Bulletin de la S. M. F.

Morihiko Saito
 On microlocal b-function

Bulletin de la S. M. F., tome 122, no 2 (1994), p. 163-184
http://www.numdam.org/item?id=BSMF_1994__122_2_163_0
© Bulletin de la S. M. F., 1994, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Article numérisé dans le cadre du programme

Bull. Soc. math. France, 122, 1994, p. 163-184.

ON MICROLOCAL b-FUNCTION

BY
Morihiko SAITO

RÉSumé. - Soit f un germe de fonction holomorphe en n variables. En utilisant des opérateurs différentiels microlocals, on introduit la notion de b-fonction microlocale $\tilde{b}_{f}(s)$ de f, et on démontre que $(s+1) \tilde{b}_{f}(s)$ cö̈ncide avec la b-fonction (i.e. le polynôme de Bernstein) de f. Soient R_{f} les racines de $\tilde{b}_{f}(-s), \alpha_{f}=\min R_{f}$ et $m_{\alpha}(f)$ la multiplicité de $\alpha \in R_{f}$. On démontre $R_{f} \subset\left[\alpha_{f}, n-\alpha_{f}\right]$ et $m_{\alpha}(f) \leq n-\alpha_{f}-\alpha+1$ ($\leq n-2 \alpha_{f}+1$). Le théorème de type Thom-Sebastiani pour b-fonction est aussi démontré sous une hypothèse raisonnable.

Abstract. - Let f be a germ of holomorphic function of n variables. Using microlocal differential operators, we introduce the notion of microlocal b-function $\tilde{b}_{f}(s)$ of f, and show that $(s+1) \tilde{b}_{f}(s)$ coincides with the b-function (i.e. Bernstein polynomial) of f. Let R_{f} be the roots of $\tilde{b}_{f}(-s), \alpha_{f}=\min R_{f}$, and $m_{\alpha}(f)$ the multiplicity of $\alpha \in R_{f}$. Then we prove $R_{f} \subset\left[\alpha_{f}, n-\alpha_{f}\right]$ and $m_{\alpha}(f) \leq n-\alpha_{f}-\alpha+1$ ($\leq n-2 \alpha_{f}+1$). The Thom-Sebastiani type theorem for b-function is also proved under a reasonable hypothesis.

Introduction

Let f be a holomorphic function defined on a germ of complex manifold (X, x). The b-function (i.e., Bernstein polynomial) $b_{f}(s)$ of f is defined by the monic generator of the ideal consisting of polynomials $b(s)$ which satisfy the relation

$$
\begin{equation*}
b(s) f^{s}=P f^{s+1} \quad \text { in } \mathcal{O}_{X, x}\left[f^{-1}\right][s] f^{s} \tag{0.1}
\end{equation*}
$$

for $P \in \mathcal{D}_{X, x}[s]$. Let $\delta(t-f)$ denote the delta function on $X^{\prime}:=X \times \mathbb{C}$ with support $\{f=t\}$, where t is the coordinate of \mathbb{C}. Then, setting $s=-\partial_{t} t$, f^{s} and $\delta(t-f)$ satisfy the same relation (see for example [8]). So f^{s} in (0.1) can be replaced by $\delta(t-f)$, and f^{s+1} by $t \delta(t-f)$. We define the

[^0]microlocal b-function $\tilde{b}_{f}(s)$ by the monic generator of the ideal consisting of polynomials $b(s)$ which satisfy the relation
\[

$$
\begin{equation*}
b(s) \delta(t-f)=P \partial_{t}^{-1} \delta(t-f) \quad \text { in } \mathcal{O}_{X, x}\left[\partial_{t}, \partial_{t}^{-1}\right] \delta(t-f) \tag{0.2}
\end{equation*}
$$

\]

for $P \in \mathcal{D}_{X, x}\left[\partial_{t}^{-1}, s\right]$. Here we can also allow for P a microdifferential operator [4], [6], [17] satisfying a condition on the degree of t and ∂_{t} (see (1.4)). We have :

Proposition 0.3. - $b_{f}(s)=(s+1) \tilde{b}_{f}(s)$.
See (1.5). The microlocal b-function $\tilde{b}_{f}(s)$ is sometimes easier to treat than the b-function $b_{f}(s)$. Let R_{f} be the roots of $\tilde{b}_{f}(-s), \alpha_{f}=\min R_{f}$, $m_{\alpha}(f)$ the multiplicity of $\alpha \in R_{f}$, and $n=\operatorname{dim} X$. Then, using the duality of filtered \mathcal{D}-Modules [15] and the theory of Hodge Modules [12], we prove

Theorem 0.4. $-R_{f} \subset\left[\alpha_{f}, n-\alpha_{f}\right]$.
Theorem 0.5. $-m_{\alpha}(f) \leq n-\alpha_{f}-\alpha+1 \quad\left(\leq n-2 \alpha_{f}+1\right)$.
See (2.8), (2.10).
The estimate (0.4) is optimal because $\max R_{f}=n-\alpha_{f}$ in the quasihomogeneous isolated singularity case. See also remark after (2.8) below. Note that $R_{f} \subset \mathbb{Q}$ and $\alpha_{f}>0$ by [4], and (0.5) is an improvement of $m_{\alpha}(f) \leq n-\delta_{\alpha, 1}$ (with $\delta_{\alpha, 1}$ Kronecker's delta) which is shown in [9] as a corollary of the relation with Deligne's vanishing cycle sheaf $\varphi_{f} \mathbb{C}_{X}[2]$ (see also [5]). This relation implies for example that $\exp (2 \pi i \alpha)$ for $\alpha \in R_{f}$ are the eigenvalues of the monodromy on $\varphi_{f} \mathbb{C}_{X}$. But $\varphi_{f} \mathbb{C}_{X}$ cannot be replaced with the reduced cohomology of a Milnor fiber at x as in the isolated singularity case, because we have to take the Milnor fibration at several points of Sing $f^{-1}(0)$ even when we consider the b-function of f at x. See (2.12) below.

Let T_{u} and T_{s} denote respectively the unipotent and semisimple part of the monodromy T on $\varphi_{f} \mathbb{C}_{X}$. Let $\varphi_{f}^{\alpha} \mathbb{C}_{X}=\operatorname{Ker}\left(T_{s}-\exp (-2 \pi i \alpha)\right)$ (as a shifted perverse sheaf), and $N=\log T_{u} / 2 \pi i$. In the proof of (0.5), we get also :

Proposition 0.6. - We have $N^{r+1}=0$ on $\varphi_{f}^{\alpha} \mathbb{C}_{X}$ for $\alpha \in\left[\alpha_{f}, \alpha_{f}+1\right.$) and $r=\left[n-\alpha_{f}-\alpha\right]$. In particular, $N^{r+1}=0$ on $\varphi_{f} \mathbb{C}_{X}$ for $r=\left[n-2 \alpha_{f}\right]$.

For the proof of (0.4)-(0.6), we use the filtration V (similar to that in [5], [9]) defined on the $\mathcal{D}_{X, x}\left[t, \partial_{t}, \partial_{t}^{-1}\right]$-module $\widetilde{\mathcal{B}}_{f}$ generated by the delta function $\delta(t-f)$. Note that (0.3) may be viewed as an extension
of Malgrange's result [8] to the nonisolated singularity case (see (1.7) below), and in the isolated singularity case, (0.4)-(0.6) can be deduced from results of [8], [19], [20] (and [18]) using an argument as in [14]. In the nondegenerate Newton boundary case [7], we get an estimate of α_{f} using the Newton polyhedron (see (3.3)). The idea of its proof is essentially same as [16].

Let g be a holomorphic function on a germ of complex manifold (Y, y). Let $Z=X \times Y, z=(x, y)$, and $h=f+g \in \mathcal{O}_{Z, z}$. We define R_{g}, R_{h} as above. Then we have :

Proposition 0.7. $-R_{f}+R_{g} \subset R_{h}+\mathbb{Z}_{\leq 0}, R_{h} \subset R_{f}+R_{g}+\mathbb{Z}_{\geq 0}$.
Theorem 0.8. - Assume there is a holomorphic vector field ξ such that $\xi g=g$. Then we have $R_{f}+R_{g}=R_{h}$, and

$$
m_{\gamma}(h)=\max _{\alpha+\beta=\gamma}\left\{m_{\alpha}(f)+m_{\beta}(g)-1\right\} .
$$

See (4.3)-(4.4). Here $\mathbb{Z}_{\geq 0}$ (or $\mathbb{Z}_{\leq 0}$) is the set of nonnegative (or nonpositive) integers. In the case where f and g have isolated singularities, (0.7)-(0.8) can be easily deduced from results of Malgrange [8], [10] (see (4.6) below), and (0.8) was first obtained by [21] in this case. Note that (0.8) is not true in general if the hypothesis is not satisfied. See (4.8) below.

1. Microlocal b-function

1.1. - Let X be a complex manifold of pure dimension n, and $x \in X$. Let $\mathcal{O}=\mathcal{O}_{X, x}, \mathcal{D}=\mathcal{D}_{X, x}$. We define rings $\mathcal{R}, \widetilde{\mathcal{R}}$ by

$$
\begin{equation*}
\mathcal{R}=\mathcal{D}\left[t, \partial_{t}\right], \quad \widetilde{\mathcal{R}}=\mathcal{D}\left[t, \partial_{t}, \partial_{t}^{-1}\right] \tag{1.1.1}
\end{equation*}
$$

where t, ∂_{t} satisfy the relation $\partial_{t} t-t \partial_{t}=1$, and $\mathcal{D}\left[t, \partial_{t}\right]=\mathcal{D} \otimes_{\mathbb{C}} \mathbb{C}\left[t, \partial_{t}\right]$, etc. We define the filtration V on $\mathcal{R}, \widetilde{\mathcal{R}}$ by the differences of the degrees of t and ∂_{t} :

$$
\begin{equation*}
V^{p} \mathcal{R}=\sum_{i-j \geq p} \mathcal{D} t^{i} \partial_{t}^{j} \quad(\text { same for } \widetilde{\mathcal{R}}) \tag{1.1.2}
\end{equation*}
$$

