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REPORT ON DIOPHANTINE APPROXIMATIONS (*);

BY

Stree LANG.

The theory of transcendental numbers and diophantine approxi-
mations has only few results, most of which now appear isolated. It is
difficult, at the present stage of development, to extract from the lite-
rature more than what seems a random collection of statements, and
this causes a vicious circle : On the one hand, technical difficulties
make it difficult to enter the subject, since some definite ultimate goal
seems to be lacking. On the other hand, because there are few results,
there is not too much evidence to make sweeping conjectures, which
would enhance the attractiveness of the subject.

With these limitations in mind, I have nevertheless attempted to
break the vicious circle by imagining what would be an optimal situa-
tion, and perhaps recklessly to give a coherent account of what the

theory might turn out to be. I especially hope thereby to interest
algebraic geometers in the theory.

1. Measure theoretic results.

Let « be a real number. We denote by || «| its distance from the

origin on R/Z (reals mod 1), i. e. its distance from the closest integer.
If ¢ is an integer, then

lqzll=lgx—p|
for some integer p, uniquely determined if this absolute value is small

enough.
We begin by quoting an old result of Dirichlet.

Let o be a real number and N a positive infeger. There exists an
infeger q, o << q= N such that || qo || < 1/q.

(*) This work was partially supported by the National Science Foundation under
Grant NSF GP-1904.
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To prove this, cut up the interval (o, 1) into N equal segments of
length 1/N, and consider the N 4 1 numbers

oo, 10, 2%, ..., No.

Two of them must lie in the same segment (mod 1), say ro and so
with r <<s. We put ¢ =s—r to get

lgell<y =y

‘We note that the inequality |ga—p| < 1/q is equivalent with

We are interested in estimates of ||qa | determined somewhat more
generally as follows. Let ¢ be a positive function of a real variable,
monotone decreasing to o. A theorem of KuHINCIN asserts :

Assume that

(9

qg=1

converges. Then for almost all € R (i. e. oulside a set of measure o),
there is only a finite number of solutions fo the inequality

g1l <4

Here again, the proof is quite simple. Given ¢ > o, select ¢, such that

D) <=

I=q0

We may restrict our attention to those numbers o lying in the
interval (o, 1). Consider those for which the inequality has infini-
tely many solutions. For each ¢>.¢q, consider the intervals of
radius ¢ (g)/q, surrounding the rational numbers

o 1 qg—1

¢ q

Every one of our « will lie in one of these intervals because for such «
we have

e
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The measure of the union of these intervals is bounded by the sum

S ZLPq(tl) < 0
G>q,
as was to be shown.

Suppose thirdly that the sum Etp(q) diverges. Then we have the
following recent theorem of Schmidt [9] :

For almost all o the number of solutions #(B) for the inequality
[[qa|] < ¥(q) with o < qB is given asymptotically by

L(B)~e Y b(g)-

g=1

for some constant ¢;>o. (One can in fact take c¢,= 2 for almost all
numbers.)

The proof is too long to be given here.

The main object of the theory of diophantine approximations is to
determine a wide class of numbers, which may be called classical
numbers, which will behave like almost all numbers. We shall now
proceed to discuss such a class.

2. Classical numbers.

The classical numbers are essentially those which appear as values
of classical functions or mappings, (e.g. exponential, automorphic,
zeta, spherical, solutions of classical differential equations, etc.) with
algebraic arguments, and similarly for their inverse functions, under
suitable normalizations. The above mentioned functions are to be
taken in an extended sense, e. g. I'-functions and I'"/T" are to be viewed
as functions of zeta type. Abelian functions are to be viewed as func-
tions of exponential type. One must also deal with iterations of these
functions, say to deal with numbers like e¢ and of.

In a classical situation, one meets an open subset U of some complex
space and a map f: U— V of U into an algebraic variety, defined over
a number field. We shall give examples below, with suitable norma-
lizations, and recall as we go along certain classical transcendence results.

