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CHARACTERIZATIONS OF CLASSES
OF LEFT EXT-REPRODUCED GROUPS

BY

PETRUS J. GRABE
AND GERHARDUS VILJOEN.

(Pretoria).

1. Introduction.

In a previous paper [4], we considered classes 9JI of abelian groups G,
which are maximal with respect to the property : There exists a reduced
group X such that

G ̂  Ext(G, X) for all Ge 9K.

Such classes are called maximal classes of left Ext'reproduced groups.
We found two such classes, viz. gr and % (see [4], Theorem 2.7 and
Theorem 2.9).

In this paper, we give characterizations of two classes of left Ext-repro-
duced groups, viz. gr and ®, where

g denotes the class of all groups (^© T where n is a non-negative
integer and T is a finite group, and

© denotes the class of all groups j~[ Tp where, for all primes p, T ,̂ is a
/?e/1

finite p-group.
The latter class is a subclass of the class 31, and it is therefore not a

maximal class of left Ext-reproduced groups. We mention, in passing,
the fact that all groups in 91 are reduced and adjusted cotorsion groups
(see [5], p. 873), and that ® contains all finite groups. The classes ^
and ® are linked together in a very special way. Let us consider a
number of properties of a class 901 of left Rxt-reproduced groups, i. e. a
class of groups for which there exists a reduced group X such that

G^Ext(G, X) for all GeSK.
BULL. SOC. MATH. — T. 98, FASC. 4. 22



338 P. J. GRABE AND G. VILJOEN.

(I) If Ge9Jl, then every direct summand U of G belongs to 9JL
(II) If Ge9Jl and Zfe3K, then Hom(G, H)^m.
(Ill) If G€9K and HeW, and if cp : G-^H is a homomorphism,

then Kercpe9Jl and Coker cpe9Jl.
(IV) If Ge9K and HeW, then Ext (G, JJ)e9K.
(V) IfGe9Jl, then Hom(G, X) = o.
Now the following statement summarizes the main results :
g and ® are classes of left Ext-reproduced groups which are maximal

with respect to each of the properties (I) to(V). Conversely, if 9K is a
class of left Ext-reproduced groups which is maximal with respect to
any one of the properties (I) to (V), then either 9K == g or 9K == (S,
the latter being the case if 9JI contains only reduced groups.

NOTATION.

A®B, Q)Ai, A ( m ) , direct sum;
;e/

j^JA,, Aw, direct product;
i^i

A (S) B, tensor product of A and B;
tG, maximal torsion subgroup of G;
Gp, p-component of G;
Z, additive group of integers;
Qy additive group of rational numbers;
Z{p), auditive group of p-adic integers;
C(n), cyclic group of order n;
^'(P^)» quasi-cyclic group;
^, the power of the continuum;
P, the set of all prime numbers;
cotorsion group, a group X such that Ext(0, X) = o; adjusted reduced
cotorsion group, a reduced cotorsion group G such that G/tG is divisible.

All groups under consideration are additively written abelian groups.

2. Characterizations of classes of left Ext-reproduced groups.

Let 9JI be a class of left Ext-reproduced groups. Throughout this
paper, X will denote a reduced group such that

Ext(G, X)^ G for all G(=9K.

Recall that g is the class of all groups Q^© T where n is a non-negative
integer and T is a finite group. For this class of groups, we have that

\\Z(p)lX^Q ([4], Example 2.3). Let ® denote the class of all
pe.?
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groups j J T, where T, is a finite p-group for all primes p. Note that
p e . p

© is a proper subclass of %, consequently ® is also a class of left Ext-
reproduced groups ([4], Example 2.8).

The classes g and ® are quite remarkable, and we give characteriza-
tions of them in this paragraph. First, we prove several lemmas which
we shall need subsequently.

LEMMA 1. — Let $ be a class of left Ext-reproduced groups such that
§3®. ThenX^ffz(p).

pe?

Proof. — Since C(p^)e$ for all primes p and all natural numbers k,
it follows from [4] (Lemma 2.4) that X is isomorphic to a pure subgroup
of IJ^(P) and that X/pX^C(p) for all primes p. Note that

PG.P
Exi(Q, X) == o, this follows from the exact sequences

o-^ ©^c(p)-^jjc(p)-^ew-^o
p e p

and

o->(Ext(0, X))^->Ext/nC(p), X\^]}C(p)
\P^P / pep

since | [C(p) is reduced and JJ C(p)e§. Hence ([5], p. 872)
P ^ P p ^ p

X^^EXt(c(P^ -X) ̂  lJ[Hom(C(pQC), X(g) C(p-))
/? e ̂  p^p

^ nHom(C(p30), €(?-)) ̂  |[Z(p),
/^e/1 ^e^

which completes the proof.

LEMMA 2. — Let m be a class of left Ext-reproduced groups and let
GeSB.

i<> If Gp^o, then X/pX^o.
2° J/'^e reduced part of G contains an unbounded p-component for some

prime p then
0) X^-o;

(ii) G has a direct summand Z^efJ (^(p7))"1/-) y;7zen> m^ 15

/ini7e and m^ o for an infinite number of Vs;
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(iii) Hom(G, G) is not left Exk'reproduced;
(iv) Ext(G, G) is not left Ext-reproduced.

