
aNNALES
SCIENnIFIQUES

      SUPÉRIEUkE

de
L ÉCOLE
hORMALE

ISSN 0012-9593

ASENAH

SOCIÉTÉ MATHÉMATIQUE DE FRANCE

quatrième série - tome 51 fascicule 6 novembre-décembre 2018

Vincent KOZIARZ & Duc-Manh NGUYEN

Complex hyperbolic volume and intersection of boundary divisors
in moduli spaces of pointed genus zero curves



Annales Scientifiques de l’École Normale Supérieure
Publiées avec le concours du Centre National de la Recherche Scientifique

Responsable du comité de rédaction / Editor-in-chief

Patrick B

Publication fondée en 1864 par Louis Pasteur

Continuée de 1872 à 1882 par H. S-C D

de 1883 à 1888 par H. D

de 1889 à 1900 par C. H

de 1901 à 1917 par G. D

de 1918 à 1941 par É. P

de 1942 à 1967 par P. M

Comité de rédaction au 1 er mars 2018

P. B A. N

S. B J. S

R. C S. V̃ N. 

G. C A. W

Y.  C G. W

E. K

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France
Case 916 - Luminy

13288 Marseille Cedex 09
Tél. : (33) 04 91 26 74 64
Fax : (33) 04 91 41 17 51

email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 420 euros.
Abonnement avec supplément papier :

Europe : 540 e. Hors Europe : 595 e ($ 863). Vente au numéro : 77 e.

© 2018 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Stéphane Seuret
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 51, 2018, p. 1549 à 1597

COMPLEX HYPERBOLIC VOLUME
AND INTERSECTION OF BOUNDARY DIVISORS
IN MODULI SPACES OF POINTED GENUS ZERO

CURVES

 V KOZIARZ  D-M NGUYEN

A. – We show that the complex hyperbolic metrics defined by Deligne-Mostow and
Thurston on M 0;n are singular Kähler-Einstein metrics when M 0;n is embedded in the Deligne-
Mumford-Knudsen compactification M 0;n. As a consequence, we obtain a formula computing the
volume of M 0;n with respect to these metrics using intersection of boundary divisors of M 0;n. In
the case of rational weights, following an idea of Y. Kawamata, we show that these metrics actually
represent the first Chern class of some line bundles on M 0;n, from which other formulas computing
the same volumes are derived.

R. – Nous démontrons que les métriques hyperboliques complexes introduites par Deligne-
Mostow et Thurston sur l’espace de modules de surfaces de Riemann de genre zéro avec n points
marqués M 0;n sont des métriques Kähler-Einstein singulières sur la compactification de Deligne-
Mumford-Knudsen M 0;n. Nous en déduisons des formules calculant le volume de M 0;n muni de ces
métriques en fonction des nombres d’intersection des diviseurs de bord de M 0;n. De plus, lorsque les
poids sont tous rationnels, en développant une idée de Y. Kawamata, nous montrons que ces métriques
sont aussi des représentants de la première classe de Chern de certains fibrés en droites sur M 0;n, ce
qui nous permet d’obtenir d’autres formules calculant les mêmes volumes.

1. Introduction

Let n � 3 and M 0;n be the moduli space of Riemann surfaces of genus 0 with n marked
points. Let� D .�1; : : : ; �n/ be real weights satisfying 0 < �s < 1 and

P
�s D 2. Following

ideas of E. Picard, P. Deligne and G. D. Mostow [5] constructed—for certain rational values
of the �s ’s satisfying some integrality conditions—complex hyperbolic lattices which enable
in particular to endow M 0;n with a complex hyperbolic metric ��. The volume of the
corresponding orbifolds has been computed by several authors in some special cases when
n D 5 (see e.g., [24, 20, 19, 13]).

A few years later, W. P. Thurston noticed [22] that for any n-uple of real weights satisfying
the two simple conditions above, one can construct naturally a metric completion M

�

0;n
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1550 V. KOZIARZ AND D.-M. NGUYEN

of .M 0;n; ��/, which can be endowed with a cone manifold structure. He observed in
particular that .M 0;n; ��/ always has finite volume (see Section 7.4 for our normalization
of the metric and the volume element; we will use equally the notation �� for the metric
and its associated Kähler form). In a more recent paper [18], C. T. McMullen proved a
Gauss-Bonnet theorem for cone manifolds from which he derived a formula for the volume
of .M 0;n; ��/.

The main purpose in this paper is to investigate those complex hyperbolic metrics by using
ideas coming from complex (algebraic) geometry with an approach in the spirit of Chapter 17
of [6]. We prove in particular that the extension by zero Q�� of �� is a well defined closed
positive current on the Deligne-Mumford-Knudsen compactification M 0;n of M 0;n, and
that it is actually a singular Kähler-Einstein metric on M 0;n, associated with a boundary
divisor that we make explicit. As a consequence, we show that the volume of M 0;n with
respect to�� can be computed from the intersection numbers of boundary divisors in M 0;n.

In order to state more precisely our main results, we need a few basic facts about
M 0;n (see e.g [7, 16, 15, 1]). The moduli space M 0;n has complex dimension N WD n � 3

and its complement in the smooth variety M 0;n is the union of finitely many divisors
called boundary divisors, or vital divisors, each of which uniquely corresponds to a partition
of f1; : : : ; ng into two subsets I0 t I1 such that minfjI0j; jI1jg � 2, see [15] for instance.
We will denote by P the set of partitions satisfying this condition. For each partition
S WD fI0; I1g 2 P , we denote by DS the corresponding divisor in M 0;n. Exchanging I0
and I1 if necessary, we will always assume that �S WD

P
s2I1

�s � 1 (in order to lighten the
notation, we do not write explicitly the dependence of the coefficients �S on �).

For any s 2 f1; : : : ; ng, we also define the divisor class  s on M 0;n associated to the
pullback of the relative cotangent bundle of the universal curve by the section corresponding
to the s-th marked point.

Finally, if D is a divisor on M 0;n, DN means as usual that we take the N -th self-
intersection of D. Our main result concerns the cohomology class of Q��.

T 1.1. – Let n � 4 and M 0;n be the moduli space of Riemann surfaces of genus 0
with n marked points. Let � D .�1; : : : ; �n/ be real weights satisfying 0 < �s < 1 andP
�s D 2. Let D� WD

P
S2P �S DS where

�S D .jI1j � 1/.�S � 1/C 1:

Let Q�� be the current on M 0;n defined by the extension by zero of��. Then Q�� is the Kähler
form of a singular Kähler-Einstein metric for the pair .M 0;n;D�/, hence Q�� is a current which
represents the same cohomology class as the R-divisor 1

NC1
.KM 0;n

CD�/, whereKM 0;n
is the

canonical divisor of M 0;n. Moreover, the volume of .M 0;n; ��/ satisfies

Vol.M 0;n; ��/ WD

Z
M 0;n

�N� D
1

.N C 1/N

�
KM 0;n

CD�

�N
(1)

D
1

.N C 1/N

0@X
S

�
jI1j � 1

��
�S �

jI1j

N C 2

�
DS

1AN
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D
1

2N

0@� nX
sD1

�s  s C
X

S

�S DS

1AN :
R 1.2. – Formula (1) for the volume is not an immediate consequence of

the fact that the divisor KM 0;n
CD� and the current .N C 1/ Q�� represent the same

cohomology class. In particular, it does not make sense in general to compute the power
of a current and we need to control the behavior of �N� near the boundary of M 0;n,
see Proposition 7.1 for a more precise statement.

– There exists a completely explicit algorithm to calculate the intersection numbers
of divisors of the type DS (see [17] and Appendix A below), but doing the calcula-
tion by hand is rather involved. In Appendices B and C we compute Vol.M 0;5; ��/

for all admissible weight vectors �, and Vol.M 0;6; ��/ for some examples of �.
As another application, the covolume of Deligne-Mostow lattices can be calculated
with our formula and the help of a computer program by C. Faber which computes
intersections of boundary divisors in M 0;n. In this way, we recover the results of [18,
Table 1].

– In Corollary 7.5, we compare formula (1) with the one in [18, Th. 1.2]. The two
approaches are different: in formula (1) we relate the volume to the top self-intersection
of the “orbifold” first Chern class of .M 0;n;D�/, while McMullen relates it to the

cone manifold Euler characteristic of Thurston’s completion M
�

0;n of M 0;n. Note

that M
�

0;n does not play any role in our proof. From the perspective of numerical
computations, McMullen’s formula is more practical since the Euler characteristic
of M

�

0;n can be calculated from a rather simple formula.

Our approach also sheds light on the relation between Thurston’s completion M
�

0;n

of M 0;n and M 0;n. Recall that Thurston identified M 0;n with the space of flat surfaces
homeomorphic to the sphere S2 having n conical singularities with cone angles given
by 2�.1 � �s/ up to rescaling. A stratum of M

�

0;n consists of flat surfaces which are the
limits when some clusters of singularities collapse into points. On the other hand, each
stratum of M 0;n is encoded by a tree whose vertices are labeled by the subsets in a partition
of f1; : : : ; ng. Every point in such a stratum represents a stable curve with several irreducible
components. Among those components, there is a particular one that we call �-principal
whose definition depends on � (see Section 5.1). To each stratum S of M

�

0;n, we have a

corresponding stratum QS of M 0;n such that, for any flat surface represented by a point in S ,
the underlying Riemann surface with punctures is isomorphic to the �-principal component
of the stable curves represented by some points in QS . So in some sense, one can say that
M

�

0;n is obtained from M 0;n by “contracting” every boundary stratum to its �-principal
factor.

In the case when there is no subset I of f1; : : : ; ng such that
P
i2I �i D 1, M

�

0;n is actually
a compactification of M 0;n. In the literature, one can find other compactifications of M 0;n

which are different from the Deligne-Mumford-Knudsen one M 0;n (see in particular the
papers of B. Hasset [12] and D. I. Smyth [21]). These compactifications are contractions

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1552 V. KOZIARZ AND D.-M. NGUYEN

of M 0;n and are in general singular. Actually, when compact, Thurston completions corre-
sponding to weights � as above are compactifications considered by Smyth, but for our
purpose it is more convenient to work on the smooth model M 0;n and we will not insist on
this point of view (see also Remark 6.9 below).

By construction,�� is the curvature of a Hermitian metric on a holomorphic line bundle
over M 0;n. When all the weights in � are rational, Y. Kawamata [14] observed that this line
bundle admits a natural extension to M 0;n. It turns out that �� can be considered as a
representative in the sense of currents of the first Chern class of this extended line bundle.
It can be shown that the latter is effective. We develop this algebro-geometric approach in
Section 8. By constructing explicit sections and determining their zero divisor, we provide
other formulas for the volume which avoid metric considerations. Even though at first glance
this approach seems to work only in the case of rational weights, by a continuity argument,
our formulas are actually valid for all values of � satisfying the hypothesis of Theorem 1.1.
Namely, we get the following

T 1.3. – For each 1 � s < s0 � n, define

�.s; s0/ D

(
0 if

Ps0

kDs �k � 1 or
Ps0�1
kDsC1 �k � 1;

min
˚
�s; �s0 ;

Ps0

kDs �k � 1; 1 �
Ps0�1
kDsC1 �k

	
otherwise,

and

ıS .s; s
0/ D

(
1 if fs; s0g � I1
0 otherwise.

Then the effective R-divisor

D� WD
X

S

X
1�s<s0�n

ıS .s; s
0/�.s; s0/DS

represents the same cohomology class as the current Q�� (that is the extension of �� by 0
to M 0;n), and we have

(2) Vol.M 0;n; ��/ WD

Z
M 0;n

�N� D
1

.N C 1/N
.KM 0;n

CD�/
N
D DN

� :

In this paper, many objects and quantities depend on the weights �. However, as we
already said for the coefficients �S , this dependence will not always appear explicitly but the
reader will have to keep it in mind.

R 1.4. – Whenever there exists a partition fI0; I1g 2 P such that
P
s2I0

�s DP
s2I1

�s D 1, the metric completion of Thurston is not compact and our method does
not provide directly a formula for the volume of .M 0;n; ��/. However, the formulas
in Theorem 1.1 remain valid by continuity arguments (as in [18]). For these reasons, we
will assume throughout this paper that the sum of the weights for indices in any subset
of f1; : : : ; ng is always different from 1.

4 e SÉRIE – TOME 51 – 2018 – No 6
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Outline

The paper is organized as follows.

1. In Section 2 we collect the necessary background from the paper of Deligne and
Mostow [5]. Associated to any weight vector � D .�1; : : : ; �n/ 2 Rn>0 such
that �1 C � � � C �n D 2, we have a rank one local system L on the punctured
sphere P1C n fx1; : : : ; xng with monodromy exp.2{��s/ at xs , which is equipped
with a Hermitian metric. Assuming �s 62 Z for some s 2 f1; : : : ; ng, we have
dimCH

1.P1C n fx1; : : : ; xsg;L/ D n � 2. Up to a multiplicative constant, there exists
a unique section ! of the bundle �1.L/ which is holomorphic on P1C n fx1; : : : ; xng,
and has valuation ��s at xs . This section defines a non-zero cohomology class
in H 1.P1C n fx1; : : : ; xng;L/. One can obviously move the points x1; : : : ; xn around,
therefore H 1.P1C n fx1; : : : ; xng;L/ and ! give rise to a local system H of rank n � 2
and a holomorphic line bundle L on M 0;n, the fiber of L over the point m '

.P1C; fx1; : : : ; xng/ 2 M 0;n being the line generated by ! in H 1.P1C n fx1; : : : ; xng;L/.
Projectivizing H, we get a flat Pn�3C -bundle over M 0;n, and L provides us with a
multivalued section „� of this bundle. The pullback e„� of „� to gM 0;n is an étale
mapping from gM 0;n to Pn�3C .

The Hermitian form of L gives rise to a Hermitian form ..:; :// on H 1.P1C n
fx1; : : : ; xng;L/. In the case 0 < �s < 1 for all s, this Hermitian form has signature
.1; n � 3/ and ..!; !// > 0. It follows that the section e„� takes values in the ball
B WD fhvi 2 Pn�3C ; ..v; v// > 0g � Pn�3C (here we identify H 1.P1C n fx1; : : : ; xng;L/
with Cn�2). The pullback of the canonical metric on B by e„� provides us with a
complex hyperbolic metric on M 0;n, which will be denoted by ��. By definition,
�� is also the Chern form of the Hermitian line bundle . L ; ..:; :///.

2. Our goal is to show that �� is a singular Kähler-Einstein metric on M 0;n. For this
purpose, we first construct trivializing holomorphic sections of L in the neighborhood
of every pointm 2 @M 0;n. In Section 3, we recall the construction of local coordinates
of M 0;n near m by plumbing families. In Section 4, we consider the case where m is
contained in a stratum of codimension one in M 0;n, which means that m represents
a stable curve having two genus zero components, denoted by C 0 and C 1, joined at a
node. In each component, we assign a positive weight to the point corresponding to
the node of m such that the weights associated to all the marked points add up to 2.
We have on C i a rank one local system Li and a section !i of �1.Li / in the same
way as we had L and ! above. The sections !0 and !1 will be used as data for the
construction of a plumbing family representing a neighborhood U of m in M 0;n. As
a by-product, we get a holomorphic non-vanishing section ˆ of L in U \ M 0;n. In
Section 5, we generalize this construction to the case wherem is contained in a stratum
of codimension r with r > 1.

