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ARITHMETICALLY NORMAL SHEAVES

BY

Giorgio BOLONDI (*)

REsUME. — Nous déterminons la borne supérnieure pour la troisiéme classe de Chern d'un
faisceau courbiligne & cohomologie seminaturelle; nous déterminons aussi toutes les triplets
de classes de Chern pour lesquelles il y a deux différentes cohomologies seminaturelles. Nous
faisons ceci en introduisant la notion de faisceau arithmétiquement normal.

ABSTRACT. — We find the upper bound for the third Chern class of a curvilinear sheaf
with seminatural cohomology, and we determine all the triples of Chern classes for which
there exist two different kinds of seminatural cohomology. This is done by introducing the
notion of arithmetically normal sheaf.

1. Introduction and preliminaries

In this paper we study the cohomology of rank two reflexive sheaves
on P3, with a particular attention for a simple kind of cohomology called
“seminatural cohomology™ [HH1], which is the most natural “minimal
cohomology™.

A sheaf F is said to be “reflexive” if the natural map & — F** is an
isomorphism; there are several interesting reasons for studying such shea-
ves, explained for instance in [HA 1], where their principal properties are
exposed. In particular, reflexive sheaves can give informations about new
curves, they “arise naturally from vector bundles of higher rank”, and
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72 G. BOLONDI

they arise naturally also “in the study of rank-two vector bundle on P3"
(see the ‘“‘reduction-step’’-construction of [HA 1] and [HA2)).

Since these sheaves are interesting mainly when their sections are smooth
curves, Hartshorne and Hirschowitz introduced the notion of *‘curvilinear
sheaf™, that is a sheaf such that a suitable twist has smooth sections.

Our problems can be shortly formulated in this way: given a triple of
integers (c,, ¢, c3), find, if it exists, a stable reflexive sheaf on P* having
seminatural cohomology and Chern classes (c,, ¢,, ¢3). In particular, for
fixed (c,. c;), determine M [(c,, c,)]=maximum of the set of all ¢, such
that there exists a sheaf with seminatural cohomology and Chern classes
(¢y. €. ¢3). These problems are closely related to those ones studied
in [HH1].

We introduce the notion of arithmetically normal sheaf: a rank-two
curvilinear reflexive sheaf # on P? is said to be arithmetically normal if
h'(P3, # (1))=0Vt. Suitable twists of an arithmetically normal sheaf
have sections that are arithmetically normal curves. The main reason for
introducing this notion is the following one: we can define a piecewise
linear function m [(c,. c,)] (whose asymptotical behaviour is (4/3) c3'?) such
that if # has seminatural cohomology, then it is arithmetically normal if
and only if m(c, (F), c;(F) <y (F).

In this way we can study the problem of determining the largest possible
¢, for sheaves with seminatural cohomology by using the results of Gruson
and Peskine about the numerical characters of the arithmetically normal
curves.

We define another piecewise linear function M (c,, c¢;) (with
M(c,. c;)~(4'3)c3? and M—m~c}?) such that if # has seminatural
cohomology then ¢, (F)<M(c,(F). c,(F)). Moreover, we determine
all the existing arithmetically normal sheaves with seminatural cohomo-
logy: in particular we see that if cye[m(c,, c,). M(c,. c,)}, then there
exists an arithmetically normal sheaf with seminatural cohomology and
Chern classes (c,. ¢,. ¢3). So, cy=M (c,, c,) is the answer to the question
of determining the largest possible third Chern class of a curvilinear sheaf
with seminatural cohomology.

As another consequence, we get all the triples of Chern classes (c,, ¢,, ¢3)
for which there are two different kinds of seminatural cohomology. This
gives us examples of reducible spaces of moduli of curvilinear sheaves
with seminatural cohomology.
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ARITHMETICALLY NORMAL SHEAVES 73

Our results suggest to state the following conjecture: given a triple
(c;, €3, ¢3) With ¢3<M(cy, ¢,), ¢,=0, =1, (c;, €5, €3)#(—1,2,0) or
(—1, 4, 0) (see [HHI1)), c3=c,c,mod2, there exists a stable curvilinear
sheaf of rank-two on P3 with seminatural cohomology and Chern classes
(cy, €3, C3)

Remark that existence results [in a different range of (c,, c,)] for sheaves
with seminatural cohomology have been proved by Hartshorne and
Hirschowitz, and will appear in a forthcoming paper. In another paper
we prove our conjecture for ¢, < 10, and we construct sheaves with semina-
tural cohomology and exactly one group H!(P3, # (1)) different from
zero.

P? always means P}, where k is an algebraically closed field of characte-
ristic zero. We always use normalized sheaves (that is with
¢,=0, —1). We often write H!(# (n)) and h'(F (n)) instead of
H! (P2, # (n)) and h' (P2, # (n)).

Our general references about reflexive sheaves will be [HA1] and [HA2]
(in particular for the well-known correspondance sheaves-curves).

