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THE GENERAL FORM
OF RESIDUATED ALGEBRAIC STRUCTURES ;

BY

THOMAS SCOTT BLYTH.

INTRODUCTION. — This paper consists basically of the results given
in the first chapter of the author's thesis [1]. However, it also contains
some supplementary results; in particular, we resolve the unsolved
problem cited in [1] and give a generalisation of a recent result by
MCFADDEN [2].

We begin with the following necessary overture of general definitions
and known results.

DEFINITIONS. — By an ordered groupoid we shall mean simply a set ^
endowed with a closed binary operation (multiplication) and a partial
ordering (^) with respect to which the multiplication is isotone [i. e.,
^^V implies xz^yz and zx^zy, V^eg^]. The ordered goupoid ^
is said to be residuated on the right (left) if, given any two elements a, b e ̂ ,
the set of elements xe^ satisfying ax^b (xa^b) is not empty and
has a maximum element, denoted by b .* a (b •• a) and called the right
(left) residual of b by a. The ordered groupoid ^ is said to be residuated
if it is residuated on the right and on the left.

In a residuated groupoid ^ the following properties are easily shown
to hold (see, for example, MOLINARO [3]) :
, . - ( a . ' x ^ b . ' x ( x.9 b ^ x . ' a ,(a) a^b => < and < \fxe^;

( a ' . x ^ b \ x [ x ' . b ^ x ' . a , "

(b) ( x(af9x^a \ ^th equality if, and only if, ( a = ̂
( ( a ' . x ) x ^ a ) ( a = ̂ x;

(c) \ ' [ with equality if, and only if, \ ' 9
{ a ^ a x \ x } i ^ j '^^^.^

J a^x.' (x\ a) } ( a == r • i±(d) ~~ . / [ with equality if, and only if, \ rf
a ^ x \ ( x . ' a ) ) -i J ' J ?^^.^
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110 T. S. BLYTH.

(e) the following three equalities are equivalent and are necessary and
sufficient for ^ to be a semi-group :
(i) (a.- b).'c == a . ' be, V a , 6 , c e g ,
(ii) (a\ b)\c == a\cb, V a, b, ce^,
(iii) (a-. & ) . - c == (a . -c)- . &, V a, ^, ceg.

Three types of equivalence introduced by MOLINARO [3] play an
important role in the study of residuated structures; these are :

(a) Equivalences of type A, defined by
a== b (A,c) <==» x .• a = x .* b,
a=^ b (^A) <=> x\ a = x\ b.

These equivalences have the following properties : the classes are
convex; if g- is u-semi-reticulated (see M. L. DUBREIL-JACOTIN [4],
p. 128), A.^ and .yA are compatible with union; A.^ and .zA are strongly
upper regular (see [4], p. 178); for any ae^ the element a = x\ (re.* a)
[resp. a = x •• (x'. a)] is congruent to a modulo A^ [^A] and is the maximum
element in the class of a; A.y and .̂ A are closure equivalences. Whenever
^ is a semi-group, A.̂ . [^.A] is regular on the right [left] with respect
to multiplication and A.^CA^..^ [^AC^.^A], V.r,^€g.

(p) Equivalences of type B, defined by
a == b (B^) <=> a . ' x = b . ' x,
a==b(^B) <=> a \x =b \x.

These equivalences have the following properties: the classes are
convex; B.^c and xB are compatible with intersection (if it exists in <^)\
B^ and ^B are strongly lower regular ([4], p. 180); for any pe^the
element ,3 = x(^ •• x) [resp. (3 = (3 •• rc)o;] is congruent to (3 modulo B^[^.B]
and is the minimum element in the class of p; B^ and ^B are anti-closure
equivalences. Whenever g- is a semi-group, B.v [.rB] is regular on the
right with respect to residuation on the left [right] and B^ C B^ [^B C ̂ .B],
Va-,^6^.

(y) Equivalences of type F, defined by
a== b (Fx) <==^ xa = xb,
a = b (^F) <==> ax == bx.

These equivalences have the following properties : the classes are
convex; Fx and ^F are compatible with union if ^ is u-semi-reticulated;
Fx and ,z.F are strongly upper regular; for any v € ̂  the element v == xv .' x
[resp. ^ = ^x\x] is congruent to v modulo F^ [.yF] and is the maximum
element in the class of v; F^ and ^F are closure equivalences. Whenever
^ is a semi-group, J7, [z.F] is regular on the right [left] with respect to
multiplication and

F,CF ,̂ F^CA^ [^FC^F, ..FC^.^A] v^, ̂ eg.
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1. — Consider now the following remarks :
(a) There exist partially ordered sets on which no multiplication

can be defined such that they be residuated [for example, ^ = ; a, b, c }
with b < a, c< a, b || c (l)].

(b) There exist partially ordered sets on which several multiplications
can be defined such that they be residuated [for example, ^ = \ a, b, c }
ordered by c < b < a can be endowed with 13 different multiplications
in order that it be residuated).

(c) There exist groupoids which, even though they can be ordered
in an isotone manner, can nevertheless not be residuated [for example,
g == ; a, b} with aa = ab = a, ba = bb == b and b < a].

