quatrième série - tome 50 fascicule 5 septembre-octobre 2017

a*NNALES SCIEN*n*IFIQUES SUPÉRIEU*k*^E de L ÉCOLE* h*ORMALE*

Dennis GAITSGORY

A "strange" functional equation for Eisenstein series and miraculous duality on the moduli stack of bundles

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

Annales Scientifiques de l'École Normale Supérieure

Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / *Editor-in-chief*

Emmanuel K

Comité de rédaction au 1er janvier 2017 P. BERNARD A. NEVES S. BOUCKSOM J. SZEFTEL E. BREUILLARD S. VŨ NGOC R. CERF A. WIENHARD G. CHENEVIER G. WILLIAMSON E. KOWALSKI

Rédaction / *Editor*

Annales Scientifiques de l'École Normale Supérieure, 45, rue d'Ulm, 75230 Paris Cedex 05, France. Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80. annales@ens.fr

Édition / *Publication* **Abonnements /** *Subscriptions*

Société Mathématique de France Maison de la SMF Institut Henri Poincaré Case 916 - Luminy 11, rue Pierre et Marie Curie 13288 Marseille Cedex 09 Fax : (33) 01 40 46 90 96

75231 Paris Cedex 05 Fax : (33) 04 91 41 17 51 Tél. : (33) 01 44 27 67 99 email : smf@smf.univ-mrs.fr

Tarifs

Europe : 519 \in . Hors Europe : 548 \in . Vente au numéro : 77 \in .

© 2017 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l'autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris). *All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.*

ISSN 0012-9593 Directeur de la publication : Stéphane Seuret Périodicité : 6 nos / an

A "STRANGE" FUNCTIONAL EQUATION FOR EISENSTEIN SERIES AND MIRACULOUS DUALITY ON THE MODULI STACK OF BUNDLES

BY DENNIS GAITSGORY

ABSTRACT. – We show that the failure of the usual Verdier duality on Bun_G leads to a new duality functor on the category of D-modules, and we study its relation to the operation of Eisenstein series.

RÉSUMÉ. – Dans cet article, on démontre que la dualité de Verdier habituelle ne tenant pas pour le champ Bun_G , on peut la remplacer par un autre foncteur de dualité. On étudie la relation entre celui-ci et le foncteur de série d'Eisenstein.

Introduction

0.1. Context for the present work

0.1.1*.* This paper arose in the process of developing what V. Drinfeld calls *the geometric theory of automorphic functions.* I.e., we study *sheaves* on the moduli stack Bun_G of principal G-bundles on a curve X. Here and elsewhere in the paper, we fix an algebraically closed ground field k, and we let G be a reductive group and X a smooth and complete curve over k .

In the bulk of the paper we will take k to be of characteristic 0, and by a "sheaf" we will understand an object of the derived category of D-modules. However, with appropriate modifications, our results apply also to ℓ -adic sheaves, or any other reasonable sheaf-theoretic situation.

Much of the motivation for the study of sheaves on Bun_G comes from the so-called *geometric Langlands program*. In line with this, the main results of this paper have a transparent meaning in terms of this program, see Sect. 0.2. However, one can also view them from the perspective of the classical theory of automorphic functions (rather, we will see phenomena that so far have not been studied classically).

0.1.2*. Constant term and Eisenstein series functors*. – To explain what is done in this paper we will first recall the main result of [6].

Let $P \subset G$ be a parabolic subgroup with Levi quotient M. The diagram of groups

$$
G \leftrightarrow P \twoheadrightarrow M
$$

gives rise to a diagram of stacks

Using this diagram as "pull-push," one can write down several functors connecting the categories of D-modules on Bun_G and Bun_M, respectively. By analogy with the classical theory of automorphic functions, we call the functors going from Bun_M to Bun_G "Eisenstein series," and the functors going from Bun_G to Bun_M "constant term".

Namely, we have

Eis_! := p_!
$$
\circ
$$
 q^{*}, D-mod(Bun_M) \rightarrow D-mod(Bun_G),
Eis_{*} := p_{*} \circ q[!], D-mod(Bun_M) \rightarrow D-mod(Bun_G),
 $CT_!$:= q_! \circ p^{*}, D-mod(Bun_G) \rightarrow D-mod(Bun_M),
 $CT_* := q_* \circ p^!$, D-mod(Bun_G) \rightarrow D-mod(Bun_M).

Note that unlike the classical theory, where there is only one pull-back and one pushforward for functions, for sheaves there are two options: l and \ast , for both pull-back and pushforward. The interaction of these two options is one way to look at what this paper is [abo](#page-40-0)ut.

Among the above functors, there are some obvious adjoint pairs: Eis! is the left adjoint of CT_* , and $CT_!$ is the left adjoint of Eis..

In addition to this, the following, perhaps a little unexpected, result was proved in [6]:

THEOREM 0.1.3. – *The functors* CT_1 *and* CT_*^- *are canonically isomorphic.*

In the statement of the theorem the superscript $-$ " means the constant term functor taken with respect to the *opposite* parabolic P^- (note that the Levi quotients of P and $P^$ are canonically identified).

Our goal in the present paper is to understand what implication the above-mentioned isomorphism

$$
CT_! \simeq CT_\ast^-
$$

has for the Eisenstein series functors Eis, and Eis. The conclusion will be what we will call a "strange" functional Equation (0.9), explained below.

In order to explain what the "strange" functional equation does, we will need to go a little deeper into what one may call the "functional-analytic" aspects of the study of Bun_G .

0.1.4*. Verdier duality on stacks*. – The starting point for the "analytic" issues that we will be dealing with is that the stack Bun_G is *not quasi-compact* (this is parallel to the fact that in the classical theory, the automorphic [sp](#page-40-1)ace is not compact, leading to a host of i[nter](#page-4-0)esting analytic phenomena). The particular phenomenon that we will focus on is the absence of the usual Verdier duality functor, and what replaces it.

First off, it is well-known (see, e.g., [5, Sect. 2]) that if $\mathcal Y$ is an arbitrary reasonable ⁽¹⁾ quasicompact algebraic stack, then the category $D-mod(\mathcal{Y})$ is compactly generated and naturally self-dual.

Perhaps, the shortest way to understand the meaning of self-duality is that the subcategory D-mod $(\mathcal{Y})^c \subset D$ -mod (\mathcal{Y}) consis[tin](#page-40-2)g of compact objects carries a canonically defined contravariant self-equivalence, called Verdier duality. A more flexible way of interpreting the same phenomenon is an equivalence, denoted \mathbf{D}_y , between D-mod(\mathcal{Y}) and its *dual* category D-mod $(\mathcal{Y})^{\vee}$ (we refer the reader to [4, Sect. 1], where the basics of the notion of duality for DG categories [ar](#page-40-1)e reviewed).

L[e](#page-40-1)t us now remove the assumption that $\mathcal Y$ be quasi-compact. Then there is another geometric condition, called "truncatability" that ensures that $D-mod(\mathcal{Y})$ is compactly generated (see [5, Definition 4.1.1], where this notion is introduced). We remark here that the goal of the paper [5] was to show that the stack Bun_G is truncatable. The reader who is not familiar with this notion is advised to ignore it on the first pass.

Thus, let us assume that $\mathcal Y$ is truncatable. However, there still is no obvious replacement for Verdier duality: extending the quasi-compact case, one can define a functor

$$
(D\text{-mod}(\mathcal{Y})^c)^{op}\to D\text{-mod}(\mathcal{Y}),
$$

but it no longer lands in D-mod $(\mathcal{Y})^c$ (unless $\mathcal Y$ is a disjoint union of quasi-compact stacks). In the language of dual categorie[s, w](#page-4-1)e have a functor

$$
Ps\text{-}Id_{\mathcal{Y},naive}:D\text{-mod}(\mathcal{Y})^{\vee}\to D\text{-mod}(\mathcal{Y}),
$$

but it is no longer an equivalence. (2)

In particular, the functor Ps-Id_{BunG}, naive is *not* an equivalence, unless G is a torus.

0.1.5*. The pseudo-identity functor*. – To potentially remedy this, V. Drinfeld suggested ano[th](#page-40-1)er functor, denoted

$$
Ps\text{-}Id_{\mathcal{Y},!}: D\text{-mod}(\mathcal{Y})^{\vee}\to D\text{-mod}(\mathcal{Y}),
$$

see [5, Sect. 4.4.8] or Sect. 3.1 of the present paper.

Now, it is not true that for all truncatable stacks \mathcal{Y} , the functor Ps-Id \mathcal{Y} is an equivalence. In [5] the stacks for which it is an equivalence are called "miraculous".

We can now formulate the main result of this paper (conjectured by V. Drinfeld):

THEOREM $0.1.6.$ – *The stack* Bun_G *is miraculous.*

(1) The word "reasonable" here does not have a technical meaning; the technical term is "QCA," which means that the automorphism group of any field-valued point is affine.

⁽²⁾ The category D-mod $(\mathcal{Y})^{\vee}$ and the functor Ps-Id \mathcal{Y}_{n} aive will be described explicitly in Sect. 1.2.

1126 D. GAITSGORY

We repeat that the above theorem says that the canonically defined functor Ps-Id $_{\text{Bun}_G}$; defines an identification of $D\text{-mod}(Bun_G)$ and its dual category. Equivalently, it gives rise to a (non-obvious!) contravariant self-equivalence on D -mod $(Bun_G)^c$.

0.1.7*. The "strange" functional equation*. – Finally, we can go back and state the "strange" functional equation, which is in fact an ingredient in the proof of Theorem 0.1.6:

THEOREM 0.1.8. – *We have a canonical isomorphism of functors*

 $\mathrm{Eis}_{!}^{-} \circ \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_{M},!} \simeq \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_{G},!} \circ (\mathrm{CT}_{*})^{\vee}.$ $\mathrm{Eis}_{!}^{-} \circ \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_{M},!} \simeq \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_{G},!} \circ (\mathrm{CT}_{*})^{\vee}.$ $\mathrm{Eis}_{!}^{-} \circ \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_{M},!} \simeq \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_{G},!} \circ (\mathrm{CT}_{*})^{\vee}.$

In the Theorem 0.1.8, the functor $(CT_*)^{\vee}$ maps

 $D\text{-mod}(Bun_M)^{\vee} \to D\text{-mod}(Bun_G)^{\vee}$

and is the *dual* of the functor CT_* . As we shall see in Sect. 1.5, the functor $(CT_*)^{\vee}$ is a close relative of the functor Eis, introduced earlier.

0.2. Motivation from geometric Langlands

[We sh](#page-8-0)all now proceed and describe how the results of this paper fit into the geometric Langlands program. The contents of this subsection play a motivational role only, and the reader not familiar with the objects discussed below can skip this subsection and proceed to Sect. 0.3.

0.2.1*. Statement of GLC*. – Let us recall the statement of the categorical geometric Langlands conjecture (GLC), according to [1, Conjecture 10.2.2].

The left-hand (i.e., geometric) side of GLC is the DG category $D\text{-mod}(Bun_G)$ of D-modules on the stack Bun_G .

Let \check{G} denote the [La](#page-40-3)nglands dual group of G, and let LocSys_{\check{G}} denote the (derived) stack of \check{G} -local systems on X. The right-hand (i.e., spectral) side of GLC has to do with (quasi)-coherent sheaves on $LocSys_{\check{G}}$.

More precisely, In [1], a certain modification of the DG category $QCoh(LocSys_{\check{G}})$ was introduced; we denote it by IndCoh_{Nilp_{glob} (LocSys_{\check{G}}). This category is what appears on the} spectral side of GLC.

Thus, GLC states the existence of an equivalence

(0.2) $\mathbb{L}_G : \text{D-mod}(\text{Bun}_G) \to \text{IndCoh}_{\text{Nilp}_{glob}}(\text{LocSys}_{\check{G}}),$

that satisfies a number of pr[opertie](#page-6-0)s that (conjecturally) determine \mathbb{L}_G uniquely.

The property of \mathbb{L}_G , relevant for this paper, is the compatibility of (0.2) with the functor of Eisenstein series, see Sect. 0.2.5 below.

0.2.2*. Interaction of GLC with duality*. – A feature of the spectral side crucial for this paper is that the Serre d[uality](#page-4-2) functor of [1, Proposition 3.7.2] gives rise to an equivalence:

 $\mathbf{D}^{\text{Serre}}_{\text{LocSys}_{\check{G}}}:(\text{IndCoh}_{\text{Nilp}_{glob}}(\text{LocSys}_{\check{G}}))^{\vee}\to \text{IndCoh}_{\text{Nilp}_{glob}}(\text{LocSys}_{\check{G}}).$

(Here, as in Sect. 0.1.4, for a compactly generated category C , [we d](#page-5-0)enote by C^{\vee} the dual category.)

Hence, if we believe in the existence of an equivalence \mathbb{L}_G of (0.2), there should exist an equivalence

(0.3)
$$
(D\text{-mod}(Bun_G))^\vee \simeq D\text{-mod}(Bun_G).
$$

Now, the pseudo-identity functor Ps-Id $_{\text{Bun}_G}$, mentioned in Sect. 0.1.5 and appearing in Theorem 0.1.6 is exactly supposed to perform this role. More precisely, we can enhance the statement of GLC by specifying how it is supposed to interact with duality:

C 0.2.3. – *The diagram*

commutes up to a cohomological shift, where denotes the automorphism, induced by the Cartan invo[lution](#page-0-0) of G*.*

REMARK 0.2.4. – Let us comment on the presence of the Cartan inv[olution](#page-0-0) in Conjecture 0.2.3. In fact, it can be seen already when G is a torus T, in which case τ is the inversion automorphism.

Indeed, we let \mathbb{L}_T be the Fourier-Mukai equivalence, and Conjecture 0.2.3 i[s k](#page-40-3)nown to hold.

0.2.5*. Interaction of GLC with Eisenstein series*. – Let us recall (following [1, Conjecture 12.2.9] or [7, Sect. 6.4.5]) how the equivalence \mathbb{L}_G is supposed to be compatible with the functor(s) of Eisenstein series.

For a (standard) parabolic $P \subset G$, let \check{P} be the corresponding parabolic in \check{G} . Consider the diagram

1128 D. GAITSGORY

We define the functors of spectral Eisenstein series and constant term

 $Eis_{spec} : IndCoh(LocSys_{\check{M}}) \rightarrow IndCoh(LocSys_{\check{G}}), \quad Eis_{spec} := (p_{spec})_{*} \circ (q_{spec})^{*},$ $Eis_{spec} : IndCoh(LocSys_{\check{M}}) \rightarrow IndCoh(LocSys_{\check{G}}), \quad Eis_{spec} := (p_{spec})_{*} \circ (q_{spec})^{*},$ $CT_{spec} : IndCoh(LocSys_{\check{G}}) \rightarrow IndCoh(LocSys_{\check{M}}), \quad CT_{spec} := (q_{spec})_* \circ (p_{spec})^!,$ $CT_{spec} : IndCoh(LocSys_{\check{G}}) \rightarrow IndCoh(LocSys_{\check{M}}), \quad CT_{spec} := (q_{spec})_* \circ (p_{spec})^!,$ $CT_{spec} : IndCoh(LocSys_{\check{G}}) \rightarrow IndCoh(LocSys_{\check{M}}), \quad CT_{spec} := (q_{spec})_* \circ (p_{spec})^!,$

see [1, Sect. 12.2.1] for more details. The functors (Eis_{spec}, CT_{spec}) form an adjoint pair.

REMARK 0.2.6. – In [1, Conjecture 12.2.9] a slightly different version of the functor Eis_{spec} is given, where instead of the functor $(q_{\text{spec}})^*$ we use $(q_{\text{spec}})^!$. The difference between these two functors is given by tensoring by a graded line bundle on $\text{LocSys}_{\check{M}}$; this is due to the fact that the morphism qspec is *Gorenstein*. This difference [will](#page-5-0) be immaterial for the purposes [of t](#page-40-3)his paper.

The compatibility of the geometric Langlands equivalence of (0.2) with Eisenstein series reads (see [1, Conjecture 12.2.9]):

CONJECTURE 0.2.7. – The diagram

$$
\begin{array}{ccc}\n\text{D-mod(Bun}_G) & \xrightarrow{\mathbb{L}_G} \text{IndCoh}_{\text{Nilp}_{glob}}(\text{LocSys}_{\check{G}}) \\
& \xrightarrow{\text{Eis}_!} \uparrow & \uparrow \text{Eis}_{\text{spec}} \\
& \text{D-mod(Bun}_M) & \xrightarrow{\mathbb{L}_M} \text{IndCoh}_{\text{Nilp}_{glob}}(\text{LocSys}_{\check{M}})\n\end{array}
$$

commutes up to an automorphism of IndCoh_{Nilp_{glob} (LocSys_{\check{M}}), given by tensoring with a} certain canonically [define](#page-0-0)d gr[aded li](#page-0-0)ne bundle on $\text{LocSys}_{\check{M}}$.

0.2.8*. Recovering the "strange" functional equation*. – Let us now analyze what the combination of Conjectures 0.2.3 and 0.2.7 says about [the](#page-7-0) interaction of the functor Ps-Id_{BunG;} with E is₁. The conclusion that we will draw will amount to Theorem 0.1.8 of the present paper (the reader may safely choose to skip the derivation that follows).