3. Section 6 is devoted to the proof of a formula for the Hermitian norm of the sectionˆ
(see Proposition 6.1). The idea of the proof is to use the flat metric approach of
Thurston. We start by relating the point of views of Deligne-Mostow and Thurston.
Each holomorphic section of �1.L/ on P1C n fx1; : : : ; xng with valuation ��s at xs

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1554 V. KOZIARZ AND D.-M. NGUYEN

defines a flat metric on P1C with cone singularities at x1; : : : ; xn. Its Hermitian norm
with respect to ..:; :// is precisely the area of this flat surface. In [22], Thurston intro-
duced a method to compute this area by performing some surgeries on the flat surface,
and obtained in particular an alternative proof that the signature of ..:; :// is .1; n�3/.
We will use the same method to compute the Hermitian norm of !0 D ˆ.m0/, where
ˆ is the section of L mentioned above andm0 2 U \ M 0;n. As a direct consequence,
we obtain a rather explicit formula for the metric�� near the boundary of M 0;n (see
Proposition 6.2).

4. In Section 7, we recall some basic facts about singular Kähler-Einstein metrics. It
follows immediately from Proposition 6.2 that �� is a singular Kähler-Einstein
metric attached to the pair .M 0;n;D�/. Theorem 1.1 is then a straightforward conse-
quence of this fact. Comparing �� with the complex hyperbolic metric considered by
McMullen in [18], we get Corollary 7.5.

5. In Section 8, following an idea of Kawamata [14], we construct an extension OL of L

to M 0;n in the case when all weights �s are rational. This extension is the pushfor-
ward of a rank one locally free sheaf on the universal curve C 0;n. By construction, ˆ
extends naturally to a trivializing holomorphic section of OL on U , and �� is a repre-

sentative (in the sense of currents) of the first Chern class of OL . This leads to an alter-
native method to compute the volume of M 0;n with respect to �� by using sections

of OL (see Theorem 8.4). Simplifying a construction by Kawamata, we construct some
explicit holomorphic global sections of OL , for which one can easily determine the zero
divisor. By the continuity of the volume with respect to � (which can be derived from
Theorem 1.1), we obtain Theorem 1.3. This approach also allows us to calculate c1. OL /
by the Grothendieck-Riemann-Roch formula and to recover formula of Theorem 1.1.

6. In the appendix we explain an algorithm computing the intersection numbers of
boundary divisors, which is necessary if one wants to compute the volumes explicitly.
We then give the results for M 0;5 and a special case for M 0;6 with the aim to help
interested readers to see how concrete computations can be carried out.
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2. Background on rank one local systems on the punctured sphere.

In this section, we summarize the settings and some results in [5, Sec. 2,3] relevant to our
purpose.
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2.1. Cohomology of a rank one local system on the punctured sphere

Let n be a positive integer such that n � 3. Let us fix the following data:

– † D .x1; x2; : : : ; xn/ is a n-uple of distinct points on the sphere S2 ' P1C,
– � D .�1; : : : ; �n/ is a n-uple of positive real numbers such that

�1 C � � � C �n D 2;

– ˛i D exp.2�{�i /, i D 1; : : : ; n,
– L is a complex rank one local system on P1Cn†with monodromy around xi given by ˛i .

Note that up to isomorphism L is unique.

Using the C1-de Rham description, we can identifyH �.P1C n†;L/with the cohomology
of the de Rham complex of L-valued C1 differential forms on P1C n †, and H �c .P1C n †;L/
with the cohomology of the subcomplex of compactly supported forms.

Let L_ be the dual local system of L. This is the local system with monodromy ˛�1i
around xi . The Poincaré duality pairing by integration on P1C n†, that is

H i .P1C n†;L/˝H 2�i
c .P1C n†;L_/ �! C

.˛; ˇ/ 7!
R
P1Cn†

˛ ^ ˇ

is then a perfect pairing.

P 2.1 (Deligne-Mostow). – If one of the ˛s; s 2 f1; : : : ; ng is not 1, then
H i .P1C n†;L/ and H i

c .P1C n†;L/ vanish for i ¤ 1, and

dimH 1.P1C n†;L/ D dimH 1
c .P

1
C n†;L/ D n � 2:

There are several ways to describe the homology and cohomology of L and L_. For
instance, one can use a triangulation T of P1C n † to construct chain complexes giving
H �.P1C n †;L/ and H�.P1C n †;L/ as follows: an i -chain with coefficients in L is a formal
sum

P
e� � � , where � is an i -simplex of the triangulation, and e� is a horizontal section

of the restriction of L to � . An L-valued i -cochain associates to each i -simplex � of the
triangulation a horizontal section of L over � . Note that the complex of L-valued cochains
is dual to the complex of chains with coefficients in L_.

The cohomology with compact support H �c .P1C n †;L/ is also the cohomology of the
complex of L-valued cochains compactly supported on T . Its dual complex is the complex
of locally finite chains with coefficients in L_, the homology of which will be denoted
by H lf

� .P1C n†;L_/.
One can also use currents to defineH �.P1Cn†;L/. For any chainC with coefficients in L_,

there exists a unique L_-valued current .C / such thatZ
C

! D

Z
P1Cn†

.C / ^ !

for all L-valuedC1 form!. The mapC 7! .C / provides the isomorphismsHi .P1Cn†;L_/ '
H 2�i
c .P1C n†;L_/ and H lf

i .P
1
C n†;L

_/ ' H 2�i .P1C n†;L_/.
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1556 V. KOZIARZ AND D.-M. NGUYEN

If ˇ is a rectifiable proper map from an open, semi-open, or closed interval I to P1C n †,
and e 2 H 0.I; ˇ�L_/, we let .e � ˇ/ be the L_-valued current for whichZ

.e � ˇ/ ^ ! D

Z
I

he; ˇ�!i:

If ˇ W Œ0; 1�! P1C maps 0 and 1 to† and .0; 1/ into P1Cn†, then for any e 2 H 0..0; 1/; ˇ�L_/,
e � ˇ is a cycle and hence defines an homology class in H lf

1 .P1C n†;L_/ ' H 1.P1C n†;L_/.

Let us fix a partition of † into two subsets †0 and †1. Let T0;T1 be two trees (graphs
with no cycles) where the number of vertices of Ti is j†i j, and ˇ W T0 t T1 ! P1C be an
embedding such that the vertex set of Ti is mapped to †i . We choose for any open edge a
of T0 t T1 an orientation, and a non vanishing section e.a/ 2 H 0.a; ˇ�L_/. For each edge
a, e.a/ � ˇja is then a locally finite cycle on P1C n†, with coefficients in L_. Let I0 t I1 be the
partition of f1; : : : ; ng corresponding to the partition † D †0 t†1.

P 2.2 ([5], Prop. 2.5.1). – If
Q
i2I0

˛i ¤ 0, then the family

fe.a/ � ˇja
; a is an edge of T0 t T1g

is a basis of H lf
1 .P1C n†;L_/.

2.2. Sheaf cohomology

Another way to compute the cohomology ofP1Cn†with coefficients in L is to use the sheaf
cohomology. For this purpose, we will identify L with its sheaf of locally constant sections.
Let j W P1C n † ! P1C be the natural inclusion, and let jŠL be the extension of L by 0
to P1C. In this setting,H �c .P1C n†;L/ is the cohomology on P1C with coefficients in jŠL. It is by
definition, the hypercohomology on P1C of any complex of sheavesK� with H 0.K�/ D jŠL,
and H i .K�/ D 0, for i ¤ 0. On the other hand, if L� is a resolution of L, whose components
are acyclic for j� (that isRqj�Lk D 0 for q > 0), thenH �.P1Cn†;L/ is the hypercohomology
on P1C of j�L. We have the

P 2.3 ([5], Prop. 2.6.1). – If ˛i ¤ 1 for all i 2 f1; : : : ; ng, then we have
H �c .P1C n†;L/ ' H �.P1C n†;L/.

The holomorphic L-valued de Rham complex ��.L/ W O.L/ ! �1.L/ is a resolution
of L on P1C n†. Hence, we can interpret H �.P1C n†;L/ as the hypercohomology on P1C n†
of ��.L/. Since H q.P1C n†;�p.L// D 0, for q > 0 (because P1C n† is Stein), this gives

H �.P1C n†;L/ D H
��.P1C n†;�

�.L//:

On the other hand, since we have Rqj��p.L/ D 0 for q > 0, it follows that

H �.P1C n†;L/ D H�.P1C; j��
�.L//:
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2.3. The de Rham meromorphic description of the cohomology of L

We will describe a section of O.L/ on an open set U � P1C n † as the product of a
multivalued function and a multivalued section of L. Those objects are defined as follows:
U is provided with a base point o, a multivalued section of a sheaf F onU is actually a section
of the pullback of F on the universal cover . OU ; Oo/ of .U; o/. A section of L at o extends to
a unique horizontal multivalued section. A multivalued section of O is uniquely determined
by its germ at o.

Fix an xs 2 †, and let z be a local coordinate which identifies a neighborhood of xs with
a disk D in C centered at z.xs/ D 0. Let D� D D n f0g. If the monodromy of L around xs is
˛s D exp.2�{�s/, then the monodromy of z��s is the inverse of that of a horizontal section
of L. Therefore, any section of O.L/ (resp. �1.L/) on D� can be written as u D z��s � e � f
(resp. u D z��s � e � fdz), where e is a non-zero (horizontal) multivalued section of L, and
f is a holomorphic function on D�. We define u to be meromorphic at xs if f is, and define
its valuation at xs to be

vxs .u/ D vxs .f / � �s :

Note that these definitions are independent of the choice of the local coordinate.
Let us write jm� �

�.L/ for the sheaf complex consisting of meromorphic forms in ��.L/.
The inclusion of jm� �

�.L/ into j��
�.L/ induces an isomorphism on the cohomology

sheaves. This implies

H�.P1C; j
m
� �

�.L// ' H�.P1C; j��
�.L// D H �.P1C n†;L/:

Since we have H q.P1C; jm� �p.L// D 0 for q > 0, H�.P1C; jm� ��.L// is simply
H ��.P1C; jm� ��.L//, that is the cohomology of the complex of L-valued forms holomorphic
on P1C n† and meromorphic at †. To sum up, we have

H �.P1C n†;L/ ' H
��.P1C; j

m
� �

�.L//:

P 2.4 ([5], Cor. 2.12). – There is, up to a constant factor, a unique non-zero
! 2 �.P1C; jm� �1.L// whose valuation at xs is at least ��s . Actually, we have vxs .!/ D ��s ,
and ! is invertible on P1C n†.

If1 62 †, then, up to a constant factor, ! D e �
Q
xs2†

.z � xs/
��sdz, and if1 2 †, then

! D e �
Q
xs¤1

.z � xs/
��sdz.

Moreover, we have

P 2.5 ([5], Prop. 2.13). – Assume that ˛s ¤ 1 for all s 2 f1; : : : ; ng, that is
none of the �s is an integer, then the cohomology class of the form ! in the previous proposition
is not zero.

Let us assume that none of the ˛s is 1. Let Œ!� denote the cohomology class of ! in
H 1.P1C n†;L/. Since we have H 1.P1C n†;L/ ' H 1

c .P1C n†;L/ (cf. Proposition 2.3), ! also
gives a cohomology class, denoted again by Œ!�, inH 1

c .P1C n†;L/. Thus, for any locally finite
cycle C in H lf

1 .P1C n †;L_/, hŒC �; Œ!�i is well-defined. If C is represented by a compactly
supported cycle, then

hŒC �; Œ!�i D

Z
C

!:
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If C D e0 � ˇ is a cycle where ˇ W Œ0; 1�! P1C is such that ˇ.0/; ˇ.1/ 2 †, ˇ..0; 1// � P1C n†,
and e0 is a horizontal section ofˇ�L_ on .0; 1/, we can define a finite cycleC 0 with coefficients
in L_ homologous to C as follows: let xs0 D ˇ.0/; xs1 D ˇ.1/, and Di a small disk centered
at xsi such that Di \† D fxsi g, and D0\D1 D ;. Let Ci ; i D 0; 1, be a circle centered at xsi
and contained in Di . Let I denote the interval Œ0; 1�. Let y0 D ˇ.�0/ be the first intersection
of ˇ.I / and C0, and y1 D ˇ.1 � �1/ be the last intersection of ˇ.I / with C1. We consider
y0 and y1 as base points of C0 and C1 respectively, and parametrize those circles counter-
clockwise by the maps 
i W Œ0; 1� ! Ci . Let I 0 WD Œ�0; 1 � �1�, and ˇ0 be the restriction
of ˇ to I 0. Let e0i WD e0.yi /=.˛

�1
si
� 1/. We also denote by e0 the unique horizontal section

of 
�i L_ determined by this vector. Consider the 1-chain e0i � 
i with coefficients in L_. Since
the monodromy of L_ at xsi is ˛�1si , we get d.e0i � 
i / D e0 � fyig. Let C 0 denote the 1-cycle
e00 �
0Ce

0 �ˇ0�e01 �
1. One can easily check that dC 0 D 0, and ŒC 0� D ŒC � 2 H lf
1 .P1C n†;L_/.

Since C 0 is compactly supported, we have

hŒC �; Œ!�i D hŒC 0�; Œ!�i D

Z
C 0
!:

R 2.6. – If ! D e �
Q
xs2†

.z � xs/
��sdz, where 0 < �s < 1 for all s 2 f1; : : : ; ng,

and ˇ is a path from xs1 to xs2 without passing through any point in †, then we also have

(3) hŒC �; Œ!�i D he0; ei

Z
ˇ

Y
xs2†

.z � xs/
��sdz:

2.4. Hermitian structure

Since all the ˛s have modulus equal to 1, L admits a horizontal Hermitian metric .:; :/. We
can use this metric to define a perfect pairing

 0 W H
1
c .P

1
C n†;L/˝C H

1
c .P

1
C n†;

NL/! H 2
c .P

1
C n†;C/ ' C;

where NL is the complex conjugate local system of L. The vector space H 1
c .P1C n †; NL/ is the

complex conjugate of H 1
c .P1C n†;L/. By setting

..u; v// WD
�1

2�{
 0.u; Nv/

we get a Hermitian form on H 1
c .P1C n†;L/.

A section ! of jm� �
1.L/ is said to be of the first kind if vxs .!/ > �1 for all xs 2 †. For

such a form, we have j
R
P1Cn†

! ^ !j <1. We define H 1;0.P1C n†;L/ to be the vector space

of forms of the first kind in �.P1C; jm� �1.L//, andH 0;1.P1C n†;L/ as the complex conjugate
of H 1;0.P1C n †; NL/. The latter is the space of anti-holomorphic L-valued 1-forms, whose
complex conjugate is of the first kind. As usual, such a form ! defines a cohomology class
Œ!� 2 H 1.P1C n†;L/ ' H 1

c .P1C n†;L/.

P 2.7 ([5] Prop. 2.19). – If!1 and!2 are inH 1;0.P1Cn†;L/[H 0;1.P1Cn†;L/
then

..Œ!1�; Œ!2�// D
�1

2�{

Z
P1Cn†

!1 ^ !2:
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P 2.8 ([5] Prop. 2.20). – Assume that 0 < �s < 1 for all s 2 f1; : : : ; ng, then
the natural map

H 1;0.P1C n†;L/˚H
0;1.P1C n†;L/! H 1.P1C n†;L/ ' H

1
c .P

1
C n†;L/

is an isomorphism. The Hermitian form ..:; :// is positive definite on H 1;0, negative definite
on H 0;1, and the decomposition is orthogonal. Since dimCH

1;0 D 1, and dimCH
0;1 D n� 3,

the signature of ..:; :// is .1; n � 3/.

2.5. Local system and the line bundle L over M 0;n

Recall that M 0;n is the moduli space parametrizing Riemann surfaces of genus zero and
nmarked points (punctures). Since every Riemann surface of genus zero is isomorphic to P1C,
we can also view M 0;n as the space of configurations of n distinct points on P1C up to action
of PGL.2;C/. If † D fx1; : : : ; xng; n � 3, is a set of n points in P1C, then up to action
of PGL.2;C/, we can always assume that xn�2 D 0; xn�1 D 1; xn D 1. Thus, M 0;n can
be identified with the subset of .P1C/n�3 consisting of .n� 3/-tuples .x1; : : : ; xn�3/ such that
xs ¤ xs0 if s ¤ s0, and xs 62 f0; 1;1g.

