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THE MIYAOKA-YAU INEQUALITY AND
UNIFORMISATION OF CANONICAL MODELS

 D GREB, S KEBEKUS, T PETERNELL
 B TAJI

A. – We establish the Miyaoka-Yau inequality in terms of orbifold Chern classes for the
tangent sheaf of any complex projective variety of general type with klt singularities and nef canonical
divisor. In case equality is attained for a variety with at worst terminal singularities, we prove that the
associated canonical model is the quotient of the unit ball by a discrete group action.

R. – Nous établissons l’inégalité de Miyaoka-Yau en termes de classes de Chern orbifoldes
pour le faisceau tangent d’une variété complexe projective de type général à singularités klt et diviseur
canonique nef. Dans le cas d’égalité pour une variété à singularités terminales, nous établissons que le
modèle canonique associé est un quotient de la boule unité par un groupe agissant discrètement.

1. Introduction

A classical result in complex geometry asserts that the Chern classes of any holomorphic,
slope-semistable vector bundle E of rank r on a compact Kähler manifold .X; !/ satisfy the
Bogomolov-Gieseker inequalityZ

X

�
2r � c2.E / � .r � 1/ � c

2
1.E /

�
^ !n�2 � 0:

Thanks to his solution of the Calabi conjecture, Yau established in [66] the following stronger,
Miyaoka-Yau inequality for the holomorphic tangent bundle of any n-dimensional compact
Kähler manifold X with ample canonical class KX ,

(�)
Z
X

�
2.nC 1/ � c2.TX / � n � c

2
1.TX /

�
� ŒKX �

n�2
� 0:
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1488 D. GREB, S. KEBEKUS, T. PETERNELL AND B. TAJI

In case of equality, the natural symmetries imposed by the Kähler-Einstein condition lead to
the uniformisation of X by the unit ball.

A fundamental result of Birkar, Cascini, Hacon and McKernan, [4], states that every
projective manifold of general type admits a minimal model, which is a normal, Q-factorial,
projective variety with at most terminal singularities whose canonical divisor is big and
nef. These varieties are however usually singular. It was expected that the Miyaoka-Yau
inequality should also hold in this context, with applications to uniformisation in case of
equality. This problem has attracted considerable interest; Section 1.5 gives a short account
of the history.

1.1. Main results of this paper

The main result of this paper settles the problem in full generality, even in the broader
context of varieties with Kawamata log-terminal (= klt) singularities and nef canonical
divisor.

T 1.1 (Q-Miyaoka-Yau inequality). – Let X be an n-dimensional, projective, klt
variety of general type whose canonical divisor KX is nef. Then,

(1.1.1)
�
2.nC 1/ �bc2.TX / � n �bc1.TX /2� � ŒKX �n�2 � 0:

The formulation of Theorem 1.1 uses the fact that varieties with klt singularities have
quotient singularities in codimension two. This allows to define Q-Chern classes (or
“orbifold Chern classes”) bc1.TX / and bc2.TX / for the tangent sheaf TX D .�1X /

� of X ,
which is reflexive and a Q-vector bundle on the open subset where X has quotient singular-
ities. We refer to Section 3.7 for definitions and for a detailed discussion. If X is smooth in
codimension two, which is the case when X has terminal singularities, these agree with the
usual Chern classes c�.TX /. We call a projective variety of general type minimal if it has at
worst terminal singularities and if its canonical divisor is nef, cf. [41, 2.13] and Definition 2.3
below.

T 1.2 (Characterisation of singular ball quotients, I). – Let X be an n-dimen-
sional minimal variety of general type. If equality holds in (1.1.1), then the canonical
model Xcan is smooth in codimension two, there exists a ball quotient Y and a finite, Galois,
quasi-étale morphism f W Y ! Xcan. In particular, Xcan has only quotient singularities.

We refer to Section 2.2 for a discussion of ball quotients and canonical models.

We expect that Theorem 1.2 holds without the additional assumption thatX be terminal.
In fact, we prove a result slightly stronger than Theorem 1.2, which applies to varieties with
klt singularities that are smooth in codimension two, cf. Theorem 8.1 as well as Theorem
and Definition 1.3 below. As already said above, Theorem 1.2 applies to all minimal models
of smooth varieties of general type, which is the case most relevant for applications in the
Minimal Model Program. In Section 10, we discuss further potential generalizations of the
Miyaoka-Yau inequality and the uniformisation result.

Extending Theorem 1.2, we show that the canonical models of Theorem 1.2 admit
a “singular uniformisation” by the unit ball Bn. More precisely, they can be realized as
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quotients of Bn by actions of discrete subgroups in PSU.1; n/ that are not necessarily fixed-
point free. In particular, the geometry of these spaces can be studied using the theory of
automorphic forms, cf. [40, Part II].

T  D 1.3 (Characterisation of singular ball quotients, II).

Let X be a normal, irreducible, compact, complex space of dimension n. Then the following
statements are equivalent.

(1.3.1) The space X is of the form Bn=y� for a discrete, cocompact subgroup y� < AutO.Bn/
whose action on Bn is fixed-point free in codimension two.

(1.3.2) The spaceX is of the formY=G, whereY is a ball quotient (cf. Definition 2.5), andG is
a finite group of automorphisms of Y whose action is fixed-point free in codimension
two.

(1.3.3) The space X is projective, klt, and smooth in codimension two; the canonical divisor
KX is ample and we have equality in the Q-Miyaoka-Yau Inequality (1.1.1).

A compact complex space is called singular ball quotient if it satisfies these equivalent condi-
tions.

C 1.4 (Hyperbolicity of smooth loci of canonical models).

In the setting of Theorem 1.2, the canonical model Xcan is a singular ball quotient. In
particular, the smooth locus of Xcan is Kobayashi-hyperbolic.

In fact, a more precise hyperbolicity statement holds, see Section 9.3. In addition, classical
results concerning deformation rigidity [5], Mostow rigidity [66, Thm. 6], stability under
Galois conjugation [56, Cor. 9.5], and the fact that ball quotients can be defined over number
fields [54] have analogs for singular ball quotients. These aspects will be addressed in a future
work.

1.2. Outline of the proof

Various earlier papers used differential-geometric techniques, such as orbifold Kähler-
Einstein metrics, to obtain the Miyaoka-Yau inequality. Inspired by the work of Simpson
[56] we take a different approach, partially generalizing Simpson’s results on the Kobayashi-
Hitchin correspondence for Higgs sheaves. For suitable manifolds X , Simpson equips
E WD �1X ˚ OX with a natural structure of a Higgs bundle, proves its stability and derives a
Bogomolov-Gieseker inequality for E . The Miyaoka-Yau inequality for TX is an immediate
consequence. In case of equality, he constructs a variation of Hodge structures whose period
map gives the desired uniformisation by the ball.

On a technical level, one main contribution of our paper is to establish a good definition
of Higgs sheaves on singular spaces, and an associated notion of stability. These definitions
may seem a little awkward at first, but for varieties with the singularities of the minimal model
program they have just enough universal properties to make Simpson’s approach work—
the list of properties includes restrictions theorems of Mehta-Ramanathan type, weakly
functorial pull-back, and invariance of stability under resolution. As for a converse, earlier
work on differential forms, [16, 32], suggests that spaces with klt singularities are the largest
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class of varieties where functorial pull-back properties can possibly hold for any reasonable
definition.

In our singular situation, the correct analog of the sheaf E used by Simpson is .�1X /
�� ˚ OX .

The starting point of our analysis is the fact that this Higgs sheaf is stable with respect toKX
in case X is klt and KX is big and nef. This is a consequence of a recent result of Guenancia
[24], which in turn generalizes a by now classical result of Enoki [9] to the klt setup. Using
restriction theorems of Mehta-Ramanathan type, Theorem 1.1 follows as a consequence of
a Bogomolov-Gieseker-type inequality for stable Higgs sheaves on surfaces with quotient
singularities, Theorem 6.1.

To prove Theorem 1.2, let Y ! X we consider a quasi-étale cover, where the étale
fundamental groups y�1.Y / and y�1.Yreg/ agree; the existence of such covers was established
in [17, Thm. 1.5]. We aim to prove that Y is smooth. The proof is based on the second
main technical contribution of this paper, a partial generalization of Simpson’s Nonabelian
Hodge Correspondence to the singular setting, see Section 5.8. Using the relation of special
representations of fundamental groups to Higgs bundles and variations of Hodge structures,
the choice of Y allows us to prove that .�1Y /

��˚OY is in fact locally free. The confirmation
of the Zariski-Lipman conjecture for spaces with klt singularities, [16, Thm. 6.1], then shows
that Y is smooth. Using the original uniformisation theorem proven by Yau, we conclude
that Y is a ball quotient.

1.3. Comparison with the torus-quotient case

A related uniformisation problem for klt varieties with vanishing first and second Chern
class has been solved by the authors partly in joint work with Steven Lu, see [17] and [46].
We would like to emphasize that although there are some similarities between the strategies
of the proof of Theorem 1.2 and those that were devised to solve the uniformisation problem
in the case of vanishing Chern classes, the two approaches are significantly different. First of
all, to prove Theorem 1.2, we need a suitable notion of Higgs sheaves over singular spaces
verifying some important functoriality properties (see Subsections 5.3, 5.4 and 5.7). But, the
difference between the two approaches in [17] and the current paper is not confined to the
technicalities that arise from the setup of a theory of Higgs sheaves over singular spaces; a
substantially refined strategy is required for a successful application of this new machinery
to establish the uniformisation result, Theorem 1.2. We refer the reader to Remark 8.8 for a
detailed comparison of the two strategies.

1.4. Structure of the paper

Section 2 establishes notation and reviews a few facts that will be used later. Building on
the work of Mumford, Sections 3–3.7 establish basic properties pertaining to Q-varieties and
Q-sheaves, and use these to construct Q-Chern classes on klt spaces.

Sections 4–5 introduce the main objects of our study: sheaves with operators and
(singular) Higgs sheaves on klt spaces. The extension theorem for reflexive differential
forms and the existence of pull-back functors, [16, 32], allow to establish weak functoriality
properties for Higgs sheaves, including variants of pulling-back for certain morphisms,
as well as into and out of Q-varieties. This allows to compare stability of Higgs sheaves

4 e SÉRIE – TOME 52 – 2019 – No 6



THE MIYAOKA-YAU INEQUALITY AND UNIFORMISATION 1491

on different birational models. It also helps to establish a restriction theorem of Mehta-
Ramanathan type, Theorem 5.22, which allows to reduce many of our problems to the
surface case. In Section 5.8, we extend Simpson’s correspondence between rigid represen-
tations of the fundamental group of a smooth projective variety and polarized complex
variations of Hodge structures to our singular setup, thereby establishing the foundational
steps of a Nonabelian Hodge Theory on klt spaces.

With these methods at hand, we establish a Q-analog of the Bogomolov-Gieseker
inequality in Section 6. Section 7 applies this, as well as a recent stability result of Guenan-
cia [24], to establish the Q-Miyaoka-Yau inequality, Theorem 1.1. The second main result,
Theorem 1.2, is shown in Section 8.

The concluding Section 9 discusses quotients of the ball by cocompact subgroups of its
automorphism group, in order to prove the characterisation of singular ball quotients given
in Theorem 1.3, as well as the hyperbolicity result of Corollary 1.4. We conclude with an
example of Keum, showing that many of our results are essentially sharp.

1.5. Earlier work

Generalizations of the Miyaoka-Yau inequality and uniformisation in case of equality
have attracted considerable interest in the last few decades.

Inequality (�) and the uniformisation result were extended to the context of compact
Kähler varieties with only quotient singularities by Cheng-Yau [7] using orbifold Kähler-
Einstein metrics. Tsuji established Inequality (�) for smooth minimal models of general type
in [62]. Enoki’s result on the semistability of tangent sheaf of minimal models, [9], was used
by Sugiyama [59] to establish the Bogomolov-Gieseker inequality for the tangent sheaf of
any resolution of a given minimal model of general type with only canonical singularities,
the polarization given by the pullback of the canonical bundle on the minimal model. By
using a strategy very similar to ours, that is via results of Simpson [56], Langer in [42,
Thm. 5.2] established the Miyaoka-Yau inequality in this context. He recently also gave the
first purely algebraic proof of the Bogomolov Inequality for semistable Higgs sheaves (on
smooth projective varieties over fields of arbitrary characteristic), see [44].

A strong uniformisation result, together with the Miyaoka-Yau inequality, was esta-
blished by Kobayashi [35] in the case of open orbifold surfaces.

After the work of Tsuji, the past few years have witnessed significant developments in
the theory of singular Kähler-Einstein metrics and Kähler-Ricci flow. These are evident, for
example, in the works of Tian-Zhang [61], Eyssidieux-Guedj-Zeriahi [10], and Zhang [69].
In particular, Inequality (�) together with a uniformisation result for smooth minimal models
of general type have been successfully established by Zhang [68].

Finally, we mention that the related uniformisation problem for klt varieties with
vanishing first and second Chern class has been solved by the authors partly in a joint
work with Steven Lu, see [17] and [46].
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2. Notation and standard facts

2.1. Global conventions

Throughout this paper, all schemes, varieties and morphisms will be defined over the
complex number field. We follow the notation and conventions of Hartshorne’s book [26].
In particular, varieties are always assumed to be irreducible. For all notation around Mori
theory, such as klt spaces and klt pairs, we refer the reader to [41].

2.2. Varieties

In the course of the proofs, we need to switch between the Zariski– and the Euclidean
topology at times. We will consistently use the following notation.

N 2.1 (Complex space associated with a variety). – Given a variety or projec-
tive scheme X , denote by Xan the associated complex space, equipped with the Euclidean
topology. If f W X ! Y is any morphism of varieties or schemes, denote the induced map
of complex spaces by f an W Xan ! Y an. If F is any coherent sheaf of OX -modules, denote
the associated coherent analytic sheaf of OXan -modules by F an.

The notion of “Q-Chern class,” which is used in the formulation of our main result,
is usually defined for varieties with quotient singularities. However, the word “quotient
singularity” is not consistently used in the literature and is often left undefined. We use the
following terminology.

D 2.2 (Quotient varieties and quotient singularities). – Let X be a normal,
quasi-projective variety. We say that X is a quotient variety if there exists a finite group G, a
smooth G-variety yX (1) such that X Š yX=G and such that the quotient map is étale over Xreg.
We say thatX has quotient singularities, if there exists a covering ofXan by analytically-open
sets .U˛/˛2A, and for each ˛ 2 A a quotient variety Y˛, and an analytically open set V˛ � Y an

˛

that is biholomorphic to U˛.

Our main result pertains to canonical models of varieties of general type. We briefly recall
the relevant definitions and facts.

(1) In other words, the groupG acts on the variety yX by automorphisms.
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D 2.3 (Minimal varieties). – A normal, projective variety X is called minimal
if X has at worst terminal singularities and if KX is nef.

R 2.4 (Basepoint-Free Theorem and Canonical models).
If X is a projective, klt variety of general type whose canonical divisor KX is nef, the

Basepoint-Free Theorem asserts that KX is semiample, [41, Thm. 3.3]. A sufficiently high
multiple ofKX thus defines a birational morphism � W X ! Z to a normal projective variety
with at worst klt singularities whose canonical divisorKZ is ample, cf. [41, Lem. 2.30]. There
exists a Q-linear equivalenceKX �Q �

�KZ . If X is a minimal variety of general type, Z has
at worst canonical singularities, we set Z D Xcan, and call it the canonical model of X .

D 2.5 (Ball quotient). – A smooth projective variety X of dimension n is a ball
quotient if the universal cover of Xan is biholomorphic to the unit ball Bn D f.z1; : : : ; zn/ 2
Cn j jz1j2 C � � � C jznj2 < 1g. Equivalently, there exists a discrete subgroup � < AutO.Bn/ of
the holomorphic automorphism group of Bn such that the action of � on Bn is cocompact and
fixed-point free, and such that X is isomorphic to Bn=�.

