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A CLASS OF SYMMETRIC SPACES

BY

FABIO PODESTA (*)

RESUME. — Le but de ce travail est d'etudier une variete C°° donnee d'une
structure projective V et d'un systeme de symetries qui laissent V invariante. Avec une
hypothese supplementaire d'homogeneite projective, 1'auteur classifie tous ces espaces
et donne une interpretation geometrique de Pinessentialite de la structure projective
symetrique en utilisant des techniques de geometric affine different ielle.

ABSTRACT. — The aim of this work is to study the situation of a C°° -manifold
endowed with a projective structure "P and with a system of symmetries leaving
P invariant. Under the additional hypothesis of projective homogeneity, the author
classifies all such spaces and exhibits a geometrical interpretation for inessentiality of
the symmetric projective structure using techniques of affine differential geometry.

Introduction
In a previous paper [8] the author has introduced the class of projec-

tively symmetric spaces : let (M, V) be a connected C°° manifold with a
linear torsion free connection V on its tangent bundle; (M,V) is said to
be projectively symmetric if for every point x of M there is an involutorial
projective transformation of M fixing x and whose differential at s is — Id.
The assignement of the symmetry s^ at each point a; of M is assumed to
be not even continuous.

In this work the author gives necessary and sufficient conditions for
a projectively symmetric and projectively homogeneous space to be in-
essential {i.e. projectively equivalent to an affine symmetric space, see
paragraph 1). For complete Riemannian manifolds (M^g) of dimension n
{n > 3) that are projectively symmetric and projective homogeneous (it is
shown with an example that projective homogeneity is not implied), the
author proves that such spaces are either inessential or isometric to the
sphere ^(r) of radius r or to the projective space S71^)/ ± Id with some
choice of symmetries. Some interesting cases are considered, when (M,g)
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344 F.PODESTA

is affinely homogeneous or analytic : under these hypotheses the author
proves that (M,g) is either a Riemannian symmetric space (that is all
projective symmetries are isometries) or (M, g) is isometric to the sphere
^(r) of radius r or to the projective space S71^)/ ± Id with some choice
of symmetries. Finally the case of a smooth distribution of symmetries is
considered and the previous results are rivisited from this point of view,
exhibiting furthermore a geometrical interpretation for inessentiality.

The author wishes to express his hearthy thanks to Professor K. NOMIZU
for his encouragement and his valuable suggestions during the preparation
of this paper.

1. Projectively symmetric spaces
Let M be a connected real C°° manifold whose tangent bundle TM

is endowed with a linear torsion free connection V. We recall that a
diffeomorphism s of M is said to be a projective transformation if s
maps geodesies into geodesies when the parametrization is disregarded;
equivalently s is projective if the pull back <s*V of the connection is
projectively related to V, i.e. if there exists a global 1-form TT on M
such that

(1.1) s^xY = VxY + TT(X)Y + TT(Y)X VX, Y c H(M)

where H(M) denotes the Lie algebra of vector fields on M. If the form TT
vanishes identically on M, then s is said to be an affine transformation
(see e.g. [1]). We remark here that all what follows could be made also in
the case of a more general projective structure V defined on the manifold
M, but we prefer to work with a projective equivalence class of globally
defined linear connections and we shall denote with [V] the projective
structure determined by the connection V.

Definition 1.1. — (M, [V]) is said to be projectively symmetric if for
every point x m M there exists a projective transformation Sx with the
following properties :

(a) s^(x) = x and x is an isolated fixed point of s^ ;
(b) Sx is involutorial;
(c) ds^^ =-Id.

It is easy to see that conditions (a) and (b) imply (c). Moreover we recall
that a projective transformation is determined if we fix its value at a point,
its differential and its second jet at this point (see [3]), hence a symmetry
at x in M is not uniquely determined in general by the conditions (a), (b)
(and (c)).