Over M 0;n we have a fibration � W C0;n ! M 0;n whose fiber over a point m 2 M 0;n is
the n-punctured sphere represented by m. Let M 0;n be the Deligne-Mumford-Knudsen
compactification of M 0;n. We also have a fibration � W C 0;n ! M 0;n extending the
projection from C0;n to M 0;n, where C 0;n is the universal curve which is a compact space
containing C0;n as an open dense subset. It is well known that � is a flat proper morphism,
and there exist by construction n sections �1 : : : ; �n of � such that �s.m/ is the sth marked
point on the stable curve ��1.m/. Note that C 0;n is actually isomorphic to M 0;nC1, and
M 0;n is a smooth projective variety.

Fix a vector � WD .�1; : : : ; �n/ 2 .R>0/n such that �1 C � � � C �n D 2, and �s 62 N
for all s 2 f1; : : : ; ng. By [5], Section 3.13, there exists a rank one local system L�

on C0;n such that, for any m 2 M 0;n, the induced local system L�m on ��1.m/ '

.P1C; .x1; : : : ; xn// has monodromy given by ˛s D exp.2�{�s/ at each puncture xs . Since
the projection � W C0;n ! M 0;n is locally topologically trivial, setting H� WD R1��L�

we get a local system of rank n � 2 over M 0;n whose fiber over m is H 1.P1C n †;L
�
m/ '

H 1
c .P1C n†;L

�
m/. Associated to this local system is a flat projective space bundle PH� whose

fiber over m is PH�
m ' Pn�3C .

We have seen that for each m 2 M 0;n, up to a constant factor, there is a unique
L�m-valued meromorphic 1-form !m 2 �.P1C; jm� �1.L

�
m// such that the valuation of !m

at the puncture xs is exactly ��s . By Proposition 2.5, we know that !m represents a non-
trivial cohomology class in H�

m. Thus!m provides us with a section of the flat projective space
bundle PH�. Let us denote this section by „�.

Since the pull-back of the bundle PH� to the universal cover gM 0;n is isomorphic to the
trivial bundle gM 0;n�Pn�3C , the section„� gives rise to a map e„� WgM 0;n ! Pn�3C . We have
the following crucial result

P 2.9 ([5], Lem. 3.5, Prop. 3.9). – The section „� is holomorphic, and the
map e„� WgM 0;n ! Pn�3C is étale.
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A direct consequence of Proposition 2.9 is that we have a holomorphic line bundle L

over M 0;n whose fiber over m is the line C � Œ!m� � H 1.P1C n†;L
�
m/.

Assume moreover that 0 < �s < 1, for all s 2 f1; : : : ; ng. We have seen that in this case,
the fiber H�

m ' H
1.P1Cn†;L

�
m/ of the local system (flat bundle) H� carries a Hermitian form

of signature .1; n� 3/. This Hermitian form then gives rise to a horizontal Hermitian metric
on H�. Therefore, we have a flat bundle over M 0;n whose fiber overm is the ball Bm � PH�

m

which is defined by
Bm WD fC � v 2 PH�

m; ..v; v//m > 0g:

By Proposition 2.8, the line C � Œ!m� belongs to Bm. Thus, the map e„� actually takes values
in a fixed ball B � Pn�3C . As a consequence, we see that L is locally the pull-back by „� of
the restriction of the tautological line bundle of Pn�3C to B. Remark that L carries naturally
a Hermitian metric induced by the Hermitian metric on H�. In the rest of this paper, we will
focus on the line bundle L and its Chern form.

3. Local coordinates at boundary points of M 0;n

It is well-known that the complement of M 0;n in M 0;n is the union of finitely many
divisors called vital divisors, each of which uniquely corresponds to a partition of f1; : : : ; ng
into two subsets I0tI1 such that minfjI0j; jI1jg � 2. Let P be the set of partitions satisfying
this condition. For each partition S WD fI0; I1g 2 P , we denote by DS the corresponding
divisor in M 0;n. Here below, we collect some classical facts on those divisors which are
relevant for our purpose (see [15]).

(i) The family fDS ; S 2 Pg consists of smooth divisors with normal crossings.
(ii) If S D fI0; I1g, then DS is isomorphic to M 0;jI0jC1 � M 0;jI1jC1.

(iii) Let S D fI0; I1g and S 0 D fJ0; J1g be two partitions in P . Then DS \ DS 0 D ;

unless one of the following occurs:

I0 � J0; I0 � J1; I1 � J0; I1 � J1:

We first need to describe a neighborhood of a point m in @M 0;n. Fix a partition
S D fI0; I1g 2 P . Let n0 D jI0j, and n1 D jI1j D n � n0. Without loss of generality,
we can assume that I0 D f1; : : : ; n0g and I1 D fn0 C 1; : : : ; ng. From (ii) we know that
DS is isomorphic to M 0;n0C1 � M 0;n1C1. Let m be a point in DS . We will only focus on
the case when m 2 DS is a generic point, that is the fiber Cm of � over m is a nodal curve
having two irreducible components of genus zero intersecting at a simple node.

The normalization of Cm consists of two Riemann surfaces of genus zero denoted by C 0m
and C 1m, where C 0m (resp. C 1m) contains the marked points x1; : : : ; xn0 (resp. xn0C1; : : : ; xn).
Let †0 WD fx1; : : : ; xn0g and †1 WD fxn0C1; : : : ; xng. There are two points Oy0 2 C 0m n†0
and Oy1 2 C 1m n †1 that correspond to the unique node of Cm. The marked curves
.C 0m; . Oy0; x1; : : : ; xn0// and .C 1m; . Oy1; xn0C1; : : : ; xn// represent respectively two points
m0 2 M 0;n0C1 and m1 2 M 0;n1C1.

We will now describe how one can embed holomorphically a small disk D � C centered
at 0 into M 0;n and transversely to DS such that 0 is mapped to m. For this, let us fix the
following data:
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– U is neighborhood of Oy0 in C 0m such that U \ fx1; : : : ; xn0g D ;, F W U ! C is a
coordinate mapping such that F. Oy0/ D 0,

– V is neighborhood of Oy1 in C 1m such that V \ fxn0C1; : : : ; xng D ;, G W V ! C is a
coordinate mapping such that G. Oy1/ D 0.

Pick a constant c 2 R>0 such that the disk Dc WD fjzj < cg � C is contained in both F.U /
and G.V /. For any t 2 C such that jt j < c2, set C 0m;t WD C

0
m n fp 2 U; jF.p/j � jt j=cg, and

C 1m;t WD C 1m n fq 2 V; jG.q/j � jt j=cg. Let At denote the annulus fjt j=c < jzj < cg � Dc .
We then define a compact Riemann surface by gluing C 0m;t and C 1m;t via the identification:
p 2 F �1.At / is identified with q 2 G�1.At / if and only if F.p/G.q/ D t . Let us denote the
surface obtained from this construction by C.m;t/.

It is easy to see that the marked curve .C.m;t/; .x1; : : : ; xn// represents a point in M 0;n. We
thus have a map ' W Dc2 D ft 2 C; jt j < c2g ! M 0;n, which is defined by '.0/ D .Cm; †/

and '.t/ D .C.m;t/; †/, for t ¤ 0. This map is well known to be a holomorphic embedding
of Dc2 into M 0;n. The construction above is called a plumbing, and the image of Dc2 by ' is
called a plumbing family (see [23, Sec. 2]).

Recall thatm is identified with .m0; m1/ by the isomorphism betweenDS and M 0;n0C1�

M 0;n1C1. Therefore, we can identify a neighborhood V of m in DS with a product space
V0 � V1, where Vi is a neighborhood of mi in M 0;niC1

. For any m0 D .m00; m
0
1/ 2 V,

let Cm0
0

and Cm0
1

be the curves represented by m00 and m01 respectively. On Cm0
i

we have a
distinguished marked point Oy0i which corresponds to the node of the curve Cm0 represented
by m0. We can always identify Cm0

i
with P1C such that Oy0i D 0. In conclusion, we get the

following well known result (see [23, Sec. 2], [1, Chap. 11]).

P 3.1. – Assume that for all m0 D .m00; m
0
1/ 2 V0 � V1 we have some

plumbing data .U; V; F;G; c/ as above, where F and G depend holomorphically on m0. Then
there exists a system of holomorphic local coordinates atm which identifies a neighborhood U

ofm in M 0;n with V0� V1�Dc2 . The point in M 0;n corresponding to .m00; m
0
1; t / represents

the surface obtained by applying the t -plumbing construction to the nodal surface represented
by .m00; m

0
1/. In particular, U \ M 0;n is identified with V0 � V1 �D�

c2
in those coordinates.

4. Sections of L near the boundary: generic points

In Section 2.5, we defined a holomorphic line bundle L over M 0;n by providing local
trivializations (see Proposition 2.9). In this section, we investigate L near the boundary
of M 0;n. Our goal is to exhibit holomorphic sections of L in a neighborhood of every point
m 2 @M 0;n. Assume that m is a generic point of a divisor DS .

Let S D fI0; I1g; C
0
m; C

1
m; †0; †1; Oy0; Oy1 be as in the previous section. We will identifyC 0m

(resp. C 1m) with P1C in such a way that Oy0 D 0 and1 62 †0 (resp. Oy1 D 0, and1 62 †1). Set
O†i D †i t f Oyig; i D 0; 1.

Let O�0 D
P
n0C1�s�n

�s , O�1 D
P
1�s�n0

�s and Ǫ i D exp.2�{ O�i /. We assume that

O�0 < 1. Denote by Li the rank one local system on C im n O†i with monodromy ˛s at xs , and
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Ǫ i at Oyi . Let ei be a horizontal multivalued section of Li . Set

!0 D e0 � z� O�0
Y

1�s�n0

.z � xs/
��sdz and !1 WD e1 � z� O�1

Y
n0C1�s�n

.z � xs/
��sdz:

Observe that !i is a well defined section in �.C im; j
m
� �

1.Li //.
We are going to construct a plumbing family starting fromm and a section of L over the

corresponding (punctured) family. For this, we first need to fix the plumbing data.

L 4.1. – Let r be a real number not in f�n; n 2 N�g. For any holomorphic function f
defined on a disk D in C centered at 0 and satisfying f .0/ ¤ 0, there exists a coordinate change
z 7! w preserving 0 such that

zrf .z/dz D wrdw

on a neighborhood of 0 in D, with suitable determinations of zr and wr .

Proof. – Let us fix a determination of zr . We will look for a coordinate change of the form
w D zh.z/. It suffices to find a holomorphic function h defined on a neighborhood of 0 such
that h.0/ ¤ 0 and

zrh.z/r
�
h.z/C zh0.z/

�
D zrf .z/, h.z/r .h.z/C zh0.z// D f .z/;

where h.z/r is a determination defined near h.0/ 6D 0. Setting g.z/ WD hrC1.z/, we must have

g.z/C
1

r C 1
zg0.z/ D f .z/:

Let f .z/ D
P
k�0 ckz

k , with c0 ¤ 0, be the expansion of f at 0. Assuming that g admits an
expansion g.z/ D

P
k�0 dkz

k , we see that the sequence .dk/k�0 must satisfy

dk

�
1C

k

r C 1

�
D ck , dk D

r C 1

r C 1C k
ck :

In particular, we see that d0 D c0 ¤ 0, and since r C 1 C k ¤ 0 for any k 2 N, the power
series

P
k�0 dkz

k is well defined and has the same convergence radius as
P
k�0 ckz

k . Thus
g.z/ is a well defined holomorphic function on D which satisfies g.0/ ¤ 0. It follows that
h.z/ WD g.z/1=.rC1/ is well defined in a neighborhood of 0 for any choice of a determination.
Then we choose the determination h.z/r in such a way that h.0/rC1 D g.0/, and if we define
wr D .zh.z//r WD zrh.z/r , the lemma is proved.

Now, choosing a determination for
Q
1�s�n0

.z � xs/
��s and

Q
n0C1�s�n

.z � xs/
��s in

a neighborhood of 0, we then get two holomorphic functions f and g which do not vanish
at 0. Applying Lemma 4.1 to the forms z� O�0f .z/dz and z� O�1g.z/dz, we see that there exist
two holomorphic functions F W U ! C and G W V ! C, where U and V are some
neighborhoods of 0, such that F.0/ D G.0/ D 0; F 0.0/ ¤ 0;G0.0/ ¤ 0 and

(4) z� O�0f .z/dz D F � O�0.z/dF.z/; z� O�1g.z/dz D G� O�1.z/dG.z/:

Let c be a positive real number such that Dc is contained in both F.U / and G.V /. We
can now use the tuple .F; U;G; V; c/ to construct the plumbing family associated to m. For
any t 2 Dc2 , let C.m;t/ be the n-punctured sphere obtained by the construction described
in the previous section. Recall that C.m;t/ is obtained from C 0m;t and C 1m;t by the gluing rule

4 e SÉRIE – TOME 51 – 2018 – No 6



COMPLEX HYPERBOLIC VOLUME AND INTERSECTION IN M 0;n 1563

w1 D t=w0 in the coordinates w0 D F.z/ and w1 D G.z/. By the definition of F and G, the
expressions of !0 and !1 in those local coordinates are respectively

(5) !0 D e1 � w
� O�0
0 dw0; !1 D e2 � w

� O�1
1 dw1:

L 4.2. – There exists a rank one local system L on C.m;t/ n † whose restriction
to C im;t n †i is Li . We also have a multivalued horizontal section e of L whose restriction
to C im;t is identified with ei .

Proof. – We first remark that C im;t is biholomorphic to a disk with ni punctures, and
the annulus At is homotopy equivalent to the boundary of C im;t . By definition, the mono-
dromy of Li along the boundary of C im;t (with the counterclockwise orientation) is given
by exp.�2�{ O�i /. Observe that the transition map identifies a circle homotopic to the
boundary of C 0m;t with a circle homotopic to the boundary of C 1m;t with the inverse orienta-
tion. Since we have

exp.�2�{ O�1/ D exp.�2�{.2 � O�0// D exp.2�{ O�0/;

the restriction of L0 on At is isomorphic to the restriction of L1. We can then identify L0
with L1 on At by setting e0 ' e1. Therefore, we have a well defined rank one local system L
on C.m;t/ with the desired monodromies at the punctures and a multivalued horizontal
section, denoted by e, whose restriction to C im;t is ei .

L 4.3. – There exists a unique L-valued meromorphic 1-form ! 2 �.C.m;t/; j
m
� �

1.L//,
whose restriction to C 0m;t is equal to !0. Its restriction to C 1m;t is equal to �t1� O�0!1 for some
determination of t O�0 .

Proof. – By definition, !i is a section of �1.L/ on C im;t , meromorphic at the punctures.
All we need to show is that

(6) !0 D �t
1� O�0!1 on At ,

the uniqueness being clear by analytic continuation. Using the local coordinates w0 and w1,
we have (see (5))

!0 D e0 � w
� O�0
0 dw0 and !1 D e1 � w

� O�1
1 dw1

for some choices of the determinations w O�00 and w O�11 . Recall that the changes of trivializa-
tions on At satisfy w0 7! t=w1 and e0 7! e1. Thus

!0 D e0 � w
� O�0
0 dw0 D e1 � .w1=t/ O�0.�t=w21/dw1 D �t

1� O�0e1 � w
� O�1
1 dw1 D �t

1� O�0!1;

where t O�0 is chosen in such a way that t O�0 D .t=w1/
O�0w

2� O�1
1 , which is possible since

O�0 C O�1 D 2. Observe that as t completes a turn around 0, the determination of t O�0 is
multiplied by e2{� O�0 .