DEFINITION 1.1, — Let & be a rank-two reflexive sheal on P3. Then
F is said to be curvilinear if it has the following property: If # (s) is
globally generated, then the zero set of a general section of # (s) is a
smooth curve.

DEerFINITION 1.2. — Let # be a rank-two torsion free sheaf on P with
¢, =0, —1. # has seminatural cohomology if for every n> —2—[c, (¥)/2]
([ ] means the integral part) at most one group H'(# (n)) is different
from zero.

Remarks 1.3. — If & has seminatural cohomology, then the zero set
of a section of # (p) is of maximal rank (see [BE]).

The condition n> —2—[c, (#)/2] is necessary in order to get a good
definition; indeed, if for every integer n at most one of the groups
H'(F (n)) is different from zero, then necessarily & is locally free [HH1),
and the problem is completely solved in [HH1].

It is known that if # has seminatural cohomology. then it is stable,
except in four cases [BOL).

We need the properties of the spectrum of a reflexive sheaf. We collect
here the results needed later, whose proofs are in [HA 1) and [HA2).
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74 G. BOLONDI

ProrosITION 1.4. — (A) Let F be a rank-two reflexive sheaf on P> with
¢;=0 or —1 and H°(F (—1))=0. Then F has a spectrum, denoted
Spec(#), that is an unique set of integers (k;), 0<i<c, (%), with the
Jfollowing properties:

R (P2, F (1))=h° (P!, ®,Cp1 (k;+t+1)  for t<—1

R (P, F (1) =h' (P!, ®,0p (k;+t+1)  for t>-3—c,.
P

(B) Cs(f)= _zzik[""‘cl Cz.
(C) If there is a k < —1 in the spectrum, then —1, =2, . . .k also occur
in the spectrum if ¢, =0, and —2, —3, ... k also occur if c,=—1. If F

TABLEAU
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ARITHMETICALLY NORMAL SHEAVES 75

is stable and c, =0, then either 0 occurs or —1 occurs at least twice; if
¢, =—1, then —1 also occurs.

(D) Let # be stable, and let K=max{ —k;}. If c,=0 and there is a
ko with —K<kqo< —1 which occurs just once in the spectrum, then each k,
with —K<k,;<k, occurs exactly once in the spectrum. If ¢,=—1 and .
there is a ko with — K<ky< —2 which occurs just once in the spectrum,
then each k; with — K<k,;<k, occurs exactly once in the spectrum.

2. Arithmetically normal curves and arithmetically normal sheaves

We want to determine the largest possible c, for a sheaf with seminatural
cohomology, thus bounding the range of Chern classes of these
sheaves. So, we want to study the behaviour of this kind of cohomology
if ¢3»c,; in particular we are interested in the range where (% (n))=>0
for every n> —2—c,. So, we use arithmetically normal curves, and our
basic results are Gruson-Peskine’s ones.

DEFINITION 2.1. — A rank-two reflexive sheaf & on P?3 is said to be
arithmetically normal if it is curvilinear and H! (P3, # (n))=0 for every n.

Remark 2.2. — For a suitable twist, the sections of an arithmetically
normal sheaf are arithmetically normal curves.

DEFINITION 2.3 (see [GP], def. 2.4). — Let Y<P" be a projectively
Cohen-Macaulay two-codimensional subvariety, contained in an hypersur-
face of degree s and not contained in any hypersurface of degrees. A
sufficientely general projection of Y on the hyperplane at the infinity gives
an exact sequence

0— @IZ4Co-1(—n) = DI Cpr-1(—) > Cy—0

withno2n, > ... 2n,_,2s.
The sequence (nq, ny, ..., n,_,) is called the numerical character of Y.

It is easy to see that if Y is integral this sequence is without
gaps. Moreover, there is an important theorem:

THeorem 2.4 [GP). — Let (n)o¢,¢,-1 be a decreasing sequence of
integers such that n,<n,, ,+1 (i<s—2)and s<n, ,. Then there exists an
arithmetically normal curve in P* with numerical character (n)g ¢ gs- -
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76 G. BOLONDI

Now, if # is a reflexive sheaf with seminatural cohomology and c; is
large compared with c¢,, ¥ (# (p)) =0 for every p= —2. So, if we take a
section of # (n), n>0, whose zero set Y is twocodimensional, we get an
exact sequence

0= Cps(—n)=F =S, ()=0 if ¢, =0,

or
0—-Cp3(—n)=F = SF,(n=1)=0 if ¢,=—1,

where Y is a twocodimensional Cohen-Macaulay subscheme with
h'(Fy(p)=0Vp. This follows from the fact that h' (# (—1)) =0 implies
that Spec# contains only negative integers, and so
R*(F (p))=0Vp< —1. Since by hypothesis h! (# (p))=0Vp=>—2, we
have h' (S, (p))=0Vp.

The following proposition tell us the numerical character of a suitable
section of a sheaf with seminatural cohomology.