Proof.
i° Let Gp^o, and suppose that X==pX. Then, by [1] (p. 245),

we have p G = G since G ̂  Ext(G, X), consequently G == ((^(p00))0^® G',
where Gp == o and p G ' == G'. Hence

(1) G ̂  Ext(G, X) ̂  (Ext(C(p°°), X)^® Ext(G', X)

and since X is reduced and pX = X it follows that Xp == o. The exact
sequences

o->tX->X-^X/tX->o
and

Ext(C(p°°), tX) == o—Ext(C(p°°), X)-^Ext(C(poc), X/tX)->o

show that
(2) Ext(C(p°°), X) ̂  Ext(C(p00), X/tX)

^ Hom(C(p00), (X/tX) (g) (Q/Z)) = o

since (X/fX)0 C(p00) == o ([i], p. s5i). In addition, G'p=o and
p G' == G' imply (sec [I], p. 246)
(3) Ext(G', X)^=:o

and hence it follows from (i), (2) and (3) that Gp == o, contrary to the
assumption Gp-^o. We conclude that X/pX^o. This proves i°.

20 Let Ge9K be such that G =D© G', where D is divisible and G'
is reduced. Suppose that G'p is unbounded for some prime p and
let B(P} denote a basic subgroup of G'p. Then B(P) is unbounded, and
if we put B^=J3i©...®B,©..., where B,= (C^1))^^, then
each m^ is finite (1=1,2 , . . . ) (see [3], p. i36), and m^^ o for an infinite
number of I's. Now Bi©...©^ is a direct summand of G'p and
hence of G, that is ([I], p. 243)

Ext(Bi©.. .© B,, X) ̂  Ext(Bi, X) ©.. .© Ext(B,, X)

^ (XIpX)^^ ©... © (X/p^X/^)

is a direct summand of Ext (G, X) ̂  G. Bearing in mind the fact
that Bi©...©2^ is a maximal p'-bounded direct summand of G for
every i ([I], p. 99), and that X/pX ̂  o, we conclude that, for every i,

Ext(^©...©^., X)^fii©...©£,.

(i) Suppose that Xp^o, then X == (^^©X' where /c is a natural
number ([I], p. 80), and

Ext(B^y, X) ̂  (X/p '̂X)^^^-) ̂  (C(p^) © X'lp^'X^P^)
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contradicts the fact that

Ext(B, ©... ® B^,X) ̂  Ext(Bi, X) ©... ® Exi(B^, X)

is isomorphic to jBi©...©.B^+; for all J^i. Hence we conclude
that Xp === o. This proves (i).

(ii) Consider the exact sequences

o-^tG-'>G-^GItG->o
and
(4) Ext(G^G, X) -^ Ex.t(G, X) ̂  G --> Ext^G, X)-> o.

It follows from (4) that

(5) G ̂  ^(Ext(G/fG, X)) ®JJ Ext^G)/,, X)
PG.P

since Ext(G/^G, X) is divisible. Recall that X^y = o, and hence the exact
sequences

o—ZX->X—X/<X—o
and

Ext((fG)^, tX) ==o->E^t((tG)p, X)->Exi((tG)p, X//X)->o

show that

(6) Ext((tG)p, X) ̂  Ext((/G)/,, XltX) ̂  Hom((tG)p, (X/^X) 0 C(p')).

Now, X/,=o and X/pX^o imply (X/^X)/p (X/ffi) ̂  o and hence

(X^X)®^?-)^^)),^),
where

n^ = r((XltX)lp (XltX)) == r(X/pX)

([I], p. 255). Hence Ext((ZG)^, X) has a direct summand Hom((^G%,
C(p00)) and, by [2] (p. 187),

Hom((̂ , C(p-)) ̂  Z(p)^®n ̂ (PO^1)-
!=1

However, the latter group is a direct summand of G by virtue of (5) and (6).
This proves (ii).

(iii) By making use of the result in (ii), we see that G contains direct
summands Z(p)^ and C(p1) for a suitable i. Hence Hom(G, G) has a
direct summand ^^^(p)^, C(p1)). However,

V = Hom(Z(p)^, C(p0) ̂  Hom(Z(p)^(Z(p)^), C(p0)
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and since Z (p)^ / p1 {z (p)^) is isomorphic to the direct sum of an infinite
number of copies of C(pQ, it follows that V is isomorphic to the direct
sum of an infinite number of copies of C(p1). Hence, by [3] (p. i36),
Hom(G, G) is not left Ext-reproduced. This proves (iii).

(iv) By (ii), G contains direct summands TT (((^(pO)^) and Z(p)^
i=i

and hence Ext(G, G) has a direct summand
/ °° \^(n^1))"17")' ̂ y

Now, by [2J (p. 137),

Ext(JJ((C (?•))"•/-•), Z(p^\
\ 7=1 /

Ext( ^«c(iD^))m/')-z^})^ Ext | | (CCCn^"1/'.
\ \ 1=1\ i=l } }

^ ( Horn ftf[ (^(pO)-^), Z(p) (g) C(p-)
V V z=l /

/ OC \ t^

^(z(p^®p^((C(p^•))m^)) .

The latter group, and consequently Ext(G, G) as well, contains a bounded
direct summand of power 2^. By [3] (p. i36), Ext(G, G) is not left
Ext-reproduced. This proves (iv), and the proof of the lemma is complete.

LEMMA 3. — Let
G=Kef{T,,

where Tp is a finite p-group and Tp^o for an infinite number of primes p
and where K has no reduced torsion direct summand. Then G does not
belong to any class 9JI of Ie ft Exk-reproduced groups for which Ext(g, X) ̂  o.

