$ on $\operatorname{Gr}_V^{\alpha} \mathcal{B}_f$ is nilpotent, where $\operatorname{Gr}_V^{\alpha} = V^{\alpha}/V^{>\alpha}$ with $V^{>\alpha} = \bigcup_{\beta>\alpha} V^{\beta}$. In particular, we have isomorphisms for $\alpha \neq 0$:

(2.1.1)
$$\begin{cases} t : \operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f} \xrightarrow{\sim} \operatorname{Gr}_{V}^{\alpha+1} \mathcal{B}_{f}, \\ \partial_{t} : \operatorname{Gr}_{V}^{\alpha+1} \mathcal{B}_{f} \xrightarrow{\sim} \operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f}. \end{cases}$$

By negativity of the roots of b-function [4], we have :

$$(2.1.2) F_0 \mathcal{B}_f \subset V^{>0} \mathcal{B}_f.$$

See (1.2.4) for $F_p \mathcal{B}_f$. We define the filtration V on $\widetilde{\mathcal{B}}_f$ by

(2.1.3)
$$V^{\alpha}\widetilde{\mathcal{B}}_{f} = \begin{cases} V^{\alpha}\mathcal{B}_{f} + \mathcal{O}[\partial_{t}^{-1}]\partial_{t}^{-1}\delta(t-f) & \text{for } \alpha \leq 1, \\ \partial_{t}^{-j}V^{\alpha-j}\widetilde{\mathcal{B}}_{f} & \text{for } \alpha > 1, 0 < \alpha - j \leq 1. \end{cases}$$

Then we have filtered isomorphisms

(2.1.4)
$$(\operatorname{Gr}_V^{\alpha} \mathcal{B}_f, F) \xrightarrow{\sim} (\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f, F) \text{ for } \alpha < 1.$$

M. SAITO

LEMMA 2.2. — For any $\alpha \in \mathbb{Q}$ and j > 0, we have isomorphisms :

(2.2.1)
$$\partial_t^j : V^{\alpha} \widetilde{\mathcal{B}}_f \xrightarrow{\sim} V^{\alpha-j} \widetilde{\mathcal{B}}_f.$$

Proof. — It is enough to show the surjectivity of (2.2.1) for $0 < \alpha \leq 1$. Let $u \in V^{\alpha-j}\widetilde{\mathcal{B}}_f$. Since the action of ∂_t on $\widetilde{\mathcal{B}}_f$ is bijective, there exists uniquely $v \in \widetilde{\mathcal{B}}_f$ such that $u = \partial_t^j v$, and we have to show $v \in V^{\alpha}\widetilde{\mathcal{B}}_f$. Assume $v \in V^{\beta}\widetilde{\mathcal{B}}_f$ and $v \notin V^{>\beta}\widetilde{\mathcal{B}}_f$ for $\beta < \alpha \leq 1$. By (2.1.2)–(2.1.3), we have :

(2.2.2)
$$F_{-1}\widetilde{\mathcal{B}}_f \subset V^{>1}\widetilde{\mathcal{B}}_f$$

So there exists $v' \in V^{\beta}B_f$ such that $\operatorname{Gr}_V v = \operatorname{Gr}_V v'$ in $\operatorname{Gr}_V^{\beta} \widetilde{B}_f$. Then $\operatorname{Gr}_V \partial_t^j v \neq 0$ in $\operatorname{Gr}_V^{\beta-j} \widetilde{B}_f$ by (2.1.1) and (2.1.4). This is contradiction.

Remark. — By (1.2.5) (2.2.1), we have isomorphisms :

(2.2.3)
$$\partial_t^j : F_p V^{\alpha} \widetilde{\mathcal{B}}_f \xrightarrow{\sim} F_{p+j} V^{\alpha-j} \widetilde{\mathcal{B}}_f.$$

2.3. — We say that L is a *lattice* of $\widetilde{\mathcal{B}}_f$ if L is a finite $V^0 \widetilde{\mathcal{R}}$ -submodule of $\widetilde{\mathcal{B}}_f$, which generates $\widetilde{\mathcal{B}}_f$ over $\widetilde{\mathcal{R}}$. For two lattices L, L' of $\widetilde{\mathcal{B}}_f$, we have

(2.3.1)
$$L \subset \partial_t^j L' \text{ for } j \gg 0,$$

because $\widetilde{\mathcal{R}} = \bigcup_j \partial_t^j V^0 \widetilde{\mathcal{R}}$ by (1.1.3). By the same argument as in [5], the filtration V on $\widetilde{\mathcal{B}}_f$ is uniquely characterized by the conditions :

- (i) $V^{j}\widetilde{\mathcal{R}}V^{\alpha}\widetilde{\mathcal{B}}_{f} \subset V^{\alpha+j}\widetilde{\mathcal{B}}_{f},$
- (ii) $V^{\alpha}\widetilde{\mathcal{B}}_{f}$ are lattices of $\widetilde{\mathcal{B}}_{f}$,
- (iii) $s + \alpha$ is nilpotent on $\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$,

(see also [12, (3.1.2)]). Here we assume that the filtration V is indexed by \mathbb{Q} discretely (see [loc. cit.]).

For a lattice L of $\widetilde{\mathcal{B}}_f$, we define a filtration G on $\widetilde{\mathcal{B}}_f$ by $G^i \widetilde{\mathcal{B}}_f = \partial_t^{-i} L$, and the *b*-function $\tilde{b}_L(s)$ by the minimal polynomial of the action of son $\operatorname{Gr}_G^0 \widetilde{\mathcal{B}}_f$. By (2.3.1), the induced filtration on $\operatorname{Gr}_G^0 \widetilde{\mathcal{B}}_f$ by V is a finite filtration, and $\tilde{b}_L(s)$ is the product of the minimal polynomial of son each $\operatorname{Gr}_V^\alpha \operatorname{Gr}_G^0 \widetilde{\mathcal{B}}_f = \operatorname{Gr}_G^0 \operatorname{Gr}_V^\alpha \widetilde{\mathcal{B}}_f$ (which is a power of $s + \alpha$), and hence $\tilde{b}_L(s)$ is nonzero. Note that, for a given number α_0 , the *b*-function

томе 122 — 1994 — n° 2

is determined by the induced filtration G on $\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$ (with the action of s) for $\alpha_0 \leq \alpha < \alpha_0 + 1$, using isomorphisms :

(2.3.2)
$$\partial_t^i : \operatorname{Gr}_G^0 \operatorname{Gr}_V^{\alpha+i} \widetilde{\mathcal{B}}_f \xrightarrow{\sim} \operatorname{Gr}_G^{-i} \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f.$$

For two lattices L, L' of $\widetilde{\mathcal{B}}_f$ such that $L \subset L'$, let R_L be the roots of $\tilde{b}_L(-s)$ (similarly for $R_{L'}$). Then

(2.3.3)
$$R_L \subset R_{L'} + \mathbb{Z}_{\geq 0}, \quad R_{L'} \subset R_L + \mathbb{Z}_{\leq 0},$$

where $\mathbb{Z}_{\geq 0}, \mathbb{Z}_{\leq 0}$ are as in (0.7). In fact, setting $G'^i \widetilde{\mathcal{B}}_f = \partial_t^{-i} L'$, we have $G^i \subset G'^i$ on each $\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$, and the assertion is checked using (2.3.2).

