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A “STRANGE” FUNCTIONAL EQUATION
FOR EISENSTEIN SERIES
AND MIRACULOUS DUALITY
ON THE MODULI STACK OF BUNDLES

BY DEenNNIS GAITSGORY

ABSTRACT. — We show that the failure of the usual Verdier duality on Bung leads to a new duality
functor on the category of D-modules, and we study its relation to the operation of Eisenstein series.

RESUME. — Dans cet article, on démontre que la dualité de Verdier habituelle ne tenant pas pour le
champ Bung, on peut la remplacer par un autre foncteur de dualité. On étudie la relation entre celui-ci
et le foncteur de série d’Eisenstein.

Introduction

0.1. Context for the present work

0.1.1. — This paper arose in the process of developing what V. Drinfeld calls the geometric
theory of automorphic functions. 1.e., we study sheaves on the moduli stack Bung of principal
G-bundles on a curve X. Here and elsewhere in the paper, we fix an algebraically closed
ground field k, and we let G be a reductive group and X a smooth and complete curve over k.

In the bulk of the paper we will take k to be of characteristic 0, and by a “sheaf”
we will understand an object of the derived category of D-modules. However, with
appropriate modifications, our results apply also to £-adic sheaves, or any other reasonable
sheaf-theoretic situation.

Much of the motivation for the study of sheaves on Bung comes from the so-called
geometric Langlands program. In line with this, the main results of this paper have a
transparent meaning in terms of this program, see Sect. 0.2. However, one can also view
them from the perspective of the classical theory of automorphic functions (rather, we will
see phenomena that so far have not been studied classically).
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1124 D. GAITSGORY

0.1.2. Constant term and Eisenstein series functors. — To explain what is done in this paper
we will first recall the main result of [6].

Let P C G be a parabolic subgroup with Levi quotient M. The diagram of groups

G<—P—->M
gives rise to a diagram of stacks
Bunp
/ \
0.1) Bung Bunyy .

Using this diagram as “pull-push,” one can write down several functors connecting the
categories of D-modules on Bung and Bunyy, respectively. By analogy with the classical
theory of automorphic functions, we call the functors going from Bunys to Bung “Eisenstein
series,” and the functors going from Bung to Buny,s “constant term".

Namely, we have
Eis) ;= p1oq*, D-mod(Buny) — D-mod(Bung),
Eisy :=psoq', D-mod(Buny) — D-mod(Bung),
CT, :=q op*, D-mod(Bung)— D-mod(Bunyy),
CT, :=qsxo0p', D-mod(Bung) — D-mod(Bunyy).

Note that unlike the classical theory, where there is only one pull-back and one push-
forward for functions, for sheaves there are two options: ! and *, for both pull-back and push-
forward. The interaction of these two options is one way to look at what this paper is about.

Among the above functors, there are some obvious adjoint pairs: Eis, is the left adjoint
of CT, and CT) is the left adjoint of Eis.

In addition to this, the following, perhaps a little unexpected, result was proved in [6]:
THEOREM 0.1.3. — The functors CTy and CT, are canonically isomorphic.

In the statement of the theorem the superscript “—” means the constant term functor
taken with respect to the opposite parabolic P~ (note that the Levi quotients of P and P~
are canonically identified).

Our goal in the present paper is to understand what implication the above-mentioned
isomorphism

CT, ~ CT,
has for the Eisenstein series functors Eisy and Eis,. The conclusion will be what we will call
a “strange” functional Equation (0.9), explained below.

In order to explain what the “strange” functional equation does, we will need to go a little
deeper into what one may call the “functional-analytic” aspects of the study of Bung.
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0.1.4. Verdier duality on stacks. — The starting point for the “analytic” issues that we will
be dealing with is that the stack Bung is not quasi-compact (this is parallel to the fact that in
the classical theory, the automorphic space is not compact, leading to a host of interesting
analytic phenomena). The particular phenomenon that we will focus on is the absence of the
usual Verdier duality functor, and what replaces it.

First off, it is well-known (see, e.g., [5, Sect. 2]) that if ¥ is an arbitrary reasonable ") quasi-
compact algebraic stack, then the category D-mod(¥) is compactly generated and naturally
self-dual.

Perhaps, the shortest way to understand the meaning of self-duality is that the subcategory
D-mod(%)¢ < D-mod(¥) consisting of compact objects carries a canonically defined
contravariant self-equivalence, called Verdier duality. A more flexible way of interpreting the
same phenomenon is an equivalence, denoted D, between D-mod(¥) and its dual category
D-mod( %)Y (we refer the reader to [4, Sect. 1], where the basics of the notion of duality for
DG categories are reviewed).

Let us now remove the assumption that % be quasi-compact. Then there is another
geometric condition, called “truncatability” that ensures that D-mod(%) is compactly
generated (see [5, Definition 4.1.1], where this notion is introduced). We remark here that
the goal of the paper [5] was to show that the stack Bung is truncatable. The reader who is
not familiar with this notion is advised to ignore it on the first pass.

Thus, let us assume that ¥ is truncatable. However, there still is no obvious replacement
for Verdier duality: extending the quasi-compact case, one can define a functor

(D-mod(%))°" — D-mod(¥).

but it no longer lands in D-mod(%)¢ (unless ¥ is a disjoint union of quasi-compact stacks).
In the language of dual categories, we have a functor

Ps-Id o, paive : D-mod(¥%)" — D-mod(¥),
but it is no longer an equivalence. ®

In particular, the functor Ps-Idgun; naive 1S 70f an equivalence, unless G is a torus.

0.1.5. The pseudo-identity functor. — To potentially remedy this, V. Drinfeld suggested
another functor, denoted

Ps-Idy, : D-mod(%)¥ — D-mod(%),

see [5, Sect. 4.4.8] or Sect. 3.1 of the present paper.

Now, it is not true that for all truncatable stacks ¥, the functor Ps-Id¢,) is an equivalence.
In [5] the stacks for which it is an equivalence are called “miraculous”.

We can now formulate the main result of this paper (conjectured by V. Drinfeld):
THEOREM 0.1.6. — The stack Bung is miraculous.

(D The word “reasonable” here does not have a technical meaning; the technical term is “QCA,” which means that
the automorphism group of any field-valued point is affine.
@ The category D-mod (%) and the functor Ps-Id¢/ naive Will be described explicitly in Sect. 1.2.
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1126 D. GAITSGORY

We repeat that the above theorem says that the canonically defined functor Ps-Idpun,; !
defines an identification of D-mod(Bung) and its dual category. Equivalently, it gives rise to
a (non-obvious!) contravariant self-equivalence on D-mod(Bung)¢.

0.1.7. The “strange” functional equation. — Finally, we can go back and state the “strange”
functional equation, which is in fact an ingredient in the proof of Theorem 0.1.6:

THEOREM 0.1.8. — We have a canonical isomorphism of functors

Eis; o Ps-Idgun,, 1 =~ Ps-Idpung,1 0(CTx)".

In the Theorem 0.1.8, the functor (CT,)" maps
D-mod(Bunys)¥ — D-mod(Bung)"

and is the dual of the functor CT,. As we shall see in Sect. 1.5, the functor (CT,)V is a close
relative of the functor Eis,, introduced earlier.

0.2. Motivation from geometric Langlands

We shall now proceed and describe how the results of this paper fit into the geometric
Langlands program. The contents of this subsection play a motivational role only, and the
reader not familiar with the objects discussed below can skip this subsection and proceed to
Sect. 0.3.

0.2.1. Statement of GLC. — Let us recall the statement of the categorical geometric Lang-
lands conjecture (GLC), according to [1, Conjecture 10.2.2].

The left-hand (i.e., geometric) side of GLC is the DG category D-mod(Bung) of
D-modules on the stack Bung.

Let G denote the Langlands dual group of G, and let LocSysg denote the (derived)
stack of G-local systems on X. The right-hand (i.e., spectral) side of GLC has to do with
(quasi)-coherent sheaves on LocSys .

More precisely, In [1], a certain modification of the DG category QCoh(LocSys) was
introduced; we denote it by IndCohnip,,,,, (LocSys ). This category is what appears on the
spectral side of GLC.

Thus, GLC states the existence of an equivalence
0.2) Lg : D-mod(Bung) — IndCohniip,,,, (LOCSyss),

that satisfies a number of properties that (conjecturally) determine Lg uniquely.

The property of Lg, relevant for this paper, is the compatibility of (0.2) with the functor
of Eisenstein series, see Sect. 0.2.5 below.
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0.2.2. Interaction of GLC with duality. — A feature of the spectral side crucial for this paper
is that the Serre duality functor of [1, Proposition 3.7.2] gives rise to an equivalence:

Dif;fgysé : (IndCohnip,,,, (LocSysz))¥ — IndCohnirp,,,,, (LocSys ).

(Here, as in Sect. 0.1.4, for a compactly generated category C, we denote by C¥ the dual
category.)

Hence, if we believe in the existence of an equivalence Lg of (0.2), there should exist an
equivalence

0.3) (D-mod(Bung))Y ~ D-mod(Bung).

Now, the pseudo-identity functor Ps-Idgun,; 1 mentioned in Sect. 0.1.5 and appearing in
Theorem 0.1.6 is exactly supposed to perform this role. More precisely, we can enhance the
statement of GLC by specifying how it is supposed to interact with duality:

CONJECTURE 0.2.3. — The diagram

(L)1
(0.4) D-mod(Bung)" ————— (IndCohjrp,,,, (LocSys )"

Serre
J{DLocSyst

Ps-Idpun; ! IndCohnip,,,, (LOCSys )

lr
D-mod(Bung) H‘—G> IndCohnip,,,, (LOCSys )

commutes up to a cohomological shift, where T denotes the automorphism, induced by the Cartan
involution of G.

REMARK 0.2.4. — Let us comment on the presence of the Cartan involution in Conjec-
ture 0.2.3. In fact, it can be seen already when G is a torus 7', in which case t is the inversion
automorphism.