The following will be used for notational convenience.

N 2.6 (Big and small subsets). – Let X be a normal, quasi-projective variety.
A closed subset Z � X is called small if codimX Z � 2. An open subset U � X is called big
if X n U is small.

Fundamental groups are basic objects in our arguments. We will use the following nota-
tion.

D 2.7 (Fundamental group and étale fundamental group).
IfX is a complex, quasi-projective variety, we set �1

�
X
�
WD �1

�
Xan

�
, and call it the funda-

mental group of X . Moreover, the étale fundamental group of X will be denoted by y�1
�
X
�
.

R 2.8. – Recall that y�1.X/ is isomorphic to the profinite completion of �1.X/;
e.g., see [47, §5 and references given there].

2.3. Morphisms

Galois morphisms appear prominently in the literature, but their precise definition is not
consistent. We will use the following definition, which does not ask Galois morphisms to be
étale.

D 2.9 (Covers and covering maps, Galois morphisms).
A cover or covering map is a finite, surjective morphism  W X ! Y of normal,

quasi-projective varieties. The covering map  is called Galois if there exists a finite group
G � Aut.X/ such that  is isomorphic to the quotient map.

N 2.10. – In the setting of Definition 2.9, we will frequently write

X


Galois with group G
// Y or X



�=G

// Y

to indicate that  is isomorphic to the quotient map. We will also write G D Gal.X=Y /.
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D 2.11 (Quasi-étale morphisms). – A morphism f W X ! Y between normal
varieties is called quasi-étale if f is of relative dimension zero and étale in codimension one. In
other words, f is quasi-étale if dimX D dimY and if there exists a closed, subset Z � X of
codimension codimX Z � 2 such that f jXnZ W X nZ ! Y is étale.

2.4. Sheaves

Reflexive sheaves are in many ways easier to handle than arbitrary coherent sheaves, and
we will therefore frequently take reflexive hulls. The following notation will be used.

N 2.12 (Reflexive hull). – Given a quasi-projective variety X and a coherent
sheaf E on X , write

�
Œp�
X WD

�
�
p
X

���
; E Œm� WD

�
E˝m

���
and det E WD

�
ƒrank E E

���
:

Given any morphism f W Y ! X , write f Œ��E WD .f �E /��, etc.

One key notion in our argument is that of a flat sheaf.

D 2.13 (Flat sheaf, [17, Def. 1.15]). – If X is any quasi-projective variety and
F is any locally free, analytic sheaf on the underlying complex space Xan, we call F flat if
it is defined by a representation of the topological fundamental group �1

�
Xan

�
. A locally free,

algebraic sheaf E on X is called flat if the associated analytic sheaf E an is flat.

We use [12, Chap. 3] as our main reference for Chern classes on singular spaces. The
Bogomolov discriminant plays a central role.

N 2.14 (Bogomolov discriminant). – Let X be a projective variety and E be
a locally free sheaf on X , of rank r > 0. One defines the Bogomolov discriminant of E

as �.E / WD 2r � c2.E / � .r � 1/ � c1.E /2.

2.5. G -sheaves

In the discussion of Q-varieties one needs to consider varieties X that are equipped with
a faithful action of a finite group G. Almost all sheaves that are relevant in our discussion
come with a natural structure of a G-sheaf, also called G-linearized sheaf in the literature,
[50]. A detailed discussion of G-sheaves, including full proofs of all relevant facts used here,
is found in [50, § 1.3], [63, § 3.2], and [16, Appendix A].

N 2.15 (G-invariant push-forward). – Let X be a quasi-projective variety,
equipped with a faithful action of a finite group G, and with associated quotient map
� W X ! X=G. If E is any G-sheaf on X , write ��.E /G � ��.E / to denote the G-invariant
part of the push-forward.

IfX has aG-action and E is aG-sheaf, it is generally not true that anyG-subsheaf F � E

comes from the quotient. The following standard proposition gives a criterion when this is
true. The preprint version, available from the arXiv, contains a full proof.
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P 2.16 (G-sheaves coming from the quotient). – Let  W Y ! X be a Galois
morphism with group G. Let BX be a reflexive sheaf on X and B WD  Œ��BX . Observe that
B naturally carries the structure of a G-sheaf. If A � B is any saturated G-subsheaf, then
there exists a reflexive, saturated subsheaf AX � BX such that A D  Œ��AX .

2.6. Intersection, slope and stability

Given a normal, quasi-projective variety X , we follow the notation of [12] and denote
byAk.X/ the groups ofk-dimensional cycles modulo rational equivalence. The symbolN 1.X/Q
denotes the Q-vector space of numerical Cartier divisor classes. Given any divisor D or any
sheaf E whose determinant is Q-Cartier, we write the appropriate elements of N 1.X/Q
as ŒD� and ŒE � WD Œdet E �, respectively.

We recall the following standard construction of intersection numbers between Weil– and
Cartier divisors.

C 2.17 (Intersection of Weil and Cartier divisors).

Let X be an n-dimensional, normal, projective variety and 0 ¤ E be any coherent sheaf.
Its determinant is then a Weil divisorial sheaf onX , say det E D OX .D/. The Weil divisorD
defines an element� 2 An�1.X/. Given .n�1/ line bundles L1; : : : ;Ln�1, we can then form
the cap product and consider the number

deg
�
� \ c1.L1/ \ � � � \ c1.Ln�1/

�
2 Z:

Since its value depends only on the numerical classes of the line bundles Li , the sheaf E

induces a well-defined Q-multilinear form N 1.X/
�.n�1/
Q ! Q.

N 2.18. – Abusing notation somewhat, we denote the multilinear form
of Construction 2.17 by ŒE �, as if the sheaf E had a numerical class. Given elements
˛1; : : : ; ˛n�1 2 N

1.X/Q, we denote the associated value by ŒE � � ˛1 � � �˛n�1 2 Q.

The abuse of notation is partially justified by the following remark.

R 2.19. – In the setting of Construction 2.17, if � W zX ! X is any resolution of
singularities, then ŒE � �˛1 � � �˛n�1 D Œ��E � ���˛1 � � ���˛n�1. If det E is Q-Cartier, then there
is a numerical class ŒE � 2 N 1.X/Q, and Construction 2.17 gives the expected results.

D 2.20 (Slope with respect to a nef divisor). – Let X be a normal, projective
variety and H be a nef Q-Cartier divisor on X . If E ¤ 0 is any torsion free, coherent sheaf
on X , define the slope of E with respect to H as

�H .E / WD
ŒE � � ŒH �dimX�1

rank E
:

Call E semistable with respect to H if �H .F / � �H .E / for any subsheaf F � E with
0 < rank F < rank E . Call E stable with respect to H if strict inequality always holds.

In the setup of Definition 2.20, the class ŒH �dimX�1 is a movable numerical curve class, cf.
[18, Def. 2.2]. IfX isQ-factorial, our definition of slope agrees with that of [18, Def. 2.10]. The
standard proofs of the following elementary facts carry over from [18] essentially verbatim.
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L 2.21 (Elementary properties of slope). – In the setup of Definition 2.20, if
� W zX ! X is any generically finite morphism of normal, projective varieties, then the following
holds.

(2.21.1) We have �H .E / D .deg�/�1 � ���H
�
� Œ��E

�
.

(2.21.2) If zE is any coherent sheaf on zX that differs from � Œ��E at most over a small subset
of X , then �H .E / D .deg�/�1 � ���H

�
zE
�
.

L 2.22 (Harder-Narasimhan filtration). – In the setup of Definition 2.20, there
exists a unique filtration, 0 D E0 ( E1 ( � � � ( E` D E , whose quotients E i WD Ei=Ei�1 are
torsion free, semistable with respect toH and where the sequence�H .E i / is strictly decreasing.

N 2.23 (Harder-Narasimhan filtration). – The filtration of Lemma 2.22 is
called Harder-Narasimhan filtration. Call E1 the maximal H -destabilizing subsheaf of E and
write �max

H .E / WD �H .E 1/ and �min
H .E / WD �H .E `�1/.

PART I

FOUNDATIONAL MATERIAL

3. Q-varieties and Q-Chern classes

3.1. Q-varieties

The construction of the Q-Chern classes that are used to formulate our main results relies
on the notions of Q-variety, also known as V -manifolds in the literature. While Q-Chern
classes on Q-surfaces have been discussed in the literature at length, the (sometimes delicate)
issues arising in higher dimensions are often not well covered. For the reader’s convenience,
this section gathers the main definitions, results and constructions concerning Q-varieties
that are used in our paper. For the sake of brevity, many of the more standard proofs are
left to the reader. The preprint version of the paper, available from the arXiv, contains full
proofs and explains all constructions in detail.

3.2. Q-varieties

We recall the definition of Q-varieties, as given in the fundamental articles of Mumford
and Gillet, [49, 14].

Note that there are other definitions in the literature (2). To avoid confusion, we restrict
ourselves to Mumford’s paper as a main reference and stick to the notation introduced there.

(2) The definition found in Megyesi’s well-known article [39, Sect. 10] is more restrictive than Definition 3.1 in that
it requires the morphismsX˛ ! U˛ to be quasi-étale.
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D 3.1 (Q-variety, cf. [49, Sect. 2] and [14, Def. 9.1]). – A Q-variety is a tuple
consisting of a normal, quasi-projective variety X , a finite set A and for each ˛ 2 A a smooth,
quasi-projective variety X˛ and a diagram of morphisms between quasi-projective varieties

(3.1.1) X˛
Galois with group G˛

//

p˛

,,U˛
p0˛ , étale

// X

such that X D
S
p˛.X˛/ and such that the following compatibility condition holds: for each

.˛; ˇ/ 2 A � A, denoting by X˛ˇ the normalization of X˛ �X Xˇ , then the natural morphisms

p˛ˇ;˛ W X˛ˇ ! X˛ and p˛ˇ;ˇ W X˛ˇ ! Xˇ

are étale. In particular, X˛ˇ is smooth. For brevity of notation, we refer to the Q-variety
by
�
X; fp˛g˛2A

�
. We refer to the diagrams (3.1.1) as charts.

We refer to [49, Sect. 2.b] for the definition of a morphism of Q-varieties as well as for an
explanation of the relation to general Deligne-Mumford stacks.

3.3. Quasi-étale Q-varieties

This paper is mainly concerned with Q-varieties whose charts are quasi-étale. As we will
see below, these have particularly good properties.

D 3.2. – A Q-variety
�
X; fp˛g˛2A

�
is called quasi-étale if all the morphisms p˛

are quasi-étale.

R 3.3 (Quasi-étale charts). – LetX be a normal, quasi-projective variety, letA be
a finite set and for each ˛ 2 A, assume we are given a diagram as in (3.1.1), such that
X D

S
p˛.X˛/. If all morphisms p˛ are quasi-étale, then the morphisms X˛ˇ ! X˛ are

then likewise étale in codimension one and hence, by purity of the branch locus, étale, [67,
Prop. 2] or [51, Thm. 1]. The condition on the p˛ˇ;˛ is therefore vacuous, and the p˛ equipX
with the structure of a Q-variety.

L 3.4 (Uniqueness of quasi-étale Q-variety structures). – Let X be any normal,
quasi-projective variety. Then, any two quasi-étale Q-variety structures on X have a common
refinement.

3.4. Global covers

Given an n-dimensional Q-variety XQ WD
�
X; fp˛g˛2A

�
as in Definition 3.1, Mumford

constructs in [49, Sect. 2] a global cover of XQ, that is, a normal variety yX (not necessarily
smooth), a global Galois morphism  W yX ! X , and for every ˛ 2 A a commutative diagram
as follows,

yX˛
q˛

Galois with groupH˛GG
//

� _

incl. of open
��

X˛
Galois with group G˛DG=H˛

// U˛

p0˛ , étale

��
yX

 , Galois with group G
// X:

We call yX a global cover of XQ.
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O 3.5 (The importance of being Cohen-Macaulay, I).

If yX is Cohen-Macaulay, then the Galois morphisms q˛ will automatically be flat, [8,
Ex. 18.17]. In particular, pull-back of coherent sheaves is an exact functor. Recalling that
a coherent sheaf F is reflexive if and only if it is locally a 2nd syzygy sheaf, [27, Prop. 1.1], it
follows that for any ˛ 2 A, the pull-back of any reflexive sheaf onX˛ to yX˛ is again reflexive.

3.5. Q-sheaves

The next relevant items are the definition of Q-sheaves and the construction of Q-sheaves
by reflexive pull-back.

D 3.6 (Q-sheaf and Q-bundle, cf. [49, § 2]). – Let XQ WD
�
X; fq˛g˛2A

�
be a

Q-variety, as in Definition 3.1, a Q-sheaf F on XQ is a tuple�
fF˛g˛2A; fi˛ˇ g.˛;ˇ/2A�A

�
consisting of a family of coherent sheaves F˛ on X˛ plus isomorphisms

i˛ˇ W p
�
˛ˇ;˛.F˛/! p�˛ˇ;ˇ .Fˇ /

that are compatible on the triple overlaps. The Q-sheaf F is called reflexive if all the F˛ are
reflexive. It is called Q-bundle if all the F˛ are locally free.

R 3.7 (Induced sheaves on global covers). – In the setting of Definition 3.6,
given a global cover as in Section 3.4, Mumford shows that the pull-back sheaves q�˛F˛ glue
to give a coherentG-sheaf yF on yX , [49, Sect. 2]. If we assume in addition that F is reflexive,
then the F˛ are locally free in codimension two, [27, Cor. 1.4], and the same holds for yF .
In particular, if F is reflexive and dimX D 2, then yF is locally free.

With this construction, Mumford proves that to give a Q-sheaf on XQ, it is equivalent to
give a G-sheaf on yX whose restrictions to yX˛ are isomorphic (as H˛-sheaves) to pull-back
sheaves from X˛.

C 3.8 (Reflexive pull-back). – Given a Q-variety XQ WD
�
X; fp˛g˛2A

�
and given any coherent sheaf F onX , one defines a reflexive Q-sheaf F ŒQ� onXQ by setting
F˛ WD p

Œ��
˛ F—the existence of natural isomorphisms i˛ˇ is guaranteed by étalité of p˛ˇ;˛

and p˛ˇ;ˇ . The Q-sheaves
�
�
Œp�
X

�ŒQ�
and

�
TX
�ŒQ�

are Q-bundles.

R 3.9 (The importance of being Cohen-Macaulay, II). – In the setting of Cons-
truction 3.8, let yX be a global cover as in Section 3.4, and let yF be the sheaf induced by the
Q-sheaf F ŒQ�, as in Remark 3.7. If yX is Cohen-Macaulay, it follows from Observation 3.5
that yF D  Œ��F D  Œ��.F= tor/. In particular, we obtain that these sheaves are locally
free in codimension two. In a similar vein, observing that the two reflexive sheaves yF � and
 Œ��.F �/ D  Œ��

�
.F= tor/�

�
agree over the big open set where the torsion free sheaf F= tor is

locally free, we see that yF � and  Œ��.F �/ do in fact agree.

3.6. Constructions

We recall three folklore constructions of Q-variety structures.
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3.6.1. Varieties with quotient singularities. – Given any Q-variety
�
X; fp˛g˛2A

�
as in Defi-

nition 3.1, thenX clearly has quotient singularities, in the sense of Definition 2.2. We briefly
recall the fundamental fact that the converse is also true, cf. [49, p. 276].

P 3.10 (Varieties with quotient singularities admit Q-structures).

Let X by any quasi-projective variety with quotient singularities. Then, X admits the
structure of a quasi-étale Q-variety.

3.6.2. Cutting down. – If X is a quasi-projective variety that has been equipped with the
structure of a Q-variety, there is generally no natural Q-variety structure on an arbitrary
hypersurfaces or subvarieties of X , cf. [39, Warnings on p. 116]. We remark that this is
different for general elements of basepoint free linear systems.