ProPOSITION 2.5. — Let F be a rank-two reflexive sheaf on P3 with
seminatural cohomology and Chern classes (0, c,, c4) such that ¢ (¥ (t)) =0
Vi> -2 Let p=max{t|h°(F (1))=0}, let f be a general section of
F (p+3), and let Y be the zero set of F. Then

$2p+4=X(F (P-2)-3(F -D)—x(F PN +1
S3pes=X(F (P-1))-3x(F (p))+1
S2,+6=X(F (p))
s;=0  for t#2p+4,2p+5,2p+6,

where s, is the number of elements equal to i in the numerical character
of Y.

Remark 2.6. — It s also possible to compute the numerical characters
of the sections of the further twists of #, and thus to obtain the relation

between the numerical characters of two curves which are sections of two
different twists of the same reflexive sheaf.

Proof. — First of all, we prove that p> — 1. Infact, # has seminatural
cohomology. so [BOL}.

(@) 1t 1s stable. and then h°(.#)=0 (and p>0),

TOME 118 - 19K" [ |



ARITHMETICALLY NORMAL SHEAVES 77

(b) h°(F (—1))=0 if it is an exception to stability, and p> —1. By
duality, h*(F ())=0 if t>—3. Then & (p+3) is globally generated
(thanks to Castelnuovo-Mumford’s lemma).

Let fe H°(# (p+3)) be a general section; its zero set Y is a Cohen-
Macaulay curve, generically locally complete intersection, with
R (Fy(1)=0Ve. In fact, since Y (F ())20 Vi=>-—1, we have
h! (# (1))=0 V1, and we have an exact sequence

0-Cp3(—p-3)=F S, (p+3)=0
with
deg Y=c,+(p+3)?

1
P.(Y)= ;[c,—(4—2(p+3))(c2 +(p+3)H)+2]

Moreover.
KO(F (p+1)#£0 = K (S, (2p+4))#0
R (F (p)=0 = h°(SF,(2p+3))=0.

So, s=2p+4, where s is, following [GP], the minimal degree of a surface
containing Y.
Moreover,

HY(F (p+1)#0 = H*(S,(2p+4)=0 = H'(C,(2p+4))=0.
But we have an exact sequence
() O—=H'((,2p+4) = BN H* (Cp2(2p+4—n))
= @¥PH (Cp2(2p+4-0)).

Hence H¥(Cp2(2p+4—-n))=0Vi and then 2p+4—n> -2, that is
n<2p+6Vi Thuss,=0fort>2p+6.
Since h°(F (p))=0 and ¥ (F (p))=0. we have

UF (PN=h (F (P=h* (I, Qp+IN=h"(C,2p+3)).
As before, the sequence (*) gives
R (€, 2p+3)=Y R (Cp2(2p+3—n))=5,,.,

BULLETIN DF LA SOCIETE MATHEMATIOUF DF FRANCF



78 G. BOLONDI

In the same way we get

A(EF @-D)=h(F (p-1)=h (Fr2p+2))-1
=h'(0y(2p+2))-1 =35p+6+52p+s— 1

and hence
S2p+s=X(F (p—=1)=-3x(F )+ 1.
X(F (p=2)=h*(F (p—2)=h*(Fy2p+1))-4
=h'(CyQp+1))—4=65,,,6+35;,45+S2p40— %

and hence
52p+4=X(F (P=2)=-3x(F (- +3x(F )+

An analogous result holds if ¢, = —1.

PROPOSITION 2.7. — Let # be a rank two reflexive sheaf on P* with
seminatural cohomology and Chern classes (—1, c,, c4) such that
L(F @)=0 Ve>—1. Let p=max{t|h°(F (t))=0}, let f be a general
section of F (p+3), and let Y be the zero set of f. Then the numerical
character of Y is given by

S2p+5=A(F (P))
S2p+a=X(F (P—1)-310(F (P)+1
52p+3=X(F (P-2)-3((F Pp-D)—1(F PN+1
5,=0 otherwise.

Proof. — The proof is exactly as in 2.5; we only have to consider the
sequence

0= Cps(—p—3)=F =S, (p+2)—0.

LEmMMA 2.8. — Let ¥ be a coherent sheaf with ¢, =0, and let
@+ D(E+2)<c,<(t+2)(1+3). Then x(F () =min{x(F (p)|p= -2}.
Proof. — Let

S (x)= %t‘,—(x+2)c,+_-:(x+l)(x+2)(x+3). x€eR.
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ARITHMETICALLY NORMAL SHEAVES 79

Then f'(x)=x*+4x+(11/3)—c,, and f'(x)=0 if x=—2+(c,+1/3)"2
So the relative maximum of f(x) is obtained for some x< —2. In order
to prove our lemma, it is sufficient to prove that x (F ()< (F (t—-1))
and x (& (1))<(F (t+1)). But it is now easy to check that

VE -0 (F @O)=c,—(+1)(t+2)20
and
YEFE+D)) =1 (F (0)=(+2)(t+3)—c,>0.

LEMMA 2.9. — Let # be a coherent sheaf with c,=—1, and let
(t+1)2<c,<(t+2)%.  Then x(F (1))=min{x(F (p))|p=—1}.