EXAMPLES :
(i) Let f: G— C* be given by f({)=e'. Here C' is the multi-
plicative group, and a classical theorem of Hermite-Lindemann asserts

that if o is algebraic ;2 o then e* is transcendental. The inverse func-
tion of f is the ordinary log.
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(i) Let f:Cr— Ay be the universal covering map of an abelian
variety A defined over a number field. (One may realize f explicitly
by theta functions.) We normalize f so that the origin in G» maps
on the origin on A, and so that the derivative f'(o) at the origin is alge-
braic. It is known that if P is algebraic #o in C~, then f(P) is a
transcendental point on A [3]. The inverse map of f is given by abelian
integrals.

(iii) Let V be a non-singular curve of genus>. o defined over a
number field, and let U be a disc, centered at the origin in C.
Let f: U— V, be the universal covering map, normalized so that the
origin goes to an algebraic point, and again f’(o) is algebraic. One
conjectures that if P is an algebraic point of the disc, # o, then f(P)
is transcendental. As a side question (already related to moduli),
one can ask if the radius of the disc is transcendental, and whether
the radius can be defined as some real function on a suitable moduli space.

(iv) Let f: S"—V be the moduli mapping from the Siegel upper
half space to the variety of moduli. The fact that f represents the
moduli normalizes it automatically. In dimension 1, one represents f
explicitly by the modular function j. We recall that if = is algebraic
and the abelian variety associated with j(z) has no complex multi-
plication, then f(r) =j(r) is transcendental (SCHNEIDER).

(v) Let J; be the Bessel function with an algebraic parameter 7,
and take f= (Jy, J3), so that f: CG— CG* is the integral curve of a
differential equation, normalized so that the initial conditions are alge-
braic and the coefficients of the equation are rational functions with
algebraic numbers as coefficients. We recall that if 2 is such that J,, J;
are algebraically independent (as functions over the field of rational
functions), then J)(«) and J3(«) are algebraically independent for any
algebraic « == o (SieGEL). It is natural here to view G? as an algebraic
variety with an algebraic differential equation over it.

Some of the above examples satisfy a differential equation and some
do not, but all would be accepted as ** classical .

We shall now show how, given a classical mapping, we can generate
a field of numbers with it.

Let f be a mapping as above and let Q be the smallest field gene-
rated from the rational numbers by performing the following operations
inductively, and iterating them :

Taking algebraic closure.

Adjoining values of f and its inverse function with the argument in
the field obtained inductively after a finite number of steps.

We are concerned with the numbers of £ from the point of view of
diophantine approximations. We note that € is denumerable as would
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be any field generated in a manner similar to the one we have described.
We now expect (real) irrational numbers in Q to behave like almost all
numbers, with respect both to the second and third results recalled in
paragraph 1. For this, one must make certain obvious restrictions on
the function ¢, and we shall discuss these in the next section.

Here we make further remarks concerning known results and evi-
dence in the direction of our expectations.

Liouville numbers do not behave like almost all numbers, and there
are non-countably many of these.

A set of measure 1 on the unit circle (normalized to have length 1)
is such that its sum with itself is the whole circle. For a moment, let
us define a number to be ordinary if there is only a finite number of
solutions to the standard inequality

1
||'Iai|<q—1:s

for every : << o. Then from the above remark, we see that ordinary
numbers cannot form a field. Hence the fact that we deal with a field is
essentially dependent on the manner of generating our numbers. We note
that it is not known whether, if all elements of a field are ordinary,
then the elements of its algebraic closure are ordinary. For the rational
numbers, this is Roth’s theorem. It is likely, however, that to prove
such a result in general, one has to make a stronger assumption on the
field elements, i. e. one has to load the hypothesis.

Since we wish to iterate our functions (or mappings), there should
be some kind of inductive results, which, assuming that certain approxi-
mation properties are satisfied by all numbers of a certain field, similar
properties are satisfied by those obtained in one of the two ways described
above, starting with the given field. In particular, applying one of
our two operations to the numbers of our given field, the conjecture
asserts in particular that we cannot obtain a Liouville number as
a value. To obtain a inductive result, it will be necessary to deal with
a loaded inductive assumption, involving what is commonly known as a
measure of lineari ndependence. We shall discuss this below. As
special cases, one could consider the fields Q(e) or Q (7).