TOME 117 — 1989 — N° 3



A CLASS OF SYMMETRIC SPACES 345

Example 1. — Here is the simplest example of a projectively symmetric
space. We consider S71, the unit sphere in the euclidean space IR7^1,
endowed with the standard metric g. Then the group of projective
transformations of (S71^) is naturally identified with G == GL(n -h 1)/R^
under the action p , : S71 x G —^ S71 given by

o-2) ^'^vS y x e s n

where [g] denotes the class of an element g of GL(n + 1) in G and || • ||
denotes the euclidiean norm. It is easy to see that the action of G on S71

is effective and C°° (for more details, see [4]). We now fix q = (1 ,0 , . . . , 0)
in S71; then every projective symmetry Sq turns out be of the form

(1.3) Sq(x)=^([A},x) W e ^

where

(1.4) A= 1 a
0 -Id

with ^a e IR77'; moreover Sq is an affine transformation if and only if a = 0.
This simple example shows that no unique choice of Sq is possible.

Similar considerations hold also for the case of the real projective
space W.

We now remark that every projective map carries geodesies, but does
not preserve in general the affine parameter on the geodesies. However
a projective transformation preserves the class of projective parameters
(see [1]); nevertheless a projective involution with the properties (a), (b)
(and (c)) does not carry necessarily a projective parameter p into —p, as
it happens for the affine parameter in the classical theory of symmetric
spaces. If we look at the previous example, we find that all the geodesies
emanating from the point q and with projective parameter t are given by

rW=((l+||^2)-1/2, ^l-HI^2)-1/2^) ^ C R , z = l , . . . , n

where ^ E R71 ^ TqS". If we choose $ = (1,0, . . . , 0) and A is as in (1.2)
with ta = $, then

^{W(t)) = r(-t(i + lio2^)-1) v^ > -||$||-2.
This simple example shows how different the situation is from the affine
case.
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346 F. PODESTA

Remark 1. — It is clear how to construct examples of projectively
but not affinely symmetric spaces; let M be a manifold with a linear
torsionfree connection V on its tangent bundle and suppose that (M, V)
is affinely symmetric; fix a point q in M and denote by Sq the affine
symmetry at q. Then if we choose a global 1-form TT that is not .Sg-invariant,
it is enough to define a linear connection V* via the formula

V^V = VxY + TT(X)Y + TT(Y)X VX, y € H(M)

to obtain that M is projectively but not affinely symmetric with respect to
the connection V*. A general question is to find conditions under which,
given a projectively symmetric space (M,V), there exists a projectively
related connection V* such that (A^V*) is affinely symmetric; we shall
call such spaces inessential projectively symmetric spaces (and essential
otherwise). We now show that there is a choice ofprojective symmetries on
the sphere Sn with respect to which S71 is essential : we denote with e the
point * (1 ,0 , . . . , 0) C H71^1 and choose as symmetry s the transformation
induced by an element A of GL(n+l) as in (1.4) with a fixed a € IR^, while
we put as symmetry a at the point —e the transformation induced by an
element B of GL(n + 1) as in (1.4) with a' -^ a. The other symmetries
are allowed to be chosen arbitrarily. We claim that S71 with this choice of
symmetries is essential : indeed if it were inessential, then we would have
that

s o a = Ss(-e) o s = a o s

and this is not the case because a' ^ a. Deeply related to this is the ques-
tion whether projectively symmetric spaces are necessarily projectively
homogeneous, since the classical techniques used in the theory of sym-
metric spaces fail in this case. So we are going to show that there exist
Riemannian spaces that are projectively symmetric but not projectively
homogeneous.

Example 2. — Example of a Riemannian manifold that is projectively
symmetric but not projectively homogeneous.

We consider the real projective space HP71 (n > 3) and two distinct
point p and q: we claim that the manifold M = RF^^, q} endowed with
the restriction of the standard metric of HP71 is projectively symmetric
but not projectively homogeneous. Indeed it is clear that a projective
automorphism of M is the restriction to M of a projective transformation
of HP71; so there is no projective transformation carrying a point x e M
belonging to the line i through p and q to a point y not belonging to L
We have now to show that M is projectively symmetric. We fix a point
x e M and consider the canonical projection TT : IR^^O} —> IRP71; pick
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A CLASS OF SYMMETRIC SPACES 347

now rc*, p*, 9* points of R^^O} that correspond to re, p, 9 respectively
under the map TT. We now distinguish two cases :

a) x it : we put e = ^ l^O, . . . ^ ) € ^+^{0}, we may assume
that p " and q* do not belong to the subspace spanned by e. Pick now
any g C GL(n + 1) with g{e) = re*. We claim that we can construct
s € GL(n + 1) with the following properties :