Proof. — Now %(F (p))—x(F (p—1))=(p+1)*—c,, and the proof is
the same as for 2. 8.

ProposITION 2.10. — Let # be a rank-two curvilinear sheaf on P?
with  seminatural cohomology and Chern classes (0, c,, c5),
(+1)(+2)<c, <(t+2)(1+3).

Then the following conditions are equivalent:

@) x(F (n)=20,Vn> -2

(b) c3=(2t+4)c;—(/3)(t+ 1)t +2) (1 +3);

(c) & is arithmetically normal.

Proof. — (a)<=(b). Thanks to lemma 2.8, x(# (n))=0, Van> -2, if
and only if (& (1))=0; but this is equivalent to (b) thanks to
Riemann-Roch. (a)<>(c). If & is arithmetically normal, then it has
no h!; therefore the Euler characteristic of # (n), n> —2, is always equal
to h® (¥ (n)) or h?(F (n)) (there is no h* thanks to Serre duality), that is
it is non negative. Conservely, if & has seminatural cohomology and
X (F (n)=0, Va> =2, then h' (F (n))=0, Vn> —2; but this implies that
the spectrum of # is strictly negative; therefore h' (# (n))=0, Vn.

PropPOSITION 2.11. — Let & be a rank-two curvilinear sheaf on P*
with  seminatural cohomology and Chern classes (-1, c,. ¢3),
(t+ 1) <c,<(t+2)%

Then the following conditions are equivalent:

(@) x(F (n))20,Vn2 -1,

(b) c32Q2t+3)c,—(1/3)(t+ (1 +2)(2143):

(¢) & is arithmetically normal.

BULLETIN DE LA SOCIETE MATHEMATIQUE DF FRANCF



80 G. BOLONDI

Proof. — Almost as above.

Remark 2.12. — Remark that propositions 2. 5 and 2. 7 impose strong
conditions on an arithmetically normal curve Y which is a section of a
sheaf with seminatural cohomology. In particular we must have
e(Y)<s(Y), where e(Y)=max{t|H' (Y, 0y (1))#0} and

s(Y)=min {t|H(P3, #,())#0}.
NotaTioN 2.13. — If (¢ +1)(t+2)<c, <(t+2)(t+3), we put
m(0, c;)=2t+4)c, —(2/3)(t+1) (1 +2) (t+3);
if (t+1)2<c,<(t+2)? we put

m(—1,c)=Q2t+3)c,—(1/3) e+ 1) (t+2)(21+3).

3/2

Remark 2.14. — The asymptotical behaviour of m is (4/3) c3'%.

3. Non existence of sheaves with seminatural cohomology and large c,

Now we want to give bounds for the Chern classes of a reflexive wheaf,
in order to determine the existence of the non-existence of a sheaf with
those classes and seminatural cohomology. When we express c, in terms
of c,, the bounds that we find are not defined by polynomials, but by
“piecewise linear”” functions, whose asymptotical behaviour is easy to
compute. The edges of these piecewise linear curves are usually in the
points corresponding to the values c,=t*+1t (if ¢,=0) or c,=1 (if
¢, = —1), where t is a nonnegative integer.

ProposiTiON 3.1. — Let & be a rank-two curvilinear reflexive sheaf on
P3 with Chern classes (0. c;, ¢,), and let (t+1)(1+2)<c,<(1+2)(1+3)
(t=1). If # has seminatural cohomology, then either (a) h° (F (1)) =0, and
€3<(21+5)c,—(1:3)(t+1)(t+2)(21+9); or (b) h° (F (1)) #0, and either

Qt+4)c, -2 1" +61+11)=2<ey U+, =(ID1r+ N1+,

orc,=t7+51+3, c;=21+4)c,—(1/3)t(t+ )2t +T)+ L.

Proof. — (u) Let us suppose ¢3>(2t+5)c;— (1 )1+ (21 +9)  Furst
of all, we prove that x (# (n))>0, Va> —2. Since
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ARITHMETICALLY NORMAL SHEAVES 81

L(F @)=min {x(F (n)|n> -2},
it is enough to check this for y (# (r)); that is to check that
c3>(2t+4)c;—(2/3) e+ D) (e +2) (e +3).
But
3>t +5)c,—(1/3) @+ 1) (t+2)(2t+9),
and

2t+5c, -+ (+2)(2t+9)—(2t+4)c,+
+2/E+DE+2)(+3)=c,—(t+1)(t+2)20.

So the cohomology of # is

-2 -1 t—1 t o+l
i o0 0 0 0 0 *
h! 0 0 0 0 0 0
hZ * * * 3 *® 0
Bl o 0 0 0 0 0
since
x(f(r))>0} 2
h*(F (1))#0,
RO (F (1))=0 A
and

X(FE+D))>A(F (1) = R (F@+1)=0 = h°(F (t+1))#0.