Indeed, we let L1 be the Fourier-Mukai equivalence, and Conjecture 0.2.3 is known to
hold.

0.2.5. Interaction of GLC with Eisenstein series. — Let us recall (following [1, Conjec-
ture 12.2.9] or [7, Sect. 6.4.5]) how the equivalence g is supposed to be compatible with
the functor(s) of Eisenstein series.

For a (standard) parabolic P C G, let P be the corresponding parabolic in G. Consider
the diagram

LocSys 3
PSV wec
(0.5) LocSys g LocSysy; .

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1128 D. GAITSGORY

We define the functors of spectral Eisenstein series and constant term
Eisspec : IndCoh(LocSys ;) — IndCoh(LocSys ), Eisspec := (Pspec)* © (Aspec) ™
CTspec : IndCoh(LocSys ) — IndCoh(LocSys ), CTspec := (Qspec)« © (pspeC)!?

see [1, Sect. 12.2.1] for more details. The functors (Eisspec, CTspec) form an adjoint pair.

REMARK 0.2.6. — In [1, Conjecture 12.2.9] a slightly different version of the functor
Eisgpec is given, where instead of the functor (qgpec)* we use (qspec)’. The difference between
these two functors is given by tensoring by a graded line bundle on LocSys ;; this is due to
the fact that the morphism qgpec is Gorenstein. This difference will be immaterial for the
purposes of this paper.

The compatibility of the geometric Langlands equivalence of (0.2) with Eisenstein series
reads (see [1, Conjecture 12.2.9]):

CONJECTURE 0.2.7. — The diagram

D-mod(Bung) —%— IndCohniyp, ,,, (LocSysg)
(0.6) Eis!T TEisspec

D-mod(Bunyy) IL—M> IndCohnip,,,, (LOCSys ;1)

commutes up to an automorphism of IndCohnip,,,, (LOCSys 7 ), given by tensoring with a
certain canonically defined graded line bundle on LocSys ;.

0.2.8. Recovering the “strange” functional equation. — Let us now analyze what the combina-
tion of Conjectures 0.2.3 and 0.2.7 says about the interaction of the functor Ps-Idgun 1 With
Eis;. The conclusion that we will draw will amount to Theorem 0.1.8 of the present paper
(the reader may safely choose to skip the derivation that follows).

First, passing to the right adjoint and then dual functors in (0.6), we obtain a diagram

Vviy—1

D-mod(Bung)¥ —e—os (IndCohitp,,,,,, (LocSys )"
0.7) o] Tt

LY —1
D-mod(Buny,)Y AN (IndCohnitp,,,,, (LocSys )"
that commutes up to a tensoring by a graded line bundle on LocSys ;.
Next, we note that the diagram

Serre
DLocSys X

(IndCohnip,,,,, (LocSysg)Y — G IndCohnitp,,,, (LOcSys)
(08) (CTspec)vT EisspecT
DoreSys

(IndCohnitp,,,, (LocSys ;)" ——— IndCohnip,,,, (LocSys ;)

also commutes up to a tensoring by a graded line bundle on LocSys ;, see Remark 0.2.6.

4¢ SERIE - TOME 50 — 2017 - N° 5



A “STRANGE” FUNCTIONAL EQUATION FOR EISENSTEIN SERIES 1129

Now, juxtaposing the diagrams (0.6), (0.7), (0.8) with the diagrams (0.4) for the groups G
and M respectively, we obtain a commutative diagram:

PS‘IdBunG N
D-mod(Bung)Y ————— D-mod(Bung)
(09) (CT*)VT TrgoEis! oty
Ps'IdBunM !

D-mod(Bunys )Y ———— D-mod(Bunyy).

Notice now that tg o Eisjotys ~ Eisy, so the commutative diagram (0.9) recovers the
isomorphism of Theorem 0.1.8.

0.3. The usual functional equation

As was mentioned above, we view the commutativity of the diagram (0.9) as a kind of
“strange” functional equation, hence the title of this paper.

Let us now compare it to the usual functional equation of [3, Theorem 2.1.8].

0.3.1. — Inloc.cit. one considered the case of P = B, the Borel subgroup andhence M =T,
the abstract Cartan. We consider the full subcategory

D-mod(Bunyz)™® c D-mod(Bunr),
defined as in [3, Sect. 2.1.7]. This is a full subcategory that under the Fourier-Mukai equiv-
alence

D-mod(Bunr) >~ QCoh(LocSys;)
corresponds to

QCoh(LocSys;fg) < QCoh(LocSysy),
where LocSysrj‘:=g C LocSysj is the open locus of LocSys . consisting of those T-local systems
that for every root « of T' induce a non-trivial local system for G,,.
Instead of the functor Eis,, or the functor that we introduce as Eis, := p« o q' (see

Sect. 1.1.6), an intermediate version was considered in [3, Sect. 2.1], which we will denote here

by Eis)«. The definition of Eis, uses the compactification of the morphism p, introduced in
[3, Sect. 1.2]:

Bunp C% Bunp
/ \
Bung Buny .

The assertion of [3, Theorem 2.1.8] (for the longest element of the Weyl group) is:

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1130 D. GAITSGORY

THEOREM 0.3.2. — The following diagram of functors

IdD—mod(BunG)
D-mod(Bung) —— D-mod(Bung)

EiS!*T TEis,_*

D-mod(Buny) D-mod(Bunr)

I I

-shift
D-mod(Buny)ree oy D-mod(Buny)™#

commutes up to a cohomological shift, where p-shift is the functor of translation by the
point 2p(Ryx). @

Theorem 0.3.2 is a geometric analog of the usual functional equation for Eisenstein series
in the theory of automorphic functions.

0.3.3. — Let us emphasize the following points of difference between Theorems 0.1.8
and 0.3.2:

— Theorem 0.1.8 compares the functors Eis; and (CT,)" that take values in different
categories, i.e., D-mod(Bung) vs. D-mod(Bung)Y, whereas in Theorem 0.3.2 both
Eisys and Eis;, map to D-mod(Bung).

— The vertical arrows in Theorem 0.1.8 use geometrically different functors, while in
Theorem 0.3.2 these are functors of the same nature, i.e., Eis)x and Eis,.

— The upper horizontal arrow Theorem 0.1.8 is the geometrically non-trivial functor
Ps-Idgung,1, while in Theorem 0.3.2 it is the identity functor.

— The lower horizontal arrow in Theorem 0.1.8 for M = T is isomorphic to the identity
functor, up to a cohomological shift, while in Theorem 0.3.2 we have the functor
of p-shift.

— The commutation in 0.1.8 takes place on all of D-mod(Buny), whereas in
Theorem 0.3.2, it only takes place on D-mod(Buny)*eg.

0.4. Interaction with cuspidality

There is yet one more set of results contained in this paper, which has to do with the notion
of cuspidality.

0.4.1. — The cuspidal subcategories
D-mod(Bung)cusp C D-mod(Bung) and (D-mod(Bung)")eusp C D-mod(Bung)”

are defined as right-orthogonals of the subcategories generated by the essential images of the
functors

Eis; : D-mod(Bunys) — D-mod(Bung) and (CT,)" : D-mod(Bunys)¥ — D-mod(Bung)”,

respectively, for all proper parabolics P of G.

® Here 2p : G, — T is the coweight equal to the sum of positive coroots, and Qx € Pic(X) = Bung,, is the
canonical line bundle on X .
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0.4.2. — Let us return to the setting of Sect. 0.1.4 are recall the “naive” functor
Ps-Idgung naive : D-mod(Bung)¥ — D-mod(Bung),

see Sect. 0.1.4.
As was mentioned in /oc.cit., the functor Ps-Idpyn naive fails to be an equivalence unless
G is a torus. However, in Theorem 2.2.7 we show:

THEOREM 0.4.3. — The restriction of the functor Ps-1dpun naive 10
(D-mod(Bung)")cusp € D-mod(Bung)”
defines an equivalence

(D-mod(Bung)")cusp — D-mod(Bung )cusp-

One can view Theorem 0.4.3 as expressing the fact that the objects of (D-mod(Bung)" )cusp
and D-mod(Bung)cusp are “supported” on quasi-compact open substacks (see Proposi-
tions 2.3.2 and 2.3.4 for a precise statement).

0.4.4. — In addition, in Corollary 3.3.2 we show:

THEOREM 0.4.5. — The functors

Ps- and Ps-1dgung,

1d i
Bung ,naive |(D-m0d(Bul’1G)v)cusp ! |(D-m0d(BunG)v)cusp

are isomorphic up to a cohomological shift.

Theorem 0.4.5 is responsible for the fact that previous studies in geometric Langlands
correspondence that involved only cuspidal objects did not see the appearance of the
functor Ps-Idpun,! and one could afford to ignore the difference between D-mod(Bung)
and D-mod(Bung)". In other words, usual manipulations with Verdier duality on cuspidal
objects did not produce wrong results.

0.5. Structure of the paper

0.5.1. — In Sect. 1 we recall the setting of [6], and list the various Eisenstein series and
constant term functors for the usual category D-mod(Bung). In fact there are two adjoint
pairs: (Eisy, CT,) and (CT?L , Eis¥), where in the latter pair the superscript 4 € 71 (M) =
mo(Bunyy) indicates that we are considering one connected component of Buny, at a time.

We recall the main result of [6] that says that the functors CT, and CT, are canonically
isomorphic.

Next, we consider the category D-mod(Bung)c,, which is nearly tautologically identi-
fied with the category that we have so far denoted D-mod(Bung )V, and introduce the corre-
sponding Eisenstein series and constant term functors:

(Eisco,+, CTeo,2) and (CTY, . Eisfo’?),
where Eis¢o« := (CT4)Y, CTE , := (Eis¥)V.