PROPOSITION 2.4. — With the notation of (2.1), we have :

(2.4.1)
$$\operatorname{Gr}_{V}^{\alpha}\widetilde{\mathcal{B}}_{f} = \mathcal{D}_{X,x}(F_{p}\operatorname{Gr}_{V}^{\alpha}\widetilde{\mathcal{B}}_{f}) \quad if \quad F_{-p-1}\operatorname{Gr}_{V}^{n-\alpha}\widetilde{\mathcal{B}}_{f} = 0.$$

Proof. — Choosing a local coordinate system (x_1, \ldots, x_n) , we have an involution of \mathcal{D}_X such that $(\partial/\partial x_i)^* = -\partial/\partial x_i$, $(x_i)^* = x_i$, and $(PQ)^* = Q^*P^*$ (see [17]), and it identifies left and right \mathcal{D}_X -Modules. (For simplicity, we do not shift the filtration F in the transformation of left and right \mathcal{D}_X -Modules as in [13].) Let \mathbb{D} denote the dual functor for filtered \mathcal{D} -Modules [12, § 2]. We define a filtration F on \mathcal{O}_X (identified with a right \mathcal{D}_X -module ω_X) by $F_{-1}\mathcal{O}_X = 0, F_0\mathcal{O}_X = \mathcal{O}_X$. Then we have a natural duality isomorphism

(2.4.2)
$$\mathbb{D}(\mathcal{O}_X, F) = (\mathcal{O}_X, F[-n]),$$

which gives a polarization of Hodge Module (see remark 2.7 below), where $(F[m])_p = F_{p-m}$. (Note that $(\omega_X, F)[n]$ underlies the dualizing complex, and (ω_X, F) has weight -n.) Since (\mathcal{B}_f, F) is identified with the direct image of (\mathcal{O}_X, F) as filtered right \mathcal{D} -modules (see remark after (1.2)), we get

(2.4.3)
$$\begin{cases} \mathbb{D}(\operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f}, F) = \left(\operatorname{Gr}_{V}^{1-\alpha} B_{f}, F[1-n]\right) & \text{for } 0 < \alpha < 1, \\ \mathbb{D}(\operatorname{Gr}_{V}^{0} B_{f}, F) = \left(\operatorname{Gr}_{V}^{0} B_{f}, F[-n]\right), \end{cases}$$

by the duality for vanishing cycle functors [15]. (See also (2.7.2) and (2.7.5)-(2.7.6) below.) So we have

(2.4.4)
$$\mathbb{D}(\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f, F) = (\operatorname{Gr}_V^{n-\alpha} \widetilde{\mathcal{B}}_f, F) \text{ for any } \alpha,$$

by (2.1.4) (2.2.3), and the assertion is reduced to the following :

LEMMA 2.5. — Let (M, F) be a holonomic filtered right \mathcal{D}_X -Module such that $\mathbb{D}(M, F)$ is a filtered \mathcal{D}_X -Module (i.e., M is holonomic and $\operatorname{Gr}^F M := \bigoplus_i \operatorname{Gr}_i^F M$ is coherent and Cohen-Macaulay over $\operatorname{Gr}^F \mathcal{D}_X$). Assume $F_{-p-1}\mathbb{D}M = 0$. Then :

(2.5.1)
$$M = \mathcal{D}_X(F_p M).$$

Proof. — Let DR(M, F) be as in the remark below. Then it is enough to show

(2.5.2)
$$\operatorname{Gr}_{q}^{F} \widetilde{\operatorname{DR}}(M, F) = 0 \quad \text{for } q > p,$$

because this implies $(\operatorname{Gr}_{q-1}^F M)\Theta_X = \operatorname{Gr}_q^F M$ (for q > p). We have

(2.5.3)
$$\widetilde{\mathrm{DR}}(M,F) = \mathbb{D}\big(\widetilde{\mathrm{DR}}(\mathbb{D}(M,F))\big)$$

by (2.6.5)-(2.6.6) below, and

(2.5.4)
$$\operatorname{Gr}_{q}^{F} \mathbb{D}(\widetilde{\operatorname{DR}}(\mathbb{D}(M,F))) = \mathbb{D}\operatorname{Gr}_{-q}^{F}(\widetilde{\operatorname{DR}}(\mathbb{D}(M,F)))$$

by (2.6.7). So it is zero for q > p, and the assertion follows.

2.6 Remark. — Let (M, F) be a filtered right \mathcal{D}_X -Module. The filtered differential complex $\widetilde{\mathrm{DR}}(M, F)$ associated with (M, F) is defined by

(2.6.1)
$$F_p \widetilde{\mathrm{DR}}(M)^i = F_{p+i} M \otimes \wedge^{-i} \Theta_X,$$

(see [12, §2]), where Θ_X is the sheaf of holomorphic vector fields. The differential is defined like the Koszul complex associated with the action of $\partial/\partial x_i$ on M if we choose local coordinates. This induces an equivalence of categories

(2.6.2)
$$\widetilde{\mathrm{DR}}(M): D^b_{\mathrm{coh}}F(\mathcal{D}_X) \xrightarrow{\sim} D^b_{\mathrm{coh}}F^f(\mathcal{O}_X, \mathrm{Diff}),$$

(see [12, 2.2.10]), where the right hand side is the derived category consisting of bounded coherent filtered differential complexes with finite filtration. We have the dual functor

$$(2.6.3) \qquad \mathbb{D}: D^b_{\mathrm{coh}} F(\mathcal{D}_X) \longrightarrow D^b_{\mathrm{coh}} F(\mathcal{D}_X),$$

(2.6.4)
$$\mathbb{D}: D^b_{\mathrm{coh}} F^f(\mathcal{O}_X, \mathrm{Diff}) \longrightarrow D^b_{\mathrm{coh}} F^f(\mathcal{O}_X, \mathrm{Diff}),$$

томе 122 — 1994 — N° 2

such that

(2.6.5)
$$\widetilde{\mathrm{DR}} \circ \mathbb{D} = \mathbb{D} \circ \widetilde{\mathrm{DR}},$$

$$(2.6.6) $\mathbb{D}^2 = \mathrm{id},$$$

(see [12], 2.4.5 and 2.4.11). By construction, we have

(2.6.7)
$$\operatorname{Gr}_{i}^{F} \mathbb{D}(L,F) = \mathbb{D}\operatorname{Gr}_{-i}^{F}(L,F)$$

for $(L,F) \in D^b_{\mathrm{coh}} F^f(\mathcal{O}_X,\mathrm{Diff})$, where \mathbb{D} denotes also the dual functor for \mathcal{O}_X -Modules.