(d) There exist groupoids which can be ordered in several ways such
that they be residuated [for example, ^ = { a , b, c, d } with xy = d,
V*r,ye^, can be ordered in 12 different ways in order that it be
residuated].

This being the case, we ask the following question : regarded as a
partially ordered set, what is the general form of a residuated structured

groupoi'd <j

semigroup S

cancellation laws)

q-groupoi'd 9a
(= groupoi'd in which

quotients exist)

quasfgroup (̂
= groupoi'd in which
quotients exist
and are unique)

group ?^

Fig. i.

In seeking an answer to this question, we shall impose several restrictions
on the multiplication and see, in this way, the different forms permissible
for each structure. We shall in fact be concerned with the structures
represented in the diagram of figure i and we shall give examples of
each type occurring.

0 We use the notation x j j y to denote x ̂  y and x ̂  y (x not comparable to y);
similarly, x ̂  y will denote x ̂  y or x ̂  y (x comparable to y).
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2. — Now we know that any partially ordered set can be represented
by a Hasse diagram, the interpretation of which is : b < a if, and only
if, b can be joined to a in the diagram by an increasing line segment.
Such a diagram is that of figure 2.

•h

k •m

a (& e
Fig. 2.

In general, such a diagram will consist of several mutually disjoint
parts (for example a, d5, e of figure 2). We shall be particularly
interested in these, and characterise them in the following useful way.

Let ^ be any partially ordered set. Define an equivalence (^ in ^
as follows :

a = b ((R) if, and only if, there exists a finite
number of elements a = ai, a^_,..., an== b of ^
such that Gii ̂  a^.i for i == i, 2 , . . . , n — i.

This binary relation is easily seen to be an equivalence relation and ^
is the set-theoretic union of the classes of ^/^l, say ^=a^d3^e^ . . . ,
these classes being nothing else than the disjoint portions in question.

Suppose now that ̂  is an ordered groupoid, which we shall not necessa-
rily suppose to be commutative; we have :

THEOREM 1. — The equivalence (R is compatible multiplication.
Let Oi =^ a-i (^%); then Oi and a^ are connected by at least one finite

zig-zag chain, say

^==^a;,^^... ̂ Xn=a,.

By the isotone property of multiplication we then have, for all b € g,

a, b - x, b ̂  x, b ̂ ... ̂  Xnb == a,b,

whence a^b== a^b (<^), V^e^. The equivalence ^ is therefore regular
on the right with respect to multiplication. In a similar way, it can
be shown that (^ is regular on the left with respect to multiplication;
dl is thus compatible.
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THEOREM 2. — If the ordered groupoid ̂  is residuated, then (R, is compa-
tible with residuation.

Let a== a* ((K) and b== V (^l); then there exist a,(i == i, 2, . . . , n)
and 6y(j = i, 2, ..., m) such that

a=a^a,^^...^ =<f,
b=b^b^b,^^.^b^===b\

It follows from the property (a) mentioned in the introduction that
(for residuals on the right, for example)

a.' b = ̂ .- b^a,.'b^ . . . ̂  ̂  •• b = a\- &,
a\- b = a\' b^a\- 6,U ... ̂  a\' b,n = a\9 b\

whence we have a .• b == a\9 V (<§). A similar proof holds for left residuals.

THEOREM 3. — If the ordered groupoid ^ is residuated then the groupoid
§/^l is a quasi-group homomorphic to ^.

Since ^ is residuated, the general relations a(b •• a) ̂  b and (b •. a) a ̂  b
imply that a(b •• a)== b(^) and (b\ a)a== b((R.), so that, .if <fl denotes
the class of a modulo ^ and <B denotes the class of b modulo ^l, the
class X of & . • a modulo ^l satisfies dX = d3 and the class y of 6 \a
modulo (^ satisfies ^d = (^. It follows that quotients exist in g/(^;
we now show that these quotients are unique. Consider cX, d3, e
(^ e g^/^ such that CL(^ = ae == cP and let us show that d3 = e. Since ̂
is residuated, d . ' a exists, VdecP, VaeeZ, and by theorem 2 all these
residuals belong to the same class modulo (R. Let this class be J and
consider the product ab = d where ae^t, be^, de^. We have
6^d.*aeJ. But 6e<^; hence d3 = J since ^l is an equivalence
relation. Considering in a similar way the product ac = d\ where ae cl,
ce<?, d*e^, an analogous proof shows that also C = J. We have
thus established that the equation CiX == d3 has a unique solution;
in a similar way, so also does ^(fl==d3. g/^l is thus a quasi-group.
Finally, it is clear that the mapping ^ : a->cl, where el denotes the
class of a modulo <^, is a homomorphism.

COROLLARY. — In order that <^\(^ be a loop, it is necessary and sufficient
that a . • = 6- .6 (^ ) , Va, 6e^.