Take a general section of F (¢ + 3) (which is globally generated); its zero
set Y is a smooth curve with h!(f,) =0 [since h' (F (—1—3))=0]; there-
fore Y is connected. With the notations of prop. 2.5, t=p and
Sy +6=X(F (1))>0. Moreover,

Sues=X(F (=130 (F(N+1
=(21+9; =N+ HE+2D2t+9+1-¢c, €0

by hypothesis. Since 1t must be non negative. we get s,,, ,=0. But this
implies s,,, =0 too, since s,,.,>0 and the numencal character must be

BULLETIN DE LA SOCIETE MATHEMATIQUE DF FRANCE



82 G. BOLONDI

without gaps (Y is integral). But
$2+a=X(F (=2)=-3(x(F t—-1)—x(F D) +1

C3—(+3)c,+(1/3)(t+ 1) (2 +8t+18)+1.

LS R

We claim that this is strictly positive. In fact,

c3>(2t+5)c,—(1/3) e+ 1) (e +2)(2t+9)
=(2t+6)c,—(2/3)(t+1)(t2+8t+18)-2,

since
QRt+5)c;=(1/3)t+1D)(t+2)(2t+9)—(2t+6)c,
+(2/3)(t+1)(t*+8t+18)+2=t>+T7t+8—c,>0.

This is a contradiction.
(b) Since 0<h®(F (1)) =% (F (1)), we have

,%c3?(1+2)c2—(l/3)(r+ D(E+2)(t+3)+1,

thatis c; > (2t +4)c, —(2/3)t (12 +61+11)—-2.
So the cohomology of # is

' -2 -1 t—1 t t+1
h° 0 0O o 0 * *
h? 0 0 O 0 0 0
hz * * *® *x 0 0
h? 0 0 O 0 0 0

Let us suppose ¢c;>(2t+3)c,—(1/3)t(t+1)(21+ 7).
Take a section of # (1+2) whose zero set is a smooth curve Y. With
the notations of proposition 2.5, p=t—1.

Since x (F (t—1))= ¢ (F (1)) >0. we have s,,,>0.

Here ¢;>(2t+3)c,—(1/3)1(t+1)(21+7) implies s,,,,<0, and then
actually s;,,,=0 and c;=Q2t+3)c,— (1)t (t+DQt+7+1. So we
must have s,,, , =0, that is

O=y(FU=-N-3(FU=-2)—x(F(-D)+1=

TOME 11S — 1987 - ~ |



ARITHMETICALLY NORMAL SHEAVES 83

=%c,-(mz)c,+(1/3):(z=+6z+11)+1.

This leads to an equality
Qe+3)c,—(1/3) e+ 1)t +N+1=Q2t+4)c,—(2/3)t(t*+61+11)-2
which gives
c;=t*+5t+3
c3=Q2t+3)c,—(1/3)t(e+1)(2t+7)+ 1.
This completes the proof.
We have a similar result if ¢, = —1.

PrOPOSITION 3.2. — Let & be a curvilinear reflexive sheaf with Chern
classes (— 1, ¢, c3) and let (t+1)*<c,<(t+2)2 (¢=1). If F has seminatu-
ral cohomology then either

(@) R°(F (1))=0, and c; <(2t+4)c,—(1/3)(t+ 1) (212 + 1014 9);
or (b) h°(# (1)) #0, and either

Qt+3)c;—(1/3)t Q2 +9t+13)<c3; (2t +2)c;—(1/3)t 212+ 61+ 1),
orc,=t2+4t+1, c;=2t+2)c,—(1/3)t Qe +6t+1)+1.

Proof. — The proof of this proposition is almost identical to the proof
of proposition 3. 1; therefore it is omitted.

DEefFINITION 3.3. — Let t>1 be an integer and c, an integer such that
(t+2)-1<c,<(t+3)*—1. We put

MO, c;)=Qt+5)cy—=(1/3)(t+1)(+2)(2t+9).

Let now c, be an integer such that t2+3t+(3/2)<c, <t?+51+(11/2).
We put

M(=1,¢c)=Qt+4)c,—(1/3)t+ 1) (22 + 101 +9).

ProposITION 3.4. — Let t2>2 1 be an integer and c, an integer such that
(t+1D)@+2)<cy<(t+2)(t+3). Then

(2t+85)c;—(1/3)(t+1) (1 +2)(21+9)

M (0, c,)=max{
(2t+3)c,—(1/3)t e+ D21+ 7).
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Proof. — It is enough to check that
2t+3)e,—(1/3)+1D(E+2)2t+9)—(2t+5)c,
+(1/3) @+ 1) +2)2t+9)=2(>+4t+3—c,).

PropPosITION 3.5. — Let t>1 be an integer and c, an integer such that
(t+1)2<c,<(t+2)%. Then

Qt+4)c,—(1/3)(t+1)(2t*+101+9)

M(-—l,c,)=max{
Qt+2)c,—(1/3)t (212 +61+1).

So we can summarize 3.1 and 3.2 with the following

COROLLARY 3.6. — Let & be a normalized rank-two curvilinear reflexive
sheaf on P? with seminatural cohomology. Then

3 (FISM (e, (F), ¢y (F)).