2.7 Remark. — Let $X' = X \times \mathbb{C}$ as in 1.4. Let (M, F) be a filtered right $\mathcal{D}_{X'}$ -Module underlying a polarizable Hodge Module of weight n (see [12]). Then a polarization of Hodge Module induces an isomorphism :

$$(2.7.1) \qquad \qquad \mathbb{D}(M,F) = (M,F[n]).$$

See [12, 5.2.10]. The nearby and vanishing cycle functors are defined by

(2.7.2)
$$\begin{cases} \psi_t(M,F) = \bigoplus_{-1 \le \alpha < 0} \operatorname{Gr}_{\alpha}^V(M,F[1]), \\ \varphi_{t,1}(M,F) = \operatorname{Gr}_0^V(M,F), \end{cases}$$

where t is the coordinate of \mathbb{C} , and V is the filtration of Kashiwara [5] and Malgrange [9] along $X \times \{0\}$ such that the action of $N := t\partial_t - \alpha$ on $\operatorname{Gr}^V_{\alpha} M$ is nilpotent locally on X. Here V is indexed increasingly, and we put $V^{\alpha} = V_{-\alpha}$. By [15, 1.6], we have the duality isomorphisms :

(2.7.3)
$$\psi_t \mathbb{D}(M, F) = \big(\mathbb{D}\psi_t(M, F)\big)(1),$$

(2.7.4)
$$\varphi_{t,1}\mathbb{D}(M,F) = \mathbb{D}\varphi_{t,1}(M,F).$$

Combined with (2.7.1), they imply the self duality :

(2.7.5)
$$\mathbb{D}\psi_t(M,F) = \psi_t(M,F)(n-1),$$

(2.7.6)
$$\mathbb{D}\varphi_{t,1}(M,F) = \varphi_{t,1}(M,F)(n).$$

Let W be the monodromy filtration of M associated with the action of N. This is uniquely characterized by the properties $NW_i \subset W_{i-2}$, N^j : $\operatorname{Gr}_j^W \xrightarrow{\sim} \operatorname{Gr}_{-j}^W (j > 0)$. Then W[n-1] (resp. W[n]) gives the

weight filtration of mixed Hodge Modules on $\psi_t(M, F)$ (resp. $\varphi_{t,1}(M, F)$). Since N underlies a morphism of mixed Hodge Modules, N^j induces filtered isomorphisms

(2.7.7)
$$N^j : \operatorname{Gr}_j^W \psi_t(M, F) \xrightarrow{\sim} \operatorname{Gr}_{-j}^W \psi_t(M, F[-j])$$

(same for $\varphi_{t,1}(M,F)$) by [12, 5.1.14]. We have the duality isomorphisms

(2.7.8)
$$\mathbb{D}\operatorname{Gr}_{j}^{W}\psi_{t}(M,F) = \operatorname{Gr}_{-j}^{W}\psi_{t}(M,F)(n-1),$$

(2.7.9) $\mathbb{D}\operatorname{Gr}_{j}^{W}\varphi_{t,1}(M,F) = \operatorname{Gr}_{-j}^{W}\varphi_{t,1}(M,F)(n),$

because W is self dual. Note that these are used for the inductive definition of polarization in [12].

2.8 Proof of (0.4). — Since $G^1 \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f \supset \mathcal{D}_{X,x}(F_{-1} \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f)$ by (1.2.6), it is enough to show $\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f = \mathcal{D}_{X,x}(F_{-1} \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f)$ for $\alpha > n - \alpha_f$ by (2.3). We have

(2.8.1)
$$F_0 \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f = G^0 \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f = 0 \quad \text{for} \quad \alpha < \alpha_f$$

by (1.2.6) and (2.3). So the assertion follows from (2.4) with p = -1.

REMARK. — We have $\max R_f = n - \alpha_f$ if f is quasihomogeneous and Sing $f^{-1}(0)$ is isolated. This follows for example from [8] together with Brieskorn's calculation of Gauss-Manin connection (unpublished). See also [13, (3.2.3)].

PROPOSITION 2.9. — Let (M, F) be a filtered \mathcal{D}_X -Module with a morphism $N : (M, F) \to (M, F[-1])$. Let W be the monodromy filtration of M associated with the action of N. See (2.7). Assume

(2.9.1)
$$N^{j}: F_{p}\operatorname{Gr}_{j}^{W} M \xrightarrow{\sim} F_{p+j}\operatorname{Gr}_{-j}^{W} M(j>0)$$

for any p, and there exist integers q, r such that, for any j:

(2.9.2)
$$F_{q-1}\operatorname{Gr}_{j}^{W} M = 0, \quad \operatorname{Gr}_{j}^{W} M = \mathcal{D}_{X}(F_{q+r}\operatorname{Gr}_{j}^{W} M).$$

Then $N^{r+1} = 0$ on M, and $N^{r-i} = 0$ on $M/\mathcal{D}_X[N](F_{q+i}M)$.