1) s2 = Id
2) The map s^ : HP71 —> IRP71 induced by s is a symmetry at x and

s^(p) = p^s^(q) = q. We note that if we can find A C GL(n -I- 1) such
that

1') A(e) = e, A2 = Id and ̂ | = -Id

2') AGr^*))= -<rW, AQ^*)) = -^-W
then 5 = ^ o A o p 1 will work. We can choose A as in (1.4) with some
ta e R71 so that 1') is satisfied; if we write g ~ l ( p * ) = u == (lAi,^),
^-l(g*) = -y == (^i,^) for some u ' ^ v ' C IR71, we note that condition 2') is
equivalent to the system

a • u' = —2u]_
a • v' = —2v]_

that admits at least one solution a iff rank (u,v) = rank^',^); but
rank(n,^) == 2 and rank('u',^/) = 2 because the plane spanned by the
vectors (0,n') and (0,v') does not contain the vector e by hypothesis and
we are done.

b) x G i : with the same notations as above, we claim that we can
construct A e GL(n + 1) such that

I") A(e) = e, A2 = Id and dA*\ = - Id
2") A{u) e ('y}, where (?;) denotes the subspace spanned by the

vector v. If this choice is possible, then s = g o A o g~1 will work (since
5#(p) = q and s^(q) = p automatically because s2 = Id). We choose A as
in (1.4) for some a C IR^ so that I") is satisfied. Since x C i, we can find
A C IR\{0} with u' ^ 0 and i/ 7^ 0) and condition 2") is equivalent to the
equation

1
ill + a • u = ——vi

A

that can be solved for a since u' ^ 0 and we are done. []
We note that the Riemannian space that we have just exhibited is

not complete and we don't know of any projectively symmetric complete
Riemannian space that is not projectively homogeneous.

Question. — Is any complete simply connected Riemannian manifold,
that is projectively symmetric, necessarily projectively homogeneous ?

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



348 F. PODESTA

We now make an overview of the results that have been established by
the author in his previous work [8] :

THEOREM 1. — Let (M, V) be a projectively symmetric space which is
p-hyperbolic (V is supposed to be complete). Then there exists a Rieman-
nian metric g on M such that (M, g) becomes a Riemannian symmetric
space with the following properties :

a) (M, g) is an Einstein space with negative curvature;
b) The Levi Civita connection of g is projectively related to V.

THEOREM 2. — Let (M,g) be a complete Riemannian manifold
which is

a) locally symmetric;
b) projectively homogeneous;
c) properly projectively symmetric (i.e. there exists at least a sym-

metry that is a projective but not affine transformation), then (M,g) is
projectively equivalent to the standard sphere S71 (n == dim M > 3) or to
the real projective space HP71.

Remark. — In the proof of THEOREM 2 we show something more, that
is that (M,g) is isometric to the sphere S71^) of radius r in R^1 or to
the projective space ^(r)/ ± Id.

We have already observed that the choice of the projective symmetry
is in general not unique. We now want to establish the following

PROPOSITION 1.1. — Let (M, [V]) be a projectively symmetric mani-
fold of dimension n > 2 ; if there exist two different projective symmetries
at a point q of M, then the projective curvature tensor W vanishes at q.

Proof. — Let a\ and a^ be two different projective symmetries at a
point q of M. Since a\ is involutorial we can find a projectively related
affine connection V* that is a\ -invariant. As a consequence we have that
V*TV = 0 at the point q. We now denote by <1> the 1-form on M that
corresponds to the projective automorphism 0-2 = 5 of (M,V*). Then if
X, Y. Z. [' are vector fields on M, we have

(V^W)(sX^sY)sZ

= s (V^ [W(X, Y)Z] + ^(U)W(X, Y)Z + ^ (W{X, Y)Z)U)
-5(W(V^X,V)Z) -^{U)s(W(X,Y)Z) -^{X)s(W(U,Y)Z)
-s(W(X^uY)Z)-^U)s{W(X,Y)Z)-<!>(Y)s{W(X,U)Z)
-s{W(X,Y)^uZ)-^(U)s{W{X,Y)Z)-^Z)s(W(X,Y)U)

If we compute this at the point q we obtain that
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A CLASS OF SYMMETRIC SPACES 349

