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REGULARITY THEOREMS FOR FRACTIONAL POWERS
OF A LINEAR ELLIPTIC OPERATOR ;

TAKESHI KOTAKE AND MUDUMBAI S. NARASIMHAN.

1. Introduction. — Let L be a linear elliptic operator with C^ coefficients
in an open subset ^2 ofR^/z^a) . We suppose that L admits a (strictly)
positive self-adjoint realisation L in Z2^). Let [E\} be the spectral reso-
lution of L so that

L = / A dE,.

We consider the family of operators Z% depending on a complex para-
meter 5, denned by

1s = f^clE^.

The operators Ls may be viewed as l ' fractional powers " of L. For
s=— i, — 2, . . ., we obtain the Green's operator and its iterates.

We study in this paper the regularity properties of the operators L5. For
integral values of .9, it is known that the operators L8 define kernels which
are l' very regular " in the sense of SCHWARTZ ([17], chap. V, §6) and that if
further the coefficients of L are analytic the kernels of L8 are analytically
very regular. For positive integral values of s the results are trivial, for
negative integral values of s these follow from well-known regularity theorems
for elliptic operators [11]. The question arises whether these results are
true for all values of s. We prove in this paper that this is in fact the case
(Theorems 2 and 3). The case of elliptic operators with constant coefficients
on a torus and on R" has already been dealt with respectively by S. BOCHNER
[3] and L. SCHWARTZ ([16], chap. VII, § 10, ex. 7).

That the operators L8 possess kernels follows from regularity theorems
for elliptic operators. In order to prove that the kernels are very regular,
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4^0 T. KOTAKE AND M. S. NARASIMHAN.

we represent the kernels, for J R l ( - s ) sufficiently large, In terms of the
Green's function G(t, x, y ) of the associated parabolic operator. By using
some results of G. BERGENDAL [1] and S. D. EIDELMAN [6] and showing that
G(t^ x^ y ) and its derivatives fall off exponentially as ^--^co, we then prove
that the kernel Ls is very regular.

The proof of analytic regularity, when the coefficients are analytic, is more
difficult. It involves in the first instance estimates for the norms [| A^u |[^s,
where u is a function that is to be proved to be analytic and A a linear elliptic
operator with analytic coefficients. Next we need to prove a general theorem
(Theorem 1) to the effect that if A is a linear elliptic operator of order m
with analytic coefficients in an open set 12' of R^, and u is a function satis-
fying the inequalities

II ^u [[^Q^^m)!^

for every integer k ̂ o, with a positive constant c independent of A-, then u is
analytic in 127.

This theorem is a natural one in as much as the conditions

\\Aku\\^(k^n) \ c^1

on every compact set are necessary for u to be analytic. We notice also
that this theorem contains the well-known result : if A is linear elliptic ope-
rator and has analytic coefficients, and if A u ==/ with /analytic, then u is
analytic.

A weaker version of Theorem 1 has been proved by E. NELSON ([U], th. 7);
he proves the analyticity of u under the stronger assumption

||.4^.||^:;/c! c^1.

Theorem 1 is proved by suitably estimating the T^-norms of derivatives of
order km of u in terms of T^-norms of M, Au^ ..., A^'u. The proof of this
theorem uses some ideas of a paper of C. B. MORREY and L. NIRENBERG [13].

The use of the parabolic equation in the proofs of Theorems 2 and 3 was
suggested by a paper of S. MINAKSHISUNDARAM [12].

For spaces of distributions we use the usual notation [17].
The results of this paper have been announced in [10].

2. Statement of the theorems. — Let 12 be an open subset of R71. Let
0) (12) be the space of complex-valued C^ functions with compact support in 12.
Z2^) is the Hilbert space of complex-valued square summable functions
on 12, with scalar product (cp, ^p) defined bv

(?^ ^)== f?4^^
for co, ^€^2(12); [| c?[|^^ means (cp, cp)1 /2 .
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Let A be a linear differential operator of order m^

A=z V a^{x)D^

with sufficiently differentiable complex-valued coefficients ay,(x) defined
in ^2, where a = (a-i, 02, . . ., a^), a, being integer ̂ o and we put :

D^=

a ] = = a.i+ as+. . .+ a/z,

^A.VY_^_Y2 / ^ y"\^J \^y "\^/J
We say now A is an elliptic operator in ^2, if the homogeneous form of

order m

^ a^xY^'-^-Q
ia|=m

for every x^.^1 and for every non vanishing real vector ^ === (^i, ̂  • • • ? ^)-

THEOREM 1. — Z^ ^2 ^e an open subset o/R". Z^ A be a linear elliptic
operator of order m with analytic coefficients in i2. Let Ak be the k^
iterate of A. Suppose that a function u (of class C^) satisfies the ine-
quality

||-4^||^(Q)^(^) ̂ k+{

for every integer k^o with a positive constant c independent ofk. Then
the function u is analytic in ^2.

REMARK. — The above theorem is also valid for elliptic systems; the demon-
stration is the same as for the scalar case.

As for the following theorems, we consider a linear elliptic operator L
denned on ^2 such that

(Zcp, ^ ) = = ( 9 , L^)

for every cp, ^ e ̂  (^2).
Suppose further that L when defined on d?(^2) ( cZ 2 ) , where it is sym-

metric, has a strictly positive self-adjoint tion extension L.
Remark that these conditions entail that the form

Z(^)= ̂  &aW

| a | = m

is real and definite for every x^.^1 and ^ real vector, when L == ^ b^^D^
\ a \^m

has sufficiently smooth coefficients.
Let | E\ \ be the spectral resolution of L. By the hypothesis on Z, we

have ^ > CQ > o on the spectrum.
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We can now define a family of operators L8 depending on the complex
parameter 5, by

^fP dE,.