Proof. — Suppose, to the contrary, that there exists a class 9K of left
Ext-reproduced groups with Ext(@, X)^o, and which contains a
group G = K ©FI T^ ^^fy^g ^e above-mentioned properties. The

p e . p
exact sequence

o— C Tp->G->Q^@K->op e . p
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gives rise to the exact sequence

(7) Hom^ ©^ Tp, X\ — Ext((/^® K, X) —Ext(G, X) ̂ G

and we have that

(8) []Hom(T,, X) ^K.
PGP

This follows from the following observation : If Tp -^o then by
Lemma 2, X/pX ̂  o and if we put Tp = Bi ©... © jB// where
B;== (C(p^))7"t, then we deduce from

Ext(T^, x) ̂  (x/pxy^©... © (xip-xy^
that Ext(T^, X) ̂  T^,. This implies in particular that Xp is finite for
all primes p for which Tp^ o. This proves (8).
However,

Ext(e^)® K, X) ̂  (Ext((?,X))^® Ext(K, X)

and our initial assumption implies that

(Ext(e, X))^|^.

Hence we deduce from (7) that G contains a torsion-free divisible sub-
group of infinite rank, and this contradiction completes the proof.

LEMMA 4. — Let yfl be a class of left Ext-reproduced groups for which
Ext(@, X) ̂  o. Suppose that Ge 9K is not reduced, and let

G=DQ( ® IV) ®G'
\pep )

where D == (^ (n a non-negative integer), £)/,== ((^(p"))^, and where G'
is reduced.

i° If ® D^o, then
p ^ . i 1

(i) G'==L'Q)tG1, where L'-^o is a reduced and torsion-free cotorsion
group and where tG' is finite;

(ii) X^== o for all primes p for which Dp^o;
(iii) Ext/ © D,, X\ ̂  U, Ext(I/, X) ̂  © D,.

\ /»e^ / p ^ p
2° If Ext(Z(p), X) 7^ o for some prime p, then Dp = o.

Proof. — Let G€ m and let

^ - ^ © ( © ^ © G '

where D, Dp and G7 are defined as above.
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i° Let us assume that © Dp^o, then it is clear that G' is not torsion.
PGP

Moreover, (tG')p is bounded for all primes p. In fact, if (tG')p is unboun-
ded for some prime p then by Lemma 2, Xp == o, and G has a direct
summand

^n^por^),
where m^ is finite for all i, and m^^o for an infinite number of Fs.
By [4] (Lemma 2.5), UitU^Q^^K, where m is infinite and K is
reduced. The exact sequences

o-. tU-> U-> G^® K-> o
and

Hom(tU, X) = o-^Ext^)®^, X) -^Ext([7, X)

show that Ext(C7, X) contains a direct summand (Ext(@, X))"1 ̂  Q^^.
However, Ext(?7, X) is a direct summand of G, and hence G contains a
torsion-free divisible subgroup of infinite rank. This contradiction proves
that (tG')p is bounded and therefore finite for all primes p.

Now G', being a direct summand of a cotorsion group, is also cotorsion
and hence the exact sequences ([5], p. 872),

(9) o-^G'—G'-G^G^o

and
(10) o->Ext(e/Z,fG')^JJaG%-^Ext(e/Z, G ' ) ^ G

pe?
-> Ext(QIZ, G'ltG') == U-> o

imply
G'^U^G^®!/

PfEP

since TT(^G')^ is cotorsion and L' is torsion-free cotorsion. Moreover,
pe?

by Lemma 3, (tG')p ̂  o for at most a finite number of primes p and hence

G'^G'®!/,

where Z/^o since, by assumption, ® Dpy^o, and where tG1 is finite.p e . p
This proves (i).

n
In order to prove (ii), put f G ' = ® (tG')?, where

(^G^ = B^®... ® B'^ and B^-) = (C(p0) ,̂
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mij a non-negative integer. Then

Ext^G', x) ̂  © ((X/P,X)-©. . .© (x/ppxr-Q

and hence it follows from Lemma 2 that Ext(W, X) ̂  fG\ Further-
more, it is clear that Ext(Z), X) ̂  D. Hence, if Xp ̂ - o for some prime p
for which Dp-^o then Ext(C(p00), X) will contain a finite p-group
and therefore, if we consider Ext(G, X) ̂  G then fG' is no longer the
maximal reduced torsion subgroup of G. Consequently X/, = o for
all primes p for which Dp^o and this proves (ii).

We have G = £ ) © / © Dp\Q)LlQ)tGl and, hence, if we consider
\PGP )

Ext(G, X)^ G, then Ext(D, X)^D and Ext(W, X) ̂  iG imply

Ext/f © D/A © I/, X\ ̂  f © Dp\ © L'.
\\/?e-p / / \P^P J

However,

Ext// © Dp\ © L', X\ ̂ r[ Ext(D^, X) © Ext(L', X)
\ \ /?e^ / / " - - • -

pep
and by (ii)

(i i) '[J Ext(D^, X) ̂ JJ Hom(̂ , (X/^X) (g) C(p00))
/oe^ pe.p

and the latter group is a reduced torsion-free cotorsion group. Moreover,
Ext(I/, X) is divisible since L' is torsion-free and hence assertion (iii)
follows.

We turn our attention to 2°, and we suppose that Ext(Z(p), X) 7^ o.
We shall prove that Dp == o. Assume, to the contrary, that Dp -^- o.
Then it follows from (n) that G has a direct summand

Hom(D,,, (X^X)(g)C(p00)).