(1.5) ^{W(X,Y)Z)U = ̂ (U)W{X,Y)Z+^{X)W(U,Y)Z
+ ^(Y)W{X, U)Z + <S>(Z)W(X, Y)U

where all the operators are evaluated at q. If we now fix X, Y, Z tangent
vectors at q and take the trace of (1.5) with respect to U, we obtain that

n^(W{X,Y)Z) =2^{W(X,Y)Z)

because trace {V -^ W(V,X)Y} = 0 and W(X,Y)Z + W(Z,X)Y +
W(Y,Z)X == 0 (see e.g. [1]); so since n > 2 we have <S>(W(X,Y)Z) = 0
and by (1.5)

(1.6) 2^(U)W(X, Y)Z + ^{X)W(U, Y)Z
+ ^(Y)W(X, U)Z + ^(Z)TV(X, Y)U = 0

for every X, V, Z, U (E TMq. Since o-i and 0-2 are different, the 1-
form <I> can not vanish identically on TMq, so the subspace A defined as
A = [X C TM^ | $(X) = 0} has dimension n - 1. Let us pick V C TM^
with ^(V) = 1. We now devide the proof into steps :

a) if X, Y C A and U = V then by (1.6) we have that

2W(X, Y)Z + ̂ >(Z)W{X, Y)V = 0

so if Z (E A then W(X, Y)Z = 0 and if Z = V, then W{X, Y) = 0; since
TM^ is direct sum of A and the subspace spanned by V, we have that
W(X, Y) = 0 for every X, V c A.

b) If X C A, y = V = U, then by (1.6) we have that

3W(X, V)Z + <^{Z)W(X, V)V = 0

so, as above, if Z e A or if Z = V, we have that W{X,V) = 0. By a)
and b) we obtain that the projective curvature tensor W vanishes at q. []

We now consider a connected real C°° manifold (M, V) with a linear
torsion free connection V on its tangent bundle; we suppose that (M,V)
is projectively symmetric and projectively homogeneous and distinguish
two cases :

a) there exists a point q at which two different projective symmetries
can be defined. Then, by the last PROPOSITION, the projective Weyl tensor
of (M, V) vanishes at q, hence on M thanks to projective homogeneity.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



350 F. PODESTA

b) At every point x of M the projective symmetry is uniquely
determined. Then if / € P(M, V)g (= the isotropy subgroup of P(M, V)
at q) we have

(1.7) fos.of-^s,.

Let us denote with $/^ the 1-form corresponding to an element h of
P(M, V); if / and ^ are projective automorphisms an easy computation
shows that

(1.8) ^,=^+^*^

hence by (1.7) and (1.8)

^ = ̂ -i + /-r^ + r^a^f
where we have put a = S q ; so if X is any vector field on M, using (1.8)
we obtain that

<D,PO = ̂  w + ̂ (r^) + ̂ r1^)
= -^(r1^) + Wx) + $/(^-1^).

If we now put X = /V where Y is a vector field on M, we have that

$,(/y) = -^(Y) + ̂ (Y) + ̂ ((TV)

and if we evaluate the last formula at the point q, we obtain

(i-9) ^(r)=j[^(y)-^(/y)].
So by (1.9) we have that the isotropy representation ofP(M, V)^ in GL(n)
given by the differential at q is faithful.

Moreover i fp and q are points of M and z = Sp{q), then

(1.10) Sp 0 Sq = Sz O S p

due to the fact that the symmetries are univoquely determined; by (1.10)
and projective homogeneity, we deduce that the map

S :M xM —>M
(x,y) i—> s^{y)
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is differentiable. We now put G = P(M,V)° and H = Gq the isotropy
subgroup of G at 9, so that we can write M = G / H . The involution a
induces an involutorial automorphism of G, als denoted by cr, with the
property that if Ga = {g E G \ a{g) = g}, then Ga 3 H 3 G°,; so
(G, ft, a) is a symmetric space and we can find a linear connection V* on
TM that is invariant under the action of G and under all the symmetries
(see e.g. [3]). If V is the Levi-Civita connection of (M, g), we can ask when
V is projectively equivalent to V* : if this were the case we could find a
1-form TT with

V^y = \7xY + TT(X)Y + TT(Y)X VX, Y e H{M).