Let T0 be an embedded tree inC 0m whose vertex set consists ofn0 points in O†0. Let T1 be an
embedded tree inC 1m whose vertex set is exactly†1. Let a1; : : : ; an0�1 denote the edges of T0,
and b1; : : : ; bn1�1 the edges of T1. Let e0i be an Li -multivalued horizontal section onC imn O†i .
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By Proposition 2.2, we know that fe00 �aj ; j D 1; : : : ; n0�1g (resp. fe01 �bj ; j D 1; : : : ; n1�1g)
is a basis of H lf

1 .C
0
m n
O†0;L0/ (resp. a basis of H lf

1 .C
1
m n
O†1;L1/). Set

�j WD hŒe00 � aj �; Œ!0�i; �j WD hŒe01 � bj �; Œ!1�i:

Since Œ!0� and Œ!1� are not zero (see Proposition 2.5), we have

� WD .�1; : : : ; �n0�1/ ¤ 0 2 Cn0�1 and � WD .�1; : : : ; �n1�1/ ¤ 0 2 Cn1�1:

L 4.4. – Let ! be as in Lemma 4.3. Then there exists a basis of H lf
1 .C.m;t/ n †;L/

such that the coordinates of ! in the dual basis are given by .�;�t1� O�0�/ 2 Cn�2.

Proof. – We first consider the case when T0 does not contain Oy0. The tree Ti can always be
chosen to be contained entirely inC im;t . It follows that fe00 �aj g and fe01 �bj g can be considered
as homology classes in H lf

1 .C.m;t/ n†;L/. Moreover, by Proposition 2.2, the union of those
classes makes up a basis of H lf

1 .C.m;t/ n †;L/. Since the restrictions of ! to C 0m;t and C 1m;t
are respectively !0 and �t1� O�0!1, we get

hŒe00 � aj �; Œ!�i D hŒe
0
0 � aj �; Œ!0�i D �j ; j D 1; : : : ; n0 � 1;(7)

hŒe01 � bj �; Œ!�i D hŒe
0
1 � bj �;�t

1� O�0 Œ!1�i D �t
1� O�0�j ; j D 1; : : : ; n1 � 1:(8)

Thus the lemma is proven in this case.
Consider now the case where T0 contains Oy0. Remark that in this case, there is a point

in †0, say xn0 , which is not contained in T0. Up to a renumbering, we can assume that the
set of edges containing Oy0 as an end is faj ; j D 1; : : : ; kg, with k � n0 � 1. We can also
assume that xj is the other end of aj , for j D 1; : : : ; k.

Recall that the plumbing construction is carried out in a neighborhoodU of Oy0. Let D0 be
an embedded disk in C 0m that contains U . For j D 1; : : : ; k, let yj be the first intersection
of aj with @D0, and a0j be the subarc of aj from xj to yj . Let a00j denote the boundary
of D0 considered as a loop based at yj . Since O�0 62 N, there exists a constant " such that
Œe00 � aj � D Œe

0
0 � a

0
j C "e

0
0 � a

00
j � in H lf

1 .C
0
m n
O†0;L0/. Therefore,

�j D hŒe00 � a
0
j C "e

0
0 � a

00
j �; Œ!0�i D

Z
a0
j

.e00; !0/C "
Z
a00
j

.e00; !0/; j D 1; : : : ; k:

We construct a new tree T in C.m;t/ from T0 and T1 by removing a1; : : : ; ak from T0, and
adding the edges cj joining xj to some vertex of T1 for j D 1; : : : ; k. Note that the vertex
set of T is † n fxn0g. Let e0 be an L-multivalued horizontal section on C.m;t/ n †. Then
fŒe0 � c1�; : : : ; Œe0 � ck �; Œe00 � akC1�; : : : ; Œe

0
0 � an0�1�; Œe

0
1 � b1�; : : : ; Œe

0
1 � bn1�1�g is a basis of

H lf
1 .C.m;t/ n†;L/ by Proposition 2.2.
For j D 1; : : : ; k, since a0j and a00j are entirely contained in C 0m;t , we can consider

e00�a
0
jC"e

0
0�a
00
j as elements ofH lf

1 .C.m;t/n†;L/. Since the union of fa0j ; a
00
j ; cj ; b1; : : : ; bn1�1g is

homotopic to the boundary of an open disk disjoint from†, we deduce that Œe00 �a
0
jC"e

0
0 �a
00
j � is

a linear combination of Œe0 � cj � and Œe01 � b1�; : : : ; Œe
0
1 � bn1�1�. Therefore, fŒe00 � a

0
1 C "e00 �

a001�; : : : ; Œe
0
0 � a

0
k
C "e00 � a

00
k
�; Œe00 � akC1�; : : : ; Œe

0
0 � an0�1�; Œe

0
1 � b1�; : : : ; Œe

0
1 � bn1�1�g is also a

basis of H lf
1 .C.m;t/ n†;L/. Since we have

hŒe00 � a
0
j C "e

0
0 � a

00
j �; Œ!�i D

Z
a0
j

.e00; !/C "
Z
a00
j

.e00; !/ D
Z
a0
j

.e00; !0/C "
Z
a00
j

.e00; !0/ D �j ;
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for j D 1; : : : ; k, the coordinates of Œ!� in the dual basis are given by .�;�t1� O�0�/.

R 4.5. – In the proof of Lemma 4.4, we could have chosen T0 such that the node
Oy0 is not contained in T0, and the proof would have been more direct. However, in the next
section where we will treat the case wherem belongs to several divisorsDS , we will be forced
to deal with trees containing points corresponding to nodes and we will use a method which
is similar to the one above (see Lemma 5.6).

R 4.6. – Let 
 be a small loop around 0 in Dc2 . The element of the mapping class
group Mod0;n corresponding to 
 is a Dehn twist around a closed curve on P1C separating†0
and †1. It can be shown that the monodromy of the local system H� around such a loop is

given by the matrix
� Idn0�1 0

0 e2�{.1� O�0/Idn1�1

�
(see [5, Prop. 9.2] for the case n1 D 2).

Recall that we can write m D .m0; m1/, where mi 2 M 0;niC1
represents .C im; O†i /. Fix

a constant c > 0. There exist some neighborhoods Vi of mi in M 0;niC1
such that for any

m0 D .m00; m
0
1/ 2 V0 � V1 and t 2 D�

c2
, we can apply the same plumbing construction

with parameter t as above to the curve Cm0 . Let C.m0;t/ denote the resulting surface in M 0;n.
By Proposition 3.1, this construction identifies V0 � V1 � Dc2 with a neighborhood of m
in M 0;n.

Let C im0 be the component of Cm0 containing †i .
We define the sections !m0

i
2 �.C im0 ; j

m
� �

1.Li // in the same manner as !i . SinceC.m0;t/ is
defined by the same plumbing construction as C.m;t/, by Lemma 4.3 we get an element
!.m0;t/ 2 �.C.m0;t/; j

m
� �

1.L// constructed from !m0
0

and !m0
1
. Since !.m0;t/ is a vector in

the fiber of L over .m0; t /, the assignment ˆ W .m0; t / 7! !.m0;t/ is a section of L on
V0 � V1 �D�

c2
.

L 4.7. – ˆ is a holomorphic section of L on V0 � V1 �D�
c2

.

Proof. – To see thatˆ is holomorphic section of L , it is enough to show that the pairings
of !.m0;t/ with a basis of H lf

1 .C.m0;t/ n†;L/ are holomorphic functions of .m00; m
0
1; t /. Since

f�j ; j D 1; : : : ; n0 � 1g and f�j ; j D 1; : : : ; n1 � 1g are holomorphic functions of m00 and
m01 respectively, the lemma is a direct consequence of Lemma 4.4, see also [5, Sec. 3].

5. Sections of L near the boundary: general case

5.1. Principal component

Each pointm in M 0;n represents a nodal curveCm with nmarked points .x1; : : : ; xn/. Let
C 0m; : : : ; C

r
m be the irreducible components of Cm. The topological type of Cm is encoded by

a tree T whose vertex set is in bijection with the set of irreducible components. Each edge of
this tree corresponds to a node of Cm.

The point m belongs to the intersection of r boundary divisors, each of them being
associated with one of the r nodes p1; : : : ; pr as follows: splitting a node pj into two points,
we get two connected components C .0/m;pj and C .1/m;pj from Cm. For i D 0; 1, we define the

set I ji � f1; : : : ; ng as follows: s 2 I ji if and only if xs 2 C
.i/
m;pj . Exchanging C .0/m;pj and
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C
.1/
m;pj if necessary, we will always assume that

P
s2I

j
1

�s < 1. Set Sj D fI
j
0 ; I

j
1 g, we have

m 2
Tr
jD1DSj .

Let † WD fx1; : : : ; xng. For each component C jm, set †j WD † \ C
j
m. Note that †j

can be empty. We also have on C jm some other marked points denoted by fy1; : : : ; ysj g that
correspond to nodes of Cm. Set O†j WD †j t fy1; : : : ; ysj g. We now assign to every point y
in O†j a weight O�.y/ as follows: if y D xs 2 †j then O�.y/ D �s . If y 2 fy1; : : : ; ysj g, we
have a corresponding node of Cm. Splitting this node into two points, we get two connected
components of Cm. Let VC jm;y denote the component that does not contain C jm. The weight
associated to y is then

(9) O�.y/ WD
X

xs2 VC
j
m;y

�s :

Since y corresponds to a node, there exists another marked point y0 that is identified
with y. Let C j

0

m be the irreducible component that contains y0. Since the genus of Cm is zero,
we must have j 0 ¤ j . As a consequence, we get

(10) O�.y0/ D 2 � O�.y/:

Let O�j be the vector recording the weights of the points in O†j .

L 5.1. – We have:

a) the sum of the weights in O�j is 2,
b) there exists a unique component C jm such that all the weights in O�j are smaller than 1.

Proof. – The first assertion follows immediately from the definition of the weights at the
points corresponding to nodes ofCm. We will prove the second assertion by induction on the
number of vertices of T.

If T has only one vertex, then b) is trivially true. Suppose that T has r C 1 vertices, with
r � 1. Pick a component C jm corresponding to a leaf of T, that is a vertex which is connected
to the rest of T by only one edge. Suppose that C jm satisfies the property of the lemma (that
is, all the weights in O�j are smaller than one). Let us show that C jm is the unique component
satisfying this condition. Let y be the unique point in O†j that corresponds to a node in Cm.
Since the weight O�.y/ is less than 1, from a) we have

P
xs2C

j
m
�s > 1.

Consider another irreducible component C km of Cm. There is a point yk 2 C km which

corresponds to the node separatingC km fromC
j
m. Let VC km;yk be the component containingC jm

which is obtained after splitting yk into two points. By definition, the weight of yk is

O�.yk/ D
X

xs2 VC
k
m;yk

�s �
X
xs2C

j
m

�s > 1:

Therefore, C km cannot satisfy the condition in b). We can then conclude that C jm is the unique
component that satisfies this condition.
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Assume now that C jm does not satisfy the condition of the lemma, which means that
O�.y/ > 1. Let C km be the unique component of Cm that is adjacent to C jm, and y0 be the
point in C km that is identified with y. Note that the weight of y0 is given by

O�.y0/ D
X
xs2C

j
m

�s D 2 � O�.y/ < 1:

Set†0 WD .†n†j /tfy0g. We see that each point in†0 has a weight strictly smaller than 1, and
the total weight of the points in†0 is 2. Let C 0m be the stable curve obtained by removing C jm
from Cm. Since the tree corresponding to C 0m has a vertex less than T, we can apply the
induction hypothesis to conclude that there is a unique component of C 0m that satisfies the
desired condition.

D 5.2. – We call the unique component C jm that satisfies the condition that all
the weights in O�j are smaller than 1 the �-principal component of Cm.

In what follows, we will always assume thatC 0m is the principal component ofCm. Let vj be
the vertex of T corresponding to C jm. We consider v0 as the root of T, and set the length of
every edge of T to be one. We define the level Lj of the component C jm to be the distance in T
from vj to v0. Observe that we can always choose a numbering of the components ofCm such
that Lj � LjC1 for j D 0; : : : ; r � 1.

If C jm is not the principal component of Cm, then there is a unique point Oyj 2 O†j which
corresponds to the node separating C jm from C 0m. Remark that we have O�. Oyj / > 1, and Oyj is
the unique point in O†j whose weight is greater than 1. We will call Oyj the principal node ofC jm,
and define the weight of C jm to be �j D O�. Oyj /� 1. The following lemma provides some basic
properties of the weights �j . Its proof is straightforward from the definition of O� and the fact
that T is a tree.

L 5.3. – Let C j be an irreducible component of Cm which is not the principal one.
Then we have

a) 0 < �j < 1.
b) Let OC jm be the component containingC jm which is obtained by splittingCm at the principal

node of C jm, that is the node separating C jm from C 0m. Then we have

�j D 1 �
X
xs2 OC

j
m

�s :

c) If vk is a vertex in the path from v0 to vj and k ¤ j , then �k < �j .

R 5.4. – Every node of Cm is the principal node of a unique component. This is
because each node of Cm corresponds to a pair of points fy; y0g that are contained in two
different components, and we have O�.y/C O�.y0/ D 2 (cf. (10)).
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5.2. Construction of sections of L in a neighborhood of m

Set kj WD j O†j j; j D 0; : : : ; r . For each j 2 f0; : : : ; rg, let Lj be a rank one local
system on C jm n O†j with monodromy exp.2�{ O�.y// at any point y 2 O†j . We will fix an
Lj -multivalued horizontal section ej , and a meromorphic section !j of �.C jm; jm� �

1.Lj //
with valuation � O�.y/ at every point y 2 O†j .

Let fp; qg be a pair of points in the normalization of Cm that correspond to a node, and
C
j
m and C j

0

m be respectively the components that contain p and q. Using Lemma 4.1, we can
find some neighborhoods U of p, and V of q, together with local coordinates F on U , G
on V such that

!j D ej � F � O�.p/dF; !j 0 D ej 0 �G� O�.q/dG:

Choose a constant c > 0 small enough such that for any t D .t1; : : : ; tr / 2 .Dc2/
r , the

plumbing construction with plumbing data .F; U;G; V / and parameter ti as above can be
carried out at all the nodes simultaneously. For any j 2 f1; : : : ; rg, we can assume that tj is
the plumbing parameter at the principal node of C jm.

Let C.m;t/ denote the resulting surface in M 0;n. On C.m;t/ we have n marked points
.x1; : : : ; xn/ with associated weights .�1; : : : ; �n/; we will also denote by † this finite subset
of C.m;t/. Let U jm be an open subset of C jm containing all the points in †j � † and disjoint
from the regions affected by the plumbing construction. We can consider U jm as an open
subset of C.m;t/. As usual, let L be a rank one local system on C.m;t/ n†, with monodromy
exp.2�{�s/ at xs .

L 5.5. – Let j be the natural embedding of C.m;t/ n † into C.m;t/. Then there exists
a unique element ! of �.C.m;t/; jm��

1.L// such that

– the restriction of ! to U 0m is equal to !0,
– for j D 1; : : : ; r , the restriction of ! to U jm is equal to Pj .t/!j , where Pj .t/ is a function

of t which is defined as follows: let 0 < i1 < � � � < iLj D j be the indices of the vertices
of T that are contained in the unique path from v0 to vj , and �is is the weight of C ism , then

Pj .t1; : : : ; tr / D .�1/
Lj

LjY
sD1

t
�is
is
:

Proof. – Let QC jm be the subsurface of Cm which is the union of the components
C 0m; : : : ; C

j
m. Given t D .t1; : : : ; tr /, we define QC j

.m;t1;:::;tj /
from QC

j
m by applying successively

the plumbing constructions with parameter ti at the principal node of C im, for i D 1; : : : ; j .
Note that QC r

.m;t1;:::;tr /
D C.m;t/. By induction, this lemma is a direct consequence of

Lemma 4.3.