As we shall see in section 5, Ls thus defined is a continuous linear map of
CQ(^) into the space of distributions ^(^2) for every 5, so that L8 defines a
kernel L^x, y ) ([17], [19]); the theorems to be proved concern the regu-
larity of the kernel Ls (^, y ) .

THEOREM 2. — Let L be a linear elliptic differential operator with C"
coefficients in an open set ^ o/R". We suppose further that L admits a
strictly positive self-adjoint realisation

L == Cl dE^.

in Z2^). Let s be a complex number. Then the operator

L^ C^dE,.

defines a kernel which is very regular.

THEOREM 3. — Let L be a linear elliptic differential operator with ana-
lytic coefficients in an open set ̂  of R^, admitting a strictly positive self-
adjoint realisation L in L2^). Then^ for every complex number s^ the
kernel of the operator

1s= C^dE.,=/..
is analytically very regular.

For the definition of very regular kernels and analytically very regular
kernels see ([17], chap. V, § 6).

As a consequence of the above theorems, L8 ( T ) can be defined for 77, a
distribution with compact support and when L has the C°° (analytic) coeffi-
cients, L^T) is an infinitely differentiable (resp. analytic) function in an
open set of ^ where T is an infinitely differentiable (resp. analytic) function.

3. Preliminary lemmas. — We consider in this section some lemmas
which are required in the proof of Theorem 1.

Let ^1' be any open subset of ^2. Let u be of class C^ on the closure Q.'
of ^/. Let k be an integer ^o. We define the ^-norm of u^ C^ (^ /) by

IMI^=^ |̂|̂ ||z^),
|a|=/:

whero we put a ! == ai ! as ! . . .a^ I for a == (ai, a-^, . . ., a^).
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LEMMA 3 .1 . — Let A-, //, be given integers ^o. Then we have

\u\\^,^= ̂  ̂ H^IkQ.

PROOF. — We have

(A-+^) ! ^ A"! k ' \_ A- 1
= o"yy ! ^ a ! 6

|a|=^
1 3 1 = ^

a+(3=y

The lemma follows immediately from this equality.

The next lemma is a refined version of Friedrichs' inequality [7]. The
proof is a modification of Friedrichs' proof as in [13].

We denote by i2^ the ball [ x << r of radius r in R^.

LEMMA 3.2. — Let A be a linear elliptic operator of order m with C^ coef-
ficients in ^. Let r, ^ be positive numbers such that ^ <, r and ^Ir+^C^.
Then there exists a constant c > o independent of ^ such that for every
u € C^ (12) we have

II u Ika.-̂  c {\\ A u \\o,Q^ 4- ^-m || u I^Q^g }.

PROOF. — Let ^e^(^) have its support in ^2^ and be such that ^=^ i
on ̂  and satisfies

(3 .1) suplZ^C^I^Ca^-^1 (^<r)
Qr+8

with Cy,^> o depending only on a.

For any M € C^ (^2), we shall consider ^^? which is of class C°° having its
support in t^+g. Since A is an elliptic operator with C°° coefficients, we have
the well-known inequality [10]

(3.2) || ̂ u \\mft^^c { II A (y-u) ||̂ ^ + |[ ̂ u ||,,Q,̂  )

with a constant c ̂ > o depending only on A and ^r+o-

By using the estimate (3. i ) , we obtain

/ m-\ \

r ' ) \\T^ An II ^ . -i-V ^-?n+k || Yk,A (^U) |[o,Q^^ c' II S77^ ̂  [|,,Q^ +^ 3——^ || ̂ ^ |kQ,.̂  [ ^

( A:=o )

( m~i }
2 II ̂ D-u \\^^c" II ̂ ^ Iko^ +^6-^ [| S^ II.A,, •^^D^u^^c" ||̂

|a|=/n ( ^=0
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It follows then from (3.2) ,
ni—i

(3.3) ^ ̂ -^ || ̂ u [|,o^ ̂  c [| ̂ A u Ik^ +^ 6--^ |[ ̂ u 1|,̂  1

^=o ( /.^o j

with c^> o independent of k.

To complete the proof of the lemma, we need the following fact : for
every s, ^ > o, there exists a constant c independent of £, ^ and u such that

(3.4) ^ ll^^lkQ^S ^ H^^^lkQ
I ̂  I == k \ a | =k+1

^(s-1-^-1) ^ H^-^^lkQ
| a j = A - — i

where Z:^i.

In fact we have the equality

—(^D^u, yDoiu)=(^-iDX'u, ̂ D.D^u)

+2A•((AO^- l^a^, ̂ D^u),

where a'= ( a i — i , as, .. ., a^) (we suppose ai^o) and A==^/^r

Now we can'obtain the inequality (3.4) by Schwarz's inequality and by
taking into account the estimate (3. i ) for ^.

In (3.4) we take k •=== m — i and choose £ as z = 6/2 c. Bringing the ine-
quality thus obtained in the right side of (3.3), we have

m ( in — 2

(3.5) ^--^ll^lkQ^^ ll^^^lkQ^+S^^^^II^^
^•=0 ( k=o

with c>o independent of k. Thus in the right side of (3.3), the terms
corresponding to k == m — i can be absorbed in the left side. Repeating
this procedure by using (3.4) with appropriate s, we arrive finally at the
desired inequality stated in the lemma.