3. — In what follows, ^ will denote a (not necessarily commutative)
residuated groupoid; moreover, the following notation will be used :

^ = = { y ^ ^ ; y ^ = ^ } , x={z^^,z^x}.
LEMMA 1. — If(^ contains a maximal element d then each element fli €^

which is such that a^a^0 is necessarily less than or equal to a.
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Let cl be the class modulo Oi of the elements a, a,, and let (^ == did.
For any element a e a.. (j^\ a, we have
(a) b ' . d ^ b ' . a and b ' . a . ^ b ' . a , V6e^.

Considering therefore the element 6* = a. a we have, since a is maximal
in el,
(P) a== 6* - .a == y ' . a .

From (a) and ((3) it then follows that b*\ a^b^'.d, whence (b"\ a^a^b"
and so, a being maximal, we have

a = y.' (6*-. a;)^ 0(.

LEMMA 2. — //' ^ contains a maximal element then that element is
maximum in its class modulo <X.

Let a be maximal in cl and consider any element a* e a other than a
Suppose that there exists, in any finite zig-zag chain connecting a to a\
a first element, a/, say, which satisfies a^a\ then we have necessarily
that a^; a ̂  0, since the element preceding a/, in the chain belongs
to this set. Applying lemma 1, we thus have a/c^d, contrary to the
hypothesis. It follows that, in any finite zig-zag chain connecting a to a\
there is no first element which is not less than or equal to a. Conse-
quently, all elements in any such chain are less than or equal to a, and
in particular, a*^d. Since a" is an arbitrary element ofcl, we con-
clude that a is maximum in ex.

COROLLARY. — J/'cle^/^ contains a maximal element, then a contains
no ascending chain which is unbounded above.

LEMMA 3. — If ^ contains a descending chain which is unbounded
below then each class modulo ^ contains at least one such chain.

Let (Zi^aa^a:^ ... denote the descending chain, unbounded
below, in the class ex. Let (^ be any class of §/^ ; then there exists
one (and only one) class e of g/(^ such that e<Jb = a and for all ce^,
we have flj .• c ̂  a^_ .• c^ 0:5 .• c ̂  . . . . Let bi === O i . ' c and let us show
that the chain bi-^ b^ (i = i, 2, 3, . . .) is unbounded below : suppose
in fact that there existed 6e^3 such that b^bn, Vn; then we would
have cb^an,^/n, and the chain a^a/+i (i = i, 2, 3, . . . ) would be
bounded below (by cb), contrary to the hypothesis. It follows that ^
contains a descending chain which is unbounded below, and since (^
is arbitrary the same is true for all classes modulo ^l.

LEMMA 4. — If ^ contains an ascending chain which is unbounded
above then each class modulo (^ contains an ascending chain unbounded
above and a descending chain unbounded below.

Let ai^a^^a^^.,. be the ascending chain unbounded above
in the class cT modulo CH. Let e be any class of g/t^; then there exists
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one (and only one) class (^ modulo ̂  such that (^cl == e and for all b e <^,
we have 6flj^ 60.2^ 6a:;^ . . , . . Let ci= bai and let us show that
the chain c^c^i is unbounded above : suppose in fact that there
existed c^C such that Cn^c, Vn; then we would have bdn^c, Vn,
whence a/^c.* 6, Vn, and the chain a^a;+i would be bounded above
by c .• b, contrary to the hypothesis. It follows that every class modulo (R
contains an ascending chain unbounded above.

Moreover, for each class e there exists one (and only one) class S
such that cXJ ==(5 and, for all c e (3, we have that c.' a^c.' a^c.* a:;^ ....
Defining f;= c .• di, we have that the chain fi^fi^-i (i == i, 2, 3, . . .)
is not bounded below [for if it were, there would exist f^c.' dn, Vn,
whence c^^c'./,Vn, and the chain a;^a;+i would be bounded
above]. Since ^ has a descending chain which is unbounded below,
the result follows from lemma 3.

LEMMA 5. — If ̂  contains a maximal element then each class modulo (^
contains a maximum element.

Suppose that a is maximal in the class el modulo (R.; then by lemma 2,
~d is maximum in el. It then follows by the corollary to lemma 2 and
by lemma 4 that no class modulo ^ can contain an ascending chain
which is unbounded above. By Zorn's lemma, each class therefore contains
a maximal element which, by virtue of lemma 2, is necessarily maximum.

LEMMA 6. — If' ̂  contains a minimal element then every class modulo (^
is an upper directed set.

Suppose that x be minimal in ^ and consider first of all any two
elements a,., a^ of ^ such that a,,l^\ a^y£ 0. We know that there exists
y(== x . ' a^) such that a^y == x. Let therefore ae a^ a ^ ' ; by the isotone
property, and remembering that x is minimal, we have

x==a,y==ay^a,'y,

whence a^a,,'y\y. But we know that a^^a.,'y\y, it follows that
a,l^a^0.