Let Dp == (C (p")/^. We assert that m is finite. In fact, if m ̂  ^o,
then Hom(Dp, (XftX) (g) C(p")} has a direct summand

Hom(C(p00)^), C(p00)) ̂  (Hom(C(p00), C(p30))) ^ Z(p)m

and hence the exact sequences

o-^p)^)-^?^ and Ex^?)^ X) -^(Ext(Z(p), X))m-^o,

and Ext(Z(p), X)^o, show that Ext(Z(p)m, X) has a torsion-free
divisible subgroup of infinite rank. This is a contradiction since
Ext(Z(p)m, X) is a direct summand of G. Hence m is finite, i. e.

Dp = (C(p°°))^, m^ a non-negative integer.
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Next, we assert that r((X/ZX)/p(X^X)) =r(X/pX) is finite. Indeed,
if r(X/pX)==n^o, then Hom(Z)/,, (X//X) 0 C(p°°)) has a direct
summand

Hom^p-), (X/^X) 0 C(p00)) ̂  Hom(C(p30), C(p-^) = V,

and the latter group contains a subgroup

(Hom(C(p°°), CO^W^ZO^).

Now the exact sequences o->Z(p)^-> V and

Ext (V, X) -> (Ext (Z (p), X))" — o and Ext (Z (p), X) ̂  o,

imply that Ext(V, X) has a torsion-free divisible subgroup of infinite
rank. This gives rise to a contradiction since Ext(V, X) is a direct
summand of G, and we conclude that n is finite. Consequently, G has a
direct summand

Hom(D/., (X/fX) (g) C(p00)) ̂  Z(p)^, n^, a natural number.

Moreover, it follows from (iii) and [1] (p. s45) that

(12) Ext(Z(p)7^, X)^D,^ ^(p'))-/'.

We assert that (12) is impossible. Indeed, suppose that (12) holds, and
consider the exact sequences (see [i], p. 2^0 and p. 282)

o -> z(p)^(g) z ̂  z(p)^-> (Z(P) (g) e)7^ z(p)^(g) (e/z) ̂  ̂ (P'))^-^ o
and
(13) Ext^CCp-))^, X) -^ (Ext((?, X))^-^ Ext(Z(p)7^, X) -> o.

We have that

(a) Ext^p-))^ X)! = ! (Hom(C(p30), (X/^X) (g) C(p-)))^[ == K

since r((X//X)/p(X//X)) is finite;

(6) (Ext(g, X))^ == 2^

since, by assumption, Ext((), X)^o;

(c) |Ext(Z(p)7^, X)|=^o,

on account of (12), and the exact sequence (i3) implies that this is clearly
impossible. Hence (12) leads to a contradiction, and we conclude that
Dp == o. This proves 2°, and completes the proof of the lemma.

We now derive properties which are characteristic of the classes ^
and ®.
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THEOREM 5.

(i) If Ge5, then for every direct summand U of G we have £/e8r*
(ii) ® is a class of left Ext -reproduced groups which is maximal with

respect to the property :
If Ge ®, then for every direct summand U of G we have Ue ®.

Proof.
(i) This statement is an immediate consequence of [4] (Theorem 2.14).
(ii) Let G == G © G" e ® where G' ̂  o, G' 7^ o. Then / G -^ o,

^G'^ o and recall that G ̂  Ext(@/Z, tG) since Gis adjusted ([5], p. 375).
Now, both G' and G" are adjusted and hence

G- G'© G^Ext(e/Z, ^©Ext^/Z, tG")

^F{Ext(C(p00), ̂ G^etjExtO^p'), (/G'%)
// e ̂  P G P

^n^G^e'n^6^
/^e^ /^e^

whence it follows that

G^H^G^e®, G^Fl^^)^®-
/.e-p /^e^

Let $ be a class of left Ext-reproduced groups such that if Ge§ then
for every direct summand U of G we have U e§, and let § 3 ®. Then

it follows from Lemma 1 that ^^FI^)- Let Ge^ then Gp is

P ^ P
bounded for all primes p. Indeed, if Gp is unbounded for some prime p
then by Lemma 2, G has a direct summand Z(p)^ and by assumption
^(p)^§, which is clearly impossible. Hence G/, is bounded and conse-
quently finite for all primes p, and we have (see [4], Example 2.8)

G ̂  Ext^G, Y[ Z(p) \ ̂  Hom(/G, 0/Z) ̂ ]̂ [ (fG)/..
\ /?€P / /^^

Hence Ge§ implies G € ® and consequently $C®. This completes
the proof.

THEOREM 6. — Let 9K be a class of left Ext-reproduced groups which
is maximal with respect to the property :

If Ge9Jt then for all direct summands U of G, we have UeW. Then
either 9K = g or TO == ®.
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Proof. — Let SO? be a class of left Ext-reproduced groups which is^
maximal with respect to the above mentioned property. Then there
are two possibilities, viz. either

(i) there exists a group Ge 901 which is not reduced, or
(ii) all groups G in 9K are reduced.
Let us first consider case (i). If G e 901 is not reduced, then G == Q'1 Q) Gr

where n is a natural number, and G' is reduced. By assumption, Q e 301
and hence, by [4] (Theorem 2.2), HfX ̂  Q where H is a reduced cotorsion
group. Moreover, we also have that G^e90l. Now 90?, being maximal,
cannot contain only divisible groups and hence there exists a non-zero
reduced group G^eSOl. We contend that
(a) G1 is finite.

