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MINIMAL PURE SUBGROUPS IN PRIMARY GROUPS

PAUL HILL AND CHARLES MEGIBBEN
(Auburn, Alabama).

Throughout all groups are assumed to be primary abelian groups,
and all topological references are to the p-adic topology. By a subsocle
of a group we mean a subgroup of the socle. Thus S is a subsocle of G
if S is a subgroup of G and if px == o for all x in S. Let H be a
subgroup of G. If among the pure subgroups of G which contain H
there exists a minimal one, we say that H is contained in, or is imbedded
in, a minimal pure subgroup in G. B. CHARLES studied minimal pure
subgroups in [1]; he asserted that each of the conditions

(1) H is a subsocle of G

and
(2) There is a pure subgroup of G contained in H which is dense in H

is sufficient for the existence of a minimal pure subgroup for H in G
provided G is without elements of infinite height. Head showed in [4]
that condition (2) is not sufficient, and one of the authors showed in [6]
that neither is condition (i).

In this paper we characterize the groups G in which each subgroup
is imbedded in a minimal pure subgroup. The characterization is :
G is the sum of a divisible and a bounded group. We give a short
proof of a theorem of IRWIN and WALKER [5] and give a solution to a
new generalization of Fuchs' Problem 4. Some results are also given
concerning minimal pure subgroups for subsocles.

It was shown in [3] that most groups have neat dense subgroups
which do not contain basic subgroups. The following theorem shows.
however, that if a neat subgroup has a dense subsocle, then it must
contain a basic subgroup.
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THEOREM 1. — Let S be a dense subsocle of G, S = G[p]. If H is
maximal in G with respect to H[p] = S, then H is pure and dense in G.

PROOF. — Let H be maximal in G with respect to H [p] == S. Then H
is neat in G, that is, H n p G == pH. We need to show that H n p" G === p^
for all natural numbers n; our proof is by induction. Assume that
Hr\p7^G == p^JZ and suppose that p^^x^H. Since ^Z is neat, there is
an ho^H such that p^x == p/io. The element p^—Ao is in G[p].
Since 5 is dense in G[p], there is an s^S such that pnx—ho—s is
in p" G. By the induction hypothesis, there is an hi e H such that
p^i == Ao + s. Thus p^'/Zi == pAo== p^rc and JJ is pure.

Since 7? is pure, any element of order p in GfH can be represented
by an element of order p in G. Therefore, the density of H[p}= S
in G[p] implies that each element of order p in G/H has infinite height.
Hence GfH is divisible, that is, H is dense in G.

COROLLARY 1 (IRWIN and WALKER [5]). — Let N be a subgroup of G',
the elements of infinite height in G. If H is maximal in G with respect
to H F [ N == o, then H is pure in G.

PROOF. — The maximality of H implies that H is neat. Thus H cannot
be enlarged without enlarging its socle. Since G[p] = H[p] + N[p],
H[p] is dense in G[p].

One may generalize problem 4 in [2] by replacing the subgroup G1

by an arbitrary fully invariant subgroup. The solution to the gene-
ralized problem is contained in the following corollary and a well known
result of Szele.

COROLLARY 2. — Let F be a fully invariant subgroup of G and let A
be a subgroup of G such that Ar\F == o. Then A is contained in a pure
subgroup H of G such that H r^F == o.

PROOF. — If FC G', the conclusion follows from the preceding corollary.

Assume that F is not contained in G1. Let ̂  Bn be the standard

decomposition of a basic subgroup B of G into homogeneous groups Bn.
Define Ai == G and A/,+, == i 5^, ^+2, ..., p ^ G ) for n^i. Then
G==J3 i+B2+. . .+B/ ,+A/z+ i . Since F is fully invariant with ele-
ments of finite height in G, Ffp] = Arn[p\ where m is the smallest posi-
tive integer such that Fr\B,n^o.

It follows from [2] (theorem 22.2) that A,n is an absolute direct
summand of G. Hence if H is maximal with respect to Hr\F==o,
then H is maximal with respect to HnAjn == o and is a direct summand
of G; in particular, H is pure in G.
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The following theorem, which is of independent interest, (eventually)
implies that most groups have subgroups which are not imbedded in
minimal pure subgroups.

THEOREM 2. — Let L be a subgroup of G. If H is a minimal pure
subgroup of G containing L, then H=A+K where A is bounded
and K[p] == L [p].

PROOF. — There is no pure subgroup of H properly between L and H.
It follows from theorem 1 that every subsocle of H which contains L [p]
is closed in H[p].

Define &=L[p]np^ and let Sn=Qn+Sn+i for n == o, i, 2, ....
The height in H of each nonzero element of Qn is exactly n. Moreover,
if Cn is (zero or) a direct sum of cyclic groups or order p" such that
Cn [p] == Qn-}, then C =Vc^ is pure in Jf. Extend C to a basic sub-
group B = A + C of H.