This being the case, let d3 be any class modulo (^ and let &s, b^i be any
two elements in d3. By the definition of ^ there exists a finite zig-zag
chain

b^b^b^b^^^bn^b,.
Now amongst these elements there is a finite number, N say, of

elements br such that br-^br and br+i^br. Denoting such elements
by 677, we consider the finite sequence

MMM...II&N.
Now from the definition of 677, we have 6-r-^, 6-27^ 0. The result in

the first paragraph above therefore gives b-i^b-^^0. Consider there-
fore ^efty^ ^; since b^[f^ b^^ 0, we have that &i« (j^\ 2^ ̂  0 so that,
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by the above result, b^i^ bj^0 and consequently b-rf^1)^0. Consider
now ^*e6-r^^; since b^f^b^^0, we have b.^^1)^0 so that
b-2*(r^\ ^TT^ 0 and consequently bjf^\ b^^ 0. Consider ft^e &-n^ ̂  ^G-
After a finite number (in fact N—i) applications of this process, we
arrive at 67^ ̂  7^0. Since therefore b^b-^ and b./^by, it follows
that ^^^^0 and the proof is thus complete.

LEMMA 7. — J/" ^ contains a minimal element then that element is
minimum in its class modulo <^.

Suppose that a be minimal in the class d modulo ^R, and let x be any
other element of ex. Since CX is an upper directed set (lemma 6) there
exists zexff^a, and since there exists an element t(=n\z) such that
tz = a, we have tx =-- ta == a. In other words, for any xe.^. there
exists an element, which we shall denote by tjc, such that t.rX = a and
tx^a'.q.

Consider now any element ?/€Cl; since ^ is residuated, there exists
xe^L such that ( a ' . a ) x ^ y . It follows by the isotone property that
px^y for all p ^ a ' . a , and in particular that a = t^-x^y. Since y
was chosen arbitrarily in cl, it follows that a is the minimum element of <t.

LEMMA 8. — If §• contains a minimal element the every class modulo (R.
contains a maximum element and a minimum element.

If ae^t is minimal in ^ then a is minimum in <t by virtue of the
preceding result. It follows that €i contains no descending chains
which are unbounded below and so, by lemma 4, no class modulo di
contains an ascending chain which is unbounded above (since the exis-
tence of such a chain would imply that el had a descending chain
unbounded below). In other words, all ascending chains in ^ are
bounded above. It follows by Zorn's lemma that each class modulo ^
contains maximal elements and so, by lemma 2, we can assert that
each class has a maximum element.

Moreover, since a is minimum in CL, it follows by lemma 3 that no
class modulo ^ can contain descending chains which are unbounded
below. Consequently, each class contains minimal elements. The
proof is then completed by appealing to lemma 7.

The results of the previous lemmata thus give us the general form
of residuated groupoids which we resume in the following :

THEOREM 4. — If the ordered groupoid ^ is residuated, then each class
modulo (^ contains either :

1. a maximum element and a minimum element,
or 2. a maximum element and no minimal elements,
or 3. no maximal elements and no minimal elements.

We now give examples of each of the above types.
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EXAMPLE ^i. — Consider the groupoid whose Hasse diagram is that
of figure 2, and whose multiplication table is as follows :

•

a <

d3

e m

a
b
c
d
f
9
h
k
I

a
a b c d f g

d d g g g g
d d g g g g
9 9 9 9 9 9
9 9 9 9 9 9
9 9 9 9 9 9 '
9 9 9 9 9 9

h h h h h I
h h h h h I
I 1 1 I I I

m m m m m m

d3

ir^r^i
k k I
k k I
k k I
k k I
k k I
1 I I

m m m
r n . r n . n i
m m. HI

9 9 9

e
m

m
m
m
m
m
m

9
9
9

I

Since ah = k and ha == h, we have that ^i is non-commutative;
moreover, it is not a semi-group since a(hd) = ah = k and (ah) a = ka = h
and neither do quotients exist for all pairs of elements nor do the cancel-
lation laws hold. The multiplication is, however, isotone and gi is
residuated. The table of left residuals, for example, is the following :

\

a
b
c
d
f
9

h
k
I

m

a b c d f g

a a a a a a
a a a a a a
a a a a a a
a a a a a a
c c a a a a
c c a a a a

h h h h h h
I 1 1 I I h
I 1 1 I I h

m m m m m m

h k I

m m m
m m m
m m m
m m m
m m m
m m m

a a a
9 9 a
9 9 «

h h h

m

h
h
h
h
h
h

m
m
m

a

and the table of right residuals is the same, except that we have
k . ' { a , b, c, d, f} == h.
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EXAMPLE g.2. — Consider the partially ordered set defined by

( ^ = { a ^ , b}; i = o, i, ..., 5; i,j, = i, 2, 3, ... { ,
\^^k <=^ \ == p. == y y l > J ̂  A:.