We note that it is hard to predict if one must make some restriction
in the generation of a field £ with respect to maxing mappings of
various “ types ", for instance, applying an exponential function to
the value of a zeta function, or considering a number like e 4 £ (3).
For definiteness, one may therefore take a special case, letting £ be the
field generated by values of e’ and log{, and their iteration, starting
with the algebraic numbers. In some sense, this should also be the
simplest case to treat.
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3. The convergent case.

Let us now consider more closely a number « in our field L.
Generally speaking, it is a problem to determine a class of functions ¢
(convex, monotone decreasing to o with convergent sum) such that
the inequality
o<[lqx[| <¥(9)

has only a finite number of solutions. Very few results are known.
We shall make a list of them.

To begin with, we have Roth’s theorem, taking o algebraic and
b(g) = 1/q"*¢ for any ¢ > o. Taking such a ¢ is in a sense the coarsest
way of making the series converge.

It is an old theorem of Popken that e satisfies a similar result, and
even a stronger one, namely there exists an absolute constant ¢’ such
that for all sufficiently large integers gq,

.
—_— —
lgell>q ~ toetsr.

In fact, Popken’s theorem asserts that if ¢, ..., ¢, are integers and
g =max |¢| is sufficiently large, then

lgie oo quenl|>gq " TE
(¢’ then depends on m).

This result was improved by MaHLER. I have analysed Mahler’s
proof (reproduced in ScHNEIDER [11]), and observed that the proof applies
fo the numbers e* with « rational  o. When « is irrational algebraic,
one obtains a result depending on the degree of «, and this leads one
to hope that a mixture of the Thue-Siegel-Roth techniques with those
techniques used in the theory of transcendental numbers might lead
one to stronger results. In other words, one must consider an approxi-
mating sequence, and argue combinatorially on this sequence.

In this connection, SieGEL himself observes that for the Bessel func-
tion, the inequality

I
g+
has only a finite number of solutions whenever a is rational, # o, and
similarly for a polynomial in J,(«), J;(«) [12]. Here again, the problem
is open for algebraic o, or when one deals with J;, and 2 is algebraic
irrational. SIEGEL also mentions the analogous result for e, and linear
combinations of powers of e. We note in passing that the finiteness
property for the inequality

g Jo(@) + g T () [| <

qJo() | < e

has not yet been proved. Siegel’s method does not give it as it stands.



DIOPHANTINE APPROXIMATIONS. 183

For numbers of type «® (with «, 8 algebraic, « ¢ o, 1 and { irrational),
or for values of p-functions with algebraic ¢., ¢;, or their inverse func-
tions with algebraic arguments, one has only a much weaker result,
of the following type : If Z is a number of the kind just mentioned,
then GerLronDp and FeLpmaN [2] have shown that

. ¢
gzl > (I(Tgi,,zr

It seems clear to me, however, that all the above results point to the
same direction, i. e. the finiteness statement as for almost all numbers
with the function ¢ (q) =1/q'*=.

For more general functions {, the situation is more complicated.
First, let £ be a number with the following property :

(%) There exists a constant ¢ > o such that for all integers ¢ > o we have
. c
ol >=-
gzl g
Then for any monotone decreasing  such that En]z(q) converges, the
inequality

Izl <4 (@

has only a finite number of solutions.

Proof. — Suppose that ¢ is a monotone decreasing function such
that ¢(¢) > 1/q for infinitely many ¢, say ¢:<<g¢.<<.... Then we

contend that Zup(q) diverges. Indeed, let us make ¢ smaller by
supposing that

I
Y@=
for q.—n < q<q, Then

Take n = n, large. The first n terms of this series have a lower bound
given by
i Ol (8

I I
(ql_ql)q_” + ...+ (— q/z—1)q—” = o

Thus for n large, we get a contribution > 1/2 to our sum. We repeat
this procedure with a number n, which will give a contribution
greater than

q__’_"z—q“t > I/2
q”z
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to our sum, and so on with n;, .... In this manner, we see that the
sum diverges. :

S. ScHANUEL has poinfed out fo me that the converse is also frue, i.e.
if « is a number such that for every smooth convex monotone decreasing
function U with convergent sum the inequality

Il <4(@

has only a finite number of solutions, then a satisfies (%).