Proof. — We may assume q = 0 by replacing F with F[-q]. We apply (2.9.2) to $\operatorname{Gr}_{-i}^{W} M$, and get

(2.9.3)
$$\operatorname{Gr}_{i}^{W} M = \mathcal{D}_{X}(F_{r-j}\operatorname{Gr}_{i}^{W} M) \text{ for } j \geq 0,$$

томе 122 — 1994 — n° 2

using (2.9.1). In particular, $\operatorname{Gr}_{j}^{W} M = 0$ for j > r, and the first assertion follows. For the second assertion, it is enough to show the inclusion

$$(2.9.4) W_{i-r}M \subset \mathcal{D}_X[N](F_iM)$$

and the surjectivity of

(2.9.5)
$$W_{r-i-1}M/W_{i-r}M \longrightarrow M/\mathcal{D}_X[N](F_iM),$$

because $N^{r-i} = 0$ on $W_{r-i-1}M/W_{i-r}M$. We have, by (2.9.3) :

(2.9.6)
$$\operatorname{Gr}_{-j}^{W} M = N^{j} \operatorname{Gr}_{j}^{W} (\mathcal{D}_{X}(F_{i}M)) \text{ for } j \geq r-i.$$

So (2.9.4) follows taking ${\rm Gr}_{-j}^W$ for $-j\leq i-r.$ The surjectivity of (2.9.5) is equivalent to that of

(2.9.7)
$$\mathcal{D}_X[N](F_iM) \longrightarrow M/W_{r-i-1}M,$$

and follows from (2.9.3), taking $\operatorname{Gr}_{j}^{W}$ of (2.9.7) for $j \geq r - i$.

2.10 Proof of (0.5) and (0.6). — For (0.5), it is enough to show

(2.10.1)
$$N^{m+1} = 0 \quad \text{on} \quad \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f} / \mathcal{D}_{X}[N](F_{-1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f})$$

for $m = [n - \alpha_f - \alpha]$ by (1.2.6), where $N = s + \alpha$. Take $\beta \in [\alpha_f, \alpha_f + 1)$ such that $k := \alpha - \beta \in \mathbb{Z}$. By (2.2.3) and (2.8.1), we have $F_{-k-1} \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f = 0$. Applying (2.9) to $(\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f, F), q = -k$ and i = k - 1, it is enough to show

(2.10.2)
$$\operatorname{Gr}_{j}^{W}\operatorname{Gr}_{V}^{\alpha}\widetilde{\mathcal{B}}_{f} = \mathcal{D}_{X}\left(F_{m}\operatorname{Gr}_{j}^{W}\operatorname{Gr}_{V}^{\alpha}\widetilde{\mathcal{B}}_{f}\right)$$

for m as above (i.e., (2.9.2) is satisfied for $r = [n - \alpha_f - \beta]$). Here the condition (2.9.1) is satisfied by (2.7.7). Furthermore, we have the duality

(2.10.3)
$$\mathbb{D}\operatorname{Gr}_{j}^{W}(\operatorname{Gr}_{V}^{\alpha}\widetilde{\mathcal{B}}_{f},F) = \operatorname{Gr}_{-j}^{W}(\operatorname{Gr}_{V}^{n-\alpha}\widetilde{\mathcal{B}}_{f},F)$$

using (2.7.8)–(2.7.9). We have $F_{-p-1} \operatorname{Gr}_{V}^{n-\alpha} \widetilde{\mathcal{B}}_{f} = 0$ for p = m by (2.2.3) and (2.8.1), because $n - \alpha - p - 1 < \alpha_{f}$. So (2.10.2) follows from (2.5).

For (0.6), let $\alpha = \beta \in [\alpha_f, \alpha_f + 1)$. Then the assertion follows from (2.9) using the remark below.

REMARK. — Let $\varphi_f \mathcal{O}_X = \bigoplus_{0 < \alpha \leq 1} \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$ as in (2.7.2). By Kashiwara [5] and Malgrange [9], we have an isomorphism

(2.10.4)
$$\mathrm{DR}_X(\varphi_f \mathcal{O}_X) = \varphi_f \mathbb{C}_X[n-1]$$

such that the action of $\exp(2\pi i s)$ on the left hand side corresponds to the monodromy T on the right hand side, where DR_X is the de Rham functor [*loc. cit.*], and $\varphi_f \mathbb{C}_X$ is Deligne's vanishing cycle sheaf complex [2].

2.11 Remark. — We can consider $b_f(s)$ at each point y of Y := Sing $f^{-1}(0)$, and $m_{\alpha}(f)$ determines a function $m_{\alpha}(f, y)$ on Y. By definition $m_{\alpha}(f, y)$ is upper semicontinuous.

Let $S = \{S_j\}$ be a Whitney stratification of Y such that $\mathcal{H}^i \varphi_f \mathbb{C}_{X|S_j}$ are local systems (e.g., a Whitney stratification satisfying Thom's A_f condition). Then, for a subquotient K of $\varphi_f \mathbb{C}_X$ (as a shifted perverse sheaf), $\mathcal{H}^i K_{|S_j}$ are also local systems. Applying this to $\mathrm{DR}_X(\mathrm{Gr}_G^k \mathrm{Gr}_V^\alpha \widetilde{\mathcal{B}}_f)$, we see that the restriction of $m_\alpha(f, y)$ to S_j is locally constant (in particular, $m_\alpha(f, y)$ is a constructible function).

Furthermore, at $y \in S_j$, THEOREMS (0.4)–(0.5) hold with *n* replaced by (n-r), where $r = \dim S_j$. In fact, it is enough to show that (2.4.1) holds with $F_p \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$ replaced by $F_{p-r} \operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$ (or equivalently, $F_{-p-1} \operatorname{Gr}_V^{n-\alpha} \widetilde{\mathcal{B}}_f$ by $F_{-p-1} \operatorname{Gr}_V^{n-r-\alpha} \widetilde{\mathcal{B}}_f$, using (2.2.3)). This can be checked by restricting to a smooth submanifold Z of X, which intersects S_j transversally (at a general point y of S_j), because the restriction to Z is noncharacteristic, and is given by the tensor of \mathcal{O}_Z .

2.12 Remark. — Let $E(\varphi_f \mathbb{C}_X, T)$ be the eigenvalues of the action of the monodromy T on $\varphi_f \mathbb{C}_X$ (as shifted perverse sheaf), where X is restricted to a sufficiently small neighborhood of x. Then we have

(2.12.1)
$$\exp(2\pi i R_f) = E(\varphi_f \mathbb{C}_X, T)$$

by (2.3) and (2.10.4). See [9]. (Note that T is defined over \mathbb{Z} , and that $E(\varphi_f \mathbb{C}_X, T) = E(\varphi_f \mathbb{C}_X, T^{-1})$.)

