H.S. Allen

Duality of the spaces of linear functionals on dual vector spaces

Bulletin de la S. M. F., tome 80 (1952), p. 233-235
http://www.numdam.org/item?id=BSMF_1952__80__233_0
© Bulletin de la S. M. F., 1952, tous droits réservés.
L'accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

DUALITY OF THE SPACES OF LINEAR FUNGTIONALS ON DUAL VEGTOR SPACES;

By H. S. Allen.

1. Dual linear vector spaces have been studied by Dieudonne [1] and Jacobson [2] and self-dual spaces by Rickart [3], [4]. In this paper it is established that the spaces of linear functionals on dual spaces are dual spaces and that the space of linear functionals on a self-dual space is self-dual and of the same type (symmetric or unitary), assuming that the characteristic of the sfield of scalars is not two.
2. Let E and F be left and right linear vector spaces over a sfield K. Suppose there is a bilinear functional (x, y) defined on $\mathrm{E} \times \mathrm{F}$ to K which is non-degenerate, i. e. $(x, y)=0$ for all x (resp. all y) implies $y=0$ (resp. $x=0$) : then E and F are said to be dual spaces relative to (x, y). Let F^{*} and E^{*} be the left and right K-spaces whose elements are the linear functionals on F and E, the algebraic operations of addition and scalar multiplication being defined as in Bourbaki [5]. If $x \in \mathrm{E}$ and $f \in \mathrm{E}^{*}$ we write $f(x)=\langle x, f\rangle$: the spaces E and E^{*} are dual spaces relative to $\langle\boldsymbol{x}, f\rangle$. If $y \in \mathrm{~F}$ and $g \in \mathrm{~F}^{*}$ we write $g(y)=\langle\boldsymbol{g}, \boldsymbol{y}\rangle$: the spaces F^{*} and F are dual spaces relative to $\langle g, y\rangle$. We prove the following theorem.

Theorbm 1.-If the characteristic of $\mathrm{K} \neq 2$, then F^{*} and E^{*} are dual spaces.
If $y_{1} \in \mathrm{~F}$, the functional f_{1} defined on E by $\left\langle x, f_{1}\right\rangle=\left(x, y_{1}\right)$ belongs to E^{*} and the mapping $y_{1} \rightarrow f_{1}$ is an isomorphic mapping of F on a subspace M of E^{*}. We shall denote this correspondence by writing $f_{1}^{\alpha}=y_{1}$. Similarly E is isomorphic to a subspace N of F^{*} under a mapping $x_{1} \rightarrow g_{1}$ where $\left\langle g_{1}, y\right\rangle=\left(x_{1}, y\right)$ and we write $g_{1}^{\beta}=x_{1}$.

There is a subspace Q of E^{*} which is the algebraic complement of M (i. e. E^{*} is the direct sum $M+Q$) and a subspace P of F^{*} which is the algebraic complement of N. Suppose $g \in \mathrm{~F}^{*}$ and $f \in \mathrm{E}^{*}$. Let $g=g_{1}+g_{2}$ where $g_{1} \in \mathbf{N}, g_{2} \in \mathrm{P}$ and $f=f_{1}+f_{2}$ where $f_{1} \in \mathrm{M}, f_{3} \in \mathrm{Q}$. If $g_{1}^{\beta}=x_{1}$ and $f_{1}^{x}=y_{1}$ we define

$$
\{g, f\}=\frac{1}{2}\left[\left\langle x_{1}, f\right\rangle+\left\langle g, y_{1}\right\rangle\right] .
$$

It is easily proved that the functional $\{g, f\}$ is bilinear. Suppose f is fixed and $\{g, f\}=\mathrm{o}$ for every g. Taking $g_{2}=\mathrm{o}$ we obtain

$$
\left\langle g^{\prime}, y_{1}\right\rangle=\left\langle g_{1}, y_{1}\right\rangle=\left(x_{1}, y_{1}\right)=\left\langle x_{1}, f_{1}\right\rangle \quad \text { and } \quad 0=\left\{g_{1}, f\right\}=\frac{1}{2}\left\langle x_{1}, f+f_{1}\right\rangle
$$

This holds for every $x_{1} \in \mathrm{E}$ and it follows that

$$
f+f_{1}=2 f_{1}+f_{2}=0 .
$$

Hence $2 f_{1}=-f_{2} \in \mathrm{M} \cap Q$ and therefore $f_{1}=0, f_{2}=0$ and $f=0$. Similarly $\{g, f\}=o$ for every f implies $g=o$. It follows that F^{*} and E^{*} are dual spaces relative to $\{\boldsymbol{g}, \boldsymbol{f}\}$.
3. A left vector space E over ar sfield K is said to be self-dual if there is an involution $a \rightarrow a^{5}$ in K and a scalar product (x, y) defined on $\mathrm{E} \times \mathrm{E}$ to K with the properties (i) (x, y) is linear in x for every $y,(i i)(x, y)=0$ for all y implies $x=0$, (iii) $(y, x)=e(x, y)^{\mathrm{J}}$ where $e= \pm \mathrm{I}$ is a constant independent of x and y. A self-dual space is said to be symplectic if every vector is isotropic, i. e. $(x, x)=0$. If there exist non-isotropic vectors in the space, the space is said to be unitary, (Rickart [3], [4]). As before E^{*} will denote the space of linear functionals on E. We prove the following result.

