BULLETIN DE LA S. M. F.

L. FUCHS K.M. RANGASWAMY Quasi-projective abelian groups

Bulletin de la S. M. F., tome 98 (1970), p. 5-8 http://www.numdam.org/item?id=BSMF_1970_98_5_0>

© Bulletin de la S. M. F., 1970, tous droits réservés.

L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 98, 1970, p. 5 à 8.

QUASI-PROJECTIVE ABELIAN GROUPS

BY

LASZLO FUCHS AND KULUMANI M. RANGASWAMY.

A module M over a ring R is called *quasi-projective* (see [3]) if for every submodule N of M and for every R-homomorphism $\varphi: M \to M/N$ there is an R-endomorphism ψ of M making the diagram

commute where η denotes the natural map. The aim of this note is to describe explicitly the quasi-projective abelian groups.

It is relatively easy to list the quasi-injective abelian groups, since they are exactly the fully invariant subgroups of injective, i. e. divisible groups, and hence either divisible or torsion groups each *p*-component of which is the direct sum of isomorphic cyclic or quasicyclic groups $Z(p^n)$ ($n \leq \infty$). JANS and WU [3] described the finitely generated quasi-projective abelian groups; the general case seems to be unsettled so far. We shall show that the expected structure theorem holds : an abelian group is quasi-projective exactly if it is either free or a torsion group each *p*-component of which is the direct sum of isomorphic cyclic groups of orders p^n for some *n* (which may depend on *p*).

We shall need a couple of lemmas which we formulate for arbitrary unital R-modules M.

LEMMA 1. — Every direct summand of a quasi-projective module is quasi-projective.

LEMMA 2. — If M is quasi-projective and N is a fully invariant submodule of M, then M/N is likewise quasi-projective.

For these two lemmas, we refer to JANS and Wu [3].

LEMMA 3. — If M_i ($i \in I$) are quasi-projective R-modules such that, for every submodule N of the direct sum $M = \bigoplus M_i$, $N_i = \bigoplus (N \cap M_i)$ holds, then M is again quasi-projective.

Hypothesis implies that every quotient module M/N of M is of the form $\bigoplus (M_i/N_i)$ with $N_i \subseteq M_i$. Every homomorphism $M_i \rightarrow M_j/N_j$ with $i \neq j$ must be trivial, because otherwise there exist submodules N'_i and N'_j such that $M_i/N'_i \simeq N'_j/N_j$ are non-zero modules, and so there is a subdirect sum of M_i and N'_j which is not their direct sum. Thus every $\varphi : \bigoplus M_i \rightarrow \bigoplus (M_i/N_i)$ acts coordinate-wise whence the quasiprojectivity of M is obvious.

LEMMA 4. — If N is a submodule of a quasi-projective module M such that M/N is isomorphic to a direct summand of M, then N itself is a summand of M.

Let A be a summand of M with $\pi: M \to A$, $\rho: A \to M$ as projection and injection maps, and let $\alpha: A \to M/N$ be an isomorphism. For the natural map $\eta: M \to M/N$, there exists a $\psi: M \to M$ rendering

commutative, i. e. $n\psi = \alpha\pi$. Define $M/N \to M$ as $\psi \rho \alpha^{-1}$; then $n\psi \rho \alpha^{-1} = \alpha\pi\rho\alpha^{-1}$ is the identity map of M/N. Hence the sequence $o \to N \to M \xrightarrow{\gamma} M/N \to o$ splits.

LEMMA 5. — Let N be a submodule of the quasi-projective module M such that there exists an epimorphism $\varepsilon : N \to M$. Then M is isomorphic to a direct summand of N.

Write $K = \text{Ker } \epsilon$. Let $\overline{\epsilon} : N/K \to M$ be the isomorphism induced by ϵ , α the injection $M \to M/K$ with $\alpha \overline{\epsilon}$ the identity on N/K, and $\eta : M \to M/K$ the natural map. By quasi-projectivity, some $\psi : M \to M$ satisfies $\eta \psi = \alpha$ where $\psi(M) \subseteq \eta^{-1}(N/K) = N$. For $\psi \overline{\epsilon} : N/K \to N$, $\eta \psi \overline{\epsilon} = \alpha \overline{\epsilon}$ acts identically on N/K, therefore $o \to K \to N \xrightarrow{\eta} N/K \to o$ is splitting.