LEMMA 3.3. — Let q be positive integer such that q < m. Let r << /"o,
FQ being fixed. Then there exists a constant c,n> o depending only on m
and FQ such that for every s>o and u^C^ (^1) one has

II ̂  IkA^ £ II u 11/",^+ ̂  s-7/^-y) [ [ u |kQ,,

A proof of this lemma can be given by using Fourier transforms after exten-
ding the functions suitably to R^. Another proof can be found in [15]
(Appendix).
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REMARK. — Let p be any integer ̂ o. By applying tlie above inequali ty
to D^u and by summing up the inequality thus obtained with respect to a
such that a [ = mp^ we obtain from Lemma 3. i,

|| U \\p,n-+-q,Q,.^ i || U ||(/.+l)m,Q,+ C ,n £-^ i-m-(/) \\ ii ||/^,Q,

with the same constant c,n as in the above lemma.

h'. Proof of theorem 1. — In this section we shall prove Theorem I . The
proof is proceeded by several lemmas which permit one to estimate suitably
[| u \\km in terms of zero-norms of u^ A M, . .., A^u.

We suppose throughout this section that A has analytic coefficients. In
this section, <"(ci, c.^ . . ., etc.) will denote a positive constant, always inde-
pendent of A\ which may vary from place to place.

The first lemma gives an estimate for the commutator of the operator D^
and the operator of multiplication by an analytic function.

LEMMA ^ .1 . — Let a be an analytic function in ^. We dejine the
commutator [a, Z)01] by [a, D^] u == a.D^-u — D:x•(au)^ then we have for
every integer k > o.

/ •—i
(4.1) ^ /^\\[a,D^u\\^^k\ck^(p\)-fc-''\\u\\,,,Q,

\ a | = k n-=0

with c > o independent of k.

PROOF. — Since a is analytic in i^, we have

( i^ .2 ) supl./)^ ^a Ic^'-^1 .

The Leibniz formula gives

D^aa)=^^^^_^^a)(D^u)
P^a

where a — (3 = (v-i— Pi, . . . , a , , — ( 3 / , ) and P^a means p^ a/ for each
i ( i = i , 2, . . . . n).

From (^ .2 ) and the definition of [a, Z^], it follows immediately

^ ^\[a,D-]u\\,..Q^ ̂  ^^<-l-,'l]|^« |̂ .
i a j = / - | a j= : /C - Y^:a

T ?^a

Now the number of a's such that a > y for fixed y is at most of order ^/l-! v i ,
so that the right side is majorised by

i^^^s^ii^-'^^'^(ncv-p y ^^p^ ) Zu v !
p=o \^\=p *

this proves tlie lemma.
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LEMMA ^.2. — Let r, ^ be as in the lemma 3.2. Let z be any positive
number. Then there exist constants c, Ci (c depending only on A and d
depending on A and E ) such that one has for every k and u € C^ (i2),

(^•3) || ti 11(^1)^0.^ II Ait ||^,Q,+S+ ^~m\\ ̂  11^,^+8 4- c [| ^||(,-M)/.,a.^

^
4-((^+I)m)!^+l^((^m)!)-l^^^(^m)!)-^!!^!^^,

/?=:0

PROOF. — From Lemma 3.1 and the Friedrichs' inequality (Lemma 3.2),
we have

(4.4) || u ||(̂ ,u,= 2 ̂ 'll̂ ll'",",.
| a | = /-/»

±^ |[ -4^ |[^»,Q,.+s + ̂ m || ̂  ||^,Q^8

+ 2 ̂ ii^-^-n.^
j a | •=. km

Now, writting A explicitly as A = V ap D^ with analytic coefficients a^
l t 3 j ^ m

and applying the Lemma ^A for [A, D^] u= V [a, Doi]D^u, we obtain
\^\^m

( 4 - 5 ) 2 ̂  II [-4' z)a!u ll.-a.̂ J'S 1(^ ̂ "-/' li" ll/̂ o-,-..
| a [ -==. 1\in p-= o q -=. o

Since we may suppose Ci > i in (^.5) , it follows immediately that there
exists a constant C2> o independent of k such that

(^•+1) /»—1(A- -4- l )w—l

(4.6) ^ ̂ [̂ .Iko,,̂  2 (-(/^")!^+1:•"-'11"11^.l^,^J«lko,..3^ 2 (-(/^")!^+l:•"-'ll"lkQ,^.
| a | == /!-w .? == o

We wish now to majorize the right side of (4 -6) , containing terms |[ u |[.,,
for s == o, i, . . ., (k 4- i) m — i , b y a n expression which contains only ]| u \\pm^
for p ==o, i, . . . . (A--4- i).

For this purpose, we write s as s=.pm+q with o^p^ A, and o^^ <<m.
Then the remark of Lemma 3.3 gives

(^ •7) II ^ \\pm+q,Q,.^^ Z' || M |[(^i)//,,a,.+S+ C,n Z'-^/^-^ \\ U \\p,n^^

with c^ independent of £' and ^.
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In (4 .7) , we choose £' as
(pm+g)\ „

' ( ( p - + - l ) m ) i c • 2

where s (o < s < i) is given.