Let us endow ^ with the following multiplication :
(a) choose as the groupoid ^fcR. the following quasi-group :

cx° el1 ex2 cx^ ex4 cx°

ex0

a'
^) ^

a^
ex4

ex0

(6) for the multiplication of the

CX°

ex1

cx2

cx4

ex0

ex0

ex3

ex1

ex2

ex0

ex0

a^
ex1

CX4

ex2

ex4

ex0

cX3

ex1

ex2

ex3

elements

cx^

ex-"'
ex4

cx2

cx0

ex3

ex'

ex4

ex0

tV1

tV

CX4

ex0

ex2

of

ex0

cx^
ex1

ex0

ex2

ex4

ex0

^>, define

^.^=^.^=a^,
6} .aP-^ ^.^== 6 [A^,

where cX^"-1 is the product ex' cX^- as determined by the table (*).
It is an easy matter to verify that the multiplication is isotone and

that the ordered groupoid so constructed is not a semi-group, that
quotients do not exist for all pairs of elements, and that the cancellation
laws do not hold. gs is in fact residuated; we have the following
formulae

( a;-..^=a;...^=6;-..^=a^M,
\b}.dt=a^;

I ^\ . ^ __ //A . /,?. __ ̂  • ^}
) Ui . Gy — M/ . 0^ — ^ { i / j } 9

} AA . ^ __ AA . /,[! __ ̂  •• ^] .( D, . a^ — D, . o^ — o^ ,

where } f/j j denotes the IntegerN such that N— i < i/j^ N, eU7 ^1 denotes
the class €i? such that cXP-cX^== cX', and eX^ - • •^ the class el^/ such that
cxmp^cx7'.

EXAMPLE ^3. — Consider the partially ordered set defined by

( ^ = \ (x, y ^ ; 1 == o, i, . . . , 5 ; rr, y integers^ o;,
( (^y^^x1,^^ <=> ?.=^ x ^ x ' , y^y\

Endow '? with the following multiplication :
(a) as the groupoid T/cH- choose the quasigroup (iAr) of example ^2.
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(b) for the elements of ^, define

(x, z/)\(u, u)^= (mm(x, u), y + v')W,

where [7^] is given as in example §2 and y* denotes the greatest multiple
of a fixed integer N > i, given in advance, which is less than or equal
to u i. e., y" = kN ̂  u < (k + i) N.

As in example ^2, it is easily seen that this multiplication is non-
commutative and non-associative; moreover, quotients do not exist and
the cancellation laws do not hold. This multiplication is, however,
isotone and using the following three easily-established properties

cT=(N—i+^ y+d"== (b+dj; b^y+N—i

it is easy to show that g:; is residuated with the following formulae

, , - / ( (o, d—bj^'^ if a^c,(c,^..(^)^;^,_^,, ^ ̂

( (o,(d—by+N—iY1--^ if a^rc,
(c,^..(.,^=j^^_^^_^., ^ ^^

LEMMA 9. — The fundamental equivalences of types A, B and F are
finer than the equivalence cK.

In fact, we have that

a==b(Ax) => x . ' a = x . ' b
==> a ^ x \ ( x . ' a ) = = x ' . ( x . ' b ) ^ b ==^ a==6(^) .

Similarly,

a=^b(B^ =» a.'x==b.'x
==> a^x(a.' x) == x(b.' x)^ b => a=b((R.).

Finally,

a = b(F,) => xa == xb => S:a == cTd3 (theorem 1)
=> a = (^ (theorem 3) -==> a=^ b (CR).

If now S€ is any equivalence relation defined on ^ and cl is any class
modulo cK, we shall denote by (S€)^ the restriction of cl to X, defined by

x==y(S€)^ <==^ x , y ^ ( ^ and x==y(S€).

In particular, if Q€ == cK, we have obviously x=y(i^)^ <==> x,ye(^.

LEMMA 10. — ^ contains a maximal element if, and only if, it contains
an element x such that (A.z.)^ == (<^-)^ [(.rA)^ = (^)cz] for some class el
modulo ^.
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Suppose that x is maximal (hence maximum) in the class X modulo ̂
Let el be any class modulo (^\ then there exists one (and only one)
class (5b modulo ^R. such that el^ = X. Let b be the maximum element
in (B; then we have ab^x,\fa^(Si, whence b = x . ' a , ^a^d. It
follows from this that a == a* (<^) => a =E a* (A^.); in other words,,
(^)a c (A^)a. But by lemma 9, we have (A^ C (^, y/x € g, V<^ € g/^.
The required property is thus established.

Conversely, suppose there exists *re^ and cx^g/^ such that
(A;r)^ == (<^)^. Then since each class modulo Ax contains a maximum
element, each class modulo (^ in el also contains a maximum elements
But <t itself is a class modulo (^\ d therefore contains a maximum
element, which is necessarily maximal in g.

LEMMA 11. — g- contains a minimal element if, and only if, it contains
an element x such that, for some class cX modulo (^, either

(F,^=(^[(,F)^=(^)J or (&)a=(^U(..5)a=(^U

Suppose that ̂  contains a minimal element; then each class modulo (R.
contains a maximum element and a minimum element. Consider
d3c"l == C with b minimum in (B, a maximum in cX, c minimum in c\
We have necessarily that b a == c [for if we had b a == c > c then we would
have, by the isotone property, bd^Oc, V^€^3, and consequently
there would not exist b e ̂ 3 such that bd ̂  c, so that ^ would not be
residuated]. It then follows by the isotone property that ba === c,
ya e <^, whence a =^ a" (CR.) ==> a == a" (F^) and so (<^)^ C (F/,)^ with
equality holding by virtue of lemma 9.