By insisting that a is a projective automorphism for (M, V) and leaves
the connection V* invariant, we find that

^(X) + 7r{aX) = TT(X) VX € H(M)

hence at g TT| (X) = ̂ a\ W VX G 7^(M). So let us define a 1-form,
still denoted by TT, through the following formula

(1.11) 7r |^(X)=J^, | jrr)

for x € M and X vector field on M. We note that TT is a C°° 1-form
because the map S is differentiable. We define V a linear torsionfree
connection projectively related to V through the 1-form TT and prove the
following

PROPOSITION 1.2. — The connection V is invariant under all the
symmetries of M.

Proof. — Let s be any symmetry, say at a point q of M ; the condition
that V is invariant under s is equivalent to

(1.12) TT(X) - 7r(sX) = $,(X) VX e H(M).

We verify (1.12) at a point p of M : if we call Sp = (T, we have to prove
that, by (1.11),

(1.13) |^|,W - ̂ W = %W vx e ™^

so if we call z = s(p) and s ' = s^ we have that (1.13) is

(i.i4) j^l.W - j^LW = ̂ |,W vx ^ ™p-
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But we have that s o a == Sq o Sp = s^ o s by (1.10), hence if we apply
formula (1.6)

(1.15) ^(V) + ̂ Y) = ̂ (V) + ̂ ,,{sY) VV e H(M)

and if evaluate (1.15) at p we have that W C TMp

(1.16) 2^|^)=^|^)-^|^(^)

and we are done. []
We now prove that V = V*; indeed the difference V - V* is a tensor

field of type (1,2) on M that is invariant under all symmetries, hence
vanishes identically on M. So we have the following

THEOREM 1.1. — Let (M,V) be a projectively symmetric and pro-
jectively homogeneous manifold of dimension n > 3. Then the following
three conditions are equivalent

1) (M,V) is projectively equivalent to an affine symmetric space
(M, V*) with the same symmetries and such that P°(M, V) = A°(M, V*)
(= the group of affine transformations o/(M,V*)).

2) The linear isotropy representation p : P(M, V)g -^ GL(n, R) is
faithful for every q 6 M.

3) Iff and g are projective symmetries at q (q e M), then f = g.
If one of these conditions is not fulfilled, then (M, V) is projectively flat.

Moreover (M, V) is inessential if and only if the following condition is
fulfilled

(1.17) \/p,qeM S p o s q = s ^ o s p (where z = Sp(q)).

If this last condition does not hold, then (M,V) is projectively flat.
Proof. — 1) =^ 3) and 2) =^ 3) are trivial. Let us see that 3) =^ 2) :

if s is the symmetry at q, then for every / c P(M,V)g, we have that
/ o s o f-1 = s and our claim follows from formula (1.9). The implication
3) => 1) follows from the arguments stated above. If one of these conditions
is not fulfilled, then 3) does not hold and PROPOSITION 1.1 applies.

If (M, V) is inessential, it is clear that (1.17) holds. If (1.17) holds, then
the map

S : M x M —> M
(x,y) i—> sx(y)

is differentiable (M is projective homogeneous) and we can construct the
1-form TT given by (1.11) and the connection V projectively related to
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A CLASS OF SYMMETRIC SPACES 353

V through TT. Then PROPOSITION 1.2 applies and we are done. We note
that if condition (1.17) does not hold, then for some p and q points of
M S p O S q and Sz (where z = Sp(q)) are two different symmetries at z and
PROPOSITION 1.1 applies. Q

The following proposition, that was kindly suggested to me by Professor
K. NOMIZU, gives a sufficient condition for inessentiality.

PROPOSITION 1.2. — Let (M,[V]) be a projectively symmetrix space
and suppose that there is a volume form uj that is invariant by any
symmetry up to a scalar factor, then (M, [V]) is inessential.

Proof. — We recall that there is one and only one torsion free linear
connection V* projectively related to V and such that V*cc; = 0 (see [1]).
If s is any summetry, then by assumption uj is 5*V*-parallel and so by
uniqueness 5*V* = V* and we are done. \\

Remark. — The Riemannian symmetric space Sn with the standard
metric satisfies condition (1.17) but not condition 1).