To prove this, ScHANUEL argues as follows. Suppose 2 does not
satisfy (). Then we can find a sequence of integers ¢, with
1< ¢ <¢ < ...such that ||qa| < 1/2/q;.. Let

4

=3 €,
¢ @ g °

Then ¢ (g,) > 1/2/¢,, and the sum (or integral) for ¢ converges. This
achieves what we wanted. (Also, Schanuel’s function is as good as
possible from the point of view of convexity.)

It is a problem to determine specific numbers which have, and have
not, property (%). It is trivial to prove that quadratic numbers have
this property, and hence behave maximally well in the convergent
case. It is unknown whether any other algebraic numbers (irrational)
have the property.

One is thus faced with a problem in two directions concerning the
finiteness statement : For which numbers does it apply, and for what
class of functions {¢.

We note that the set of numbers satisfying (k) has measure o, and
so the description of functions ¢ for which the finiteness statement
holds appears as subtle. If the general philosophy that classical
numbers behave like almost all numbers holds in the present instance,
then one would expect only the real quadratic numbers among them
to satisfy (). Admittedly, the range in which one tries to guess the
answer here is delicate.

It is already clear from the ideas of the Thue-Siegel-Roth proof that
in a certain sense, the difficulty of extending the proof to the usual trans-
cendental numbers does not lie so much in the transcendentality as in
an intrinsic weakness of the structure of the proofs, even for algebraic
numbers. That such a weakness exists is clear, since the proof is
unable to decide whether algebraic numbers satisfy property (%), or
if they satisfy the finiteness property with respect to a function like
¢ (9) =1/q(logg)"*.
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It is therefore necessary to start investigations of the theory from
the beginning, and to have essentially completely new ideas which
would exhibit the finiteness by means of a more canonical combinatorial
treatment of the approximating sequence.

4. Asymptotic approximations.

Suppose that ¢ is smooth, convex, strictly decreasing to o (for suffi-
ciently large numbers), and that its integral to infinity diverges.
Modulo an additional restriction on ¢ which will be discussed below,
one expects that for all classical numbers a (real and irrational), the
number #(B) of solutions of the inequality

lgall <d(@), o<g=B
is given asymptotically by

2(B) ~ ¢, f ‘s

with some constant ¢, (possibly depending on «, ¢).

That some restriction is needed on ¢ is clear from the possibility
of property (%). We are thus led to introduce the function

o(l) = 1Y)

If (%) is satisfied, one must then assume that » is not decreasing to o.
Furthermore, it is entirely reasonable to require that » is not oscillating,
and is itself convex. It is then naturel to split the theory into two
cases, according as » is constant, or strictly increasing to infinity (for all
sufficiently large f). When we take » constant, we must assume that
there actually exist infinitely many solutions for the inequality

20y

so that for definiteness, one may take w(f) =c> 1. There are various
ways of preventing » from oscillating.

Actually, it is not clear if there is an a priori characterization of those
functions ¢ for which everything works out as expected. However,
one expects all reasonable functions (built up out of exponentials, logs,
essentially the elementary functions in a finite number of steps) to be
acceptable, provided there is no oscillation. The point is that any
idea for a proof will carry with it an explicit error term which will deter-
mine automatically the range of wvalidity of the asymptotic estimate.

This is in fact precisely the situation which occurs in [8] where the

expected theorem is proved for quadratic irrationalities (real), with a
definite error term which shows the estimate to be good when o is a
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power of the log, or iterated logs (i.e. w can grow quite slowly).
However, the estimate is not valid for all .

Even for quadratic irrationalities, the problem is open when o (f) = {3
with o <<d <1. When o(f) =ct with o <c <1, then the situation
is the classical one of equidistribution, and the answer is known. There
exist several papers dealing with it by HEecke, BEHNKE, HarDY-
LittLEwooD, etc. (cf. Abhandl. math. Sem. Hamburg. Univ., t. 1, 1922
et t. 2, 1923).