Co,*
The functor CT,, 7 is something that we do not know how to express in terms of the usual
functors in the theory of D-modules; it can be regarded as a non-standard functor in the

terminology of [5, Sect. 3.3].
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A priori, the functor Eisé‘0 ,» would also be a non-standard functor. However, the isomor-
phism CT, >~ CT, gives rise to an isomorphism

Eisco,2 > Eis , , -
0.5.2. — In Sect. 2 we recall the definition of the functor
Ps-1dBun naive : D-mod(Bung)co — D-mod(Bung).

and show that it intertwines the functors Eise, « and Eis,, and CT, « and CT,, respectively.

The remainder of this section is devoted to the study of the subcategory
D-mod(Bung)co,cusp C D-mod(Bung),

and the proof of Theorem 0.4.3, which says that the functor Ps-Idpyng naive defines an
equivalence from D-mod(Bung)co,cusp to D-mod(Bung )cusp C D-mod(Bung).

0.5.3. — In Sect. 3 we introduce the functor
Ps-Idgung, : D-mod(Bung)co, — D-mod(Bung),

and study its behavior vis-a-vis the functor Ps-Idpung naive- The relation is expressed by
Proposition 3.2.6, whose proof is deferred to [9]. Proposition 3.2.6 essentially says that the
difference between Ps-Idpun,! and Ps-Idgung ,naive €an be expressed in terms of the Eisenstein
and constant term functors for proper parabolics.

We prove Theorem 0.4.5 that says that the functors Ps-Idgun, 1 and Ps-Idpun naive are
isomorphic (up to a cohomological shift), when evaluated on cuspidal objects.
0.5.4. — In Sect. 4 we prove our “strange” functional equation, i.e., Theorem 0.1.8. The proof
is basically a formal manipulation from the isomorphism CT, ~ CT} .

Having Theorem 0.1.8, we get control of the behavior of the functor Ps-Idgun 1 on the
Eisenstein part of the category D-mod(Bung)c,. From here we deduce our main result,
Theorem 0.1.6.

0.6. Conventions

The conventions in this paper follow those adopted in [5]. We refer the reader to loc.cit.
for a review of the theory of DG categories (freely used in this paper), and the theory of
D-modules on stacks.
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1. The inventory of categories and functors

1.1. Eisenstein series and constant term functors
1.1.1. — Let P be a parabolic in G with Levi quotient M. For
w € (M) =~ mo(Buny) = mo(Bunp),

let Bun% (resp., Bunﬁ) denote the corresponding connected component of Bunys (resp.,
Bunp).

1.1.2. — Consider the diagram
Bun),
RN
(1.1) Bung Bunj, .
We consider the functor
CT# : D-mod(Bung) — D-mod(Bun},), CT% =q,op".

1.1.3. — According to [6, Corollary 1.1.3], the functor CT# admits a left adjoint, denoted
by Eis". Explicitly,
Eis}" = pyoq*.
The above expression has to be understood as follows: the functor
q* : D-mod(Bunj,) — D-mod(Bun’)

is defined (because the morphism q is smooth), and the partially defined functor p;, left
adjoint to p', is defined on the essential image of q* by [6, Proposition 1.1.2].

1.1.4. — We define the functor CTy : D-mod(Bung) — D-mod(Bunyy) as

CT. ~ P cTi.
"

We define the functor Eisy : D-mod(Bunys) — D-mod(Bung) as

Fis; ~ @ Eis" .
"
LemMma 1.1.5. — The functor Eisy is the left adjoint of CT.

Proof. — Follows from the fact that

P cri ~J] cTs. O
10 "
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1.1.6. — We now consider the functor Eis¥ : D-mod(Bun“M) — D-mod(Bung), defined as
Eis* = px 0q".

We let Eis®>™ and CTY ™ be similarly defined functors when instead of P we
use the opposite parabolic P~ (we identify the Levi quotients of P and P~ via the
isomorphism M >~ P N P7).

The following is the main result of [6]:

THEOREM 1.1.7. — The functor Eis¥ canonically identifies with the right adjoint of CT"~.

1.1.8. — We will use the notation
CT;" : D-mod(Bung) — D-mod(Bun},)

for the left adjoint of Eis¥. If &/ € D-mod(Bung) is such that the partially defined left
adjoint p* of p, is defined on ¥, then we have

CT{ () = arop™ ().
(The functor qy, left adjoint to q', is well-defined by [6, Sect. 3.1.5].)

Hence, Theorem 1.1.7 can be reformulated as saying that CT{‘ exists and is canonically
isomorphic to CTA ™.

1.1.9. — We define the functor CT, : D-mod(Bung) — D-mod(Bunyy) as
CT, ~ p CT}.
w

so CT, ~ CT,.
We define the functor Eis, : D-mod(Bunys) — D-mod(Bung) as

Eis, ~ @ Eis’ .
w
We note, however, that it is no longer true that Eis, is the right adjoint of CT). (Rather, the
right adjoint of CT; is the functor [ | Eis¥.)
"

In fact, one can show that the functor Eis. does not admit a left adjoint, see [6, Sect. 1.2.1].

1.2. The dual category

1.2.1. — Let op-qc(G) denote the poset of open substacks U N Bung such that the
intersection of U with every connected component of Bung is quasi-compact.
We have

(1.2) D-mod(Bung) ~ l(in D-mod(U),

U €op-qc(G)

where for Uy N Us, the corresponding functor D-mod(Uz) — D-mod(Uy) is j ", (see, e.g.,
[5, Lemma 2.3.2] for the proof).
Under the equivalence (1.2), for

w N Bung) € op-qc(G),

the tautological evaluation functor D-mod(Bung) — D-mod(U) is j *.
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1.2.2. — The following DG category was introduced in [5, Sect. 4.3.3]:
(1.3) D-mod(Bung)¢, := colim  D-mod(U),
U eop-qc(G)
where for U jlf—f U,, the corresponding functor D-mod(U;) — D-mod(U,) is (j1,2)#,

and where the colimit is taken in the category of cocomplete DG categories and continuous
functors.

For (U <i> Bung) € op-qc(G) we let jo,» denote the tautological functor
(1.4) Jeo,x : D-mod(U) — D-mod(Bung)co-
1.2.3. — Verdier duality functors
Dy : D-mod(U)Y ~ D-mod(U)
for U € op-qc(G) and the identifications

J1.2

((jl,z)*)v = (j1,2)*, U1 — U2
give rise to an identification

(1.5) Functeont (D-mod(Bung )co, Vect) >~ D-mod(Bung).

Now, the main result of [5], namely, Theorem 4.1.8, implies:

THEOREM 1.2.4. — The category D-mod(Bung ), is compactly generated (and, in partic-
ular, dualizable).

Proof. — The truncatability of Bung means that in the presentation of D-mod(Bung )¢,
as a colimit (1.3), we can replace the index poset op-qc(G) by a cofinal poset that consists of
quasi-compact open substacks that are co-truncative.

Then the resulting colimit

colim D-mod(U)
v
consists of compactly generated categories and functors that preserve compactness. In this
case, the resulting colimit category is compactly generated, e.g., by [5, Corollary 1.9,4]. O

From (1.5), and knowing that D-mod(Bung )., is dualizable, we obtain a canonical iden-
tification
(1.6) Dgung; : D-mod(Bung)” >~ D-mod(Bung)co.

Under this identification, for (U N Bung) € op-qc(G) we have the following canonical
identification of functors

(Jeos)¥ = j*.
1.2.5. — Similar constructions and notation apply when instead of all of Bung we consider

one of its connected components Bun’};, A € m1(G).
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1.3. Dual, adjoint and conjugate functors
1.3.1. — Let C; and C; be two DG categories, and let
F:C,=26C,:G
be a pair of continuous mutually adjoint functors.
1.3.2. — By passing to dual functors, the adjunction data
Idc, = GoFand Fo G — Idc,

gives rise to
Idey — FY0GY and G¥ o F¥ — Idy,
making
G¥:Cy =Y FY

into a pair of adjoint functors.

1.3.3. — Assume now that C; is compactly generated. In this case, the fact that the right
adjoint G of F is continuous is equivalent to the fact that F preserves compactness. IL.e., it
defines a functor between non-cocomplete DG categories

C{ — C5.
and hence, by passing to the opposite categories, a functor

(1.7) (CHP — (C)P.

Following [8, Sect. 1.5], we let
FoP.CYy - Cy
denote the functor obtained as the composition of:
(i) The identification C} =~ Ind((C{)°P);
(ii) The ind-extension Ind((C{)°P) — Ind((C5)°P) of (1.7);
(iii) The fully faithful embedding (C5)°P — Cj.

We call F°P the functor conjugate to F.

1.3.4. — The following is [8, Lemma 1.5.3]:

LemmMma 1.3.5. — We have a canonical isomorphism of functors FOP ~ GV,
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1.4. Dual Eisenstein series and constant term functors

1.4.1. — We define the functor

B
EISCO, *

: D-mod(Bunff,I)CO — D-mod(Bung)co
as
Eisk;, , ~ (CT})"

under the identifications (1.6) and

D : D-mod(Bunj;)" ~ D-mod(Bunj, ).

BunMM
We define
Eisco,« : D-mod(Bunyy)co — D-mod(Bung)co
as
Eisco,« := P Eist;, , ~ (CT.)".
"

Note that by Lemma 1.3.5, we have:

COROLLARY 1.4.2. — There are canonical isomorphisms

Eisco,« = (Eisy)°P and Eisk, , ~ (Eis}")°P.

1.4.3. — We define the functor
CTY, , : D-mod(Bung)co — D-mod(Bunj,)co
as

CTE , ~ (Eis")V.

co,x —

We define
CTco, : D-mod(Bung)co, — D-mod(Bunjy)co

as

CTeox i= @ CTY , ~ (Eis)".
y2

From Lemma 1.3.5, we obtain:

COROLLARY 1.4.4. — There is a canonical isomorphism

CTY, , ~ (CT})°P,

co,* —
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1.4.5. — Define also
cTH

co,?