Let X(f, y) denote a Milnor fiber of a Milnor fibration defined around $y \in Y$, and define $E(\widetilde{H}^i(X(f, y), \mathbb{C}), T)$ as above. Then we have an isomorphism

(2.12.2)
$$\mathcal{H}^{i}(\varphi_{f}\mathbb{C}_{X})_{y} = \widetilde{H}^{i}(X(f,y),\mathbb{C}),$$

and we get

(2.12.3)
$$\exp(2\pi i R_f) = \bigcup_{i,j} E(\widetilde{H}^i(X(f,y_j),\mathbb{C}),T)$$

томе 122 — 1994 — N° 2

for $y_j \in S_j$ with $S = \{S_j\}$ as in (2.11), where S_j are assumed connected. But

(2.12.4)
$$\exp(2\pi i R_f) = \bigcup_i E\left(\widetilde{H}^i(X(f,x),\mathbb{C}),T\right)$$

is not true. For example, let $f = x y^3$ on \mathbb{C}^2 . Then $X(f,0) \simeq \mathbb{C}^*$, and $\bigcup_i E(\widetilde{H}^i(X(f,0),\mathbb{C}),\mathbb{C}),T) = \{1\}$. But $\widetilde{b}_f(s) = (s+\frac{1}{3})(s+\frac{2}{3})(s+1)$.

3. Nondegenerate Newton boundary

3.1. — Let (x_1, \ldots, x_n) be a local coordinate system around $x \in X$ so that $\mathcal{O} = \mathbb{C}\{x\}$ (:= $\mathbb{C}\{x_1, \ldots, x_n\}$). We have a Taylor expansion $f = \sum_{\nu} a_{\nu} x^{\nu}$, where $\nu = (\nu_1, \ldots, \nu_n)$ and $x^{\nu} = \prod x_i^{\nu_i}$. Let $\Gamma_+(f)$ be the convex full of $\nu + (\mathbb{R}_{\geq 0})^n$ for $a_{\nu} \neq 0$. We define $f_{\sigma} = \sum_{\nu \in \sigma} a_{\nu} x^{\nu}$ for a face σ of $\Gamma_+(f)$. We say that f has nondegenerate Newton boundary with respect to the coordinate system [7], if $\partial_i f_{\sigma}$ $(1 \leq i \leq n)$ have no common zero in $(\mathbb{C}^*)^n$ for any compact face σ of $\Gamma_+(f)$, where $\partial_i = \partial/\partial x_i$. For a face σ of $\Gamma_+(f)$, let $C(\sigma)$ denote the closure of the cone over σ , and $C(\sigma)^\circ = C(\sigma) \setminus \sum_{\tau < \sigma} C(\tau)$, where $\tau < \sigma$ means that τ is a face of σ . Let A_{σ} denote the \mathbb{C} -subalgebra of $\mathbb{C}\{x\}$ generated topologically by x^{ν} for $\nu \in C(\sigma)$, and B_{σ} the ideal generated by x^{ν} for $\nu \in C(\sigma)^\circ$. By 6.4 in [7], f has nondegenerate Newton boundary if and only if

(3.1.1)
$$\dim_{\mathbb{C}} A_{\sigma} / \sum_{i} x_{i}(\partial_{i} f_{\sigma}) A_{\sigma} < \infty$$

for any compact face σ . (In fact, if $\partial_i f_{\sigma}$ $(1 \leq i \leq n)$ have no common zero in $(\mathbb{C}^*)^n$, we have $x^{\nu} \in \sum_i x_i(\partial_i f_{\sigma})\mathbb{C}[x]$ for some ν , and then $x^{\nu} \in \sum_i x_i(\partial_i f_{\sigma})A_{\sigma}$ by replacing ν .)

For an (n-1)-dimensional face σ of $\Gamma_+(f)$, let ℓ_{σ} denote the linear function whose restriction to σ is one. We define a function $\alpha : \mathbb{N}^n \to \mathbb{Q}$ by $\alpha(\nu) = \min\{\ell_{\sigma}(\nu)\}, \text{ and } \alpha : \mathcal{O} \to \mathbb{Q}$ by $\alpha(\sum c_{\nu}x^{\nu}) = \min\{\alpha(\nu) : c_{\nu} \neq 0\}.$ This induces a filtration V on \mathcal{O} by $V^{\alpha}\mathcal{O} = \{g \in \mathcal{O} : \alpha(g) \geq \alpha\}.$

PROPOSITION 3.2. — Assume f has nondegenerate Newton boundary with respect to the coordinate system. Then $V^{\alpha}\widetilde{\mathcal{B}}_{f}$ is generated over $\mathcal{D}_{X,x}[\partial_{t}^{-1},s]$ by $x^{\nu}\partial_{t}^{i}\delta(t-f)$ for $\alpha(\nu+1)-i \geq \alpha$, where $\mathbf{1} = (1,\ldots,1)$.

Proof.—It is enough to show that the filtration V defined by the above condition satisfies the condition of filtration V in (2.3). The argument is essentially same as [12, 3.6] and [16, (3.3)]. For an (n-1)-dimensional

face σ , let $\{c_{\sigma,i}\}$ be the coefficients of ℓ_{σ} , and $\xi_{\sigma} = \sum_{i} c_{\sigma,i} x_{i} \partial_{i}$ so that $\xi_{\sigma} f_{\tau} = f_{\tau}$ for $\tau < \sigma$. Then we have :

(3.2.1)
$$\sum_{i} c_{\sigma,i} \partial_i x_i \left(x^{\nu} \delta(t-f) \right) = \ell_{\sigma} (\nu+1) x^{\nu} \delta(t-f) - (\xi_{\sigma} f) \partial_t x^{\nu} \delta(t-f).$$

We have $\ell_{\sigma}(\nu+e_i) > \ell_{\sigma}(\nu)$ if $c_{\sigma,i} \neq 0$. So we can check the nilpotence of the action of $s + \alpha$ on $\operatorname{Gr}_V^{\alpha} \widetilde{\mathcal{B}}_f$ by induction on $m(\nu) := \#\{\sigma : \ell_{\sigma}(\nu) = \alpha(\nu)\}$, and it remains to show that $V^{\alpha} \widetilde{\mathcal{B}}_f$ is finitely generated over $\mathcal{D}_{X,x}[\partial_t^{-1}, s]$. Let $x = x_1 \cdots x_n$. By (1.2.2), the assertion is reduced to the surjectivity of

(3.2.2)
$$\sum_{i} x_{i}(\partial_{i}f) : \bigoplus_{i} V^{\alpha}(x\mathcal{O}) \longrightarrow V^{\alpha+1}(x\mathcal{O}) \quad \text{for } \alpha \gg 1$$