Let us denote by !.m;t/ the L-valued meromorphic one form given by Lemma 5.5. By
construction,!.m;t/ has valuation��s at xs , thus it is an element of the fiber of L overC.m;t/.
We would like now to show that the assignment .m; t/ 7! !.m;t/ is a holomorphic section of L

on U \ M 0;n, where U is a neighborhood of m in M 0;n.
We first specify an appropriate basis of H lf

1 .C.m;t/ n †;L/. Let T0 be an embedded
topological tree in C 0m, whose vertex set is O†0 minus one point. For j D 1; : : : ; r , let Tj be
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an embedded topological tree in C jm whose vertex set is O†j minus the principal node. Let
a
j
i ; i D 1; : : : ; kj � 2, denote the edges of Tj . Fix an Lj -multivalued horizontal section

e0j on C jm n O†j . By Proposition 2.2, the family fŒe0j � a
j
i �; i D 1; : : : ; kj � 2g is a basis

of H lf
1 .C

j
m n
O†j ;Lj /. Set

�
.j /
i WD hŒe

0
j � a

j
i �; Œ!j �i D

Z
a
j

i

.e0j ; !j /; i D 1; : : : ; kj � 2:

Let �.j / denote the vector .�.j /1 ; : : : ; �
.j /

kj�2
/. We have

L 5.6. – Let ! and Pj ; j D 1; : : : ; r , be as in Lemma 5.5. Then there exists
a basis of H lf

1 .C.m;t/ n †;L/ such that the coordinates of Œ!� in the dual basis are given
by .�.0/; P1.t/�.1/; : : : ; Pr .t/�.r// 2 Cn�2.

Proof. – Let QC jm and QC j
.m;t1;:::;tj /

be as in the proof of Lemma 5.5. Recall that C.m;t/ D

QC r
.m;t1;:::;tr /

, and QC j
.m;t1;:::;tj /

is obtained from QC j�1
.m;t1;:::;tj�1/

andC jm by the plumbing construc-

tion at the principal node of C jm. The lemma then follows from Lemma 4.4 and Lemma 5.5
by induction.

Each pair .C jm; O†j / represents a point mj in M 0;kj
. Hence the point m is contained in a

stratum of M 0;n which is isomorphic to M 0;k0 � � � � � M 0;kr . Let Vj be a neighborhood
of mj in M 0;kj

and set V WD V0 � � � � � Vr . Let Lj denote the line bundle over M 0;kj

whose fiber over mj is C � Œ!j � � H 1.C
j
m n
O†j ;Lj /. We extend !j to a holomorphic section

of Lj on Vj . Since the plumbing data .F; U;G; V / depend analytically on .m0; : : : ; mr /,
the plumbing construction .m; t/ 7! C.m;t/ identifies a neighborhood of m in M 0;n with
V � .Dc2/

r .
Let !.m;t/ denote the L-valued meromorphic one form on C.m;t/ defined in Lemma 5.5.

The assignment ˆ W .m; t/ 7! !.m;t/ provides us with a section of L on V � .D�
c2
/r .

Since !j is a holomorphic section of Lj , �.j / depends analytically on mj . It follows that
the coordinates of !.m;t/ in a basis ofH 1.C.m;t/ n†;L/ are given by holomorphic functions
of .m0; : : : ; mr ; t1; : : : ; tr /. Thus we have shown

P 5.7. – The section ˆ is holomorphic.

6. Flat metrics on punctured spheres and Hermitian metric on the line bundle L

6.1. Hermitian norm of the section ˆ

Letm be now a point in a stratum M WD M 0;k0�� � ��M 0;kr of codimension r in M 0;n.
Let .Cm; †/ be the stable curve represented bym, andC 0m; : : : ; C

r
m its irreducible components.

In what follows we will use the notations of Section 5. Our goal in this section is to prove a
formula (cf. (11)) for the Hermitian norm of ˆ.m; t/ in H 1.C.m;t/ n †;L/, where ˆ is the
section in Proposition 5.7.

On each irreducible component C jm of Cm, we have a finite subset O†j consisting of points
in † \ C jm and the nodes of C jm. The pair .C jm; O†j / represents a point mj 2 M 0;kj

, where

kj D j O†j j. We identified a neighborhood ofm in M 0;n with V0 � � � � � Vr � .Dc2/
r , where
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Vj � M 0;kj
is a neighborhood of mj WD .C

j
m; O†j /, and c is a positive real constant small

enough.

Let zj 2 Ckj�3; j D 0; : : : ; r , be the coordinates on Vj , and t D .t1; : : : ; tr /

the coordinates on .Dc2/
r . In these local coordinates, m is identified with the point

.z0.m0/; : : : ; z
r .mr /; 0 : : : ; 0/, and we have V � .D�

c2
/r D V � .Dc2/

r \ M 0;n, where
V D V0 � � � � � Vr .

Remark that for each j 2 f1; : : : ; rg, the subset of V � .Dc2/
r defined by ftj D 0g is the

intersection of V� .Dc2/
r with a boundary divisorDSj in M 0;n. This divisor corresponds

to the partition Sj D fI
j
0 ; I

j
1 g of f1; : : : ; ng that is induced by the splitting of the j -th node

of Cm into two points. Thus, we see that the stratum M of m is precisely the intersectionT
1�j�r DSj .

Recall that O�j is the vector recording the weights of marked points in C jm, and that the
component C 0m of Cm is characterized by the property that all the weights in O�0 are strictly
smaller than 1 (see Lemma 5.1). Thus the Hermitian form onH 1.C 0m n

O†0;L0/ has signature
.1; k0�3/. Let us denote this Hermitian form by ..:; ://0. Recall that we have defined a section
ˆ W .m; t/ 7! !.m;t/ of L on V � .D�

c2
/r (see Proposition 5.7). We will prove the following

P 6.1. – For j D 1; : : : ; r , let Pj .t/ be as in Lemma 5.5, and �.j / 2 Ckj�2 be
as in Lemma 5.6. For each j D 1; : : : ; r , there exists a positive definite Hermitian form ..:; ://j
on Ckj�2 depending only on � such that the norm of Œ!.m;t/� in H 1.C.m;t/ n†;L/ is given by

(11) ..Œ!.m;t/�; Œ!.m;t/�// D ..�
.0/; �.0///0 �

rX
jD1

jPj .t/j
2..�.j /; �.j ///j :

Here we identify ..:; ://0 with a Hermitian form on Ck0�2.

As a consequence of Proposition 6.1, we get

P 6.2. – There exist some neighborhood Vj of mj and holomorphic local
coordinates zj W Vj ! Ckj�3 such that if m D .z0; : : : ; zr ; 0; : : : ; 0„ ƒ‚ …

r

/, and t D .t1; : : : ; tr / 2

.D�
c2
/r , then we have

(12) kˆ.m; t/k2 D ..Œ!.m;t/�; Œ!.m;t/�// D 1 � jjz
0
jj
2
�

rX
jD1

jPj .t/j
2.1C jjzj jj2/;

and the Chern form of L on V � .D�
c2
/ is given by

(13) �� WD dd
c log

0@1 � jjz0jj2 � rX
jD1

jPj .t/j
2.1C jjzj jj2/

1A :
In other words, locally at m, �� is the pullback of the complex hyperbolic metric
dd c log.1 � kwk2/ on Cn�3 by the multivalued map

.z0; t1; : : : ; tr ; z
1; : : : ; zr / 7! w D .z0; P1.t/; : : : ; Pr .t/; P1.t/z

1; : : : ; Pr .t/z
r /

(note that even if the map is multivalued, the metric is well defined).
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R 6.3. – Recall from Lemma 5.5 that we have Pj .t/ D .�1/Lj
QLj
sD1 t

�is
is

, where
the family of indices fis; s D 1; : : : ; Lj g records the components ofCm between the principal
one, that is, C 0m, and C jm. Since all the exponents �is are positive, the function jPj .t/j extends
by continuity to .Dc2/

r . Thus, the function

' W .z0; : : : ; zr ; t / 7! 1 � jjz0jj2 �

rX
jD1

jPj .t/j
2.1C jjzj jj2/

is a continuous function on V � .Dc2/
r .

As we will see in the sequel, the Hermitian norm ..Œ!.m;t/�; Œ!.m;t/�// can be interpreted
as the area of the flat surface defined by !.m;t/. From this viewpoint, the continuity of '
on .Dc2/

r reflects the fact that as t converges to 0 2 .Dc2/
r , the metric defined by !.m;t/

“converges” to the metric defined by!0 on the principal component ofCm. This convergence
in the space of flat metrics is the key point in the construction of the (metric) completion
of M 0;n introduced by Thurston [22].

Proof of Prop. 6.2 assuming Prop. 6.1. – Recall that we have a rank one local system Lj
onC jmn O†j whose monodromy at the points in O† are given by O�j . This local system gives rise
to a local system Hj of rank kj � 2 and a holomorphic line bundle Lj on M 0;kj

. Let „�j
denote the section of the bundle PHj defined in Proposition 2.9. By construction, !j is a
vector in the line „�j .mj /. Let �.j / D .�

.j /
1 ; : : : ; �

.j /

kj�2
/ be the coordinates of !j in some

basis of H 1.C j n O†j ;Lj /. We can choose the basis of H 1.C
j
m n
O†j ;Lj / such that

..�.0/; �.0///0 D �

k0�3X
iD1

j�
.0/
i j

2
C j�

.0/

k0�2
j
2;

and

..�.j /; �.j ///j D

kj�2X
iD1

j�
.j /
i j

2; for j D 1; : : : ; r:

Recall that !j 2 H 1.C j n O†j ;Lj / is not trivial so that we can normalize our coordinates
in such a way that �.j /

kj�2
D 1. Hence .�.j /1 ; : : : ; �

.j /

kj�3
/ are the coordinates of „�j .mj / in

some local chart of PH 1.C
j
m n
O†j ;Lj /. Since „�j is étale by Proposition 2.9, we can use

z
j
i D �

.j /
i ; i D 1; : : : ; kj � 3, to define local coordinates in a neighborhood of mj . The

proposition then follows from (11).

We will spend the rest of this section to prove Proposition 6.1. For this purpose, we will
make use of the flat metric approach introduced by Thurston [22].

6.2. Thurston’s coordinates

Let us first recall Thurston’s coordinates on the moduli space of flat metrics on the sphere
with prescribed cone angles at singularities (see [22, Prop. 3.2]). Fix a vector .�1; : : : ; �n/,
with 0 < �s < 2� , such that �1 C � � � C �n D 2�.n � 2/. Let M denote a flat surface
homeomorphic to S2 with conical singularities denoted by x1; : : : ; xn, and the cone angle
at xs being �s . Let T be a tree whose vertex set consists of n�1 points in fx1; : : : ; xng and all
the edges are geodesics (it is not difficult to show that such a tree always exists). Choosing an
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orientation for every edge of T, then using a developing map, one can associate to each edge
of T a complex number (see [22, pp. 525-526]). We then get a vectorZ.M/ in Cn�2 associated
with M .

For any flat metric (with the same prescribed cone angles at the singularities) close toM ,
one can also find a geodesic tree isomorphic to T. Hence, we also get an associated vector
in Cn�2 in the same way. It turns out that this correspondence defines a local chart for the
space of flat metrics (with prescribed cone angles) on the sphere. Up to homothety, this
space can be identified with M 0;n. Therefore, this construction also yields a local coordinate
system for M 0;n.

Let m D .P1C; fx1; : : : ; xng/ 2 M 0;n be the point corresponding to the homothety class
ofM . Assume that all the cone angles at the singularities are smaller than 2� . In [22], it was
proved that the area of M can be expressed as a Hermitian form A of signature .1; n� 3/ in
the coordinates of Z.M/, that is

Area.M/ D tZ.M/ �A �Z.M/:

Consequently, the induced local chart on M 0;n identifies a neighborhood ofmwith an open
subset in the ball B WD fhvi; t NvAv > 0g � Pn�3C . By a classical construction, A induces a
complex hyperbolic metric on B. Since the area is an invariant of the flat metric, this complex
hyperbolic metric is invariant by the coordinate changes. Therefore, we get a well defined
complex hyperbolic metric structure on M 0;n.

Set �s WD 1��s=.2�/, and � D .�1; : : : ; �n/. By definition,M is isometric to .P1C n†; g/,
where† D fx1; : : : ; xng, and g is a flat metric on P1Cn† such that each xs has a neighborhood
isometric to an Euclidean cone of angle �s . Without loss of generality, we can assume that
1 62 †. Remark that

Q
1�s�n jz � xsj

�2�s jdzj2 is a flat metric with the same singularities
and the same cone angles as g. Therefore, we must have g.z/ D �2

Q
1�s�n jz�xsj

�2�s jdzj2,
where � is a positive real number.

Let L be the rank one local system on P1C n† with monodromy exp.2�{�s/ at xs . Choose
a horizontal Hermitian metric for L, and let e be an L-multivalued horizontal section such
that the norm of e is 1. Let

! D �e �
Y
1�s�n

.z � xs/
��sdz:

Then g.z/ is the metric associated to the .1; 1/-form t!^!. Recall that we have a Hermitian
form ..:; :// on H 1

c .P1C n†;L/ ' H 1.P1C n†;L/ of signature .1; n � 3/. By Proposition 2.7,
we have

(14) ..Œ!�; Œ!�// D t

Z
P1Cn†

! ^ ! D Area.M/:

Fix a base pointp 2 P1Cn† and consider the universal cover .�; Qp/ of .P1Cn†;p/. Let f be
a determination of the multivalued function�.z�x1/��1 : : : .z�xn/��n in a neighborhoodU
of p. We also denote by f its pullback to a neighborhood QU of Qp. Let ' be a holomorphic
function on QU such that f D '0. Let z be the coordinate on �, and set w D '.z/. Observe
that we have

'�dw D f .z/dz; and '�jdwj2 D jf .z/j2jdzj2;
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which means that ' realizes an isometry between a neighborhood of Qp (with the metric g)
and an open subset of C with the standard Euclidean metric jdwj2. In other words, ' is a
developing map for g. Therefore, we can extend ' to a locally isometric map from .�; Qg/
to .C; jdwj2/.

Now let a be an oriented edge of the tree T. The complex number associated to a is given
by
R
'. Oa/

dw D
R
Oa
f .z/dz, where Oa is a component of the pre-image of a in�. We can consider

e � a as an element of H1.P1C n†;L/, therefore, we can writeZ
Oa

f .z/dz D .Œe � a�; Œe � f .z/dz�/:

From Proposition 2.2, we know that the set fŒe � a�; a is an edge of Tg is a basis of
H1.P1C n †;L/. Since the pairing H lf

1 .P1C n †;L/ ˝ H 1.P1C n †;L/ ! C is perfect, it
follows that the cohomology class of ! is (locally) uniquely determined by the vector
Z.M/ 2 Cn�2.

By definition, the hyperbolic metric on M 0;n is the pullback of the complex hyperbolic
metric on the ball B � Pn�3C . This metric is defined by the Chern form of the tautological
line bundle over B � Pn�3C . Recall that C � Œ!� is the fiber of L over m, and L is actually the
pullback of the tautological bundle on B by the map„� (see Proposition 2.9). Thus we have
proved the following

P 6.4. – The Thurston local coordinates on M 0;n are defined by the
section „�, and the Hermitian form A on Cn�2 is induced by the Hermitian form ..:; ://

on H 1.P1C n †;L/. Moreover, the complex hyperbolic metric on M 0;n is the one induced by
the Chern form of . L ; ..:; :///.

6.3. Thurston’s surgery on flat surfaces

We now describe the cone adding construction introduced in [22, pp. 520-521], which
is the key idea of the proof that the signature of A is .1; n � 3/. Let M be a flat surface
homeomorphic to the sphere which has n conical singular points as above. Recall that �s is
the curvature at the cone point xs . Suppose now that we are given a geodesic arc e on M
joining xi to xj and �i C �j < 1.