Conversely, if there exists x^X and (^te^/^ such that (F.v)ez = (^)ci>
then considering X€i =.-- y we have that there exists if e y such that
xa == y\ V^^cX. Let therefore ;/ be any element in y; since there
exists a" (= y . ' x ) such that xa^^y, we have that y ^ ^ y , whence if
is minimum in ^ and consequently minimal in ^.

We now prove the corresponding assertion concerning the equiva-
lences of type B. Let b be minimal in the class (^ and consider (?d3 == cl
with c maximum in C and a minimum in cl. By an argument similar
to that in the first paragraph above, we have necessarily that cb = a,
whence ~cb^a, \fa^CX, and consequently c = a ' . b , v^^cx. It then
follows that (^ = (^)a-

Conversely, if there exists rre^ and <3Leg/(^ such that (fiz)^ = (<^)a»
then since each class modulo Bv contains a minimum element, it follows
that each class modulo (^ in cX contains a minimum element. The
result then follows from the fact that el is itself a class modulo (^ and
the proof is thus complete.

Introducing now the notation max ̂  (min g.) to denote the set of
maximal (minimal) elements in ^, we also have the following result :
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THEOREM 5. — If ̂  contains a maximal element x then
maxg- = j x . ' a j \ x ' , a \

0 l 'a€§ { 'a(E§

correspondingly, if g contains a minimal element y then
m^={a/y}a^ \a\y »e^ and mm^=[ay]^. ya

ze§

The reader will have no difficulty in deducing these results as immediate
corollaries to the proofs given in the first paragraph of lemma 10 and
the first and third paragraphs of lemma 11, with analogous results
for equivalences on the left.

4. — Semi-group case.
THEOREM 6. — If the ordered semi-group ^ is residuated, then 5?/^l is

a group (homomorphic to ^).
In fact, since ^ is compatible with multiplication (theorem 1), we

have that ^/^ ls a semi-group. By virtue of theorem 3, ^/^K. is a quasi-
group; ^/(^ is therefore a group.

Restricting the multiplication in g to be associative does not materially
alter the general form of <^ as a partially ordered set. This is manifested
by the examples to follow. The general form of residuated semi-groups
may therefore be enunciated as in theorem 4.

EXAMPLE S'l.

• a

•b

• c

a

•dif
d3

a

( d

^f

a
b
c

a
a b c

a b c
a b c
c c c

d d f
f f f

(S,

T7
f ff ff f
c c
c c

This non-commutative ordered semi-group is residuated; the residual
tables are as follows :

b c ] d f •• | a b c [ d f•.

a
b
c

d
f

a b c

a a a
c a a
c c a

d d d
f f d

d f

d d
d d
d d

a a
a a

a a a
b b a
c c a

d d
d d
d d

d d d
d d d

a a
c a
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EXAMPLE ^2. — The example ^2 modified by taking g^/^- isomorphic
to any group of order 6. We have in this way a non-commutative
residuated semi-group of type 2 with analogous formulae to those given
in example ^2.

EXAMPLE ^3. — The example g:s modified by taking <^:{ /^ isomorphic
to any group of order 6. Using the relation b* + d* == (b + d*)\ it is
easy to show that the multiplication becomes associative, so that we
have a non-commutative residuated semi-group of type 3, again with
analogous formulae to those of example §3.

[NOTE. — Example eS, is of especial importance in the theory of
nomal semi-groups (see MOLINARO [3]). An A-nomal semi-group is
one in which there exists an equivalence As such that ^fA^ is a group,
and an important property of such semi-groups in the commutative
case is that the A-nomal equivalence As is coarser than every equivalence
of type A. Example eS shows that this property does not hold in the
non-commutative case; it can in fact be shown that .zACAs, \/x^^:,
but that A(aj,)CAe if, and only if, b = N— i (mod N).]

5. — c-groupoid case. — We recall that a c-groupoid is one in which
the cancellation laws hold; i.e., xy == xz and yx = zx imply y == z.
The following result is then immediate :

LEMMA 12. — ^ is a c-groupoid if, and only if, every equivalence of
type F reduces to equality.

LEMMA 13. — A residuated c-groupoid cannot contain a minimal element
without the equivalence (^ reducing to equality.

Suppose in fact that ^ contains a minimal element x, and let X
be the class of x modulo <^. Let y = x (<^); then since there exists
z^xf^^y (lemma 6), there exists / (==x\z) such that tx == ty (= x);
consequently, by the cancellation law, x == y. Since y was chosen
arbitrarily in X, we then have that X == \x\. It then follows that
this is true for any class modulo ^ since each class modulo (R. contains
a minimal element; consequently, (R is equality.

We thus have the following general form of residuated c-groupoids :

THEOREM 7. — If the c-groupoid <^c is residuated then either the equi-
valence (R reduces to equality or each class modulo di contains a maximum
element and no minimal elements, or no maximal elements and no minimal
elements.