Since $V^{\alpha}(x\mathcal{O})$ is finitely generated over \mathcal{O} , we may replace $V^{\alpha}(x\mathcal{O})$, $V^{\alpha+1}(x\mathcal{O})$ by $\operatorname{Gr}_{V}^{\alpha}(x\mathcal{O})$ and $\operatorname{Gr}_{V}^{\alpha+1}(x\mathcal{O})$ respectively, using Nakayama's lemma. Taking the graduation of the filtration induced by $m(\nu)$, these terms are further replaced by $(B_{\sigma} \cap x\mathbb{C}[x])^{\alpha}, (B_{\sigma} \cap x\mathbb{C}[x])^{\alpha+1}$ (where the superscript α denotes the degree α part), and f by f_{σ} . Here we may assume that σ is not contained in the coordinate hyperplanes of \mathbb{R}^{n} . Since A_{σ} is netherian, we can replace $B_{\sigma} \cap x\mathbb{C}[x]$ by A_{σ} . So the assertion follows from hypothesis if σ is compact. In the noncompact case, let

$$I(\sigma) = \{i : \sigma + e_i \subset \sigma\}, \quad H(\sigma) = \sum_{i \in I(\sigma)} \mathbb{R}_{\geq 0} e_i,$$

where $e_i \in \mathbb{R}^n$ is the *i*-th unit vector (i.e. its *j*-th component is 1 for j = i, and 0 otherwise). Then $H(\sigma) + C(\sigma) \subset C(\sigma)$ (in particular, $H(\sigma) \subset C(\sigma)$) and σ is the union of $\tau + H(\sigma)$ for τ compact faces of σ . We define subsets of $H(\sigma)$ by :

$$U^{\beta}H(\sigma) = \left\{ \sum r_i e_i : \sum r_i \ge \beta \right\},\$$
$$U^{>\beta}H(\sigma) = \left\{ \sum r_i e_i : \sum r_i > \beta \right\}.$$

Let $U^{\beta}C(\sigma) = U^{\beta}H(\sigma) + C(\sigma)$, and $U^{\beta}A_{\sigma}$ the ideal of A_{σ} generated by x^{ν} for $\nu \in U^{\beta}C(\sigma)$ (similarly for $U^{>\beta}C(\sigma)$ and $U^{>\beta}A_{\sigma}$). By Nakayama's lemma, the assertion is reduced to the surjectivity of

(3.2.3)
$$\sum_{i} x_{i}(\partial_{i} f_{\sigma}) : \bigoplus_{i} \operatorname{Gr}_{U}^{\beta}(A_{\sigma})^{\alpha} \longrightarrow \operatorname{Gr}_{U}^{\beta}(A_{\sigma})^{\alpha+1} \quad \text{for } \alpha \gg 1.$$

Let $\partial U^{\beta}H(\sigma) = U^{\beta}H(\sigma) \setminus U^{>\beta}H(\sigma)$ (similarly for $\partial U^{\beta}C(\sigma)$). Then $(\partial U^{\beta}H(\sigma) + \partial U^{0}C(\sigma)) \cap \mathbb{Z}^{n}$ is covered by a finite number of parallel

томе $122 - 1994 - N^{\circ} 2$

translates of $\partial U^0 C(\sigma) \cap \mathbb{Z}^n$ (using a partition of $\partial U^0 C(\sigma)$). So $\operatorname{Gr}_U^\beta(A_\sigma)$ is finitely generated over $\operatorname{Gr}_U^0(A_\sigma)$, and we can restrict to the case $\beta = 0$. Then the assertion is reduced to the σ compact case by the same argument as above (using the filtration induced by $m(\nu)$), because $\operatorname{Gr}_U^0(A_\sigma)$ is the sum of A_τ for τ compact faces of σ . So the assertion follows.

COROLLARY 3.3. — We have $\alpha_f \geq 1/t$ for $(t, \ldots, t) \in \partial \Gamma_+(f)$.

REMARK. — In the isolated singularity case, it is known that the equality holds by [3], [16] (and [20] in the case $\alpha_f \leq 1$) combined with [8].

4. Thom-Sebastiani type theorem

4.1. — Let Y be a complex manifold, $y \in Y$, and $g \in \mathcal{O}_{Y,y}$. Let $Z = X \times Y, z = (x, y)$, and $h = f + g \in \mathcal{O}_{Z,z}$. We define $\widetilde{\mathcal{B}}_g, \widetilde{\mathcal{B}}_h$ as in (1.2). Then we have a short exact sequence

$$(4.1.1) 0 \to \widetilde{\mathcal{B}}_f \boxtimes \widetilde{\mathcal{B}}_g \xrightarrow{\iota} \widetilde{\mathcal{B}}_f \boxtimes \widetilde{\mathcal{B}}_g \xrightarrow{\eta} \widetilde{\mathcal{B}}_h \to 0$$

with ι, η defined by

$$\begin{split} \iota \big(a \partial_t^i \delta(t-f) \otimes b \partial_t^j \delta(t-g) \big) &= a \partial_t^{i+1} \delta(t-f) \otimes b \partial_t^j \delta(t-g) \\ &- a \partial_t^i \delta(t-f) \otimes b \partial_t^{j+1} \delta(t-g), \\ \eta \big(a \partial_t^i \delta(t-f) \otimes b \partial_t^j \delta(t-g) \big) &= a b \partial_t^{i+j} \delta(t-h) \end{split}$$

or
$$a \in \mathcal{O}_{\mathcal{X}}$$
, $b \in \mathcal{O}_{\mathcal{X}}$. Here the external product $M \boxtimes N$ for

for $a \in \mathcal{O}_{X,x}, b \in \mathcal{O}_{Y,y}$. Here the external product $M \boxtimes N$ for an $\mathcal{O}_{X,x}$ -module M and an $\mathcal{O}_{Y,y}$ -module N is defined by

$$(4.1.2) \quad \mathcal{O}_{Z,z} \otimes_{\mathcal{O}_{X,x} \otimes_{\mathbb{C}} \mathcal{O}_{Y,y}} (M \otimes_{\mathbb{C}} N) \quad \left(= (\mathcal{O}_{Z,z} \otimes_{\mathcal{O}_{X,x}} M) \otimes_{\mathcal{O}_{Y,y}} N\right).$$

It is an exact functor for both factors (using the second expression) and commutes with inductive limit. By definition, we have

(4.1.3)
$$\begin{cases} \partial_t \eta(u \otimes v) = \eta(\partial_t u \otimes v) = \eta(u \otimes \partial_t v), \\ t\eta(u \otimes v) = \eta(tu \otimes v) + \eta(u \otimes tv), \\ P\eta(u \otimes v) = \eta(Pu \otimes v), \quad Q\eta(u \otimes v) = \eta(u \otimes Qv), \end{cases}$$

for $u \in \widetilde{\mathcal{B}}_f, v \in \widetilde{\mathcal{B}}_g, P \in \mathcal{D}_{X,x}, Q \in \mathcal{D}_{Y,y}$. In particular, we have :