Suppose that there is an element x of order p in AnL. Since x is
in A, it has finite height / in H, The closure (in H) of C [p] contains L [p].
Thus x == p^1 h + c where c € C [p] and h € H. This implies that re — c
has height greater than t in H and, consequently, in B since J5 is pure
in H. This is impossible since B = A + C, so A n L == o.

Assume that A is unbounded. Then is has a proper basic subgroup Ai.
Since B == A + C is basic in H, B,=A,-{-C is basic in H, Thus

Ai[p]+L[p]3B,[p]=^[p].

Since this contradicts the fact that Ai[p]+L[p] is a proper closed
subsocle of H, we conclude that A is bounded.

Let p^A = o. An argument similar to the one given above for the
proof that A n L = ̂  shows that A n ; C, ^ H } = o. Now we have that

H = {B, p'11!! { = i A + C, ^H } = A + { C, p7^ }.

Define K == j C, p^Tf j. The purity of C implies that

K [ p ] = { C [ p ] , p ' - H [ p ] } .

Since L[p] is closed in the socle of H, C[p] does not have limit points
in the socle of H outside of L[p]. But p^Cfp] is dense in p^jFZfp]
since p^C is basic in p7"^. Thus p^TJfpjCLtp] and therefore
^[P]^?]. Since ^[p] == A|p]+-K[p] and since A n L = = o , it
follows that 7?[p] == L[p].

PROPOSITION 1. — If each subgroup of G is contained in a minimal
pure subgroup of G, then G has a bounded basic subgroup.
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PROOF. — Suppose that B==^Bn is a basic subgroup of G
where Bn-^o for infinitely many n and is a homogeneous group of
degree n. Choose a sequence n(i) of positive integers such that
n( i+ i )—n( i )^2 and such that B^^o. Define

and let
t(i) ==n(2i-{-i)—n(2i)—i

^-^(^)+p^^(^-i.)!

where { ^ ) j is a nonzero direct summand of Bn^. Suppose that H
is a minimal pure subgroup of G containing L. By theorem 2, H == A + X
where A is bounded and K[p] ==L[p].

Letp-A = o. Thenp-^p] CL[p]. Let G - ; bn^} + ( ̂ -.i)! + Go.
Since p^+i)-1 bn^i+i} is in L, there is an element ho === jbnw + ̂  (2 /4 -1) + ̂
in H where j is an integer, go € Go, and

p^^i)-i/^p^.-,)-i^^

Now the element

hi = (̂ ) + P^^ bn^^ i)) —p^ ^ ) Ao == bnw —P1 [ i } (Jbnw + go)

is in H. Since p^-1/?^?^1^ and since p^JZ^CLtp], we
conclude that L contains p^-^-^n^ if i^m. However, it is imme-
diate from the definition of L that this is impossible, so L is not contained
in a minimal pure subgroup of G.

PROPOSITION 2. — If G is a bounded group, each subgroup of G is
contained in a minimal pure subgroup of G.

PROOF. — Our proof is by induction on n where p11 G == o. If p G == o,
every subgroup is pure. Suppose that L is a subgroup of G and that
p^-^G^^^o . Since a homogeneous subgroup of G of degree n +1 is
an absolute direct summand, we may assume that pnG^L.

Let
-L ̂  Lin+ i ~\~ C/(,

pGnCn^Ln+Cn-i,

p^GnCi==L,,

where Li is a homogeneous group of degree i with Ln+i chosen maximal
in L and Li chosen maximal in pn+i~iG^\Ci for i = = n , n — i , ..., i.
Observe that there are homogeneous subgroups B{ of G of degree n +1
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such that Bi^Lt and Bi[p] == Li[p}. Define B==VB(. Then
Btpl^p^GnI^p^G.

Since B is an absolute direct summand of G, there are decompositions

{ L , B } ^ K + B
and

G==H+B

such that Jf3K. Since p^G==.B[p], p^JJ == o. By the induction
hypothesis, K is contained in a minimal pure subgroup A of H. We prove
that A + B is a minimal pure subgroup of G containing L.

Suppose that S is a pure subgroup of A + B containing L. We wish
to show that S == A -}- B. Proceeding by induction, assume that
p'ACS and that p^^BCS. From these two conditions it follows
that p ^ B C S , and it remains to show that p^ACS, Routine consi-
derations show that it suffices to prove that p^A [p] C S.