EXAMPLE (^r)i. — This type is trivial; the groupoid in this case is
a totally unordered quasi-group.
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EXAMPLE (^)-i. — Consider the partially ordered set defined by

( ^ ={af, ^=o, i ,..., 5, i= i, 2, 3 . . . j,
) a} ̂  (^ <==» ^ = ̂ i i^J.

Endow c? with the following multiplication :

(a) ^ fiK: the quasi-group (*) of example ^2,
(b) a^^==a^.

It is easy to verify that this multiplication is isotone, non-commutative
and non-associative; moreover, the cancellation laws hold. (^)± so
constructed is residuated :

, ^ ( ^^ if Kj+i,
/yA • r,\L ——— ) tf

" ' \^ if i^j+i,

the formulae for left residuals being obtained on replacing .* by ••
throughout.

EXAMPLE (^c)?. — Consider the partially ordered set defined by

(' ^ == { a}n,,; ^ == o, i, ..., 5, n == o,± i,± 2, . . . , i = i, 2, 3, . . . i ,
i\ .^a^na}n ̂  a^ , <=» ^ == p-, n^m, i ̂ j.

Endowing c? with the following multiplication :

(a) ^ 1^ : the quasi-group of example §2,
(h\ n^ n^ — nW\\U) U2",^••U2W,/—M2 ra+w,^•+/»

it is easy to show that (^c):? so constructed is residuated

^ , ^a^, if K J + I ,
/yA • /y[i ——— ; '

—• "^ ia^',,_, if i=,j+i,

the formulae for left residuals being obtained by replacing.* by.
throughout.

6. — q-groupoid case. — We recall that a ^-groupoid is one in which
quotients exist, i.e., for any a, &€^r/ , there exist a*,i/eg^ such that
ax = b and ya == b. The following result is immediate from the fact
that for any choice of aeg^ every element is minimum in its class
modulo Ba and aB :

LEMMA 14. — ^ is a q-groupoid if, and only if, every equivalence of
type B reduces to equality.
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LEMMA 15. — A residuated q-groupoid cannot contain a maximal element
without the equivalence (^ reducing to equality.

Let a be maximal in gy; by lemma 14 we have, for any b, &*e^,

b(d.'b)=a=b\d.9y)

so it follows that b == b* (A^) ==> b == b* (cF) where c = a •• b = a .• b".
But from the proof of lemma 10 we have that A^ = ̂ . Hence in
the class (^ oi b modulo ^ we have ^C^F, where c = a.9 b; in other
words, (^-)j3c (<-^XB whence we have equality by lemma 9. It then
results from lemma 11 that ^y contains a minimal element, and conse-
quently every class modulo di contains both a maximum and a minimum
element.

Let therefore x be any minimal element of ^y. Then by theorem 5
the minimal elements of <^q are simply the multiples of x. But since
every equivalence of type B reduces to equality, every element of <^q
is a multiple of x. It follows that (^ is equality.

We are thus led to the following general form of residuated ^-groupoids :

THEOREM 8. — If the q-groupoid ^q is residuated then either the equi-
valence (^ reduces to equality or each class modulo (^ contains no maximal
elements and no minimal elements.

EXAMPLE ^q. — The ^-groupoid defined as follows :

r ^ = { ^ ; } . = o , i , . . . , 5 , i ==o,± i,± 2, . . . },
( a} ̂ ^ <=> \ = .̂, i ̂ j;

(a) ^ f(K : the quasi-group (^) of example ^2,
( a}n. a^_, = aL-i. a^_, = a^-i • ̂ ,n = ̂ .-2 •a^

w ( a^a^=a^\

This ^-groupoid is residuated; we have

^.•^=:a^1 and a}'.a^d^\

7. — c-semi- group case. — The general form of residuated c-semi-
groups is deduced from that of residuated semi-groups and that of
residuated c-groupoids; its enunciation is as in theorem 7. The following
are examples of non-trivial residuated c-semi-groups :

EXAMPLE (^)2. — Example (^0)2 modified by taking for ^/^l the
dihedral group of order 6 (the smallest non-commutative group).

EXAMPLE (^0)3. — Example (f^c)?, modified in the same way.
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8. — Quasi-group case. — The general form of residuated quasi-groups
is deduced from that of residuated c-groupoids and residuated g-groupoids;
its enunciation is as in theorem 8. An example of a non-trivial residuated
quasi-group is the following :

EXAMPLE ^.

( ^ == { d^,^ ^ = o, i, ..., 5, i, n = o, ± i, ± 2, ... j,
( a}n^ ̂  a^nj <=^ >. = ̂ , n ̂  m, i^j;

( (a) ^\(^ \ the quasi-group (-^) of example ^2,
( (b) 4s..^-^^y-

This quasi-group is residuated; we have the following formulae
ri^ . (^ —/A-^.1 . //A . ^ _/y^-.p-l
tl̂  i. t^mj —— U-.m—m^ i._j 9 "2", ;• • a2m,/ —— ^"—w ;•—/•

We also have the following results concerning residuated quasi-groups,
of which the first is immediate.

LEMMA 16. — ^ is a quasi-group if, and only if, every equivalence
of types B and F reduce to equality,

LEMMA 17. — If ^ is a quasi-group then every equivalence of type A
reduces to equality.