:= (Eis})" and CTeo 2 := (Eis))" ~ @ CT., ,.
“w

Eisl, , := (CT}")" and Eisco.7 := (CT))" ~ @P Eis , .
w

By Sect. 1.3.2, we obtain the following pairs of adjoint functors

Eis , : D-mod(Bunj, )¢, = D-mod(Bung)c, : CT?O’?,
Eisco,« : D-mod(Bunys)co = D-mod(Bung)eo : CTeo,2,
and

CcTY

CO,%

: D-mod(Bung)¢, & D-mod(Bun%,I)co : Eisgo 9+

1.4.6. — Finally, from Theorem 1.1.7, we obtain:

COROLLARY 1.4.7. — There are canonical isomorphisms of functors

R . e
Eis,, o >~ Eis,g . Eisco,2 > Eis g ,

and
CTH , ~ (CTT)OP,

CO,* —
To summarize, we also obtain an adjunction
CT%,  : D-mod(Bung)c, = D-mod(Bunjy,)co Eislg . .
1.4.8. — We can ask the following question: does the functor CTZ, , admit a left adjoint?
The answer is “no”:

Proof. — If CT%, , had admitted a left adjoint, by Sect. 1.3.2, the functor Eis% would have

CO,%*

admitted a continuous right adjoint. However, this is not the case, since the functor
Eis : D-mod(Bunj,) — D-mod(Bung)

does not preserve compactness. O

1.5. Explicit description of the dual functors

1.5.1. — For (U N Bung) € op-qc(G) we consider the functor j* : D-mod(Bung) —
D-mod(U), and its right adjoint j..

Define

Joo » D-mod(Bung)co — D-mod(U)
as
Jeo = ()Y
By Sect. 1.3.2, the functors
Joo : D-mod(Bung)co = D-mod(U) : jeo,x

form an adjoint pair, where jo « is as in (1.4).

LeEMMA 1.5.2. — The functor jeo « is fully faithful.

4¢ SERIE - TOME 50 — 2017 - N° 5



A “STRANGE” FUNCTIONAL EQUATION FOR EISENSTEIN SERIES 1139

Proof. — We need to show that the co-unit of the adjunction

j;; © jco,* - IdD-mod(U)

is an isomorphism. But this follows from the fact that the corresponding map between the
dual functors, i.e.,

J* 0 jx = Idpmod(v)-
is an isomorphism (the latter because j. : D-mod(U) — D-mod(Bung) is fully faithful). [

1.5.3. — By the definition of D-mod(Bung)c,, the functor j amounts to a compatible
family of functors
J&% © (j1)co,x : D-mod(U;) — D-mod(U)

for (U L Bung) € op-qc(G).
It is easy to see from the definitions that
jc*; ° (j1)cox = (]1/)* o (jN*,
where

vnu, -1, U

j/l lj

J1
U, ——— Bung.
1.5.4. — Again, by the definition of the category D-mod(Bunps)co, the functor Eisgo «
amounts to a compatible family of functors

Eisco,x ©(jM )co,x : D-mod(Upsr) — D-mod(Bung)co

for (Uy acd Bunys) € op-qc(M).
We now claim:

PROPOSITION 1.5.5. — For a given (Upy & Bunys) € op-qc(M), let (Ug 9 Bung) €
op-qc(G) be such that
p(a~"(Un)) C Ug.
Then there is a canonical isomorphism

Eisco,x 0(jM)co.x = (j6)eo.x © (jo)™ o Eisx o(ju)« : D-mod(Upr) — D-mod(Bung)co.
Proof. — First, we claim that there is a canonical isomorphism
(1.8) Eisco,x (/M )co,x = (JG)eo,x © (6 )eo © Eisco,x 0 )co,x-
Indeed, (1.8) follows by passing to dual functors in the isomorphism
(jm)* 0 CTx = (jm)™ 0 CTx0(jG)x © (jo)*,

where the latter follows by base change from the definition.
Hence, it remains to establish a canonical isomorphism of functors

(J6)eo © Eiscox 0(jM)co,x = (jg)* © Bisx o(jm)x, D-mod(Un) — D-mod(Ug),
i.e., an isomorphism

((jm)* o CTx O(jG)*)v ~ (jg)* o Eisx o(jm)«-
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However, the latter amounts to pull-push along the diagram
Up
Pl 7 QP
Bung «ZX—OUg Upt <2 Bunyy,

where Up 1= q ' (Uy). O

1.5.6. — The functor CT.,,« amounts to a compatible family of functors
CTeo, ©(jG)co,x : D-mod(Ug) — D-mod(Bunys)co

for (Ug 9 Bung) € op-qc(G).

In a similar way to Proposition 1.5.5, we have:

ProrosiTION 1.5.7. — For a given (Ug 4 Bung) € op-qc(G), let (Uy & Bunyy) €
op-qc(M) be such that

a(p~'(Ug)) C Un.

Then there is a canonical isomorphism

CTco,* O(jG)co,* ~ (jM)co,* o (]M)* o CTy 0(jG)* : D‘mOd(UG) - D'mOd(BunM)co-

2. Interaction with the naive pseudo-identity and cuspidality

2.1. The naive pseudo-identity functor
2.1.1. — The following functor
Ps-1dBung ,naive : D-mod(Bung)co — D-mod(Bung)
was introduced in [5, Sect. 4.4.2]:
For (Ug LG> Bung) € op-qc(G), the composition
Ps-1dBung,naive ©Jjco,x : D-mod(Ug) — D-mod(Bung)
is by definition the functor j.
REMARK 2.1.2. — The functor Ps-Idgung naive 18 very far from being an equiv-
alence, unless G is a torus. For example, in [8, Theorem 7.7.2], a particular object

of D-mod(Bung), was constructed, which belongs to ker(Ps-Idgun; ,naive), as soon as the
semi-simple part of G is non-trivial.
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2.1.3. — Recall the equivalence:
Functeont (D-mod(Bung )co, D-mod(Bung)) >~ (D-mod(Bung)c,)" ® D-mod(Bung)
~ D-mod(Bung) ® D-mod(Bung)
~ D-mod(Bung x Bung).
According to [5, Sect. 4.4.3], the functor Ps-Idgun naive corresponds to the object
(ABung )+ (@Bung) € D-mod(Bung x Bung),

where Ay denotes the diagonal morphism on Bung, and wy, is the dualizing object on a
stack ¥ (we take ¥ = Bung).
From here we obtain:

LEMMA 2.1.4. — There exists a canonical isomorphism Ps-1dy o maive = Ps-1dBung naive-

Proof. — This expresses the fact that (Apun )+ (wBung ) 1S equivariant with respect to the
flip automorphism of D-mod(Bung x Bung). O
COROLLARY 2.1.5. — For (Ug fjg Bung) € op-qc(G), we have a canonical isomorphism:
J ¥ o Ps-IdBung naive = Jeo-
Proof. — Obtained by passing to the dual functors is
Ps-1dBun ,naive ©Jco,* = Jx- 0
2.1.6. — We now claim:

PROPOSITION 2.1.7. — There are canonical isomorphisms
Ps-1dBung naive © EiSco,« = Eisx 0 Ps-Idpun,, naive
and
Ps-IdBuny, naive © CTeo,« 2 CTx 0 Ps-IdBung naive -
Proof. — We will prove the first isomorphism, while the second one is similar.
By definition, we need to construct a compatible family of isomorphisms of functors
Ps-1dBun ,naive © Eisco,x 0(Ja)co,x = Eiss 0 Ps-IdBun,, naive ©(JM)co,
for (Upyy ]i{ Bunys) € op-qc(M).
For a given Uy, let Ug be as in Proposition 1.5.5. We rewrite
Ps-IdBung naive © Eisco,x ©(ja)co,x = Ps-IdBung naive ©(j6)eo,x © (j6)™ 0 Bisx o(jnr)«
~ (jo)x © (jG)* o Eisx o(jar)«.
However, it is easy to see that for the above choice of Ug, the natural map
Eisx o(jm)x — (o)« © (jG)* o Eisx o(jiar)«

is an isomorphism.
Now, by definition,

Eisy o PS'IdBunM,naive o(jM)co,* =~ Fisx O(J.M)*,

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1142 D. GAITSGORY

and the assertion follows. (It is clear that these isomorphisms are independent of the choice
of Ug, and hence are compatible under (Uy)y <— (Uz)pr.) O]

2.2. Cuspidality
2.2.1. — Recall that in [6, Sect. 1.4] the full subcategory
D-mod(Bung )cusp C D-mod(Bung)

was defined as the intersection of the kernels of the functors CT. for all proper parabolic
subgroups P C G.

Equivalently, let
D-mod(Bung)gis € D-mod(Bung)

be the full subcategory, generated by the essential images of the functors Eis, for all proper
parabolics. From the (Eis;, CT4)-adjunction, we obtain

D-mod(Bung)eusp = (D-mod(Bung )gis)™ .

2.2.2. — Welet
D-mod(Bung)co,gis € D-mod(Bung)co

be the full subcategory generated by the essential images of the functors
Eis¢o,x : D-mod(Bunys)co — D-mod(Bung)co.
We define
D'mOd(BunG)co,cusp = (D'mOd(BunG)co,Eis)J_-

Equivalently, D-mod(Bung )co,cusp is the intersection of the kernels of the functors CTc 2
for all proper parabolics.