First, passing to the right adjoint and then dual functors in (0.6), we obtain a diagram

$$
\begin{array}{ccc}\n\text{D-mod(Bun}_G)^\vee & \xrightarrow{(\mathbb{L}_G^\vee)^{-1}} (\text{IndCoh}_{\text{Nilp}_{\text{glob}}}(\text{LocSys}_{\check{G}})^\vee) \\
\text{(CT*)}^\vee & \xrightarrow{(\text{CT}_M)^\vee} \text{Tr}_{\text{Dec}}(\text{LocSys}_{\check{G}})^\vee \\
\text{D-mod(Bun}_M)^\vee & \xrightarrow{(\mathbb{L}_M^\vee)^{-1}} (\text{IndCoh}_{\text{Nilp}_{\text{glob}}}(\text{LocSys}_{\check{M}}))^\vee\n\end{array}
$$

that commutes up to a tensoring by a graded line bundle on $LocSys_{\check{M}}$.

Next, we note that the diagram

$$
(0.8) \qquad (\text{IndCoh}_{\text{Nilp}_{\text{glob}}}(LocSys_{\check{G}})^{\vee} \xrightarrow{\mathbf{D}^{\text{Serre}}_{LocSys_{\check{G}}}} \text{IndCoh}_{\text{Nilp}_{\text{glob}}}(LocSys_{\check{G}})
$$
\n
$$
(0.8) \qquad \qquad (\text{cr}_{spec})^{\vee} \uparrow \qquad \qquad \text{Eis}_{spec} \uparrow
$$

$$
(\text{IndCohn}_{\text{Nilp}_{\text{glob}}}(LocSys_{\check{M}})^{\vee} \xrightarrow{\mathbf{D}^{\text{Serre}}_{LocSys_{\check{M}}}} \text{IndCohn}_{\text{Nilp}_{\text{glob}}}(LocSys_{\check{M}})
$$

also commutes up to a tensoring by a graded line bundle on $LocSys_{\check{M}}$, see Remark 0.2.6.

Now, juxtaposing the diagrams (0.6) , (0.7) , (0.8) with the diagrams (0.4) for the groups G and M respectively, we obtain a commutative diagram:

 (0.9) $D\text{-mod}(Bun_G)^\vee$ $\xrightarrow{Ps\text{-Id}_{Bun_G,1}}$ $D\text{-mod}(Bun_G)$ $(\text{CT}_*)^{\vee}$ $\int \tau_G \circ Eis_! \circ \tau_M$ $\text{D-mod}(\text{Bun}_M)^{\vee} \xrightarrow{\text{Ps-Id}_{\text{Bun}_M}!} \text{D-mod}(\text{Bun}_M).$ $\text{D-mod}(\text{Bun}_M)^{\vee} \xrightarrow{\text{Ps-Id}_{\text{Bun}_M}!} \text{D-mod}(\text{Bun}_M).$ $\text{D-mod}(\text{Bun}_M)^{\vee} \xrightarrow{\text{Ps-Id}_{\text{Bun}_M}!} \text{D-mod}(\text{Bun}_M).$

Notice now that $\tau_G \circ Eis_! \circ \tau_M \simeq Eis_!$, so the commutative diagram (0.9) recovers the isomorphism of Theorem 0.1.8.

0.3. The usual functional equation

As was mentioned above, we view the commutativity of t[he](#page-40-4) diagram (0.9) as a kind of "strange" functional equation, hence the title of this paper.

Let us now compare it to the usual functional equation of [3, Theorem 2.1.8].

0.3.1. – In *loc.cit.* one considered the case of $P = B$, the Borel subgroup and hence $M = T$, the abstract [Ca](#page-40-4)rtan. We consider the full subcategory

$$
D\text{-mod}(Bun_T)^{reg} \subset D\text{-mod}(Bun_T),
$$

defined as in [3, Sect. 2.1.7]. This is a full subcategory that under the Fourier-Mukai equivalence

$$
D\text{-mod}(Bun_T) \simeq \text{QCoh}(\text{LocSys}_{\check{T}})
$$

corresponds to

$$
\mathrm{QCoh}(\mathrm{LocSys}_{\check{\mathcal{T}}}^{\mathrm{reg}}) \hookrightarrow \mathrm{QCoh}(\mathrm{LocSys}_{\check{\mathcal{T}}}),
$$

where $\text{LocSys}_{\check T}^{\text{reg}}\subset \text{LocSys}_{\check T}$ is the open locus of $\text{LocSys}_{\check T}$ consisting of those $\check T$ -local systems that [for eve](#page-13-0)ry root α of \check{T} induce a non-trivial local s[yst](#page-40-4)em for \mathbb{G}_m .

Instead of the functor Eis_l, or the functor that we introduce as Eis_{*} := $p_* \circ q'$ (see Sect. 1.1.6), an intermediate version was considered in [3, Sect. 2.1], which we will denote here by Eis_{1*}. The definition of Eis_{1*} uses the compactification of the morphism p, introduced in [3, Sect. 1.2]:

The assertion of [3, Theorem 2.1.8] (for the longest element of the Weyl group) is:

THEOREM 0.3.2. – *The following diagram of functors*

commutes u[p to a](#page-0-0) cohomological shift, where -shift is the functor of translation by the point $2\rho(\Omega_X)$. ⁽³⁾

[Theore](#page-0-0)m 0.3.2 is a geometric analog of the usual functional equation for Eisenstein [series](#page-0-0) in the theory of automorphic functions.

0.3.3*.* Let [us emp](#page-0-0)hasize the following points of difference between Theo[rems](#page-0-0) 0.1.8 and 0.3.2:

- Theorem 0.1.8 compares the fun[ctors](#page-0-0) Eis_1^- and $(CT_*)^{\vee}$ that take values in different categorie[s, i.e.,](#page-0-0) D-mod (Bun_G) vs. D-mod $(Bun_G)^\vee$, whereas in Theorem 0.3.2 both Eis_{!*} and Eis_{!*} map to D-mod(Bun_G).
- **–** The vertical arrows in Theor[em](#page-0-0) 0.1.8 use geometrically different functors, while in Theorem 0.3.2 these are functors of the [same](#page-0-0) nature, i.e., Eis_{1*} and Eis_{1*}^- .
- **–** The upper horizontal arrow Theorem 0.1.8 is the geome[tricall](#page-0-0)y non-trivial functor Ps-Id $_{\text{Bun}_G,l}$, while in Theorem 0.3.2 it is the identity functor.
- The lower horizontal ar[row in](#page-0-0) Theorem 0.1.8 for $M = T$ is isomorphic to the identity functor, [up to](#page-0-0) a cohomological shift, while in Theorem 0.3.2 we have the functor of ρ -shift.
- $-$ The commutation in 0.1.8 takes place on all of $D-mod(Bun_T)$, whereas in Theorem 0.3.2, it only takes place on D-mod $(Bun_T)^{reg}$.

0.4. Interaction with cuspidality

There is yet one more set of results contained in this paper, which has to do with the notion of cuspidality.

0.4.1*.* The cuspidal subcategories

D-mod $(\text{Bun}_G)_{\text{cusp}} \subset D\text{-mod}(\text{Bun}_G)$ and $(D\text{-mod}(\text{Bun}_G)^\vee)_{\text{cusp}} \subset D\text{-mod}(\text{Bun}_G)^\vee$

are defined as right-orthogonals of the subcategories generated by the essential images of the functors

Eis_!: D-mod(Bun_M) \rightarrow D-mod(Bun_G) and $(CT_*)^{\vee}$: D-mod(Bun_M)^{\vee} \rightarrow D-mod(Bun_G)^{\vee},

respectively, for all *proper* parabolics P of G.

(3) Here $2\rho : \mathbb{G}_m \to T$ is the coweight equal to the sum of positive coroots, and $\Omega_X \in \text{Pic}(X) = \text{Bun}_{\mathbb{G}_m}$ is the canonical line bundle on X.

0.4.2. – [Let u](#page-4-2)s return to the setting of Sect. 0.1.4 are recall the "naive" functor

 $\text{Ps-Id}_{\text{Bun}_G,\text{naive}} : \text{D-mod}(\text{Bun}_G)^{\vee} \to \text{D-mod}(\text{Bun}_G),$ $\text{Ps-Id}_{\text{Bun}_G,\text{naive}} : \text{D-mod}(\text{Bun}_G)^{\vee} \to \text{D-mod}(\text{Bun}_G),$ $\text{Ps-Id}_{\text{Bun}_G,\text{naive}} : \text{D-mod}(\text{Bun}_G)^{\vee} \to \text{D-mod}(\text{Bun}_G),$

see Sect. 0.1.4.

As was mentioned in *loc.cit.*, the functor $\text{Ps-Id}_{\text{Bun}_G,\text{naive}}$ fails to be an equivalence unless G is a torus. However, in Theorem 2.2.7 we show:

THEOREM 0.4.3. – *The restriction of the functor* Ps- $Id_{Bun_G,native}$ to

 $(D\text{-mod}(Bun_G)^\vee)_{\text{cusp}} \subset D\text{-mod}(Bun_G)^\vee$

defines an equivalence

 $(D\text{-mod}(Bun_G)^\vee)_{\text{cusp}} \to D\text{-mod}(Bun_G)_{\text{cusp}}.$

One can view Theorem 0.4.3 as [expres](#page-0-0)sing the fact that the objects of $(D\text{-mod}(Bun_G)^{\vee})_{\text{cusp}}$ and $D\text{-mod}(Bun_G)_{\text{cusp}}$ are "supported" on quasi-compact open substacks (see Propositions 2.3.2 and 2.3.4 for a precise statement).

 $0.4.4.$ – In addition, in Corollary 3.3.2 we show:

THEOREM 0.4.5. – *The functors*

 $\text{Ps-Id}_{\text{Bun}_G,\text{naive}}\mid_{(\text{D-mod}(\text{Bun}_G)^\vee)_{\text{cusp}}}$ $\text{Ps-Id}_{\text{Bun}_G,\text{naive}}\mid_{(\text{D-mod}(\text{Bun}_G)^\vee)_{\text{cusp}}}$ $\text{Ps-Id}_{\text{Bun}_G,\text{naive}}\mid_{(\text{D-mod}(\text{Bun}_G)^\vee)_{\text{cusp}}}$ and $\text{Ps-Id}_{\text{Bun}_G,!}\mid_{(\text{D-mod}(\text{Bun}_G)^\vee)_{\text{cusp}}}$

are isomorphic up to a cohomological shift.

Theorem 0.4.5 is responsible for the fact that previous studies in geometric Langlands correspondence that involved only cuspidal objects did not see the appearance of the functor Ps-Id_{BunG},! and one could afford to ignore the difference between D-mod(Bun_G) and D-mod $(Bun_G)^\vee$. In other words, usual manipulations with Verdier duality on cuspidal objects did not pr[od](#page-12-0)uce wrong results.

0.5. Structure of the paper

0.5.1*.* In Sect. 1 we recall the setting of [6], and list the various Eisenstein series and constant term functors for the [us](#page-40-0)ual category D -mod (Bun_G) . In fact there are two adjoint pairs: (Eis_!, CT_{*}) and (CT^{μ}, Eis^{μ}), where in the latter pair the superscript $\mu \in \pi_1(M)$ = $\pi_0(\text{Bun}_M)$ indicates that we are considering one connected component of Bun_M at a time.

We recall the main result of [6] that says that the functors CT_* and CT_1^- are canonically isomorphic.

Next, we consider the category $D\text{-mod}(Bun_G)_{co}$, which is nearly tautologically identified with the category that we have so far denoted D -mod $(Bun_G)^{\vee}$, and introduce the corresponding Eisenstein series and constant term functors:

$$
(\mathrm{Eis}_{\mathrm{co},*}, \mathrm{CT}_{\mathrm{co},?}) \text{ and } (\mathrm{CT}^{\mu}_{\mathrm{co},*}, \mathrm{Eis}^{\mu}_{\mathrm{co},?}),
$$

where Eis_{co} $* := (CT_*)^{\vee}$, $CT_{\text{co},*}^{\mu} := (Eis_{*}^{\mu})^{\vee}$ [.](#page-40-1)

The functor CT_{co} is something that we do not know how to express in terms of the usual functors in the theory of D-modules; it can be regarded as a *non-standard* functor in the terminology of [5, Sect. 3.3].

A priori, the functor $\mathrm{Eis}_{\text{co},?}^{\mu}$ would also be a non-standard functor. However, the isomorphism $CT_* \simeq CT_1^-$ gives rise to an isomorphism

$$
\mathrm{Eis}_{co,?} \simeq \mathrm{Eis}_{co,*}^-.
$$

0.5.2. – In Sect. 2 we recall the definition of the functor

 $Ps\text{-}Id_{\text{Bun}_G,\text{naive}}: D\text{-mod}(\text{Bun}_G)_{\text{co}} \to D\text{-mod}(\text{Bun}_G),$

and show that it intertwines the functors $Eis_{\rm co,*}$ and Eis_{*} , and $CT_{\rm co,*}$ and CT_{*} , respectively.

The remainder of this sec[tion is](#page-0-0) devoted to the study of the subcategory

 $D\text{-mod}(Bun_G)_{\text{co.cusp}} \subset D\text{-mod}(Bun_G),$

and the proof o[f T](#page-29-0)heorem 0.4.3, which says that the functor $Ps-Id_{Bun_{G,naiive}}$ defines an equivalence from D-mod $(Bun_G)_{co, cusp}$ to D-mod $(Bun_G)_{cusp} \subset D$ -mod (Bun_G) .

0.5.3. – In Sect. 3 we introduce the functor

 $Ps-Id_{Bun_G, !}: D-mod(Bun_G)_{co} \to D-mod(Bun_G),$ $Ps-Id_{Bun_G, !}: D-mod(Bun_G)_{co} \to D-mod(Bun_G),$

and study its behavior vis-à-vis the functor Ps-Id $_{\text{Bun}_G,\text{naive}}$. The relation is expressed by Proposition 3.2.6, wh[ose pro](#page-0-0)of is deferred to [9]. Proposition 3.2.6 essentially says that the difference between Ps-Id_{BunG;1} and Ps-Id_{BunG};naive can be expressed in terms of the Eisenstein and constant term functors for *proper* parabolics.

We prove Th[eo](#page-33-0)rem 0.4.5 that says that the functors Ps[-Id](#page-0-0)_{BunG}, and Ps-Id_{BunG},naive are isomorphic (up to a cohomological shift), when evaluated on cuspidal objects.

0.5.4. – In Sect. 4 w[e prov](#page-0-0)e our "strange" functional equation, i.e., Theorem 0.1.8. The proof is basical[ly a fo](#page-0-0)rmal manipulation from the isomorphism $CT_* \simeq CT_1^-$.

Having Theorem 0.1.8, we get control of the behavior of the functor Ps-Id_{BunG}, on the Eisenstein part of the category $D\text{-mod}(Bun_G)_{\text{co}}$. From here we deduce our main result, Theorem 0.1.6.

0.6. Conventions

The conventions in this paper follow those adopted in [5]. We refer the reader to *loc.cit.* for a review of the theory of DG categories (freely used in this paper), and the theory of D-modules on stacks.

0.7. Acknowledgements

The author would like to express his gratitude to V. Drinfeld. The main results of this paper, in particular, Theorem 0.1.8, were obtained in collaboration with him. Even more crucially, the very idea of the pseudo-identity functor $\text{Ps-Id}_{\text{Bun}_G,l}$ is the invention of his.

The author is supported by NSF grant DMS-1063470.

1. The inventory of categories and functors

1.1. Eisenstein series and constant term functors

1.1.1. – Let P be a parabolic in G with Levi quotient M . For

$$
\mu \in \pi_1(M) \simeq \pi_0(\text{Bun}_M) \simeq \pi_0(\text{Bun}_P),
$$

let Bun^{μ} (resp., Bun $_P^{\mu}$) denote the corresponding connected component of Bun_M (resp., Bun_P).

1.1.2. – Consider the diagram

We consider the fun[cto](#page-40-0)r

$$
CT_*^\mu: D\text{-mod}(Bun_G) \to D\text{-mod}(Bun_M^\mu), \quad CT_*^\mu = \mathsf{q}_*\circ \mathsf{p}^!.
$$

1.1.3. – According to [6, Corollary 1.1.3], the functor CT_*^μ admits a left adjoint, denoted by Eis_i^{μ} . Explicitly,

$$
\mathrm{Eis}^\mu_!=p_!\circ q^*.
$$

The above expression has to be understood as follows: the functor

$$
q^*: D\text{-mod}(Bun_M^{\mu}) \to D\text{-mod}(Bun_P^{\mu})
$$

is defined (because the morphism q is smooth), and the partially defined functor p_1 , left adjoint to $p^!$, is defined on the essential image of q^* by [6, Proposition 1.1.2].

1.1.4. – We define the functor $CT_* : D\text{-mod}(Bun_G) \to D\text{-mod}(Bun_M)$ as

$$
CT_* \simeq \bigoplus_{\mu} CT_*^{\mu}
$$

:

We define the functor $Eis_! : D\text{-mod}(Bun_M) \to D\text{-mod}(Bun_G)$ as

$$
\mathrm{Eis}_! \simeq \bigoplus_\mu \, \mathrm{Eis}_!^\mu \, .
$$

LEMMA 1.1.5. – *The functor* Eis₁ is the left adjoint of CT_* .