P 3.11 (Q-variety structures on general hyperplanes).

LetXQ WD
�
X; fp˛g˛2A/

�
be a Q-variety, let L be a line bundle onX and V � jL j a finite-

dimensional, basepoint free linear system whose generals element are irreducible. Then, there
exists a dense, Zariski-open subset V ı � V such any hypersurfaceH is irreducible and normal,
and admits a structure HQ of a Q-variety, together with a morphism �Q W HQ ! XQ whose
induced morphism � W H ! X is the inclusion. Under the following additional assumptions,
more is true.

(3.11.1) If E is any reflexive sheaf onX and ifH 2 V ı is general, then E jH is likewise reflexive,

and ��Q
�
E ŒQ�

�
Š
�
E jH

�ŒQ�.
(3.11.2) If XQ is quasi-étale and H 2 V ı is general, then HQ is quasi-étale.

(3.11.3) IfXQ admits a global, Cohen-Macaulay cover andH 2 V ı is general, thenHQ admits
a global, Cohen-Macaulay cover.

3.6.3. Quasi-étale coverings. – There is generally no notion of “pull-back” for Q-variety
structures, even for finite morphisms. If the morphism is quasi-étale, a pull-back structure
does exist, however.

P 3.12 (Q-variety structures on quasi-étale coverings).

LetXQ be a quasi-étale Q-variety, and  W Y ! X a finite, quasi-étale cover. Then, Y admits
a structure YQ of a quasi-étale Q-variety, together with a morphism Q W YQ ! XQ whose
induced morphism Y ! X is  . If E is any reflexive sheaf on X , then �Q .E

ŒQ�/ Š . Œ��E /ŒQ�.

Proof. – Write XQ WD
�
X; fp˛g˛2A

�
and, given any ˛ 2 A, let Y˛ be the normalization

of X˛ �X Y . Base change gives a finite set of diagrams as follows,

(3.12.1)

Y˛
Q˛

//

q˛

**

˛

��

U˛ �X Y
q0˛

//

��

Y

 , quasi-étale
��

X˛
quot. by G˛

//

p˛

44U˛
p0˛ , étale

// X:
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It follows from stability of étalité under base change that q0˛ is étale and that q˛ is quasi-étale.
In particular, U˛ �X Y is normal. This in turn implies that Q˛ is the quotient map for the
natural G˛-action on Y˛. Lastly, note that the map ˛ is étale away from

�1˛
�
Ramificationp˛

�
[ q�1˛

�
Ramification 

�
;

which is a small subset of Y˛. Purity of the branch locus then implies that ˛ is étale
and, in particular, that Y˛ is smooth. Using Remark 3.3, we see that the top rows of the
diagrams (3.12.1), restricted to the irreducible components of Y˛, equip Y with a structure
YQ of a quasi-étale Q-variety. The restrictions of the full Diagrams (3.12.1) to the irreducible
components of Y˛ define a morphism Q W YQ ! XQ whose induced morphism Y ! X is  .

It remains to consider the Q-sheaves attached to a reflexive sheaf E on X . To this end,
observe that the Q-sheaf �Q.E

ŒQ�/ is given at the level of the Y˛ by the sheaves �˛
�
.E ŒQ�/˛

�
,

which are reflexive because the ˛ are étale. But we have canonical isomorphisms,

�˛
�
.E ŒQ�/˛

�
Š �˛p

Œ��
˛ E definition of E ŒQ�

Š qŒ��˛  Œ��E sheaves agree over big set where E is locally free,

which give the desired statement.

3.7. Q-Chern classes on klt spaces

It is well understood that the base variety X of any klt surface pair .X;D/ has quotient
singularities. The geometry ofX can then be studied using generalized Chern classes, known
as Q-Chern classes or orbifold Chern classes—we refer to Kawamata’s proof [31] of the abun-
dance conjecture in dimension three for an example. In higher dimensions, the base variety of
a klt pair does not necessarily have quotient singularities. However, once one removes a suit-
able subsetZ � X of codimension three, only quotient singularities remain andX nZ can be
equipped with the structure of a Q-variety that admits a global, Cohen-Macaulay cover. In
particular, following Mumford’s fundamental paper [49], Chern classes can be defined. Since
codimZ D 3, this allows to construct on any klt space useful intersection products with first
and second Q-Chern classes of any reflexive sheaf on X . This applies in particular to the
tangent sheaf TX . The (standard) proofs are omitted, but spelled out in the arXiv version of
this paper.

T 3.13 (Q-Chern classes on klt spaces). – There exist a map that assigns to any
projective, klt pair .X;D/ of dimension n � 2 and any reflexive sheaf E on X three symmetric,
Q-multilinear forms, denoted as follows,

yc1.E / W N 1.X/
�.n�1/
Q ! Q; .˛1; : : : ; ˛n�1/ 7! yc1.E / � ˛1 � � �˛n�1

yc1.E /2 W N 1.X/
�.n�2/
Q ! Q; .˛1; : : : ; ˛n�2/ 7! yc1.E /2 � ˛1 � � �˛n�2

yc2.E / W N 1.X/
�.n�2/
Q ! Q; .˛1; : : : ; ˛n�2/ 7! yc2.E / � ˛1 � � �˛n�2

such that the following properties hold for all X , all reflexive E on X , and all ˛1; : : : ; ˛n�1 2
N 1.X/Q.
(3.13.1) If n D 2, then X has quotient singularities, and yc1.E / 2 N 1.X/�Q as well as yc1.E /2,

yc2.E / 2 Q are the classical Q-Chern classes (3) discussed in the literature, cf. [39,

(3) The “multilinear forms” yc1.E /2 and yc2.E / take no arguments and are therefore identified with rational numbers.
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Chapt. 10]. In particular, there exists a Galois cover  W yX ! X (not necessarily
quasi-étale), where  Œ��E is locally free for any reflexive sheaf E on X , and where the
following equalities hold, for all E and for all numerical classes ˛1 2 N 1.X/Q,

yc1.E / � ˛1 D .deg /�1 � c1
�
 Œ��E

�
� �˛1:

Ditto for yc1.E /2 and yc2.E /. The cover  is a global, Cohen-Macaulay cover for a
suitable, quasi-étale Q-variety structure on X .

(3.13.2) If n > 2, if L 2 Pic.X/ is a line bundle and V � jL j is a basepoint free linear system
whose elements are all connected, then there exists a dense open subset V ı � V such
that for all H 2 V ı, the hypersurface H is irreducible, not contained in suppD, the
pair .H;DjH / is klt, the restriction E jH is reflexive, and

yc1.E / � ŒL � � ˛2 � � �˛n�1 D yc1.E jH / � ˛2 � � �˛n�1:

Ditto for yc1.E /2 and yc2.E /.

The construction of yc1 is compatible with classical definitions in case the determinant
of E is Q-Cartier. If E is locally free, then the forms yc1.E /, yc1.E /2 and yc2.E / equal the usual
product with the Chern classes of E .

R 3.14. – Since every line bundle on X is the difference of two very ample ones,
it follows from multilinearity that the forms are uniquely determined by Items (3.13.1),
(3.13.2). As for the converse, it might seem tempting take these items as a definition of the
forms, in order to avoid the Mumford’s constructions. But then well-definedness needs to be
shown, which will in essence lead to the same set of problems.

The following definition and notation will be used in most of the applications.

D 3.15 (Q-Bogomolov discriminant). – Let .X;D/ be a projective klt pair and
E be a reflexive sheaf on X of rank r > 0. One defines the Q-Bogomolov discriminant of E as
the multilinear form

y�.E / WD 2r � yc2.E / � .r � 1/ � yc1.E /
2:

We end this section with a number of remarks and immediate corollaries that we will later
use.

3.8. Calculus of Q-Chern classes

The following results help to compute Q-Chern classes in practice. They follow fairly
quickly from Mumford’s construction and from basic properties of Q-varieties.

L 3.16 (Behavior under quasi-étale covers). – If .X;D/ is a projective klt pair of
dimension n � 2 and if  W Y ! X is quasi-étale between projective varieties, then .Y; �D/ is
again klt, and the following equalities hold for all reflexive sheaves E and all numerical classes
˛1; : : : ; ˛n�1 2 N

1.X/Q,

yc1.
Œ��E / � .�˛1/ � � � .

�˛n�1/ D .deg / � yc1.E / � ˛1 � � �˛n�1:

Ditto for yc1. Œ��E /2 and yc2. Œ��E /.
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L 3.17 (Q-Chern classes of flat sheaves). – If .X;D/ is a projective klt pair of
dimension n � 2 and E a reflexive sheaf on X whose restriction to Xreg is locally free and flat,
then the forms yc1.E /, yc1.E /2 and yc2.E / are all zero.

3.9. Q-varieties as Deligne-Mumford stacks

In the language of stacks, Mumford’s constructions of Q-varieties recalled in this section
reflect the existence of an algebraic Deligne-Mumford (DM) stack structure for algebraic
varieties with only quotient singularities, cf. [14, Prop. 9.2]. More precisely, given aQ-variety /
quasi-étale Q-variety .X; fp˛g˛2A/, there is an algebraic DM stack � verifying the following
properties.

(3.17.1) The stack � is smooth and X is its coarse moduli space.

(3.17.2) The isotropy group at the generic point / every codimension-one point of � is trivial.

In [14], Gillet developed an intersection theory for DM stacks and their coarse moduli
spaces and showed that for Q-varieties the theory is the same as Mumford’s theory recalled
above. Consequently, one could have used Gillet’s results instead of Mumford’s in our discus-
sion of Q-Chern classes for reflexive sheaves on klt varieties. By using Mumford’s approach,
we followed a tradition in higher-dimensional classification theory, e.g., see [39, 53].

4. Sheaves with operators

4.1. Definitions and elementary operations

In order to define and discuss Higgs sheaves on singular spaces in Section 5, this prelimi-
nary section discusses sheaves with operators. Our main emphasis lies on stability properties.
Because of the singularities we cannot assume that any of the sheaves in question is locally
free. We need to resort to the following, rather general definition. We also need to discuss the
case ofG-sheaves, but restrict ourselves to the minimal amount of material required to make
our arguments work.

D 4.1 (Sheaf with an operator). – Let X be a normal, quasi-projective variety
and W be a coherent sheaf of OX -modules. A sheaf with a W -valued operator is a pair .E ; �/
where E is a coherent sheaf and � W E ! E ˝W is an OX -linear sheaf morphism.

D 4.2 (G-sheaf with an invariant operator). – Let X be a normal, quasi-
projective variety, equipped with the action of a finite groupG, and let W be a coherentG-sheaf
of OX -modules. A G-sheaf with an invariant W -valued operator is a sheaf with a W -valued
operator, .E ; �/, where E is a coherent G-sheaf and � is a morphism of G-sheaves.

W 4.3 (Incompatible definitions in the literature). – The literature contains no
uniform definition of sheaves with operators. Our definition agrees with that of [43, p. 257]
but differs from [42, Def. 1.1]. All definitions that we have seen agree if E is torsion free and
W is locally free. We will be careful to quote the literature, in particular [42], only in settings
where these conditions hold.
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C 4.4 (Direct sum and tensor product). – Let X be a normal, quasi-
projective variety and .E1; �1/, .E2; �2/ two sheaves with a W -valued operator, as in Defini-
tion 4.1. Then, .E1 ˝ E2; �1 ˝ IdE2 C IdE1 ˝�2/ and .E1 ˚ E2; �1 ˚ �2/ are again sheaves
with a W -valued operator

C 4.5 (Duals and endomorphisms). – LetX be a normal, quasi-projective
variety and .E ; �/ a sheaf with a W -valued operator, as in Definition 4.1. Assume that E is
locally free. The operator � can then be seen as a section in the sheaf . End E / ˝ W . Using
the canonical identification End E Š End .E �/, we obtain an operator on the dual sheaf,
�� W E � ! E � ˝W .

N 4.6 (Elementary operations). – We denote the sheaves of Construction 4.4
briefly as .E1; �2/˚.E1; �2/ and .E1; �2/˝.E1; �2/. If L is any coherent sheaf of OX -modules,
taking zero-morphism gives sheaf .L ; 0/ with a W -valued operator. We will briefly write
.E1; �2/˝L instead of .E1; �2/˝ .L ; 0/. In the setting of Construction 4.5, write .E ; �/� D
.E �; ��/ and End .E ; �/ D .E ; �/� ˝ .E ; �/.

C 4.7 (Pull-back and restriction). – Let X be a normal, quasi-projective
variety and .E ; �/ a sheaf with a W -valued operator. If f W Y ! X is morphism of normal
varieties, then f �� W f �E ! f �E ˝ f �W equips f �E with the structure of a sheaf with
an f �W -valued operator, which we denote as f �.E ; �/ D .f �E ; f ��/. If f is a closed
immersion, we will also write .E ; �/jY D .E jY ; � jY /.

4.2. Invariant subsheaves

Much of the classical literature discusses sheaves .E ; �/ with W -valued operators only in
settings where both E and W are locally free. Stability of .E ; �/ is then measured by looking
at � -invariant subsheaves of E , that is, subsheaves F � E where �.F / � F ˝W . If E and
W are arbitrary, the tensor product F ˝W is not necessarily a subsheaf of E ˝W and the
question whether �.F / is contained in F ˝ W no longer makes sense. In order to obtain
a workable theory with good universal properties and a meaningful restriction theorem, the
following more delicate definition needs to be used.

D 4.8 (Invariant subsheaf). – Let X be a normal, quasi-projective variety and
.E ; �/ a sheaf with a W -valued operator, as in Definition 4.1. A coherent subsheaf F � E is
called � -invariant if �.F / is contained in the image of the natural map F˝W ! E ˝W . Call
F generically invariant if the restriction F jU is invariant with respect to � jU , where U � X is
the maximal, dense, open subset where W is locally free.

W 4.9 (No operator on invariant subsheaves). – In the setting of Definition 4.8,
if F � E is � -invariant and W is locally free, then F ˝ W ! E ˝ W is injective, the
restricted map � jF factors via F ˝ W and therefore endows F with the structure of a
sheaf with a W -valued operator. If W is not locally free, then � does in general not induce a
natural W -valued operator on F . We refrain from discussing Harder-Narasimhan filtrations
of sheaves with operators and do not attempt to define morphisms, or to construct an Abelian
category.
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R 4.10 (Invariance and tensor product). – In the setting of Construction 4.4, let
F � E be any given subsheaf. If L is invertible, then F � E is � -invariant (resp. generically
� -invariant) if and only if F ˝L � E ˝L is.

We end the present subsection with two lemmas, pointing out that invariance is well-
behaved with respect to saturation.

L 4.11 (Saturation of invariant subsheaf if W is locally free).

In the setting of Definition 4.8, assume that E is torsion free and that W is locally free. If
F � E is invariant, then so is its saturation F sat � E .

Proof. – Since W is locally free, F sat˝W is saturated in E˝W . The sheaf �.F sat/, which
is almost everywhere contained in F sat ˝ W , is therefore entirely contained in F sat ˝W ,
and is hence � -invariant.

L 4.12 (Saturations of sheaves that are invariant on an open subset).

In the setting of Definition 4.8, if there exists a dense open set V � X such that W jV is
locally free and F jV is � -invariant, then is saturation F sat is generically � -invariant.

Proof. – Aiming to prove that F sat is generically � -invariant, we may assume without
loss of generality that W is locally free. The following composition of morphisms,

F sat
�jFsat

// E ˝W
projection

// .E ˝W /
ı
.F sat ˝W / D .E

ı
F sat/˝W ;

will then vanish identically over V . Since its target is torsion free as a tensor product of a
torsion free and a locally free sheaf, it follows that the composition vanishes everywhere. This
shows the claim.