2.2.3. — From Corollary 1.4.2 we obtain:
COROLLARY 2.2.4. — (1) An object of D-mod(Bung )., is cuspidal if and only if its pairing
with every object of D-mod(Bung )g;s is zero under the canonical map
(= —)Bung : D-mod(Bung) x D-mod(Bung)c, — Vect
corresponding to Dyn; .
(2) The identification Dpyn,; : D-mod(Bung)Y ~ D-mod(Bung )., induces identifications

(D'mOd(BunG)Eis)v x~ D'mOd(BunG)co,Eis
and (D-mod(Bung )cusp) ¥ ~ D-mod(Bung )co,cusp-

REMARK 2.2.5. — We will see shortly that D-mod(Bung )co,cusp belongs to the intersec-
tion of the kernels of the functors CT,,,« for all proper parabolics. But this inclusion is strict.
For example fr G = SL,, the object from [8, Theorem 7.7.2] belongs to CT,, « (there is only
one parabolic to consider), but it does not belong to D-mod(Bung )co,cusp -
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2.2.6. — Our goal for the rest of this section is to prove:

THEOREM 2.2.7. — The restriction of the functor Ps-Idgun naive 10
D-mod(Bung)co,cusp C D-mod(Bung)co
takes values in D-mod(Bung )cusp C D-mod(Bung), and defines an equivalence

D-mod(Bung )co,cusp = D-mod(Bung)cusp.

2.3. Support of cuspidal objects
2.3.1. — The following crucial property of D-mod(Bung )cusp Was established in [6, Propo-
sition 1.4.6]:

PROPOSITION 2.3.2. — There exists an element (Ug 9 Bung) € op-qc(G), such that for
any ¢f € D-mod(Bung)cysp, the maps

(J6)r1 o (je)* (F) = & = (J6)«© (J6)* (F)

are isomorphisms.
2.3.3. — We now claim that a parallel phenomenon takes place for D-mod(Bung )co,cusp:

PROPOSITION 2.3.4. — For any ¢f € D-mod(Bung)co,cusp, the map

(‘? g (]G)co,* o (]G)ZO(C?)

is an isomorphism.
Proof. — We need to show that the map from the tautological embedding

@2.1) D-mod(Bung)eo cusp s D-mod(Bung )eo

to the composition

(e ( ):() CO.*
D-mod(Bung )co,cusp <3 D-mod(Bung)co JGeo, D-mod(%g) (JL> D-mod(Bung)co

is an isomorphism.
Note that in terms of the identification of Corollary 2.2.4(b), the dual of the embedding e,
of (2.1) is the functor

2.2) f : D-mod(Bung) — D-mod(Bung)cusp.
left adjoint to the tautological embedding D-mod(Bung)cusp < D-mod(Bung).

Hence, by duality, we need to show that the functor (2.2) maps isomorphically to the
composition

D-mod(Bung) ﬂ) D-mod(%Ug) M D-mod(Bung) AN D-mod(Bung )cusp-

The latter is equivalent to the fact that any ¢’ € D-mod(Bung) for which Je(F =0,
is left-orthogonal to D-mod(Bung )cusp. However, this follows from the isomorphism

o = (J6)x 0 (J6)*(f), o € D-mod(Bung)cusp
of Proposition 2.3.2. O
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2.4. Description of the cuspidal category
2.4.1. — We claim:

PRrROPOSITION 2.4.2. — Let §f € D-mod(Bung )¢, be such that there exists (U ER Bung) €
op-qc(G) such that the map

F — Jeo,x © ]cﬂ;(C’?)
is an isomorphism. Then ¢ € D-mod(Bung )co,cusp if and only if CTeo «(F) = 0 for all proper
parabolics.

Proof. — Recall that
(= —)Bung : D-mod(Bung )¢, x D-mod(Bung) — Vect
denotes the pairing corresponding to the identification
Dgung; : D-mod(Bung)" >~ D-mod(Bung)co-

On the one hand, by Corollary 1.4.2, for 3 € D-mod(Bung).,, the condition that
of ¢ be right-orthogonal to the essential image of Eis,,« for a given parabolic P is equivalent
to

(Eisi(¢F pm)s f G)Bung =0,  F p € D-mod(Bunyy).

If &g = jeox(F ), then the above is equivalent to
(j* o Eisl(¢f m)> Fudu =0,

where
(—, —)v : D-mod(U)¢, x D-mod(U) — Vect
is the pairing corresponding to Dy : D-mod(U)Y ~ D-mod(U).

On the other hand, the condition that CTeo «(¢fg) = 0 for the same parabolic is
equivalent to

(EIS* ( gM)» gG}BunG 5
1.e.,

(j" o Eise(S m). Sulu = 0.

Hence, the assertion of Proposition 2.4.2 follows from the next one, proved in Sect. 2.5:

PROPOSITION 2.4.3. — (a) For ¢y, € D-mod(Bunyy), the object Eis«(of 3y) admits an
increasing filtration (indexed by a poset) with subquotients of the form Eis\(F %), fy €
D-mod(Bunyy).

(b) Assume that Fyy is supported on finitely many connected components of Bunyy, and
let (U N Bung) € op-qc(G). Then:

(i) The objects j* o Eisi(f 3y) from point () are zero for all but finitely many o’s.

(il) The object j* o Eisi(sFpy) is a finite successive extension of objects of the form
J* o Eisu(F ), sy € D-mod(Bunyy). O
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2.4.4. — We now observe:

PROPOSITION 2.4.5. — Let &f € D-mod(Bung)c, be such that there exists (Ug 4 Bung) €
op-qc(G) such that the map

Q? - (jG)co,* ° (]G):o((‘y)

is an isomorphism. Then Ps-Idpung naive(f) € D-mod(Bung)cusp if and only if
CTeo,«(f) = 0 for all proper parabolics.

Proof. — We claim that for ¥ satisfying the condition of the proposition, for a given
parabolic P,

CT.o PS'IdBunG,naive(C’?) =0 < CTCO,*(C’?) =0.
Indeed, the implication < holds for any ¢# by Proposition 2.1.7.
Conversely, let (Ups & Bunyys) € op-qc(M) be as in Proposition 1.5.7. For

(’? x~ (jG)CO,*(C?‘UGx

by Proposition 1.5.7, we have

CTeo () = (jm)cox © (jm)™ 0 CTx0(jo)x(F ug;)
x~ (jM)co,* o (]M)* oCTyo PS'IdBung,naive O(jG)co,*(C?UG)
~ (jM)co,* o (]M)* o CT* o PS'IdBunG ,naive((’?)- O

2.4.6. — Combining Propositions 2.3.4, 2.4.2 and 2.4.5 we obtain:

COROLLARY 2.4.7. — For &f € D-mod(Bung)., the following conditions are equivalent:

(1) (’? € D'mOd(BunG)co,cusp;

(i1) There exists (U N Bung) € op-qc(G) such that the map of — jeox © jo (of) is an
isomorphism and Ps-Idgun; naive(¢#) € D-mod(Bung )cusp.

(ii") There exists (U N Bung) € op-qc(G) such that the map of — jeox © joo(cF) is an
isomorphism and CT¢o «(of) = 0 for all proper parabolics.

(ii1) For (Ug 9 Bung) € op-qc(G) as in Prop. 2.3.2, the map of — (JG)co,x © (JG) iy (f)
is an isomorphism and Ps-Idpun naive(¢f) € D-mod(Bung )cusp.

(iii") For (Ug 9 Bung) € op-qc(G) as in Prop. 2.3.2, the map of — (JG)co,x © (JG)ao(F)
is an isomorphism and CTeo «(F) = 0 for all proper parabolics.
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2.4.8. Proof of Theorem 2.2.7. — From Corollary 2.4.7 we obtain that the functor
Ps-IdBung ,naive Sends

D-mod(Bung )co,cusp = D-mod(Bung )cusp-
We construct the inverse functor as follows. Let (%Ug Y Bung) € op-qc(G) be as in
Proposition 2.3.2. The sought-for functor
D-mod(Bung)cusp — D-mod(Bung )co
is
F = (JG)eox © (J6)*(F).

We claim that the image of this functor lands in D-mod(Bung )co,cusp- Indeed, by Propo-
sition 2.4.5, its suffices to check that

PS'IdBunG,naive O(]G)co,* © (/G)*(C?) € D'mOd(BunG)cusp~
However,

Ps-IdBung naive ©(JG)co,x © (JG)* (F) = (JG )« © (JG)* (F),

and the latter is isomorphic to ¢ by Proposition 2.4.5.
Let us now check that the two functors are inverses of each other. However, we have just
shown that the composition

D-mod(Bung )cusp — D-mod(Bung )co,cusp = D-mod(Bung )cusp

is isomorphic to the identity functor.
For the composition in the other direction, for ¢ € D-mod(Bung )co,cusp We consider

(]G)co,* ° (]G)* o PS‘IdBung,naive((’?)v
which by Corollary 2.1.5 is isomorphic to

(JG)co,x © (]G):o((y)’
and the latter is isomorphic to ¢f by Proposition 2.3.4. O
2.5. Proof of Proposition 2.4.3

2.5.1. — The proof of the proposition uses the relative compactification Bunp < Bunp of
the map p, introduced in [3, Sect. 1.3.6]:

Bunp C;> B-E;lp
/ \
(2.3) Bung Buny, .

Note that for f ), € D-mod(Bunys), we have

Bis(Fay) = P (?f(éfM) ® r*(wBunP)) ~ % (?f(éfM) & r*(wBunP)) ,
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!

the latter isomorphism due to the fact that p is proper. Here the notation ® (and, in the
*

sequel, ®) follows [6, Sect. 1.1.5].

Recall now that according to [3, Theorem 5.1.5], the object
Ix (wBunP) € D-mOd(B-l\l-ljlp)

is universally locally acyclic (a.k.a. ULA)® with respect to the map q. This implies that
! * .
T (F ) ® e (@Bunp) =T (F pr) ® re(@Bunp )[—2 dim(Bunpy)].

Thus, we obtain that, up to a cohomological shift, Eis. () is isomorphic to
(2.4) P (Tf“(c? M) ® I (wBunP)) .

2.5.2. — Let A’} be the monoid of linear combinations
0 =3n;-a,
1

where n; € ZZ° and o; is a simple coroot of G, which is notin M.