Then we have

,--./„„-., ̂ v"(/^'7)',«
-=\z) (pm)\ c-2

so that we obtain for s =zpm 4- q^

(^•8) ^T II " 11^^ ((P^)m)\ II " ll̂ "1.̂

/m'V11- c~p'n+c"\7) (^yTll^'"'^-
Bringing this in the expression (^.6), we have

^ (^^ir A 7 ^ 1 . . i i .
^•9) 2 ̂ ll^^lk^

1 a [ == /l-/n
^

^rrzz || ^ ||^)/.,Q^+ ̂ (s)^^^^-' ̂ -^-II^I^Q^
^=o

m y"
where we put c' (s) == i + ms + ( — ) <^. We take now in (^.9) the cons-

\ £ /
tant c.2 large enough to absorb the constant c ' ( c ) which is independent of/:.
Then, from ( ^ . 4 ) ? the desired inequality follows.

DEFINITION (see [13]). — Let ?i be a positive number. For each integer
/r^ o, \ve define

^{u, \ B)=((km)\)-i^(fi-r)km sup ||^|[^Q...
7?/2^r<J?

LEMMA. ^. 3. — Let R << i. There exists a constant 7 depending only on A
and R such that for every k and u € C^ (^1) we have

( ^ .10) ^{u, ̂  7?)^[(^m+I)...((^+I)m)](7x-(^^/, A, /?)
k

4-^CT/^,

/^=0

-^^(^, ^,7?).

PROOF. — Multipliying by [{(k-\-i)m) ! ]-1 ^-^+^ (/? — r)^'-^1^ on both
sides of the inequality of Lemma ^.2 and taking the supremum for
7?/2 ̂  r << /?, we obtain

(4.n) cr^-i(^^7?)^ sup (/,+£/,+/,+/,),
7?/2^r<7?
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^ /, = c[((k + i) m) ! ]-' 7-(^«) (/? - ,.)(^)'» [| ,4 M ||,,,,,Q ,̂
/,== c[((A- + i) m) ! ]-« ^-(^•1 (/? - r)(^l'" || « |](,̂ ,,,,,o ,̂
/,= c[((A- + i) w) ! ]-' >-(^') (/? - r)(^l'» §-'» |[ M ||,»,,Q^g,

k

I^c -̂-"> (7? - r)^^ c——— || ,< ||,,,Q,.^.
(pm)\

p=o

We choose in what follows ^ == -———• then we have
^4- i

B—r Y'71 ( i
i <^2\^-r-^ -V ^+ i

with Co independent of A\ It follows now from the definition ofo-^ (u, ?L, 7?),

(^.i3) Ii^[(km^l)...((k^l)m)]-^c-^}^(A^^B).
\ A /

Similarly

(^.i4) ^^(^2) cr^1^, ?., 7?).

For /n,, we have<*-) '^(T^ri"—)''^1^.''^^
Since we have from the definition of (L

f R— r\m

—} =(^+i)'»
it follows from (^. i5)

( ^ •16 ) /^^^^(^^T?).
\ A /

Finally we obtain for /4,

(4 .17 ) ^^(c-<p)2(?y-^(«^^) a^.).
'/ p=o

It follows now for every A'^o,

( 4 .18 ) (i - sc) ^•+l(^, 7, /?) ̂  [(^ +i)... ((/. + i) m^f^^Au, ̂  R)
\ - A /

-(?) i (?)""-<".'^)
/?=o
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for sufficiently large constants c, Ci> o, c being independent of c, while d
depends on 5. After we have chosen ^-=.\|(lc in (4 . i8 ) c, is a constant
dependent only on A and 7? so that it is possible to find ?. independent of k
such that }. > 2 C i ; thus we obtain the inequality (4. 10).

LEMMA 4.4. — £^ 7 ̂  <Ae ^ame constant as in lemma 4 .3 ; w^ have then
/•+!

(4 .19) cr^i (^ 7^ B) ̂ ^^-^Y^ T \ ((mp) \)-^^APU, \ R).
p=:o

PROOF. — The proof is by induction on k. For k = o, the Lemma is valid
(see Lemma 4 .3) . Suppose that the lemma is valid upto k — i. Applying
the induction hypothesis to the function Au^ we have

k

(4.20) ^(Au, 7, K)^^^-p( ^((pmy^-^^AP^u, ^ 7?).
/)=0

Also, we have for q ̂ A\
q

(4 .21 ) ^{U, i, 7?)^^2y-/;^V(7?/7^)!)-l(70(^^^, 7, /?).

^=0

From Lemma 4.3, we get

(4.22) a^(u, 7, /?)^[(A^+i)...((A-4-i)^)]-1

A-

x 2 ̂  (A ) ̂ ^^^ !)-l ̂  ̂ +1 ̂ ' ^ /?)
/?=0

k q

+2 S2'"^!)^^1)"1^0^^' ̂ 7?)'
y=0 /?=0

Now, let Cp be the coefficient ofo-°(A^, ?., 7?). Then for o^p^k

Cp= [(km 4- i) . . .((A- + i)^)]-^-^-1^ ^ ̂  ^ ) [((/? -i)^)!]"1

^•

-^S2^^)^^)'^'-
7==/7

Since

V2^U2^W^AJ v^y" v^yy=/?
we get

^^-^^I^((^)S)-l.
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On the other hand, for p = k -+- i, we have evidently,

c^=[((k+i)m)\]-^

Hence, it follows
A'+l

(4.23) ^ (u, ^, 7?) ̂ ^ ̂ -P^^ + I ̂  [((^m) !)]-^ cro(^^, }., 7?);
^=0

this is the inequality which we wanted to prove; thus the induction is
completed.