Remark 3.7. — The asymptotical behaviour of this bound is
cy~(4/3)c32 ‘

4. Existence of reflexive sheaves with seminatural cohomology

In this chapter we construct arithmetically normal sheaves with semina-
tural cohomology, that is we work in the range where % (& (n))=0,
Vn>—2. We reverse the construction of propositions 3.1 and 3.2 using
the fact that every numerical character without gaps is effective for some
smooth curve Y.

The first result of this kind is the following one:

ProPoOSITION 4. 1. — Let (t+1)(1+2)<c,<(t+2)(1+3), with t>1, and
let

t+8)c,—(2/3) (12 +61+11)=2<c; <t +3)c, = (1/3) 1+ 1) 21+ 7),

orlet c,=12+51+3, cy=2t+3c,—(1/3)t(t+DNQRt+7+1,

¢y even. Then there exists an arithmetically normal sheaf # with seminatu-
ral cohomology and Chern classes (0, c,. c,), with h° (F (1)) #0.

Proof. — First observe that
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Q2t+3)c,—(1/3)t(t+1)2t+7)— 2t +4)c,
+(2/3)t (12 +6t+11)+2=t2+5t+2—c,.

So, if ¢, <(t+2)(t+ 3)—4, there exist values of ¢, between

Qt+4)c, +(2/3)t (2 +6t+11)—-2
and

Qt+3)c,—(13)t(t+1) Q2 +7).
Now,
Qt+4)c,—(2/3)t (2 +61+11)=2>Qt+4)c,—(2/3)(t+ 1) (t+2) (¢t +3);

S0 ¢3>(2t+4)c,—(2/3)(t+1)(t+2)(t+3), and this is equivalent to say
that y (# (¢1))>0. Moreover,

WUF @=2))=-3x(F@—-1)=Q2t+3)c,—c;—(1/3)t(t+1)2t+7)=0
< 2t+3)c,—(1/3)t(+1)2t+T)=cy;

and

XFE=3))+1=-3x(F E=-2)N+3x(F (-1)
= %c,—(t+2)c2+(l/3)t(12+6t+]l)+ 120
< 32Qt+4)c,—(2/3)t (> +6t+11)-2.

Let us consider now a smooth arithmetically normal curve Y with numeri-
cal character

2044, ..., 2044, 2043, . 2043, 2042 . 2142
$31+4 times Sy, + 3 timies S, .2 times

where

Sp+a=A(F (1=1))
SZ:¢3=X(-¢("‘2))'—3X(;("‘I))+|
52002=X(F =3+ 1=-3(X(F (t=2)=x(F (t=1]))).

We have seen that
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52,4420 (since  (F (t—1))=x(F (1)) as usual)

$2+321

5214220

Moreover, S3, 44+ 5343 +S34+2=2t+2.

So this character is without gaps and s=2t+2 (with the notations
of [GP)).

By means of easy but tedious computations we get the degree and the
genus of the curve Y.

Deg(Y)=53.4(2t+4)+5;.,3(2t+3)
+52422t+2)= Y i=c, + (1 +2)%

g(V)=1+ %[21’6‘-'(2t+4—i)(2t+4+i—3)

+ Yiueat et 0 4 3 i) 21+ 3+i-3)

=32tva

+ Y2t Qe+2-)Qt+2+i=-3))=1+3+412+41t+1tc, + %c,.

i=82ie4%82¢+)

We want to consider an exact sequence
0=Cp3(—t-2)=F =5, (t+2)-0.

This is possible if we can find a section f of w,(—2t) which generates the
sheaf w,(—2t) except at finitely many points. But Y is smooth and
connected; so it is enough to find a non trivial section. By Serre,
k% (0, (=21))=h'(€,(21)), and h'(C,(21))#0 since s,,,3#0 and there
IS an exact sequence

0—-H'(C,(21)) = @1 H (Cp2(2t—n;)) — 0.
It is easy to see that the Chern classes of F are
¢, (F)=0

¢ (F)=degY—(t+2)?=c,
3 (F)=2g(Y)=2tdegY—2=c,.

At last, F has seminatural cohomology. In fact, Y is arithmetically
normal. and so
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W' (F (p)=h' (S (p+1+2))=0, Vp;
R (F @E)=0 if p<t—1

since
R Fy@+t+2)=0 for p+t+2<2t+1 (s=21+2).

By Serre duality, this implies h® (F (p))=0 at least for p> —2.
Moreover, h(F (p))=0 for p>1, since

0-H*(F ()~ H*(Sy(p+1+2)

is exact, and h* (S, (p+t+2)=h'(Cy(p+1+2))=0, Vp=t. Therefore
the cohomology of # is given by the diagram

| =2 =1 0 ... =2 =1 t 1+1
!
i 0 0 o0 0 0 = =
Rl 0 0 0 0 0 0 0
Rl = * = * « 0 0
! 0o 0 0 0 0 0 0

If / has only simple zeroes, F is curvilinear. But thanks to [GP]. p. 41,
Y can be chosen such that w,(—e(Y)) has a section without multiple
points. In our case, e(Y)=21+1 if x(F (t-1))>0, and e(Y)=2:
otherwise.