We first construct an Euclidean cone whose apex angle is 2�.1 � �i � �j / as follows:
Let .ABC/ be a triangle in R2 whose interior angles at A;B;C are given by
..1 � �i � �j /�; �i�;�j�/ respectively, and the length ofBC is equal to the length of e. Let
.A0B 0C 0/ be the image of .ABC/ by the mirror symmetry. We now glueAC toA0C 0, andAB
to A0B 0 by identifications respecting the order of endpoints. We then obtain a flat surface
homeomorphic to a disk, which has a singular point Ox with cone angle 2�.1 � �i � �j / in
the interior. The boundary of this disk is the union of two geodesic segments corresponding
to BC and B 0C 0. Let yi (resp. yj ) denote the identification of B and B 0 (resp. of C and C 0).
The interior angles at yi and yj are respectively 2��i ; 2��j .

We now slit open M along e and glue the cone constructed above to this surface in such
a way that yi (resp. yj ) is identified with xi (resp. with xj ). Since e and BC have the same
length, the gluings are realized by isometries. We thus have a flat surface OM homeomorphic
to S2. By construction, the cone angles at xi and xj in OM are now equal to 2� , which means
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that xi and xj are regular points in OM . Therefore, OM has exactly n� 1 singularities: xs with
s 62 fi; j g, and Ox. Remark that e corresponds to a loop on OM consisting of two geodesic arcs,
we will call e and the corresponding loop the base of the added cone. We record here below
some key properties of this construction.

– The triangle .ABC/ is uniquely determined up to isometry, since its angles are deter-
mined by �i and �j , and the length of BC is equal to the length of e. It follows that
there exists a positive constant �.�i ; �j / such that Area..ABC// D �.�i ; �j /jej

2,
where jej is the length of e.

– We have

Area. OM/ �Area.M/ D 2Area..ABC// D 2�.�i ; �j /jej2:

– The sides of .ABC/ can be considered as geodesic segments in OM . Thus, given a
developing map of OM , we can associate to those segments the complex numbers
z.BC/; z.CA/; z.AB/. There exist some complex numbers c1; c2 depending only
on .�1; �2/ such that

z.AB/ D c1z.BC/; and z.AC/ D c2z.BC/:

– We can apply similar constructions to OM to get other surfaces with less singularities as
long as there are two singular points such that the sum of the corresponding curvatures
is less than 1.

6.4. Flat surfaces with convex boundary

For our purpose, we will need to consider flat surfaces with boundary. In what follows,
by a flat surface with convex boundary we will mean a topological surface with boundary
M equipped with a flat metric structure with conical singularities satisfying the following
property: for any point x 2 @M , there is a neighborhood of x which is isometric to a convex
domain in R2. For such a surface, any path of minimal length (in a fixed homotopy class)
joining two points in the interior does not intersect the boundary.

Let† denote the set of cone singularities in int.M/. We will also need a generalized notion
of homotopy on M . Two arcs 
0; 
1 W Œ0; 1� ! M are said to be homotopic in M n † with
fixed endpoints if we have 
0.0/ D 
1.0/ D x; 
0.1/ D 
1.1/ D y, and there exists a
continuous map H W Œ0; 1� � Œ0; 1� ! M such that H.:; 0/ D 
0;H.:; 1/ D 
1, H.0; :/ D
fxg;H.1; :/ D fyg, and H..0; 1/ � .0; 1// � M n †. With this definition, a path with two
endpoints in † not passing through any other point in †may be homotopic to the union of
some arcs with endpoints in †. Remark that given any developing map for the flat metric,
the complex numbers associated to two homotopic paths (that is the difference in C of the
two endpoints) must be the same.

We now suppose that M is a flat surface with convex boundary. Let † D fx1; : : : ; xng
denote the set of cone points ofM , and assume that† is contained in the interior ofM . All
the cone angles �s at xs are supposed to be smaller than 2� , and

(15)
X
1�s�n

.2� � �s/ < 2�:
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Set �s D 1 � �s=.2�/. The condition (15) is equivalent to �1 C � � � C �s < 1. Let e be
the path of minimal length from x1 to x2. Note that e is contained in the interior ofM (since
M has convex boundary), and e does not pass through any other point in †. Let M 0 be the
flat surface obtained by slitting open M along e. One of the boundary components of M 0

consists of two copies of e, which will be denoted by e1 and e2. Since �1 C �2 < 1, we
can glue an Euclidean cone C of apex curvature 1 � �1 � �2 to M 0 along this boundary
component. Let OM denote the new surface. Remark that OM also has convex boundary. We
consider M 0 as a subsurface of OM . The singular points x1; x2 of M now correspond to two
regular points in OM , we denote those points by the same notation. Let Ox be the apex of C, and
set O† D fx3; : : : ; xngtf Oxg. It is worth noticing that given a path inM which does not cross e,
then its image by a developing map for OM is also the image of a developing map for M . In
view of the proof of Proposition 6.1, we will need the following lemma.

L 6.5. – Let a be a geodesic segment in OM with endpoints in O†. We assume that the
two endpoints of a are distinct, and a does not contain any point in O† in its interior. Then there
exists a piecewise geodesic path b inM 0 connecting two points in†, and a constant � 2 C such
that, for a fixed choice of the developing map on the universal cover of OM , we have

z.a/ D �z.e1/C z.b/;

where z.a/; z.e1/; z.b/ are the complex numbers associated to a; e1; b respectively.

Proof. – We have two cases:

– Case 1: a does not contain Ox. Since Cnf Oxg is homeomorphic to a punctured disk,M 0 is
a deformation retract of OM n f Oxg. Let b be the image of a by this retraction, then b is
homotopic in OM to a. Thus we have z.a/ D z.b/.

– Case 2: a contains Ox. By assumption, we can consider a as a ray starting from Ox and
ending at a point xs 2 †. Let y be the first intersection of a with @C D e1[e2. Denote
by a0 (resp. a1) the subsegment of a between Ox and y (resp. between y and xs). Let e01 be
the geodesic segment in @C from x1 to y. Set b0 D e01 � a0 and b1 WD a1 � e01. Observe
that a is homotopic (in OM ) to the path b1 � b0. Since b1 does not contain Ox, from Case
1, we know that it is homotopic to a piecewise geodesic path b from x1 to xs . We thus
have z.a/ D z.b0/C z.b/. But we have seen that z.b0/ D �z.e1/, where � is a complex
number determined by .�1; �2/. Hence the lemma is proved for this case.

6.5. Infinite flat metric structures

Let k � 1 and fix a vector � D .�0; : : : ; �k/ 2 RkC1>0 such that �0 C � � � C �k D 2,
where �0 > 1, but �i < 1, for i D 1; : : : ; k. Let † D fx0; : : : ; xkg be a set of k C 1 points
in P1C and L be the rank one local system on P1C n† whose monodromy at xs is exp.2�{�s/.
Fix a horizontal multivalued section e of L with Hermitian norm equal to 1. Let ! be a
meromorphic section of �1.L/ with valuation ��s at xs . We can write

! D �e �
Y
0�s�k

.z � xs/
��sdz

with � 2 C�. Note that since �0 > 1, we have t
R
P1Cn†

! ^ ! D 1, so ! is not of the first
kind.
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Let T be an embedded tree in P1C whose vertex set is †0 D fx1; : : : ; xkg. Let
aj ; j D 1; : : : ; k � 1; denote the edges of T. From Proposition 2.2, we know that the
family fŒe � aj �; j D 1; : : : ; k � 1g is a basis of H lf

1 .P1C n †;L/. Recall that ! represents
a cohomology class in H 1.P1C n †;L/ ' H 1

c .P1C n †;L/. Set zj WD hŒe � aj �; Œ!�i, and
Z WD .z1; : : : ; zk�1/ 2 Ck�1. Since the valuations of ! at the endpoints of aj are all greater
than �1, we can write

zj D �

Z
aj

.z � x0/
��0 : : : .z � xk/

��kdz:

Observe that the .1; 1/-form t! ^! defines a flat metric structure on P1C n†, with conical
singularity at xs for s D 1; : : : ; k. The cone angle at xs is �s D 2�.1��s/. Note that this is an
infinite metric structure since any geodesic ray cannot reach x0 in finite time. Let M denote
the corresponding flat surface.

Let e1 be a path of minimal length inM joining x1 and x2, such a path must be a geodesic
segment which does not contain any singularity in its interior. By assumption, we have
�1 C �2 < 1. Thus we can add a cone C1 over e1 to get a surface with k � 1 singulari-
ties. By construction, the curvature at the new singularity is �1 C �2. One can continue
adding k � 2 cones C2; : : : ;Ck�1 to obtain successively the surfaces M2; : : : ;Mk�1, where
Mi has a cone singularity with curvature �1 C � � � C �iC1 at some point denoted by Oxi , and
MiC1 is obtained from Mi by adding the cone CiC1 whose base is a geodesic arc, denoted
by eiC1, joining Oxi and xiC1. Note that there exists a positive real constant ci depending only
on .�1; : : : ; �k/ such that Area.Ci / D ci jei j

2. Remark also that Mi has k � i singularities,
and Mk�1 is an infinite Euclidean cone with apex angle equal to 2�.1 � .�1 C � � � C �k//.

Choosing a developing map for M0 DM , we get a complex number w1 associated to e1.
We can extend the developing map of M0 to get a developing map of C1. By construction,
e2 is a geodesic ray starting from Ox1 (the apex of C1), therefore we can extend this developing
map to get a complex number w2 associated to e2. Continuing this process, we get a vector
W D .w1; : : : ; wk�1/ 2 Ck�1, where wi is the complex number associated to ei . We have the
following lemma, which is implicit in the proof of [22, Prop. 3.3].

L 6.6. – The complex number wi is a linear function of Z for i D 1; : : : ; k � 1.

Proof. – We will prove this lemma by induction. Recall that w1 is the complex number
associated to the geodesic arc e1 on M0 D M . But this number can be interpreted as the
pairing of the homology class Œe � e1� with Œ!�, hence it is a linear function of Z. Note also
that by the same argument, the complex number associated to any path inM0 with endpoints
in fx1; : : : ; xkg is a linear function of Z.

Consider the flat surface M1. As a Riemann surface, M1 can be identified with P1C. Set
O†1 WD fx0; Ox1; x3; : : : ; xkg. Let L1 be the rank one local system on P1C n O†1 with monodromy
exp.2{��s/ at xs , for s D 0; 3; : : : ; k, and exp.2{�.�1 C �2// at Ox1. The flat metric of M1 is
thus induced by a L1-valued meromorphic 1-form !1 2 �.P1C; jm��.L1//with valuation��s
at xs , for s D 0; 3; : : : ; k, and �.�1 C �2/ at Ox1.

Let T1 be an embedded tree in M1 whose vertex set is equal to f Ox1; x3; : : : ; xkg, and
whose edges are geodesic segments in M1. One can construct such a tree by seeking
for instance the paths of minimal length joining Ox1 to the other cone points x3; : : : ; xk .
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Let a11; : : : ; a
1
k�2

denote the edges of T1. Fix a multivalued horizontal section e1 of L1. Then
fŒe1 � a11�; : : : ; Œe1 � a

1
k�2

�g is a basis of H lf
1 .P1C n O†;L1/ ' H1.P1C n O†;L1/.

Set z1j WD hŒe1 � a
1
j �; Œ!1�i, for j D 1; : : : ; k � 2. Since the complex number associated

to any path with endpoints in O†1 n fx0g can be also interpreted as the pairing of Œ!1� with
a homology class in H lf

1 .P1C n O†1;L1/, it follows that such a number is a linear function
of Z1 WD .z11 ; : : : ; z

1
k�2

/. From Lemma 6.5, we deduce that the z1j ’s are linear functions of
the vector Z. Therefore, the complex number associated to any path in M1 with endpoints
in O†1 n fx0g is a linear function of Z. In particular w2 is a linear function of Z. The rest of
the proof follows from an induction argument.

Lemma 6.6 implies that the correspondence ‰ W Ck�1 ! Ck�1; .z1; : : : ; zk�1/ 7!
.w1; : : : ; wk�1/ is a linear map. Our goal now is to show the following.

P 6.7. – The linear map ‰ is an isomorphism.

Proof. – Let L be the holomorphic line bundle over M 0;kC1 associated to the weight
vector� (see Section 2.5). To show that‰ is an isomorphism, we will show that‰ is injective
in a neighborhood ofZ. For this, we consider! as an element in the fiber of the line bundle L

over the point m D .P1C; fx0; x1; : : : ; xkg/ 2 M 0;kC1, and identify a neighborhood V of Z
in Ck�1 with a neighborhood of ! in the total space of L .

We can always assume that x0 D 1; x1 D 0; x2 D 1. A point m0 in M 0;kC1 close to m
corresponds to a tuple .P1C; f1; 0; 1; x03; : : : ; x0kg/, with x0i close to xi . Hence an element of L

close to ! can be written as

!0 D �0e � z��1.z � 1/��2
kY
iD3

.z � x0i /
��idz;

where �0 2 C is close to �, and e is considered as a horizontal section of L on the pointed
curve represented by m0.

Assume that we haveZ0 andZ00 in V such that‰.Z0/ D ‰.Z00/ D W 0 D .w01; : : : ; w
0
k�1

/.
Let !0 and !00 be the points in L corresponding to Z0 and Z00. The projections of !0 and !00

in M 0;kC1 are denoted by m0 and m00.
LetM 0 andM 00 denote the flat surfaces defined by !0 and !00. By definition, the vectorW 0

records the complex numbers associated to the bases of k � 1 cones added to M 0 (resp.
toM 00) to obtain a flat surfaceM 0

k�1
(resp.M 00

k�1
) with a single singularity. Observe that the

surfacesM 0
k�1

andM 00
k�1

are both isometric to a standard infinite Euclidian cone C with apex
angle 2�.1 � .�1 C � � � C �k//. For the sake of concreteness, C is defined by the flat metric
jzj�2.�1C���C�k/jdzj2 on C. Note also that C is also isometric to Mk�1.

Given C ' Mk�1, we can recover M from W D .w1; : : : ; wk�1/ as follows: since Ck�1 is
a neighborhood of the apex of Mk�1, we can choose a developing map for Mk�1 such that
the complex number associated to one of the geodesic segments in the base of Ck�1 is wk�1.
Cut off the cone Ck�1, and glue the two geodesic segments in the base of Ck�1, we obtain the
flat surfaceMk�2 having two singularities. By construction, the cone Ck�2 is a neighborhood
of one of these singularities. The complex number wk�2 determines the embedding of Ck�2
into Mk�2. Therefore, we can then continue the cutting-regluing operation to remove the
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remaining k � 2 cones and get back to the surface M 0. Note that along this process, one
needs to keep track of the developing map chosen for C 'Mk�1.

Clearly, we can recover M 0 and M 00 from W 0 and W 00 in the same way. Since M 0
k�1

and
M 00
k�1

are isometric, and W 0 D W 00, we can conclude that M 0 and M 00 are isometric. The
isometry between M 0 and M 00 induces an isomorphism between m0 and m00. Therefore, we
have m0 D m00, which means that !0 and !00 belong to the same fiber of L . Hence, there is a
complex number � such that !0 D �!00, or equivalently Z0 D �Z00. Since ‰ is a linear map,
we have ‰.Z0/ D �‰.Z00/ , W 0 D �W 0. Recall that by construction, all the coordinates
of W 0 are non-zero, thus we must have � D 1, and Z0 D Z00. The proposition is then
proven.

6.6. Proof of Proposition 6.1: case of codimension one

We now give the proof of Proposition 6.1 in the case r D 1, that is m is a generic point in
a divisor DS , where S D fI0; I1g 2 P (see Section 3).

We can assume that I0 D f1; : : : ; n0g and I1 D fn0 C 1; : : : ; ng. Let C 0m; C
1
m be the

corresponding irreducible components of Cm. For i D 0; 1, let O�i ; Oyi ; O†i ;Li ; !i ;Ti be as
in Section 4.