4.3. Stability

The notion of stability of sheaves with operators will be crucial for all what follows. The
definition may look rather technical and perhaps not intuitive, but has several advantages
that will make our arguments work. For one, it agrees with the classical definition in cases
where E is torsion free and W is locally free. Secondly, it has good universal properties.
These will later enable us to prove a restriction theorem for Higgs sheaves on singular spaces,
and compare stability of a Higgs sheaf on a singular space with that of its pull-back to a
resolution of singularities.

D 4.13 (Stability of sheaves with operator). – Let X be a normal, projective
variety andH be any nef, Q-Cartier Q-divisor on X . Let .E ; �/ be a sheaf with an operator, as
in Definition 4.1, were E is torsion free. We say that .E ; �/ is semistable with respect to H if
the inequality �H .F / � �H .E / holds for all generically � -invariant subsheaves F � E with
0 < rank F < rank E . The pair .E ; �/ is called stable with respect to H if strict inequality
holds. Direct sums of stable sheaves with operator are called polystable.
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D 4.14 (G-Stability of G-sheaves with operator). – LetX be a normal, projec-
tive variety equipped with the action of a finite groupG, andH be any nef, Q-Cartier Q-divisor
onX . Let .E ; �/ be aG-sheaf with an invariant operator, as in Definition 4.2, were E is torsion
free. We say that .E ; �/ is G-semistable with respect to H if the inequality �H .F / � �H .E /

holds for all generically � -invariant G-subsheaves F � E with 0 < rank F < rank E . The
pair .E ; �/ is called G-stable with respect to H if strict inequality holds.

R 4.15. – The conditions spelled out in Definitions 4.13 and 4.14 are trivially
satisfied if E does not contain generically invariant subsheaves of the appropriate rank.

L 4.16 (Stability and tensor product). – In the setting of Definition 4.13, let L be
any invertible sheaf. Then, .E ; �/ is stable (resp. semistable) with respect to H if and only if
.E ; �/˝L is.

Proof. – Lemma 4.16 follows from Remark 4.10 and the fact that slope is additive,
�H .F ˝L / D �H .F /C �H .L / for all non-trivial subsheaves F � E .

We next address openness properties of stability, with the goal to generalize results for
ample polarisations to the nef case. The following proposition is not the strongest possible,
but suffices for our purposes.

P 4.17 (Openness of stability). – Let X be a normal, projective variety,
equipped with an action of a finite group G. Let H be a nef Q-Cartier Q-divisor, ŒH � ¤ 0, and
.E ; �/ be a torsion freeG-sheaf which an invariant operator, and assume that .E ; �/ isG-stable
with respect toH . Given any nef Q-Cartier Q-divisor A, there exists a positive number "0 such
that for all rational numbers 0 < " < "0, theG-sheaf with invariant operator .E ; �/ isG-stable
with respect to .H C " � A/.

Proof. – For simplicity of notation, write n WD dimX and r WD rank E . We may assume
that H and A are integral and Cartier. In particular, recalling that the intersection numbers
of Weil and Cartier divisors of Construction 2.17 take values in the integers, the H -stability
of .E ; �/ implies that for any G-subsheaf 0 ¤ F � E with rank F < r we have

(4.17.1) �H .E / � �H .F / � r�1:

Generalizing Definition 2.20 slightly, given any number 0 � k < n, write

�AkHn�1�k .E / WD
ŒE � � ŒA�k � ŒH �n�1�k

rank E
:

Fix a resolution of singularities, � W zX ! X and observe that the curve class ˛k WD
Œ��A�k �Œ��H�n�1�k 2 N1. zX/Q is movable. In particular, if F � E is any coherent subsheaf,
then � Œ��F � � Œ��E , we have an equality of slopes, �AkHn�1�k .F / D �˛k

�
� Œ��F

�
, and it

follows from [18, Prop. 2.21] that

�max
A�H�.E / WD sup

˚
�AkHn�1�k .F / jF � E a coherent subsheaf and 0 � k < n
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is finite. Now, given any rational 0 � " � 1 and any G-subsheaf 0 ¤ F � E with
rank F < r , owing to (4.17.1) we have

�HC"�A.F / D �H .F /C

n�1X
kD1

 
n � 1

k

!
"k � �AkHn�1�k .F /

� �H .E / �
1

r
C �max

A�H�.E / �
n�1X
kD1

 
n � 1

k

!
"k

< �HC"�A.E /;

for " sufficiently small, which proves the claim.

5. Higgs sheaves

This section introduces Higgs sheaves on singular varieties and establishes their basic
properties. We include a discussion of Higgs Q-sheaves on Q-varieties, investigate functori-
ality of Higgs sheaves, define stability and prove a restriction theorem of Mehta-Ramanathan
type. We conclude with a section on Higgs bundles and variations of Hodge structures that
summarizes some work of Simpson and fits it into the framework of minimal model theory.

5.1. Fundamentals

On a singular variety, some attention has to be paid concerning the definition of “Higgs
sheaf” at singular points. We will see in Section 5.3–5.7 that Higgs sheaves in the sense of
the following definition have just enough universal properties to make our strategy of proof
work. In the converse direction, it seems that Definition 5.1 and our notion of stability are
in essence uniquely dictated if we ask all these universal properties to hold.

D 5.1 (Higgs sheaf and Higgs G-sheaf). – Let X be a normal variety. A Higgs
sheaf is a pair .E ; �/ of a coherent sheaf E of OX -modules, together with an�Œ1�X -valued operator
� W E ! E ˝�Œ1�X , called Higgs field, such that the composed morphism

E
� // E ˝�Œ1�X

�˝Id
// E ˝�Œ1�X ˝�

Œ1�
X

Id˝Œƒ�
// E ˝�Œ2�X

vanishes. Following tradition, the composed morphism will be denoted by �ƒ� . IfX is equipped
with the action of a finite group G, a Higgs G-sheaf on X is a Higgs sheaf .E ; �/, where E is a
G-sheaf, and where the Higgs field � is a morphism of G-sheaves.

D 5.2 (Morphism of Higgs sheaves). – In the setting of Definition 5.1, a
morphism of Higgs sheaves (resp. morphism of Higgs G-sheaves), written f W .E1; �1/ !
.E2; �2/, is a morphism f W E1 ! E2 of sheaves (resp. G-sheaves) that commutes with the
Higgs fields, .f ˝ Id

�
Œ1�
X

/ ı �1 D �2 ı f .

The above definitions extend to Q-Higgs sheaves on Q-varieties. These will be introduced
in Section 5.5 once the existence of the necessary pull-back functors has been established.
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E 5.3 (A natural Higgs sheaf attached to a normal variety).
Let X be a normal variety. Set E WD �Œ1�X ˚ OX and define an operator � as follows,

� W �
Œ1�
X ˚ OX !

�
�
Œ1�
X ˚ OX

�
˝ �

Œ1�
X ;

a C b 7! .0 C 1/ ˝ a:

An elementary computation shows that �ƒ� D 0, so that .E ; �/ forms a Higgs sheaf. If X is
aG-variety, then E has a natural structure of aG-sheaf, and .E ; �/ is in fact aG-Higgs sheaf.
Observe that the direct summand OX � E is generically � -invariant. Non-zero subsheaves
of the direct summand �Œ1�X are not generically � -invariant.

E 5.4 (Tensor, dual and endomorphisms). – The direct sum and tensor opera-
tion of Construction 4.4 transforms Higgs sheaves into Higgs sheaves. Ditto for the dual
sheaf and the endomorphism sheaf that are constructed in 4.5 if the Higgs sheaf is locally
free.

5.2. Explanation

The reader might wonder why Definition 5.1 requires the Higgs field to take its values
in E ˝�Œ1�X . At least two other potential choices for the target come to mind. At first sight,
it might seem most natural and functorial to take E ˝ �1X for a target. However, in the
main application to Miyaoka-Yau inequalities and to uniformisation for varieties of general
type, the naturally induced sheaf of geometric origin is E WD �

Œ1�
X ˚ OX , as discussed in

Example 5.3 above. For this particular E to be a Higgs sheaf, we have to allow the target of
the Higgs field to be E ˝�Œ1�X . Also, note that looking at �1X ˚ OX instead would render a
discussion of semistability moot, as semistability requires torsion freeness and even the most
simple klt singularities lead to torsion in �1X , see [20] for examples.

On the other hand, the reader might wonder why � takes its values in E ˝ �Œ1�X and not
in its reflexive hull. The advantages of our choice will become apparent in the following
Section 5.3, where pull-back functors are defined: in general, none of the constructions there
will work for reflexive hulls.

5.3. Pull-back

To pull back Higgs sheaves is at least as difficult as to pull-back reflexive differentials.
Functorial pull-back for reflexive differentials does, however, not exist in general unless the
target space supports a divisor that makes it klt.

C 5.5 (Pull-back of Higgs sheaves). – Let .X;D/ be a klt pair and let
.E ; �/ be a Higgs sheaf on X . Given any normal variety Y and any morphism f W Y ! X ,
recall from [32, Thms. 1.3 and 5.2] that there exists a natural pull-back functor for reflexive
differentials on klt pairs that is compatible with the usual pull-back of Kähler differentials
and gives rise to a sheaf morphism

dreflf W f
��

Œ1�
X ! �

Œ1�
Y :

We claim that � 0, defined as the composition of the following morphisms,

(5.5.1) f �E
f ��
���! f �

�
E ˝�Œ1�X

�
D f �E ˝ f ��Œ1�X

Idf �E ˝dreflf

���������! f �E ˝�Œ1�Y ;
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equips f �E with the structure of a Higgs sheaf. To check that � 0ƒ� 0 D 0, one uses the
compatibility of reflexive pull-back with wedge products, [32, Prop. 5.13], to verify that the
following diagram is commutative,

f �E
.�˝Id/ı�

//

f �.�ƒ�/

,,

f �E ˝ f ��Œ1�X ˝ f
��

Œ1�
X

//

Id˝drefl˝drefl
��

f �E ˝ f ��Œ2�X

Id˝drefl
��

f �E
.� 0˝Id/ı� 0

//

� 0ƒ� 0

11f �E ˝�Œ1�Y ˝�
Œ1�
Y

// f �E ˝�Œ2�Y :

By minor abuse of notation, this Higgs sheaf will be denoted as f �.E ; �/ or .f �E ; f ��/.

N 5.6 (Restriction of Higgs sheaves). – In the setting of Construction 5.5, if
f is a closed or open immersion, we will also write .E ; �/jY or .E jY ; � jY /. To keep notation
reasonably short, we will in the remainder of the paper tacitly equip restrictions of Higgs
sheaves with their natural Higgs fields.

We mentioned above that the pull-back functor dreflf W f
��

Œ1�
X ! �

Œ1�
Y is compatible

with the usual pull-back of Kähler differentials. If X and Y are smooth and f is a closed
immersion, the pull-back f �.E ; �/ of Construction 5.5 will therefore agree with the standard
pull-back (resp. restriction) of Higgs sheaves discussed in the literature.

L 5.7 (Pull-back of invariant subsheaves). – In the setting of Construction 5.5, if
F � E is � -invariant in the sense of Definition 4.8, then F 0 WD img.f �F ! f �E / � f �E is
� 0-invariant.

Proof. – Denote the natural inclusion map as i W F ! E . If F is � -invariant, then � jF
will factor via img

�
F ˝�Œ1�X ! E ˝�Œ1�X

�
. Pulling back, we obtain a commutative diagram

f �F
a // //

f �i

��

f � img
�
F ˝�Œ1�X ! E ˝�Œ1�X

�
b // f �E ˝ f ��Œ1�X

f �E
f ��

// f �E ˝ f ��Œ1�X

and, by an elementary computation, an inclusion

.f ��/.F 0/ � img b D img
�
f �F ˝ f ��Œ1�X ! f �E ˝ f ��Œ1�X

�
:

The following commutative diagram,

f �F ˝ f ��Œ1�X
f �i˝Id

//

Id˝dreflf

��

f �E ˝ f ��Œ1�X

Id˝dreflf

��

f �E
f ��

oo

� 0WD.Id˝dreflf /ıf
��

rrf �F ˝�Œ1�Y f �i˝Id
// f �E ˝�Œ1�Y ;

then yields the claim.
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The following two lemmas are almost immediate.

L 5.8 (Pull-back as criterion for invariance). – In the setting of Construction 5.5,
assume that f is étale. If F � E is any subsheaf such that f �F � f �E is � 0-invariant,
then F is � -invariant.

L 5.9 (Functoriality with respect to morphisms between spaces).

Given klt pairs .X;DX / and .Y;DY /, a normal space Z, a Higgs sheaf .E ; �/ on X and
morphisms g W Z ! Y and f W Y ! X , then g�f �.E ; �/ D .f ı g/�.E ; �/.

5.4. Reflexive pull-back

In the setting of Construction 5.5, assume that .E ; �/ is a reflexive Higgs sheaf on X and
f W Y ! X is a resolution of singularities. The pull-back f �.E ; �/ is then a Higgs sheaf
on Y , but f �E is generally not torsion free. In particular, we cannot ask if f �.E ; �/ is stable
as a sheaf with an �1Y -valued operator. Using smoothness of Y , the following construction
avoids this problem by equipping the reflexive pull-back f Œ��E with the structure of a Higgs
sheaf.

C 5.10 (Reflexive pull-back of Higgs sheaves). – If the variety Y of Cons-
truction 5.5 is smooth, then�Œ1�Y D �

1
Y is locally free. Taking reflexive hulls on either end of

(5.5.1), we obtain an operator

f Œ��� W f Œ��E !
�
f �E ˝�Œ1�Y

���
D f Œ��E ˝�1Y :

The associated map f Œ���ƒf Œ��� W f Œ��E ! f Œ��E ˝ �2Y clearly agrees with 0 D � 0ƒ� 0

wherever f �E is locally free. It follows that f Œ���ƒf Œ��� vanishes generically and hence, since
f Œ��E ˝ �2Y is torsion free, identically. In summary, we see that f Œ��� equips the reflexive
pull-back f Œ��E with the structure of a Higgs sheaf. We will use the symbols f Œ��.E ; �/ or
.f Œ��E ; f Œ���/.

L 5.11 (Reflexive pull-back of invariant subsheaves). – In the setting of Construc-
tion 5.10, if F � E is � -invariant, write

F 0 WD img.f �F ! f �E / � f �E and F 00 WD .F 0/�� � f Œ��E :

Then, F 00 is f Œ��� -invariant.

Proof. – Since�1Y is locally free, F 00˝�1Y is a subsheaf of f Œ��E ˝�1Y , and Lemma 5.7
gives a commutative diagram

(5.11.1)

F 0 //� _

��

F 0 ˝�1Y� _

��

f �E
� 0
// f �E ˝�1Y :

Taking reflexive hulls is a left-exact functor. Applied to (5.11.1), it will thus give the desired
inclusion f Œ���.F 00/ � F 00 ˝�1Y � f

Œ��E ˝�1Y .
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O 5.12 (Weak functoriality with respect to morphisms between spaces).
Assume we are given klt pairs .X;DX / and .Y;DY /, a smooth space Z, a sheaf E on X

and morphisms g W Z ! Y and f W Y ! X . Then, there exists a canonical morphism
c W .f ı g/Œ��E ! gŒ��f Œ��E . If we assume additionally that f �E is reflexive, then c is
isomorphic and given any Higgs-field � , one verifies immediately that gŒ��f �.E ; �/ D
.f ı g/Œ��.E ; �/.

W 5.13 (No full functoriality with respect to morphisms between spaces).
We have seen in Lemma 5.9 that pull-back of Higgs sheaves is fully functorial with respect

to morphisms between spaces. There is no full analog of this for reflexive pull-back. In
fact, taking reflexive hulls does in general not commute with pull-back, the morphism c of
Observation 5.12 will in general not be isomorphic, and functoriality fails already at the level
of sheaves, without any additional Higgs structure. The arXiv version of this paper discusses
an example in detail.

5.5. Higgs sheaves on Q-varieties

The definition of Q-sheaves given in Section 3.5 has an obvious analog for Higgs sheaves.