Then we have :

$$
\left\{\begin{array}{l}
V^{p} \mathcal{R}=t^{p} V^{0} \mathcal{R}=V^{0} \mathcal{R} t^{p} \quad(p>0), \tag{1.1.3}\\
V^{-p} \mathcal{R}=\sum_{0 \leq j \leq p} \partial_{t}^{j} V^{0} \mathcal{R}=\sum_{0 \leq j \leq p} V^{0} \mathcal{R} \partial_{t}^{j} \quad(p>0), \\
V^{p} \widetilde{\mathcal{R}}=\partial_{t}^{-p} V^{0} \widetilde{\mathcal{R}}=V^{0} \widetilde{\mathcal{R}} \partial_{t}^{-p}
\end{array}\right.
$$

1.2. - Let $f \in \mathcal{O}$ such that $f(0)=0$ and $f \neq 0$. Let

$$
\begin{equation*}
\mathcal{B}_{f}=\mathcal{O}\left[\partial_{t}\right] \delta(t-f), \quad \widetilde{\mathcal{B}}_{f}=\mathcal{O}\left[\partial_{t}, \partial_{t}^{-1}\right] \delta(t-f), \tag{1.2.1}
\end{equation*}
$$

where $\mathcal{O}\left[\partial_{t}\right] \delta(t-f)$ is a free module of rank one over $\mathcal{O}\left[\partial_{t}\right]\left(=\mathcal{O} \otimes \mathbb{C} \mathbb{C}\left[\partial_{t}\right]\right)$ with a basis $\delta(t-f)$ (similarly for $\left.\widetilde{\mathcal{B}}_{f}\right)$. Here $\delta(t-f)$ denotes the delta function supported on $\{f=t\}$ (see remark below). We have a structure of \mathcal{R}-module and $\widetilde{\mathcal{R}}$-module on \mathcal{B}_{f} and $\widetilde{\mathcal{B}}_{f}$ respectively by

$$
\left\{\begin{array}{l}
\xi\left(a \partial_{t}^{i} \delta(t-f)\right)=(\xi a) \partial_{t}^{i} \delta(t-f)-(\xi f) a \partial_{t}^{i+1} \delta(t-f), \tag{1.2.2}\\
t\left(a \partial_{t}^{i} \delta(t-f)\right)=f a \partial_{t}^{i} \delta(t-f)-i a \partial_{t}^{i-1} \delta(t-f)
\end{array}\right.
$$

for $a \in \mathcal{O}$ and $\xi \in \Theta_{X, x}$. We define a decreasing filtration G on $\mathcal{B}_{f}, \widetilde{\mathcal{B}}_{f}$ by

$$
\begin{equation*}
G^{p} \mathcal{B}_{f}=V^{p} \mathcal{R} \delta(t-f), \quad G^{p} \widetilde{\mathcal{B}}_{f}=V^{p} \widetilde{\mathcal{R}} \delta(t-f) \tag{1.2.3}
\end{equation*}
$$

and an increasing filtration F by

$$
\begin{equation*}
F_{p} \mathcal{B}_{f}=\bigoplus_{0 \leq i \leq p} \mathcal{O} \partial_{t}^{i} \delta(t-f), \quad F_{p} \widetilde{\mathcal{B}}_{f}=\bigoplus_{i \leq p} \mathcal{O} \partial_{t}^{i} \delta(t-f) \tag{1.2.4}
\end{equation*}
$$

Then we have :

$$
\begin{gather*}
\partial_{t}^{i}: G^{p} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} G^{p-i} \widetilde{\mathcal{B}}_{f}, \quad \partial_{t}^{i}: F_{p} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} F_{p+i} \widetilde{\mathcal{B}}_{f}, \tag{1.2.5}\\
\mathcal{D}_{X, x}[s]\left(F_{p} \widetilde{\mathcal{B}}_{f}\right) \subset G^{-p} \widetilde{\mathcal{B}}_{f} . \tag{1.2.6}
\end{gather*}
$$

Remark. - The \mathcal{R}-module \mathcal{B}_{f} is identified with the germ at $(x, 0)$ of the direct image of \mathcal{O}_{X} as \mathcal{D}-Module by the closed embedding i_{f} defined by the graph of f, where t is identified with the coordinate of \mathbb{C}. See [4] and [17].
1.3 Definition. - The b-function $b_{f}(s)$ (resp. microlocal b-function $\left.\tilde{b}_{f}(s)\right)$ is defined by the minimal polynomial of the action of $s:=-\partial_{t} t$ on $\operatorname{Gr}_{G}^{0} \mathcal{B}_{f}\left(\right.$ resp. $\left.\operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}\right)$.

Remark. - Since $\operatorname{Gr}_{V}^{0} \mathcal{R}=\operatorname{Gr}_{V}^{0} \widetilde{\mathcal{R}}=\mathcal{D}[s], b_{f}(s)$ (resp. $\left.\tilde{b}_{f}(s)\right)$ is the monic generator of the ideal consisting of polynomials $b(s)$ which satisfy the relation

$$
\begin{equation*}
b(s) \delta(t-f)=P \delta(t-f) \tag{1.3.1}
\end{equation*}
$$

томе $122-1994-$ n $^{\circ} 2$
for $P \in V^{1} \mathcal{R}$ (resp. $V^{1} \widetilde{\mathcal{R}}$). For $b_{f}(s)$, we may assume $P=t Q$ with $Q \in \mathcal{D}[s]$ using (1.1.3) and (1.2.2). So the above definition coincides with the usual definition of b-function (i.e., Bernstein polynomial), because $\delta(t-f)$ and f^{s} satisfy the same relation (see [8]).
1.4. - Let $X^{\prime}=X \times \mathbb{C}$, and \mathcal{E} the germs of microlocal differential operators at $p:=(x, 0 ; 0, \mathrm{~d} t) \in T^{*} X^{\prime}$ (see [17], [4]). Let \mathcal{C}_{f} be the microlocalization of the $\mathcal{D}_{X^{\prime}, x^{\prime}}$-module \mathcal{B}_{f} at $p \in T^{*} X^{\prime}$ (see [4], [17]), where $x^{\prime}=(x, 0)$. It is an \mathcal{E}-module, and we have an isomorphism

$$
\begin{equation*}
\mathcal{C}_{f}=\mathcal{O}\left\{\left\{\partial_{t}^{-1}\right\}\right\}\left[\partial_{t}\right] \delta(t-f), \tag{1.4.1}
\end{equation*}
$$

where the \mathcal{E}-module structure is defined as in (1.2.2). Here $\mathcal{O}\left\{\left\{\partial_{t}^{-1}\right\}\right\}$ is defined by

$$
\begin{equation*}
\left\{\sum_{i \geq 0} g_{i} \partial_{t}^{-i}: \sum_{i \geq 0} \frac{g_{i} t^{i}}{i!} \in \mathcal{O}_{X^{\prime}, x^{\prime}}\right\} \tag{1.4.2}
\end{equation*}
$$

We have the filtration V on \mathcal{E} by the difference of the degrees of ∂_{t} and t as in (1.1.2), and define the filtrations G, F on \mathcal{C}_{f} by

$$
\begin{equation*}
G^{p} \mathcal{C}_{f}=V^{p} \mathcal{E} \delta(t-f), \quad F_{p} \mathcal{C}_{f}=\mathcal{O}\left\{\left\{\partial_{t}^{-1}\right\}\right\} \partial_{t}^{p} \delta(t-f) \tag{1.4.3}
\end{equation*}
$$

Let $b^{\prime}(s)$ be the minimal polynomial of the action of s on $\operatorname{Gr}_{G}^{0} \mathcal{C}_{f}$. See also [6]. Then we have :

$$
\begin{equation*}
\tilde{b}_{f}(s)=b^{\prime}(s) \tag{1.4.4}
\end{equation*}
$$

In fact, it is enough to show the canonical isomorphism :

$$
\begin{equation*}
\operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} \operatorname{Gr}_{G}^{0} \mathcal{C}_{f} . \tag{1.4.5}
\end{equation*}
$$

We have $\operatorname{Gr}_{p}^{F} \widetilde{\mathcal{B}}_{f}=\operatorname{Gr}_{p}^{F} \mathcal{C}_{f}, F_{0} \mathcal{C}_{f} \subset G^{0} \mathcal{C}_{f}$ and (1.2.6). So the assertion is reduced to the isomorphism :

$$
\begin{equation*}
G^{0} \widetilde{\mathcal{B}}_{f} / F_{0} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} G^{0} \mathcal{C}_{f} / F_{0} \mathcal{C}_{f} . \tag{1.4.6}
\end{equation*}
$$

Both terms are identified with subspaces of $\mathcal{C}_{f} / F_{0} \mathcal{C}_{f}\left(=\mathcal{O}\left[\partial_{t}\right] \partial_{t} \delta(t-f)\right)$, and it is enough to show the surjectivity. Using local coordinates, we can check

$$
\begin{equation*}
V^{0} \mathcal{E}=\sum_{\nu, i} \mathcal{E}(0) \partial^{\nu}\left(t \partial_{t}\right)^{i}=\sum_{\nu, i} \partial^{\nu}\left(t \partial_{t}\right)^{i} \mathcal{E}(0) \tag{1.4.7}
\end{equation*}
$$

where $\mathcal{E}(0)$ denotes the microdifferential operators of degree ≤ 0 (see [17], [4]), and ∂^{ν} is as in the proof of (1.6) below. So we get (1.4.6), because $\mathcal{E}(0) \delta(t-f)=F_{0} \mathcal{C}_{f}$.
1.5 Proof of $\mathbf{0 . 3}$. - We show first

$$
\begin{equation*}
(s+1) \tilde{b}_{f}(s) \mid b_{f}(s) \tag{1.5.1}
\end{equation*}
$$

It is well known that $b_{f}(s)$ is divisible by $s+1$ (by substituting $s=-1$ to $\left.b_{f}(s) f^{s}=P f^{s+1}\right)$. This can be verified also by restricting X to the complement of Sing $f^{-1}(0)_{\text {red }}$. By (1.3.1) for $b_{f}(s)$, we get

$$
\begin{equation*}
(s+1)\left(\frac{b_{f}(s)}{s+1}+\partial_{t}^{-1} Q\right) \delta(t-f)=0 \tag{1.5.2}
\end{equation*}
$$

because $s+1=-t \partial_{t}$, and $P=t Q$ for $Q \in \mathcal{D}[s]$. So the assertion is reduced to the injectivity of the action of t on $\widetilde{\mathcal{B}}_{f}$. We may replace $\widetilde{\mathcal{B}}_{f}$ by $\operatorname{Gr}_{p}^{F} \widetilde{\mathcal{B}}_{f}$, and the action of t on $\operatorname{Gr}_{p}^{F} \widetilde{\mathcal{B}}_{f}$ is the multiplication by f. Then the assertion is clear.