Proof. – Follows from the fact that

$$
\bigoplus_{\mu} \mathsf{CT}^{\mu}_* \simeq \prod_{\mu} \mathsf{CT}^{\mu}_*.
$$

1.1.6. – We now consider the functor $Eis_{*}^{\mu} : D-mod(Bun_{M}^{\mu}) \rightarrow D-mod(Bun_{G}),$ defined as $Eis_{*}^{\mu} = p_{*} \circ q^{!}.$

We let $Eis_{*}^{\mu,-}$ and $CT_{*}^{\mu,-}$ be s[im](#page-40-0)ilarly defined functors when instead of P we use the opposite parabolic P^- (we identify the Levi quotients of P and P^- via the isomorphism $M \simeq P \cap P^{-}$).

The following is the main result of [6]:

THEOREM 1.1.7. – The functor Eis^{μ}_* canonically identifies with the right adjoint of $CT_*^{\mu,-}$.

1.1.8. – We will use the notation

$$
CT_!^{\mu}: D\text{-mod}(Bun_G) \to D\text{-mod}(Bun_M^{\mu})
$$

for the left adjoint of Eis<sup>µ<[/](#page-40-0)sup>. If $\mathcal{F} \in D-mod(Bun_G)$ is such that the partially defined left adjoint p^* of p_* is d[efined](#page-0-0) on \mathcal{J} , then we have

$$
CT_!^\mu(\mathscr{J})\simeq q_!\circ p^*(\mathscr{J}).
$$

(The functor q_1 , left adjoint to q^1 , is well-defined by [6, Sect. 3.1.5].)

Hence, Theorem 1.1.7 can be reformulated as saying that CT_1^{μ} exists and is canonically isomorphic to $CT_*^{\mu,-}$.

1.1.9. – We define the functor $CT_! : D\text{-mod}(Bun_G) \to D\text{-mod}(Bun_M)$ as

$$
CT_! \simeq \bigoplus_{\mu} CT_!^{\mu},
$$

so $CT_! \simeq CT_*^-$.

We define the functor $Eis_* : D\text{-mod}(Bun_M) \to D\text{-mod}(Bun_G)$ as

 μ

$$
\mathrm{Eis}_* \simeq \bigoplus_{\mu} \mathrm{Eis}_*^{\mu}.
$$

We note, however, that it is *no longer true* that Eis_* is the right adjoint of CT_1 [.](#page-40-0) (Rather, the right adjoint of CT_! is the functor \prod Eis^{μ}.

In fact, one can show that the functor Eis_* *does not admit* a left adjoint, see [6, Sect. 1.2.1].

1.2. The dual category

1.2.1. – Let op-qc(G) denote the poset of open substacks $U \stackrel{j}{\hookrightarrow} \text{Bun}_G$ such that the intersection of U with every connected component of Bun_G is quasi-compact.

We have

(1.2)
$$
\text{D-mod}(\text{Bun}_G) \simeq \lim_{\substack{\longleftarrow \\ U \in \text{op-qc}(G)}} \text{D-mod}(U),
$$

where for $U_1 \stackrel{j_{1,2}}{\hookrightarrow} U_2$, the corresponding functor $D\text{-mod}(U_2) \to D\text{-mod}(U_1)$ is $j_{1,2}^*$ (see, e.g., [5, Lemma 2.3.2] for the proof).

Under the equivalence (1.2), for

$$
(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G),
$$

the tautological evaluation functor D-mod(Bun_G) \rightarrow D-mod(U) is j^{*}.

1.2.2*.* – The following DG category was introduced in [5, Sect. 4.3.3]:

(1.3)
$$
D\text{-mod}(Bun_G)_{co} := \underset{U \in op -qc(G)}{\text{colim}} D\text{-mod}(U),
$$

where for $U_1 \stackrel{j_{1,2}}{\hookrightarrow} U_2$, the corresponding functor $D\text{-mod}(U_1) \to D\text{-mod}(U_2)$ is $(j_{1,2})_*$, and where the colimit is taken in the category of cocomplete DG categories and continuous functors.

For $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ we let $j_{\text{co},*}$ denote the tautological functor

(1.4)
$$
j_{\text{co,*}} : \text{D-mod}(U) \to \text{D-mod}(\text{Bun}_G)_{\text{co}}
$$

1.2.3. – Verdier duality functors

 $\mathbf{D}_U : \mathrm{D-mod}(U)^{\vee} \simeq \mathrm{D-mod}(U)$

for $U \in op-qc(G)$ and the identifications

$$
((j_{1,2})_*)^{\vee} \simeq (j_{1,2})^*, \quad U_1 \stackrel{j_{1,2}}{\hookrightarrow} U_2
$$

give rise to an identificatio[n](#page-40-1)

(1.5) Funct_{cont} $(D\text{-mod}(Bun_G)_{\text{co}}, \text{Vect}) \simeq D\text{-mod}(Bun_G).$

Now, the main result of [5], namely, Theorem 4.1.8, implies:

THEOREM 1.2.4. – *The category* D-mod(Bun_G)_{co} *is compactly generated (and, in particular, dualiza[ble\)](#page-14-0).*

Proof. – The truncatability of Bun_G means that in the presentation of D-mod(Bun_G)_{co} as a colimit (1.3), we can replace the index poset op- $qc(G)$ by a *cofinal* poset that consists of quasi-compact open substacks that are *co-truncative*.

Then the resulting colimit

$$
\underset{U}{\text{colim}} \text{ D-mod}(U)
$$

consists [of co](#page-14-1)mpactly generated categories and functors *that preserve compactness*. In this case, the resulting colimit category is compactly generated, e.g., by [5, Corollary 1.9,4]. \Box

From (1.5), and knowing that D-mod(Bun_G)_{co} is dualizable, we obtain a canonical identification

(1.6)
$$
\mathbf{D}_{\text{Bun}_G}: \text{D-mod}(\text{Bun}_G)^{\vee} \simeq \text{D-mod}(\text{Bun}_G)_{\text{co}}.
$$

Under this identification, for $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ we have the following canonical identification of functors

$$
(j_{\text{co},*})^{\vee} \simeq j^*.
$$

1.2.5. – Similar constructions and notation apply when instead of all of Bun_G we consider one of its connected components Bun_G^{λ} , $\lambda \in \pi_1(G)$.

1.3. Dual, adjoint and conjugate functors

1.3.1. – Let C_1 and C_2 be two DG categories, and let

$$
F: C_1 \rightleftarrows C_2 : \mathsf{G}
$$

be a pair of *continuous* mutually adjoint functors.

1.3.2. – By passing to dual functors, the adjunction data

$$
Id_{C_1} \to G \circ F \text{ and } F \circ G \to Id_{C_2}
$$

gives rise to

$$
\mathrm{Id}_{C_1^\vee} \to \mathsf{F}^\vee \circ \mathsf{G}^\vee \text{ and } \mathsf{G}^\vee \circ \mathsf{F}^\vee \to \mathrm{Id}_{C_2^\vee},
$$

making

$$
\mathsf{G}^\vee: C_1^\vee \rightleftarrows C_2^\vee: \mathsf{F}^\vee
$$

into a pair of adjoint functors.

1.3.3. $-$ Assume now that C_1 is compactly generated. In this case, the fact that the right adjoint G of F is continuous is equivalent to the fact that F preserves compactness. I.e., it defines a functor between non-cocomplete DG categories

 $C_1^c \rightarrow C_2^c$

and hence, by passing to the opposite categories, a functor

$$
(\mathbf{C}_1^c)^{\mathrm{op}} \to (\mathbf{C}_2^c)^{\mathrm{op}}.
$$

Following [8, Sect. 1.5], we let

$$
\mathsf{F}^{op} : \mathbf{C}_1^\vee \to \mathbf{C}_2^\vee
$$

denote the functor obtained as the composition of:

- (i) The identification $\mathbb{C}_1^{\vee} \simeq \text{Ind}((\mathbb{C}_1^c)^{\text{op}})$;
- (ii) The ind-extension $Ind((C_1^c)^{op}) \to Ind((C_2^c)^{op})$ of (1.7);
- (iii) The fully faithful embedding $(\mathbb{C}_2^c)^{op} \hookrightarrow \mathbb{C}_2^{\vee}$.

We call F^{op} the functor *conjugate* to F.

1.3.4*.* The following is [8, Lemma 1.5.3]:

LEMMA 1.3.5. – We have a canonical isomorphism of functors $F^{\rm op} \simeq G^{\vee}$.

1.4. Dual Eisenstein series and constant term functors

1.4.1. – We define the functor

$$
\mathrm{Eis}^{\mu}_{\mathrm{co},*}:D\text{-mod}(Bun^\mu_M)_{\mathrm{co}}\to D\text{-mod}(Bun_G)_{\mathrm{co}}
$$

as

$$
Eis_{co,*}^{\mu} \simeq (CT_*^{\mu})^{\vee}
$$

under the identifications (1.6) and

$$
\mathbf{D}_{\mathrm{Bun}_M^{\mu}}:\mathrm{D\text{-}mod}(\mathrm{Bun}_M^{\mu})^{\vee}\simeq \mathrm{D\text{-}mod}(\mathrm{Bun}_M^{\mu})_{\mathrm{co}}.
$$

We define

$$
\mathrm{Eis}_{\mathrm{co},*}:D\text{-mod}(Bun_M)_{\mathrm{co}}\to D\text{-mod}(Bun_G)_{\mathrm{co}}
$$

as

$$
\mathrm{Eis}_{\mathrm{co},*} := \bigoplus_{\mu} \mathrm{Eis}_{\mathrm{co},*}^{\mu} \simeq (\mathrm{CT}_{*})^{\vee}.
$$

Note that by Lemma 1.3.5, we have:

C 1.4.2. – *There are canonical isomorphisms*

$$
Eis_{\text{co},*} \simeq (\text{Eis}_!)^{\text{op}} \text{ and } \text{Eis}_{\text{co},*}^{\mu} \simeq (\text{Eis}_!^{\mu})^{\text{op}}.
$$

1.4.3. – We define the functor

 $CT_{\text{co},\ast}^{\mu}: D\text{-mod}(Bun_G)_{\text{co}} \to D\text{-mod}(Bun_M^{\mu})_{\text{co}}$

as

$$
CT^{\mu}_{\text{co},*} \simeq (\text{Eis}^{\mu}_{*})^{\vee}.
$$

We define

$$
CT_{co,*}: D\text{-mod}(Bun_G)_{co} \to D\text{-mod}(Bun_M)_{co}
$$

as

$$
CT_{co,*} := \bigoplus_{\mu} CT_{co,*}^{\mu} \simeq (Eis_*)^{\vee}.
$$

From Lemma 1.3.5, we obtain:

C 1.4.4. – *There is a canonical isomorphism*

$$
CT^{\mu}_{co,*} \simeq (CT^{\mu}_!)^{op}.
$$

1.4.5*.* Define also

$$
CT_{\text{co},?}^{\mu} := (\text{Eis}_{!}^{\mu})^{\vee} \text{ and } CT_{\text{co},?} := (\text{Eis}_{!})^{\vee} \simeq \bigoplus_{\mu} CT_{\text{co},?}^{\mu},
$$

$$
\text{Eis}_{\text{co},?}^{\mu} := (CT_{!}^{\mu})^{\vee} \text{ and } \text{Eis}_{\text{co},?} := (CT_{!})^{\vee} \simeq \bigoplus_{\mu} \text{Eis}_{\text{co},?}^{\mu}.
$$

By Sect. 1.3.2, we obtain the following pairs of adjoint functors

$$
Eis_{\text{co},*}^{\mu}: D\text{-mod}(Bun_M^{\mu})_{\text{co}} \rightleftarrows D\text{-mod}(Bun_G)_{\text{co}}: CT_{\text{co},?}^{\mu},
$$

$$
Eis_{\text{co},*}: D\text{-mod}(Bun_M)_{\text{co}} \rightleftarrows D\text{-mod}(Bun_G)_{\text{co}}: CT_{\text{co},?}^{\mu},
$$

and

$$
CT^{\mu}_{co,*}: D\text{-mod}(Bun_{G})_{co} \rightleftarrows D\text{-mod}(Bun_{M}^{\mu})_{co}: Eis^{\mu}_{co,?}.
$$

1.4.6_{*. – Finally, from Theorem 1.1.7, we obtain:*}

C 1.4.7. – *There are canonical isomorphisms of functors*

$$
\mathrm{Eis}^{\mu}_{\mathrm{co},?}\simeq \mathrm{Eis}^{\mu,-}_{\mathrm{co},*},\quad \mathrm{Eis}_{\mathrm{co},?}\simeq \mathrm{Eis}^-_{\mathrm{co},*}
$$

and

$$
CT_{co,*}^{\mu} \simeq (CT_*^{\mu,-})^{\text{op}}.
$$

To summarize, we also obtain an adjunction

$$
CT^{\mu}_{co,*}: D\text{-mod}(Bun_G)_{co} \rightleftarrows D\text{-mod}(Bun_M^{\mu})_{co}: Eis^{\mu,-}_{co,*}.
$$

1.4.8. – We can ask the following question: does the fu[nctor](#page-15-0) $CT_{\text{co},*}^{\mu}$ admit a *left* adjoint? The answer is "no":

Proof. – If $CT_{\text{co},\ast}^{\mu}$ had admitted a left adjoint, by Sect. 1.3.2, the functor Eis_{\ast}^{μ} would have admitted a *continuous* right adjoint. However, this is not the case, since the functor

 $Eis_{*}^{\mu}: D\text{-mod}(Bun_{M}^{\mu}) \rightarrow D\text{-mod}(Bun_{G})$

does not preserve compactness.

1.5. Explicit description of the dual functors

1.5.1. – For $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ we consider the functor $j^* : \text{D-mod}(\text{Bun}_G) \rightarrow$ D-mod (U) , and its right adjoint j_* .

Define

 $j_{\rm co}^* : D\text{-mod}(Bun_G)_{\rm co} \to D\text{-mod}(U)$

as

$$
j_{\text{co}}^* := (j_*)^{\vee}.
$$

By Sect. 1.3.2, the functors

 $j_{\text{co}}^* : \text{D-mod}(\text{Bun}_G)_{\text{co}} \rightleftarrows \text{D-mod}(U) : j_{\text{co},*}$

form an adjoint pair, where $j_{\text{co},*}$ is as in (1.4).

LEMMA 1.5.2. – *The functor* j_{co} , *is fully faithful.*

4 ^e SÉRIE – TOME 50 – 2017 – N^o 5

 \Box

Proof. – We need to show that the co-unit of the adjunction

$$
j^*_{\text{co}} \circ j_{\text{co},*} \to \text{Id}_{\text{D-mod}(U)}
$$

is an isomorphism. But this follows from the fact that the corresponding map between the dual functors, i.e.,

$$
j^* \circ j_* \to \mathrm{Id}_{\mathrm{D}\text{-}\mathrm{mod}(U)},
$$

is an isomorphism (the latter because $j_* : D\text{-mod}(U) \to D\text{-mod}(Bun_G)$ is fully faithful). \square

1.5.3. – By the definition of D-mod(Bun_G)_{co}, the functor $j_{\rm co}^*$ amounts to a compatible family of functors

$$
j_{\text{co}}^* \circ (j_1)_{\text{co},*}: \text{D-mod}(U_1) \to \text{D-mod}(U)
$$

for $(U_1 \stackrel{j_1}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$.

It is easy to see from the definitions that

$$
j_{\text{co}}^* \circ (j_1)_{\text{co},*} \simeq (j_1')_* \circ (j')^*,
$$

where

$$
U \cap U_1 \xrightarrow{j'_1} U
$$

$$
j' \downarrow \qquad \qquad \downarrow j
$$

$$
U_1 \xrightarrow{j_1} \text{Bun}_G.
$$

1.5.4. – Again, by the definition of the category D -mod $(Bun_M)_{co}$, the functor $Eis_{co,*}$ amounts to a compatible family of functors

$$
\mathrm{Eis}_{\mathrm{co},*} \circ (j_M)_{\mathrm{co},*}: \mathrm{D-mod}(U_M) \to \mathrm{D-mod}(\mathrm{Bun}_G)_{\mathrm{co}}
$$

for $(U_M \stackrel{j_M}{\hookrightarrow} \text{Bun}_M) \in \text{op-qc}(M)$. We now claim:

PROPOSITION 1.5.5. – *For a given* $(U_M \stackrel{j_M}{\hookrightarrow} \text{Bun}_M) \in \text{op-qc}(M)$, let $(U_G \stackrel{j_G}{\hookrightarrow} \text{Bun}_G) \in$ op- $\text{qc}(G)$ *be such that*

$$
\mathsf{p}(\mathsf{q}^{-1}(U_M))\subset U_G.
$$

Then there is a canonical isomorphism

 $\mathrm{Eis}_{\mathrm{co},*} \circ (j_M)_{\mathrm{co},*} \simeq (j_G)_{\mathrm{co},*} \circ (j_G)^* \circ \mathrm{Eis}_* \circ (j_M)_* : \quad \mathrm{D}\text{-mod}(U_M) \to \mathrm{D}\text{-mod}(\mathrm{Bun}_G)_{\mathrm{co}}.$

Proof. – [Fir](#page-18-0)st, we claim that there is a canonical isomorphism

(1.8)
$$
Eis_{\text{co},*} \circ (j_M)_{\text{co},*} \simeq (j_G)_{\text{co},*} \circ (j_G)_{\text{co}}^* \circ Eis_{\text{co},*} \circ (j_M)_{\text{co},*}.
$$

Indeed, (1.8) follows by passing to dual functors in the isomorphism

$$
(j_M)^* \circ \mathrm{CT}_* \simeq (j_M)^* \circ \mathrm{CT}_* \circ (j_G)_* \circ (j_G)^*,
$$

where the latter follows by base change from the definition.