We now want to study with particular care the case when (M, V)
is a complete Riemannian manifold (M,<y) and V is the Levi Civita
connection. We denote the 1-form relating V and V* in THEOREM 1.1(1)
by TT and we call it the fundamental 1-form; we recall that TT was defined as

TT|JX)= -^ij^) x e M , x eTM^

In view of THEOREM 2 we can restate THEOREM 1.1 as follows :
THEOREM 1.2. — Let (M,g) be a complete Riemannian manifold that

is projectively symmetric and projectively homogeneous. Then one of the
following statements is true :

a) (M,^) is isometric either to ̂ (r) for some r with some choice of
the symmetries on ^(r) or to the real projective space S71^)/ =L Id with
some choice of the symmetries.

b) (M,^) is projectively equivalent to an affine symmetric space
(M,V*) with the same symmetries and such that P°(M,g) = A°(M,V*)
(= the group of affine transformations o/(M,V*)).

Moreover if b) holds and if the fundamental 1-form TT is closed, then
either V* = V or (M,^) is isometric either to ^(r) for some r or to
^(r)/ =b Id with a C°° distribution of symmetries.

Proof. — Indeed THEOREM 1.1 applies and we distinguish two cases :
a) if condition 3) does not hold, then (M,^) is projectively flat, hence

of constant curvature and so locally symmetric. Moreover by hypothesis
at one point q there exist two different projective symmetries, hence one
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of them, say s, is not an affine transformation. Then (M,g) with the
same symmetries at every point different from q and s at q satisfies the
conditions of THEOREM 2 and we obtain case a).

/?) if condition 3) is fulfilled then we have b). To prove the last
assertion, we recall that if Ric and Ric* the Ricci tensors of V and V*
respectively, then (see e.g. [1])

(1.18) Ric*(X,r) = Ric(X^Y) +n(V,X) -nIl{X,Y)

for all X,yc^(M), where

n(x,y)=(Vx7r)(y)-^(x)7r(y)

so that Ric* is symmetric if and only if TT is closed, i.e. d-K = 0.
By a Theorem of SINJUKOV [9] if a Riemannian space is in projective
correspondence with a symmetric space whose Ricci tensor is symmetric,
the correspondence is affine unless both spaces are projectively flat;
so either TT vanishes identically (and so V* = V) or TT ^ 0 and (M,g) is
of constant curvature; by the definition of TT, (M,g) becomes a properly
projectively symmetric space and THEOREM 2 applies. The distribution of
symmetries turns out to be automatically C°°. []

COROLLARY 1.1. — Let (M,g) be a complete Riemannian manifold
of dimension n > 3, that is projectively symmetric and projectively
homogeneous; then every geodesic of (M,g) is, up to parametrisation,
an integral curve of a projective Killing vector. Moreover If the isotropy
subgroup P°(M,g)q at some point q of M is compact, then (M,g) is a
Riemannian symmetric space.

Proof. — The first assertion is clear; for the second one THEOREM 1.2
applies : case a) can not occur since PO(Sn)q is not compact; hence we
can look at case b) and since A°(M,V*)^ = P°(M,g)q is compact, the
space (M,V*) is a Riemannian manifold (M,/i) with V* as Levi Civita
connection; so the fundamental form is closed and by the previous theorem
V = V*, that is our conclusion. []

2. Classification of complete Riemannian manifolds that are
projectively symmetric and affinely homogeneous

Let (M, g) be a complete Riemannian manifold supposed to be projec-
tively symmetric and affinely homogeneous. We can apply THEOREM 1.2
and consider only case b) for the moment. By hypothesis A°(M,g) (= the
identity component of the group of affine transformations of (M,g)) acts
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transitively on M and is a Lie subgroup of A°(M, V*), with the same no-
tations of THEOREM 1.1. Now ifj c A°(M,g) and TT is the 1-form relating
V* and V, then TT is ^'-invariant : indeed if X e T-t{M)

j^X = V]xJX = \/,xJX + ̂ { j X ) j X = j^xX + 27r(jX)jX

hence J^xX + 27r(X)jX = j^xX + 27r(jX)jX
so 7 r ( j X ) = 7 r { X ) ^XeH(M).