For the converse of (1.5.1), we use (1.3.1) for $\tilde{b}_{f}(s)$. By the next lemma, we may assume $P \in \partial_{t}^{-1} V^{0} \mathcal{R}$. So we get the assertion by multiplying $s+1=-t \partial_{t}$.

Lemma 1.6. - With the above notation, we have

$$
\begin{equation*}
\partial_{t}^{-1} V^{0} \widetilde{\mathcal{R}} \delta(t-f) \cap \mathcal{O}\left[\partial_{t}\right] \delta(t-f)=\partial_{t}^{-1} V^{0} \mathcal{R} \delta(t-f) \cap \mathcal{O}\left[\partial_{t}\right] \delta(t-f) \tag{1.6.1}
\end{equation*}
$$

Proof. - Since $V^{0} \widetilde{\mathcal{R}}=\left(V^{0} \mathcal{R} \cap \partial_{t} \mathcal{R}\right)+\mathcal{D}_{X, x}\left[t, \partial_{t}^{-1}\right]$, it is enough to show

$$
\partial_{t}^{-1} \mathcal{D}_{X, x}\left[t, \partial_{t}^{-1}\right] \delta(t-f) \cap \mathcal{O}\left[\partial_{t}\right] \delta(t-f) \subset \mathcal{D}_{X, x} \partial_{t}^{-1} \delta(t-f)
$$

We have $\mathcal{D}_{X, x}\left[t, \partial_{t}^{-1}\right] \delta(t-f)=\mathcal{D}_{X, x}\left[\partial_{t}^{-1}\right] \delta(t-f)$ by (1.2.2). So the assertion is reduced to

$$
\mathcal{D}_{X, x} \partial_{t}^{-j-1} \delta(t-f) \cap \mathcal{O}\left[\partial_{t}\right] \partial_{t}^{-j} \delta(t-f) \subset \mathcal{D}_{X, x} \partial_{t}^{-j} \delta(t-f)
$$

by decreasing induction on $j>0$. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a local coordinate system of X, and $\partial_{i}=\partial / \partial x_{i}, \partial^{\nu}=\prod_{i} \partial_{i}^{\nu_{i}}$ for $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$. Take $P=\sum_{\nu} a_{\nu} \partial^{\nu} \in \mathcal{D}_{X, x}$ such that

$$
P \partial_{t}^{-j-1} \delta(t-f) \subset \mathcal{O}\left[\partial_{t}\right] \partial_{t}^{-j} \delta(t-f)
$$

By (1.2.2), the condition is equivalent to $a_{0}=0$, and the assertion follows.

```
томе 122-1994- n * 2
```

1.7 Remark. - Assume f has isolated singularity, and $n \geq 2$. Let L_{f} denote Brieskorn's module $\Omega_{X, x}^{n} / \mathrm{d} f \wedge \mathrm{~d} \Omega_{X, x}^{n-2}$ (see [1]). Then it was shown by Malgrange [10] and Pham [11] that L_{f} is a free A-module of rank μ, where $A=\mathbb{C}\left\{\left\{\partial_{t}^{-1}\right\}\right\}$, and μ is the Milnor number of f. Malgrange [8] also showed

$$
\begin{align*}
& \frac{b_{f}(s)}{(s+1)} \text { is the minimal polynomial of } \tag{1.7.1}\\
& \text { the action of }-\partial_{t} t \text { on } \bar{L}_{f} / \partial_{t}^{-1} \bar{L}_{f}
\end{align*}
$$

where \bar{L}_{f} is the saturation of L_{f} (see (4.7) below). So (0.3) may be viewed as an extension of (1.7.1) to the nonisolated singularity case, because the Gauss-Manin system associated with a Milnor fibration does not provide enough information of b-function in general. See (2.12) below. Note that (0.4)-(0.6) can be easily deduced from (1.7.1) combined with [19], [20] (and [18]). See also [14].

2. Filtration V

2.1. - With the notation of paragraph 1 , let V denote the filtration of Kashiwara [5] and Malgrange [9] on \mathcal{B}_{f} indexed by \mathbb{Q} (see also [12, (3.1)] and [13]). Here we index V decreasingly so that the action of $\partial_{t} t-\alpha$ on $\operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f}$ is nilpotent, where $\operatorname{Gr}_{V}^{\alpha}=V^{\alpha} / V^{>\alpha}$ with $V^{>\alpha}=\bigcup_{\beta>\alpha} V^{\beta}$. In particular, we have isomorphisms for $\alpha \neq 0$:

$$
\left\{\begin{array}{l}
t: \operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f} \xrightarrow{\sim} \operatorname{Gr}_{V}^{\alpha+1} \mathcal{B}_{f} \tag{2.1.1}\\
\partial_{t}: \operatorname{Gr}_{V}^{\alpha+1} \mathcal{B}_{f} \xrightarrow{\sim} \operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f}
\end{array}\right.
$$

By negativity of the roots of b-function [4], we have :

$$
\begin{equation*}
F_{0} \mathcal{B}_{f} \subset V^{>0} \mathcal{B}_{f} \tag{2.1.2}
\end{equation*}
$$

See (1.2.4) for $F_{p} \mathcal{B}_{f}$. We define the filtration V on $\widetilde{\mathcal{B}}_{f}$ by

$$
V^{\alpha} \widetilde{\mathcal{B}}_{f}= \begin{cases}V^{\alpha} \mathcal{B}_{f}+\mathcal{O}\left[\partial_{t}^{-1}\right] \partial_{t}^{-1} \delta(t-f) & \text { for } \alpha \leq 1 \tag{2.1.3}\\ \partial_{t}^{-j} V^{\alpha-j} \widetilde{\mathcal{B}}_{f} & \text { for } \alpha>1,0<\alpha-j \leq 1\end{cases}
$$

Then we have filtered isomorphisms

$$
\begin{equation*}
\left(\operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f}, F\right) \xrightarrow{\sim}\left(\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}, F\right) \text { for } \alpha<1 . \tag{2.1.4}
\end{equation*}
$$

Lemma 2.2. - For any $\alpha \in \mathbb{Q}$ and $j>0$, we have isomorphisms :

$$
\begin{equation*}
\partial_{t}^{j}: V^{\alpha} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} V^{\alpha-j} \widetilde{\mathcal{B}}_{f} . \tag{2.2.1}
\end{equation*}
$$

Proof. - It is enough to show the surjectivity of (2.2.1) for $0<\alpha \leq 1$. Let $u \in V^{\alpha-j} \widetilde{\mathcal{B}}_{f}$. Since the action of ∂_{t} on $\widetilde{\mathcal{B}}_{f}$ is bijective, there exists uniquely $v \in \widetilde{\mathcal{B}}_{f}$ such that $u=\partial_{t}^{j} v$, and we have to show $v \in V^{\alpha} \widetilde{\mathcal{B}}_{f}$. Assume $v \in V^{\beta} \widetilde{\mathcal{B}}_{f}$ and $v \notin V^{>\beta} \widetilde{\mathcal{B}}_{f}$ for $\beta<\alpha \leq 1$. By (2.1.2)-(2.1.3), we have :

$$
\begin{equation*}
F_{-1} \widetilde{\mathcal{B}}_{f} \subset V^{>1} \widetilde{\mathcal{B}}_{f} \tag{2.2.2}
\end{equation*}
$$

So there exists $v^{\prime} \in V^{\beta} B_{f}$ such that $\operatorname{Gr}_{V} v=\operatorname{Gr}_{V} v^{\prime}$ in $\mathrm{Gr}_{V}^{\beta} \widetilde{\mathcal{B}}_{f}$. Then $\operatorname{Gr}_{V} \partial_{t}^{j} v \neq 0$ in $\mathrm{Gr}_{V}^{\beta-j} \widetilde{\mathcal{B}}_{f}$ by (2.1.1) and (2.1.4). This is contradiction.

Remark. - By (1.2.5) (2.2.1), we have isomorphisms :

$$
\begin{equation*}
\partial_{t}^{j}: F_{p} V^{\alpha} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} F_{p+j} V^{\alpha-j} \widetilde{\mathcal{B}}_{f} . \tag{2.2.3}
\end{equation*}
$$

2.3. - We say that L is a lattice of $\widetilde{\mathcal{B}}_{f}$ if L is a finite $V^{0} \widetilde{\mathcal{R}}$-submodule of $\widetilde{\mathcal{B}}_{f}$, which generates $\widetilde{\mathcal{B}}_{f}$ over $\widetilde{\mathcal{R}}$. For two lattices L, L^{\prime} of $\widetilde{\mathcal{B}}_{f}$, we have

$$
\begin{equation*}
L \subset \partial_{t}^{j} L^{\prime} \quad \text { for } \quad j \gg 0 \tag{2.3.1}
\end{equation*}
$$

because $\widetilde{\mathcal{R}}=\bigcup_{j} \partial_{t}^{j} V^{0} \widetilde{\mathcal{R}}$ by (1.1.3). By the same argument as in [5], the filtration V on $\widetilde{\mathcal{B}}_{f}$ is uniquely characterized by the conditions :
(i) $V^{j} \widetilde{\mathcal{R}} V^{\alpha} \widetilde{\mathcal{B}}_{f} \subset V^{\alpha+j} \widetilde{\mathcal{B}}_{f}$,
(ii) $V^{\alpha} \widetilde{\mathcal{B}}_{f}$ are lattices of $\widetilde{\mathcal{B}}_{f}$,
(iii) $s+\alpha$ is nilpotent on $\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$,
(see also [12, (3.1.2)]). Here we assume that the filtration V is indexed by \mathbb{Q} discretely (see [loc. cit.]).