PROOF OF THEOREM 1. — Let ^eC00^) such that

(^.24) 11-4^ I |L^)^ (Am) ! <^+1

for ^/ an open set of ^2 and for all /:^o with a constant c independent
ofA-.

Since the analyticity is a local property, we may suppose that the origin
of R^ belongs to ^l' and it is sufficient to prove analyticity at the origin.
Take R< i with ^C^, then

(^ .25) ^(A^, ̂ R)=\\Aku\\L.^^km\ c^.

Now from Lemma ^.^, we have

k+l

(^.26) (7^-+l(^, ?., 7?) ^^^-^(^^^[((pm) ̂ ^(APU, ^ 7?)
p=o
/.-+!

^^ a^"-^1 ̂ +1 ( A'-l-I) = c (c + 2 )^+1.
p=o

From the definition of o-^4"1 (u, }i, 7?) we obtain

|| u ||(,+D^^^ (^ + i) m) !. c^1

with a certain constant c independent of A.
Then, Lemma 3.3 permits us to estimate || u \\p for p = o, i, . . .

by || u \\{k+i)m tor A- == o, i , . . . and we have

(^27) II ^ II^QH/^^ ! c/?+l

for all/? (=== o, i, . . .) , where c is a constant depending only on A and ̂ .
Now, by Sobolev's lemma [13], we see that u is analytic at the origin.
Hence, the proof of Theorem 1 is completed.
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5. Regurarity of the kernel ofZ". — We denote by /)(2^) the domain

ofZ-9, that is the set of elements /eZ2^) such that f 1s 2 d || E\f\\ <oo.

Then, under our hypothesis on Z, it is easy to see that

(5.1) D^L8) C D^L8') if R I s ^ R l s ' ,

(5.2) for every complex n amber s^

L^^(~\D(L^ if /ep^(^).
^•=0 X-=0

Let /€ /^ Z>(^). It follows from (0 .1) , (5.2) that feD^L^)
k=0

and L^^D^L^ for every complex number.? and integer A-^o. We have
then
(5.3) 7>Z>/= L^ L^f= L^f

(for these properties, see [16], § 228; [18], p. 222) .

PROPOSITION 5 . 1 . — For any complex number s^ L8 defines a kernel
/^(.r, j), that is^ a distribution in the product space 12 x ̂ .

PROOF. — We first consider the case Rls<^o. In this case, L3 is a

continuous map o fZ 2 ^) into itself. For, by hypothesis on Z== j ^ dE\,

we have a positive constant Co such that ^ >> Co on the spectrum, hence
^^c^18 for \^\ and \Rls ̂ _i for }.>i, since Rl s < o.

Thus, ̂  is bounded on the spectriim of L. Hence L8 is a continuous linear
map ofZ2^) into itself. A fortiori^ L8 is a continuous linear map of (D (^2)
into C D ' ( ^ l ) . By the kernel theorem of L. SCHWARTZ [19], L8 defines a
kernel.

For general s, we take a positive integer m such that J R l ( s — m ) << o.
Then, as seen above, L^1^ is a continuous map of (;D(^2) into (D' (^2)
while Z771, m111 iterate ofZ with C* coefficients, is evidently a continuous map
ofd? (^2 ) into itself.

Now, the proposition follows from (5.3), by remarking that

L^-z^L^^L111^ for cpe^(^) since CQ (^2) ^ F\ D^L^.
/-=0

P'rom now on, we denote by Ls (x^ y ) the kernel of L\
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PROPOSITION 5.2. — For every complex number .?, the kernel L8 (x^ y ) is
regular.

PROOF. — We have to prove that Ls maps continuously <^)(i2) into 6(^2)
and can be extended to a continuous linear map of 6'(^2) into ^ (^2).

Suppose that for every s^ L8 maps continuously d?(^2) into 6 (^2). Let cp,
^ be in d? (^2). We have then (Z^co, ^p) == (cp, Z5^), s denoting the
conjugate complex of s, this implies that L8 can be identified on the dense
subspace <^(I2) of &' (12) with the transpose of Z111', while the transpose
o f Z ^ i s a continuous map of 6^(^2) into (^(i2) when Z5 is a continuous
map of d? (i2) into <S (^2). Hence, Ls can be extended to a continuous map
of^^) into ( D ' ( ^ ) .

It remains now to prove that Ls maps continuously d)(^2) into 6(i2).
Remark first that the image ofd?( I2) by Z^ is contained in 6(^2). For,

if cpe^ (i2), then cp e /^\Z^(Z^),so that by (5.2) we have Z^e /^^(Z^).
/l-=0 ^=0

From the regularity theorem for a linear elliptic operator with C^ coefficients
([7], [15]), it follows that Z>cp is of class <7°°.

As for the continuity of the mapping Z^, it is sufficient [17] to verify that
the image of every bounded set in <^)(^2) by Ls is also a bounded set
in <S(i2).