In order to prove this, consider the exact sequences
o - ^ t G ' - ^ G ^ G ' l t G ' - ^ o

and
Ext(G7^G', X)—Ext(G', X)^ G^Ext^G', X)->o.

We conclude that
G^Ext(ZG', JQ^JjExt^G^, X)

/^e^

since G' is reduced. In the first instance, (tG')p is bounded for all
primes p. In fact, if (tG')p is unbounded for some prime p then it
follows from Lemma 2 that G1 has a direct summand Z(p)^ and hence
our initial assumption implies that Z(p)^e9Jl. This contradiction
shows that (tG')p is bounded and hence finite for all primes p. Moreover^
by Lemma 3, (tG')p-^o for only a finite number of primes p whence it
follows that tG ' , and consequently G'^Ext^G', X) as well, is finite.
This proves (a).

To recapitulate, if (i) holds and if Ge9Jl then G ̂  ()"© T where n is
a non-negative integer and T is a finite group, that is to say Ge^.
Hence SO? C g and the maximality of 901 implies that 9JI = g. This settles
the first case.

Next we consider case (ii). In this case, tG ̂ - o for all Ge 9JL Again,
if Ge 901, then (^G)^ is bounded for all primes p, for if (/G)/, is unbounded
for some prime p then by Lemma 2, Z(p)Ke9K. This contradiction
shows that (tG)p is bounded and hence finite for all primes p. Since (/G)/,
is finite and pure it follows from [1] (p. 80) that (tG)p e 901 for all primes p
whence
04) G ̂ n Ext^G),., X) ̂ \\ (tG)p.

p e P p e P
We maintain that Ext(0, X) = o.
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Assume, to the contrary, that Ext((), X) ̂  o. The maximality of 9JI
implies that tG cannot be finite for all Ge9Jt and hence there exists an
jF^eSJl with tH an infinite torsion group. This implies that (tH)py^o
for an infinite number of primes p and hence

H ^ Ext / C (tH),, X\ ̂ T[ (tH),.
\p^p / -a-A

pep

By Lemma 3, H^^fl. This contradiction shows that Ext(@, -X) = o.
The latter fact and (i4) show that if G€9Jl then Ge®, that is,

9JI C ® and hence 9JI = ® since 9JI is maximal. This completes the
proof of the theorem.

THEOREM 7.
(i) If Ge g and H(E g, then Hom(G, H)e gr.
(ii) © is a class of left Ext-reproduced groups which is maximal with

respect to the property :
If Ge ® and HG ®, then Hom(G, H)e ®.

Proof.
(i) If Geg and Jfeg then G=QnQS, H==Qm^T

where m and n are non-negative integers and S and T are finite groups.
Consequently,

Hom(G, H) ̂  Q^Q Hom(S, T)e g.
This proves (i).

(ii) Let G € ® and J^e®, then G^P]'G^, H^Y^Hp where G^
/?e^ /?e^

and Hp are finite p-groups for all primes p. Then we have

Hom(G, H) ̂  Hom(tG,H) ̂  Hom(tG, tH) ̂ JJHom^G)^, (tH)p)e ®.
^e^

Let § be a class of left Ext-reproduced groups such that if G€§,
i?€ $ then Hom(G, H) e §, and suppose that $ 3 ®. Then, by Lemma 1,

-X^TI Z(p)' All groups Ge$ are reduced since
PGP

G ̂  Ext(G, X) ̂  Ext(fG, X),

and hence if 07^ Ge$, then tG^o.
Let Ge §. Then Gp is bounded for all primes p, for if Gp is unbounded

for some prime p then it follows from Lemma 2 that Hom(G, G) is not
left Ext-reproduced. Hence Gp is bounded and therefore finite for all
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primes p. Consequently,

G- Ext(tG, X) ̂ ]~[Ext((^, X)^Y[Hom((tG),, QfZ) ̂ [(tG),
P^P PG.P pe.?

and hence Ge ®. Therefore $ c ®, and the proof is complete.

THEOREM 8. — Let SOl be a class of left ILxk-reproduced groups which
is maximal with respect to the property :

If Gem andH^W, then Hom(G, J^eSK.
Then either m == g or 9K = ®.

Proof. — There are two possibilities, viz. either
(i) SO? contains a group G wich is not reduced, or
(ii) all groups G in SO? are reduced.
Consider case (i), and let G == D ® G' where D ̂  o is divisible and Gr

is reduced. Then D contains no subgroup C(p°°), for i fD= C(pw) © D',
then Hom(C(p°°), C(p00)) ̂  Z(p) is a direct summand of Hom(G, G)€9K
and, by assumption, Horn (Horn (G, G), G)e9[R. However, the latter
group has a direct summand Hom(Z(p), C(p30))^ 0^® C(p00) ([2],
p. 136), and this gives rise to a contradiction since any left Ext-repro-
duced group contains at most a finite number of copies of Q. This proves
that G == (^(B G' where n is a natural number and G' is reduced. It
is also clear that G'eSOl.