For a lattice L of $\widetilde{\mathcal{B}}_{f}$, we define a filtration G on $\widetilde{\mathcal{B}}_{f}$ by $G^{i} \widetilde{\mathcal{B}}_{f}=\partial_{t}^{-i} L$, and the b-function $\tilde{b}_{L}(s)$ by the minimal polynomial of the action of s on $\operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}$. By (2.3.1), the induced filtration on $\operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}$ by V is a finite filtration, and $\tilde{b}_{L}(s)$ is the product of the minimal polynomial of s on each $\operatorname{Gr}_{V}^{\alpha} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}=\operatorname{Gr}_{G}^{0} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$ (which is a power of $s+\alpha$), and hence $\tilde{b}_{L}(s)$ is nonzero. Note that, for a given number α_{0}, the b-function

```
томе 122-1994-No 2
```

is determined by the induced filtration G on $\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$ (with the action of s) for $\alpha_{0} \leq \alpha<\alpha_{0}+1$, using isomorphisms :

$$
\begin{equation*}
\partial_{t}^{i}: \operatorname{Gr}_{G}^{0} \operatorname{Gr}_{V}^{\alpha+i} \widetilde{\mathcal{B}}_{f} \xrightarrow{\sim} \operatorname{Gr}_{G}^{-i} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f} . \tag{2.3.2}
\end{equation*}
$$

For two lattices L, L^{\prime} of $\widetilde{\mathcal{B}}_{f}$ such that $L \subset L^{\prime}$, let R_{L} be the roots of $\tilde{b}_{L}(-s)$ (similarly for $R_{L^{\prime}}$). Then

$$
\begin{equation*}
R_{L} \subset R_{L^{\prime}}+\mathbb{Z}_{\geq 0}, \quad R_{L^{\prime}} \subset R_{L}+\mathbb{Z}_{\leq 0} \tag{2.3.3}
\end{equation*}
$$

where $\mathbb{Z}_{\geq 0}, \mathbb{Z}_{\leq 0}$ are as in (0.7). In fact, setting $G^{\prime} \widetilde{\mathcal{B}}_{f}=\partial_{t}^{-i} L^{\prime}$, we have $G^{i} \subset G^{i}$ on each $\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$, and the assertion is checked using (2.3.2).

Proposition 2.4. - With the notation of (2.1), we have:

$$
\begin{equation*}
\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}=\mathcal{D}_{X, x}\left(F_{p} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}\right) \quad \text { if } \quad F_{-p-1} \operatorname{Gr}_{V}^{n-\alpha} \widetilde{\mathcal{B}}_{f}=0 \tag{2.4.1}
\end{equation*}
$$

Proof. - Choosing a local coordinate system $\left(x_{1}, \ldots, x_{n}\right)$, we have an involution of \mathcal{D}_{X} such that $\left(\partial / \partial x_{i}\right)^{*}=-\partial / \partial x_{i},\left(x_{i}\right)^{*}=x_{i}$, and $(P Q)^{*}=Q^{*} P^{*}($ see $[17])$, and it identifies left and right \mathcal{D}_{X}-Modules. (For simplicity, we do not shift the filtration F in the transformation of left and right \mathcal{D}_{X}-Modules as in [13].) Let \mathbb{D} denote the dual functor for filtered \mathcal{D}-Modules [12, §2]. We define a filtration F on \mathcal{O}_{X} (identified with a right \mathcal{D}_{X}-module ω_{X}) by $F_{-1} \mathcal{O}_{X}=0, F_{0} \mathcal{O}_{X}=\mathcal{O}_{X}$. Then we have a natural duality isomorphism

$$
\begin{equation*}
\mathbb{D}\left(\mathcal{O}_{X}, F\right)=\left(\mathcal{O}_{X}, F[-n]\right) \tag{2.4.2}
\end{equation*}
$$

which gives a polarization of Hodge Module (see remark 2.7 below), where $(F[m])_{p}=F_{p-m}$. (Note that $\left(\omega_{X}, F\right)[n]$ underlies the dualizing complex, and $\left(\omega_{X}, F\right)$ has weight $-n$.) Since $\left(\mathcal{B}_{f}, F\right)$ is identified with the direct image of $\left(\mathcal{O}_{X}, F\right)$ as filtered right \mathcal{D}-modules (see remark after (1.2)), we get

$$
\left\{\begin{array}{l}
\mathbb{D}\left(\operatorname{Gr}_{V}^{\alpha} \mathcal{B}_{f}, F\right)=\left(\operatorname{Gr}_{V}^{1-\alpha} B_{f}, F[1-n]\right) \quad \text { for } 0<\alpha<1 \tag{2.4.3}\\
\mathbb{D}\left(\operatorname{Gr}_{V}^{0} B_{f}, F\right)=\left(\operatorname{Gr}_{V}^{0} B_{f}, F[-n]\right),
\end{array}\right.
$$

by the duality for vanishing cycle functors [15]. (See also (2.7.2) and (2.7.5)-(2.7.6) below.) So we have

$$
\begin{equation*}
\mathbb{D}\left(\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}, F\right)=\left(\operatorname{Gr}_{V}^{n-\alpha} \widetilde{\mathcal{B}}_{f}, F\right) \quad \text { for any } \alpha \tag{2.4.4}
\end{equation*}
$$

by (2.1.4) (2.2.3), and the assertion is reduced to the following :

Lemma 2.5. - Let (M, F) be a holonomic filtered right \mathcal{D}_{X}-Module such that $\mathbb{D}(M, F)$ is a filtered \mathcal{D}_{X}-Module (i.e., M is holonomic and $\mathrm{Gr}^{F} M:=\bigoplus_{i} \mathrm{Gr}_{i}^{F} M$ is coherent and Cohen-Macaulay over $\left.\mathrm{Gr}^{F} \mathcal{D}_{X}\right)$. Assume $F_{-p-1} \mathbb{D} M=0$. Then:

$$
\begin{equation*}
M=\mathcal{D}_{X}\left(F_{p} M\right) \tag{2.5.1}
\end{equation*}
$$

Proof. - Let $\widetilde{\mathrm{DR}}(M, F)$ be as in the remark below. Then it is enough to show

$$
\begin{equation*}
\operatorname{Gr}_{q}^{F} \widetilde{\mathrm{DR}}(M, F)=0 \quad \text { for } q>p \tag{2.5.2}
\end{equation*}
$$

because this implies $\left(\operatorname{Gr}_{q-1}^{F} M\right) \Theta_{X}=\operatorname{Gr}_{q}^{F} M$ (for $q>p$). We have

$$
\begin{equation*}
\widetilde{\mathrm{DR}}(M, F)=\mathbb{D}(\widetilde{\mathrm{DR}}(\mathbb{D}(M, F))) \tag{2.5.3}
\end{equation*}
$$

by (2.6.5)-(2.6.6) below, and

$$
\begin{equation*}
\operatorname{Gr}_{q}^{F} \mathbb{D}(\widetilde{\mathrm{DR}}(\mathbb{D}(M, F)))=\mathbb{D} \operatorname{Gr}_{-q}^{F}(\widetilde{\mathrm{DR}}(\mathbb{D}(M, F))) \tag{2.5.4}
\end{equation*}
$$

by (2.6.7). So it is zero for $q>p$, and the assertion follows.
2.6 Remark. - Let (M, F) be a filtered right \mathcal{D}_{X}-Module. The filtered differential complex $\widetilde{\mathrm{DR}}(M, F)$ associated with (M, F) is defined by

$$
\begin{equation*}
F_{p} \widetilde{\mathrm{DR}}(M)^{i}=F_{p+i} M \otimes \wedge^{-i} \Theta_{X} \tag{2.6.1}
\end{equation*}
$$

(see $[12, \S 2]$), where Θ_{X} is the sheaf of holomorphic vector fields. The differential is defined like the Koszul complex associated with the action of $\partial / \partial x_{i}$ on M if we choose local coordinates. This induces an equivalence of categories

$$
\begin{equation*}
\widetilde{\mathrm{DR}}(M): D_{\mathrm{coh}}^{b} F\left(\mathcal{D}_{X}\right) \xrightarrow{\sim} D_{\mathrm{coh}}^{b} F^{f}\left(\mathcal{O}_{X}, \text { Diff }\right), \tag{2.6.2}
\end{equation*}
$$

(see [12, 2.2.10]), where the right hand side is the derived category consisting of bounded coherent filtered differential complexes with finite filtration. We have the dual functor

$$
\begin{equation*}
\mathbb{D}: D_{\mathrm{coh}}^{b} F\left(\mathcal{D}_{X}\right) \longrightarrow D_{\mathrm{coh}}^{b} F\left(\mathcal{D}_{X}\right), \tag{2.6.3}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{D}: D_{\text {coh }}^{b} F^{f}\left(\mathcal{O}_{X}, \text { Diff }\right) \longrightarrow D_{\text {coh }}^{b} F^{f}\left(\mathcal{O}_{X}, \text { Diff }\right) \tag{2.6.4}
\end{equation*}
$$

$$
\text { томе } 122-1994-\mathrm{N}^{\circ} 2
$$

such that

$$
\begin{equation*}
\widetilde{\mathrm{DR}} \circ \mathbb{D}=\mathbb{D} \circ \widetilde{\mathrm{DR}}, \tag{2.6.5}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{D}^{2}=\mathrm{id}, \tag{2.6.6}
\end{equation*}
$$

(see [12], 2.4.5 and 2.4.11). By construction, we have

$$
\begin{equation*}
\operatorname{Gr}_{i}^{F} \mathbb{D}(L, F)=\mathbb{D} \operatorname{Gr}_{-i}^{F}(L, F) \tag{2.6.7}
\end{equation*}
$$

for $(L, F) \in D_{\text {coh }}^{b} F^{f}\left(\mathcal{O}_{X}\right.$, Diff $)$, where \mathbb{D} denotes also the dual functor for \mathcal{O}_{X}-Modules.
2.7 Remark. - Let $X^{\prime}=X \times \mathbb{C}$ as in 1.4. Let (M, F) be a filtered right $\mathcal{D}_{X^{\prime}}$-Module underlying a polarizable Hodge Module of weight n (see [12]). Then a polarization of Hodge Module induces an isomorphism :

$$
\begin{equation*}
\mathbb{D}(M, F)=(M, F[n]) \tag{2.7.1}
\end{equation*}
$$

See [12, 5.2.10]. The nearby and vanishing cycle functors are defined by

$$
\left\{\begin{array}{l}
\psi_{t}(M, F)=\bigoplus_{-1 \leq \alpha<0} \operatorname{Gr}_{\alpha}^{V}(M, F[1]) \tag{2.7.2}\\
\varphi_{t, 1}(M, F)=\operatorname{Gr}_{0}^{V}(M, F)
\end{array}\right.
$$

where t is the coordinate of \mathbb{C}, and V is the filtration of Kashiwara [5] and Malgrange [9] along $X \times\{0\}$ such that the action of $N:=t \partial_{t}-\alpha$ on $\operatorname{Gr}_{\alpha}^{V} M$ is nilpotent locally on X. Here V is indexed increasingly, and we put $V^{\alpha}=V_{-\alpha}$. By [15, 1.6], we have the duality isomorphisms :

$$
\begin{align*}
\psi_{t} \mathbb{D}(M, F) & =\left(\mathbb{D} \psi_{t}(M, F)\right)(1) \tag{2.7.3}\\
\varphi_{t, 1} \mathbb{D}(M, F) & =\mathbb{D} \varphi_{t, 1}(M, F) \tag{2.7.4}
\end{align*}
$$