If c,=0+51+3, c;=Qt+8c,—(/Dtt+1)Qt+N+1, take a
smooth anthmetically normal curve Y with numerical character
Spea=Y(F (1=1)).

ProposiTion 4.2, — Let (1+ 1) <c,<(1+2), and let
Qr+3c, -0 D12 +91+ 1)<, <20+, = (1N +61+1),

or et c;=r"+31+1 and cy=21+Dc,=(I' Nt +61+1)+1,
c¢y=c,mod 2. Then there exists an arithmetically normal sheaf with semi-
natural cohomology, Chern classes (— 1. c,. ¢,) and h® (F (1)) #0.

Proof (sketch). - Take an anthmetically normal smooth curve with
numencal character

21} 2043 2142, L2+ 2 2+ 20+
——— et e S Vel e
3,,.y LIMES $5,.3 LiIMes 33,43 Limes
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where
Su+3=X(F (t—-1))
5242=X(F (=2))-3x(F -1 +1
S341=X(F (-3)-3A(F -2)-x(F -1 +1
(here s=2t+1), and consider the sequence

0= 0p3(—t-2)2F =2 S5,t+1)-0.

Then # has Chern classes (—1, c,, ¢4) and its cohomology is given by
the diagram

| =1 0 1 ... =2 =1 ¢t t+1

|

!
| o 0 o 0 0 x =
| o o0 0 0 0 0 O
| x = = * « 0 0
Bl 0o o0 o 0 0 0 0

In the same way we get another result:
PROPOSITION 4.3. — Let (t+1)(t+2)<c,<(t+2)(t+3), and ler
t+4c,— 23+ 1) +2)(1+3)<c,
<Q2t+5)c,—(1/3) e+ 1)(+2)(21+9),

¢y even. Then there exists an arithmetically normal sheaf with seminatural
cohomology, Chern classes (0, c,. c;) and h° (# (1))=0.

Proof. — First observe that

(2t+5c,—(1/3)t+ 1) +2)(2t+9) -2t +4)c,
+(23) @+ 1) +2)(t+3)=c,—(t+1)(t+2)20.

Moreover,
€32(21+4)c, =2+ N +2)(1+3) = Y (F(1)=0,
and

X(FE=1D))=3x(F()+121
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< —Cc3+2t+5c,+(1/3)+D(+2)2t+9)>0
< 3<2t+5)c,—(1/3)@+1)(+2)21+9).

At last,
WF(E=2)+1-3x(F (-1)—-x(F (1)

1
= 56,—(!+3)cz+(1/3)(t+ D@2 +8t+18)+1,

and then

X(F @=2))+1-3(F -1)—x(F [))=0
< 3<2(t+3)c,—(2/3)(t+ 1) (12 +8t+18)-2.
But
2Qt+4)c,—(2/3) e+ ) (t+2)(t+3)
>2(t+3)c;—(2/3)t+ 1) (1> +81+18)-2.
In fact,
2t+4)c; =23+ D) +2)(1+3)—(2t+6)c,
+(23)(t+1) (12 +81+18)—2=2(t*+5t+6—c,)>0

since ¢, <t*+51+6.
So we put

52106=X(f(‘))
52105=X(f(1‘l))—B(l(f(')))"’]
Spea=X(F U=+ 1=-3((F (-D)=x(F (1)

and we choose a smooth anthmetically normal curve with numencal
character (we have verified that it is without gaps)

2046, ... 2046, 2 +S. . 2145, 21+4. ... 21+4
S3, .6 tiMeEs $3,. ¢ lIMES 52,44 lIMES
As before,

5=53,.0+53.5 Sy a=21+4
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degY=c,+(t+3)?

g()=14+0+1D)*+4@+1)2+(t+1)c,+4@+ 1)+ %c,.

We consider the exact sequence
0= 0p3(—t-3)>F 2S5,(t+3)-0

(as before, this is possible) and we get a reflexive sheaf with Chern classes
(0, c,, c3), which is curvilinear if we suitably choose the section of the
twist of wy.
Z has seminatural cohomology:
W (F (P)=h*(F (P)=0, Vp>-2
H°(F (p)=0 if p<t
H*(# (p))=0 if p2t+1.

Therefore the cohomology of & is given by the diagram

| =2 =1 0 ... t=2 =1 1 1+]

|

|
| 0 0 0 0 0 0 =
h' | 0 0 o 0 0 0 O
e * « x 0
h*| o0 0 o 0 0 0 O

If ¢, = —1 we have the following

ProrposITION 4.4. — Let (t+1)2<c,<(t+2)? and let

t+3)c,—(1/3) e+ 1)t +2)(2t+3)<c,

SQRt+4)c,—(1/3)t+1) (212 +101+9), cy=c,mod2.
Then there exists an arithmetically normal sheaf with seminatural cohomo-
logy, Chern classes (— 1. c,, c3) and h° (F (t))=0.