D 5.14 (Higgs Q-sheaf and Q-bundle). – Setup and notation as in Defini-
tion 3.1. A Higgs Q-sheaf .E ; �/ on XQ is a tuple�

f.E˛; �˛/g˛2A; fi˛ˇ g.˛;ˇ/2A�A
�

consisting of a family of Higgs sheaves .E˛; �˛/ on X˛ plus isomorphisms

i˛ˇ W p
�
˛ˇ;˛.E˛; �˛/! p�˛ˇ;ˇ .Eˇ ; �ˇ /

that are compatible on the triple overlaps. The Higgs Q-sheaf .E ; �/ is called reflexive if all
the E˛ are reflexive. It is called Higgs Q-bundle if all the E˛ are locally free.

In complete analogy to Construction 3.8, any Higgs sheaf on X pulls back to a reflexive
Higgs Q-sheaf on XQ.

C 5.15 (Construction of Higgs Q-sheaf by reflexive pull-back).
Given a quasi-étale Q-variety XQ WD

�
X; fp˛g˛2A

�
, recall from [41, Prop. 5.20] that X is

necessarily klt. In particular, there exists reflexive pull-back from Higgs sheaves on X to
reflexive Higgs sheaves on the manifolds X˛. We can thus define a reflexive Higgs Q-sheaf
.E ; �/ŒQ� onXQ, setting .E˛; �˛/ WD p

Œ��
˛ .G ; �/—the existence of natural isomorphisms i˛ˇ is

guaranteed by étalité of p˛ˇ;˛ and p˛ˇ;ˇ .

As with Q-sheaves, any Higgs Q-sheaf on a Q-variety pulls back to an honest Higgs
sheaf on any global cover. The following are direct analogs of the appropriate statements
for Q-sheaves that are found in Section 3.5.

F 5.16 (Induced Higgs G-sheaf on global cover). – In the setting of Definition 5.14,
assume we are given a global cover  W yX ! X as in Section 3.4, which is Galois with group G.
Then, the pull-back Higgs sheaves q�˛.E˛; �˛/ glue to give a Higgs G-sheaf . yE ; y�/ on yX . If the
Higgs Q-sheaf .E ; �/ is reflexive, then yE is locally free in codimension two. If .E ; �/ is reflexive
and yX is Cohen-Macaulay, then . yE ; y�/ is likewise reflexive.
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A Higgs Q-sheaf does not only induce an honest Higgs-sheaf on any global cover, but also
on any resolution of singularities of global covers that are Cohen-Macaulay. This can again
be seen as a form of reflexive pull-back, this time from the global cover (which need not be
klt) to the resolution of singularities.

L 5.17 (Induced Higgs G-sheaf on resolution of global cover).
Given a Q-varietyX , a reflexive Higgs Q-sheaf .E ; �/, a global cover yX with Galois groupG

and induced Higgs sheaf
�
yE ; y�

�
, let � W zX ! yX be a G-equivariant resolution of singularities.

Set zE WD � Œ�� yE . If yX is Cohen-Macaulay, then there exists a G-invariant Higgs field z� on zE ,
such that the Higgs G-sheaf

�
zE ; z�

�
agrees with the reflexive �-pull back of

�
yE ; y�

�
over the

maximal open set where yX is klt (and where reflexive �-pull pull-back is therefore defined).

Proof. – To define aG-invariant Higgs field on zE , we denote the charts of theQ-varietyXQ
by .X; fp˛g˛2A/, and use the notation for global covers introduced in Section 3.4. Setting
zX˛ WD �

�1. yX˛/, the following diagrams summarize our situation

zX˛

�˛ WD�j zX˛ // yX˛
q˛

�=H˛

// X˛
�=G˛

//

p˛

++
U˛

p0˛ , étale
// X:

Set
�
zE˛; z�˛

�
WD .q˛ ı�˛/

Œ��.E˛; �˛/. Using the assumption that yX is Cohen-Macaulay, recall
from Observation 3.5 that q�˛E˛ is reflexive. In particular, it follows directly that zE˛ D zE j zX˛

.

More is true. Over the open set where yX is smooth and pull-back of Higgs sheaves is therefore
defined, it follows from weak functoriality, Observation 5.12, that�

zE˛; z�˛
�
D � Œ��˛ q�˛.E˛; �˛/ D �

Œ��
˛

�
yE j yX˛

; y�˛j yX˛

�
:

In particular, we see that theG-invariant Higgs fields z�˛ agree over this dense open set. Since
zX is smooth, two Higgs fields on the torsion free sheaf zE agree if they agree on an open set.

It follows that the z�˛ glue to give a globally defined HiggsG-sheaf
�
zE ; z�

�
that agrees with the

reflexive �-pull back of
�
yE ; y�

�
wherever that pull-back is defined.

N 5.18 (Reflexive pull-back from global cover). – In the setting of Lemma 5.17,
we write � Œ��

�
yE ; y�

�
WD
�
zE ; z�

�
, and refer to this sheaf as the reflexive pull-back.

Since this new piece of terminology agrees with the old one as soon as yX is klt, we do not
expect this to lead to any confusion.

5.6. Stability

A Higgs sheaf is stable if it is stable as a sheaf with an �Œ1�X -valued operator, cf. Defi-
nition defn:swostab1. For later use, the following propositions, describing the behavior of
stability under pull-backs, will be useful.

P 5.19 (G-stability under birational pull-back). – Let .X;D/ be a projective
klt pair, where X is equipped with an action of a finite group G. Let H be any nef, Q-Cartier
Q-divisor on X and .E ; �/ be any Higgs G-sheaf, where E is torsion free. Given a birational
morphism � W zX ! X of projective G-varieties with zX smooth, then .E ; �/ is G-stable (resp.
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semistable) with respect toH if and only if� Œ��.E ; �/ isG-stable (resp. semistable) with respect
to ��H .

Proof. – Given any number s 2 Q, we need to show that the following two statements
are equivalent.

(5.19.1) There exists a G-subsheaf 0 ¤ F � E with slope �H .F / � s that is generically
� -invariant.

(5.19.2) There exists a G-subsheaf 0 ¤ zF � � Œ��E with slope ���H . zF / � s that is
generically � Œ��� -invariant.

To this end, let Xı � Xreg be the maximal open set where � is isomorphic, and observe that
Xı is a big, G-invariant subset of X . We set zXı WD ��1.Xı/.

(5.19.1)) (5.19.2). – Given a sheaf F as in (5.19.1), set zF 0 WD f Œ��F . This is aG-invariant
subsheaf of f Œ��E whose restriction to zXı is f Œ��� -invariant. Its saturation zF isG-invariant,
and, by Lemma 4.12, generically� Œ��� -invariant. The ranks of zF and F agree, the slope only
increases in the process.

(5.19.2)) (5.19.1). – Given a sheaf zF as in (5.19.2), use the identification zXı Š Xı to view
zF j zXı as a � jXı -invariant sheaf F ı on Xı. Recall from [21, I.Thm. 9.4.7 and 0.Sect. 5.3.2]

that there exists a coherent subsheaf extension of F ı to X , that is, a coherent subsheaf
F 0 � E whose restriction to Xı equals F ı. As before, Lemma 4.12 guarantees that its
saturation F WD .F 0/sat is generically � -invariant. The ranks of zF and F agree, the slope
only increases in the process.

The following is an analog for morphisms that are generically Galois, say with group G.
It differs from Proposition 5.19 in that it compares G-stability on the domain to normal
stability on the target of the morphism. Its proof uses Proposition 2.16 to descent sheaves
from zX to X , but is otherwise completely similar to that of Proposition 5.19. The arXiv
version of this paper contains the full argument.

P 5.20 (Stability under generically Galois pull-back).

Let .X;D/ be a projective, klt pair, let H be any nef, Q-Cartier Q-divisor on X and .E ; �/
be any Higgs sheaf, where E is torsion free. Given a sequence of morphisms between normal,
projective varieties,

zX

f

,,

�, G-equivar. biratl.
// yX

 , Galois with group G
// X;

with zX smooth, then .E ; �/ is stable (resp. semistable) with respect to H if and only if
f Œ��.E ; �/ is G-stable (resp. semistable) with respect to ��H .

Consider the setting of Proposition 5.20 in the special case where  is quasi-étale. The
pair

�
yX; �D

�
is then klt, and reflexive pull-back � Œ�� from yX to zX exists. The Higgs sheaves

f Œ��.E ; �/ and � Œ�� Œ��.E ; �/, however, need not agree, cf. Warning 5.13. More generally,
given a commutative diagram of morphisms between supporting spaces of klt pairs, failure
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of functoriality will frequently lead to a large number of potentially different reflexive pull-
back Higgs sheaves, each corresponding to one particular path through the diagram. The
following proposition will often be used to compare their stability properties.

P 5.21 (Comparison of G-stability). – LetX be a normal, projective variety,
letG be a finite group that acts onX , letH be any nef,Q-CartierQ-divisor onX and� W zX ! X

be a projective, birational, G-equivariant morphism, where zX is smooth. Let E � zX be the
�-exceptional set and assume that we are given two Higgs G-sheaves on zX , say .E 1; �1/ and
.E 2; �2/, that agree as Higgs G-sheaves away from E. Then, the following two statements are
equivalent for any pair of numbers r 2 N, s 2 Q.

(5.21.1) There exists a G-invariant subsheaf F 1 � E 1 with rank F D r and slope
���H .F 1/ � s that is �1-invariant.

(5.21.2) There exists a G-invariant subsheaf F 2 � E 2 with rank F D r and slope
���H .F 2/ � s that is �2-invariant.

In particular, .E 1; �1/ is G-stable (resp. G-semistable) with respect to ��H if and only if
.E 2; �2/ is.

Proof. – By symmetry, it suffices to show (5.21.1))(5.21.2). Given a subsheaf F 1 as
in (5.21.1), consider the open set zXı WD zX n E and recall from [21, I.Thm. 9.4.7 and
0.Sect. 5.3.2] that there exists a subsheaf G � E 2

zX
whose restriction to zXı equals F 1.

Replacing G by
P
g2G g

�G � E 2
zX

if needed, we may assume without loss of generality
that G is G-invariant. Next, recall from Item (2.21.2) of Lemma 2.21 that ���H .G / D
���H .F 1/ � s. Let F 2 � E 2 be the saturation of G , observe that F 2 � E 2 is again
G-invariant, and recall from Lemma 4.12 that F 2 is invariant with respect to �2.

5.7. The restriction theorem for Higgs sheaves

This subsection establishes the restriction theorem for stable Higgs sheaves, which will
be crucial for the proof of our main results. For Higgs bundles on manifolds with ample
polarization, the theorem appears in Simpson’s work, [58, Lem. 3.7], referring to “arguments
of Mehta and Ramanathan” for a restriction theorem for sheaves with operators. Our proof
instead cites a restriction theorem for sheaves with operators from the work of Langer, [44,
Thm. 9]. He works in positive characteristic but says that, mutatis mutandis, his arguments
will also work in characteristic zero, cf. [44, Page 906]. For clarity’s sake, the arXiv version of
this paper contains a statement of the precise result needed and a short, self-contained proof.

T 5.22 (Restriction theorem for stable Higgs sheaves). – Let .X;�/ be a projec-
tive klt pair of dimension n � 2, let H 2 Div.X/ be an ample, Q-Cartier Q-divisor and let
.E ; �/ be a torsion free Higgs sheaf on X of positive rank. Assume that .E ; �/ is stable with
respect to H . If m � 0 is sufficiently large and divisible, then there exists a dense open set
U � jm �H j such that the following holds for any hyperplaneD 2 U with associated inclusion
map � W D ! X .

(5.22.1) The hyperplane D is normal, connected and not contained in supp�. The pair
.D;�jD

/ is klt.

(5.22.2) The sheaf E jD is torsion free. The Higgs sheaf ��.E ; �/ is stable with respect toH jD .
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Proof. Step 1: Setup. – Choose a strong, log resolution of singularities, say � W zX ! X .
We have seen in Proposition 5.19 that � Œ��.E ; �/ is stable with respect to zH WD ��H . Set
zE WD � Œ��E and r WD rank E .

N 5.23. – Given sheaves A on X , B on zX and C on a subvariety zD � zX , we
write deg A WD degH A , deg B WD deg zH B, deg C WD deg zH j zD

C and similarly with �

and �max.

Twisting E with a sufficiently ample, invertible sheaf, Lemma 4.16 allows to assume that
the following condition holds in addition.

A .... 5.24. – The numbers �.E / and �max. zE / are positive.

Step 2: Choice of m. – Choosing m � 0 sufficiently large and divisible, the following will
hold.

(5.25.1) The divisor m �H is integral, Cartier and very ample.

(5.25.2) Flenner’s restriction theorem holds for E , cf. [11, Thm. 1.2]. In particular, if
D 2 jm �H j is general, then �max.E jD/ D �

max.E /.

(5.25.3) The number m satisfies the condition spelled out in the restriction theorem for
sheaves with an operator, when applying the theorem to the Higgs sheaf � Œ��.E ; �/
as a sheaf with an�1

zX
-valued operator, [44, Thm. 9] but see also the appendix in the

arXiv version of this paper.

(5.25.4) We have a strict inequality 2r � �max. zE / < Œm �H�n.

Step 3: Choice of U . – Next, observe that there exists an open subset U � jm �H j such that
the following holds for all hyperplanes D 2 U and their preimages zD WD ��1.D/.

(5.26.1) The hyperplane D is reduced, irreducible, normal and not contained in supp�,
Item (5.25.1) and Seidenberg’s theorem [3, Thm. 1.7.1]. Its preimage zD is smooth,
Item (5.25.1) and Bertini. The pair .D;�jD/ is klt, Item (5.25.1) and [41, Lem. 5.17].

In particular, there exists a reflexive pull-back functor from Higgs sheaves on D
to Higgs sheaves on zD.

(5.26.2) The restrictions E jD and zE j zD are reflexive, [22, Thm. 12.2.1].

(5.26.3) If A � zE j zD is any subsheaf, then�.A / � �max. zE /, Item (5.25.2) and Lemma 2.21.

Choose one hyperplane D 2 U and fix that choice for the remainder of the proof. As
before, write zD WD ��1.D/ and consider the diagram

zD
z�, inclusion

//

�j zD
, desing.

��

ı

&&

zX

�, desing.
��

D
�, inclusion

// X:

Pulling back, we can equip all spaces considered so far with naturally defined Higgs sheaves,
which we list here for the reader’s convenience.

.E ; �/ ::: Higgs sheaf on X that is initially given
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.ED; �D/ WD �
�.E ; �/ ::: Higgs sheaf on D, equals �Œ��.E ; �/ by (5.26.2)

. zE ; z�/ WD � Œ��.E ; �/ ::: Higgs sheaf on zX

. zE j zD;
z� j zD

/ ::: Refl. sheaf on zD with �1
zX j zD

-valued operator

. zE zD;
z� zD/ WD z�

�. zE ; z�/ ::: Higgs sheaf on zD, equals z� Œ��. zE ; z�/ by (5.26.2)

. zED; z�D/ WD .�j zD/
Œ��.ED; �D/ ::: Higgs sheaf on zD, equals ıŒ��.E ; �/ by (5.26.2)

and Observation 5.12.

We do not claim that the two Higgs sheaves on zD, namely . zE zD;
z� zD/ and . zED; z�D/ necessarily

agree, although they certainly agree outside of the �j zD-exceptional set. We will compare
these sheaves in the last step of this proof.

Step 4: Numerical computations. – We aim to show that .ED; �D/ is stable, or equivalently,
that . zED; z�D/ is stable. For this, we will first establish stability of . zE zD;

z� zD/ in Step 5 of this
proof. The following numerical computation is instrumental.

C 5.27. – If F � zE j zD is any saturated subsheaf with �.F / � �.E / D �. zE / and if

A is any subsheaf of the quotient Q WD
�
zE j zD

�
=F , then deg A � r � �max. zE /.