For each 6, we let ModeB’:;M be a version of the Hecke stack, introduced in [2, Sect. 3.1]:

Mod%+

Buny,

=1
=

Buny, Buny, .

Set
0.+ ._ 0,+
Modg,,,, := Bunp el Modg,,,,
M 9.+
where the fiber product is formed using the map & : Modg,;, ~— Buny.

According to [3, Proposition 6.2.5], there is a canonically defined locally closed embed-
ding

0. 6,+
r’ : Modg,, , — Bunp,

@ See [6, Sect. 1.1.5] for what the ULA condition means.
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making the following diagram commute

0,+
hdodBunP .
\i\&
,(—
h —_—
Bunp
q
Bunp
6,+ ~
hdodBunM q
q - N
h h
BunM BunM .

(The right diamond is intentionally lopsided to emphasize that it is not Cartesian.)
Furthermore,
(2.5) Bunp = | | r®Modff ).

Bunp
pos
beAg p

<
For 6 = 0, the map % is an isomorphism, and the resulting map

r() —_—

~ 0+
Bunp ~ ModBunP < Bunp

is the map r in (2.3).
The following is easy to see from the construction:

LEmMma 2.5.3. — For (U =N Bung) € op-qc(G) and u € m(M), the preimage of
U x Bunh, under the map

Mod%* iBun ﬁBun x Bun
Bunp P G M

is empty for all but finitely many elements 6.
2.5.4. — The decomposition (2.5) endows the object
P« (@Bunp) € D-mod(Bunp)
with an increasing filtration, indexed by the poset A%‘j}, with the 6 subquotient equal to
(r)1 0 (r%)* o ru(@Bunp)-

Hence, by the projection formula, the object in (2.4) admits a filtration, indexed by A{}p,
with the 6 subquotient equal to

2.6) Borf ((r")* T (T ) ® ()" o r*<wBunP>) .

Moreover, if ¢F 3 is supported on finitely many components of Bunyy, the restriction of
the subquotient (2.6) to U € op-qc(G) is zero for all but finitely many 6 by Lemma 2.5.3.
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2.5.5. — We have the following assertion, proved by the same argument as [3,
Theorem 6.2.10]:

LEMMA 2.5.6. — The object (rf)* o r+«(WBunp) € D-mod(Mod%JnP) is lisse when
l-restricted to the fiber of the map

q: Mod%t - Mod%*

Bunp Buny,

0,+
Buny, -

over any k-point of Mod

COROLLARY 2.5.7. — (r?)* o ru(wpunp) = ’q*(c%e)ﬁ)r some F € D-mod(Mod2 ™ ).

Bunjy

Proof. — Follows from Lemma 2.5.6 plus the combination of the following three facts:
(1) the map q is smooth; (2) (r?)* o rv(wBun ») 1s holonomic with regular singularities; (3)
the fibers of the map ‘q are contractible (and hence any RS local system on such a fiber is
canonically trivial). ]

2.5.8. — By Corollary 2.5.7, we can rewrite the subquotient (2.6) as

~ .0 O\* N

o (077 0T () & @°(K).
and further, using the fact that

Gor =holqandpor? =po’h
as
oot (B & &) = moa” (I (Fa) & #).
To summarize, we identify the subquotient (2.6) with
Eis (In(h* () & 2.

as required in Proposition 2.4.3(a). The finiteness assertion in Proposition 2.4.3(b)(i) follows
from the finiteness at the end of Sect. 2.5.4.

2.5.9. — The proof of Proposition 2.4.3(b)(ii) is similar, but with the following modification:

Let kgunp, € D-mod(Bunp) be the “constant sheaf” D-module, i.e., the Verdier dual
of wpunp -
Then the object
ri(kunp) € D-mod(Bunp)

admits a decreasing filtration, indexed by the poset A% %, with the 6 subquotient being

(r%)s o (r%)" o ri(kpunyp)-

However, this filtration is finite on the preimage of U x Bunﬁ for any U € op-qc(G) and
i € (M) under the map p x q, again by Lemma 2.5.3.
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3. Interaction with the genuine pseudo-identity functor

3.1. The pseudo-identity functor
3.1.1. — We now recall that in [5, Sect. 4.4.8] another functor, denoted
Ps-Idgung,! : D-mod(Bung)co, — D-mod(Bung)

was introduced.
Namely, in terms of the equivalences

3.1
Functeont (D-mod(Bung )co, D-mod(Bung)) >~ (D-mod(Bung)c,)" ® D-mod(Bung)

~ D-mod(Bung) ® D-mod(Bung)
~ D-mod(Bung x Bung),
the functor Ps-Idgyn,; 1 corresponds to the object
(ABung )1 (kBung ) € D-mod(Bung x Bung).

3.1.2. — Note the following feature of the functor Ps-Idpuns,, parallel to one
for Ps-Idgun; naive, given by Lemma 2.1.4.

LemMA 3.1.3. — Under the identification D-mod(Bung)Y >~ D-mod(Bung)c,, we have
(PS-IdBunG,!)V ~ PS'IdBung,! .

Proof. — This is just the fact that the object (Apung)1(kBung) € D-mod(Bung x Bung)
is equivariant with respect to the flip. O

3.1.4. — The goal of this section and the next is to prove:
THEOREM 3.1.5. — The functor Ps-1dgun; 1 is an equivalence.

The proof will rely on a certain geometric result, namely, Proposition 3.2.6 proved in [9].

3.2. Relation between the two functors
3.2.1. — Consider again the map
ABung : Bung — Bung x Bung .
It naturally factors as

idgunG AEUI]G
Bung — Bung xB(Zg) —— Bung x Bung,

where:

Z ¢ denotes the center of G, and B(Zg) is its classifying stack;
The map idguIl . 1s given by the identity map Bung — Bung, and

Bung — pt 5 B(Zg),

where triv : pt — B(Zg) corresponds to the trivial Zg-bundle;
The composition pry oAgunG is projection on the first factor Bung x B(Zg) — Bung;
z

Bung

The composition pr, oA is given by the natural action of B(Zg) on Bung.
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REMARK 3.2.2. — Note that if G is a torus, the map AgunG is an isomorphism.

3.2.3. — We write

(ABunG )* (wBunG ) = (Agunc )* o (idgunc ) * (a)BunG ) .

In addition,

(ABung)!(kBung) x~ (Agunc)! ° (idBZunG)!(kBung)
~ (A un )1 0 (i[dfun )1 (@Bung ) [~2 dim(Bung)],

Bung Bung

the latter isomorphism is due to the fact that Bung is smooth.

It is easy to see that

trivy(k) >~ trivy (k)[— dim(Zg)].
Hence,
(BBung )1 kBung) = (Afung )1 © ({dFun g, )+ (@Bung)[~2 dim(Bung) — dim(Zg)].
Now, the morphism
Agunc : Bung xB(Zg) — Bung x Bung

is schematic and separated. Hence, we obtain a natural transformation

(3.2) (AZ. )= (A ).

Bung Bung

Summarizing, we obtain a map

(3.3) (ABung )1 (kBung) = (ABung )+ (@Bung )[—2 dim(Bung) — dim(Zg)].
3.2.4. — From (3.3) and Sect. 2.1.3, we obtain a natural transformation:
3.4 Ps-1dBung,! = Ps-IdBung naive[—2 dim(Bung) — dim(Zg)]

as functors D-mod(Bung)c, — D-mod(Bung).
Let Ps-Idpung,gif : D-mod(Bung)co, — D-mod(Bung) denote the cone of the natural
transformation (3.4).

3.2.5. — We claim:

PROPOSITION 3.2.6. — The functor Ps-1dpun; it admits a decreasing filtration, indexed by
a poset, with subquotients being functors of the form

PS_IdBun% ,naive

CTho
D-mod(Bung)co —— D-mod(Bun}, )., —————— D-mod(Bun},)

Fu.u/

/ Ei ’,L:/'_
—— D-mod(Bunj,) = D-mod(Bung),
for a proper parabolic P with Levi quotient M, where v, i’ € 1 (M) and F**" is some functor
D-mod(Bunj‘LJ) — D-mod(Bunff,,). Furthermore, for a pair
Uy 2L Bung), (Uz Eat Bung) € op-qc(G),
the induced filtration on

J1 0 Ps-Idpung diff ©(J2)co,
is finite.
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The proof of Proposition 3.2.6 is analogous to that of Proposition 2.4.3 and is given in [9].

As its geometric ingredient, instead of the stack Bunp appearing in the proof of Propo-
sition 2.4.3, one uses a compactification of the morphism Agan ., Which can be constructed
using Vinberg’s canonical semi-group of [10] attached to G.

3.3. Pseudo-identity and cuspidality

3.3.1. — Asa consequence of Proposition 3.2.6, we obtain:

COROLLARY 3.3.2. — The morphism (3.4) induces an isomorphism

Ps-1dgung,! =~ Ps-Idgung, [-2dim(Bung) — dim(Zg)].

|D-mod(BunG)co.cusp natve |D-mod(BunG )co.cusp

Proof. — By the definition of D-mod(Bung), it is sufficient to show that for any

U, EiN Bung) € op-qc(G), the map (3.4) induces an isomorphism

]1* o PS'IdBunC;,'

|D—mod(BunG )co,cusp

— j¥oPs- [-2 dim(Bung) — dim(Zg)].

Id i
Bung ,naive |D—mod(BunG Yeo.cusp

Let us take U, := 9 as in Proposition 2.3.2. By Proposition 2.3.4, it suffices to show
that for ¢ € D-mod(Bung)co,cusp

]1* o PS'IdBung,diffo(jZ)co,* o (]2):0((?) =0.