Given any a, ceg, there exists a unique be<^ such that ab == c.
Consider the set of elements x^<^ satisfying ax^c; we have ax^ab,
whence x^ab.' a== b since Fa is equality. It follows from this that
b == c.' a. In a similar way, we have that a == c •• b, so that a = c'. (c .• a).
The elements a and c being arbitrary, it follows that every equivalence
of type A reduces to equality.

DEFINITION. — An ordered multiplicative structure OVi is said to be
U -semi-reticulated if it is a u-semi-lattice with respect to its partial
ordering and the following equalities satisfied :

a(b u c) == ab u ac, (b u c) a = ba u ca, ^a, b, ce. ̂ Tl.

on is said to be reticulated if it is u-semi-reticulated and is a lattice.

THEOREM 9. — Every semi-reticulated quasi-group is residuated.
Given any a, b €5, there exists a unique ce^? such that ac==b;

let us show that c is the greatest of the elements rre 0- satisfying ax^ b.
Let x be such that ax^b and consider the element z == cure; we have

az == a(c\j x) == acuax== b'jax== b ==ac

whence z = c by the cancellation law, and so x^c.
BULL. SOC. MATH. — T. 93, FASC. 2. 9
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COROLLARY. — Every semi-reticulated quasi-group is reticulated.
Given any element aeQ, consider the mapping ^a:2->S defined

by setting ^a(x) == a . ' x. Since the equivalence Aa is equality, ^ is
clearly an injection; also, since the equivalence aA is equality, every
element of 2 is a right residual of a and so ^a is a surjection. ^a is
therefore a bijection, and since it satisfies

x^y <=> ^a(y)^a(x),

it follows that 2 is isomorphic to its dual and so is a lattice.

9. — Group case. — Every ordered group is residuated; for, in such
a group, the relation ax^b implies that x = a-^ax^a-1 b so that,
since a (a-1 b) = b, we have that b. • a exists and is equal to a-1 b. Similarly,
b\a exists and is equal to ba~^

The general form of residuated groups may be enunciated as in
theorem 8.

10. — In this section we give a generalisation of a recent result due
tO McFADDEN [2].

DEFINITION. — By a proper fundamental equivalence in a residuated
groupoid, we shall mean an equivalence of type A, B or F which is
distinct from ^R. and from equality.

Residuated unitary groupoids with no proper fundamental equi-
valences are completely characterised by the following result :

THEOREM 10. — Let ^ be a residuated groupoid with identity e. If ̂
has no proper fundamental equivalences, there are but two possibilities :

1. the classes modulo ^ have at most two elements and the class of e is
isomorphic to the Boolean algebra {o, i} ,
or 2. ^ is a loop', and if the class ofe consists only ofe itself, the loop ordering
is the trivial ordering a ̂  b <=> a = b.

First of all, if every fundamental equivalence reduces to equality
then ^ is a loop by virtue of lemma 16; and if the class of e consists
only of e itself then e is minimal in ^ and so, by virtue of theorem 5,
every element of ^ is minimal and consequently (^ is equality.

Suppose therefore that not all fundamental equivalences reduce to
equality; then by lemma 9, ^ is not equality and there exists (by hypo-
thesis) at least one equivalence of type A, B or F which coincides with Jl.
By either of lemmas 10 and 11 we then have that each class modulo (^
contains a maximum element. Let therefore a be the maximum element
in the unit class modulo ^l; then from e^a we have a=ae^aa,
whence a == a a and consequently e=. a(F-^). Now if F^ = ̂ , we have
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ax = ad, ^/x== d((R), so that a is also minimum in its class modulo di;
for since dd=a, we have dx == d, }/x=d(di) and if there existed
y==d(Cfl) such that y < a then there would not exist xe<^ such that
dx^y, contrary to the hypothesis that ^ is residuated. It follows
from this that, if F-^ == ^, then the unit class modulo (^ consists of
only the identity element e; and as we have seen above, this implies
that (^ is equality, contrary to the hypothesis. Hence we cannot
have F-^ = (^ and so we must have that F-a is equality. It then follows
that e = a; in other words, e is maximum in its class modulo di. Since
we always have e^x •• x, V^^^, it then follows that e == x .* x, v«^€g.
Consider now any class X modulo di', lei x be the maximum element
in X and consider rci ̂  x^_ < x. By the antitone property of residuals,
we have x.^ •• Xi ̂  x.^ .* rKa == e, whence we have equality and so Xi == x-s. (A^).
But since x.^.' x-2 = e, we also have that x^. ••(^2 .* Xz) == x^ *. e = x^ so
that x-2 is maximum in its class modulo A.^ and so x^ ̂  x(A^). It
follows that A^ ^z (^ and so we must have that A^ is equality, whence
Xi = x.i. Consequently, any element covered by x is minimal in X
and such an element must be minimum in X by virtue of lemma 7.
The proof is completed by remarking that when the unit class modulo (^
contains two elements, it must be isomorphic to the Boolean algebra { o, i }
in order for it to be a residuated sub-semi-group of g.
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