Proof of Claim 5.27. – Let q W zE j zD ! Q be the natural projection and consider the exact
sequence

0! F ! q�1A ! A ! 0:

We obtain that rank.q�1A / D rank.A /C rank.F / and

deg A D deg q�1A � deg F

D rank.q�1A / � �.q�1A / � rank.F / � �.F / Definition of �

� rank.q�1A / � �max. zE / � rank.F / � �.F / Item (5.26.3)

� rank.q�1A / � �max. zE / � rank.F / � �. zE / Assumption on F

� r � �max. zE / Assumption 5.24,

and Claim 5.27 follows.

C 5.28. – In the setting of Claim 5.27, if B � Q ˝ O zD.�
zD/ is of positive

rank, then deg B � r � �max. zE / � rank.B/ � Œ zD�dimX � r � �max. zE / � Œ zD�dimX .

Step 5: Stability of . zE zD; z� zD/. – With Consequence 5.28 at hand, stability of . zE zD;
z� zD/ can

now be established following the line of argument outlined by Simpson, [58, p. 38].

C 5.29. – The Higgs sheaf . zE zD;
z� zD/ is stable with respect to zH j zD .

Proof of Claim 5.29. – Argue by contradiction and assume that there exists a generically
z� zD-invariant subsheaf F � zE zD with �.F / � �.E /. Lemma 4.11 allows to assume that F is
a saturated subsheaf of zE j zD . For this, note that the slope of a sheaf increases when passing
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to the saturation. Consider the standard conormal bundle sequence for the submanifold
zD � zX , twisted by Q WD . zE zD/=F ,

(5.29.1) 0 �! Q ˝ O zD.�
zD/

˛
�! Q ˝�1

zX
j
zD

ˇ
�! Q ˝�1

zD
�! 0

and the composition  of the following two morphisms,

F
z�j zD
���! zE j zD ˝�

1
zX
j
zD
�! Q ˝�1

zX
j
zD
:

Recalling from Condition (5.25.3) that zE j zD is stable as a sheaf with the �1
zX
j
zD

-valued oper-

ator z� j zD , it follows that F is not generically invariant under that operator. In other words,
the composed map  is not generically zero. In contrast, the assumption that the sheaf F

is generically a Higgs subsheaf implies that the map ˇ ı  is necessarily zero. Exactness of
(5.29.1) then gives a non-zero map � W F ! Q ˝ O zD.�

zD/. We will now show by way of
numerical computation that such a map cannot exist. To this end, observe on the one hand
that

deg.img �/ D deg.F / � deg.ker �/

� rank F � �. zE / � deg.ker �/ Choice of F

� rank F � �. zE / � rank.ker �/ � �max. zE / Item (5.26.3)

� �r � �max. zE / Assumption 5.24.

On the other hand,

deg.img �/ � r � �max. zE / � Œ zD�dimX Consequence 5.28.

We obtain a contradiction to the choice ofm in Assumption (5.25.4). This finishes the proof
of Claim 5.29.

Step 6: End of proof. – We aim to show that the Higgs sheaf .ED; �D/ D �Œ��.E ; �/ is stable
with respect to H jD . Applying Proposition 5.19 to the resolution morphism �j zD

, this is

equivalent to showing that . zED; z�D/ is stable with respect to zH j zD . But since . zED; z�D/ and

. zE zD;
z� zD/, agree outside of the �j zD-exceptional set, Proposition 5.21 says that one is stable if

and only if the other is. Stability of . zE zD;
z� zD/ was, however, established in Claim 5.29.

5.8. Higgs bundles and variations of Hodge structures

In a series of fundamental works, including [56, 58], Simpson relates locally free Higgs
sheaves on projective manifolds to representations of the fundamental group, and to varia-
tions of Hodge structures. We will use these results later to prove our uniformisation result,
Theorem 1.2. For the reader’s convenience, we briefly recall the most relevant definitions and
explain how they fit into the framework of minimal model theory.
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D 5.30 (Polarized, complex variation of Hodge structures).
LetX be a complex manifold, andw 2 N a natural number. A polarized, complex variation

of Hodge structures of weight w, or pCVHS in short, is a C1-vector bundle V with a direct
sum decomposition V D ˚rCsDw Vr;s , a flat connection D that decomposes as follows
(5.30.1)
DjVr;s

W Vr;s
! A 0;1

.VrC1;s�1
/˚ A 1;0

.Vr;s
/˚ A 0;1

.Vr;s
/˚ A 1;0

.Vr�1;sC1
/;

and a D-parallel Hermitian metric on V that makes the direct sum decomposition orthogonal
and that on Vr;s is positive definite if r is even and negative definite if r is odd.

Given a pCVHS, one constructs an associated Higgs bundle. In fact, there are two equiv-
alent constructions that produce isomorphic results.

C 5.31 (Higgs sheaves induced by a pCVHS). – Given a pCVHS as in
Definition 5.30, use (5.30.1) to decompose D as D D � ˚ @˚ @˚ � .

F : The operators @ equip the C1-bundles Vr;s with complex struc-
tures. We write E r;s for the associated locally free sheaves of OX -modules, and set
E WD

L
E r;s . The operators � then define an OX -linear morphism E ! E ˝ �1X .

As D is flat, this is a Higgs field.

S : The operators @C � equip the C1-bundle V with a complex
structure where the .1; 0/-part of the connection D becomes holomorphic. We call
this holomorphically flat bundle H . The complex subbundles Fp WD

L
r�p Vr;s are

holomorphic and hence give a decreasing filtration of H by holomorphic subbundles,
cf. [65, Thm. 10.3]. Condition (5.30.1) then translates into D.Fp/ � Fp�1 ˝ �1X .
Hence, D induces an OX -linear morphism E ! E ˝ �1X on the associated graded
sheaf E WD

L
Fp=FpC1. As D is flat, this is a Higgs bundle.

While part of Simpson’s work refers to the first construction, we will use the second
construction throughout. The formulation using filtrations is closer to standard textbooks
on Hodge theory and allows to quote [65] or [6] without conflict of notation.

D 5.32 (Higgs bundles induced by a pCVHS). – Let X be a complex manifold
and .E ; �/ a Higgs bundle on X . We say that .E ; �/ is induced by a pCVHS if there exists a
pCVHS onX such that .E ; �/ is isomorphic to the Higgs bundle obtained from it via the second
construction in 5.31.

R 5.33. – In the setting of Definition 5.32, the pCVHS V is in general not
uniquely determined by .E ; �/.

5.8.1. Criteria for a Higgs bundle to be induced by a pCVHS. – Scaling the Higgs field
induces an action of C� on the set of isomorphism classes of Higgs bundles. Under suitable
assumptions, Simpson shows that Higgs bundles induced by a pCVHS correspond exactly
to C�-fixed points. The following theorem summarizes his results.

T 5.34 (Higgs bundles induced by a pCVHS, I, [58, Cor. 4.2]).
LetX be a complex, projective manifold of dimensionn andH 2 Div.X/ be an ample divisor.

Let .E ; �/ be a Higgs bundle onX . Then, .E ; �/ comes from a variation of Hodge structures in
the sense of Definition 5.32 if and only if the following three conditions hold.
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(5.34.1) The Higgs bundle .E ; �/ is H -polystable.

(5.34.2) The intersection numbers ch1.E / � ŒH �n�1 and ch2.E / � ŒH �n�2 both vanish.

(5.34.3) For any t 2 C�, the Higgs bundles .E ; �/ and .E ; t � �/ are isomorphic.

R 5.35. – With X and H as in Theorem 5.34, any Higgs bundle .E ; �/ that
satisfies (5.34.1) and (5.34.2) carries a flat C1-connection, [58, Thm. 1(2) and Cor. 1.3]. In
particular, all its Chern classes vanish.

As one immediate consequence of Theorem 5.34, we obtain the following strengthening
of [58, Cor. 4.3].

C 5.36 (Higgs bundles induced by a pCVHS, II). – Let X be a projective
manifold, and H 2 Div.X/ an ample divisor. Let { W S ,! X be a submanifold. The
push-forward map {� W �1.S/! �1.X/ induces a restriction map

r W

8̂̂<̂
:̂

Isomorphism classes of H -semi-

stable Higgs bundles .E ; �/ on X

with vanishing Chern classes.

9>>=>>;!
8̂̂<̂
:̂

Isomorphism classes of H -semi-

stable Higgs bundles .E ; �/ on S

with vanishing Chern classes.

9>>=>>;
.E ; �/ 7! .E ; �/jS :

In particular, if .E ; �/ is any H -semistable Higgs bundle .E ; �/ on X with vanishing Chern
classes, then .E ; �/jS is again H -semistable. The map r has the following properties.

(5.36.1) If {� is surjective, then r is injective. In particular, if .E ; �/ is a Higgs bundle onX such
that .E ; �/jS comes from a pCVHS, then .E ; �/ comes from a pCVHS.

(5.36.2) If in addition the induced push-forward map y{� W y�1.S/ ! y�1.X/ of algebraic
fundamental groups is isomorphic, then r is surjective.

Proof. – Simpson’s Nonabelian Hodge Correspondence, [58, Cor. 3.10] or [57, Thm. 1],
gives an equivalence between the categories of representations of the fundamental group �1.X/
(resp. �1.S/) and H -semistable Higgs bundles on X (resp. S ) with vanishing Chern classes.
The correspondence is functorial in morphisms between manifolds, and pull-back of Higgs
bundles corresponds to the push-forward of fundamental groups, [58, Rem. 1 on p. 36]. In
particular, we see that the restriction of anH -semistable Higgs bundle with vanishing Chern
classes is again H -semistable.

In the setting of (5.36.1) where the push-forward map �1.S/ ! �1.X/ is surjective,
this immediately implies that the restriction r is injective. The restriction map r is clearly
equivariant with respect to the actions of C� obtained by scaling the Higgs fields. Injectivity
therefore implies that the isomorphism class of a Higgs bundle .E ; �/ is C�-fixed if and only
if the same is true for .E ; �/jS . Theorem 5.34 thus proves the second clause of (5.36.1).

Now assume that we are in the setting of (5.36.2), where in addition the push-forward
map y�1.S/ ! y�1.X/ is assumed to be isomorphic. Since fundamental groups of algebraic
varieties are finitely generated, this implies via Malcev’s theorem that every representation
of �1.S/ comes from a representation of �1.X/, [23, Thm. 1.2b] or see [17, Sect. 8.1] for a
detailed pedestrian proof. The claim thus again follows from Simpson’s Nonabelian Hodge
Correspondence.
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5.8.2. The period map. – A pCVHS on a simply connected complex manifold X induces
a map to the period domain. Here, we will show that Higgs bundles that are induced by
a pCVHS come from the period domain. If X is the desingularisation of a klt variety, this
implies that the relevant bundle comes from the singular space.

C 5.37 (Period map, cf. [65, Sect. 10.1.2–3] or [6, Sect. 4.3]).

Given a pCVHS on a simply connected complex manifold X , we obtain a period map
� W X ! D into the classifying space D for Hodge structures of the given type, the
so-called period domain. Let us quickly recall the construction. Let F be the flag manifold
parametrising complex flags of the type given by the filtration F �. The projective mani-
fold F embeds into the product P of Grassmannians that parametrise subspaces of those
dimensions that occur in the filtration F �. As X is simply connected, the holomorphically
flat bundle H trivializes, and so the filtration F � yields a family of flags in a fixed complex
vector space parametrised by X . Assigning to each point in X the corresponding point in P
yields the period map � W X ! F ,! P , which is actually holomorphic, cf. [65, Thm. 10.9].
The image of � can be seen to lie in a special domain D inside the closed complex subman-
ifold LD of F that is defined by the orthogonality condition required in Definition 5.30, the
period domain.

P 5.38. – LetX be a simply connected manifold and .E ; �/ be a Higgs bundle
on X that comes from a pCVHS. Let � W X ! D be the associated period map. Then, there
exists a holomorphic vector bundle ED on D such that E Š ��ED.

Proof. – It follows from Construction 5.37 that D is an open subset in a flag manifold
(whose type is determined by the filtration F �), which in turn can be embedded into a
product of Grassmannians. Each of the Grassmannians carries a tautological vector bundle,
which can be restricted to D, yielding a holomorphic vector bundle T p on D. By definition
and holomorphy of the period map, we have ��.T p/ Š Fp, cf. [65, p. 250]. It follows that
Fp=FpC1 is a pullback from the period domain, and hence so is E D

L
Fp=FpC1.

C 5.39. – Let .X;D/ be a klt pair and � W zX ! X a resolution of singularities.
Let .E ; �/ be a Higgs bundle on zX that is induced by a pCVHS. Then, E comes from X . More
precisely, there exists a locally free sheaf EX on X such that E D ��EX . Necessarily, we then
have EX Š ��.E /��.

Proof. – It suffices to construct EX locally in the analytic topology, near any given point
of X . Now, given any x 2 X , recall from [60, p. 827] that there exists a contractible, open
neighborhood U D U.x/ � Xan whose preimage zU WD ��1.U / is simply connected. By
assumption, .E ; �/ is induced from a pCVHS V. Let � W zU ! D be the corresponding
period map.

We claim that � factors through the resolution � W zU ! U . Indeed, since the fibers of �
are rationally chain-connected by, it suffices to show that given any morphism � W P1 ! zU ,
the composed map � ı � W P1 ! D is constant. Pulling back V via � yields a pCVHS on P1

whose associated period map equals � ı �. However, due to hyperbolicity properties of the
period domain D, this map has to be constant, [6, Application 13.4.3].
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By Proposition 5.38, we know that E Š ��.ED/ for some vector bundle ED on the
period domain D. If �U W U ! D is the holomorphic map whose existence was shown
in the previous paragraph, the vector bundle EU WD ��U .ED/ hence fulfills ��.EU / Š E , as
desired.

R 5.40. – Corollary 5.39 is actually true in a much more general setting. In fact,
the bundle E is trivial on the fibers of � . Then, regardless whether E carries a Higgs structure
or not, E is the pull-back of a bundle on X , as X has only klt singularities. As the proof
is much more involved than the one presented in the previous paragraphs, with our main
application in mind we have decided to restrict to the case of Higgs bundles coming from
pCVHSs here. Details for the general case will appear in a forthcoming paper.

PART II

MIYAOKA-YAU INEQUALITY AND UNIFORMISATION

6. The Q-Bogomolov-Gieseker inequality

We establish the Q-Bogomolov-Gieseker inequality for Higgs sheaves on klt spaces.
Section 7 applies this result to the natural Higgs sheaf of Example 5.3, in order to establish
the Q-Miyaoka-Yau inequality for the tangent sheaf of a klt variety of general type whose
canonical divisor is nef.

T 6.1 (Q-Bogomolov-Gieseker inequality). – Let .X;D/ be a projective, klt pair
of dimension n � 2, and letP be a nefQ-CartierQ-divisor onX . If .E ; �/ is any reflexive Higgs
sheaf of rank E � 2 on X that is stable with respect to P , then E verifies

(6.1.1) y�.E / � ŒP �n�2 � 0:

We refer to (6.1.1) as the Q-Bogomolov-Gieseker inequality.

We expect that Theorem 6.1 will also hold for semistable sheaves. Again, with our main
application in mind, we restrict ourselves to the stable case.

6.1. Preparations for the proof of Theorem 6.1

Cutting by hyperplanes, the proof of the Q-Bogomolov-Gieseker inequality will quickly
reduce to the surface case, which is handled first.

P 6.2 (Q-Bogomolov-Gieseker Inequality on klt surfaces).