However, this follows from Proposition 3.2.6:

Indeed, the object in question has a finite filtration, with subquotients isomorphic to
Ji o Eisl" ™ ot o Ps-ldg,nt naive © CTlo 4 ©(J2)co.x © (J2)e0 (F)-
which, by Proposition 2.3.4, is isomorphic to
Ji o Eis)" T oF " 0 Ps-Idgyt i (CTE, (),
while CT%, , (¢f) = 0 by Corollary 2.4.7. O

COROLLARY 3.3.3. — The functor Ps-l1dgun, 1 induces an equivalence

D-mod(Bung)co,cusp — D-mod(Bung)cusp-
Proof. — Follows from Theorem 2.2.7 and Corollary 3.3.2. O
3.3.4. — The next assertion is a crucial step in the proof of Theorem 3.1.5:

PrOPOSITION 3.3.5. — The functor Ps-1dpun; 1 induces an isomorphism

HomD—mod(Bung)co(g,’ (‘?) g HomD-mod(Bun(;)(PS'IdBunG,!((‘?/)’ PS'IdBunG,!((‘y))s

provided that &' € D-mod(Bung )co cusp-
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3.4. Proof of Proposition 3.3.5

3.4.1. — Let us first assume that ¢f has the form je, «(of ) for some (U <, Bung) €
op-qc(G).
Consider the commutative diagram
3.5
HOl’l’l(@?/, (’7) — Hom(PS'IdBunG,naive(C?/)ﬂ Ps'IdBunG,naive((’?))

! !

Hom(Ps-1dpyng, 1( ), Ps-Idpung 1(F)) —— Hom(Ps-Idpung 1( ), Ps-IdBung naive (F)[d]),
where d = —2dim(Bung) — dim(Zg).

We need to show that the left vertical arrow is an isomorphism. We will do so by showing
that all the other arrows are isomorphisms.

3.4.2. — First, we claim that upper horizontal arrow in (3.5) is an isomorphism for any # €
D-mod(Bung)eo and ¢f = j«(of ). Indeed, the map in question fits into a commutative
diagram

HomD-mod(BunG )eo ( (2677/’ Jeo,x ( (’?U)) — Hom(PS'IdBunG ,naive(éﬂ)v Ps'IdBunG ,naive ©Jco,* ( (’?U))
Homp.moa(v) (j;; ( CG/Z/)’ C?U) Homp.imod(Bung) (Ps-Idpung ,naive((}?/)» Jx( C?U))
idl l~
HomD—mod(U) (jct) ( C?,)v C?U) ;) HomD—mod(U) (] *o PS'IdBunG ,naive((’?l)’ (§ZU)

3.4.3. — The right vertical arrow in (3.5) is an isomorphism by Corollary 3.3.2.

To show that the lower horizontal arrow is an isomorphism, using Corollary 3.3.3, it
suffices to show that for any 7" € D-mod(Bung )cysp, we have

HomD-mod(Bung)(C’?”, PS'IdBun(;,diff Ojco,*(C’?U)) =0.

By Proposition 2.3.2,

Homp mod@ung) (" » Ps-1dBung diff ©jco,+(F 1))
~ Homp_mod(%g) (](*; ( (’7//)’ ]é © PS'IdBunG Jdiff © Jeo,x ( (’7U))

Applying Prop. 3.2.6, we obtain that it suffices to show that for " € D-mod(Bung )cusp

HomD-mod("UG) (Jé((?”)v ]é © EISI: T oFH o Ps_IdBunj‘fI ,naive 0 CTgo,* ojCO,*((‘?U)) = 0’

which by Proposition 2.3.2 is equivalent to
Homp_modBung) (C’G]TN» Eisl:/’_ oF - o Ps'IdBun% ,naive © CTgo,* OJCO,*(C’?U)) =0.

Now, D-mod(Bung)cusp is left-orthogonal to the essential image of Eis‘*‘/’_ by
Theorem 1.1.7, implying the desired vanishing.
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3.4.4. — We will now reduce the assertion of Proposition 3.3.5 to the situation of Sect. 3.4.1.

Let us recall that according to [5, Theorem 4.1.8], any element (U <5 Bung) €
op-qc(G) is contained in one which is co-truncative. See [5, Sect. 3.8] for what it means
for an open substack to be co-truncative. In particular, the open substack %Ug of
Proposition 2.3.2 can be enlarged so that it is co-truncative.

Recall also that for a co-truncative open substack U s Bung, the functor jc, « has a
(continuous) right adjoint, denoted 7, see [3, Sect. 4.3].

Any ¢ € D-mod(Bung)., fits into an exact triangle

O?l - gﬁjoo,*oj?(g)’
where j’(&#,) = 0 by Lemma 1.5.2.

We take U to contain the substack %/g as in Proposition 2.3.2, and assume that it is
co-truncative. In view of Proposition 2.3.4 and Corollary 3.3.3, it remains to show that if

7(F) = 0, then
Homp mod(Bung) (> Ps-IdBung 1 (F)) =0,  F" € D-mod(Bung)cusp-
By Proposition 2.3.2, it suffices to show that
JH(F) =0 = j*oPsldpung.(F) = 0.

However, this follows from (the nearly tautological) [8, Corollary 6.6.3]. O

4. The strange functional equation and proof of the equivalence

In this section we will carry out the two main tasks of this paper: we will prove the strange
functional equation (Theorem 4.1.2 below) and finish the proof of Theorem 3.1.5 (that says
that the functor Ps-Idpun,1 is an equivalence).

4.1. The strange functional equation
In this subsection we will study the behavior of the functor Ps-Idgyn; 1 on the subcategory

D-mod(Bung)co,gis C D-mod(Bung)co-

4.1.1. — First, we have the following “strange” result:

THEOREM 4.1.2. — For a parabolic P and its opposite P~ we have a canonical isomorphism
of functors
Eisy o Ps-Idpun,,,1 > Ps-Idpung,1 0 Eisg, -
Proof. — Both sides are continuous functors
D-mod(Bunps )¢, — D-mod(Bung),

that correspond to objects of
D-mod(Bunys x Bung)
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under the identification
Functeont (D-mod(Bunyys)co, D-mod(Bung)) ~ (D-mod(Bungs)e)” ® D-mod(Bung)
~ D-mod(Bunys) ® D-mod(Bung)
~ D-mod(Bunys x Bung).
We claim that both objects identify canonically with
((g9 % p) © Agunp )1(kBunp ).

where the map in the formula is the same as
Bunp —q—XE) Bunjs x Bung .

The functor Eisy o Ps-Idgun,, 1 corresponds to the object, obtained by applying the functor
(Idp-mod(Buny,) ® Eist) : D-mod(Bunys) ® D-mod(Bunys) — D-mod(Bunys) ® D-mod(Bung)
to

(ABuny, )1 (KBun,, ) € D-mod(Bunys x Bunys) >~ D-mod(Bunys) ® D-mod(Bunyy).

The functor Idp_mod(Bun,,) ® Eis, is left adjoint to the functor

1dD.mod(Bunyy) ® CTx = (idBuny, X@)x © (idBuny, XP)',
and hence is the !-Eisenstein series functor for the group M x G with respect to the parabolic
M x P.l.e.,itis given by
(idBuny, *xP)1 X (idBun,, %)™,
when applied to holonomic objects.
Base change along the diagram

Fq idBun]l,[ Xp
Bunp ——— Buny; x Bunp ———— Bunys x Bung

ql lidBunM Xq

ABun/\/[
Buny, ———— Buny, x Buny,

shows that
(idBunM Xp)! X (idBunM XQ)* © (ABunM)!(kBunM) i ((q X P) o ABunp)!(kBunp)v
as required.

The functor Ps-Idgyn;,! o Eis
functor

CO,%

corresponds to the object, obtained by applying the

((Eisgo,*)v & IdD—mod(BunG)) :
D-mod(Bung) ® D-mod(Bung) — D-mod(Bunys) ® D-mod(Bung)

to the object
(ABung )1(kBung) € D-mod(Bung x Bung) >~ D-mod(Bung) ® D-mod(Bung).

We have:
(Eisg, )" ~ CT,,
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and we recall that by Theorem 1.1.7

CT, ~ CT,:= CTY".
w
where CT}" is the left adjoint of Eis.

Since CT?‘ is the left adjoint of Eis¥, we obtain that CT{L ® Idp-mod(Bung) is the left adjoint
of Eis} ® Idp-mod(Bung;)- 1-€., is the I-constant term functor for the group G x G with respect
to the parabolic P x G. Hence,

CTfL & IdD—mod(Bung) = (qM X idBunG)! © (plt X idBun(;)*»
when applied to holonomic objects (the superscript u indicates that we are taking only the
wu-connected component of Bunp).

Taking the direct sum over u, we thus obtain

(Eisc_o,*)v ® IdD—mod(BunG) x~ (q X idBunG)! o (P X idBunG)*s
when applied to holonomic objects.

Now, base change along the diagram

Fp qudBunG
Bunp ———— Bunp x Bung ———— Buny; x Bung

Pl lpxidBunG

ABunG
Bung ——— Bung x Bung,

shows that

(q X idBunG)! o (P X idBunG)* ° (ABunG)!(kBunG) = ((q X P) o ABunp)!(kBunP)»

as required. O

4.1.3. — By passing to dual functors in the isomorphism

4.1) Eisy o Ps-Idgun,, 1 =~ Ps-IdBung ! © Eis,

CO,*

of Theorem 4.1.2, we obtain:

COROLLARY 4.1.4. — There is a canonical isomorphism

(4.2) Ps-Idpyn,, 1 © CTeos ~ CT; o Ps-Idpyng.i -

4.1.5. — Consider now the commutative diagram:

PS‘IdBunG,!
D-mod(Bung)co,) ———— D-mod(Bung)

4.3) Bisc..| Teis

PS‘IdBunM,!
D-mod(Bunys)co) ——— D-mod(Bunyy).

By passing to the right adjoint functors along the vertical arrows, we obtain a natural
transformation

(4.4) Ps-Idguny,,1 © CTeo,2 = CT, 0 Ps-Idpung,1 -

We now claim:
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PROPOSITION 4.1.6. — The map (4.4) equals the map (4.2), and, in particular, is an isomor-
phism.