Combined with (2.7.1), they imply the self duality :

$$
\begin{align*}
\mathbb{D} \psi_{t}(M, F) & =\psi_{t}(M, F)(n-1) \tag{2.7.5}\\
\mathbb{D} \varphi_{t, 1}(M, F) & =\varphi_{t, 1}(M, F)(n)
\end{align*}
$$

Let W be the monodromy filtration of M associated with the action of N. This is uniquely characterized by the properties $N W_{i} \subset W_{i-2}$, $N^{j}: \mathrm{Gr}_{j}^{W} \xrightarrow{\sim} \mathrm{Gr}_{-j}^{W}(j>0)$. Then $W[n-1]$ (resp. W[n]) gives the
weight filtration of mixed Hodge Modules on $\psi_{t}(M, F)\left(\operatorname{resp} . \varphi_{t, 1}(M, F)\right)$. Since N underlies a morphism of mixed Hodge Modules, N^{j} induces filtered isomorphisms

$$
\begin{equation*}
N^{j}: \operatorname{Gr}_{j}^{W} \psi_{t}(M, F) \xrightarrow{\sim} \operatorname{Gr}_{-j}^{W} \psi_{t}(M, F[-j]) \tag{2.7.7}
\end{equation*}
$$

(same for $\varphi_{t, 1}(M, F)$) by $[12,5.1 .14]$. We have the duality isomorphisms

$$
\begin{equation*}
\mathbb{D} \operatorname{Gr}_{j}^{W} \psi_{t}(M, F)=\operatorname{Gr}_{-j}^{W} \psi_{t}(M, F)(n-1) \tag{2.7.8}
\end{equation*}
$$

$$
\begin{equation*}
\mathbb{D} \operatorname{Gr}_{j}^{W} \varphi_{t, 1}(M, F)=\operatorname{Gr}_{-j}^{W} \varphi_{t, 1}(M, F)(n) \tag{2.7.9}
\end{equation*}
$$

because W is self dual. Note that these are used for the inductive definition of polarization in [12].
2.8 Proof of (0.4). - Since $G^{1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f} \supset \mathcal{D}_{X, x}\left(F_{-1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}\right)$ by (1.2.6), it is enough to show $\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}=\mathcal{D}_{X, x}\left(F_{-1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}\right)$ for $\alpha>n-\alpha_{f}$ by (2.3). We have

$$
\begin{equation*}
F_{0} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}=G^{0} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}=0 \quad \text { for } \quad \alpha<\alpha_{f} \tag{2.8.1}
\end{equation*}
$$

by (1.2.6) and (2.3). So the assertion follows from (2.4) with $p=-1$.
Remark. - We have $\max R_{f}=n-\alpha_{f}$ if f is quasihomogeneous and Sing $f^{-1}(0)$ is isolated. This follows for example from [8] together with Brieskorn's calculation of Gauss-Manin connection (unpublished). See also [13, (3.2.3)].

Proposition 2.9. - Let (M, F) be a filtered \mathcal{D}_{X}-Module with a morphism $N:(M, F) \rightarrow(M, F[-1])$. Let W be the monodromy filtration of M associated with the action of N. See (2.7). Assume

$$
\begin{equation*}
N^{j}: F_{p} \operatorname{Gr}_{j}^{W} M \xrightarrow{\sim} F_{p+j} \operatorname{Gr}_{-j}^{W} M(j>0) \tag{2.9.1}
\end{equation*}
$$

for any p, and there exist integers q, r such that, for any j :

$$
\begin{equation*}
F_{q-1} \operatorname{Gr}_{j}^{W} M=0, \quad \operatorname{Gr}_{j}^{W} M=\mathcal{D}_{X}\left(F_{q+r} \operatorname{Gr}_{j}^{W} M\right) \tag{2.9.2}
\end{equation*}
$$

Then $N^{r+1}=0$ on M, and $N^{r-i}=0$ on $M / \mathcal{D}_{X}[N]\left(F_{q+i} M\right)$.
Proof. - We may assume $q=0$ by replacing F with $F[-q]$. We apply (2.9.2) to $\mathrm{Gr}_{-j}^{W} M$, and get

$$
\begin{equation*}
\operatorname{Gr}_{j}^{W} M=\mathcal{D}_{X}\left(F_{r-j} \operatorname{Gr}_{j}^{W} M\right) \quad \text { for } j \geq 0 \tag{2.9.3}
\end{equation*}
$$

```
томе 122-1994- n * 2
```

using (2.9.1). In particular, $\operatorname{Gr}_{j}^{W} M=0$ for $j>r$, and the first assertion follows. For the second assertion, it is enough to show the inclusion

$$
\begin{equation*}
W_{i-r} M \subset \mathcal{D}_{X}[N]\left(F_{i} M\right) \tag{2.9.4}
\end{equation*}
$$

and the surjectivity of

$$
\begin{equation*}
W_{r-i-1} M / W_{i-r} M \longrightarrow M / \mathcal{D}_{X}[N]\left(F_{i} M\right) \tag{2.9.5}
\end{equation*}
$$

because $N^{r-i}=0$ on $W_{r-i-1} M / W_{i-r} M$. We have, by (2.9.3) :

$$
\begin{equation*}
\operatorname{Gr}_{-j}^{W} M=N^{j} \operatorname{Gr}_{j}^{W}\left(\mathcal{D}_{X}\left(F_{i} M\right)\right) \quad \text { for } j \geq r-i \tag{2.9.6}
\end{equation*}
$$

So (2.9.4) follows taking Gr_{-j}^{W} for $-j \leq i-r$. The surjectivity of (2.9.5) is equivalent to that of

$$
\begin{equation*}
\mathcal{D}_{X}[N]\left(F_{i} M\right) \longrightarrow M / W_{r-i-1} M \tag{2.9.7}
\end{equation*}
$$

and follows from (2.9.3), taking Gr_{j}^{W} of (2.9.7) for $j \geq r-i$.
2.10 Proof of (0.5) and (0.6). - For (0.5), it is enough to show

$$
\begin{equation*}
N^{m+1}=0 \quad \text { on } \quad \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f} / \mathcal{D}_{X}[N]\left(F_{-1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}\right) \tag{2.10.1}
\end{equation*}
$$

for $m=\left[n-\alpha_{f}-\alpha\right]$ by (1.2.6), where $N=s+\alpha$. Take $\beta \in\left[\alpha_{f}, \alpha_{f}+1\right.$) such that $k:=\alpha-\beta \in \mathbb{Z}$. By (2.2.3) and (2.8.1), we have $F_{-k-1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}=0$. Applying (2.9) to $\left(\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}, F\right), q=-k$ and $i=k-1$, it is enough to show

$$
\begin{equation*}
\operatorname{Gr}_{j}^{W} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}=\mathcal{D}_{X}\left(F_{m} \operatorname{Gr}_{j}^{W} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}\right) \tag{2.10.2}
\end{equation*}
$$

for m as above (i.e., (2.9.2) is satisfied for $r=\left[n-\alpha_{f}-\beta\right]$). Here the condition (2.9.1) is satisfied by (2.7.7). Furthermore, we have the duality

$$
\begin{equation*}
\mathbb{D} \operatorname{Gr}_{j}^{W}\left(\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}, F\right)=\operatorname{Gr}_{-j}^{W}\left(\operatorname{Gr}_{V}^{n-\alpha} \widetilde{\mathcal{B}}_{f}, F\right) \tag{2.10.3}
\end{equation*}
$$

using (2.7.8)-(2.7.9). We have $F_{-p-1} \operatorname{Gr}_{V}^{n-\alpha} \widetilde{\mathcal{B}}_{f}=0$ for $p=m$ by (2.2.3) and (2.8.1), because $n-\alpha-p-1<\alpha_{f}$. So (2.10.2) follows from (2.5).

For (0.6), let $\alpha=\beta \in\left[\alpha_{f}, \alpha_{f}+1\right.$). Then the assertion follows from (2.9) using the remark below.

Remark. - Let $\varphi_{f} \mathcal{O}_{X}=\bigoplus_{0<\alpha \leq 1} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$ as in (2.7.2). By Kashiwara [5] and Malgrange [9], we have an isomorphism

$$
\begin{equation*}
\operatorname{DR}_{X}\left(\varphi_{f} \mathcal{O}_{X}\right)=\varphi_{f} \mathbb{C}_{X}[n-1] \tag{2.10.4}
\end{equation*}
$$

such that the action of $\exp (2 \pi i s)$ on the left hand side corresponds to the monodromy T on the right hand side, where DR_{X} is the de Rham functor [loc.cit.], and $\varphi_{f} \mathbb{C}_{X}$ is Deligne's vanishing cycle sheaf complex [2].
2.11 Remark. - We can consider $b_{f}(s)$ at each point y of $Y:=$ Sing $f^{-1}(0)$, and $m_{\alpha}(f)$ determines a function $m_{\alpha}(f, y)$ on Y. By definition $m_{\alpha}(f, y)$ is upper semicontinuous.

Let $\mathcal{S}=\left\{S_{j}\right\}$ be a Whitney stratification of Y such that $\mathcal{H}^{i} \varphi_{f} \mathbb{C}_{X \mid S_{j}}$ are local systems (e.g., a Whitney stratification satisfying Thom's $A_{f^{-}}$ condition). Then, for a subquotient K of $\varphi_{f} \mathbb{C}_{X}$ (as a shifted perverse sheaf), $\mathcal{H}^{i} K_{\mid S_{j}}$ are also local systems. Applying this to $\mathrm{DR}_{X}\left(\operatorname{Gr}_{G}^{k} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}\right)$, we see that the restriction of $m_{\alpha}(f, y)$ to S_{j} is locally constant (in particular, $m_{\alpha}(f, y)$ is a constructible function).