Proof (sketch). — Take a smooth arithmetically normal curve with
numerical character

2045 20452144, ..., 2144, 21+ 3, L2e+d
Sy, + 5 tImes S2:+4 tIMeEs 53,3 tlimes
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where
Su+s=X(F (1)
Syea=X(F (-1))=-3x(F @) +1
$243=X(F (1=2)-3(U(F t-D))—x(F ) +1
and consider the sequence

0= Cps(—t=3)=F = 5, (t+2) = 0.

# has Chern classes (—1, c,, ¢;) and seminatural cohomology, given
by

-1 0 1 t—1 t
h° 0 0 0 0 0 = =»
h! I 0 0 0 0 0o 0 O
h? * * % * « 0 O
h 0 0 0 0 0O 0 O

We can summarize our results in the following

COROLLARY 4.5. — Let ¢,=0, =1, and m(c,. c;)Sc3;<M(c,, c3),
cy=c,c;mod2. Then there exists an arithmetically normal sheaf with
Chern classes (c,, c,, ¢,) and seminatural cohomology.

Remark 4.6. — The interval [m (0. c,). M (0, c,)] has a size, in the range
(t+1)(t+2)<cy<(t+2)(t+3). decreasing from 21+2 to t+ 1, and then
increasing to 2t+3. The case ¢, = — 1 has a similar behaviour.

Remark 4.7. — We remark that there is here a difference between
reflexive and locally free sheaves with (semil)-natural cohomology. In
[HH1] Hartshorne and Hirschowitz proved that if a locally free sheaf &
has seminatural cohomology. then all the numbers h'(& (n)) are uniquely
determined by the Chern classes of &.

On the contrary, we get the following results:
THEOREM 4.8. — If # and § are curvilinear sheaves with seminatural
cohomology, Chern classes (0. c,. c,) and there eust 1. 12 -2 such that

R (F (1)) # K (% (1)), then both are arithmetically normal  The same 1s true
ife,=—1.
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Proof. — If there exists n> —2—c, such that y(# (n))<0, then the
dimensions of all the groups H'(# (p)) are uniquely determined, if F has
seminatural cohomology.

In fact
h*(F (P)=0, Vp>-2—c, (by duality);
h' (F (P)=x(F (P)
in the interval of integers [a, b] where ¢ (¥ (p)) <0; (by seminatural coho-
mology);
h(F @E)=x(F ) if p<a
h*(# (p))=0 if p>a
h°(F (p))=0 if p<b
K (F @)=x(F () if p>b.
(h? (F (p)) is a decreasing function of p, if p> —2).

So x(F (n)=x(4(n))>0, Yvn=—-2, and F and ¥ are arithmetically
normal. The same proof holds if ¢, = — 1.

THEOREM 4.9. — Let t2>1, c,, c,, 3 be integers, c;=c,cy;mod 2.
Ifc;=0, (t+1)(t+2)<c,<(t+2)(t+3), and

(Qt+4)c, —(2/3)t (12 +6t+11)—2<c,

<min{ (2t+5)¢c,—(1/3) (1 +1)(t+2) (21 +9)
h Qt+3)c,—(1/3)t+1)2t+7)

or if c;=2+5t+3, c3=Qt+3)c,—(1/3)t(t+1)(2t+7)+1, then there
exist two different kinds of seminatural cohomology for reflexive sheaves
with Chern classes (0, c,, c;). As a consequence, the corresponding variety
of moduli is reducible.

The same is true if c, = —1, (t+1)*<c,<(t+2) and
Qr+3)c,—(1/3) 1212 +9t+13)<c,

Qt+dc,—(1;3)+1)(2Q12+101+9)

smin{
QRt+2)c,—(1/3)t Q2 +6t+1)

orifc,=+41+1, c3=2t+c,— (1122 +61+1)+1.
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Proof. — The proof follows from 4.1, 4.2, 4.3 and 4.4.

COROLLARY 4.10. — These are the only cases for which this phenomenon
of **double seminatural cohomology™ can genuinely happen.

Proof. — The proof follows from 4.8, 3.1 and 3.2

Remark 4.11. — We have given a bound, in term of ¢, and c¢,, which
is the best possible one, at least for ¢, large. But we have supposed #
curvilinear, since we must make sure that the zero set of a general section
of # (s) is irreducible. We can find another bound, strictly larger, without
any extra assumption. In fact, by using only the properties of the
spectrum of a reflexive sheaf, we can prove the following

PropPosITION 4.11.1. — Let t>1 be an integer, and let
C+DE+2)—1<c,<(t+2)(t+3)-1.
Let & be a reflexive sheaf with Chern classes (0, c,, ¢;) and seminatural

cohomolog\ Then
c3<(2t+4)c,—(2/3)t(e+1)(t+5)-2.
ProposITION 4.11.2. — Let c,=4, and let (t+1)>—1<c,<(t+2)* -1

Let F be a reflexive sheaf with Chern classes (— 1, c,. c;) and seminatural
cohomology. Then

c3<t+3)c,—(1/3)t (22 +9t+1)-2.

This will be done in a forthcoming paper.
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