(4.1.4)
$$s\eta(u\otimes v) = \eta(su\otimes v) + \eta(u\otimes sv).$$

M. SAITO

We define a filtration G on $\widetilde{\mathcal{B}}_f \boxtimes \widetilde{\mathcal{B}}_g$ by

(4.1.5)
$$G^{k}\left(\widetilde{\mathcal{B}}_{f}\boxtimes\widetilde{\mathcal{B}}_{g}\right) = \sum_{i+j=k} G^{i}\widetilde{\mathcal{B}}_{f}\boxtimes G^{j}\widetilde{\mathcal{B}}_{g},$$

and a filtration G' on $\widetilde{\mathcal{B}}_h$ by $G'^k \widetilde{\mathcal{B}}_h = \eta G^k (\widetilde{\mathcal{B}}_f \boxtimes \widetilde{\mathcal{B}}_g)$. By Lemma (4.2) below, we have :

(4.1.6)
$$\operatorname{Gr}_{G}^{k}\left(\widetilde{\mathcal{B}}_{f}\boxtimes\widetilde{\mathcal{B}}_{g}\right) = \bigoplus_{i+j=k}\operatorname{Gr}_{G}^{i}\widetilde{\mathcal{B}}_{f}\boxtimes\operatorname{Gr}_{G}^{j}\widetilde{\mathcal{B}}_{g}.$$

Then $\operatorname{Gr}_G \iota : \operatorname{Gr}_G^{k+1}(\widetilde{\mathcal{B}}_f \boxtimes \widetilde{\mathcal{B}}_g) \to \operatorname{Gr}_G^k(\widetilde{\mathcal{B}}_f \boxtimes \widetilde{\mathcal{B}}_g)$ is injective (i.e., ι is strictly injective), and we get an isomorphism

(4.1.7)
$$\operatorname{Gr}_{G} \eta : \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f} \boxtimes \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{g} \xrightarrow{\sim} \operatorname{Gr}_{G'}^{0}(\widetilde{\mathcal{B}}_{h})$$

by taking the graduation of (4.1.1). Furthermore, the action of s on the right hand side corresponds to that of $s \boxtimes id + id \boxtimes s$ on the left.

LEMMA 4.2. — For an $\mathcal{O}_{X,x}$ -module M and an $\mathcal{O}_{Y,y}$ -module N with an exhaustive filtration G, we define a filtration G on $M \boxtimes N$ as in (4.1.5). Then (4.1.6) holds with $\widetilde{\mathcal{B}}_f, \widetilde{\mathcal{B}}_g$ replaced by M, N.

Proof. — Since the external product is exact, we can replace M, N by G^pM, G^pN , considering inductive systems $(G^{-p}M, F), (G^{-p}N, F)$. So we may assume $G^pM = M, G^pN = N$ for $p \ll 0$. Then the summation in (4.1.6) is a finite direct sum, and we get the assertion taking the graduation of the filtration G on M, because $G^k(\operatorname{Gr}_G^rM\boxtimes N) = \operatorname{Gr}_G^rM\boxtimes G^{k-i}N$.

4.3 Proof of (0.7). — By (1.2.5) (4.1.3), we have

(4.3.1)
$$G'^k \widetilde{\mathcal{B}}_h = \eta(G^i \widetilde{\mathcal{B}}_f \boxtimes G^{k-i} \widetilde{\mathcal{B}}_g).$$

By [4], $G^0 \mathcal{B}_f = \mathcal{D}_{X,x}[s]\delta(t-f)$ (resp. $G^0 \widetilde{\mathcal{B}}_f = \sum_{i\geq 0} \partial_t^{-i} G^0 \mathcal{B}_f$) is finite over $\mathcal{D}_{X,x}$ (resp. over $\mathcal{D}_{X,x}[\partial_t^{-1}]$). So we get

(4.3.2) $G'^k \widetilde{\mathcal{B}}_h$ are lattices of $\widetilde{\mathcal{B}}_h$ (see (2.3)),

(4.3.3) $G'^k \widetilde{\mathcal{B}}_h \supset G^k \widetilde{\mathcal{B}}_h,$

using (4.1.3). Then the assertion follows from (2.3).

томе $122 - 1994 - N^{\circ} 2$

4.4 Proof of (0.8). — Since $s\delta(t-g) = \xi\delta(t-g)$, we have

$$G^0 \widetilde{\mathcal{B}}_g = \mathcal{D}_{Y,y}[\partial_t^{-1}]\delta(t-g),$$

and, by (4.1.4),

(4.4.1)
$$\eta \left(s^{i} \delta(t-f) \otimes \delta(t-g) \right) = s \eta \left(s^{i-1} \delta \left(t-f\right) \otimes \delta(t-g) \right) \\ - \xi h \left(s^{i-1} \delta(t-f) \otimes \delta(t-g) \right).$$

So we get the equality :

(4.4.2)
$$G'^k \tilde{\mathcal{B}}_h = G^k \tilde{\mathcal{B}}_h.$$

Taking Gr_V of (4.1.7), we have an isomorphism

(4.4.3)
$$\bigoplus_{\alpha+\beta=\gamma} \operatorname{Gr}_{V}^{\alpha} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f} \boxtimes \operatorname{Gr}_{V}^{\beta} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{g} = \operatorname{Gr}_{V}^{\gamma} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{h}$$

by (4.2), because $\operatorname{Gr}_{V}^{\alpha} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}$ is identified with the α -eigenspace of $\operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}$ by the action of -s. So the assertion follows.

4.5 Remark. — The short exact sequence (4.1.1) is due to a discussion with J. STEENBRINK in 1987 at MPI. It is used to prove the Thom-Sebastiani type theorem for the vanishing cycles of filtered regular holonomic \mathcal{D} -Modules. This subject will be treated in a joint paper with him.

4.6 Remark. — In the isolated singularity case, MALGRANGE [10] showed essentially the natural isomorphism

$$(4.6.1) L_h = L_f \otimes_A L_g,$$

with the notation of (1.7) and (4.7) below. Using this and (1.7.1), we can easily check (0.7-8) in the isolated singularity case. This also gives an example such that (0.8) does not hold in the non quasi-homogeneous singularity case. See (4.8) below.