Hence, it remains to establish a canonical isomorphism of functors

 $(j_G)_{\text{co}}^* \circ \text{Eis}_{\text{co},*} \circ (j_M)_{\text{co},*} \simeq (j_G)^* \circ \text{Eis}_* \circ (j_M)_*, \quad \text{D-mod}(U_M) \to \text{D-mod}(U_G),$

i.e., an isomorphism

$$
((j_M)^* \circ \mathrm{CT}_* \circ (j_G)_*)^{\vee} \simeq (j_G)^* \circ \mathrm{Eis}_* \circ (j_M)_*.
$$

However, the latter amounts to pull-push along the diagram

where $U_P := q^{-1}(U_M)$.

1.5.6. – The functor $CT_{co,*}$ amounts to a compatible family of functors

 $CT_{co.*} \circ (j_G)_{co.*} : D\text{-mod}(U_G) \to D\text{-mod}(Bun_M)_{co}$ $CT_{co.*} \circ (j_G)_{co.*} : D\text{-mod}(U_G) \to D\text{-mod}(Bun_M)_{co}$ $CT_{co.*} \circ (j_G)_{co.*} : D\text{-mod}(U_G) \to D\text{-mod}(Bun_M)_{co}$

for $(U_G \stackrel{j_G}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$.

In a similar way to Proposition 1.5.5, we have:

PROPOSITION 1.5.7. – *For a given* $(U_G \stackrel{j_G}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$, let $(U_M \stackrel{j_M}{\hookrightarrow} \text{Bun}_M) \in$ op- $\text{qc}(M)$ *be such that*

$$
\mathsf{q}(\mathsf{p}^{-1}(U_G))\subset U_M.
$$

Then there is a canonical isomorphism

 $CT_{\text{co},*} \circ (j_G)_{\text{co},*} \simeq (j_M)_{\text{co},*} \circ (j_M)^* \circ CT_* \circ (j_G)_* : \quad \text{D-mod}(U_G) \to \text{D-mod}(Bun_M)_{\text{co}}.$

2. Interaction with the naive pseudo-identity and cuspidality

2.1. The naive pseudo-identity functor

2.1.1*.* The follo[win](#page-40-1)g functor

 $Ps-Id_{BunG,native} : D-mod(Bun_G)_{co} \rightarrow D-mod(Bun_G)$

was introduced in [5, Sect. 4.4.2]:

For $(U_G \stackrel{jG}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$, the composition

 $Ps\text{-}Id_{\text{Bun}_G\text{-naive}} \circ j_{\text{co},*}: D\text{-mod}(U_G) \to D\text{-mod}(\text{Bun}_G)$

is by definition the functor j_{\ast} .

REMARK 2.1.2. – The functor Ps-Id_{BunG}, naive is very far from being an equivalence, unless G is a torus. For example, in [8, Theorem 7.7.2], a particular object of D-mod(Bun_G)_{co} was constructed, which belongs to ker(Ps-Id_{BunG}, naive), as soon as the semi-simple part of G is non-trivial.

4 ^e SÉRIE – TOME 50 – 2017 – N^o 5

 \Box

2.1.3. – Recall the equivalence:

$$
Function(D\text{-}mod(Bun_G)_{co}, D\text{-}mod(Bun_G)) \simeq (D\text{-}mod(Bun_G)_{co})^{\vee} \otimes D\text{-}mod(Bun_G)
$$

$$
\simeq D\text{-}mod(Bun_G) \otimes D\text{-}mod(Bun_G)
$$

$$
\simeq
$$
 D-mod(Bun_G × Bun_G).

According to [5, Sect. 4.4.3], the functor Ps- $Id_{Bun_G,naive}$ corresponds to the object

 $(\Delta_{Bun_G})_*(\omega_{Bun_G}) \in D\text{-mod}(Bun_G \times Bun_G),$

where Δ_{Bun_G} denotes the diagonal morphism on Bun_G , and ω_y is the dualizing object on a stack \mathcal{Y} (we take $\mathcal{Y} = \text{Bun}_G$).

From here we obtain:

LEMMA 2.1.4. – *There exists a canonical isomorphism* Ps- $Id_{Bun_G,native}^{\vee} \simeq$ Ps- $Id_{Bun_G,native}$.

Proof. – This expresses the fact that $(\Delta_{Bun_G})_*(\omega_{Bun_G})$ is equivariant with respect to the flip automorphism of D-mod($Bun_G \times Bun_G$). \Box

COROLLARY 2.1.5. – For
$$
(U_G \stackrel{j_G}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)
$$
, we have a canonical isomorphism:
\n $j^* \circ \text{Ps-Id}_{\text{Bun}_G,\text{naive}} \simeq j^*_{\text{co}}$.

Proof. – Obtained by passing to the dual functors is

$$
\text{Ps-Id}_{\text{Bun}_G,\text{naive}} \circ j_{\text{co},*} \simeq j_*.
$$

 $2.1.6.$ – We now claim:

PROPOSITION 2.1.7. – *There are canonical isomorphisms*

 $\text{Ps-Id}_{\text{Bun}_G,\text{naive}} \circ \text{Eis}_{\text{co},\ast} \simeq \text{Eis}_\ast \circ \text{Ps-Id}_{\text{Bun}_M,\text{naive}}$

and

 $\text{Ps-Id}_{\text{Bun}_M, \text{naive}} \circ \text{CT}_{\text{co},*} \simeq \text{CT}_* \circ \text{Ps-Id}_{\text{Bun}_G, \text{naive}}.$

Proof. – We will prove the first isomorphism, while the second one is similar. By definition, we need to construct a compatible family of isomorphisms of functors

Ps-Id_{BunG}, naive \circ [Eis](#page-0-0)_{co,*} \circ (*j_M*)_{co,*} \simeq Eis_{*} \circ Ps-Id_{Bun*M*}, naive \circ (*jM*)_{co,*}

for $(U_M \stackrel{j_M}{\hookrightarrow} \text{Bun}_M) \in \text{op-qc}(M)$.

For a given U_M , let U_G be as in Proposition 1.5.5. We rewrite

Ps-Id_{Bun_G,naive} o Eis_{co,*} o(
$$
j_M
$$
)_{co,*} \simeq Ps-Id_{Bun_G,naive} o(j_G)_{co,*} o (j_G)^{*} o Eis_{*} o(j_M)_{*}
 $\simeq (j_G)_* \circ (j_G)^* \circ$ Eis_{*} o(j_M)_{*}.

However, it is easy to see that for the above choice of U_G , the natural map

$$
Eis_* \circ (j_M)_* \to (j_G)_* \circ (j_G)^* \circ Eis_* \circ (j_M)_*
$$

is an isomorphism.

Now, by definition,

$$
\mathrm{Eis}_{*} \circ \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_M,\mathrm{naive}} \circ (j_M)_{\mathrm{co},*} \simeq \mathrm{Eis}_{*} \circ (j_M)_{*},
$$

and the assertion follows. (It is clear that these isomorphisms are independent of the choice of U_G , and hence are compatible under $(U_1)_M \hookrightarrow (U_2)_M$.) \Box

2.2. Cuspidality

2.2.1. – Recall that in [6, Sect. 1.4] the full subcategory

 $D\text{-mod}(Bun_G)_{\text{cusp}} \subset D\text{-mod}(Bun_G)$

was defined as the intersection of the kernels of the functors CT_* for *all proper parabolic subgroups* $P \subset G$.

Equivalently, let

$$
D\text{-mod}(Bun_G)_{Eis} \subset D\text{-mod}(Bun_G)
$$

be the full subcategory, generated by the essential images of the functors Eist for all proper parabolics. From the $(Eis₁, CT_*)$ -adjunction, we obtain

$$
D\text{-mod}(Bun_G)_{\text{cusp}} = (D\text{-mod}(Bun_G)_{\text{Eis}})^{\perp}.
$$

 $2.2.2¹ -$ We let

 $D\text{-mod}(Bun_G)_{co,Eis} \subset D\text{-mod}(Bun_G)_{co}$

be the full subcategory generated by the essential images of the functors

 Eis_{co} : $D\text{-mod}(Bun_M)_{\text{co}} \rightarrow D\text{-mod}(Bun_G)_{\text{co}}$.

We define

$$
D\text{-mod}(Bun_G)_{\text{co,cusp}} := (D\text{-mod}(Bun_G)_{\text{co,Eis}})^{\perp}.
$$

Equivalently, D-mod(Bun_G Bun_G)_{co,cusp} is the intersection of the kernels of the functors $CT_{co,?}$ for all proper parabolics.

2.2.3*.* From Corollary 1.4.2 we obtain:

COROLLARY 2.2.4. - (1) *An object of* D-mod(Bun_G)_{co} *is cuspidal if and only if its pairing with every object of* D -mod $(Bun_G)_{Eis}$ *is zero under the canonical map*

 $\langle -, - \rangle_{Bun_G} : D\text{-mod}(Bun_G) \times D\text{-mod}(Bun_G)_{co} \to Vect$

corresponding to $\mathbf{D}_{\text{Bun}_G}$.

(2) The identification $D_{Bun_G} : D\text{-mod}(Bun_G)^{\vee} \simeq D\text{-mod}(Bun_G)_{co}$ *induces identifications*

 $(D\text{-mod}(Bun_G)_{Eis})^{\vee} \simeq D\text{-mod}(Bun_G)_{co,Eis}$ *and* $(D\text{-mod}(Bun_G)_{cusp})^{\vee} \simeq D\text{-mod}(Bun_G)_{co,cusp}.$

REMARK 2.2.5. – We will see shortly that D-mod $(Bun_G)_{\text{co,cusp}}$ belongs to the intersection of the kernels of the functors $CT_{co,*}$ for all proper parabolics. But this inclusion is strict. For example fr $G = SL_2$, the object from [8, Theorem 7.7.2] belongs to CT_{co}, $*$ (there is only one parabolic to consider), but it does not belong to $D\text{-mod}(Bun_G)_{\text{co.cusp}}$.

2.2.6. – Our goal for the rest of this section is to prove:

THEOREM 2.2.7. – *The restriction of the functor* Ps- $Id_{Bun_G,native}$ to

 $D\text{-mod}(Bun_G)_{\text{co,cusp}} \subset D\text{-mod}(Bun_G)_{\text{co}}$

takes values in D-mod(Bun_G)_{cusp} \subset D-mod(Bun_G *), and defines an equivalence*

 $D\text{-mod}(Bun_G)_{\text{co,cusp}} \to D\text{-mod}(Bun_G)_{\text{cusp}}.$

2.3. Support of cuspidal objects

2.3.1. – The following crucial property of D-mod(Bun_G)_{cusp} was established in [6, Proposition 1.4.6]:

PROPOSITION 2.3.2. – *There exists an element* $(\mathcal{U}_G \stackrel{J_G}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ *, such that for any* $\mathcal{F} \in D$ -mod(Bun_G)_{cusp}, the maps

$$
(J_G)_{!} \circ (J_G)^*(\mathcal{J}) \to \mathcal{J} \to (J_G)_* \circ (J_G)^*(\mathcal{J})
$$

are isomorphisms.

2.3.3. – We now claim that a parallel phenomenon takes place for $D\text{-mod}(Bun_G)_{\text{co.cusp}}$:

PROPOSITION 2.3.4. – *For any* $\mathcal{F} \in D\text{-mod}(Bun_G)_{\text{co,cusp}}$ *, the map*

$$
\mathcal{F} \to (JG)_{\text{co},*} \circ (JG)_{\text{co}}^*(\mathcal{F})
$$

is an isomorphism.

Proof. – We need to show that the map from the tautological embedding

(2.1)
$$
D\text{-mod}(Bun_G)_{\text{co,cusp}} \stackrel{e_{\text{co}}}{\hookrightarrow} D\text{-mod}(Bun_G)_{\text{co}}
$$

to the composition

 $D\text{-mod}(Bun_G)_{\text{co,cusp}} \stackrel{\mathfrak{e}_{\text{co}}}{\longleftrightarrow} D\text{-mod}(Bun_G)_{\text{co}} \stackrel{(j_G)_{\text{co}}^*}{\longrightarrow} D\text{-mod}(\mathcal{U}_G) \stackrel{(j_G)_{\text{co},*}}{\longrightarrow} D\text{-mod}(Bun_G)_{\text{co}}$ $D\text{-mod}(Bun_G)_{\text{co,cusp}} \stackrel{\mathfrak{e}_{\text{co}}}{\longleftrightarrow} D\text{-mod}(Bun_G)_{\text{co}} \stackrel{(j_G)_{\text{co}}^*}{\longrightarrow} D\text{-mod}(\mathcal{U}_G) \stackrel{(j_G)_{\text{co},*}}{\longrightarrow} D\text{-mod}(Bun_G)_{\text{co}}$ is an isomorphism.

Note that in terms of the identification of Corollary 2.2.4(b), the dual of the embedding $\mathbf{e}_{\rm co}$ of (2.1) is the functor

(2.2)
$$
\mathbf{f}: \mathbf{D}\text{-mod}(\mathbf{Bun}_G) \to \mathbf{D}\text{-mod}(\mathbf{Bun}_G)_{\text{cusp}},
$$

left adjoint to the tautological embedding D-mod $(\text{Bun}_G)_{\text{cusp}} \stackrel{e}{\hookrightarrow} \text{D-mod}(\text{Bun}_G)$.

Hence, by duality, we need to show that the functor (2.2) maps isomorphically to the composition

 $D\text{-mod}(Bun_G) \xrightarrow{(JG)^*} D\text{-mod}(\mathcal{U}_G) \xrightarrow{(JG)^*} D\text{-mod}(Bun_G) \xrightarrow{f} D\text{-mod}(Bun_G)_{cusp}.$

The latter is equivalent to the fact that any $\mathcal{F}' \in D\text{-mod}(Bun_G)$ for which J_G^* ${}_{G}^{*}({\mathcal{J}}')=0,$ is left-orthogo[nal to](#page-0-0) $D\text{-mod}(Bun_G)_{cusp}$. However, this follows from the isomorphism

$$
\mathcal{F} \to (J_G)_* \circ (J_G)^*(\mathcal{F}), \quad \mathcal{F} \in \mathbf{D}\text{-mod}(\mathbf{Bun}_G)_{\text{cusp}}
$$

of Proposition 2.3.2.

ANNALES SCIENTIFIQUES DE L'ÉCOLE NORMALE SUPÉRIEURE

 \Box

2.4. Description of the cuspidal category

2.4.1*.* We claim:

PROPOSITION 2.4.2. $-$ Let $\mathcal{F} \in \mathbf{D}\text{-mod}(\text{Bun}_G)_{\text{co}}$ *be such that there exists* $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in$ $op-qc(G)$ *such that the map*

$$
\mathcal{F} \to j_{\text{co},*} \circ j_{\text{co}}^*(\mathcal{F})
$$

is an isomorphism. Then $\mathcal{F} \in D\text{-mod}(Bun_G)_{\text{co,cusp}}$ *if and only if* $CT_{\text{co,*}}(\mathcal{F}) = 0$ *for all proper parabolics.*

Proof. – Recall that

$$
\langle -, - \rangle_{Bun_G} : D\text{-mod}(Bun_G)_{co} \times D\text{-mod}(Bun_G) \to \text{Vect}
$$

denotes the pairing corresponding [to the](#page-0-0) identification

 $\mathbf{D}_{\text{Bun}_G}$: D-mod $(\text{Bun}_G)^\vee \simeq \text{D-mod}(\text{Bun}_G)_{co}.$

On the one hand, by Corollary 1.4.2, for $\mathcal{J}_G \in D\text{-mod}(Bun_G)_{\text{co}}$, the condition that \mathcal{F}_G be right-orthogonal to the essential image of Eis_{co,*} for a given parabolic P is equivalent to

 $\langle Eis_1(\mathcal{F}_M), \mathcal{F}_G \rangle_{Bun_G} = 0, \quad \mathcal{F}_M \in \mathcal{D}\text{-mod}(Bun_M).$

If $\mathcal{F}_G = j_{\text{co},*}(\mathcal{F}_U)$, then the above is equivalent to

$$
\langle j^* \circ \mathrm{Eis}_! (\mathcal{J}_M), \mathcal{J}_U \rangle_U = 0,
$$

where

$$
\langle -, - \rangle_U : D\text{-mod}(U)_{\text{co}} \times D\text{-mod}(U) \to \text{Vect}
$$

is the pairing corresponding to $\mathbf{D}_U : D\text{-mod}(U)^\vee \simeq D\text{-mod}(U)$.

On the other hand, the condition that $CT_{co,*}(\mathcal{J}_G) = 0$ for the same parabolic is equivalent to

$$
\langle \mathrm{Eis}_*(\mathcal{J}_M), \mathcal{J}_G \rangle_{\mathrm{Bun}_G},
$$

i.e.,

$$
\langle j^* \circ \mathrm{Eis}_*(\mathcal{J}_M), \mathcal{J}_U \rangle_U = 0.
$$

Hence, the assertion of Proposition 2.4.2 follows from the next one, proved in Sect. 2.5:

PROPOSITION 2.4.3. – (a) For $\mathcal{J}_M \in D$ -mod(Bun_M), the object $Eis_*(\mathcal{J}_M)$ admits an increasing filtration (indexed by a poset) with subquotients of the form $Eis_!(\mathcal{J}_M^{\alpha})$, $\mathcal{J}_M^{\alpha} \in$ D -mod (Bun_M) .