Some machine computations for a few classical numbers (e, =, e + =,
log 2, log 3, v) tend to support the present conjecture [1]. In any case,
the classical transcendental numbers seem to be no different from the
present point of view than the algebraic numbers. It should also be
pointed out that no paper had considered the asymptotic problem for
specific numbers previous to [8].

5. Generalizations.

Let a4, ..., a, be (real) numbers in our field . Then one may study
the inequality
o+ quon || < q—‘
or
H Q%+ qman ” < 4/(11),

with a suitable function {, subject to similar restrictions as before.
Here we put ¢ = max|g¢;|, and the exponent m generalizes the expo-
nent 1 considered previously. Similarly, the convergence condition
now applies to the sum of ¢(q) taken for all m-tuples (g, ..., qu),
with max |¢q;| < B.

If the sum converges, then one expects a finite number of solutions
for the inequality

o< |lquar+. . A guanl < $(Q)-

If the sum diverges, and if 1, «,, ..., «, are linearly independent over
the rationals, or equivalently, linearly independent mod Z on the circle,
then one expects the usual asymptotic estimate for the number of solu-
tions of the inequality

||q1al+'-~+qmam|| <4’((1), 0<¢IéB-

(Cf. ScamIDT’S paper again for the corrésponding theorem holding almost
everywhere.)

In the present context we therefore see the theory of transcendental numbers
as defermining which classical numbers are linearly independent or alge-
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braically independent, and the theory of diophantine approximations then
gives quantitative results concerning such numbers. Quantitative results
are known as measures of linear independence or measures of trans-
cendence. If o is a classical transcendental number, then one may put

oy = al,
and a measure of linear independence for «, ..., a” becomes a measure
of transcendence for .

One can also work on the torus. Let L be a lattice in R”, having a
basis whose elements consist of vectors with coordinates in our field L.
For any vector X in R”, define || X || to be its distance from the origin
on the torus R*/L. One then considers the inequality

o< H q: X1 +... _I_qme” < Ll’m,n(q)

with a suitable function ¢, ,. This is a problem in simultaneous
approximations of vectors.

As stated above, the problem is on R*. However, it has applications
to elliptic curves and abelian varieties [6]. For instance, if A is an
abelian variety defined over a number field K, and f: G*» A¢ is as
in Example (ii) of paragraph 2 the representation of A¢ as a quotient
of the universal covering space, then we may identify C* with R2~,
If P=f(X), we also write X =1og P. Taking P,, ..., P, points
of Ag (i. e. algebraic points) linearly independent over Z, we see that
the approximation question concerning

|| q1P1 —l— . + qumH < qu,n(q)

becomes equivalent with an approximation as described above, with
vectors X; having transcendental coordinates. A similar situation
exists with respect to the multiplicative group [6], and one obtains in
this way generalizations of statements of S1EGEL and MAHLER in diophan-
tine geometry, concerning integral points (cf. for instance [5], Corollary
of Theorem 1, Chapter VI, § 1 and Theorem 1 of Chapter VII, § 1).
For instance, the theorem in diophantine approximations needed to
prove Siegel’s finiteness of integral points on curves of genus>.1 over
number fields, is the following :

Let V be a complete non-singular curve of genus>1 defined over a
number field K. Let g be a non-constant rational function in K(V).
Let Iy be the ring of algebraic integers of K. Let ¢> o. Then the sel
of points P in Vg which are not poles of g and such that

I!I(P)Iéﬁ

is finite.
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For elliptic curves, the inhomogeneous analogues of conjectures
expressed in this paper would imply the finiteness only under the
assumption that

I

lg(P)| = ..
(logH(P)) *

where r is the maximum of the multiplicities of the zeros of ¢, m is the
rank of Ak, and H is the height in a fixed projective embedding.