Let s be such that RIs < o. Let B be a bounded set in (^)(I2). Then,
by definition [17], the image L ^ ( B ) of B by L^ is bounded in d?(^2), a
fortiori^ bounded in Z2^). Now Z5 is a continuous map ofZ 2 ^) into
itself, so that Z^Z^(^) is bounded in Z2 ( I2 ) . On ihe other hand, L-^B)
is a family of C^ functions belonging to the domain o fZ^ ; hence it follows
from (5.3) that Lk L-^ {B) is bounded in Z2^), from this, we see,
according to Lemma 3.2 and Sobolev^s lemma [13], that Ls ( B ) is a family

of C^ functions whose derivatives of orders mk — — — i are uniformly

bounded on every compact of ^2. Since k is arbitrary, this proves that Ls (B)
is bounded in 6(^2) .

For general .?, as in the proof of Proposition 5 .1, choose m so large
that jRl(s—m)<o and remark that Z^cp == Z^-7" Z^cp for c p € ^ ( ^ 2 ) ,
then Z"1 and L8-111 map respectively c©(^2) into d)(I2) and 6(^2) conti-
nuously. This completes the proof.

6. Estimates for the Greeny function of the associated parabolic

operator. — Consider the family of operators Gt~==. \ e~^ dE\ for t ^> o.
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Gt is a bounded and Hermitian operator in Z2^). Associated with these
operators we have a C^ function in R x ^2 X ^2,

G(t, ^ , j ) = = / e-^de^x,^de^, x, y ) ,

where e{\^ x, y ) denotes the spectral function ofZ[8].
We have then

(^+Z.^G(^ ^j)==o and (^+z^)6^ ̂ ^)=°

for t >> o.

The next lemma shows that the function G(t, x^ y ) and its derivatives
fall off exponentially as t—>oo.

LEMMA 6.1. — Let H be a compact in i2xi2. Under our assumption
that L is strictly positive operator {\ > Co > o on the spectrum), we have

/ () \P_ \ na n? r_ [ f ^ ^\ ^-,,/,—co</2
^^ J -^x-^y^ \ i 1 ^l J ) ^=. c e '

for t>i and uniformly for (^,j)e H, where c depends on p, a, j3
and H.

PROOF, — Denote by L the elliptic operator with conjugate complex
coefficients of L.

Consider the operator :

L^L,=L(.^VL^^)
which is evidently elliptic with C^ coefficients in the product space ̂  X i2.

Now, by Lemma 3.2 and Sobolev's lemma [13] applied lo (/^4-ZyV it is
easy to see that the desired estimate is a simple consequence of the
following : let U be a relatively compact open subset in 12 such that
I I C Ux U. Then for every positive integers k\ k"\ we have

(Z.+^-yY^Y G{t, x , y ) ^ce-w1
\ UL J

for t > i and for {x^ y ) e Ux U. Since

L^G{t, x , y } =LyG(t, x, y ) =—^G(t, x, y ) for t>o,

[ c) Vit is sufficient to estimate ( — ) G(t^ x^ y ) for every positive integer k.
\ UL )



464 T. KOTAKE AND M. S. NARASIMHAN.

Let m be a sufficiently large positive integer such that L-111 has a kernel
K { x , y ) of the Carleman type ( [^], [5], [8]). For ^e^, let K^L2

denote the function K(x^ ^ ) .
Now

• () V , (^y/^^a^j)^ ) G ( ^ ^ y )

fe-^(-^)^de(^^y^J)

= | y e-^ (- ̂ )^- ̂  (Z\ K^ Ky)

^-Co</2 / ^/2^2/^[ d(E^K.^ Ky) \

since }. > Co and ̂ i. Now the variation o{ {.E^K^ Ky.) in Ris majorised
byll^ll^ll^y| |^([16],§126)and|[^| |^[|^. | |^^c(^)for(^J)e^X^
where c ( U ) is a constant depending only on U and Z.

It follows that
/ ^ \^
^-J ^ (^^r ) ^ce-^

for ^ > i and (^, j )e^with a constant c depending on A, ^andZ. Thus
Lemma 5.1 is proved.

We next consider the behaviour of G(t, x , y ) and its derivatives as t-^o.
The required information is given by the results of G. BERGENDAL [1] and
S. D. EIDELMAN [6].

Let AT be a relatively compact open subset of ^2. Consider now the

parabolic operator ( ^ + Z ) o n R x A : assiociated with Z. According to

S.D. EIDELMAN, we have a fundamental solution E ( t , x , j) of (— 4-Z,A

It is of class C" in ( t , x, y ) when t > o and satisfies near ^ = = 0 the
following estimate.

LEMMA 6.2 (S.D. EIDELMAN). — For o<t<i and { x , y ) ^ K x K , we
have

() Y,
D^D^.E(t, x, y) ^^-(/^+la|+!pl+^)//^-c,

^t.
'n g—Ci | x—} • | ̂ t^. i—y.,

where ^ •==. i/(m — i) and c, depends only on Z, K, while c depends also
on p, a, |3.

As for the behaviour of G(t, x, y ) we have

LEMMA (6.3) (G. BERGENDAL) . — Let H be a compact subset 0/12x^2
sack that H c K x K . Let E(t, x, y ) be the same as in lemmaG.^. Then
there exist positive constants c, c^ such that

0 \P .
D^D^.[G^ x, y ) - E ( t ^ x, y ) ] \^ce-^ p-(\t—,^
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for o <i t <i i and for (x^ y) € 11\ where Ci depends only on L and H, while
c depends also on p^ a, (3.

Forj?+ a -+- (3 == o, this is proved in [1]. The general case can be
proved in a similar fashion (see [ 2 _ j , § 2.3).