Let ..:; ://0 be the Hermitian form on H 1.C 0m n
O†0;L0/. By Proposition 2.8, we know

that ..:; ://0 has signature .1; n0 � 2/. Let �.0/ D .�
.0/
1 ; : : : ; �

.0/
n0�1

/ 2 Cn0�1 (resp. �.1/ D

.�
.1/
1 ; : : : ; �

.1/
n1�1

/ 2 Cn1�1) be the vector recording the pairings of Œ!0� (resp. Œ!1�) with the

basis of H lf
1 .C

0
m n
O†0;L0/ associated to T0 (resp. the basis of H lf

1 .C
1
m n
O†1;L1/ associated

to T1). Let C.m;t/ be the stable curve obtained from the plumbing construction in Section 4,
where t 2 Dc2 . We need to show the following

P 6.8. – There exists a positive definite Hermitian form ..:; ://1 on Cn1�1

depending only on .�n0C1; : : : ; �n/ such that, if !.m;t/ is the element of H 1;0.C.m;t/ n †;L/
defined in Lemma 4.3, then we have

(16) ..Œ!.m;t/�; Œ!.m;t/�// D ..�
.0/; �.0///0 � jt j

2.1� O�0/..�.1/; �.1///1:

Proof. – Let M0 be the flat surface defined by !0 on C 0m, M1 the surface defined
by�t1� O�0!1 on C 1m, andM the flat surface defined by !.m;t/ on C.m;t/. Let .F; U;G; V; c/ be
the plumbing data as in Section 4. Choose a constant � 2 .jt j=c; c/, and let 
� be the curve
in C.m;t/ which corresponds to the set fp 2 U; jF.p/j D �g ' fq 2 V; jG.q/j D jt j=�g. Since
the metric defined by !0 in U is the pullback of jF.z/j�2 O�0 jdF.z/j2, we deduce that 
� is
the set of points whose distance inM0 to Oy0 is R.�/ WD �1� O�0

1� O�0
. In particular, 
� has constant

curvature 1=R.�/ and length equal to 2��1� O�0 .

The curve 
� cutsM into two subsurfaces, the one that contains†i is denoted byM �
i . The

observation above implies that @M �
1 is convex. Remark thatM �

i can be viewed as a subsurface
ofMi . By definition,M �

1 contains n1 cone singularities corresponding to the points in†1 in
its interior. Since the sum of the curvatures at those points is smaller than 1, one can add
n1 � 1 cones C1; : : : ;Cn1�1 to M �

1 to get a flat surface OM �
1 having a single singularity with

cone angle 2�.1 � O�0/.
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LetW D .w1; : : : ; wn1�1/ be the vector recording the complex numbers associated to the
bases of the cones C1; : : : ;Cn�1. By Proposition 6.4, there is a linear isomorphism‰ ofCn1�1

such that W D �t1� O�0‰.�.1//.

Recall that the total area of the added cones is equal to
Pn1�1
iD1 ci jwi j

2, where the ci ’s are
real positive constants determined by the weight vector .�n0C1; : : : ; �n/. Therefore, there is
a positive definite Hermitian form ..:; ://1 on Cn1�1 such that

n1�1X
iD1

Area.Ci / D jt j2.1� O�0/..�.1/; �.1///1:

We now remark that OM �
1 is isometric to a subset of the Euclidean cone C defined by the

metric jzj�2 O�0 jdzj2 on C. Since @ OM �
1 ' 
� has constant curvature 1=R.�/, 
� corresponds

to the set of points in C whose distance to the apex is R.�/. Hence OM �
1 is isometric to the

flat surface defined by jzj�2 O�0 jdzj2 on the disk D� . It follows that OM �
1 is isometric to the flat

metric defined by !0 on the set fp 2 U; jF.p/j � �g.

Let OM � be the flat surface obtained by gluing OM �
1 to M �

0 along 
� . From the argu-
ment above, we conclude that OM � is isometric to M0. Since Area.M/ D Area. OM � / �P
1�i�n1�1

Area.Ci / D Area.M0/ �
P
1�i�n1

Area.Ci /, we have

..Œ!.m;t/�; Œ!.m;t/�// WD ..Œ!0�; Œ!0�// � jt j
2.1� O�0/..�.1/; �.1///1

D ..�.0/; �.0///0 � jt j
2.1� O�0/..�.1/; �.1///1:

R 6.9. – In [22], Thurston introduced a completion M
�

0;n of M 0;n with respect

to the complex hyperbolic metric induced by L . The space M
�

0;n is equipped with a
cone-manifold structure. In this setting, m corresponds to a point in a stratum of codimen-
sion n1 � 1 representing the flat surfaces on which all the cone points in †1 collide. The
quantity 1 � O�0 can be interpreted as the scalar cone angle at m (see [22, Sec. 3]). Note
also that if m D .m0; m1/ with mi 2 M 0;niC1

, then the flat surface corresponding to m is
uniquely determined (up to a rescaling) by m0. Thus for all m01 2 M 0;n1C1, the point

m0 D .m0; m
0
1/ represents the same element of M

�

0;n.

6.7. Proof of Proposition 6.1: general case

Proof. – Let QC j
.m;t1;:::;tj /

be as in the proof of Lemma 5.5, where QC r
.m;t1;:::;tr /

D C.m;t/.

Recall that QC jC1
.m;t1;:::;tjC1/

is obtained from QC j
.m;t1;:::;tj /

and C jC1m by a plumbing construction

at the principal node of C jC1m . Therefore Proposition 6.1 follows from Proposition 6.8 and
Lemma 5.5 by induction.

7. Singular Kähler-Einstein metrics

Our aim now is to explain that the metric constructed in the previous section on M 0;n is
actually a singular Kähler-Einstein metric on M 0;n, and that this fact will enable us to
compute the volume of M 0;n endowed with this metric.
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7.1. General setting

We recall some basic facts about singular Kähler-Einstein metrics on projective varieties
in a simplified setting as we will not need a very high degree of generality (for instance, see [3]
and [11] and the references therein for a more general exposition).

In general, we will identify a Hermitian metric on a complex manifold with its associated
.1; 1/-form. Given a divisorD, we will often use the same notation for the .1; 1/-cohomology
class it defines. The support ofD will be denoted by jDj. By a slight abuse of notation, when
D is a Z-divisor, we will denote both the associated holomorphic line bundle and the rank 1
locally free sheaf of holomorphic sections by O.D/.

7.1.1. Singular metrics on R-line bundles. – Let X be a complex projective manifold of
dimension N and D D

Pk
iD1 �iDi an R-divisor, that is, for each i , Di is an irreducible

and reduced subvariety of codimension 1 and �i 2 R�. As in the case of a Z-divisor,
we can attach to D an “R-line bundle” O.D/. The latter can be endowed with a “metric”
which writes locally on a suitable covering .Vj / of X as e��j , where the real functions �j
satisfy compatibility properties analogous to the case of a line bundle in the usual sense
(see [9], Section 19.A). The regularity of �j will be discussed later on, but let us say that
they are in L1loc. In general, abuzing notation, we write hD D e��D for this metric. The
“curvature” of hD is the globally defined closed .1; 1/-current {‚.hD/ D {

2�
@N@�D D dd

c�D

and is a representative of the cohomology class fDg 2 H 1;1.X;R/. Here d D @ C N@ and
d c D 1

2�{
.@ � N@/ which are both real operators.

For instance, if we have some section of O.Di / whose zero divisor is Di given by a
holomorphic function fi in local coordinates, then we can take �D D

Pk
iD1 �i log jfi j2.

By the Lelong-Poincaré formula we have {‚.hD/ D
Pk
iD1 �i ŒDi � D ŒD� where ŒDi � is the

current of integration over Di . It will be more convenient to choose an arbitrary smooth
metric h0 on O.D/ and to write the previous metric hD D e�'Dh0 for some function
'D W X ! Œ�1;C1/ which is smooth on XnjDj. If we let ‚0 be the curvature of h0 then
ŒD� D ‚0 C dd

c'D . In particular, we have ‚0 D �dd c'D on XnjDj.

7.1.2. Singular Kähler-Einstein metrics and their volume. – From now on, we will assume
that D is a R-divisor with simple normal crossings and that the pair .X;D/ is klt (for
Kawamata log terminal), which will just mean for us that �i < 1, in particular D is not
necessarily effective.

Let us fix a smooth volume form dV on X which is the same as a smooth metric on the
anti-canonical line bundle �KX WD ƒNTX . The opposite of the .1; 1/-form associated to the
curvature of this metric, that we will denote in a standard way by‚KX WD dd

c log.dV /, is a
representative of the first Chern class c1.KX /.

The following proposition will be our main tool for the proof of Theorem 1.1.

P 7.1. – Assume moreover that we have a smooth Kähler metric � on the
restriction of the tangent bundle TX to XnjDj which satisfies

(i) Ric.�/ D �c � on XnjDj, where Ric.�/ D �dd c log.�N / is the Ricci form of � and
c is a positive real number;
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(ii) there exists a continuous function ' on X and smooth on XnjDj such that
�N D e'�'DdV on XnjDj, where 'D is as above.

Then the extension Q� of � by 0 satisfies

Ric. Q�/ D �c Q�C ŒD�

in the sense of currents, namely Q� is a singular Kähler-Einstein metric attached to the pair
.X;D/ and in particular we have cf Q�g D c1.KX CD/. Moreover,

(17)
Z
XnjDj

�N D
1

cN
.KX CD/

N :

Condition (i) means that � is a Kähler-Einstein metric on XnjDj with negative Einstein
constant�c and condition (ii) imposes some control on the behavior of�N at infinity that is,
near the support jDj of the boundary divisor. remark that .X;D/ being klt precisely implies
that �N is integrable near the boundary.

In order to prove Proposition 7.1 we will need the following simple

L 7.2. – Let � be a smooth closed positive .1; 1/-form on XnjDj and assume that
� has continuous local potentials on X , that is, for any x 2 X , there exists a neighborhood U
of x inX and a function 'U W U ! R which is continuous onU and smooth onU njDj such that
� D dd c'U on XnU . Then the extension Q� by 0 of � to X is a well defined closed positive
current on X , and for any x and U , Q�jU D dd

c'U in the sense of currents.

Proof. – By assumption, 'U is psh on U njDj and by standard arguments (see [10] for
instance), it is known that 'U jUnjDj can be extended in a unique way as a psh function on

the whole of U . In particular, the extension belongs toL1loc.U /. But as 'U is continuous, this
extension is actually 'U . Moreover, still as 'U is continuous, its Lelong numbers along D
vanish hence Q� is well defined and coincides with dd c'U on U .

Proof of Proposition 7.1. – Set ‚ WD ‚KX C ‚0. Note that ‚ is a smooth form on X .
Since ‚0 D �dd c'D on XnjDj, (i) and (ii) imply that c � D ‚ C dd c' on XnjDj
and in particular ‚ C dd c' is a positive current on XnjDj (we also say that ' is ‚-psh).
By the previous lemma (applied locally to  U C 'jU

where  U is a local potential of the

smooth form ‚), the equality c Q� D ‚ C dd c' is valid on X that is, c Q� and ‚ both are
representatives of c1.KX CD/. We now obtain from (ii) that

Ric. Q�/ D �dd c' C dd c'D C‚0 �‚ D �c Q�C ŒD�:

In general, if T is a closed positive .1; 1/-current on X , it is not always possible to
define T N in a reasonable way. However, if T D ‚ C dd c' with ‚ smooth and '

locally bounded then, following the work of Bedford-Taylor [2], one can define a closed
.p; p/-current T p for any p � 1 and moreover fT pg D fT gp ([8], Cor. 9.3).

In our case where T D Q� as above, we hence have f Q�N g D 1
cN
.KX C D/N . Finally,

as the wedge product in the sense of Bedford-Taylor puts no mass on pluripolar sets (as a
consequence of the Chern-Levine-Nirenberg inequality, see the comment following Proposi-
tion A.6.3 in [4]), we conclude that the volume ofXnjDj endowed with the smooth metric�
satisfies equality (17).
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7.2. Singular Kähler-Einstein metrics on M 0;n

We shall apply now the formalism of the previous section to the situation where
X D M 0;n, and XnjDj D M 0;n (here N D n � 3). Recall that we supposed that the
sum of the weights for indices in any subset of f1; : : : ; ng is always different from 1. We
defined D� WD

P
S �S DS where

�S D .jI1j � 1/.�S � 1/C 1

if S D fI0; I1g and, exchanging I0 and I1 if necessary, �S WD
P
s2I1

�s < 1 (�S D O�0 in
the notation of Section 4). Observe that each �S is smaller than 1. Here and in the sequel,
the sums are always taken over all the (unordered) partitions S 2 P , that is, satisfying
minfjI0j; jI1jg � 2.

P 7.3. – The extension by 0 of the Chern form�� defined in Proposition 6.2 is
a singular Kähler-Einstein metric attached to the pair .M 0;n;D�/. More precisely, Ric.��/ D
�.N C 1/�� C ŒD�� andZ

M 0;n

�N� D
1

.N C 1/N

0@KM 0;n
C

X
S

�S DS

1AN :
Proof. – We will check that assumptions (i) and (ii) of Proposition 7.1 are satisfied.

Let us first recall a few basic facts about complex hyperbolicN -space: it can be seen as the
unit ball BN � CN � PNC and we can identify its group of biholomorphisms with PU.1;N /.
We restrict to BN the exact sequence of vector bundles

0! L! CNC1 ! Q! 0;

where L is the tautological line subbundle of the trivial bundle CNC1 D PNC � CNC1 and
Q is the quotient bundle. The group U.1;N / acts on this exact sequence and preserves the
constant Hermitian metric of signature .1;N / on CNC1. In restriction to L, this metric is
positive definite and hence defines a Hermitian metric on the line bundleL. The Chern form
c1.L/ associated with this metric is a positive .1; 1/-form on BN , and the corresponding
metric has constant holomorphic sectional curvature: it is Kähler-Einstein and Ric.c1.L// D
�.N C 1/ c1.L/. That the Einstein constant �c is equal to �.N C 1/ is due to the fact that
on BN , the tangent bundle is naturally isomorphic to Hom.L;Q/ hence the canonical bundle
can be identified withLNC1. As L is the pullback ofL by an immersion, this proves that��
defines a metric on M 0;n and that Ric.��/ D �.N C 1/�� on M 0;n, that is, assumption
(i) is satisfied with c D N C 1.

Proposition 6.2 gives the expression of the metric �� in local coordinates centered at
a point m of M 0;n. More precisely, recall that locally it is the pullback of the complex
hyperbolic metric on BN by the multivalued map

.z0; t1; : : : ; tr ; z
1; : : : ; zr / 7! .z0; P1.t/; : : : ; Pr .t/; P1.t/z

1; : : : ; Pr .t/z
r /;

where r is the number of vital divisors crossing at m, zj 2 Ckj�3 and Pj .t/ is described in
Lemma 5.5.
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As the volume form associated with the complex hyperbolic metric on BN is� {

2�

�N 1

.1 � kwk2/NC1
dw1 ^ d Nw1 ^ � � � ^ dwN ^ d NwN

a straightforward computation shows that in the above coordinates

�N� D
� {

2�

�N dz0 ^ d Nz0 ^
Vr
jD1 �

2
j jtj j

�2jPj .t/j
2dtj ^ d Ntj ^

Vr
jD1 jPj .t/j

2.kj�3/dzj ^ d Nzj�
1 � jjz0jj2 �

Pr
jD1 jPj .t/j

2.1C jjzj jj2/
�NC1

D

� {

2�

�N Qr
jD1

�
�2j jtj j

�2jPj .t/j
2.kj�2/

� Vr
jD0 dz

j ^ d Nzj ^
Vr
jD1 dtj ^ d Ntj�

1 � jjz0jj2 �
Pr
jD1 jPj .t/j

2.1C jjzj jj2/
�NC1 ;

where for any j D 0; : : : ; r , dzj ^ d Nzj stands for
Vkj�3

iD1 dz
j
i ^ d Nz

j
i .

