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QUASI-PROJEGTIVE ABELIAN GROUPS

BY

LASZLO FUCHS AND KULUMANI M. RANGASWAMY.

A module M over a ring R is called quasi-projective (see [3]) if for
every submodule N of M and for every .R-homomorphism 9 : M->MIN
there is an -R-endomorphism '-p of M making the diagram

My 1 °X S--
M-^-M/N

commute where r\ denotes the natural map. The aim of this note is
to describe explicitly the quasi-projective abelian groups.

It is relatively easy to list the quasi-injective abelian groups, since
they are exactly the fully invariant subgroups of injective, i. e. divi-
sible groups, and hence either divisible or torsion groups each p-compo-
nent of which is the direct sum of isomorphic cyclic or quasicyclic
groups Z{pn) (n^oo). JANS and Wu [3] described the finitely gene-
rated quasi-projective abelian groups; the general case seems to be
unsettled so far. We shall show that the expected structure theorem
holds : an abelian group is quasi-projective exactly if it is either free
or a torsion group each p-component of which is the direct sum of iso-
morphic cyclic groups of orders pf^ for some n (which may depend on p).

We shall need a couple of lemmas which we formulate for arbitrary
unital jR-modules M.

LEMMA 1. — Every direct summand of a quasi-projective module is
quasi-projective.

LEMMA 2. — If M is quasi-projective and N is a fully invariant sub-
module of M, then MfN is likewise quasi-projective.

For these two lemmas, we refer to JANS and Wu [3].
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LEMMA 3. — If Mi (i e I ) are quasi-projectiue R-modules such that,
for every submodule N of the direct sum M === ® Mi, Ni = © (N n M;) AoMs,
//zen M 15 a^afn quasi-projectiue.

Hypothesis implies that every quotient module MfN of M is of the
form Q)(MilNi) with AT/CM,. Every homomorphism Mi—M^N/
with 1^7 must be trivial, because otherwise there exist submodules N'i
and ATy such that M//N^Ny/N/ are non-zero modules, and so there
is a subdirect sum of Mi and ATy which is not their direct sum. Thus
every cp : Q)Mi->Q) (MilNi) acts coordinate-wise whence the quasi-
projectivity of M is obvious.

LEMMA 4. — If N is a submodule of a quasi-projectiue module M such
that MfN is isomorphic to a direct summand ofM, then N itself is a summand
of M.

Let A be a summand of M with TT : M->A, p : A-^M as projection
and injection maps, and let a : A->MfN be an isomorphism. For the
natural map -n:M->MIN, there exists a ^:M->M rendering

M——>A

M-^MIN

commutative, i. e. r^j == a7r. Define MfN -> M as d;pa-1; then
r/^pa-1 == a7rpa-1 is the identity map of M/N. Hence the sequence
o-^N-^M-^MIN-^o splits.

LEMMA 5. — Let N be a submodule of the quasi-projectiue module M
such that there exists an epimorphism z : N ->M. Then M is isomorphic
to a direct summand of 2V.

Write K == Ker s. Let ~ £ : N I K - ^ M be the isomorphism induced
by s, a the injection M->MIK with as the identity on NfK, and
^ : M-^MfK the natural map. By quasi-projectivity, some ^ : M->M
satisfies r^ == a where ^(M)Cr^i(N|K) == N. For ^ : N I K - > N ,
r^'s. = as acts identically on AT/J^, therefore o -> K -> N -> N I K -> o
is splitting.

Notice that lemma 5 can also be derived from a result of DE ROBERT [2];
it follows that Hom/?(M, N)->Hom/i(M, M) is epic whenever M is
quasi-projective and N^M, and it suffices to look at a preimage of 11/
to obtain lemma 5.

By E(M) we denote the ring of all J?-endomorphisms of At.
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LEMMA 6. — If N is a submodule in a quasi-projectiue module M,
then the cardinality of £(M/N) does not exceed that of E(M).

To every a€£(M/N) there exists a ^aCE(M) such that ^^a=ayi
where again rr.M-^MIN is the natural map. If a,(3eE(M/N) are
distinct, then ay}^^ (since ^ is epic), and hence ^7^8 in £(M).

We are now ready to prove our result (for the needed facts on abelian
groups we refer to [1]):

THEOREM. — An abelian group A is quasi-projectiue if, and only if,
it is :

i° free, or
2° a torsion group such that every p-component Ap is a direct sum of

cyclic groups of the same order p".

Free groups F are quasi-projective, so by lemma 2, the groups F/p^F
are likewise quasi-projective. By lemma 3, a direct sum of groups F/p^F
with different primes p is quasi-projective. Since F/p^F is a direct
sum of cyclic groups of order p", the sufficiency is evident.

Conversely, assume A is quasi-projective. If A is torsion, then by
lemma 1, every Ap is quasi-projective. If Ap is not reduced, then it
contains a summand of type Z(p^c). By lemmas 1 and 4, every proper
subgroup of Z ( p ' ) must be a summand of Z(pac) which is absurd, thus Ap
is reduced. It cannot have a summand of the form Z{prl)Q)Z(pm)
with n<m, because this cannot be quasi-projective in view of the
existence of an epimorphism Z(pfn)->Z{pn) whose kernel is not a
summand. Therefore, the basic subgroups Bp of Ap are direct sums
of cyclic groups of the same orders p", and so Ap = Bp (namely, Bp is
now a summand of Ap, and Ap is reduced).

If A is torsion-free, then we distinguish two cases according as A
has finite or infinite rank. If A is of finite rank r, then let F be a free
subgroup of rank r in A. Now E(A) is countable, hence £(A/F) is
at most countable (lemma 6). Since A/F is torsion, this can happen
only if A/F is finite in which case A too is free. If A is of infinite rank,
then let F be a free subgroup of A of the same rank as A. The exis-
tence of an epimorphism F -^ A and lemma 5 lead us to conclude that A
is isomorphic to a summand of F and hence A is free.

Finally, we show that A can not be mixed. If T is the torsion part
of A, then A/T is quasi-projective by lemma 2, and hence free by what
has been proved, i. e. A == T®F with quasi-projective T and free F.
If neither T == o nor F = o, then there exist a cyclic direct summand
Z(p71) of T and an epimorphism ^ : F — Z ( p n ) whose kernel is not a
summand of F, in contradiction to lemma 4. This completes the proof.
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