Now G'p is bounded for all primes p, for if G'p is unbounded for some
prime p then it follows from Lemma 2 that Hom(G, G) is not left Ext-
reproduced. This shows that G'p is bounded and consequently finite
for all primes p. Furthermore, (tG^py^ o for at most a finite number of
primes p, for if ( t G ' ) p / ^ o for an infinite number of primes p, then by
Lemma 3,

G ^J \ Ext((W^, X) ̂ \\ (tG')^m.
PG.P p ^ P

[We mention in passing the fact that if (tG')p^ o for an infinite number
of primes p, then it can also easily be shown that Hom(G, G) contains a
torsion-free divisible subgroup of infinite rank.] This contradiction shows
that (tG')p^£ o for at most a finite number of primes p whence we deduce
that G' is finite. The proof thus far shows in fact that the reduced part
of each group G e SO? is finite.

Hence, if condition (i) holds and Ge9B then G==Qn@T where n is
a non-negative integer and T is finite, that is to say, Gegr and hence
9K C g. The maximality of 9M implies that 9K = g.
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We turn our attention to case (ii). Since all Ge9K are reduced, it
follows that if o ̂  G€ SB, then tG^o for we have

G^Ext^G, X) for all GeW,

recall (4) and (5) in the proof of Lemma 2. Moreover, Lemma 2 implies
that (tG)p is bounded and hence finite for all primes p. Consequently,
if Ge9K then

G ̂ {J Ext(^G),. X) ̂ f[ (tG),
pe? PGP

and hence Ge®. This proves that 9KC® and since 9)1 is maximal it
follows that 9?l == ®. This completes the proof.

THEOREM 9.
(i) Let Ge ̂  and H ^ y , and let cp : G-> H be a homomorphism. Then

Kercpegr o^^ Coker cpegr-
(ii) ® is a class of left Ext-reproduced groups which is maximal with

respect to the property :
If G € ® and JZe®, and if 9 : G->H is a homomorphism, then

Kercpe® and Cokercpe®.

Proof.
(i) Let Ge^r? H ^ ^ , and let c? : G—^H be a homomorphism. Then

G == (^(]) 5, H=QmQ)T where m and n are non-negative integers,
and iS and T are finite groups. It is clear that ^(Qn)CQm and that
9 (5) C T. Hence Kercp = (Kercpn OT ® (Kercp n 5) and since Kercp n Q'1
is divisible and Ker 9 n S is finite, our assertion follows.

(ii) Let Ge®, JJe®, and let q? : G->H be a homomorphism.
Ker 9 and Imcp are reduced, and hence it follows from the exact sequences

o -> Ker cp -> G -> Im 9 -> o
and

o -^ Ext(g, Kercp) -> Ext(g, G) = o -> Exi(Q, Imcp) -^ o

that Kercp and Imcp are reduced cotorsion groups.
Note that if tG^ Ker cp, then c? == o for then we have

G/Kercp ̂  (G/^G)/(Ker^G)C^

and G/^G is divisible, whence G/Kercp is divisible and hence o. Hence
Kercp == G, that is, cp === o. Note further that if Kercp is a torsion group
then it is necessarily finite and then our assertion is obvious. We may
therefore assume that Kercp is infinite and that cp ̂  o. We then have

Kercp n^G^G, (Kercp)^C(^G)^ for all primes p.
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We maintain that Kercp is adjusted. In order to prove this, assume to
the contrary that Kercp is not adjusted. Then it follows from [5] (p. 373-
374) that

Kercp ̂ JJ (Kercp),, ©L,
pe.p

where L -^ o is a reduced torsion-free cotorsion group, and hence L has a
direct summand Z(p) for some prime p([5], p. 372). Hence Kercp,
and therefore G as well, contains a subgroup Z(p). That is to say, G
contains elements of infinite order which are divisible by arbitrarily high
powers of primes q(q^p) since qZ(p) = Z(p) for all primes q^p.
This is evidently impossible, and we conclude that Kercp is adjusted,
i. e. Kercp ̂ 11 (Kercp),, e (5.

p ^ p
We have the commutative diagram with exact rows

o—^Kercp—>tG—> © ((tG)pl(t Kercp),.)—>o
| PG.P
\ I \L A

Y Y Y
o ——> Ker cp —> G ——————^ Im cp —————^- o

where i, ^ and 'X are the obvious mappings. This gives rise to the commu-
tative diagram with exact rows

o-^Ext(0/Z,ZKercp)^Ext(e/Z,fG)-^Ext(e/Z, © ((^/(/Kercp^^o
I pep .^ | ̂  ^

Y Y Y
o - > Ext (g/Z, Ker cp) -> Ext (Q/Z, G) ———> Ext (g/Z, Im cp) ————> o

and since ^ and ^ are isomorphisms ([5], p. 375), it follows that \ is
also an isomorphism. Hence

Imcp ^Ext^/Z, ©^GV(fKercp)^]~[ ((^/(/Kercp)^)e (5.
/?e^

The exact sequences

(i5) o-> Imcp-^JZ->Cokercp^o

and
Hom(Q, H) = o->Hom(Q, Cokercp)-^Ext(Q, Imcp) === o

show that Cokercp is a reduced cotorsion group. If we consider the exact
sequence (i5), then we obtain a situation entirely similar to that in the
above commutative diagrams, and we conclude that Cokercp e®.

If § is a class of left Ext-reproduced groups such that if J^e§, M€§,
and if ^ : K->M is a homomorphism, then Ker^e$, Coker^e§, and if
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§=?®, then $==®. In fact, by Lemma 1, X^riZ(p) whence it
p ^ p

follows that all groups in $ are reduced. Hence if K e $ then, obviously,
every direct summand of K belongs to § and hence, by Theorem 6,
K^ ®. We have therefore shown that § 3 ®, and the proof is complete.