Furthermore, at $y \in S_{j}$, Theorems (0.4)-(0.5) hold with n replaced by $(n-r)$, where $r=\operatorname{dim} S_{j}$. In fact, it is enough to show that (2.4.1) holds with $F_{p} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$ replaced by $F_{p-r} \operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$ (or equivalently, $F_{-p-1} \mathrm{Gr}_{V}^{n-\alpha} \widetilde{\mathcal{B}}_{f}$ by $F_{-p-1} \mathrm{Gr}_{V}^{n-r-\alpha} \widetilde{\mathcal{B}}_{f}$, using (2.2.3)). This can be checked by restricting to a smooth submanifold Z of X, which intersects S_{j} transversally (at a general point y of S_{j}), because the restriction to Z is noncharacteristic, and is given by the tensor of \mathcal{O}_{Z}.
2.12 Remark. - Let $E\left(\varphi_{f} \mathbb{C}_{X}, T\right)$ be the eigenvalues of the action of the monodromy T on $\varphi_{f} \mathbb{C}_{X}$ (as shifted perverse sheaf), where X is restricted to a sufficiently small neighborhood of x. Then we have

$$
\begin{equation*}
\exp \left(2 \pi i R_{f}\right)=E\left(\varphi_{f} \mathbb{C}_{X}, T\right) \tag{2.12.1}
\end{equation*}
$$

by (2.3) and (2.10.4). See [9]. (Note that T is defined over \mathbb{Z}, and that $\left.E\left(\varphi_{f} \mathbb{C}_{X}, T\right)=E\left(\varphi_{f} \mathbb{C}_{X}, T^{-1}\right).\right)$

Let $X(f, y)$ denote a Milnor fiber of a Milnor fibration defined around $y \in Y$, and define $E\left(\widetilde{H}^{i}(X(f, y), \mathbb{C}), T\right)$ as above. Then we have an isomorphism

$$
\begin{equation*}
\mathcal{H}^{i}\left(\varphi_{f} \mathbb{C}_{X}\right)_{y}=\tilde{H}^{i}(X(f, y), \mathbb{C}) \tag{2.12.2}
\end{equation*}
$$

and we get

$$
\begin{equation*}
\exp \left(2 \pi i R_{f}\right)=\bigcup_{i, j} E\left(\widetilde{H}^{i}\left(X\left(f, y_{j}\right), \mathbb{C}\right), T\right) \tag{2.12.3}
\end{equation*}
$$

tome $122-1994-$ n $^{\circ} 2$
for $y_{j} \in S_{j}$ with $\mathcal{S}=\left\{S_{j}\right\}$ as in (2.11), where S_{j} are assumed connected. But

$$
\begin{equation*}
\exp \left(2 \pi i R_{f}\right)=\bigcup_{i} E\left(\widetilde{H}^{i}(X(f, x), \mathbb{C}), T\right) \tag{2.12.4}
\end{equation*}
$$

is not true. For example, let $f=x y^{3}$ on \mathbb{C}^{2}. Then $X(f, 0) \simeq \mathbb{C}^{*}$, and $\bigcup_{i} E\left(\widetilde{H}^{i}(X(f, 0), \mathbb{C}), T\right)=\{1\}$. But $\tilde{b}_{f}(s)=\left(s+\frac{1}{3}\right)\left(s+\frac{2}{3}\right)(s+1)$.

3. Nondegenerate Newton boundary

3.1. - Let $\left(x_{1}, \ldots, x_{n}\right)$ be a local coordinate system around $x \in X$ so that $\mathcal{O}=\mathbb{C}\{x\}\left(:=\mathbb{C}\left\{x_{1}, \ldots, x_{n}\right\}\right)$. We have a Taylor expansion $f=\sum_{\nu} a_{\nu} x^{\nu}$, where $\nu=\left(\nu_{1}, \ldots, \nu_{n}\right)$ and $x^{\nu}=\prod x_{i}^{\nu_{i}}$. Let $\Gamma_{+}(f)$ be the convex full of $\nu+\left(\mathbb{R}_{\geq 0}\right)^{n}$ for $a_{\nu} \neq 0$. We define $f_{\sigma}=\sum_{\nu \in \sigma} a_{\nu} x^{\nu}$ for a face σ of $\Gamma_{+}(f)$. We say that f has nondegenerate Newton boundary with respect to the coordinate system [7], if $\partial_{i} f_{\sigma}(1 \leq i \leq n)$ have no common zero in $\left(\mathbb{C}^{*}\right)^{n}$ for any compact face σ of $\Gamma_{+}(f)$, where $\partial_{i}=\partial / \partial x_{i}$. For a face σ of $\Gamma_{+}(f)$, let $C(\sigma)$ denote the closure of the cone over σ, and $C(\sigma)^{\circ}=C(\sigma) \backslash \sum_{\tau<\sigma} C(\tau)$, where $\tau<\sigma$ means that τ is a face of σ. Let A_{σ} denote the \mathbb{C}-subalgebra of $\mathbb{C}\{x\}$ generated topologically by x^{ν} for $\nu \in C(\sigma)$, and B_{σ} the ideal generated by x^{ν} for $\nu \in C(\sigma)^{\circ}$. By 6.4 in $[7], f$ has nondegenerate Newton boundary if and only if

$$
\begin{equation*}
\operatorname{dim}_{\mathbb{C}} A_{\sigma} / \sum_{i} x_{i}\left(\partial_{i} f_{\sigma}\right) A_{\sigma}<\infty \tag{3.1.1}
\end{equation*}
$$

for any compact face σ. (In fact, if $\partial_{i} f_{\sigma}(1 \leq i \leq n)$ have no common zero in $\left(\mathbb{C}^{*}\right)^{n}$, we have $x^{\nu} \in \sum_{i} x_{i}\left(\partial_{i} f_{\sigma}\right) \mathbb{C}[x]$ for some ν, and then $x^{\nu} \in \sum_{i} x_{i}\left(\partial_{i} f_{\sigma}\right) A_{\sigma}$ by replacing ν.)

For an $(n-1)$-dimensional face σ of $\Gamma_{+}(f)$, let ℓ_{σ} denote the linear function whose restriction to σ is one. We define a function $\alpha: \mathbb{N}^{n} \rightarrow \mathbb{Q}$ by $\alpha(\nu)=\min \left\{\ell_{\sigma}(\nu)\right\}$, and $\alpha: \mathcal{O} \rightarrow \mathbb{Q}$ by $\alpha\left(\sum c_{\nu} x^{\nu}\right)=\min \left\{\alpha(\nu): c_{\nu} \neq 0\right\}$. This induces a filtration V on \mathcal{O} by $V^{\alpha} \mathcal{O}=\{g \in \mathcal{O}: \alpha(g) \geq \alpha\}$.

Proposition 3.2. - Assume f has nondegenerate Newton boundary with respect to the coordinate system. Then $V^{\alpha} \widetilde{\mathcal{B}}_{f}$ is generated over $\mathcal{D}_{X, x}\left[\partial_{t}^{-1}, s\right]$ by $x^{\nu} \partial_{t}^{i} \delta(t-f)$ for $\alpha(\nu+\mathbf{1})-i \geq \alpha$, where $\mathbf{1}=(1, \ldots, 1)$.

Proof. - It is enough to show that the filtration V defined by the above condition satisfies the condition of filtration V in (2.3). The argument is essentially same as $[12,3.6]$ and $[16,(3.3)]$. For an $(n-1)$-dimensional
face σ, let $\left\{c_{\sigma, i}\right\}$ be the coefficients of ℓ_{σ}, and $\xi_{\sigma}=\sum_{i} c_{\sigma, i} x_{i} \partial_{i}$ so that $\xi_{\sigma} f_{\tau}=f_{\tau}$ for $\tau<\sigma$. Then we have :

$$
\begin{equation*}
\sum_{i} c_{\sigma, i} \partial_{i} x_{i}\left(x^{\nu} \delta(t-f)\right)=\ell_{\sigma}(\nu+\mathbf{1}) x^{\nu} \delta(t-f)-\left(\xi_{\sigma} f\right) \partial_{t} x^{\nu} \delta(t-f) \tag{3.2.1}
\end{equation*}
$$

We have $\ell_{\sigma}\left(\nu+e_{i}\right)>\ell_{\sigma}(\nu)$ if $c_{\sigma, i} \neq 0$. So we can check the nilpotence of the action of $s+\alpha$ on $\operatorname{Gr}_{V}^{\alpha} \widetilde{\mathcal{B}}_{f}$ by induction on $m(\nu):=\#\left\{\sigma: \ell_{\sigma}(\nu)=\alpha(\nu)\right\}$, and it remains to show that $V^{\alpha} \widetilde{\mathcal{B}}_{f}$ is finitely generated over $\mathcal{D}_{X, x}\left[\partial_{t}^{-1}, s\right]$. Let $x=x_{1} \cdots x_{n}$. By (1.2.2), the assertion is reduced to the surjectivity of

$$
\begin{equation*}
\sum_{i} x_{i}\left(\partial_{i} f\right): \bigoplus_{i} V^{\alpha}(x \mathcal{O}) \longrightarrow V^{\alpha+1}(x \mathcal{O}) \quad \text { for } \alpha \gg 1 \tag{3.2.2}
\end{equation*}
$$

Since $V^{\alpha}(x \mathcal{O})$ is finitely generated over \mathcal{O}, we may replace $V^{\alpha}(x \mathcal{O})$, $V^{\alpha+1}(x \mathcal{O})$ by $\operatorname{Gr}_{V}^{\alpha}(x \mathcal{O})$ and $\operatorname{Gr}_{V}^{\alpha+1}(x \mathcal{O})$ respectively, using Nakayama's lemma. Taking the graduation of the filtration induced by $m(\nu)$, these terms are further replaced by $\left(B_{\sigma} \cap x \mathbb{C}[x]\right)^{\alpha},\left(B_{\sigma} \cap x \mathbb{C}[x]\right)^{\alpha+1}$ (where the superscript α denotes the degree α part), and f by f_{σ}. Here we may assume that σ is not contained in the coordinate hyperplanes of \mathbb{R}^{n}. Since A_{σ} is notherian, we can replace $B_{\sigma} \cap x \mathbb{C}[x]$ by A_{σ}. So the assertion follows from hypothesis if σ is compact. In the noncompact case, let

$$
I(\sigma)=\left\{i: \sigma+e_{i} \subset \sigma\right\}, \quad H(\sigma)=\sum_{i \in I(\sigma)} \mathbb{R}_{\geq 0} e_{i}
$$

where $e_{i} \in \mathbb{R}^{n}$ is the i-th unit vector (i.e. its j-th component is 1 for $j=i$, and 0 otherwise). Then $H(\sigma)+C(\sigma) \subset C(\sigma)$ (in particular, $H(\sigma) \subset C(\sigma)$) and σ is the union of $\tau+H(\sigma)$ for τ compact faces of σ. We define subsets of $H(\sigma)$ by :

$$
\begin{aligned}
U^{\beta} H(\sigma) & =\left\{\sum r_{i} e_{i}: \sum r_{i} \geq \beta\right\} \\
U^{>\beta} H(\sigma) & =\left\{\sum r_{i} e_{i}: \sum r_{i}>\beta\right\} .
\end{aligned}
$$