4.2. Proof of Proposition 4.1.6

The proof of the proposition is not a formal manipulation, as its statement involves the
isomorphism of Theorem 4.1.2 for the two different parabolics, namely, P and P~. The
corresponding geometric input is provided by Lemma 4.2.3 below.

4.2.1. — Let us identify
CT, ~ CT; and Eisco« =~ (CT;)"

via Theorem 1.1.7.
Then the map
PS-IdBunM’! o CTCO;; — CT! o PS-IdBunG,y,

corresponding to (4.4), equals by definition the composition

Ps-1dpun,,,1 © CTco,2 = CTy o Eisy o Ps-Idgyn,,,1 © CTeo,9

4.3
% CT) 0 Ps-1dpung, 1 © Eiseo s © CTeo.2
~ CTo PS'IdBunG,! O(CT!_)V o (Eng)V
= CT) o Ps-Idpyn,1 o(Eis; o CT!_)V — CTy o Ps-Idgyng,!+

where the first arrows comes from the unit of the (Eis; , CT))-adjunction, and the last arrow
comes from the co-unit of the (Eis;, CT, )-adjunction.

This corresponds to the following map of objects in D-mod(Bung x Bunyy):
(Eis1 ® Idp-mod(Bunys)) © (AD-mod(Bunps))! (KBuny, )
— (Eis; ®(CT, 0 Eis ) © (Ap-mod(Buny))! (KBuny, )
= (Eis; ® CT1) o (Idp-mod(Buny,) @ Eisy ) © (Ap-mod(Bunpy))! (KBunay)
~~ (Eis; ® CT)) o (CTy oldp.mod(Bung)) © (AD-mod(Bung))! (KBung )
= ((Eis; o CTy) ® CT1) o (Ap-mod(Bung))! (KBung)
— (Idp-modBung) ® CT1) © (Ap.mod(Bung))! (KBung )

where the isomorphism between the 3rd and the 4th lines is

4.5)

(Idp-mod(Bunsy) ® Eis; ) © (Ap.mod(Bunyy))t (KBunyy)
>~ ((@” xp") ° Apunp-)1(kBunp—)
~ (CTy oldp.mod(Bung)) © (AD-mod(Bung))! (KBung )
used in the proof of Theorem 4.1.2.

The assertion of the proposition amounts to showing that the composed map in (4.5)
equals

(Eng ® IdD-mod(BunM)) © (AD-mod(BunM))!(kBunM)
x~ ((P X q) o ABunp)!(kBunp)
= (IdD-mod(Bung) ® CT!) © (AD-mod(Bung))!(kBung)-
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4.2.2. — The geometric input is provided by the following assertion, proved at the end of this
subsection:

LEmMA 4.2.3. — The following diagram commutes:

(Ap)i(knr) — (Idy ®(CTyoEisy)) o (Ap)i(kn)
((CTy oEis)) ® I£M) o (Ap)i(kpr) (Idpsr ® CTy) o (Idyys iNEiS!_) o (Ap)i(kpr)
(CTy ®Idy) o (El;l@) Idps) o (Apr)i(kar) (Idy ® CTy) o (CT}(;) Idg) o (Ag)i(keg)
(CTy ®ldy) o (Id;l@) CT)) o (Ag)(kg) —> CTIy ® CTg)l: (Ag)ke)

where we use short-hand 1das, Apr, kyr for Idp.mod(Bunysy ), ABunyy @nd kBun,, , respectively, and
similarly for G.

Using the lemma, we rewrite the map in (4.5) as follows:

(Eis) ® Idp-mod(Bunys)) © (AD-mod(Bunas))! (KBuny, )
— ((Eisy o CTy o Eisy) ® Idp-modBunyy)) © (AD-mod(Bunays))! (KBunpy )
= ((Eisy o CTy) ® Idp.mod(Bunyy)) © (Eist ® Idp.mod(Bunys)) © (AD-mod(Bunys))! (KBuny,)
=~ ((Eisy o CTy) ® Idp-mod(Bunsy)) © (Idpmod(Bung) ® CT1) © (Ap.mod(Bung))! (kBung )
— (Idp-mod(Bung) ® CT1) © (Ap-mod(Bung))! (KBung )
and further as
(Eisy ® Idp-mod(Bunpy)) © (AD-mod(Bunys))! (KBunyy )
— ((Eisy o CTy o Eisy) ® Idp.mod(Bunys)) © (AD-mod(Bunys))! (KBuny,)
= ((Eis) o CTy) ® Idp-mod(Bunsy)) © (Bist ® Idp.mod(Bunyss)) © (AD-mod(Bunags))! (KBunyy, )
— (Eis) ® Idp-mod(Bunyy)) © (AD-mod(Bunp))! (KBuny, )
~ (Idp-modBung) ® CT1) © (Ap-mod(Bung))! (KBung )-
However, the composition
(Eisy ® Idp-mod(Bunpy)) © (AD-mod(Bunys))! (KBunyy )
— ((Eisy o CTy o Eisy) ® Idp.mod(Bunys)) © (AD-mod(Bunys))! (KBuny, )
= ((Eisy o CTy) ® Idp-mod(Bunyy)) © (Eis) ® Idp.mod(Bunss)) © (AD-mod(Bunps))! (KBuny,)
— (Eis) ® Idp-mod(Bunyy)) © (AD-mod(Buny,))! (KBuns, )
is the identity map, as it is induced by the map
Eis; — Eis; o CT; o Eis) — Eisy,

comprised by the unit and co-unit of the (Eis;, CT; )-adjunction, and the assertion follows.
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4.2.4. Proof of Lemma 4.2.3. — Let us recall from [6, Sect. 1.3.2] that the unit for the
(Eisy, CT)') can be described as follows. The functor

CT, o Eis; : D-mod(Bunys) — D-mod(Bunyy)

is given by
@ro(P*o(Po@)",
which by base change along the diagram

BunM

Bunp- x Bunp
ung

N

Bunp- Bunp

%

Bunyy Bung Bunyy,

can be rewritten as

@1o(p)ro(Po@).

The natural transformation
1dp-mod(Buny,) — CTi o Eisy”
is given by
(idBunp, )1 © (idBuny )" = @ro (P hojioj* o (p) o (q7)* — (@ro(p)ro(p)*o(q)",

where the second arrow comes from the (ji, j*)-adjunction.

The natural transformation
IdD—mod(BunM) - CTy_ o Eis)

is described similarly, with the roles of P and P~ swapped.
Base change along

q~ Xq
Bunp- x Bunp ——— Bunp- x Bunp ——— Bunyy x Buny,

BunG
| o]
AB\.mG
Bung —— Bung x Bung
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implies that the object
(CTy ® CT1) o (ABung )1 (kBung ) € D-mod(Bunys x Bunay)
identifies with
(@ px_ ah(kunp- wie Bunp )

where q~ 5 x q denotes the map
ungG

q~ Xxq
Bunp- x Bunp — Bunp- x Bunp —— Bunys x Buny, .
Bung

Now, the above description of the unit of the adjunctions implies that both circuits in the
diagram in Lemma 4.2.3 are equal to the map

(ABunM)!(kBunM) g (q_ X q)!(kBunpf X Bunp),
Bung Bung
that corresponds to the open embedding

J
Buny; < Bunp- x Bunp. 0
Bung

4.3. Proof of Theorem 3.1.5

We are finally ready to prove Theorem 3.1.5.

We proceed by induction on the semi-simple rank of G. The case of a torus follows
immediately from Corollary 3.3.3. Hence, we will assume that the assertion holds for all
proper Levi subgroups of G.

4.3.1. — Theorem 4.1.2, together with the induction hypothesis, imply that the essential
image of D-mod(Bung )co,gis under Ps-Idpyn,;,1 generates D-mod(Bung )gjs.

Corollary 3.3.3 implies that the essential image of D-mod(Bung )co,cusp Under Ps-Idgun; 1
generates (in fact, equals) D-mod(Bung )cusp-

Hence, it remains to show that Ps-Idgyn,; 1 is fully faithful.

4.3.2. — The fact that Ps-Idpun;,1 induces an isomorphism

(46) HomD—mod(BunG)co(Cylv (?) - HomD—mod(BunG)(PS'IdBunG,!((?/)v PS'IdBunG,!((?))

for &' € D-mod(Bung )co,cusp follows from Proposition 3.3.5.

Hence, it remains to show that (4.6) is an isomorphism for &' € D-mod(Bung)co,gis- The
latter amounts to showing that the functor Ps-Idgun;,1 induces an isomorphism

Hon’lD—mod(Bunc)Co (Eisco,*((yM)v C?)
g HomD-mod(Bun(;)(PS'IdBun(;,! o Eisco,*(@?M)v PS'IdBung,!(C?))

for ¢y, € D-mod(Bunyy)c, for a proper parabolic P with Levi quotient M.
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4.3.3. — Note that for §¥); € D-mod(Bunpy)c, and ¢f € D-mod(Bung)c, we have a
commutative diagram:

Hom(Eisco (¥ 3r), of ) —— Hom(Ps-Idgun 1 © Eisco,x (of pr)s Ps-IdBung 1 (F))

(4.3) | ~

Hom(Eis!_ © PS'IdBunM,! ( C?M), I)S'IdBunG,! ( (’7))

~ ~

Hom(PS'IdBunM,! ( O(]JTM)» CT; ° Ps'IdBunG ! ( (?))

4.4)

HOl’l’l(éZM, CTco,?((’Sz)) — Hom(PS'IdBunM,!((’SZM)v PS'IdBunM,! o CTco,?((y))

The bottom horizontal arrow in the above diagram is an isomorphism by the induction
hypothesis. Now, Proposition 4.1.6 implies that the lower right vertical arrow is also an
isomorphism.

Hence, the upper horizontal arrow is also an isomorphism, as required.
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