Remark. — We turn our attention to the converse of the above theorem.
Let 9JI be a class of left Ext-reproduced groups which is maximal

with respect to the property :
If G e 9JI, H e 9K and if c p : G -^ is a homomorphism then Ker cp <s Vt.

Cokercpe9Jl.
Then either TO = g or 9K =: ®.
Indeed, if Ge9Jl then, manifestly, every direct summand of G belongs

to 9JI and hence Theorem 6 implies our assertion.

THEOREM 10.
(i) If Gog and J^eg, then Ext(G, ^)eg.
(ii) ® is a class of left Ext-reproduced groups which is maximal with

respect to the property :
If Ge® and H e ( S , then Ext(G, ^)e®.

Proof.

(i) Let Gegr, He^, then G==(?"e^ H=Q^@T where m and
n are non-negative integers and S and T are finite groups. It is clear
that Ext(G, H) ̂  Ext(5, T) and since the latter group is finite it follows
that Ext(G, IT) eg.

(ii) Let G€®, Jfe®, then G^f^(tG),, H ^Y[(tH), where (tH),
pe.p p e . p

and (tG)p are finite p-groups for all primes p. The exact sequences

o^ C (tG),->r[(tG)^Q^->o
P^

and

Ext((?(^), H) = o ̂  Ext/n ((G)^, J^ ̂  Ext / © (fG)/,, ff\ -> o
\^ ] ^ '

imply

Ext(G, H) ̂ J[Ext((<G)/,, H) ̂  [j Ext((<G)/,, (/Jf)^)
/»e^ pe.p

and Ext ((fG)^,, (^)^) is a finite p-group for all primes p so that
Ext (G, JOe®.

BULL. SOO. MATH. — T. 98, FASO. 4. gg
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Let § be a class of left Ext-reproduced groups such that Ext(G, H) e §
whenever Ge $ and Jf€ $, and suppose that § 3 ®. Then, by Lemma 1,
X^TTz(p) and hence all groups in $ are reduced, by virtue of the

pe?
fact that G^Ext^G, X) for all G€$.

Let 07^ G€§, then tG^o. Then Lemma 2 implies that (tG)p is
bounded and hence finite for all primes p. Thus we have (see [4],
Example 2.8)

G ̂  Ext(fG, X) ̂  Horn (7 G, X (g) (QfZ))

^fjHom^G),, e/Z)^n<^
/?e^ /?e^

in other words, Ge®. Hence $^®, and the proof is complete.

THEOREM 11. — Le^ Wl be a class of left JLxi-reproduced groups which
is maximal with respect to the property :

If Ge 9K and H^ 9K then Ext(G, 7?) e 9K.
r/ien elfAer 9JI = g or 9Jt = ®.

Proof. —The method of approach is basically the same as in Theorems
6 and 8. There are two possibilities, viz. either

(i) all groups G in 301 are reduced, or
(ii) 901 contains a group which is not reduced.
If (i) holds then for all Ge9Jl, we have

G^Ext(tG, X)^YfExi((tG)^ X).
p e . p

By Lemma 2, (tG)p is bounded and hence finite for all primes p. Conse-
quently,

G ̂ ] ] Ext(OG),, X) c '̂l (tG),
P^P PGP

and hence G € 9K implies G e ®. The maximality of 9K implies that 901 = ®.
Let (ii) be valid, then it is clear that Ext(Q, X)^o. Suppose that

G e 9K is not reduced and let
G = D © / © Dp\@ G'

\p(EP )

where D = Q", n a non-negative integer, Dp = (C(p00))^) and where G1 is
reduced. We assert that © Dp = o. In fact, if this is not the case thenPGP
it follows from Lemma 4 that

G = D © f © JV)®L'©W
\PGP )
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where U -^o is a reduced torsion-free cotorsion group and tG' is finite.
By assumption, Ext(G, G)e9K. However,

Ext(G, G) ̂  Ext/ © ,̂ I/\® Ext/ ® Dp, tG^
\P^P / V^e/3 /

® Ext(fG', L') © Ext^G', tG')
and we have

(a) Ext / © D^, U\ ̂  o is a torsion-free and reduced cotorsion firouD
\P^P / o r

[this follows from Lemma 4, (ii)];
(b) Ext/ © Dp, tG^ is a finite group or else Ext(G, G)^ 9JI;

(c) Ext(/G', L') is a finite group for the same reason as in (b);
(d) Ext(/G', tG') is a finite group — this is obvious.
In other words, Ext(G, G) is the direct sum of a reduced and non-zero

torsion-free cotorsion group, and a finite group, and hence it is not left
Ext-reproduced, contrary to Exi(G, G)e9K.

This contradiction shows that ® Dp == o and hence
pe.p

G=I)© G^Q-Q G'

where n is a natural number and G' is a finite group. It follows from
Lemma 2 and Lemma 3 that the reduced part of every group Ge9K
is finite and hence if Ge 9K then Ge g. Hence 9JI = g and the proof is
complete.