I cannot resist mentioning other applications to diophantine geo-
metry. In [5], I have proved the following statement : Let I', be a
finitely generated multiplicative group of complex numbers, say.
Let f(X, Y) = o be the equation of a curve (irreducible) and assume
that there exist infinitely many points (x, y) such that =z, yel,
and f(z, y) =o. Then f has a ‘ multiplicative ” structure, i. e. there
exist integers n, m# o and non-zero constants a, b such that we have
identically f(af?, bt") = o. It follows then easily that f consists of
at most two monomials.

As a special case, it follows that if ¢ is a rational function with complex
coefficients, and if there exist infinitely many elements x€l', such that
g(x)el, then ¢ is of type aX" for some infeger n and some constant a.

The proof uses the ideas of Siegel's theorem, combined with an addi-
tional combinatorial argument on coverings. Thus in effect, the proof
depends on the above-mentioned result in diophantine approximations.

Let T be the multiplicative group of complex numbers z such that
some integral power z" lies in I', (some m32 o). I would conjecture
that the same results as above hold when T', is replaced by I'.  As a special
case, one has the following very elementary statement :

Let g be a rational function with complex coefficients, and assume that
there exist infinitely many roots of unity ¢ such that ¢(¢) is a root of unity.
Then g is of type ¢(X) == aX" for some integer n, and some root of unity a.

A proof for this last statement was shown to me by Ihara, Serre and
Tate. We can reformulate and generalize the above statements as
follows :

Let A be a group variety in characteristic o which is either an abelian
variety or a product of multiplicative groups, or a group extension of an
abelian variety by such a product. Let I'y be a finitely generated subgroup,
and let T be the subgroup of points x € A such that there exists an inleger n == o
such that nxel,. Let V be an irreducible algebraic curve in A, and
assume that the intersection of V with I' is infinite. Then V is the trans-
lation of a group subvariety.

The above formulation implies the Mordell conjecture, as pointed out
in [5]. It also implies a conjecture of Mumford, who, a few years ago,
asked me the following question : If a curve embedded in its Jacobian
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contains infinitely many points of finite order, is the curve of genus 1 ?
(The question was also raised independently by MaNIN in his work on
Picard-Fuchs equations. MaNIN pointed out that although it takes
infinitely many algebraic equations to define the points of finite order
on an abelian variety, it takes only a finite number of differential
equations.) The question concerning our polynomial f(X, Y) and roots
of unity is the analogous question for the multiplicative group. As an
example, one always has the straight line X 4 Y =1. The theorem
proved in [5] shows that this line contains only a finite number of
points whose coordinates lie in a finitely generated multiplicative group.

Other generalizations are possible. One can consider approxi-
mations | ga — p| where ¢, p lie in a number field K, and similarly for

Go %o +...+ qmn%m.

One lets ¢ be the height of the point (¢, ..., ¢.,) in projective space.
‘When dealing with points on abelian varieties, one could let the ¢; range
over the ring of endomorphisms.

Finally, one can ask for approximations questions on group varieties
and homogeneous spaces or transformation spaces, defined over number
fields. For instance let G be a group variety and V a homogeneous
space defined over the number field K. Let x,, y, be points of V with
coordinates in our field £. One can then ask for those points ge G,
rational over K, such that dist (gz., yo) <¢(g), where dist is the
distance in a suitably normalized metric on V, and ¢ is a function of
the height of g. When G operates on itself by translation, and is
commutative, we are led to considering an inequality

dist(z, ) = || xo—2z || < Y (2)

which looks formally like the inequality that is usually written down
in the simplest case of approximation on the circle. This gives rise
to homogeneous or inhomogeneous approximation problems in globa-
lized setting, on linear groups or abelian varieties.

6. Relation with transcendental numbers.

We shall conclude this report by pointing out a more technical connec-
tion between the theory of diophantine approximations, and the theory
of transcendental numbers, due to GELFoND, whose result is as follows.

THEOREM. — Let o be a strictly monofone increasing real function
tending fo infinity, and assume that there is a number a,> 1 such that
o(N+1)<ayo(N) for all integers N> N,. Let w be a complex



190 S. LANG.

number. Assume that for each integer N > N, there exists a non-zero
polynomial Fy with integer coefficients such that

| Fa()] < eeo
where C = 50 a2, and
max(deg Fy, log| Fy|) < o(N),

Then w is algebraic.