7. A representation for the kernel Z" (^, y ) in terms of the Green^s
function G (^, x^ y ) .

PROPOSITION 7.1. — Let s be a complex number such that RIs << —nfm.
Then we have

(7 .1) Ls(x,y)=———— f t-^G^t.x.y^dt.
L \ — s ) Jo

The integral on the right converges uniformly on every compact subset
of 12 x ^2 and represents a continuous function of (.a?, y ) in 12 x i2, where
we denote by T(— s) the Gamma function.

PROOF. — From Lemma 6.1 we have for ^^i and for (,r, y)^.H^

(7.2) | G(t, x, y) ^ce-^

while for o << t << i and for ( x ^ y ) ^ . H ^ it follows from Lemma 6.2 and
Lemma 6.3,

(7.3) \ G ( t , x , y ) \ ^ \ E ( t , x , y )
4- (E — G) ( t , x, y ) | ̂  c t-^11 + c e-^ ̂

with positive constants <?, Ci depending on H.

From these estimates, it is easy to see that the integral converges
uniformly for ( ^ c ^ y ) ^ f f when Rl s < < — n / m and represents a continuous
function of (.r, y ) since G(t^ x^ y ) is of class C^ for t >* o.

We shall prove now the equality stated in proposition 7.1. For Q,
<pe^)(^) , consider

?=————/ rt-^G^^y)dt^^)^(y)\
1 { — s ) \Jo I

where <^ , )> denote the scalar product between CD'(^ x 12) and <X)(^x ^2).
By what has been seen,

P=———— C t-^dtf G(t,x, y ) 9(^)4 ' { y ) d x d y
1 ( — s ) J , JQ.^Q.

= T(~\ r t~s~ldt r e~"d(-E^^ ̂L \ s ) JQ j . p — i . i .
, . v ^ri- • 0 (-^u ^

BULL. SOC. MATH. — T. 90. FASC. 4. 33
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where the integration f e~ht d(E\^^ ^) is taken in the sense of the Radon-

Stieltjes integral with respect to the complex-valued function of bounded
variation (^cp, ip) in — o o < ^ ^ < < o o .

Let
(Z\q), ^) := [p, (7) - p, 0) ] + i[^W - p., (7.) ]

be the canonical resolution of (Z\cp, ^) with the real valued monotone
increasing functions of bounded variation px:(^), /i ==i , 2, 3, 4 ([20], p. 202).

Then we have
4

F'\-^d{E^^)=^^r'' e-^d^WJc" ^1 l7r"
where Si == — £3 == — ? £3 == ^£4 == i .

Consider now

C t-^ dt f e-^d^W'
^ r <y r^

Since t~s~l e~u is a continuous function of (^, 7) in the integration domain :
o < ^ < o o , < ? o < ^ < o o and the ovbious estimate f-s-i e-^ \ ̂  t-^s-1 e-^
implies tliat it is integrable there with respect to the product measure
dt d^k ( ^ ) when Rl s <^ o.

By Fubini's theorem^ we have,

f <-A-1 dt f e-^ d^k W = f 4x- f t~'~1 e-^ dt.
^0 ^Co u <^ ^ O

Noting that j t-^1 e^ dt =T(— s)^ and summing up the above integral
^o

with respect to A', we have
4

p =2 ̂ f^dptO)
A-=1

which is equal to

C^d(E^^)=(L^^).

This completes the proof.

8. Proof of theorem 2. — As in paragraph 5, we see that it is sufficient

to prove Theorem 2 for 7?/^<— — • Since we have already proved that

Z^(^, j ) is regular, it is sufficient to prove that Z^(^ , j ) is of class C^
outside the diagonal [17].
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For 7?/5<<— — ? we have by Proposition 7.1,m j s.

( 8 . 1 ) Z^,j)=———— f t-^G{t,x,y)dt,
1 \— s ) Jo

If (^, y ) belongs to a compact set H in the complement of the diagonal we
see from Lemmas 6.1, 6.2 and 6.3 that

(8.2) V^XD^D^G^t.x.y) ^ce-^^1-^ (o<t<oo)

with positive constants c, c.^ where Ci is independent of /:, a, P.
It now follows from (8.1) and (8.2) that Z^(^?, y ) is of class C°° outside

the diagonal, since we may differentiate under the integral sign any number
of times.

9. Proof of theorem 3. — In this section c, ^ ( ^ = = i , 2, .. . ) will denote
positive constants independent of A-. We suppose that L has analytic
coefficients.

To prove Theorem 3, it is sufficient to prove the following two statements :
( i ) L s ( a l ^ y ) is an analytic function in the complement of the diagonal

in ^2x^.
( i i ) For each c p € ^ ( ^ ) , L8 cp is an analytic function in every open set

where cp is analytic.

PROOF OF ( i ) . — (Z^+ZyV is a linear elliptic operator of order m with
analytic coefficients in ^x^2. Applying Theorem 1, we see that to prove ( i )
it is sufficient to prove the following : for each compact set H in the complet
ment of the diagonal, there exists a constant c independent of k such tha-

(9.1) sup \{L^-{-Ly)kLS{x,y) ^ (mk) ! c^.
{x,y)eH

It is sufficient to consider the case jRls < — — •m
As in paragraph 8, we start from the integral representation ofZ^(^ , y ) :

(9.2) ^(^y)=-^^^t-^-lG(t^^y)dt.