Let $U^{\beta} C(\sigma)=U^{\beta} H(\sigma)+C(\sigma)$, and $U^{\beta} A_{\sigma}$ the ideal of A_{σ} generated by x^{ν} for $\nu \in U^{\beta} C(\sigma)$ (similarly for $U^{>\beta} C(\sigma)$ and $U^{>\beta} A_{\sigma}$). By Nakayama's lemma, the assertion is reduced to the surjectivity of

$$
\begin{equation*}
\sum_{i} x_{i}\left(\partial_{i} f_{\sigma}\right): \bigoplus_{i} \operatorname{Gr}_{U}^{\beta}\left(A_{\sigma}\right)^{\alpha} \longrightarrow \operatorname{Gr}_{U}^{\beta}\left(A_{\sigma}\right)^{\alpha+1} \quad \text { for } \alpha \gg 1 \tag{3.2.3}
\end{equation*}
$$

Let $\partial U^{\beta} H(\sigma)=U^{\beta} H(\sigma) \backslash U^{>\beta} H(\sigma)$ (similarly for $\partial U^{\beta} C(\sigma)$). Then $\left(\partial U^{\beta} H(\sigma)+\partial U^{0} C(\sigma)\right) \cap \mathbb{Z}^{n}$ is covered by a finite number of parallel

```
тOME 122-1994- N}\mp@subsup{}{}{\circ}
```

translates of $\partial U^{0} C(\sigma) \cap \mathbb{Z}^{n}$ (using a partition of $\partial U^{0} C(\sigma)$). So $\operatorname{Gr}_{U}^{\beta}\left(A_{\sigma}\right)$ is finitely generated over $\operatorname{Gr}_{U}^{0}\left(A_{\sigma}\right)$, and we can restrict to the case $\beta=0$. Then the assertion is reduced to the σ compact case by the same argument as above (using the filtration induced by $m(\nu)$), because $\operatorname{Gr}_{U}^{0}\left(A_{\sigma}\right)$ is the sum of A_{τ} for τ compact faces of σ. So the assertion follows.

Corollary 3.3. - We have $\alpha_{f} \geq 1 / t$ for $(t, \ldots, t) \in \partial \Gamma_{+}(f)$.
Remark. - In the isolated singularity case, it is known that the equality holds by [3], [16] (and [20] in the case $\alpha_{f} \leq 1$) combined with [8].

4. Thom-Sebastiani type theorem

4.1. - Let Y be a complex manifold, $y \in Y$, and $g \in \mathcal{O}_{Y, y}$. Let $Z=X \times Y, z=(x, y)$, and $h=f+g \in \mathcal{O}_{Z, z}$. We define $\widetilde{\mathcal{B}}_{g}, \widetilde{\mathcal{B}}_{h}$ as in (1.2). Then we have a short exact sequence

$$
\begin{equation*}
0 \rightarrow \widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g} \xrightarrow{\iota} \widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g} \xrightarrow{\eta} \widetilde{\mathcal{B}}_{h} \rightarrow 0 \tag{4.1.1}
\end{equation*}
$$

with ι, η defined by

$$
\begin{aligned}
& \iota\left(a \partial_{t}^{i} \delta(t-f) \otimes b \partial_{t}^{j} \delta(t-g)\right)=a \partial_{t}^{i+1} \delta(t-f) \otimes b \partial_{t}^{j} \delta(t-g) \\
& \quad-a \partial_{t}^{i} \delta(t-f) \otimes b \partial_{t}^{j+1} \delta(t-g), \\
& \eta\left(a \partial_{t}^{i} \delta(t-f) \otimes b \partial_{t}^{j} \delta(t-g)\right)=a b \partial_{t}^{i+j} \delta(t-h)
\end{aligned}
$$

for $a \in \mathcal{O}_{X, x}, b \in \mathcal{O}_{Y, y}$. Here the external product $M \boxtimes N$ for an $\mathcal{O}_{X, x^{-}}$ module M and an $\mathcal{O}_{Y, y}$-module N is defined by

$$
\begin{equation*}
\mathcal{O}_{Z, z} \otimes_{\mathcal{O}_{X, x}} \otimes_{\mathbb{C}} \mathcal{O}_{Y, y}\left(M \otimes_{\mathbb{C}} N\right) \quad\left(=\left(\mathcal{O}_{Z, z} \otimes_{\mathcal{O}_{X, x}} M\right) \otimes_{\mathcal{O}_{Y, y}} N\right) \tag{4.1.2}
\end{equation*}
$$

It is an exact functor for both factors (using the second expression) and commutes with inductive limit. By definition, we have

$$
\left\{\begin{array}{l}
\partial_{t} \eta(u \otimes v)=\eta\left(\partial_{t} u \otimes v\right)=\eta\left(u \otimes \partial_{t} v\right), \tag{4.1.3}\\
t \eta(u \otimes v)=\eta(t u \otimes v)+\eta(u \otimes t v) \\
P \eta(u \otimes v)=\eta(P u \otimes v), \quad Q \eta(u \otimes v)=\eta(u \otimes Q v),
\end{array}\right.
$$

for $u \in \widetilde{\mathcal{B}}_{f}, v \in \widetilde{\mathcal{B}}_{g}, P \in \mathcal{D}_{X, x}, Q \in \mathcal{D}_{Y, y}$. In particular, we have :

$$
\begin{equation*}
s \eta(u \otimes v)=\eta(s u \otimes v)+\eta(u \otimes s v) . \tag{4.1.4}
\end{equation*}
$$

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE

We define a filtration G on $\widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g}$ by

$$
\begin{equation*}
G^{k}\left(\widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g}\right)=\sum_{i+j=k} G^{i} \widetilde{\mathcal{B}}_{f} \boxtimes G^{j} \widetilde{\mathcal{B}}_{g} \tag{4.1.5}
\end{equation*}
$$

and a filtration G^{\prime} on $\widetilde{\mathcal{B}}_{h}$ by $G^{\prime k} \widetilde{\mathcal{B}}_{h}=\eta G^{k}\left(\widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g}\right)$. By Lemma (4.2) below, we have :

$$
\begin{equation*}
\operatorname{Gr}_{G}^{k}\left(\widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g}\right)=\bigoplus_{i+j=k} \operatorname{Gr}_{G}^{i} \widetilde{\mathcal{B}}_{f} \boxtimes \operatorname{Gr}_{G}^{j} \widetilde{\mathcal{B}}_{g} \tag{4.1.6}
\end{equation*}
$$

Then $\operatorname{Gr}_{G} \iota: \operatorname{Gr}_{G}^{k+1}\left(\widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g}\right) \rightarrow \operatorname{Gr}_{G}^{k}\left(\widetilde{\mathcal{B}}_{f} \boxtimes \widetilde{\mathcal{B}}_{g}\right)$ is injective (i.e., ι is strictly injective), and we get an isomorphism

$$
\begin{equation*}
\operatorname{Gr}_{G} \eta: \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f} \boxtimes \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{g} \xrightarrow{\sim} \operatorname{Gr}_{G^{\prime}}^{0}\left(\widetilde{\mathcal{B}}_{h}\right) \tag{4.1.7}
\end{equation*}
$$

by taking the graduation of (4.1.1). Furthermore, the action of s on the right hand side corresponds to that of $s \boxtimes \mathrm{id}+\mathrm{id} \boxtimes s$ on the left.

Lemma 4.2. - For an $\mathcal{O}_{X, x}$-module M and an $\mathcal{O}_{Y, y}$-module N with an exhaustive filtration G, we define a filtration G on $M \boxtimes N$ as in (4.1.5). Then (4.1.6) holds with $\widetilde{\mathcal{B}}_{f}, \widetilde{\mathcal{B}}_{g}$ replaced by M, N.

Proof. - Since the external product is exact, we can replace M, N by $G^{p} M, G^{p} N$, considering inductive systems $\left(G^{-p} M, F\right),\left(G^{-p} N, F\right)$. So we may assume $G^{p} M=M, G^{p} N=N$ for $p \ll 0$. Then the summation in (4.1.6) is a finite direct sum, and we get the assertion taking the graduation of the filtration G on M, because $G^{k}\left(\operatorname{Gr}_{G}^{i} M \boxtimes N\right)=\operatorname{Gr}_{G}^{i} M \boxtimes G^{k-i} N$.
4.3 Proof of (0.7). - By (1.2.5) (4.1.3), we have

$$
\begin{equation*}
G^{\prime k} \widetilde{\mathcal{B}}_{h}=\eta\left(G^{i} \widetilde{\mathcal{B}}_{f} \boxtimes G^{k-i} \widetilde{\mathcal{B}}_{g}\right) \tag{4.3.1}
\end{equation*}
$$

By [4], $G^{0} \mathcal{B}_{f}=\mathcal{D}_{X, x}[s] \delta(t-f)$ (resp. $G^{0} \widetilde{\mathcal{B}}_{f}=\sum_{i \geq 0} \partial_{t}^{-i} G^{0} \mathcal{B}_{f}$) is finite over $\mathcal{D}_{X, x}$ (resp. over $\left.\mathcal{D}_{X, x}\left[\partial_{t}^{-1}\right]\right)$. So we get

$$
\begin{align*}
& G^{\prime k} \widetilde{\mathcal{B}}_{h} \text { are lattices of } \widetilde{\mathcal{B}}_{h} \quad(\text { see }(2.3)), \tag{4.3.2}\\
& G^{\prime k} \widetilde{\mathcal{B}}_{h} \supset G^{k} \widetilde{\mathcal{B}}_{h} \tag{4.3.3}
\end{align*}
$$

using (4.1.3). Then the assertion follows from (2.3).

```
tome 122-1994- N
```

4.4 Proof of (0.8). - Since $s \delta(t-g)=\xi \delta(t-g)$, we have

$$
G^{0} \widetilde{\mathcal{B}}_{g}=\mathcal{D}_{Y, y}\left[\partial_{t}^{-1}\right] \delta(t-g)
$$

and, by (4.1.4),

$$
\begin{align*}
& \eta\left(s^{i} \delta(t-f) \otimes \delta(t-g)\right)=s \eta\left(s^{i-1} \delta(t-f) \otimes \delta(t-g)\right) \tag{4.4.1}\\
& \quad \xi h\left(s^{i-1} \delta(t-f) \otimes \delta(t-g)\right)
\end{align*}
$$