(b) Assume that \mathcal{F}_M is supported on finitely many connected components of Bun_M , and $let (U \stackrel{j}{\hookrightarrow} Bun_G) \in op-qc(G)$ *. Then:*

(i) The objects $j^* \circ Eis_!(\mathcal{T}_M^{\alpha})$ from point (a) are zero for all but finitely many α 's.

(ii) The object j^* \circ Eis_! (\mathcal{J}_M) is a finite successive extension of objects of the form $j^* \circ \text{Eis}_*(\mathcal{J}_M^{\alpha}), \mathcal{J}_M^{\alpha} \in \text{D-mod}(\text{Bun}_M).$ \Box

 $2.4.4.$ – We now observe:

PROPOSITION 2.4.5. $-$ *Let* $\mathcal{F} \in D$ -mod $(Bun_G)_{co}$ *be such that there exists* $(U_G \stackrel{iG}{\hookrightarrow} Bun_G) \in$ $op-qc(G)$ *such that the map*

$$
\mathcal{J} \to (j_G)_{\text{co},*} \circ (j_G)_{\text{co}}^*(\mathcal{J})
$$

is an isomorphism. Then Ps-Id_{BunG}, naive $(\mathcal{F}) \in D$ -mod $(Bun_G)_{cusp}$ *if and only if* $CT_{\text{co}, *}(T) = 0$ *for all proper parabolics.*

Proof. – We claim that for \mathcal{F} satisfying the condition of the proposition, for a given parabolic P,

$$
CT_* \circ Ps\text{-}Id_{\text{Bun}_G,\text{naive}}(\mathcal{J}) = 0 \ \Leftrightarrow \ CT_{co,*}(\mathcal{J}) = 0.
$$

Indeed, the implication \Leftarrow holds for *any* \mathcal{F} by Proposition 2.1.7.

Conversely, let $(U_M \stackrel{j_M}{\hookrightarrow} \text{Bun}_M) \in \text{op-qc}(M)$ be as in Proposition 1.5.7. For

$$
\mathcal{J} \simeq (j_G)_{\text{co},*}(\mathcal{J}_{U_G}),
$$

by Proposition 1.5.7, we have

$$
CT_{co,*}(\mathcal{J}) \simeq (j_M)_{co,*} \circ (j_M)^* \circ CT_* \circ (j_G)_*(\mathcal{J}_{U_G})
$$

\simeq (j_M)_{co,*} \circ (j_M)^* \circ CT_* \circ Ps-Id_{Bun_G,native} \circ (j_G)_{co,*}(\mathcal{J}_{U_G})
\simeq (j_M)_{co,*} \circ (j_M)^* \circ CT_* \circ Ps-Id_{Bun_G,native}(\mathcal{J}).

2.4.6*.* – Combining Propositions 2.3.4, 2.4.2 and 2.4.5 we obtain:

COROLLARY 2.4.7. – *For* $\mathcal{F} \in D\text{-mod}(Bun_G)_{\text{co}}$ *the following conditions are equivalent:*

(i) $\mathcal{F} \in D\text{-mod}(Bun_G)_{\text{co,cusp}}$;

(ii) *There exists* $(U \stackrel{j}{\hookrightarrow} Bun_G) \in op-qc(G)$ *such that the map* $\mathcal{J} \rightarrow j_{co,*} \circ j_{co}^*(\mathcal{J})$ *is an isomorphism* and Ps-Id_{BunG}, naive $(\mathcal{F}) \in D$ -mod $(Bun_G)_{cusp}$.

(ii') *There exists* $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ su[ch that](#page-0-0) the map $\mathscr{F} \to j_{\text{co},*} \circ j_{\text{co}}^*(\mathscr{F})$ is an *isomorphism* and CT_{co} . $(\mathcal{F}) = 0$ *for all proper parabolics.*

(iii) *For* $(\mathcal{U}_G \stackrel{JG}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ *as in Prop.* [2.3.2](#page-0-0)*, the map* $\mathcal{J} \to (J_G)_{co,*} \circ (J_G)_{co}^*(\mathcal{J})$ *is an isomorphism* and Ps-Id_{BunG}, naive $(\mathcal{F}) \in D$ -mod $(Bun_G)_{cusp}$.

(iii') *For* $(\mathcal{U}_G \stackrel{J_G}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ *as in Prop.* 2.3.2*, the map* $\mathcal{J} \to (J_G)_{co,*} \circ (J_G)_{co}^*(\mathcal{J})$ *is an isomorphism* and $CT_{co,*}(\mathcal{J}) = 0$ *for all proper parabolics.*

2.4.8*. Proof of Theorem* 2.2.7. – From Corollary 2.4.7 we obtain that the functor $Ps-Id_{Bun_G,naiive}$ sends

$$
D\text{-mod}(Bun_G)_{\text{co,cusp}} \to D\text{-mod}(Bun_G)_{\text{cusp}}.
$$

We construct the inverse functor as follows. Let $(\mathcal{U}_G \stackrel{J_G}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ be as in Proposition 2.3.2. The sought-for functor

$$
D\text{-mod}(Bun_G)_{\text{cusp}} \to D\text{-mod}(Bun_G)_{\text{co}}
$$

is

$$
\mathcal{F} \mapsto (JG)_{\text{co},*} \circ (JG)^*(\mathcal{F}).
$$

We claim that the image of this functor lands in $D\text{-mod}(Bun_G)_{\text{co,cusp}}$. Indeed, by Proposition 2.4.5, its suffices to check that

$$
\text{Ps-Id}_{\text{Bun}_G,\text{naive}} \circ (j_G)_{\text{co},\ast} \circ (j_G)^\ast(\mathcal{J}) \in \text{D-mod}(\text{Bun}_G)_{\text{cusp}}.
$$

However,

$$
\text{Ps-Id}_{\text{Bun}_G,\text{naive}} \circ (j_G)_{\text{co},\ast} \circ (j_G)^*(\mathcal{J}) \simeq (j_G)_* \circ (j_G)^*(\mathcal{J}),
$$

and the latter is isomorphic to $\mathcal F$ by Proposition 2.4.5.

Let us now check that the two functors are inverses of each other. However, we have just shown that the composition

$$
D\text{-mod}(Bun_G)_{\text{cusp}} \to D\text{-mod}(Bun_G)_{\text{co,cusp}} \to D\text{-mod}(Bun_G)_{\text{cusp}}
$$

is isomorphic to the identity functor.

For the composi[tion in](#page-0-0) the other direction, for $\mathcal{J} \in D\text{-mod}(Bun_G)_{\text{co,cusp}}$ we consider

$$
(JG)_{\text{co},*} \circ (JG)^* \circ \text{Ps-Id}_{\text{Bun}_G,\text{naive}}(\mathcal{J}),
$$

which by Corollary 2.1.5 is isomorphic to

$$
(JG)_{\text{co},\ast} \circ (JG)_{\text{co}}^{\ast}(\mathcal{J}),
$$

 \Box

and the latter is isomorphic to $\mathcal F$ by Proposition 2.3.4.

2.5. Proof of Proposition [2.](#page-40-4)4.3

2.5.1. – The proof of the proposition uses the relative compactification Bun $\frac{r}{\Theta} \widetilde{\text{Bun}}_P$ of the map p, introduced in [3, Sect. 1.3.6]:

 (2.3)

Note that for $\mathcal{J}_M \in D\text{-mod}(Bun_M)$, we have

$$
\mathrm{Eis}_*(\mathcal{J}_M) \simeq \widetilde{\mathsf{p}}_*\left(\widetilde{\mathsf{q}}^!(\mathcal{J}_M) \overset{!}{\otimes} r_*(\omega_{\mathrm{Bun}_P})\right) \simeq \widetilde{\mathsf{p}}! \left(\widetilde{\mathsf{q}}^!(\mathcal{J}_M) \overset{!}{\otimes} r_*(\omega_{\mathrm{Bun}_P})\right),
$$

t[he](#page-40-4) latter isomorphism due to the fact that \tilde{p} is proper. Here the notation $\stackrel{!}{\otimes}$ (and, in the sequel, $\hat{\otimes}$) follows [6, Sect. 1.1.5].

Recall now that according to [3, Theo[rem](#page-26-0) 5.1.5], the object

$$
r_*(\omega_{\text{Bun}_P}) \in \text{D-mod}(\widetilde{\text{Bun}}_P)
$$

is *universally locally acyclic* (a.k.a. ULA)⁽⁴⁾ with respect to the map \widetilde{q} . This implies that

$$
\widetilde{\mathsf{q}}^!(\mathcal{J}_M) \overset{!}{\otimes} r_*(\omega_{\mathrm{Bun}_P}) \simeq \widetilde{\mathsf{q}}^*(\mathcal{J}_M) \overset{*}{\otimes} r_*(\omega_{\mathrm{Bun}_P})[-2\dim(\mathrm{Bun}_M)].
$$

Thus, we obtain that, up to a cohomological shift, $Eis_*(\mathcal{J}_M)$ is isomorphic to

(2.4)
$$
\widetilde{\mathsf{p}}\colon \left(\widetilde{\mathsf{q}}^*(\mathcal{J}_M) \overset{*}{\otimes} r_*(\omega_{\mathrm{Bun}_P})\right).
$$

2.5.2. – Let $\Lambda_{G,P}^{\text{pos}}$ be the monoid of linear combinations

$$
\theta = \sum_{i} n_i \cdot \alpha_i,
$$

where $n_i \in \mathbb{Z}^{\geq 0}$ and α_i is a simple coroot of G, which is not in M.

For each θ , we let $Mod_{\text{Bun}_M}^{\theta,+}$ be a version of the Hecke stack, introduced in [2, Sect. 3.1]:

Set

$$
\mathrm{Mod}^{\theta,+}_{\mathrm{Bun}_P} := \mathrm{Bun}_P \underset{\mathrm{Bun}_M}{\times} \mathrm{Mod}^{\theta,+}_{\mathrm{Bun}_M},
$$

where the fiber product is formed using the map h : Mod $_{\text{Bun}_M}^{\theta,+}$ \rightarrow Bun_M.

According to [3, Proposition 6.2.5], there is a canonically defined locally closed embedding

$$
r^{\theta}: \mathrm{Mod}_{\mathrm{Bun}_P}^{\theta,+} \to \widetilde{\mathrm{Bun}}_P,
$$

 (4) See [6, Sect. 1.1.5] for what the ULA condition means.

making the following diagram commute

(The right diamond is intentionally lopsided to emphasize that it is *not* Cartesian.) Furthermore,

(2.5)
$$
\widetilde{\text{Bun}}_P = \bigsqcup_{\theta \in \Lambda_{G,P}^{\text{pos}}} r^{\theta} (\text{Mod}_{\text{Bun}}^{\theta,+}).
$$

For $\theta = 0$, t[he m](#page-25-0)ap \overleftrightarrow{h} h is an isomorphism, and the resulting map

$$
Bun_P \simeq \text{Mod}_{\text{Bun}_P}^{0,+} \overset{r^0}{\hookrightarrow} \widetilde{\text{Bun}}_P
$$

is the map r in (2.3).

The following is easy to see from the construction:

LEMMA 2.5.3. – For $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$ and $\mu \in \pi_1(M)$, the preimage of $U \times \text{Bun}_M^{\mu}$ under the map

$$
\mathrm{Mod}^{\theta,+}_{\mathrm{Bun}_P} \stackrel{r^{\theta}}{\hookrightarrow} \widetilde{\mathrm{Bun}}_P \stackrel{\widetilde{p} \times \widetilde{q}}{\longrightarrow} \mathrm{Bun}_G \times \mathrm{Bun}_M
$$

is empty for all but finitely many elements θ .

2.5.4*.* The decomposition (2.5) endows the object

$$
r_*(\omega_{\text{Bun}_P}) \in \text{D-mod}(\widetilde{\text{Bun}}_P)
$$

with an increasing filtration, indexed by the poset $\Lambda_{G,P}^{pos}$, with the θ subquotient equal to

$$
r^{\theta})_! \circ (r^{\theta})^* \circ r_*(\omega_{\text{Bun}_P}).
$$

Hence, by the projection formula, the object in (2.4) admits a filtration, indexed by $\Lambda_{G,P}^{\text{pos}}$, with the θ subquotient equal to

(2.6)
$$
\widetilde{p}_! \circ r_!^{\theta} \left((r^{\theta})^* \circ \widetilde{q}^* (\mathcal{J}_M) \overset{*}{\otimes} (r^{\theta})^* \circ r_*(\omega_{\text{Bun}_P}) \right).
$$

 $\overline{}$

Moreover, if \mathcal{F}_M is supported on finitely many components of Bun_M, the restriction of the subquotient (2.6) to $U \in op-qc(G)$ is zero for all but finitely many θ by Lemma 2.5.3.

2.5.5*.* We have the following assertion, proved by the same argument as [3, Theorem 6.2.10]:

LEMMA 2.5.6. – *The object* $(r^{\theta})^* \circ r_*(\omega_{\text{Bun}_P}) \in D-mod(\text{Mod}^{\theta,+}_{\text{Bun}_P})$ *is lisse when !-restricted to the fiber of the map*

$$
\mathrm{q}: \mathrm{Mod}_{\mathrm{Bun}_P}^{\theta,+} \to \mathrm{Mod}_{\mathrm{Bun}_M}^{\theta,+}
$$

over any k-point of $\text{Mod}_{\text{Bun}_M}^{\theta,+}$.

COROLLARY 2.5.7. $-(r^{\theta})^* \circ r_*(\omega_{\text{Bun}_P}) \simeq 'q^*(\mathcal{X}^{\theta})$ for some $\mathcal{X}^{\theta} \in \text{D-mod}(\text{Mod}_{\text{Bun}_M}^{\theta,+})$.

Proof. – Follows from Lemma 2.5.6 plus the combination of the following three facts: (1) the map 'q is smooth; (2) $(r^{\theta})^* \circ r_*(\omega_{\text{Bun}_P})$ is holonomic with regular singularities; (3) the fibers of the map q [are](#page-0-0) contractible (and hence any RS [loca](#page-27-1)l system on such a fiber is canonically trivial). \Box

2.5.8. – By Corollary 2.5.7, we can rewrite the subquotient (2.6) as

$$
\widetilde{p}_! \circ r_!^{\theta} \left((r^{\theta})^* \circ \widetilde{q}^* (\mathcal{J}_M) \overset{*}{\otimes} (q)^* (\mathcal{K}^{\theta}) \right),
$$

and further, using the fact that

$$
\widetilde{\mathsf{q}} \circ r^{\theta} = \overrightarrow{h} \circ \mathsf{q} \text{ and } \widetilde{\mathsf{p}} \circ r^{\theta} = \mathsf{p} \circ \overleftarrow{h}
$$

as

$$
p_!\circ'\overleftarrow{h}_!\circ'q^*\left(\overrightarrow{h}^*(\mathcal{J}_M)\overset{*}{\otimes}\mathcal{K}^\theta\right)\simeq p_!\circ q^*\left(\overleftarrow{h}_!(\overrightarrow{h}^*(\mathcal{J}_M)\overset{*}{\otimes}\mathcal{K}^\theta)\right).
$$

To summarize, we iden[tify th](#page-0-0)e subquotient (2.6) with

$$
\mathrm{Eis}_! \left(\overset{\leftarrow}{h}_! (\vec{h}{}^* (\mathcal{J}_M) \overset{\ast}{\otimes} \mathcal{K}^{\theta}) \right),
$$

as required in Proposition 2.4.3(a)[. The fi](#page-0-0)niteness assertion in Proposition 2.4.3(b)(i) follows from the finiteness at the end of Sect. 2.5.4.

2.5.9*.* The proof of Proposition 2.4.3(b)(ii) is similar, but with the following modification:

Let $k_{\text{Bun}_P} \in D\text{-mod(Bun}_P)$ be the "constant sheaf" D-module, i.e., the Verdier dual of $\omega_{{\rm Bun}_P}$.

Then the object

$$
r_!(k_{\mathrm{Bun}_P}) \in \mathrm{D\text{-}mod}(\widetilde{\mathrm{Bun}}_P)
$$

admits a *decreasing* filtration, indexed by the poset $\Lambda_{G,P}^{\text{pos}}$, with the θ subquotient being

$$
(r^{\theta})_{*} \circ (r^{\theta})^! \circ r_!(k_{\text{Bun}_P}).
$$

However, this filtration is finite on the preimage of $U \times \text{Bun}_M^{\mu}$ for any $U \in \text{op-qc}(G)$ and $\mu \in \pi_1(M)$ under the map $\widetilde{p} \times \widetilde{q}$, again by Lemma 2.5.3.

1150 D. GAITSGORY

3. Interactio[n w](#page-40-1)ith the genuine pseudo-identity functor

3.1. The pseudo-identity functor

3.1.1*.* We now recall that in [5, Sect. 4.4.8] another functor, denoted

$$
Ps\text{-}Id_{Bun_G, !}: D\text{-}mod(Bun_G)_{co} \to D\text{-}mod(Bun_G)
$$

was introduced.