4.7 Remark. — In this paragraph, we denote by \mathcal{E} the ring of microdifferential operators of one variable $\mathbb{C}\{t\}\{\{\partial_t^{-1}\}\}[\partial_t]$, and let $\mathcal{E}(0) = \mathbb{C}\{t\}\{\{\partial_t^{-1}\}\}\$ the subring of microdifferential operators of order ≤ 0 . See [4], [17]. We define subrings of \mathcal{E} by

$$K = \mathbb{C}\{\{\partial_t^{-1}\}\}[\partial_t], \quad A = \mathbb{C}\{\{\partial_t^{-1}\}\}.$$

Let M be a regular holonomic \mathcal{E} -module. An $\mathcal{E}(0)$ -submodule L of M is called a *lattice* if it is finite over $\mathcal{E}(0)$ and generates M over \mathcal{E} . The *saturation* \overline{L} of L is defined by

(4.7.1)
$$\bar{L} = \sum_{i \ge 0} (t\partial_t)^i L.$$

Note that \overline{L} is also a lattice of M by regularity.

Let M_j (j = 1, 2) be two regular holonomic \mathcal{E} -modules, and L_j a lattice of M_j . Let

$$(4.7.2) M = M_1 \otimes_K M_2, \quad L = L_1 \otimes_A L_2.$$

Then M is a regular holonomic \mathcal{E} -module, and L is a lattice of M, where the action of t on M is defined by

$$(4.7.3) t(u \otimes v) = tu \otimes v + u \otimes tv \text{ for } u \in M_1, v \in M_2.$$

However, we have

$$(4.7.4) \qquad \qquad \bar{L} \neq \bar{L}_1 \otimes_A \bar{L}_2$$

in general. For example, consider the case $M_1 = M_2, L_1 = L_2$, and L_j has a generator e_1, e_2 over A such that $\partial_t t e_1 = e_1 + \partial_t e_2, \partial_t t e_2 = 2e_2$. Then \bar{L} is generated over A by $e_1 \otimes e_1, \partial_t (e_1 \otimes e_2 + e_2 \otimes e_1), \partial_t^2 (e_2 \otimes e_2)$ and $e_1 \otimes e_2$, and \bar{L}_j by e_1 and $\partial_t e_2$.

4.8 Example. — Consider the singularity of type $T_{p,q,r}$:

$$f = x^p + y^q + z^r + xyz$$
 for $p^{-1} + q^{-1} + r^{-1} < 1$.

Then L_f is generated over A by e, e' and $e_{a,i}$ $(1 \le a \le 3, 0 < i < p_a)$ such that

$$\partial_t t e = e + \partial_t e', \quad \partial_t t e' = 2e', \quad \partial_t t e_{a,i} = (1 + i/p_a)e_{a,i},$$

where $p_1 = p$, $p_2 = q$, $p_3 = r$. This can be checked for example using [14, 3.4]. In particular, we get by (1.7.1) :

(4.8.1)
$$\tilde{b}_f(s) = (s+1)^2 \prod_{0 \le i \le p} (s+1+i/p)$$
 if $p = q = r$.

томе $122 - 1994 - N^{\circ} 2$

Let h = f + g as in (4.1). Assume f, g singularities of type $T_{p,p,p}$ and $T_{q,q,q}$ respectively, and (p,q) = 1. Then

(4.8.2)
$$\tilde{b}_h(s) = (s+2)^3(s+3) \prod_{\substack{0 < i < p \\ 0 < j < q}} (s+2+i/p+j/q) \prod_{\substack{0 < i < p \\ 0 < i < p}} (s+2+i/p)^2 \prod_{\substack{0 < j < q \\ 0 < j < q}} (s+2+j/q)^2$$

This gives a counter example to (0.8) in the non quasi-homogeneous case.

BIBLIOGRAPHY

- BRIESKORN (E.). Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., t. 2, 1970, p. 103–161.
- [2] DELIGNE (P.). Le formalisme des cycles évanescents, in SGA7 XIII and XIV, Lect. Notes in Math., vol. 340, Springer, Berlin, 1973, p. 82–115 and 116–164.
- [3] EHLERS (F.) and Lo (K.-C.). Minimal characteristic exponent of the Gauss-Manin connection of isolated singular point and Newton polyhedron, Math. Ann., t. 259, 1982, p. 431–441.
- [4] KASHIWARA (M.). B-function and holonomic systems, Inv. Math., t. 38, 1976, p. 33–53.
- [5] KASHIWARA (M.). Vanishing cycle sheaves and holonomic systems of differential equations, Lecture Notes in Math., t. 1016, 1983, p. 136–142.
- [6] KASHIWARA (M.) and KAWAI (T.). Second microlocalization and asymptotic expansions, Lecture Notes in Phys., t. **126**, 1980, p. 21–76.
- [7] KOUCHINIRENKO (A.). Polyèdres de Newton et nombres de Milnor, Invent. Math., t. 32, 1976, p. 1–31.
- [8] MALGRANGE (B.). Le polynôme de Bernstein d'une singularité isolée, Lecture Notes in Math., t. 459, 1975, p. 98–119.
- [9] MALGRANGE (B.). Polynôme de Bernstein-Sato et cohomologie évanescente, Astérisque, t. 101-102, 1983, p. 243-267.
- [10] MALGRANGE (B.). Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. Paris (4), t. 7, 1974, p. 405–430.

- [11] PHAM (F.). Singularités des systèmes différentiels de Gauss-Manin.
 Progr. in Math., vol. 2, Birkhäuser, Boston, 1979.
- [12] SAITO (M.). Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., t. 24, 1988, p. 849–995.
- [13] SAITO (M.). On b-function, spectrum and rational singularity, to appear in Math. Ann.
- [14] SAITO (M.). On the structure of Brieskorn lattice, Ann. Inst. Fourier, t. 39, 1989, p. 27–72.
- [15] SAITO (M.). Duality for vanishing cycle functors, Publ. RIMS, Kyoto Univ., t. 25, 1989, p. 889–921.
- [16] SAITO (M.). Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann., t. 281, 1988, p. 411–417.
- [17] SATO (M.), KAWAI (T.) and KASHIWARA (M.). Microfunctions and pseudodifferential equations, Lecture Notes in Math., t. 287, 1973, p. 264–529.
- [18] STEENBRINK (J.). Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) Alphen a/d Rijn : Sijthoff & Noordhoff, 1977, p. 525–563.
- [19] VARCHENKO (A.). The asymptotics of holomorphic forms determine a mixed Hodge structure, Soviet Math. Dokl., t. **22**, 1980, p. 772–775.
- [20] VARCHENKO (A.). Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izvestija, t. 18, 1982, p. 465–512.
- [21] YANO (T.). On the theory of b-functions, Publ. RIMS, Kyoto Univ.,
 t. 14, 1978, p. 111–202.

томе 122 — 1994 — n° 2