So we get the equality :

$$
\begin{equation*}
G^{\prime k} \widetilde{\mathcal{B}}_{h}=G^{k} \widetilde{\mathcal{B}}_{h} \tag{4.4.2}
\end{equation*}
$$

Taking Gr_{V} of (4.1.7), we have an isomorphism

$$
\begin{equation*}
\bigoplus_{\alpha+\beta=\gamma} \operatorname{Gr}_{V}^{\alpha} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f} \boxtimes \operatorname{Gr}_{V}^{\beta} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{g}=\operatorname{Gr}_{V}^{\gamma} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{h} \tag{4.4.3}
\end{equation*}
$$

by (4.2), because $\operatorname{Gr}_{V}^{\alpha} \operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}$ is identified with the α-eigenspace of $\operatorname{Gr}_{G}^{0} \widetilde{\mathcal{B}}_{f}$ by the action of $-s$. So the assertion follows.
4.5 Remark. - The short exact sequence (4.1.1) is due to a discussion with J. Steenbrink in 1987 at MPI. It is used to prove the ThomSebastiani type theorem for the vanishing cycles of filtered regular holonomic \mathcal{D}-Modules. This subject will be treated in a joint paper with him.
4.6 Remark. - In the isolated singularity case, Malgrange [10] showed essentially the natural isomorphism

$$
\begin{equation*}
L_{h}=L_{f} \otimes_{A} L_{g} \tag{4.6.1}
\end{equation*}
$$

with the notation of (1.7) and (4.7) below. Using this and (1.7.1), we can easily check (0.7-8) in the isolated singularity case. This also gives an example such that (0.8) does not hold in the non quasi-homogeneous singularity case. See (4.8) below.
4.7 Remark. - In this paragraph, we denote by \mathcal{E} the ring of microdifferential operators of one variable $\mathbb{C}\{t\}\left\{\left\{\partial_{t}^{-1}\right\}\right\}\left[\partial_{t}\right]$, and let $\mathcal{E}(0)=$ $\mathbb{C}\{t\}\left\{\left\{\partial_{t}^{-1}\right\}\right\}$ the subring of microdifferential operators of order ≤ 0. See [4], [17]. We define subrings of \mathcal{E} by

$$
K=\mathbb{C}\left\{\left\{\partial_{t}^{-1}\right\}\right\}\left[\partial_{t}\right], \quad A=\mathbb{C}\left\{\left\{\partial_{t}^{-1}\right\}\right\} .
$$

Let M be a regular holonomic \mathcal{E}-module. An $\mathcal{E}(0)$-submodule L of M is called a lattice if it is finite over $\mathcal{E}(0)$ and generates M over \mathcal{E}. The saturation \bar{L} of L is defined by

$$
\begin{equation*}
\bar{L}=\sum_{i \geq 0}\left(t \partial_{t}\right)^{i} L \tag{4.7.1}
\end{equation*}
$$

Note that \bar{L} is also a lattice of M by regularity.
Let $M_{j}(j=1,2)$ be two regular holonomic \mathcal{E}-modules, and L_{j} a lattice of M_{j}. Let

$$
\begin{equation*}
M=M_{1} \otimes_{K} M_{2}, \quad L=L_{1} \otimes_{A} L_{2} \tag{4.7.2}
\end{equation*}
$$

Then M is a regular holonomic \mathcal{E}-module, and L is a lattice of M, where the action of t on M is defined by

$$
\begin{equation*}
t(u \otimes v)=t u \otimes v+u \otimes t v \quad \text { for } u \in M_{1}, v \in M_{2} . \tag{4.7.3}
\end{equation*}
$$

However, we have

$$
\begin{equation*}
\bar{L} \neq \bar{L}_{1} \otimes_{A} \bar{L}_{2} \tag{4.7.4}
\end{equation*}
$$

in general. For example, consider the case $M_{1}=M_{2}, L_{1}=L_{2}$, and L_{j} has a generator e_{1}, e_{2} over A such that $\partial_{t} t e_{1}=e_{1}+\partial_{t} e_{2}, \partial_{t} t e_{2}=2 e_{2}$. Then \bar{L} is generated over A by $e_{1} \otimes e_{1}, \partial_{t}\left(e_{1} \otimes e_{2}+e_{2} \otimes e_{1}\right), \partial_{t}^{2}\left(e_{2} \otimes e_{2}\right)$ and $e_{1} \otimes e_{2}$, and \bar{L}_{j} by e_{1} and $\partial_{t} e_{2}$.
4.8 Example. - Consider the singularity of type $T_{p, q, r}$:

$$
f=x^{p}+y^{q}+z^{r}+x y z \quad \text { for } p^{-1}+q^{-1}+r^{-1}<1 .
$$

Then L_{f} is generated over A by e, e^{\prime} and $e_{a, i}\left(1 \leq a \leq 3,0<i<p_{a}\right)$ such that

$$
\partial_{t} t e=e+\partial_{t} e^{\prime}, \quad \partial_{t} t e^{\prime}=2 e^{\prime}, \quad \partial_{t} t e_{a, i}=\left(1+i / p_{a}\right) e_{a, i}
$$

where $p_{1}=p, p_{2}=q, p_{3}=r$. This can be checked for example using [14, 3.4]. In particular, we get by (1.7.1) :

$$
\begin{equation*}
\tilde{b}_{f}(s)=(s+1)^{2} \prod_{0<i<p}(s+1+i / p) \quad \text { if } p=q=r \tag{4.8.1}
\end{equation*}
$$

Let $h=f+g$ as in (4.1). Assume f, g singularities of type $T_{p, p, p}$ and $T_{q, q, q}$ respectively, and $(p, q)=1$. Then

$$
\begin{align*}
\tilde{b}_{h}(s)=(s+2)^{3}(s+3) & \prod_{\substack{0<i<p \\
0<j<q}}(s+2+i / p+j / q) \tag{4.8.2}\\
& \prod_{0<i<p}(s+2+i / p)^{2} \prod_{0<j<q}(s+2+j / q)^{2} .
\end{align*}
$$

This gives a counter example to (0.8) in the non quasi-homogeneous case.

BIBLIOGRAPHY

[1] Brieskorn (E.). - Die Monodromie der isolierten Singularitäten von Hyperfächen, Manuscripta Math., t. 2, 1970, p. 103-161.
[2] Deligne (P.). - Le formalisme des cycles évanescents, in SGA7 XIII and XIV, Lect. Notes in Math., vol. 340, Springer, Berlin, 1973, p. 82-115 and 116-164.
[3] Ehlers (F.) and Lo (K.-C.). - Minimal characteristic exponent of the Gauss-Manin connection of isolated singular point and Newton polyhedron, Math. Ann., t. 259, 1982, p. 431-441.
[4] Kashiwara (M.). - B-function and holonomic systems, Inv. Math., t. 38, 1976, p. 33-53.
[5] Kashiwara (M.). - Vanishing cycle sheaves and holonomic systems of differential equations, Lecture Notes in Math., t. 1016, 1983, p. 136-142.
[6] Kashiwara (M.) and Kawai (T.). - Second microlocalization and asymptotic expansions, Lecture Notes in Phys., t. 126, 1980, p. 21-76.
[7] Kouchinirenko (A.). - Polyèdres de Newton et nombres de Milnor, Invent. Math., t. 32, 1976, p. 1-31.
[8] Malgrange (B.). - Le polynôme de Bernstein d'une singularité isolée, Lecture Notes in Math., t. 459, 1975, p. 98-119.
[9] Malgrange (B.). - Polynôme de Bernstein-Sato et cohomologie évanescente, Astérisque, t. 101-102, 1983, p. 243-267.
[10] Malgrange (B.). - Intégrales asymptotiques et monodromie, Ann. Sci. École Norm. Sup. Paris (4), t. 7, 1974, p. 405-430.
[11] Pham (F.). - Singularités des systèmes différentiels de Gauss-Manin. - Progr. in Math., vol. 2, Birkhäuser, Boston, 1979.
[12] Saito (M.). - Modules de Hodge polarisables, Publ. RIMS, Kyoto Univ., t. 24, 1988, p. 849-995.
[13] Saito (M.). - On b-function, spectrum and rational singularity, to appear in Math. Ann.
[14] Saito (M.). - On the structure of Brieskorn lattice, Ann. Inst. Fourier, t. 39, 1989, p. 27-72.
[15] Saito (M.). - Duality for vanishing cycle functors, Publ. RIMS, Kyoto Univ., t. 25, 1989, p. 889-921.
[16] Saito (M.). - Exponents and Newton polyhedra of isolated hypersurface singularities, Math. Ann., t. 281, 1988, p. 411-417.
[17] Sato (M.), Kawai (T.) and Kashiwara (M.). - Microfunctions and pseudodifferential equations, Lecture Notes in Math., t. 287, 1973, p. 264-529.
[18] Steenbrink (J.). - Mixed Hodge structure on the vanishing cohomology, in Real and Complex Singularities (Proc. Nordic Summer School, Oslo, 1976) Alphen a/d Rijn : Sijthoff \& Noordhoff, 1977, p. 525-563.
[19] Varchenko (A.). - The asymptotics of holomorphic forms determine a mixed Hodge structure, Soviet Math. Dokl., t. 22, 198o, p. 772-775.
[20] Varchenko (A.). - Asymptotic Hodge structure in the vanishing cohomology, Math. USSR Izvestija, t. 18, 1982, p. 465-512.
[21] Yano (T.). - On the theory of b-functions, Publ. RIMS, Kyoto Univ., t. 14, 1978, p. 111-202.

[^0]: (*) Texte reçu le 21 février 1992, révisé le 6 décembre 1992.
 M. Saito, RIMS, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606-01, Japon.