Namely, in terms of the equivalences

(3.1)

$$
Function(D\text{-mod}(Bun_G)_{co}, D\text{-mod}(Bun_G)) \simeq (D\text{-mod}(Bun_G)_{co})^{\vee} \otimes D\text{-mod}(Bun_G)
$$

 \simeq D-mod $(Bun_G) \otimes D$ -mod (Bun_G)

 \simeq D-mod(Bun_G \times Bun_G),

the functor Ps- $Id_{BunG,i}$ corresponds to the object

 $(\Delta_{\text{Bun}_G})_!(k_{\text{Bun}_G}) \in D\text{-mod}(\text{Bun}_G \times \text{Bun}_G).$

3.1.2. – Note the following feature of the functor $Ps-Id_{Bun_G, s}$, parallel to one for Ps-Id_{BunG}, naive, given by Lemma 2.1.4.

LEMMA 3.1.3. – *Under the identification* $D\text{-mod}(Bun_G)^{\vee} \simeq D\text{-mod}(Bun_G)_{co}$, we have

$$
(Ps\text{-}Id_{Bun_G,!})^{\vee} \simeq Ps\text{-}Id_{Bun_G,!}.
$$

Proof. – This is just the fact that the object $(\Delta_{Bun_G})_!(k_{Bun_G}) \in D-mod(Bun_G \times Bun_G)$ is equivariant with respect to the flip. \Box

3.1.4*.* The goal of this section and the next is to prove:

THEOREM 3.1.5. – *The functor* Ps-Id_{Bun G},*i is an equivalence.*

The proof will rely on a certain geometric result, namely, Proposition 3.2.6 proved in [9].

3.2. Relation between the two functors

3.2.1*.* Consider again the map

 Δ_{Bun_G} : Bun $_G \to \text{Bun}_G \times \text{Bun}_G$.

It naturally factors as

$$
Bun_G \stackrel{id_{Bun_G}^Z}{\to} Bun_G\times B(Z_G)\stackrel{\Delta_{Bun_G}^Z}{\xrightarrow{\qquad \qquad }Bun_G\times Bun_G,
$$

where:

- Z_G denotes the center of G, and $B(Z_G)$ is its classifying stack;
- The map $id_{Bun_G}^Z$ is given by the identity map $Bun_G \to Bun_G$, and

$$
Bun_G \to pt \stackrel{triv}{\to} B(Z_G),
$$

where triv : pt \rightarrow $B(Z_G)$ corresponds to the trivial Z_G -bundle;

- The composition $pr_1 \circ \Delta_{Bun_G}^Z$ is projection on the first factor $Bun_G \times B(Z_G) \to Bun_G$;
- The composition $pr_2 \circ \Delta_{Bun_G}^Z$ is given by the natural action of $B(Z_G)$ on Bung.

REMARK 3.2.2. – Note that if G is a torus, the map $\Delta_{\text{Bun}_G}^Z$ is an isomorphism.

3.2.3*.* – We write

$$
(\Delta_{\mathrm{Bun}_G})_*(\omega_{\mathrm{Bun}_G}) \simeq (\Delta_{\mathrm{Bun}_G}^Z)_* \circ (\mathrm{id}_{\mathrm{Bun}_G}^Z)_*(\omega_{\mathrm{Bun}_G}).
$$

In addition,

$$
(\Delta_{\text{Bun}_G})_!(k_{\text{Bun}_G}) \simeq (\Delta_{\text{Bun}_G}^Z)_! \circ (\text{id}_{\text{Bun}_G}^Z)_!(k_{\text{Bun}_G})
$$

$$
\simeq (\Delta_{\text{Bun}_G}^Z)_! \circ (\text{id}_{\text{Bun}_G}^Z)_!(\omega_{\text{Bun}_G})[-2 \dim(\text{Bun}_G)],
$$

the latter isomorphism is due to the fact that Bun_G is smooth.

It is easy to see that

$$
\operatorname{triv}_!(k) \simeq \operatorname{triv}_*(k)[- \dim(Z_G)].
$$

Hence,

$$
(\Delta_{\text{Bun}_G})_!(k_{\text{Bun}_G}) \simeq (\Delta_{\text{Bun}_G}^Z)_! \circ (\text{id}_{\text{Bun}_G}^Z)_*(\omega_{\text{Bun}_G})[-2\dim(\text{Bun}_G) - \dim(Z_G)].
$$

Now, the morphism

$$
\Delta_{\text{Bun}_G}^Z : \text{Bun}_G \times B(Z_G) \to \text{Bun}_G \times \text{Bun}_G
$$

is schematic and separated. Hence, we obtain a natural transformation

$$
(3.2) \qquad (\Delta^Z_{\text{Bun}_G})_! \to (\Delta^Z_{\text{Bun}_G})_*.
$$

Summarizin[g, we](#page-30-0) obtain a [map](#page-20-0)

$$
(3.3) \qquad (\Delta_{\text{Bun}_G})_!(k_{\text{Bun}_G}) \to (\Delta_{\text{Bun}_G})_*(\omega_{\text{Bun}_G})[-2\dim(\text{Bun}_G) - \dim(Z_G)].
$$

 $3.2.4.$ – From (3.3) and Sect. 2.1.3, we obtain a natural transformation:

(3.4)
$$
Ps\text{-}Id_{Bun_G,!} \rightarrow Ps\text{-}Id_{Bun_G,naive}[-2\dim(Bun_G) - \dim(Z_G)]
$$

as functors $D\text{-mod}(Bun_G)_{co} \to D\text{-mod}(Bun_G)$.

Let Ps-Id_{BunG,diff} : D-mod(Bun_G)_{co} \rightarrow D-mod(Bun_G) denote the cone of the natural transformation (3.4).

3.2.5*.* We claim:

PROPOSITION 3.2.6. – *The functor* Ps-Id_{BunG}, diff *admits a decreasing filtration, indexed by a poset, with subquotients being functors of the form*

$$
\text{D-mod}(\text{Bun}_G)_{\text{co}} \xrightarrow{\text{CT}^{\mu}_{\text{co},*}} \text{D-mod}(\text{Bun}^{\mu}_{M})_{\text{co}} \xrightarrow{\text{Ps-Id}_{\text{Bun}^{\mu}_{M},\text{naive}}} \text{D-mod}(\text{Bun}^{\mu}_{M})
$$
\n
$$
\xrightarrow{\text{F}^{\mu,\mu'}} \text{D-mod}(\text{Bun}^{\mu'}_{M}) \xrightarrow{\text{Eis}^{\mu'}_{*}-} \text{D-mod}(\text{Bun}_G),
$$

for a proper *parabolic P with Levi quotient M*, where $\mu, \mu' \in \pi_1(M)$ and $F^{\mu,\mu'}$ is some functor $D\text{-mod}(Bun_M^{\mu'}) \to D\text{-mod}(Bun_M^{\mu'})$. Furthermore, for a pair

$$
(U_1 \stackrel{j_1}{\hookrightarrow} \text{Bun}_G), (U_2 \stackrel{j_2}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G),
$$

the induced filtration on

 j_1^* $j_1^* \circ \text{Ps-Id}_{\text{Bun}_G,\text{diff}} \circ (j_2)_{\text{co},*}$

is finite.

1152 D. GAITSGORY

Th[e proo](#page-0-0)f of Proposition 3.2.6 is analo[gou](#page-41-0)s to that of Proposition 2.4.3 and is given in [9].

As its geometric ingredient, instead of the stack \widetilde{Bun}_P appearing in the proof of Proposition 2.4.3, one uses a compactification of the morphism $\Delta_{\text{Bun}_G}^{Z_G}$ which can be constructed using Vinberg's canonical semi-group of [10] attached to G.

3.3. Pseudo-identity and cuspidality

3.3.1*.* As a consequence of Proposition 3.2.6, we obtain:

C 3.3.2. – *The morphism* (3.4) *induces an isomorphism*

 $\text{Ps-Id}_{\text{Bun}_G,!}\big|_{\text{D-mod}(\text{Bun}_G)_{\text{co,cusp}}} \simeq \text{Ps-Id}_{\text{Bun}_G,\text{naive}}\big|_{\text{D-mod}(\text{Bun}_G)_{\text{co,cusp}}}[-2\dim(\text{Bun}_G) - \dim(Z_G)].$ $\text{Ps-Id}_{\text{Bun}_G,!}\big|_{\text{D-mod}(\text{Bun}_G)_{\text{co,cusp}}} \simeq \text{Ps-Id}_{\text{Bun}_G,\text{naive}}\big|_{\text{D-mod}(\text{Bun}_G)_{\text{co,cusp}}}[-2\dim(\text{Bun}_G) - \dim(Z_G)].$ $\text{Ps-Id}_{\text{Bun}_G,!}\big|_{\text{D-mod}(\text{Bun}_G)_{\text{co,cusp}}} \simeq \text{Ps-Id}_{\text{Bun}_G,\text{naive}}\big|_{\text{D-mod}(\text{Bun}_G)_{\text{co,cusp}}}[-2\dim(\text{Bun}_G) - \dim(Z_G)].$

Proof. – By the definition of D-mod(Bun_G), it is sufficient to show that for any $(U_1 \stackrel{j_1}{\hookrightarrow} \text{Bun}_G) \in \text{op-qc}(G)$, the map (3.4) induces an isomorphism

$$
j_1^* \circ \text{Ps-Id}_{\text{Bun}_G,!}|_{D\text{-mod}(\text{Bun}_G)_{\text{co,cusp}}} \to
$$

$$
\to j_1^* \circ \text{Ps-Id}_{\text{Bun}_G,\text{naive}}|_{D\text{-mod}(\text{Bun}_G)_{\text{co,cusp}}}[-2\dim(\text{Bun}_G) - \dim(Z_G)].
$$

Let us take $U_2 := \mathcal{U}_G$ as in Proposition 2.3.2. By Proposition 2.3.4, it suffices to show that for $\mathcal{F} \in D\text{-mod}(Bun_G)_{\text{co,cusp}}$

$$
j_1^* \circ \mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_G, \mathrm{diff}} \circ (j_2)_{\mathrm{co},*} \circ (j_2)_{\mathrm{co}}^* (\mathcal{J}) = 0.
$$

However, this follows from Proposition 3.2.6:

Indeed, the object i[n ques](#page-0-0)tion has a finite filtration, with subquotients isomorphic to

$$
j_1^* \circ \mathrm{Eis}^{\mu',-}_* \circ \mathsf{F}^{\mu,\mu'} \circ \mathrm{Ps\text{-}Id}_{\mathrm{Bun}_M^{\mu},\mathrm{naive}} \circ \mathrm{CT}^\mu_{\mathrm{co},*} \circ (j_2)_{\mathrm{co},*} \circ (j_2)_{\mathrm{co}}^* (\mathcal{J}),
$$

which, by Proposition 2.3.4, is iso[morphi](#page-0-0)c to

$$
j_1^*\circ \mathrm{Eis}^{\mu',-}_*\circ \mathsf{F}^{\mu,\mu'}\circ \mathrm{Ps\text{-}Id}_{\mathrm{Bun}_M^{\mu},\mathrm{naive}}(\mathrm{CT}^\mu_{\mathrm{co},*}(\mathcal{J})),
$$

while $CT_{\text{co},\ast}^{\mu}(\mathcal{J})=0$ by Corollary 2.4.7.

COROLLARY 3.3.3. – *The functor* [Ps-Id](#page-0-0)_{Bun $_G$,*l*} *induces [an eq](#page-0-0)uivalence*

$$
D\text{-mod}(Bun_G)_{co,cusp} \to D\text{-mod}(Bun_G)_{cusp}.
$$

Proof. – Follows from Theorem 2.2.7 and Corollary 3.3.2.

3.3.4*.* The next assertion is a crucial step in the proof of Theorem 3.1.5:

PROPOSITION 3.3.5. – *The functor* **Ps-Id_{BunG}**;*l induces an isomorphism*

 $\text{Hom}_{\text{D-mod}(Bun_G)_{co}}(\mathcal{J}', \mathcal{J}) \to \text{Hom}_{\text{D-mod}(Bun_G)}(\text{Ps-Id}_{Bun_G, !}(\mathcal{J}'), \text{Ps-Id}_{Bun_G, !}(\mathcal{J})),$

provided that $\mathcal{J}' \in \mathbf{D}\text{-mod}(\text{Bun}_G)_{\text{co,cusp}}$.

4 ^e SÉRIE – TOME 50 – 2017 – N^o 5

 \Box

3.4. Proof of Proposition 3.3.5

3.4.1. – Let us first assume that \mathcal{J} has the form $j_{\text{co},*}(\mathcal{J}_U)$ for some $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in$ $op-qc(G)$.

Consider the commutative diagram

(3.5)

$$
\begin{array}{cccc}\n\text{Hom}(\mathcal{J}', \mathcal{J}) & \longrightarrow & \text{Hom}(\text{Ps-Id}_{\text{Bun}_G, \text{naive}}(\mathcal{J}'), \text{Ps-Id}_{\text{Bun}_G, \text{naive}}(\mathcal{J})) \\
\downarrow & & \downarrow\n\end{array}
$$

 $\text{Hom}(\text{Ps-Id}_{\text{Bun}_G,!}(\mathcal{J}'), \text{Ps-Id}_{\text{Bun}_G,!}(\mathcal{J})) \longrightarrow \text{Hom}(\text{Ps-Id}_{\text{Bun}_G,!}(\mathcal{J}'), \text{Ps-Id}_{\text{Bun}_G, \text{naive}}(\mathcal{J})[d]),$ where $d = -2 \dim(\text{Bun}_G) - \dim(Z_G)$.

We need to show that the left vertical arrow is an iso[mor](#page-32-0)phism. We will do so by showing that all the other arrows are isomorphisms.

3.4.2. – First, we claim that upper horizontal arrow in (3.5) is an isomorphism for any $\mathcal{J}' \in$ D-mod(Bun_G)_{co} and $\mathcal{F} = j_*(\mathcal{F}_U)$. Indeed, the map in question fits into a commutative diagram

$$
\text{Hom}_{\text{D-mod}(\text{Bun}_G)_{\text{co}}}\left(\mathcal{F}', j_{\text{co},*}(\mathcal{F}_U)\right) \longrightarrow \text{Hom}(\text{Ps-Id}_{\text{Bun}_G, \text{naive}}\left(\mathcal{F}', \text{Ps-Id}_{\text{Bun}_G, \text{naive}} \circ j_{\text{co},*}(\mathcal{F}_U)\right) \longrightarrow \downarrow
$$
\n
$$
\downarrow \sim
$$
\n
$$
\text{Hom}_{\text{D-mod}(U)}\left(j_{\text{co}}^*(\mathcal{F}'), \mathcal{F}_U\right) \longrightarrow \text{Hom}_{\text{D-mod}(\text{Bun}_G)}(\text{Ps-Id}_{\text{Bun}_G, \text{naive}}(\mathcal{F}'), j_*(\mathcal{F}_U)) \downarrow
$$
\n
$$
\downarrow \sim
$$
\n
$$
\text{Hom}_{\text{D-mod}(U)}\left(j_{\text{co}}^*(\mathcal{F}'), \mathcal{F}_U\right) \longrightarrow \text{Hom}_{\text{D-mod}(U)}\left(j^* \circ \text{Ps-Id}_{\text{Bun}_G, \text{naive}}(\mathcal{F}'), \mathcal{F}_U\right).
$$

3.4.3*.* The right vertical arrow in (3.5) is an isomorphism by Corollary 3.3.2.

To show that the lower horizontal arrow is an isomorphism, using Corollary 3.3.3, it suffices to show t[hat for](#page-0-0) any $\mathcal{F}'' \in D\text{-mod}(Bun_G)_{\text{cusp}}$, we have

 $\text{Hom}_{\text{D-mod}(\text{Bun}_G)}(\mathcal{J}'', \text{Ps-Id}_{\text{Bun}_G, \text{diff}} \circ j_{\text{co},*}(\mathcal{J}_U)) = 0.$

By Proposition 2.3.2,

$$
\text{Hom}_{\text{D-mod(Bun}_G)}(\mathcal{J}'', \text{Ps-Id}_{\text{Bun}_G, \text{diff}} \circ j_{\text{co},*}(\mathcal{J}_U))
$$

$$
\simeq \text{Hom}_{\text{D-mod}(\mathcal{U}_G)}(J_G^*(\mathcal{J}''), J_G^* \circ \text{Ps-Id}_{\text{Bun}_G, \text{diff}} \circ j_{\text{co},*}(\mathcal{J}_U)).
$$

Applying Prop. 3.2[.6, we](#page-0-0) obtain that it suffices to show that for $\mathcal{F}'' \in D\text{-mod}(Bun_G)_{\text{cusp}}$ $\mathrm{Hom}_{\mathbf{D}\text{-}\mathrm{mod}(\mathscr{U}_G)}\left(J_G^*(\mathscr{F}''), J_G^*\circ \mathrm{Eis}^{\mu',-}_*\circ \mathsf{F}^{\mu,\mu'}\circ \mathrm{Ps\text{-}Id}_{\mathrm{Bun}_M^{\mu},\mathrm{naive}}\circ \mathrm{CT}^\mu_{\mathrm{co},*}\circ j_{\mathrm{co},*}(\mathscr{F}_U) \right)=0,$ which by Proposition 2.3.2 is equivalent to

$$
\mathrm{Hom}_{\mathrm{D-mod}(\mathrm{Bun}_G)}\left(\mathcal{J}'', \mathrm{Eis}^{\mu',-}_*\circ\mathsf{F}^{\mu,\mu'}\circ\mathrm{Ps}\text{-}\mathrm{Id}_{\mathrm{Bun}_M^{\mu},\mathrm{naive}}\circ\mathrm{CT}^{\mu}_{\mathrm{co},*}\circ j_{\mathrm{co},*}(\mathcal{J}_U)\right)=0.
$$

Now, D-mod(Bun_G)_{cusp} is *left-orthogonal* to the essential image of $Eis_{*}^{\mu'}$ by Theorem 1.1.7, implying the desired vanishing.