We now claim that V*TT = 0 : indeed since TT is A°(M,g) -invariant and
A°(M, g) is a subgroup of A°(M, V*), it is enough to prove that for some
q (E M V^. | = 0 for all X E TMq; let us choose X C TMq : since
A°{M,g) acts transitively on M we can find Y G a(M,g) (the Lie algebra
of complete vector fields generating affine transformations of (M,^)) such
that Yq = X. Our claim will be proved as soon as we recall that the integral
curve exptY through q of Y is a geodesic for V* and that the parallel
displacement along exp sY for 0 < s < t coincides with the differential of
exptY at q (see [3]). So by V*TT = 0 we obtain that

(2.1) (Vx7r)(y)=27r(X)7r(y).

From (3.1) and the completeness of (M,g) we obtain that TT vanishes
identically on M; indeed if 7 : IR —> M is any geodesic on M with affine
parameter t e H for V, the function

^(t)=7r(Y(t)) w e n
satisfies the following differential equation

^\t) = 2[^(t)}2 W C H

that does not admit any global solution other than the trivial one ^f{t) =0
W C IR. Since TT vanishes along any geodesic, TT vanishes identically on M.
We have proved the following

THEOREM 2.1. — Let (M,g) be a complete Riemannian manifold of
dimension n > 3, which is projectively symmetric and affinely homoge-
neous, then either

a) (M,g) is isometric to ̂ (r) or to S71^)/ ±ld with some choice of
symmetries, or

b) (M, g) is a Riemannian symmetric space.

COROLLARY 2.1. — Let (M^g) be a complete analytic Riemannian
manifold of dimension n > 3, which is projectively symmetric and projec-
tively homogeneous, then either
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a) (M,g) is isometric to Sn(r) or to ̂ (r)/ d=Id with some choice of
symmetries, or

b) (M, g) is a Riemannian symmetric space.

Proof. — The proof follows from THEOREM 2.1 and from a result
of SOLODOVNIKOV [10], stating that a complete analytic Riemannian
manifold every projective Killing vector field is affine unless (M,g) has
constant sectional curvature. []

3. Some final remarks

LEDGER and OBATA in [5] have studied the case of a differentiable
distribution of affine symmetries in an affinely connected manifold. We
now want to consider the analogue situation in the projective case.

Let us start with the following

Definition 3.1. — (M, V) is said to be smoothly projectively symmetric
(say s.p.s.) if there exists a differentiable map S : M —> P(M, V) such
that for every x in M S(x) is a projective symmetry at x (in this
definition P(M, V) is considered as a Lie group with the compact open
topology; for this fact we refer to [3]. Following LEDGER and OBATA [5]
and KOWALSKI [4], we have the following

PROPOSITION 3.1. — J/(M,V) is s.p.s. then it is projectively homo-
geneous.

Proof. — We fix any XQ M and consider the C°° map f : M —^ M given
by f(x) = Sx(xo); since s^ (x) = x for every x in M, an easy computation
shows that df(xo) = —2 Id, so that / is locally invertible around the
point XQ. If now K denotes the closure in P(M, V) of group generated by
all the symmetries, then the previous argument shows that the orbit of
K through the point XQ is open and this implies that K acts transitively
on M. Q

In the study of s.p.s. spaces the fundamental form TT plays an important
role (see (1.11) for the definition).

Remark.
For the sphere 5'71 with the standard metric there is a bijection between

^(S71) and the smoothly projectively symmetric structures.
It will be very useful to consider the affine torsionfree connection V*

projectively related to V through the one form TT, in order to find necessary
and sufficient conditions for (M, V) to be inessential. We now recall the
following fact that follows immediately from THEOREM 1.1.

If there is a point q in M at which the Weyl curvature tensor does
not vanish, then every smoothly projectively symmetric structure on M
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is inessential and the discussion is reduced to the affine case. So we may
restrict ourselves to the projectively flat case.

PROPOSITION 3.2. — Let (M,V) be projectively flat and s.p.s. Then
(M,V) is locally inessential (i.e. there is a projectively related connection
for which all the symmetries are locally affine transformations) if and only
z/V*Ric* = 0, where Ric* is the Ricci tensor o/V*.