Throrem 2. -If the left vector space \mathbf{E} over a sfield K of characteristic $\neq 2$ is self-dual, then the right K -space E^{*} is self-dual. The space E^{*} is symplectic or unitary according as E is symplectic or unitary.

Let E_{r} be the right K -space whose elements are the elements of E with addition defined as on E and scalar multiplication defined by $x a=a^{d} x(x \in \mathrm{E}, a \in \mathrm{~K})$. Then E and E_{r} are dual spaces relative to (x, y). The space E_{r} is isomorphic to a subspace M of E^{*} : we have $x_{1} \rightarrow \mathrm{X}_{1}$ where $\left\langle x, \mathrm{X}_{1}\right\rangle=\left(x, x_{1}\right)$ and we write $x_{1}=\mathbf{X}_{1}^{\alpha}$. There is a subspace Q of E^{*} which is the algebraic complement of M. Suppose X and Y in E^{*}. Let $X=X_{1}+X_{2}$, where $X_{1} \in M, X_{2} \in Q$ and $Y=Y_{1}+Y_{2}$ where $Y_{1} \in M, Y_{2} \in Q$. Let $X_{1}^{\alpha}=x_{1}$ and $Y_{1}^{\alpha}=y_{1}$. We define the functional

$$
[\mathrm{X}, \mathrm{Y}]=\frac{1}{2}\left[e\left\langle x_{1}, \mathbf{Y}\right\rangle+\left\langle y_{1}, \mathrm{X}\right\rangle^{\mathrm{J}}\right]
$$

on $\mathrm{E}^{*} \times \mathrm{E}^{*}$ to K . It is easily verified that $[\mathrm{X}, \mathrm{Y}]$ is linear in Y for every fixed \mathbf{X}. Suppose $[\mathbf{X}, \mathbf{Y}]=o$ for every $\mathbf{X} . \quad$ Take $\mathbf{X}_{\mathbf{2}}=\mathrm{o}$ and we obtain

$$
\begin{aligned}
o=\left[\mathrm{X}_{1}, \mathrm{Y}\right] & \left.=\frac{1}{2}\left[e\left\langle x_{1}, \mathrm{Y}\right\rangle+\left\langle y_{1}, \mathrm{X}_{1}\right\rangle\right\rangle^{\prime}\right] \\
& =\frac{1}{2}\left[e\left\langle x_{1}, \mathrm{Y}\right\rangle+\left(y_{1}, x_{1}\right)^{\mathrm{j}}\right]=\frac{1}{2} e\left[\left\langle x_{1}, \mathrm{Y}\right\rangle+\left(x_{1}, y_{1}\right)\right] \\
& =\frac{1}{2} e\left[\left\langle x_{1}, \mathbf{Y}\right\rangle+\left\langle x_{1}, \mathrm{Y}_{1}\right\rangle\right]=\frac{1}{2} e\left\langle x_{1}, \mathrm{Y}+\mathrm{Y}_{1}\right\rangle .
\end{aligned}
$$

This holds for every $x_{1} \in E$ and it follows as in theorem 1 that $Y=0$. Evidenthy $[\mathbf{X}, \mathbf{Y}]=e[\mathbf{Y}, \mathbf{X}]^{J}$ and hence E^{*} is self-dual with respect to $[\mathbf{X}, \mathbf{Y}]$.

If E is unitary we may suppose that (x, y) is hermitian, i. e. $e=\mathrm{I}$ as indi-
cated by Rickart [3], [4]. There is an element $x_{i} \in \mathrm{E}$ such that $\left(x_{1}, x_{1}\right) \neq 0$. If $\mathrm{X}_{1}^{\alpha}=x_{1}$ we have $\left[\mathrm{X}_{1}, \mathrm{X}_{1}\right]=\left(x_{1}, x_{1}\right)$ and E^{*} is unitary.

If E is symplectic the form (x, y) is skew-hermitian, i. e. $e=-\mathrm{I}$ and K is a field (Rickart). In this case $a^{\boldsymbol{d}}=a$ for every $a \in \mathrm{~K}$ and E^{*} is symplectic.

BIBLIOGRAPHIE.

[1] J. Dieudonné, Sur le socle d'un anneau et les anneaux simples infinis (Bull. Soc. Math. France, t. LXXI, 1943, p. 1-30).
[2] N. Jacobso:, On the theory of primitive rings (Ann. of Math., t. 48, 1947, p. 8-21).
[3] C. E. Rickart, Isomorphic groups of linear transformations II (Amer. J. Math., t. 73, 195ı, p. 697-716).
[4] C. E. Rigkart, Isomorphisms of infinite dimensional analogues of the classical groups (Bull. Amer. Math. Soc., t. 57, 195ı, p. 435-448).
[5] N. Bourbaki, Éléments de Mathématique, t. VI, livre II, chapitre II, Paris, i947, p. 43.