Notice that lemma 5 can also be derived from a result of DE ROBERT [2]; it follows that $\operatorname{Hom}_R(M, N) \to \operatorname{Hom}_R(M, M)$ is epic whenever M is quasi-projective and $N \subseteq M$, and it suffices to look at a preimage of I_M to obtain lemma 5.

By E(M) we denote the ring of all *R*-endomorphisms of *M*.

LEMMA 6. — If N is a submodule in a quasi-projective module M, then the cardinality of E(M|N) does not exceed that of E(M).

To every $\alpha \in E(M/N)$ there exists a $\psi_{\alpha} \in E(M)$ such that $\eta \psi_{\alpha} = \alpha \eta$ where again $\eta: M \to M/N$ is the natural map. If $\alpha, \beta \in E(M/N)$ are distinct, then $\alpha \eta \neq \beta \eta$ (since η is epic), and hence $\psi_{\alpha} \neq \psi_{\beta}$ in E(M).

We are now ready to prove our result (for the needed facts on abelian groups we refer to [1]):

THEOREM. — An abelian group A is quasi-projective if, and only if, it is :

10 free, or

 2° a torsion group such that every p-component A_{ρ} is a direct sum of cyclic groups of the same order p^{n} .

Free groups F are quasi-projective, so by lemma 2, the groups $F/p^n F$ are likewise quasi-projective. By lemma 3, a direct sum of groups $F/p^n F$ with different primes p is quasi-projective. Since $F/p^n F$ is a direct sum of cyclic groups of order p^n , the sufficiency is evident.

Conversely, assume A is quasi-projective. If A is torsion, then by lemma 1, every A_p is quasi-projective. If A_ρ is not reduced, then it contains a summand of type $Z(p^*)$. By lemmas 1 and 4, every proper subgroup of $Z(p^*)$ must be a summand of $Z(p^*)$ which is absurd, thus A_p is reduced. It cannot have a summand of the form $Z(p^n) \oplus Z(p^m)$ with n < m, because this cannot be quasi-projective in view of the existence of an epimorphism $Z(p^m) \to Z(p^n)$ whose kernel is not a summand. Therefore, the basic subgroups B_ρ of A_ρ are direct sums of cyclic groups of the same orders p^n , and so $A_\rho = B_\rho$ (namely, B_ρ is now a summand of A_p , and A_p is reduced).

If A is torsion-free, then we distinguish two cases according as A has finite or infinite rank. If A is of finite rank r, then let F be a free subgroup of rank r in A. Now E(A) is countable, hence E(A/F) is at most countable (lemma 6). Since A/F is torsion, this can happen only if A/F is finite in which case A too is free. If A is of infinite rank, then let F be a free subgroup of A of the same rank as A. The existence of an epimorphism $F \rightarrow A$ and lemma 5 lead us to conclude that A is isomorphic to a summand of F and hence A is free.

Finally, we show that A can not be mixed. If T is the torsion part of A, then A/T is quasi-projective by lemma 2, and hence free by what has been proved, i. e. $A = T \oplus F$ with quasi-projective T and free F. If neither T = 0 nor F = 0, then there exist a cyclic direct summand $Z(p^n)$ of T and an epimorphism $\varepsilon: F \to Z(p^n)$ whose kernel is not a summand of F, in contradiction to lemma 4. This completes the proof.

REFERENCES.

- [1] FUCHS (L.). Abelian groups. Budapest, Hungarian Academy of Sciences, 1958.
- [2] DE ROBERT (E.). Sur une propriété des quasi-injectifs et des quasi-projectifs, C.R. Acad. Sc., t. 266, 1968, série A, p. 547-549.
- [3] WU (L. E. T.) and JANS (J. P.). On quasi-projectives, Illinois J. Math., t. 11, 1967, p. 439-448.

(Texte reçu le 16 septembre 1969.)

Laszlo FUCHS Department of Mathematics Tulane University New Orleans, La 70 118 (États-Unis) Kulumani M. RANGASWAMY Madurai University University Buildings Madurai 2 (Inde)