If (^, y ) €^, we have the estimate (8 .2) which permits us to differentiate
under the integral sign, so that we have

(9.3) (z.+Z^yZ^^j)^——0^ r^-^^G^^y)^.
1 \ — — s ) Ja \ut /
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For we have

(^ +z-)^ ̂  J) -(^ +^)^ ̂  J) -o

for ^ > o. Let us first suppose that s is not a negative integer. By integra-
tion by parts in (9.3) [which is permitted by (8 .2 ) ] we obtain

(9.4) (z,+z,.yz^,j)

^rT^T^-6'-1)^-2)—^-^) f t^-^G(t,x,y)dt.
17 o

Now as a special case of (8 .2) we have

[ G (t, x^ y ) | ̂  c e-01^1^

uniformly for (^, y ) ̂ ff with positive constants c, <?i depending on //.
Remembering that ^.;=:(/n-i)-S it follows from a simple calculation

that
I r a s

(9.5) sup \ t-^-^G^, x , y ) d t ^((m -1)^)!^4-1,
(^i.y) € n ty Q

c being independent of k, which gives evidently, from (9.4),

sup |(^+^yz^,j)|{•^i^')^-"
^k

^ i r ( — ^ ) | l ( ~ • y ~ I ) ( — < y — 2 ) • t • ( — • y — ^ ) l ( ( 7 ^ — I ) ^ ) T ^ 4 " l ^ ( ^ A ; ) ! ^ .
If 5 is a negative integer, we see that the integral

/ ^^(^y^^j)^ (^j)e^

vanishes for all large /c and (9. i) is trivially valid. So ( i ) is proved.
PROOF OF (iij. — Let cpe^)(^) . We suppose cp is analytic in an open

subset ^.o of ^2. We shall show that Z^cp is analytic in H).
Let ^i, ^2 be any relatively compact open subsets of ^o such that

^C^C^C^o.

Let a € (^ (^o) and a ̂  i on ^2. One has then

Z^((p)=Z^(acp) +Z^(( i -a)cp) .

Now, ( i — a ) c p e ^ ( ^ ) and its support does not inersect I^i; by what has
been seen in ( i ) , Z^(^,j) is an analytic function of (^, y ) outside the
diagonal in ̂ x ^2, so that it follows immediately from the integral represen-
tation of Z^(^, j) t h a t Z ^ ( ( i - a ) c p ) is analytic in ^,.
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It remains to show that Z^(acp) is analytic in ^2i. It is sufficient to

consider the case RIs <— — • Then we have for each integer Ar^o

(9.6) Z^(acp) (x)= ———— f t-^dtf G ( t , x , y ) ^ L ^ ) y d y1 \~ s ) Jo JQ

^^-T^'-f.''-""
p=o

X f G { t , x , y ) ([Z, a]L^-P-^)ydy,
JQ.

where [Z, a] is the commutator of L and a.
Consider the second term in the above expression, which we write as

k—l

(9.7) n-TjS^o'
p==0

where

F,(^)=L^. F t-^dt f G(t, ̂ j)([Z, a]Z^-^)^j.
Jo JQ.

Now [Z, a] is a differential operator of order (m—i) whose coefficients
have their supports in ( i 2 o — ^ 2 ) 5 so that if we considers in ^2i we may
perform the differentiation Lg under the integral sign as in paragraph 8 and
we obtain,

(9.8) F , ( ^ )= ( - s - i ) ( - s -2 ) . . . ( - s -p ) f t-^-P-^dt
J o

X j G(t^ x^ y ) ( [ L , a]Z^-^-lcp)r<^y, for s non-integral
JQ.

== o for all large p if s is a negative integer.

Since the coefficients of [Z, a] have their supports in (^2o— ^2) and (p is
analytic in ^2o by hypothesis, we have

(9.9) sup | [Z, a jZ^-^cpl^^—^/n)! c^74-1

a;eQo

with c independent of k andjo. Further we have (see § 8)

(9.10) sup G(t^ x^(9 . io) sup G(t^,y)\^ce-c^+t-^
. ^^e^ix^o-^). ^^e^ix^o-^)

we obtain from (9.8), (9.g) and (9. ie)

sup \Fp(x) \^{prr
xe.Q
sup | Fp{x) \ ̂  (pm) I ((^ -p)m) I c^
xe.Q

with a constant c independent of k^ p .
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Consequently, we have

( 9 . 1 1 ) sup ————^F^)^{km)\c^.
x^Q, 1 ( — s) ——

p=o

On the other hand^ since cp is analytic in t2o, we have

sup aZ^cp | ̂  (km) I c^1

^€^1

and from the results of paragraph 6 [see ( 7 .2 ) , (7.3)] , we have

sup | G(t, x, y ) \ ̂  c t-71''"1 e-^1

(;r,y)eQixQo

so that it follows for Rl s <^ — n/m^

(9.12) sup ———- 1 t-^dt I G(t, x , y ) ^ L k ^ ) Y d y ^{km)\ c^.
^e^ 1 ( — s ) Jo JQ,

From (9.6), ( 9 . i i ) and (9 . i2 ) we obtain finally

sup Z ^ Z ^ ( a c p ) l^(A-m)!
xeQi

c^.

with c independent of/:; now from Theorem 1 we see thatZ^acp) is analytic
in ^2i, which was an arbitrary open subset of ^2o. This proves ( i i ) and the
proof of Theorem 3 is thus completed.
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