Let T == S n p1-1 A [p] and let p1-1 A [p] == T + R. Assume that R ̂  o.
Choose a pure subgroup J?* of A such that J?* [p] == J?. Observe that jR*
is homogeneous of degree i. From the construction of B, it can be
shown that p^AnKC { L , p^\E?{. From this fact it follows that
R* ̂ {^A, K } = o. Choose a subgroup F ~ ^ { p l A , K } and maximal
in A with respect to Fr^R* == o. Since A is minimal pure for K in H,
F cannot be pure in A. Hence R*-{-F is a proper subgroup of A.
Choose an element <zeA such that a^J?*+27 and such that
paeR*+F. Letting pa == r* + f where r^eJ?* and /'€F, we obtain
contradictory statements : r* has height zero in R*; and p^r* === o.
We conclude that J? == o, that is, p^AfplCS.

COROLLARY 3. — Lef L be a subgroup of G. J/* the heights (computed
in G) of the elements of L are bounded, then L is contained in a minimal
pure subgroup (direct summand) of G.

PROOF. — There is a positive integer n such that Lr\pnG^o.
The group p^G is a fully invariant subgroup of G. Apply corollary 2
and proposition 2.

Now consider the case where G is the sum of a divisible group D and
a bounded group B, G == D + B. Let L be a subgroup of G. In order
to show that L is contained in a minimal pure subgroup of G, we may
assume that D[p]CL since a divisible subgroup is an absolute direct
summand. In this case, H is minimal pure for L if HJD is minimal
pure for { L , D} ID in G/D, a bounded group. This completes the proof of

THEOREM 3. — Each subgroup of G is contained in a minimal pure
subgroup of G if and only if G is the sum of a divisible group and a
bounded group.
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We now turn our attention to the question of the existence of minimal
pure subgroups for subsocles. Theorem 2 shows that if a subsocle S
is imbedded in a minimal pure subgroup in G, then S supports a pure
subgroup, that is, there is a pure subgroup H of G such that H [p] = S.
Thus the question of whether or not a subsocle is imbedded in a minimal
pure subgroup is just the question of whether or not that subsocle
supports a pure subgroup. It is well known that every subsocle of a
bounded group supports a pure subgroup.

PROPOSITION 3. — Let S = U Si be the union of an ascending sequence
of subsocles Si of G. If Si^p1G = o for i = i, 2, ..., then S supports
a pure subgroup. Indeed, S supports a direct summand of a basic subgroup.

PROOF. — Since Si is contained in a bounded direct summand of G,
it supports a pure subgroup Hi of G. But { H i , Sz+i j np^1 G == o;
hence { H i , &-n { is contained in a bounded direct summand Bi+i of G.
Since H, is bounded and pure in B,+i, it is a direct summand of J^+ j ;
let Bi + j = H,• + A^ i. Then

S^i=^[p]+(A^in&^).

But A;+in&-4-i supports a pure subgroup Ci+i in A z + i since A^i is
bounded. Let Hi+i =-= Hi-}- Ci+i. The union H of the ascending
sequence of pure subgroups Hi of G is a pure subgroup of G with
H[p] = S. Kulikov's criteria shows that H is a direct sum of cyclic
groups (and therefore a direct summand of a basic subgroup of G).

COROLLARY 4. — If G is a direct sum of cyclic groups, then each
subsocle S supports a pure subgroup.

PROOF. — Let G == 7^ Bi where Bi is (zero or) a homogeneous group

of degree i and let Si = (Bi + B^ +.. . + Bi) n S. The conditions of
proposition 3 are satisfied.

Following established terminology, we say that G is a closed group
if it is the primary part of a complete direct sum of cyclic groups [2].

PROPOSITION 4. — Each subsocle of a closed group supports a pure
subgroup.

PROOF. — Let S be a subsocle of a closed group G. Choose Si
such that Sr\p1G = & +(pi+i Gn S) for i == o, i, .... Let To == o,

Ti==So+Si+...+S^i if z^i, and let T == \j T,. By propo-

sition 3, T supports a direct summand Bi of a basic subgroup B of G,
B==Bi +jB2. Since G is a closed group, G==Bi+I?2. Since T is
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dense in S, S^ T. But T == 57[p] == 5i [p]. Thus 5' is a dense subsocle
of Bi, a direct summand of G.. The proof is completed by theorem 1.

THEOREM 4. — If G == A + B where A is a direct sum of cyclic groups
and B is a closed group, then each subsocle of G supports a pure subgroup.

PROOF. — By theorem 1, it suffices to prove that each closed sub-
socle of G supports a pure subgroup. Let S be a closed subsocle of G
and let S1 == S n B. Then S is a closed subsocle of B. By proposition 4,
5" supports a pure subgroup C of B. Since S is closed, C is closed in B
(and therefore is a closed group). Hence C is a direct summand of B;
let B == C + K. Then S == Sr\(A + K) + 5". Notice that 5nX = o.

Define &==(Ai +A., +. . . + A/ +JC)n5' where A =^A, is the

standard decomposition of A. Then S r\ (A + K) == U & and

Xnp^A +^0 == o. Thus by proposition 3, there is a pure subgroup
oi A -\-K with 5'n(A + K) as its socle, and the theorem is proved.
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