3.4.4*.* We will now reduce the assertion of Proposition 3.[3.5](#page-40-1) to the situation of Sect. 3.4.1.

Let us r[ecall t](#page-0-0)hat according to [5, Theorem 4.1.8], any element $(U \stackrel{j}{\hookrightarrow} \text{Bun}_G) \in$ $op-qc(G)$ is contained in one which is *co-truncative*. See [5, Sect. 3.8] for what it means for an open substack to be co-truncati[ve.](#page-40-1) In particular, the open substack \mathcal{U}_G of Proposition 2.3.2 can be enlarged so that it is co-truncative.

Recall also that for a co-truncative open substack $U \stackrel{j}{\hookrightarrow} \text{Bun}_G$, the functor $j_{\text{co},\ast}$ has a (continuous) right adjoint, denoted j^2 , see [5, Sect. 4.3].

Any $\mathcal{F} \in D\text{-mod}(Bun_G)_{co}$ [fits in](#page-0-0)to an exact triangle

$$
\mathcal{J}_1 \to \mathcal{J} \to j_{\text{co},*} \circ j^?(\mathcal{J}),
$$

where $j^?(\mathcal{J}_1) = 0$ by Lemma 1.5.2.

We take U to contain the substack \mathcal{U}_G as in Proposition 2.3.2, and assume that it is co-truncative. In view of Proposition 2.3.4 and Corollary 3.3.3, it remains to show that if $j^2(\mathcal{J})=0$, then

 $\text{Hom}_{\text{D-mod}(Bun_G)}(\mathcal{J}'', \text{Ps-Id}_{Bun_G, !}(\mathcal{J})) = 0, \quad \mathcal{J}'' \in \text{D-mod}(Bun_G)_{\text{cusp}}.$

By Proposition 2.3.2, it suffices to show that

$$
j^{?}(\mathcal{J}) = 0 \Rightarrow j^* \circ \text{Ps-Id}_{\text{Bun}_G, !}(\mathcal{J}) = 0.
$$

However, this follows from (the nearly tautological) [8, Corollary 6.6.3].

 \Box

4. The strange f[unctio](#page-0-0)nal equation and proof of the equivalen[ce](#page-0-0)

In this section we will carry out the two main tasks of this paper: we will prove the strange functional equation (Theorem 4.1.2 below) and finish the proof of Theorem 3.1.5 (that says that the functor Ps-Id_{Bun $_G$}, is an equivalence).

4.1. The strange functional equation

In this subsection we will study the behavior of the functor $\text{Ps-Id}_{\text{Bun}_G,j}$ on the subcategory

 $D\text{-mod}(Bun_G)_{co,Eis} \subset D\text{-mod}(Bun_G)_{co}.$

 $4.1.1₁ - First, we have the following "strange" result:$

T 4.1.2. – *For a parabolic* P *and its opposite* P *we have a canonical isomorphism of functors*

Eis! \circ Ps-Id_{Bun*M*},! \simeq Ps-Id_{Bun*G*},! \circ Eis_{co,*}.

Proof. – Both sides are continuous functors

 $D\text{-mod}(Bun_M)_{co} \to D\text{-mod}(Bun_G),$

that correspond to objects of

 $D\text{-mod}(Bun_M \times Bun_G)$

under the identification

$$
Function(D\text{-}mod(Bun_M)_{co}, D\text{-}mod(Bun_G)) \simeq (D\text{-}mod(Bun_M)_{co})^{\vee} \otimes D\text{-}mod(Bun_G)
$$

 \simeq D-mod $(Bun_M) \otimes D$ -mod (Bun_G)

 \simeq D-mod(Bun_M \times Bun_G).

We claim that both objects identify canonically with

 $((\mathsf{q} \times \mathsf{p}) \circ \Delta_{\mathrm{Bun}_P})_!(k_{\mathrm{Bun}_P}),$

where the map in the formula is the same as

 $\text{Bun}_P \xrightarrow{q \times p} \text{Bun}_M \times \text{Bun}_G$.

The functor Eis_! \circ Ps-Id_{Bun*M*} ; corresponds to the object, obtained by applying the functor $(\text{Id}_{D\text{-mod}(Bun_M)} \otimes \text{Eis})$: $D\text{-mod}(Bun_M) \otimes D\text{-mod}(Bun_M) \rightarrow D\text{-mod}(Bun_M) \otimes D\text{-mod}(Bun_G)$ to

 $(\Delta_{\text{Bun}_M})_!(k_{\text{Bun}_M}) \in D\text{-mod}(\text{Bun}_M \times \text{Bun}_M) \simeq D\text{-mod}(\text{Bun}_M) \otimes D\text{-mod}(\text{Bun}_M).$

The functor $Id_{D\text{-mod}(Bun_M)} \otimes Eis_l$ is left adjoint to the functor

 $\mathrm{Id}_{\mathrm{D}\text{-}\mathrm{mod}(\mathrm{Bun}_M)}\otimes \mathrm{CT}_* \simeq (\mathrm{id}_{\mathrm{Bun}_M}\times\mathsf{q})_*\circ (\mathrm{id}_{\mathrm{Bun}_M}\times\mathsf{p})^!,$

and hence is the !-Eisenstein series functor for the group $M \times G$ with respect to the parabolic $M \times P$. I.e., it is given by

$$
(\mathrm{id}_{\mathrm{Bun}_M} \times \mathsf{p})_! \times (\mathrm{id}_{\mathrm{Bun}_M} \times \mathsf{q})^*,
$$

when applied to holonomic objects.

Base change along the diagram

$$
\begin{array}{ccc}\n\text{Bun}_{P} & \xrightarrow{\Gamma_{q}} & \text{Bun}_{M} \times \text{Bun}_{P} & \xrightarrow{\text{id}_{\text{Bun}_{M}} \times p} & \text{Bun}_{M} \times \text{Bun}_{G} \\
\downarrow^{\text{id}_{\text{Bun}_{M}} \times q} & \downarrow^{\text{id}_{\text{Bun}_{M}} \times q} & \\
\text{Bun}_{M} & \xrightarrow{\Delta_{\text{Bun}_{M}}} & \text{Bun}_{M} \times \text{Bun}_{M} & \n\end{array}
$$

shows that

$$
(\mathrm{id}_{\mathrm{Bun}_M} \times \mathsf{p})_! \times (\mathrm{id}_{\mathrm{Bun}_M} \times \mathsf{q})^* \circ (\Delta_{\mathrm{Bun}_M})_! (k_{\mathrm{Bun}_M}) \simeq ((\mathsf{q} \times \mathsf{p}) \circ \Delta_{\mathrm{Bun}_P})_! (k_{\mathrm{Bun}_P}),
$$

as required.

The functor Ps-Id_{BunG}, \circ Eis_{co,*} corresponds to the object, obtained by applying the functor

 $((\mathrm{Eis}_{\mathrm{co},*}^-)^{\vee} \otimes \mathrm{Id}_{\mathrm{D-mod}(\mathrm{Bun}_G)})$:

 $D\text{-mod}(Bun_G) \otimes D\text{-mod}(Bun_G) \rightarrow D\text{-mod}(Bun_M) \otimes D\text{-mod}(Bun_G)$

to the object

 $(\Delta_{Bun_G})_!(k_{Bun_G}) \in D\text{-mod}(Bun_G \times Bun_G) \simeq D\text{-mod}(Bun_G) \otimes D\text{-mod}(Bun_G).$

We have:

$$
(\mathrm{Eis}_{\mathrm{co},*}^-)^\vee \simeq \mathrm{CT}_*^-
$$

and we recall that by Theorem 1.1.7

$$
CT_*^- \simeq CT_!: = \bigoplus_\mu CT_!^\mu,
$$

where $CT_!^{\mu}$ is the left adjoint of Eis $_{*}^{\mu}$.

Since $CT_!^{\mu}$ is the left adjoint of Eis^{μ}, we obtain that $CT_!^{\mu} \otimes Id_{D-mod(Bun_G)}$ is the left adjoint of $\text{Eis}_*^{\mu} \otimes \text{Id}_{\text{D-mod(Bun}_G)}$, i.e., is the !-constant term functor for the group $G \times G$ with respect to the parabolic $P \times G$. Hence,

$$
CT_!^{\mu} \otimes Id_{D\text{-mod}(Bun_G)} \simeq (\mathsf{q}^{\mu} \times id_{Bun_G})_! \circ (\mathsf{p}^{\mu} \times id_{Bun_G})^*,
$$

when applied to holonomic objects (the superscript μ indicates that we are taking only the μ -connected component of Bun_P).

Taking the direct sum over μ , we thus obtain

$$
(\mathrm{Eis}_{\mathrm{co},*}^-)^\vee \otimes \mathrm{Id}_{D\text{-}\mathrm{mod}(\mathrm{Bun}_G)} \simeq (\mathsf{q} \times \mathrm{id}_{\mathrm{Bun}_G})_! \circ (\mathsf{p} \times \mathrm{id}_{\mathrm{Bun}_G})^*,
$$

when applied to holonomic objects.

Now, base change along the diagram

$$
\begin{array}{ccc}\n\text{Bun}_{P} & \xrightarrow{\Gamma_{p}} & \text{Bun}_{P} \times \text{Bun}_{G} & \xrightarrow{q \times id_{\text{Bun}_{G}}} & \text{Bun}_{M} \times \text{Bun}_{G} \\
\downarrow^{p} & \downarrow^{p \times id_{\text{Bun}_{G}}} & \text{Bun}_{M} \times \text{Bun}_{G} \\
\text{Bun}_{G} & \xrightarrow{\Delta_{\text{Bun}_{G}}} & \text{Bun}_{G} \times \text{Bun}_{G}, & \n\end{array}
$$

shows that

$$
(\mathsf{q} \times \mathrm{id}_{\mathrm{Bun}_G})_! \circ (\mathsf{p} \times \mathrm{id}_{\mathrm{Bun}_G})^* \circ (\Delta_{\mathrm{Bun}_G})_!(k_{\mathrm{Bun}_G}) \simeq ((\mathsf{q} \times \mathsf{p}) \circ \Delta_{\mathrm{Bun}_P})_!(k_{\mathrm{Bun}_P}),
$$

as required.

(4.3)

4.1.3. – By [passin](#page-0-0)g to dual functors in the isomorphism

(4.1) Eis_i \circ Ps-Id_{Bun*M*},! \simeq Ps-Id_{Bun*G*},! \circ Eis_{co,*}

of Theorem 4.1.2, we obtain:

COROLLARY 4.1.4. – *There is a canonical isomorphism*

(4.2)
$$
Ps\text{-}Id_{\text{Bun}_M, !}\circ CT_{\text{co},?}\simeq CT_*^- \circ Ps\text{-}Id_{\text{Bun}_G, !}.
$$

4.1.5*.* Consider now the commutative diagram:

D-mod(Bun_G)_{co})
$$
\xrightarrow{\text{Ps-Id}_{\text{Bun}_G, !}}
$$
 D-mod(Bun_G)
Eis_{co,*}

$$
\text{D-mod(Bun}_M)_{\text{co}}) \xrightarrow{\text{Ps-Id}_{\text{Bun}_M, !}} \text{D-mod(Bun}_M).
$$

By passing to the right adjoint functors along the vertical arrows, we obtain a natural transformation

(4.4)
$$
P\mathbf{s}\text{-}Id_{\text{Bun}_M,!}\circ \text{CT}_{\text{co},?}\to \text{CT}_{*}^{-}\circ P\mathbf{s}\text{-}Id_{\text{Bun}_G,!}.
$$

We now claim:

4 ^e SÉRIE – TOME 50 – 2017 – N^o 5

 \Box

PROPOSITION 4.1.6. – *[The](#page-0-0) map* (4.4) *equals the map* (4.2)*, and, in particular, is an isomorphism.*

4.2. Proof of Proposition 4[.1.6](#page-0-0)

The proof of the proposition is *not* a formal manipulation, as its statement involves the isomorphism of Theorem 4.1.2 for the two different parabolics, namely, P and P^- . The corresponding geometric input is provided by Lemma 4.2.3 below.

4.2.1*.* Let [us ide](#page-0-0)ntify

$$
CT_*^- \simeq CT_!
$$
 and $Eis_{co,*} \simeq (CT_!^-)^{\vee}$

via Theorem 1.1.7[.](#page-35-0)

Then the map

 $Ps-Id_{Bun_M}$, \circ CT_{co}, \rightarrow CT_! \circ Ps-Id_{BunG},!,

corresponding to (4.4), eq[uals](#page-35-1) by definition the composition

$$
\begin{aligned} \mathrm{Ps}\text{-} \mathrm{Id}_{\mathrm{Bun}_M, !} \circ \mathrm{CT}_{\mathrm{co}, ?} &\rightarrow \mathrm{CT}_{!} \circ \mathrm{Eis}_{!}^{-} \circ \mathrm{Ps}\text{-} \mathrm{Id}_{\mathrm{Bun}_M, !} \circ \mathrm{CT}_{\mathrm{co}, ?} \\ &\overset{(4,3)}{\simeq} \mathrm{CT}_{!} \circ \mathrm{Ps}\text{-} \mathrm{Id}_{\mathrm{Bun}_G, !} \circ \mathrm{Eis}_{\mathrm{co}, *} \circ \mathrm{CT}_{\mathrm{co}, ?} \\ &\simeq \mathrm{CT}_{!} \circ \mathrm{Ps}\text{-} \mathrm{Id}_{\mathrm{Bun}_G, !} \circ (\mathrm{CT}_{!}^{-})^{\vee} \circ (\mathrm{Eis}_{!})^{\vee} \\ &= \mathrm{CT}_{!} \circ \mathrm{Ps}\text{-} \mathrm{Id}_{\mathrm{Bun}_G, !} \circ (\mathrm{Eis}_{!} \circ \mathrm{CT}_{!}^{-})^{\vee} \rightarrow \mathrm{CT}_{!} \circ \mathrm{Ps}\text{-} \mathrm{Id}_{\mathrm{Bun}_G, !}, \end{aligned}
$$

where the first arrows comes from the unit of the (Eis_1^-, CT_1) -adjunction, and the last arrow comes from the co-unit of the $(Eis₁, CT₁)$ -adjunction.

This corresponds to the following map of objects in D-mod($Bun_G \times Bun_M$):

$$
\begin{aligned}\n\text{(Eis}_{1} \otimes \text{Id}_{\text{D-mod(Bun}_{M}}) & \circ (\Delta_{\text{D-mod(Bun}_{M}}))_{1}(k_{\text{Bun}_{M}}) \\
&\to (\text{Eis}_{1} \otimes (\text{CT}_{1} \circ \text{Eis}_{1}^{-})) \circ (\Delta_{\text{D-mod(Bun}_{M}}))_{1}(k_{\text{Bun}_{M}}) \\
& = (\text{Eis}_{1} \otimes \text{CT}_{1}) \circ (\text{Id}_{\text{D-mod(Bun}_{M}}) \otimes \text{Eis}_{1}^{-}) \circ (\Delta_{\text{D-mod(Bun}_{M}}))_{1}(k_{\text{Bun}_{M}}) \\
&\simeq (\text{Eis}_{1} \otimes \text{CT}_{1}) \circ (\text{CT}_{1}^{-} \circ \text{Id}_{\text{D-mod(Bun}_{G}}) \circ (\Delta_{\text{D-mod(Bun}_{G}}))_{1}(k_{\text{Bun}_{G}}) \\
& = ((\text{Eis}_{1} \circ \text{CT}_{1}^{-}) \otimes \text{CT}_{1}) \circ (\Delta_{\text{D-mod(Bun}_{G}}))_{1}(k_{\text{Bun}_{G}}) \\
&\to (\text{Id}_{\text{D-mod(Bun}_{G})} \otimes \text{CT}_{1}) \circ (\Delta_{\text{D-mod(Bun}_{G}}))_{1}(k_{\text{Bun}_{G}}),\n\end{aligned}
$$

where the isomorphism between the 3rd and the 4th lines is

 $(\mathrm{Id}_{\mathrm{D-mod}(\mathrm{Bun}_M)} \otimes \mathrm{Eis}_{!}^{-}) \circ (\Delta_{\mathrm{D-mod}(\mathrm{Bun}_M)})_!(k_{\mathrm{Bun}_M})$

$$
\simeq ((\mathsf{q}^- \times \mathsf{p}^-) \circ \Delta_{\mathrm{Bun}_P-})! (k_{\mathrm{Bun}_P-})
$$

\simeq (CT₁⁻ \circ Id_{D-mod(Bun_G} $)) \circ (\Delta_{\mathrm{D-mod(Bun}_G})! (k_{\mathrm{Bun}_G}),$

used in the proof of Theorem 4.1.2.