Let .X;D/ be a projective, klt pair of dimension two, and letH be a nef Q-Cartier Q-divisor
onX . If .E ; �/ is any reflexive Higgs sheaf of rank E � 2 onX that is stable with respect toH ,
then the sheaf E satisfies the Q-Bogomolov-Gieseker inequality y�.E / � 0.
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Proof. – Openness of stability, Proposition 4.17, allows to assume without loss of
generality thatH is integral, Cartier, and ample. Theorem 3.13 gives both a Q-variety struc-
ture XQ on X , and a global, Cohen-Macaulay and Galois cover  W yX ! X that allows to
compute Q-Chern classes on X in terms of honest Chern classes of pull-back sheaves. Let
G WD Gal. yX=X/ be the corresponding Galois group and set yH WD �H .

Applying Construction 5.15 to .E ; �/, we obtain a reflexive HiggsQ-sheaf .E ; �/ŒQ� onXQ.
Let

�
yE ; y�

�
be the induced HiggsG-sheaf on yX , as discussed in Fact 5.16. Since yX is of dimen-

sion two, Fact 5.16 asserts that
�
yE ; y�

�
is actually a HiggsG-bundle. Finally, let � W zX ! yX be

a strong, G-invariant resolution of yX . The following diagram summarizes the situation:

(6.2.1) zX
�

resolution of sings.
//

 

++yX


Galois, with group G
// X:

We obtain two locally free Higgs G-sheaves on zX , namely � Œ��
�
yE ; y�

�
and  Œ��.E ; �/—we

refer to Section 5.4 for the construction of the reflexive pull-back  Œ�� and to Lemma 5.17
and Notation 5.18 for all matters concerning � Œ��. These Higgs sheaves are not necessarily
equal, but they do agree over the big open set of Xreg where E is locally free. By reflexivity,
the two Higgs sheaves will then coincide outside the exceptional set of � .

It follows from Proposition 5.20 that  Œ��.E ; �/ is G-stable with respect to ��
�
yH
�
.

Since both sheaves agree outside the �-exceptional set, Proposition 5.21 implies that the
G-Higgs bundle ��

�
yE ; y�

�
is G-stable with respect to the nef polarization ��. yH/ as well.

Openness of G-stability, Proposition 4.17, allows to modify ��
�
yH
�
, and find a G-stable,

ample divisor zA on zX , such that ��
�
yE ; y�

�
is G-stable with respect to zH .

Since yE is locally free, we can discuss the standard Bogomolov discriminant �
�
yE
�
, as

introduced in Notation 2.14. The functorial properties of Chern classes, [12, Thm. 3.2(d)],
and the choice of  imply

(6.2.2) �
�
�� yE

�
D �

�
yE
�
D .deg / � y�.E /:

Simpson’s Bogomolov-Gieseker Inequality for G-Higgs bundles that are stable with respect
to an ample polarization, [56, Thm. 1 and Prop. 3.4], applies to ��

�
yE ; y�

�
and zA, showing that

�
�
�� yE

�
� 0. Together with (6.2.2), this finishes the proof of Proposition 6.2.

6.2. Proof of Theorem 6.1

By multilinearity of the form y�, it suffices to prove the claim in the case where P is an
integral Cartier divisor. Using that the function

N 1.X/R ! R; ˛ 7! y�.E / � ˛n�2

is continuous, Proposition 4.17 allows to assume without loss of generality thatP is integral,
Cartier, and ample. Choosing m � 0 sufficiently large, the Restriction theorem for stable
Higgs sheaves, Theorem 5.22, allows to find a tuple of hyperplanes .H1; : : : ;Hn�2/ 2 jm � P j�.n�2/

with associated complete intersection surface S WD H1 \ � � � \Hn�2 such that the following
holds.

(6.3.1) The scheme S is a normal and irreducible surface, and not contained in the support
of D. The pair .S;DjS / is klt, [41, Lem. 5.17].
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(6.3.2) The restriction E jS is reflexive, [22, Thm. 12.2.1].

(6.3.3) Denoting the inclusion by � W S ! X , the Higgs sheaf ��.E ; �/ is stable with respect
to P jS , Theorem 5.22.

(6.3.4) We have an equality y�.E / � ŒP �n�2 D mn�2 � y�.E jS /, Item (3.13.2) of Theorem 3.13.

The result hence follows from Proposition 6.2 above.

7. The Q-Miyaoka-Yau inequality

7.1. Proof of Theorem 1.1

Theorem 1.1 will follow from the results of Section 6, once we can apply them to the
natural Higgs sheaf .EX ; �X / of Example 5.3, where EX D �

Œ1�
X ˚ OX . We hence establish

stability of .EX ; �X / first. This is a consequence of the following minor generalization of a
recent semistability result of Guenancia, [24, Thm. A], which in turn generalizes a classical
result of Enoki, [9, Cor. 1.2].

T 7.1 (Semistability of tangent sheaves). – Let X be a projective, klt variety of
general type whose canonical divisor KX is nef. Then, TX and �Œ1�X are semistable with respect
to KX .

Proof. – It suffices to show semistability for TX . Recall from Reminder 2.4 that KX is
semiample and induces a birational morphism � W X ! Z, where Z is klt, and KZ is
ample. By [24, Thm. A], the tangent sheaf TZ is semistable with respect to KZ . Since
TX coincides with �Œ��.TZ/ outside of the �-exceptional set, TX is hence semistable with
respect to KX D ��.KZ/, cf. Lemma 2.21. This concludes the proof.

C 7.2 (Higgs-stability for varieties of general type). – Let X be a projec-
tive, klt variety of general type whose canonical divisor KX is nef. Then, the natural Higgs
sheaf .EX ; �X / of Example 5.3 is stable with respect to KX .

Proof. – Write n WD dimX and d WD ŒKX �n 2 QC, which is positive since KX is nef and
big. Aiming for a contradiction, assume that .EX ; �X / is not stable with respect toKX . Hence,
there exists a subsheaf 0 ¤ F ( EX that is generically � -invariant and satisfies

(7.2.1) �KX .F / � �KX .EX / D d=.nC 1/:

Lemma 4.12 allows to assume that F is saturated in EX . In particular, F is reflexive. Write
r WD rank F and note that r < nC 1.

Let ˛ W F ! OX be the morphism induced by the projection to the OX -summand
of E . Recalling from Example 5.3 that no subsheaf of the direct summand �

Œ1�
X is ever

generically �X -invariant, it follows that ˛ is not the zero map. We also notice that ˛ is not an
injection, for otherwise F is the Weil-divisorial sheaf of an anti-effective Weil divisor, and
ŒF � � ŒKX �

n�1 � 0, contradicting Inequality (7.2.1). It follows that r > 1 and rank.ker˛/ D
r � 1 > 0. More can be said. Since det.img˛/ is Weil divisorial for an anti-effective divisor,
we have

Œker˛� � ŒKX �n�1 D ŒF � � ŒKX �
n�1
� Œimg˛� � ŒKX �n�1 � ŒF � � ŒKX �

n�1

4 e SÉRIE – TOME 52 – 2019 – No 6



THE MIYAOKA-YAU INEQUALITY AND UNIFORMISATION 1523

and, dividing by r � 1,

�KX .ker˛/ �
ŒF � � ŒKX �

n�1

r � 1
D �KX .F / �

r

r � 1

�
d

nC 1
�

r

r � 1
by (7.2.1)

D
d

n
�

nr

.nC 1/.r � 1/
>
d

n
since nC 1 > r and d > 0.

It follows that�KX .ker˛/ > �KX
�
�
Œ1�
X

�
, the latter one being equal to d=n. Since ker˛ injects

into �Œ1�X by definition of ˛, we hence obtain a contradiction to the semistability of �Œ1�X
proven in Theorem 7.1.

7.2. Proof of Theorem 1.1

By elementary calculus of Chern classes, Inequality (1.1.1) is equivalent to

y�
�
TX ˚ OX

�
� ŒKX �

n�2
D y�

�
�
Œ1�
X ˚ OX

�
� ŒKX �

n�2
� 0;

which follows from Theorem 6.1 and Corollary 7.2.

8. Uniformisation

8.1. Proof of Theorem 1.2

Theorem 1.2 follows directly from the subsequent, more general result.

T 8.1. – Let X be an n-dimensional, projective, klt variety of general type whose
canonical divisor KX is nef. Assume that X is smooth in codimension two. Recall from
Reminder 2.4 that KX is semiample, and induces a morphism ' W X ! Z, where Z is klt,
and KZ is ample. If equality holds in the Q-Miyaoka-Yau inequality (1.1.1), then Z is smooth
in codimension two, there exists a ball quotient Y and a finite, Galois, quasi-étale morphism
f W Y ! Z. In particular, Z has only quotient singularities.

Proof of Theorem 1.2. – As varieties with terminal singularities are smooth in codimen-
sion two, the result follows by applying Theorem 8.1.

8.2. Preparation for the proof of Theorem 8.1

The proof of Theorem 8.1 is based on the following two propositions.

P 8.2. – Let X be a projective, klt variety of general type whose canonical
divisor is nef. Suppose that X is smooth in codimension two and that equality holds in the
Q-Miyaoka-Yau inequality (1.1.1). Recall from Reminder 2.4 thatKX is semiample and induces
a morphism ' W X ! Z, where Z is klt, and KZ is ample. Then, Z is smooth in codimension
two, and equality holds in the Q-Miyaoka-Yau inequality for Z.
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Proof. – Choose a strong resolution of singularities, say � W zX ! X , and observe that
the composed map ' ı � W zX ! Z is a resolution of Z that is minimal in codimension
two. Let SZ be a surface cut out by general sections of jm �KZ j, for m� 0, and let SX , S zX
denote the strict transforms inX and zX , respectively. SinceX is smooth in codimension two,
SX is entirely contained in the smooth locusXreg, and � is therefore isomorphic near SX . We
obtain:

yc2.TZ/ � ŒKZ �
n�2
� c2.T zX / � Œ.' ı �/

�KZ �
n�2 by [53, Prop. 1.1](8.2.1)

D c2.T zX jS zX
/ D c2.TX jSX

/

D c2.TX / � ŒKX �
n�2;

with strict inequality if and only if Z does have singularities in codimension two, [53,
Prop. 1.1]. In a similar vein,

yc1.TZ/ � ŒKZ �
n�1
D c1.TX / � ŒKX �

n�1:(8.2.2)

The Q-Miyaoka-Yau inequality for Z thus forces equality in (8.2.1). This shows both that
Z is smooth in codimension two, and that equality holds in the Q-Miyaoka-Yau inequality
for Z.

P 8.3. – Let X be a projective, klt variety of dimension n that is smooth in
codimension two and such that the étale fundamental group of X and of its smooth locus
agree, y�1.Xreg/ Š y�1.X/. If KX is ample and if equality holds in the Q-Miyaoka-Yau
Inequality (1.1.1), then X is smooth.

R 8.4. – The main reason for the assumption on the codimension of the singular
set is to guarantee smoothness of complete intersection surfaces and hence their isomorphic
lifting to a strong resolution of singularities, where we are then able to use functoriality
properties of Simpson’s Nonabelian Hodge Correspondence; for details, see the subsequent
proof.

Proof of Proposition 8.3. – For the reader’s convenience, the proof is subdivided into a
number of relatively independent steps.

Step 1. Setup. – The main object of study in our proof is the canonical Higgs sheaf .EX ; �X /
onX , introduced in Example 5.3. Recall that EX D �

Œ1�
X ˚OX and that .EX ; �X / isKX -stable

due to Corollary 7.2. Choose a strong log resolution of singularities, � W zX ! X , such that
there exists a �-ample Cartier divisor supported on the exceptional locus of � .

C 8.5. – Write r WD .nC 1/2. Let Br denote the set of locally free sheaves F on X
that have rank r , satisfy �max

KX
.F / D �max

KX
. End EX /, and have Chern classes ci

�
��F

�
D 0

for all 0 < i � r . Then, Br is bounded.

Proof of Claim 8.5. – Since X has rational singularities, the Euler characteristics �X .G /
and � zX .�

�G / agree for all locally free sheaves G on X . The assumption on Chern classes
thus guarantees that the Hilbert polynomials of the members F 2 Br are constant, cf.
[12, Cor. 15.2.1]. Boundedness thus follows from [29, Thm. 3.3.7]. This ends the proof of
Claim 8.5.
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Next, take general divisors in the linear system jm �KX j, for m sufficiently large, and cut
down to a surface. To be precise, observe the following.

Choosing a sufficiently increasing and divisible sequence of numbers 0� m1 � � � � � mn�2
and a general tuple of elements .H1; : : : ;Hn�2/ 2

Q
i jmi �KX j the following will hold when

we set S WD H1 \ � � � \Hn�2.

(8.5.1) The intersectionS is a smooth surface, and entirely contained inXreg; this is because
X is smooth in codimension two by assumption.

(8.5.2) The restriction .EX ; �X /jS is stable with respect to KX jS
, cf. the Restriction

Theorem 5.22.

(8.5.3) The natural morphism �� W �1.S/ ! �1.Xreg/, induced by the inclusion
� W S ,! Xreg, is isomorphic, cf. Goresky-MacPherson’s Lefschetz-theorem
[15, Thm. in Sect. II.1.2].

(8.5.4) Let F 2 Br . Then, F is isomorphic to End EX if and only if the restrictions F jS and
. End EX /jS are isomorphic, cf. the Bertini-type theorem for isomorphism classes in
bounded families [17, Cor. 5.3].

R 8.6. – The natural morphism �1.Xreg/ ! �1.X/ is surjective, [13, 0.7.B on
p. 33], and induces an isomorphism of profinite completions by assumption. Composed with
the inclusion S ,! Xreg, it follows from (8.5.3) that the morphism �1.S/ ! �1.X/ is
surjective and induces an isomorphism of profinite completions.

Step 2. The endomorphism bundle. – Since S is entirely contained in the smooth locus of X ,
the restricted Higgs sheaf .EX ; �X /jS is actually a Higgs bundle, and Construction 4.5 allows
to equip the corresponding endomorphism bundle with a Higgs field. For brevity of notation,
write .FS ; ‚S / WD End

�
.EX ; �X /jS

�
. The rank of FS equals r D .nC 1/2.

C 8.7. – The Higgs bundle .FS ; ‚S / is induced by a pCVHS, in the sense of Defi-
nition 5.32.

Proof of Claim 8.7. – We need to check the properties listed in Theorem 5.34.

Item (5.34.1): polystability with respect to KX jS . By Theorem 5.22, we know that both
.EX ; �X /jS and its dual areKX jS -stable Higgs bundles on the smooth surfaceS . In particular,
it follows from [58, Thm. 1(2)] that both bundles carry a Hermitian-Yang-Mills metric
with respect to KX jS , and thus so does .FS ; ‚S /. Hence it follows from [58, Thm. 1] that
.FS ; ‚S / is polystable with respect to KX jS .

Item (5.34.2): vanishing of Chern classes. As the endomorphism bundle of the locally
free sheaf EX jS , the first Chern class of FS clearly vanishes. Vanishing of c2.FS / is then an
immediate consequence of the assumed equality in (1.1.1). Together with polystability, this
implies that FS is flat, [58, Thm. 1], and hence all its Chern classes vanish.

Item (5.34.3): the Higgs bundle .EX ; �X /jS has the structure of a system of Hodge bundles,
[58, Sect. 4]. Its isomorphism class is therefore fixed under the action of C�, [58, p. 45].
Observing that the same holds for its dual and its endomorphism bundle, this ends the proof
of Claim 8.7.
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Step 3. End of proof. – SinceS is entirely contained in the smooth locus ofX , it is canonically
isomorphic to its preimage zS WD ��1.S/ in the resolution zX . Let .F zS ; ‚ zS / be the Higgs
bundle on zS that corresponds to .FS ; ‚S / under this isomorphism.

There exists a Q-divisor E 2 QDiv. zX/, supported entirely on the �-exceptional locus,
such that zH WD ��.KX / C E is ample. Since zS and suppE are disjoint, the Higgs
bundle .F zS ; ‚ zS / is clearly semistable with respect to zH .