Proof. — If (M, V) is locally inessential, then the projectively related
connection that is locally invariant under all the symmetries is necessarily
V*, so our conclusion follows. On the other hand let us suppose that
Ric* is V* parallel; since (M,V*) is projectively flat, we have that the
curvature tensor of V* is parallel too, hence at each point p we have a
local affine symmetry a? for V*; but the projective transformation Sp of
(M, V*) has its corresponding 1-form vanishing at p by construction and
so a? and Sp coincide (where a? is defined) because their 2-jets are equal
at p and we are done. []

Remark. — The condition V* Ric* = 0 can be written down in terms
of VRic and TT only of course, but this expression is quite complicated
and we prefer the first one.

Under some additional assumption we are now going to give a geome-
trical interpretation or the previous result.

We suppose that M is simply connected and that the Ricci tensor
of V is symmetric : the second assumption is not too special because
there is always a projective change of V so that the Ricci tensor becomes
symmetric (see [1]).

We recall now the following facts (see VEBLEN [11] and NAGANO [6]) :
we consider the direct product M x H covered by the coordinate system
(x\x°) where (x1) is a coordinate system on M and letus denote with
(r^) the Christoffel symbolds for V : consider now on M x H the
connection V° whose Christoffel symbols are given by (Greek indices run
over 0,1, . . . ,n)

r^ = ̂ W,k + W + W - ̂
where

g^C = (^°)2 + (n -i)-1^^' V(r) e T(M x R)
and (Rij) are the local components of the Ricci tensor of V.

We state without proof the following properties of V° :
a) if V is projectively flat, then V° is flat ;
b) every projective transformation / of (M, V) can be lifted to an

affine transformation of M x H with respect to V°. Indeed if $ is its
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corresponding 1-form, then by simply connectedness of M and Ricci
symmetry, $ is the differential of a C°° function p and it is a lenghty
but straighforward calculation to verify that

f°^x°)=(f(x)^o-p(x))

works.
So let us return to a s.p.s. space : for every q in M take the C°° function

pq with pq(q) = 0 and dpq equal to the corresponding 1-form of S q ; then
for every t G R

•^G^0) = (Sq{x),XQ -Pq(x))

is an involutorial affine transformation of (M x R, V°) lifting Sq and fixing
(q,t). At (q,t) we have

r(Mxfi)(^=(9/^}9D^

where D^ = {(^,V) C T(M x R)^ \ 7r(X) = V} is the eigenspace
of ^^,1) Te[3Lilve to the eigenvector -1, while (Q/9x°) is the eigenspace
relative to the eigenvalue +1.

So we have obtained a C°° distribution D which is integrable if and only
if TT is closed, as one can easly check. From now on we will suppose that TT
is closed in order to get maximal integral submanifolds for the distribution
D : we fix a connected maximal integral submanifold M' and take along
this the vector field ^ = 9/9x° as normal vector field; according to K.
NOMIZU and U. PINKALL [7] we consider on M' the induced connection
V by means of

V^ = Vx^ + A(X, Y)^ VX, Y c H(M')

and if we put X = Xi +7r(Xi)^ and Y = Vi +7^1)^ with Xi.Vi € rM,
then

v^y=vM+7r(v^yi)^
and h(X,Y) = -(n - I)-1 Ric*(Xi,ri)

moreover V^ = X \/X e H{M'), so the shape operator S is equal to
-Id and the transversal connection form vanishes (following the same
notations as in [7]).

Since the ambient space M x R is flat, the cubic form C for the affine
immersion M' —> M x R is given by

G(x,y,z)=(v^)(r,z)
TOME 117 — 1989 — ?3



A CLASS OF SYMMETRIC SPACES 359

and with the same notations as above we find that

C(X^Z) = -(n- ir^V^Ric*)^,^).

So we may reformulate PROPOSITION 3.2 as follows :

PROPOSITION 3.3. — Let (M,V) be a simply connected, protectively
flat and s.p.s. manifold with symmetric Ricci tensor; suppose furthermore
that the fundamental form TT is closed. Then (M, V) is locally inessential
if and only if the cubic form of any integral submanifold M' for the
distribution D on M x R described above vanishes.

This characterization of local inessentiality of s.p.s. manifolds in terms
of the vanishing of the cubic form of an affinely immersed submanifold
of M x IR could be useful to obtain some deeper results, because of the
importance of the cubic form in the investigation of the geometry of affine
immersions (see [7]); we hope this will be the object of a further paper.
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