The assertion of the proposition amounts to showing that the composed map in (4.5) equals

$$
\begin{aligned} \text{(Eis}_{!} \otimes \text{Id}_{\text{D-mod(Bun}_M)}) \circ (\Delta_{\text{D-mod(Bun}_M)})_{!}(k_{\text{Bun}_M}) \\ &\simeq ((p \times q) \circ \Delta_{\text{Bun}_P})_{!}(k_{\text{Bun}_P}) \\ &\simeq (\text{Id}_{\text{D-mod(Bun}_G)} \otimes \text{CT}_{!}) \circ (\Delta_{\text{D-mod(Bun}_G}))_{!}(k_{\text{Bun}_G}). \end{aligned}
$$

4.2.2*.* The geometric input is provided by the following assertion, proved at the end of this subsection:

LEMMA 4.2.3. – *The following diagram commutes:* $(\Delta_M)_!(k_M)$ \longrightarrow $(\text{Id}_M \otimes (\text{CT}_! \circ \text{Eis}_!)$ $(\mathrm{Id}_M \otimes (\mathrm{CT}_! \circ \mathrm{Eis}_!^-)) \circ (\Delta_M)_! (k_M)$ \downarrow $\bigg\downarrow\sim$ $((CT_1^- \circ Eis_1) \otimes Id_M) \circ (\Delta_M)_! (k_M)$ $(id_M \otimes CT_1) \circ (Id_M \otimes Eis_1^-) \circ (\Delta_M)_! (k_M)$ \sim $\bigg\downarrow$ ~ $(CT_1^- \otimes \text{Id}_M) \circ (\text{Eis}_1 \otimes \text{Id}_M) \circ (\Delta_M)_! (k_M)$ $(\text{Id}_M \otimes CT_!) \circ (CT_1^- \otimes \text{Id}_G) \circ (\Delta_G)_! (k_G)$ \sim $\bigg\downarrow$ ~ $(CT_1^- \otimes \text{Id}_M) \circ (\text{Id}_G \otimes CT_!) \circ (\Delta_G)_! (k_G) \xrightarrow{\sim} \qquad \qquad (CT_1^- \otimes CT_!) \circ (\Delta_G)_! (k_G)$

where we use short-hand ${\rm Id}_M$, Δ_M , k_M for ${\rm Id}_{\rm D-mod(\text{Bun}_M)}$ ${\rm Id}_{\rm D-mod(\text{Bun}_M)}$ ${\rm Id}_{\rm D-mod(\text{Bun}_M)}$, Δ_{Bun_M} and k_{Bun_M} , respectively, and *similarly for* G*.*

Using the lemma, we rewrite the map in (4.5) as follows:

 $(Eis_1 \otimes Id_{D-mod(Bun_M)}) \circ (\Delta_{D-mod(Bun_M)})_!(k_{Bun_M})$

- $\rightarrow ((Eis_! \circ CT_! \circ Eis_!) \otimes Id_{D\text{-mod}(Bun_M)}) \circ (\Delta_{D\text{-mod}(Bun_M)})_!(k_{Bun_M})$
- $\mathcal{L} = ((Eis_! \circ CT_! \circ \text{Id}_{D\text{-mod}(Bun_M)}) \circ (Eis_! \otimes \text{Id}_{D\text{-mod}(Bun_M)}) \circ (\Delta_{D\text{-mod}(Bun_M)})_! (k_{Bun_M})$
- $\cong ((\mathrm{Eis}_! \circ \mathrm{CT}_!) \otimes \mathrm{Id}_{\mathrm{D-mod}(\mathrm{Bun}_M)}) \circ (\mathrm{Id}_{\mathrm{D-mod}(\mathrm{Bun}_G)} \otimes \mathrm{CT}_!) \circ (\Delta_{\mathrm{D-mod}(\mathrm{Bun}_G)})_!(k_{\mathrm{Bun}_G})$

 \rightarrow (Id_{D-mod}(Bun_G) \otimes CT_!) \circ (Δ _{D-mod(Bun_G))_!(k _{Bun_G),}}

and further as

 $(Eis_1 \otimes Id_{D\text{-mod}(Bun_M)}) \circ (\Delta_{D\text{-mod}(Bun_M)})_!(k_{Bun_M})$

- $\rightarrow ((Eis_! \circ CT_! \circ Eis_!) \otimes Id_{D\text{-mod}(Bun_M)}) \circ (\Delta_{D\text{-mod}(Bun_M)})_!(k_{Bun_M})$
- $\mathcal{L} = ((Eis_! \circ \mathsf{CT}_!^-) \otimes \mathrm{Id}_{\mathsf{D}\text{-mod}(\mathsf{Bun}_M)}) \circ (\mathrm{Eis}_! \otimes \mathrm{Id}_{\mathsf{D}\text{-mod}(\mathsf{Bun}_M)}) \circ (\Delta_{\mathsf{D}\text{-mod}(\mathsf{Bun}_M)})_! (k_{\mathsf{Bun}_M})$
- \rightarrow (Eis! \otimes Id_{D-mod}(Bun_M)) \circ ($\Delta_{\text{D-mod(Bun}_M)}$)!(k_{Bun_M})
- $\simeq (\mathrm{Id}_{\mathrm{D}\text{-mod}(\mathrm{Bun}_G)} \otimes \mathrm{CT}_!) \circ (\Delta_{\mathrm{D}\text{-mod}(\mathrm{Bun}_G)})(k_{\mathrm{Bun}_G}).$

However, the composition

 $(Eis_1 \otimes Id_{D\text{-mod}(Bun_M)}) \circ (\Delta_{D\text{-mod}(Bun_M)})_1(k_{Bun_M})$

- $\rightarrow ((Eis_! \circ CT_! \circ Eis_!) \otimes Id_{D\text{-mod}(Bun_M)}) \circ (\Delta_{D\text{-mod}(Bun_M)})_!(k_{Bun_M})$
- $\mathcal{L} = ((Eis_! \circ \mathsf{CT}_!^-) \otimes \mathrm{Id}_{\mathsf{D}\text{-mod}(\mathsf{Bun}_M)}) \circ (\mathrm{Eis}_! \otimes \mathrm{Id}_{\mathsf{D}\text{-mod}(\mathsf{Bun}_M)}) \circ (\Delta_{\mathsf{D}\text{-mod}(\mathsf{Bun}_M)})_! (k_{\mathsf{Bun}_M})$
- \rightarrow (Eis! \otimes Id_{D-mod}(Bun_M)) \circ ($\Delta_{\text{D-mod(Bun}_M)}$)!(k_{Bun_M})

is the identity map, as it is induced by the map

 $Eis_! \rightarrow Eis_! \circ CT_! \circ Eis_! \rightarrow Eis_!$

comprised by the unit and co-unit of the $(Eis₁, CT₁)$ -adjunction, and the assertion follows.

4.2.4*. Proof of Lemma* 4.2.3. – Let us recall from [6, Sect. 1.3.2] that the unit for the (Eis₁, CT_1^-) can be described as follows. The functor

$$
CT_! \circ Eis_!^- : D\text{-mod}(Bun_M) \to D\text{-mod}(Bun_M)
$$

is given by

$$
(q)_!\circ (p)^*\circ (p^-)_!\circ (q^-)^*,
$$

which by base change along the diagram

can be rewritten as

$$
(q)_! \circ ('p^-)_! \circ ('p)^* \circ (q^-)^*.
$$

The natural transformation

$$
Id_{D\text{-mod}(Bun_M)} \to CT_! \circ Eis_!
$$

is given by

 $(\mathrm{id}_{\mathrm{Bun}_M})_! \circ (\mathrm{id}_{\mathrm{Bun}_M})^* = (\mathsf{q})_! \circ (\mathsf{p}^-)_! \circ \mathbf{j}_! \circ \mathbf{j}^* \circ (\mathsf{p})^* \circ (\mathsf{q}^-)^* \to (\mathsf{q})_! \circ (\mathsf{p}^-)_! \circ (\mathsf{p})^* \circ (\mathsf{q}^-)^*,$ where the second arrow comes from the $(\mathbf{j}_!, \mathbf{j}^*)$ -adjunction.

The natural transformation

 $\mathrm{Id}_{\mathrm{D-mod}(\mathrm{Bun}_M)} \to \mathrm{CT}_{!}^{-} \circ \mathrm{Eis}_{!}$

is described similarly, with the roles of P and P^- swapped. Base change along

> $Bun_{P^-} \times Bun_{P} \longrightarrow Bun_{P^-} \times Bun_{P} \xrightarrow{q^- \times q} Bun_M \times Bun_M$ $p^{-} \times p$ Bun_G Δ Bun $_G$ $\xrightarrow{\triangle_{\text{Bun}_G}}$ Bun_G \times Bun_G

implies that the object

$$
(\text{CT}_{!}^{-} \otimes \text{CT}_{!}) \circ (\Delta_{\text{Bun}_G})_{!}(k_{\text{Bun}_G}) \in \text{D-mod}(\text{Bun}_M \times \text{Bun}_M)
$$

identifies with

$$
(\mathsf{q}^- \underset{\mathsf{Bun}_G}{\times} \mathsf{q})_!(k_{\mathsf{Bun}_P-\underset{\mathsf{Bun}_G}{\times} \mathsf{Bun}_P}),
$$

where q^{-} $\underset{\text{Bun}_G}{\times}$ q denotes the map

$$
Bun_{P} - \underset{Bun_{G}}{\times} Bun_{P} \rightarrow Bun_{P} - \times Bun_{P} \xrightarrow{q^{-} \times q} Bun_{M} \times Bun_{M}.
$$

Now, the above description of the unit of the adjunctions implies that both circuits in the diagram in Lemma 4.2.3 are equal to the map

$$
(\Delta_{\text{Bun}_M})_!(k_{\text{Bun}_M}) \to (\mathsf{q}^- \underset{\text{Bun}_G}{\times} \mathsf{q})_!(k_{\text{Bun}_P-\underset{\text{Bun}_G}{\times} \text{Bun}_P}),
$$

that corresponds to the open embedding

$$
Bun_M \stackrel{j}{\hookrightarrow} Bun_{P^-} \underset{Bun_G}{\times}Bun_P.
$$

4.3. Proof of Theorem 3.1.5

We are finally ready to pr[ove Th](#page-0-0)eorem 3.1.5.

We proceed by induction on the semi-simple rank of G . The case of a torus follows immediately from [Corol](#page-0-0)lary 3.3.3. Hence, we will assume that the assertion holds for all proper Levi subgroups of G.

4.3.1*.* Th[eorem](#page-0-0) 4.1.2, together with the induction hypothesis, imply that the essential image of D-mod(Bun_G)_{co}, Eis under Ps-Id_{BunG}, generates D-mod(Bun_G)_{Eis}.

Corollary 3.3.3 implies that the essential image of D-mod(Bun_G)_{co,cusp} under Ps-Id_{BunG},! generates (in fact, equals) $D\text{-mod}(Bun_G)_{\text{cusp}}$.

Hence, it remains to show that Ps-Id $_{\text{Bun}_G}$, is fully faithful.

4.3.2. – The fact that Ps-Id_{BunG}; induces an isomorphi[sm](#page-0-0)

(4.6) $\text{Hom}_{\text{D-mod}(Bun_G)_{co}}(\mathcal{J}', \mathcal{J}) \to \text{Hom}_{\text{D-mod}(Bun_G)}(\text{Ps-Id}_{Bun_G, !}(\mathcal{J}'), \text{Ps-Id}_{Bun_G, !}(\mathcal{J}))$ $\text{Hom}_{\text{D-mod}(Bun_G)_{co}}(\mathcal{J}', \mathcal{J}) \to \text{Hom}_{\text{D-mod}(Bun_G)}(\text{Ps-Id}_{Bun_G, !}(\mathcal{J}'), \text{Ps-Id}_{Bun_G, !}(\mathcal{J}))$ $\text{Hom}_{\text{D-mod}(Bun_G)_{co}}(\mathcal{J}', \mathcal{J}) \to \text{Hom}_{\text{D-mod}(Bun_G)}(\text{Ps-Id}_{Bun_G, !}(\mathcal{J}'), \text{Ps-Id}_{Bun_G, !}(\mathcal{J}))$

for $\mathcal{F}' \in \mathbf{D}\text{-mod}(\text{Bun}_G)_{\text{co,cusp}}$ follows from Proposition 3.3.5.

Hence, it remains to show that (4.6) is an isomorphism for $\mathcal{J}' \in D\text{-mod}(Bun_G)_{co,Eis}$. The latter amounts to showing that the functor Ps-Id $_{\text{Bun}_G, \Omega}$ induces an isomorphism

 $\text{Hom}_{\text{D-mod(Bun}_G)_{\text{co}}}(\text{Eis}_{\text{co},*}(\mathcal{J}_M), \mathcal{J})$

 \rightarrow Hom_{D-mod}(Bun_G)(Ps-Id_{BunG},! \circ Eis_{co,*}(\mathcal{J}_M), Ps-Id_{BunG},!(\mathcal{J}))

for $\mathcal{F}_M \in \mathbb{D}$ -mod(Bun_M)_{co} for a *proper* parabolic P with Levi quotient M.

4.3.3. – Note that for $\mathcal{J}_M \in D\text{-mod}(Bun_M)_{\text{co}}$ and $\mathcal{J} \in D\text{-mod}(Bun_G)_{\text{co}}$ we have a commutative diagram:

$$
\text{Hom}(\text{Eis}_{\text{co},*}(\mathcal{J}_M), \mathcal{J}) \longrightarrow \text{Hom}(\text{Ps-Id}_{\text{Bun}_G,!} \circ \text{Eis}_{\text{co},*}(\mathcal{J}_M), \text{Ps-Id}_{\text{Bun}_G,!}(\mathcal{J}))
$$
\n
$$
\downarrow
$$
\n
$$
\downarrow
$$
\n
$$
\text{Hom}(\text{Eis}_{\text{I}}^{\top} \circ \text{Ps-Id}_{\text{Bun}_M,!}(\mathcal{J}_M), \text{Ps-Id}_{\text{Bun}_G,!}(\mathcal{J}))
$$
\n
$$
\sim \downarrow
$$
\n
$$
\downarrow
$$
\n
$$
\text{Hom}(\text{Ps-Id}_{\text{Bun}_M,!}(\mathcal{J}_M), \text{CT}_{\ast}^{\top} \circ \text{Ps-Id}_{\text{Bun}_G,!}(\mathcal{J}))
$$
\n
$$
\downarrow
$$
\n
$$
\downarrow
$$
\n
$$
\text{Hom}(\mathcal{J}_M, \text{CT}_{\text{co},?}(\mathcal{J})) \longrightarrow \text{Hom}(\text{Ps-Id}_{\text{Bun}_M,!}(\mathcal{J}_M), \text{Ps-Id}_{\text{Bun}_M,!} \circ \text{CT}_{\text{co},?}(\mathcal{J}))
$$

The bottom horizontal arrow in the above diagram is an isomorphism by the induction hypothesis. Now, Proposition 4.1.6 implies that the lower right vertical arrow is also an isomorphism.

Hence, the upper horizontal arrow is also an isomorphism, as required.

BIBLIOGRAPHY

- [\[1\]](http://smf.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_5.html#2) D. ARINKIN, D. GAITSGORY, Singular support of coherent sheaves and the geometric Langlands conjecture, *Selecta Math. (N.S.)* **21** (2015), 1–199.
- [\[2\]](http://smf.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_5.html#3) A. BRAVERMAN, M. FINKELBERG, D. GAITSGORY, I. MIRKOVIĆ, Intersection cohomology of Drinfeld's compactifications, *Selecta Math. (N.S.)* **8** (2002), 381–418.
- [3] A. BRAVERMAN, D. GAITSGORY, Geometric Eisenstein series, *Invent. math.* **150** (2002), 287–384.
- [4] V. DRINFELD, D. GAITSGORY, On some finiteness questions for algebraic stacks, *Geom. Funct. Anal.* **23** (2013), 149–294.
- [5] V. DRINFELD, D. GAITSGORY, Compact generation of the category of D-modules on the stack of G-bundles on a curve, *Camb. J. Math.* **3** (2015), 19–125.
- [6] V. DRINFELD, D. GAITSGORY, Geometric constant term functor(s), Selecta Math. *(N.S.)* **22** (2016), 1881–1951.
- [7] D. GAITSGORY, Outline of the proof of the geometric Langlands conjecture for GL_2 , *Astérisque* **370** (2015), 1–112.
- [8] D. GAITSGORY, Functors given by kernels, adjunctions and duality, *J. Algebraic Geom.* **25** (2016), 461–548.
- [9] S. SCHIEDER, in preparation.

[116](http://smf.emath.fr/Publications/AnnalesENS/4_50/html/ens_ann-sc_50_5.html#10)2 D. GAITSGORY

[10] E. B. VINBERG, On reductive algebraic semigroups, in *Lie groups and Lie algebras: E. B. Dynkin's Seminar*, Amer. Math. Soc. Transl. Ser. 2 **169**, Amer. Math. Soc., Providence, RI, 1995, 145–182.

> (Manuscrit reçu le 7 août 2014 ; accepté, après révision, le 25 juillet 2016.)

Dennis GAITSGORY Department of Mathematics Harvard University 1 Oxford street Cambridge, MA 02138, USA E-mail: gaitsgde@gmail.com