As usual, | Fy| denotes the maximum of the absolute value of the
coefficients. Since in his book [2], GELFOND gives the proof of a weaker
result, it is worth while to summarize roughly the argument here.
First one proves that if I is a polynomial in one variable with integer
coefficients, relatively prime, and ¢, C are numbers > o such that

| Fw)| <e ¢

and deg F <o, log|F| <o, then there exists an irreducible factor P
of F (with integer coefficients) such that

62 C
|P(w) <e 2%
with some integer s <o, and max (deg P, log| P|) = a/s.

The proof proceeds first by factoring I into relatively prime poly-
nomials which are powers of irreducible polynomials, and using the
estimate given by the resultant of the factors expressed as a deter-
minant. One sees that each factor must have a small absolute value,
and then one takes some s-th root with s ~Zo.

To prove the theorem, one can then assume the coefficients of each Fy

to be relatively prime, and Fy(w);#o. Given a sufficiently large
integer ¢ (say ¢q > ¢,) we can find an irreducible factor P, of F, such that

_0‘9(//)0
|[P,(w)| <e *¢

with some integer s < o(q), and

max (deg P, log | P, |) = é ().
Let x, be the number such that

o(x,) = max (degP,, log | P, |).

Then z, goes to infinity with ¢, and trivially

0%(x0)G

[Pyw)|<e
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Now find an integer N such that
a(N—1) < = @) = a(N).
ba

Then o¢(N) Za,0(N—1)<L0o(z,)/4. Take F = Fy so that
[ F(w)| < e-oe

and max (deg F, log | F'|) = o(N). Then P, and F are relatively prime.
Otherwise P, divides F, whence

max (deg P,, log| P7|) < o (x,)

which is impossible.

The resultant R of P, and F is not zero and is an integer. Using an
easy estimate arising from the expression of the resultant as a deter-
minant, we find

|R|=[|P,(w)| 4| F)|]e

for ¢ large. In the estimate for F(w), we can replace ¢(N) by o (x,)/4a,
This makes the resultant less than 1, contradiction.

GeLFoND, in his book, proves the result only with some function
instead of the constant C. It is also easy to see that the theorem
applies when one deals with a rational function or an algebraic function
instead of a polynomial. This is useful when one deals with a function
field other than the rational field.

We note that max (deg F, log | F'|) is essentially a height function on
polynomials, which measures the speed with which both the degree
and the coefficients tend to infinity. The exponent ¢? is the * correct
one in the optic of results holding almost everywhere. GELFOND
applies his theorem to prove that certain numbers are algebraically
independent. Indeed, under certain circumstances connected with
values of exponential functions, one knows that a number w is trans-
cendental, and one wants to prove that it is algebraically independent
of another number y. Assuming the contrary, one can construct a
sequence Fy as in the theorem to lead to a contradiction, thereby giving
the algebraic independence of w and y.

I have tried to use Gelfond’s method to prove that e, = are alge-
braically independent, but an application of known ideas in the theory
leads to a sequence F'y satisfying an inequality weaker than the needed
one (i. e. the exponent of ¢ is not quite 2.) Still, Gelfond’s theorem gives
a good approach to these questions.

One can conjecture a generalization, using a sequence of polynomials Fy
in several variables, and an n-tuple of complex numbers (Wi, ..., Wy).
In that case, the conclusion should be that w,, ..., w, are algebraically
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dependent, provided that in Gelfond’s inequality we take the exponent o'
instead of o*, and the constant C depends only on o and n (nof on the chosen
numbers).

If one tries to apply the theorem for one variable inductively, one
obtains some result, but with an exponent for  which is much too large
to be of interest.

The possible generalization of Gelfond’s theorem to several variables
gives an interesting direction for the problem of diophantine approxi-
mations, when the degree of the polynomial varies, together with its
coefficients. In the discussions of preceding sections, we kept the degree
constant. The theory of transcendental numbers shows that the more
general behaviour also has to be considered.
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