Remark. — If we consider g then X satisfies V[Z(p)IX^Q ([4],
PGP

Example 2.3) and it is clear that Hom(G, X) = o for all Geg. For
the class ®, we have X ̂  J J Z(p) and we also have that Hom(G, X) == o

P(=P
for all Ge®. Moreover, ® is a class of left Ext-reproduced groups
which is maximal with respect to the property : Hom(G, X) = o for all
Ge®. In fact, if $ is a class of left Ext-reproduced groups which
contains ® and which is such that Hom(G, X) = o for all Ge§, then
§=®. This follows from following : If G€§ then Gp is bounded
for all primes p, for if Gp is unbounded for some prime p then G
contains a direct summand Z(p)^ (Lemma 2), and since X^rTz(p)

PG.P
(Lemma 1), we deduce that Hom(G, X) -^ o. Hence Gp is bounded and
therefore finite for all primes p, consequently

G ̂ \\Exi((tG),, X) ̂ {j (tG)p^ ©
PG.P p ^ p

whence $C®.
This property can also be used to characterize the classes g and ®.
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THEOREM 12. — Let 9K be a class of left Exi-reproduced groups which
is maximal with respect to the property :

Hom(G, X) == o for all Ge9K.
Then either 9JI = g or 9JI = ®.

Proof. — There are two alternatives, viz. either
(i) all groups G in 9JI are reduced, or
(ii) 9Jt contains a group G which is not reduced.
Let us consider case (i) and let Ge 9JI. The exact sequence

o-~^tG-> G-> GltG->o
yields the exact sequence

o -> Hom^G, X) -> Ext(G/^G, X) -> Ext(G, X) ̂  G -> Ext(/G, X) -. o

and since G and Hom(/G, X) are reduced it follows that
(i 6) Horn (t G, X) = o == Ext (G// G, X)

and hence G ̂ TTI Ext^G)/,, X) shows that if o -^ Ge 9K then fG^o .
p^r

if Ge9Jl, then (^G)^ is bounded for all primes p. Assume, to the
contrary, that (tG)p is unbounded for some prime p, then by Lemma 2,
G has a direct summand Z(p)^, and hence Hom(G, X) = o and (16) imply

Hom(Z(p), X) = o = Ext(Z(p), X).

The exact sequence (see [I], p. 262 and 255)
o->Z(p) (g) Z ̂  Z(p)-^Z(p) (g) Q^Z(p) (g) (0/Z) ̂  CCp^^o

leads to the exact sequence
o -> Ext(C(p°°), X) -> (Ext(0, X))^-^ Ext(Z(p), X) == o

and hence
(17) Ext(C(p00), X) = o = Ext(@, X).

However, Hom(Z(p), X) == o implies Xp = o and, by Lemma 2, (tG)p^ o
implies X/pX -^ o. Hence
Ext(C(p00), X) ̂  Ext(C(p°°), XltX) ̂  Hom(C(p00), (X//X) (g) C(p-)) ̂  o

since XltX^p(XltX) ([I], p. 255). This is however contrary to (17)
and hence we conclude that (tG)p is bounded and consequently finite
for all primes p. This implies that

G^f[Ext((<G),, X)^I~J(ZG),
PG.P pe.p

or alternatively, Ge 9K implies Ge (S and hence 9MC(5so that 9K = ®.
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We now turn our attention to (ii), and we notice that Ext(Q, X) ̂  o.
Let G e SO? be a group which is not reduced and let

G = £ ) © f ® IVlOG'
\p ̂ .P /

where D == Q'1, n a non-negative integer, Dp = (C^p30))00 and where G' is
reduced. We assert that G'p is bounded for all primes p. In fact, if G'p
is unbounded for some prime p, then by Lemma 2, G contains a direct
summand Z(p)^ and hence Hom(Z(p), X) == o. The exact sequence

(18) o-^p)-^?)^-^?00)-^

yields the exact sequence

(19) o -> Ext^p-), X) -> (Ext(0, X))^ Ext(Z(p), X) ̂  o

and hence it follows from (19) that Ext(Zfp), X) ̂  o since Ext(C(p"), X)
is reduced and Ext(g, X) ̂  o. Now, Ext(Z(p)^, X) is a direct summand
of G ̂  Ext(G, X) and hence the exact sequences

o->Z(p)^-^Z(p)^ and Ext(Z(p)^, X)-^(Ext(Z(p), X^-^o

show that Ext(Z(p)^, X), and consequently G as well, contains a torsion-
free divisible subgroup of infinite rank. This contradiction shows
that G'^ is bounded and therefore finite for all primes p.

We contend that ®D/,=o, . Indeed, if © Dp ̂  o then by Lemma 4,
i > e P p e P

we have G=DQ)( © Dn\Q) U ^ t G ' , where L^o is a reduced and
\p^.p }

torsion-free cotorsion group and where tG' is finite. Moreover, it follows
from Lemma 4, (iii), that for some prime p for which Dp -^ o, L' contains
a direct summand Z(p). Hence Hom(Z(p), X) == o, and we deduce from
the exact sequences (18) and (19) that Ext(Z(p), X) ̂  o. Now it follows
from Lemma 4, 2°, that Dp == o. This contradiction shows that
© Dp = o and hence

PG.P
G=Q-@G'

where n is a natural number and G' is reduced. Moreover, the finiteness
of G'p for all primes p implies that

G'^ Ext(W, X) ̂  [ [Ext((/G^, X) ̂ JJ^G^
P ^ P p e . p

and by Lemma 3, (tG')p ̂  o for only a finite number of primes p, that
is to say, G' is finite. It is also clear that the reduced part of each group
Ge9K is finite. Hence if Ge9K then G eg and hence 9KCg, Conse-
quently 9K = g, and the proof is complete.
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