Recall from [60, Thm. 1.1] that the natural map of fundamental groups,�1. zX/! �1.X/ is
isomorphic. Together with Remark 8.6, this implies that �1. zS/ ! �1. zX/ is surjective, and
induces an isomorphism of profinite completions. Item (5.36.2) of Corollary 5.36 therefore
allows to find a Higgs bundle .F zX ; ‚ zX / on zX that restricts to .F zS ; ‚ zS /, and is hence induced
by a pCVHS due to Corollary 5.36, Item (5.36.1). We have seen in Remark 5.35 that all Chern
classes of F zX vanish.

Corollary 5.39 implies that F zX comes from X . More precisely, there exists a locally free
sheaf FX on X such that F zX D ��FX . The restriction FX jS

agrees with FS D End EX jS ,
which together with the observation on the Chern classes of F zX made above implies that
FX is a member of the family Br that was introduced in Claim 8.5. Item (8.5.4) thus gives an
isomorphism End EX Š FX , showing that End EX is locally free. But End EX contains TX as
a direct summand. It follows that TX is locally free and thus X is smooth by the solution of
the Zariski-Lipman problem for klt spaces, [16, Thm. 6.1].

8.3. Proof of Theorem 8.1

By Proposition 8.2 we know that the variety Z is smooth in codimension two. Now, let
 W Y ! Z be a quasi-étale, Galois cover such that y�1.Yreg/ Š y�1.Y /. By [17, Thm. 1.14],
such a cover exists. Since  branches only over the singular set of Z, it follows from [41,
Prop. 5.20] that Y is still klt and smooth in codimension two. Since  is finite, the Q-Cartier
divisorKY D �KZ is still ample. Moreover, as both f Œ��TX and TY are reflexive and agree
on the big open set of Y where  is étale, we conclude that f Œ��TX D TY . Consequently,
Lemma 3.16 guarantees that equality holds in theQ-Miyaoka-Yau Inequality forY . Proposi-
tion 8.3 hence applies and Y is smooth. We may thus use the classical uniformisation theorem
of Yau [66, Rem. (iii) on p. 1799] to conclude that Y is a ball quotient, as claimed.

R 8.8 (Comparison with the torus-quotient case). – Let us now briefly explain
the difference between the above strategy and those that appear in the proof of the uniformi-
sation theorem in the case of vanishing Chern classes, [17] and [46]. For simplicity, we assume
that X is smooth in codimension two with only klt singularities and that y�1.Xreg/ Š y�1.X/.

In the setting where c1.X/�Hn�1 D 0 and c2.X/�Hn�2 D 0 for some ample divisorH , one
uses the (slope) semistability of TX jS , where S is a sufficiently general, complete intersection,
smooth, projective surface determined by H , to construct a (holomorphic) flat connection

r W TX jS ! �1S ˝TX jS :

Here r is compatible with the holomorphic structure of TX jS , that is r0;1 is defined by
the holomorphic structure of TX jS . After extending the linear representation �1.S/ corre-
sponding to r to a representation of �1.X/, one can construct a flat locally free analytic
sheaf F on X verifying the isomorphism F jS Š TX jS , as analytic sheaves.
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On the other hand, when KX is ample and the equality in the Miyaoka-Yau inequality
is attained, the holomorphic structure of the harmonic bundle End .EX jS ; �X jS / defined
above is different from the one given by the representation of �1.S/ associated to the
underlying flat connection. This is simply because the .0; 1/ part of the HYM connection
on End .EX jS ; �X jS / is of the form

N@C .�X jS
/h;

where N@ is the holomorphic structure of End .EX jS /, h is the harmonic metric and .�X jS /
h is

the conjugate of the Higgs field �X jS with respect to h. As a result, the argument in the
torus-quotient case breaks down: If one naively extends the representation of �1.S/ defined
by End .EX jS / to a representation � of �1.X/, the flat analytic sheaf F constructed from �

does not satisfy the isomorphism End .E /jS Š F jS , as analytic sheaves; the holomorphic
structures are simply not compatible.

9. Characterisation of singular ball quotients

In this section, we prove Theorem 1.3 and Corollary 1.4, and concerning optimality of
our results discuss an example of a singular ball quotient in Section 9.4. First, we recall a few
standard definitions and elementary properties. Throughout the present section, all complex
spaces will be reduced and are assumed to have a countable basis of topology.

D 9.1 (Properly discontinuous action). – Let X be a complex space, and � a
group of holomorphic automorphisms ofX . We say that � acts properly discontinuously onX ,
if for any points x; y 2 X , there exist neighborhoods U D U.x/ and V D V.y/ such that the
set fg 2 � j g � U \ V ¤ ;g � � is finite.

R 9.2. – Note that there exist several, not necessarily equivalent definitions of
“properly discontinuous” in the literature, especially in a purely topological context. We
follow [64, Sect. 2.1], where the terminology “discrete group of transformations” is used for
the same concept. A further general reference is [45, Chap. 12].

L 9.3 (Criteria for actions to be properly discontinous). – Let � be a subgroup
of AutO.Bn/ D PSU.1; n/. Then, the following statements are equivalent.

(9.3.1) The group � acts properly discontinuously on Bn.

(9.3.2) The group � is discrete in PSU.1; n/.

(9.3.3) Every �-orbit in Bn is a discrete subset of Bn, and for every z 2 Bn the isotropy group
�z D f 2 � j  � z D zg is finite.

Proof. – This is classical, see for example [64, Sect. 2.1], or [30, Sect. 2.2] for the proto-
typical case n D 1.

9.1. Proof of Theorem 1.3

We will prove the implications (1.3.2)) (1.3.3)) (1.3.1)) (1.3.2) separately.
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(1.3.2)) (1.3.3). – AsG is a finite group, and as Y is projective and smooth,X is projective.
Moreover, it follows from the assumptions on the G-action that f W Y ! X is quasi-étale.
This implies that KX is Q-Cartier, that X is klt, and that KY D f �KX . Moreover, by the
same argument as in the first paragraph of Section 8.3 we have TY D f Œ��TX .

Now, recall that KY is ample, and that the Chern classes of TY satisfy the Miyaoka-Yau
equality, see e.g., [40, (8.8.3)]. It follows that KX is ample. The Q-Miyaoka-Yau equality
for TX then follows from Lemma 3.16.

(1.3.3)) (1.3.1). – Let f W Y ! X be the finite, Galois, quasi-étale morphism from a ball
quotient Y to X guaranteed by Theorem 1.2. Let G be the Galois group of f W Y ! X

and define z� W Bn ! X as z� D f ı � , where � W Bn ! Y is the universal cover
of Y an. Let � WD �1.Y

an/ be the deck transformation group of � . Then, the restriction
of z� to zU WD z��1.Xan

reg/ is a topological covering map, which we call z�reg. Additionally,

as the codimension of zU in the manifold Bn is more than two, zU is simply connected.
Consequently,�reg WD �j zU

W zU ! f �1.Xan
reg/ and z�reg are universal covering maps. It follows

that y� D �1.Xan
reg/ acts on zU by holomorphic automorphisms, and the action is properly

discontinuous and fixed-point free. As � D �1.Y
an/ D �1.f

�1.Xreg/
an/, and since

f �1.Xreg/=G D Xreg, we have an exact sequence of groups

(9.4.1) 1! � ! y� ! G ! 1;

and the action of y� on zU extends the action of � on zU . Our situation can hence be summa-
rized in the following commutative diagram,

(9.4.2)
zU� _

��

�reg, quot. by �
//

z�reg, quot. by y�

++
f �1.Xreg/

an
� _

��

quot. by G
// Xan

reg� _

��

Bn
�, quot. by �

// Y an f an, quot. by G
// Xan:

As the inclusion zU ,! Bn realizes Bn as the envelope of holomorphy of zU , the action
of y� on zU uniquely extends to a holomorphic action of y� on Bn, see [52, Lem. 4.1]. This
extended action is fixed-point free in codimension two by construction. It now follows
from the exact Sequence (9.4.1) and from Diagram (9.4.2) that the topological quotient
Bn=y� ' .Bn=�/=G is homeomorphic to Xan, and therefore Hausdorff. As Bn and Xan are
both normal complex spaces, and as we already know that Xan

reg is biholomorphic to zU=y�,

[28, Satz on p. 328] hence implies that Bn=y� is in a natural way a normal complex space,
which is in fact biholomorphic to Xan. In particular, z� W Bn ! Xan is the quotient map for
the y�-action. To conclude the proof, we will show that this action is properly discontinuous.

As z� is holomorphic, for every z 2 Bn the fiber z��1
�
z�.z/

�
D y� � z is a zero-dimensional

analytic, and hence discrete, subset of Bn. Moreover, we claim that all isotropy groups y�z of
points z 2 Bn are finite. From this, it will follow that the y�-action is properly discontinuous,
see Lemma 9.3. So, suppose that there is a point z0 2 Bn such that �z0 is infinite. As the
isotropy of z0 in the full automorphism group PSU.1; n/ is compact, y�z0 is not a discrete
subgroup of PSU.1; n/, i.e., there exists a sequence of elements n 2 y�z0 converging to the
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identity element, cf. [64, p. 7]. Now, if z1 is any point in zU , where the y�-action is free, it follows
that y� � z1 D z��1reg

�
z�reg.z1/

�
is not discrete, a contradiction.

(1.3.1)) (1.3.2). – Recall that compact quotients of Bn by discrete subgroups of PSU.1; n/
are projective algebraic, see e.g., [2]. Let y� W Bn ! X D Bn=y� be the quotient map. As the
action of y� is fixed-point free in codimension two, the restriction y�jy��1.Xsing/

is unramified

and hence a topological covering map. Moreover, the preimage y��1.Xsing/ has complement
of complex codimension at least three in the smooth manifold Bn, and is therefore simply
connected. AsXreg is (the complex space associated with) a quasi-projective algebraic variety,
its fundamental group, which is isomorphic to y�, is finitely generated. It therefore follows
from Selberg’s Lemma, e.g., see [1], that y� has a normal subgroup � of finite index that acts
without fixed points onBn. From this, we obtain the following factorisation of the y�-quotient
map:

Bn �! Bn=�
f
�! Bn=y� D X:

Here, f is the quotient for the action of the finite groupG WD y�=� on the projective manifold
Y WD Bn=�, which by the assumption on the y�-action is fixed-point free in codimension two.
It follows that f is quasi-étale.

9.2. Proof of Corollary 1.4

IfX is a singular ball quotient, let � W Bn ! X be the quotient map for the corresponding
discrete group action. Then,

�j��1.Xreg/
W ��1.Xreg/! Xreg

is an unramified covering map. By [37, Prop. 3.2.2(1)] the manifold ��1.Xreg/ � Bn is
Kobayashi-hyperbolic, as it is contained in the n-dimensional polydisk D � � � � � D,
which is Kobayashi-hyperbolic by [37, Prop. 3.2.3]. Hence, the statement follows from
[37, Thm. 3.2.8(2)].

9.3. Further comments on Corollary 1.4

Let � W Bn ! X be a singular ball quotient. Then, X has slightly more general
hyperbolicity properties than those stated in Corollary 1.4, as we will explain now. Let
dBn W Bn � Bn ! R�0 be the Kobayashi distance on the ball. Then, we can define a natural
distance on X as follows: if p; q 2 X , and if zp 2 Bn satisfies �. zp/ D p, we set

d 0X WD inf
zq
dBn. zp; zq/;

where the infimum runs over all points zq 2 Bn such that �.zq/ D q. In fact, analogous to the
Kobayashi pseudodistance, d 0X can be defined using chains of locally liftable holomorphic
maps from the unit disk D � C to X , see [38, p. 101]. Here, a holomorphic map f from a
complex spaceZ intoX is called locally liftable if every point z 2 Z has an analytically open
neighborhood U such that f jU factors via � . As Bn is Kobayashi-hyperbolic, d 0X is indeed
a distance, see [38, Chap. VII, Prop. 6.3]. It follows that every locally liftable holomorphic
map from C to X is constant. This property does not imply that X is Kobayashi-hyperbolic,
see the subsequent subsection for an example. However, many of the properties known for
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holomorphic maps into Kobayashi-hyperbolic manifolds hold for locally liftable holomor-
phic maps intoX . At this time, we are not aware of any singular ball quotient with canonical
singularities that fails to be Kobayashi-hyperbolic.

9.4. Keum’s singular ball quotient

The following example illustrates three points:

(9.5.1) The fundamental group of singular ball quotients might be trivial.

(9.5.2) Kobayashi-hyperbolicity in general will not extend over klt singularities.

(9.5.3) The resolution of a klt singular ball quotient X might have a geometry that is very
different from X .

Keum found a two-dimensional ball quotient Y together with an order 7 automorphism g

that acts with isolated fixed points on Y such that the minimal resolution � W zX ! X of the
quotient X D Y=hgi is simply connected, of Kodaira dimension one, and admits an elliptic
fibration � W zX ! C , see [34, Thm. 1.1(2) and Prop. 2.4] and [33]. The general fiber F
of � is an elliptic curve. Composing the universal covering map f W C ! F with � yields
a non-constant (not locally liftable) holomorphic map from C toXan, which is therefore not
Kobayashi-hyperbolic. On the other hand, note that the smooth locus Xan

reg is hyperbolic by

the proof of Corollary 1.4. As zX is simply connected and as the singularities of X are klt,
X itself is also simply connected, while its smooth locus has infinite fundamental group. Note
that the singularities ofX are worse than canonical, as the resolution zX is not of general type.
Hence,X is certainly not the minimal model of any smooth projective variety of general type.

10. Further directions

10.1. The general klt case

While we established the Miyaoka-Yau inequality, Theorem 1.1, for a general klt variety
with big and nef canonical divisor, the uniformisation theorem, Theorem 1.2, assumes the
variety to be smooth in codimension two. (4) This is used crucially in its proof when we
construct a complex variation of Hodge structures on the restriction of the natural Higgs
sheaf to the smooth complete intersection surface and subsequently extend this variation of
Hodge structure to a strong resolution of singularities, into which the complete intersection
surface embeds.

The authors are currently working towards removing this additional assumption by
comparing the Nonabelian Hodge correspondence on a resolution of a given klt variety X
to Mochizuki’s Nonabelian Hodge correspondence, [48], on the smooth part of X . An
alternative approach consists in proving that a generalization of the Nonabelian Hodge
correspondence to the case of smooth projective DM-stacks, as discussed in [55], applies
to the restriction of the canonical Higgs sheaf to a complete intersection surface, and then
again in comparing with a resolution.

(4) Note added in proof: In the meantime, the corresponding paper has appeared, see [19].
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10.2. The case of klt pairs

In [25, Thm. B], partially building upon the foundational work done in the present paper,
the following generalization of Theorem 1.1 has been proved.

T 10.1. – Let .X;D/ be a projective, klt pair, where D is of the form
D WD

P
.1 � 1

ai
/Di for prime divisors D� and positive integers a�. Assume that KX C D is

ample. Writing Lc1, Lc2 for the relevant orbifold Chern classes for pairs, [25, Sect. 2], the following
“Miyaoka-Yau inequality” is satisfied,�

2.nC 1/ � Lc2.X;D/ � n � Lc
2
1.X;D/

�
� ŒKX CD�

n�2
� 0:

Based on this result, one expects the following generalization of our result on uniformi-
sation, Theorem 1.2.

E. – In the setting of Theorem 10.1, if the equality is achieved, then X has
only quotient singularities and .X;D/ admits a (global) smooth Deligne-Mumford stack
structure X whose universal cover (in the sense of Deligne-Mumford stacks) is the ball.

We note that this in particular implies that the local isotropy groups of X act trivially in
codimension one with the exception of the divisors Di along which the isotropy groups are
isomorphic to Z=.aiZ/. We conclude by pointing out that the Expectation was confirmed for
surface pairs .X;D/ by Kobayashi, Nakamura, and Sakai in [36, Thm. 12].
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