If r D 0, that is, if m 2 M 0;n, then �� is smooth in a neighborhood of m. Assume
now that r � 1. The divisors DSj passing through m are given by tj D 0, 1 � j � r ,

and they correspond to partitions Sj D fI
j
0 ; I

j
1 g (see Section 5). We have to determine the

power of jtj j2 in the numerator of �N� . From the combinatorial description in Section 5, we

see that jtj j2�j appears .jI j1 j � 1/ times (which is the dimension of the stratum M
0;jI

j
1
jC1

plus 1) in total in the product of the jPi j2.ki�2/ so that the power of jtj j2 is .jI j1 j�1/�j �1 D
�.jI

j
1 j � 1/.�Sj � 1/ � 1 D ��Sj hence

�N� D
� {

2�

�N Qr
jD1 �

2
j

Vr
jD1 dtj ^ d Ntj ^

Vr
jD0 dz

j ^ d NzjQr
jD1 jtj j

2�Sj
�
1 � jjz0jj2 �

Pr
jD1 jPj .t/j

2.1C jjzj jj2/
�NC1 D e'�'D�dV;

where, up to the multiplication by smooth functions,

' D � log
�
1 � jjz0jj2 �

rX
jD1

jPj .t/j
2.1C jjzj jj2/

�NC1
;

'D� D
Pr
jD1 �Sj log jtj j2 and dV D

Vr
jD1 dtj ^ d Ntj ^

Vr
jD0 dz

j ^ d Nzj .

Finally, by Remark 6.3, ' is continuous and hence assumption (ii) of Proposition 7.1 is
also satisfied, which completes the proof.

7.3. Proof of Theorem 1.1

Having proved Proposition 7.3, we just need to explain how we obtain alternative expres-
sions of KM 0;n

C
P

S �SDS . We first notice that the canonical divisor KM 0;n
can be

expressed in terms of the vital divisors DS . Indeed,

KM 0;n
�  � 2ı;

where  D
Pn
sD1  s is the  -divisor class (see [1, p. 335]), ı D

P
S DS is the boundary

divisor, and � stands for the linear equivalence of divisors (see [1, p. 386]; here we use that
M 0;n is a fine moduli space and that the Hodge bundle is zero on M 0;n).

For pairwise distinct i; j; k 2 f1; : : : ; ng, denote by ıi jjk the divisor in M 0;n corre-
sponding to curves with a node separating the i -th marked point from the j -th and k-th
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marked points. It is well-known (see [25] or [1, Chap. 17]) that for any such choice of i; j; k
we have  i � ıi jjk hence

.n � 1/.n � 2/ �
X
i;j;k

ıi jjk D
X

S

�
jI0j jI1j.jI1j � 1/C jI1j jI0j.jI0j � 1/

�
DS

D .n � 2/
X

S

jI0j jI1jDS

and substituting  in the above expression of KM 0;n
we get

KM 0;n
�Q

X
S

�
jI0j � 2

��
jI1j � 2

�
� 2

n � 1
DS ;

where �Q stands for the Q-linear equivalence of divisors. Thus, we obtain

(18) KM 0;n
C

X
S

�S DS �Q
X

S

�
jI1j � 1

��
�S �

jI1j

N C 2

�
DS :

Now, recall that N D n � 3 and notice that

2.n � 1/
�
jI1j � 1

��
�S �

jI1j

N C 2

�
D 2

�
jI1j � 1

��
.n � 1/�S � jI1j

�
D
�
n � 2C jI1j � jI0j

�
.n � 1/�S � 2jI1j

�
jI1j � 1

�
D .n � 2/.n � 1/�S C

�
jI1j � jI0j

��
jI1j C jI0j � 1

�
�S � 2jI1j

�
jI1j � 1

�
D .n � 2/.n � 1/�S C

�
jI1j

�
jI1j � 1

�
� jI0j

�
jI0j � 1

��
�S � 2jI1j

�
jI1j � 1

�
D .n � 2/.n � 1/�S � jI0j

�
jI0j � 1

�
�S � .2 � �S /jI1j

�
jI1j � 1

�
:

By a similar computation as above we get (1)

.n � 1/.n � 2/
X
i

�i  i �
X
i;j;k

�i ıi jjk

D

X
S

�
jI1j

�
jI1j � 1

�X
i2I0

�i C jI0j
�
jI0j � 1

�X
i2I1

�i

�
DS

D

X
S

�
jI1j

�
jI1j � 1

�
.2 � �S /C jI0j

�
jI0j � 1

�
�S

�
DS

and therefore

(19)
2

.N C 1/

�
KM 0;n

C

X
S

�S DS

�
�Q �

X
s

�s  s C
X

S

�S DS :

R 7.4. – If we define P
0 to be the set of unordered partitions of f1; : : : ; ng into

two non-empty subsets I0 t I1 then with the convention Dfsg;fsgc D � s , we get the
expression

f��g D
1

2

X
S2P

0

�SDS :

Finally, formula (18) and (19) together with Proposition 7.3 imply Theorem 1.1.

(1) We are grateful to D. Zvonkine for explaining this trick to us.
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7.4. Comparison with McMullen’s formula

In [18], McMullen proves a Gauss-Bonnet formula for Riemannian cone manifolds. Using
in particular the fact that on the unit N -ball there exists a PU.1;N /-invariant metric with
constant holomorphic sectional curvature, this formula enables him to calculate the volume
of M 0;n endowed with a metric g� proportional to�� (see [18, Th. 1.2]). The ratio��=g� is
computed explicitly below.

If X is a smooth N -ball quotient then by the Hirzebruch proportionality theorem, the
total Chern class of X is given by

c.X/ D

�
1C

c1.X/

N C 1

�NC1
D

�
1 �

c1.KX /

N C 1

�NC1
hence we have the following equality

(20) cN1 .KX / D .�1/
N .N C 1/N�1�.X/

(where �.X/ D cN .X/ is the Euler characteristic of X ). In general, the above equalities
make sense at the level of the PU.1;N /-invariant forms on BN which represent the respective
cohomology classes.

As the metric g� of McMullen is normalized in order to have constant holomorphic
sectional curvature �1, we have Ric.g�/ D �

NC1
2
g� hence, if !� is the Kähler form

associated with g�, c1.X/ D �
NC1
4�

!� and cN .X/ D .�1/N .NC1/

.4�/N
!N� , as pullback

of PU.1;N /-invariant forms on BN . As a consequence, the volume we compute and the one
computed by McMullen are related byZ

M 0;n

�N� D
1

.4�/N

Z
M 0;n

!N� D
NŠ

.4�/N
vol.M 0;n; g�/:

Therefore, Theorem 1.1 and [18, Th. 1.2] imply

C 7.5. – We have0@�X
s

�s  s C
X

S

�S DS

1AN D .�2/N

.N C 1/

X
Q

.�1/jQjC1.jQj � 3/Š
Y
B2Q

max
�
0; 1 �

X
i2B

�i

�jBj�1
;

where Q ranges over all partitions of the indices f1; : : : ; ng into blocks B.

As noticed by McMullen (see [18, Sec. 8]), the sum in the right hand side of the previous
formula can be regarded as the cone manifold Euler characteristic of the metric completion
of .M 0;n; g�/. From our point of view, one should interpret c1

�
KM 0;n

C D�
�

as the

first Chern class of M
�

0;n. Therefore, Corollary 7.5 can be viewed as a generalization of
formula (20) in the context of complex hyperbolic cone manifolds.
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8. A more algebro-geometric approach

8.1. Kawamata’s extension

Throughout this section, we will assume that all the weights .�s/ are rational numbers.
If d 2 N� is such that d�s 2 N for all s, then the local system L˝d on P1C n † is trivial.

Y. Kawamata proves in [14] that the line bundle L
˝d has a natural extension to M 0;n that

we denote abusively by OL
˝d

(that is, OL is only a Q-divisor). This extension is constructed
in the following way: it follows immediately from the description in Section 2.5 that
L
˝d is isomorphic to �� O

�
d.KC0;n=M 0;n

C
P
s �s �s/

�
, where �s is the divisor given

by the s-th section of the universal curve, and KC0;n=M 0;n
WD KC0;n ˝ K_M 0;n

is the
relative canonical bundle of the fibration �jC0;n

W C0;n ! M 0;n. Observe that for any

m 2 M 0;n, deg
�
KC0;n=M 0;n j��1.m/

�
D deg

�
KP1C

�
D �2 and since

P
s �s D 2, the

restriction of O
�
d.KC0;n=M 0;n

C
P
s �s �s/

�
to any fiber of �jC0;n

is trivial. Therefore,

�� O
�
d.KC0;n=M 0;n

C
P
s �s �s/

�
is indeed a rank 1 invertible sheaf on M 0;n.

The first task is to extend O
�
d.KC0;n=M 0;n

C
P
s �s �s/

�
to a line bundle on C 0;n whose

restriction to each fiber of � over M 0;n is still trivial. Kawamata remarks that such a natural
extension is given by the divisor dƒ where

ƒ WD KC0;n=M 0;n
C

X
s

�s �s �
X

S

.1 � �S /F
1
S

and the effective divisor
P

S .1 � �S /F
1
S is defined in the following way: for any S 2 P ,

��1.DS / is a divisor in C 0;n with two irreducible components F 0S and F 1S . Over a generic
point of DS , these two components correspond respectively to the two irreducible compo-
nents of the nodal curve associated with the partition S D fI0; I1g (recall that by definition,
�S WD

P
s2I1

�s < 1).

It is easy to see that the restriction to each fiber ��1.m/ � C 0;n of the line bundle
associated with the above divisor is indeed trivial for any m 2 M 0;n. It is sufficient to
check that its degree is 0 in restriction to each irreducible component of any stable curve
Cm D C

0
m[� � �[C

r
m. First remark that��1.DS / D F

0
SCF

1
S is trivial in restriction toCm and

so, for any j , F 1S jCjm
D �F 0S jCjm

. As a first consequence, if F 0S \ C
j
m D ; or F 1S \ C

j
m D ;,

then F 1S jCjm
D 0. Moreover, noticing that 1��S D 1�

P
s2I1

�s D
P
s2I0

�s�1 for any S ,
we have (using the notation of Section 5.1)

d
�
KC0;n=M 0;n

C

X
s

�s �s �
X

S

.1 � �S /F
1
S

�
jCjm
D d

�
KP1C
C

sjX
iD1

yi C
X
s2†j

�sxs C

sjX
iD1

. O�.yi / � 1/yi

�
;

whose degree is indeed equal to 0. Finally, one defines OL
˝d
WD �� O.dƒ/.

R 8.1. – In fact, we also have OL
˝d
D �� O

�
d
�
KC0;n=M 0;n

C
P
s �s �s/

�
, but

the divisor dƒ is more natural, even if less obvious at first glance; for instance, one has

O.dƒ/ D �� OL
˝d

.
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8.2. Trivializations of Kawamata’s extension

In Sections 4 and 5, for each pointm 2 M 0;n we found a neighborhood U ofm in M 0;n

and we constructed a holomorphic section of L on U \ M 0;n that we denote by ˆU or
simply byˆ. We can regardˆ˝d as a holomorphic section of O

�
d.KC0;n=M 0;n

C
P
s �s �s/

�
on ��1.U \ M 0;n/. From the description in Section 4, we see immediately that as such,
ˆ˝d extends as a section of O

�
d.KC0;n=M 0;n

C
P
s �s �s/

�
on the whole of ��1.U / ifm is a

generic point ofDS . Moreover, it vanishes exactly onF 1S up to the order d.1��S /, that is, it
is a non-vanishing holomorphic section of the extension O.dƒ/ on ��1.U /, hence providing

a local trivialization of the line bundle O.dƒ/ and so a trivialization of OL
˝d

on U . In the

same way, it can be proven that ˆ˝d provides a local trivialization of OL
˝d

near any point
m of M 0;n but we omit the proof since we only need to consider trivializations near generic
points of @M 0;n.

Recall that the line bundle L is equipped with a metric coming from the Hermitian
form ..:; :// defined in Section 2.4. It is important to note that by Proposition 6.2 and
Remark 6.3, the induced metric on L

˝d , whose curvature on M 0;n is d��, extends as a

continuous metric on OL
˝d

. Thus, by Lemma 7.2, the extension by 0 of�� is a representative

of c1. OL / D 1
d
c1.
OL
˝d
/. Summing up, we get the

P 8.2. – Assume that 0 < �s < 1;�s 2 Q for all s 2 f1; : : : ; ng. Let

d 2 N be a positive integer such that d�s 2 N for all s. Then the push-forward OL
˝d

of the
Kawamata line bundle O.dƒ/ is an extension of L

˝d over M 0;n. Ifm 2 M 0;n is contained in
a stratum of codimension r , with a neighborhood identified with V � .Dc2/

r , then the section

ˆ˝d on V�.D�
c2
/r defined in Section 5 extends naturally to a nowhere vanishing section of OL

˝d

in V � .Dc2/
r . Moreover, the extension by 0 of �� is a representative of c1. OL /.

R 8.3. – One can also prove that the restriction of OL
˝d

to the stratum ofm is the
pull-back of the d -tensor power of the induced line bundle on the��principal factor M 0;k0

(see Section 5 for the definition of �-principal component/factor).

Actually, the above extension of ˆ˝d can be described in more concrete terms. For this,
let us give an alternative description of a plumbing family. Let m be a generic point of some
divisor DS with S D fI0; I1g, and let C 0m D .P1C; .0; .xs/s2I0/ and C 1m D .P1C; .0; .ys/s2I1/
(here we denote the marked points onC 1m by ys rather than xs) where we use the conventions
of Section 4. Consider the family C of rational curves above a disk D centered at 0 which is
described (in inhomogeneous coordinates) by $ W C D

˚
.x; y; t/ 2 P1C � P1C �D; xy D t

	
! D,

.x; y; t/ 7! t (note that the fibers are all smooth except the one above 0 which is a nodal
curve with .0; 0/ as only node). In this setting, �s D fxsg � P1C � D \ C , for s 2 I0, and
�s D P1C � fysg � D \ C , for s 2 I1. Remark however that in general, this family is not
isomorphic to the one described in the course of Section 4, where we used additional changes
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of coordinates F and G. Let pi W P1C � P1C � D ! P1C, i D 0; 1, be the natural projection
onto the .i C 1/-th factor P1C. Define on P1C two sections

!0 WD
.dz/˝d.2��S /Q
s2I0

.z � xs/2d�s
2 �

�
P1C; d

�
.2 � �S /KP1C

C 2
X
s2I0

�sxs
��

and

!1 WD
.dz/˝d�SQ

s2I1
.z � ys/2d�s

2 �
�
P1C; d

�
�SKP1C

C 2
X
s2I1

�sys
��
:

Then ! D p�0!0 ˝ p�1!1 induces a section of O
�
2d.K Cm=D

C
P
s �s�s/

�
on C . Near

the point .0; 0; 0/ 2 C , in the coordinates .x; y/, a trivialization of K C=D is provided by

� D 1
2

�
dx
x
�
dy
y

�
D

dx
x
D �

dy
y

. Since we have

! D
.dx/˝d.2��S / ˝ .dy/˝d�SQ

s2I0
.x � xs/2d�s

Q
s2I1

.y � ys/2d�s
;

the section induced by ! (in restriction to C ) is given by

.�1/d�S
xd.2��S /yd�SQ

s2I0
.x � xs/2d�s

Q
s2I1

.y � ys/2d�s
�˝2d :

If we factorize by .�xy/d�S D .�t /d�S and take the “square root”, we find

�m WD
xd.1��S /Q

s2I0
.x � xs/d�s

Q
s2I1

.y � ys/d�s
�˝d :

Since �m does not vanish outside of the nodal curve Cm D $�1.0/, and vanishes to order
d.1��S / on the component C 1m, we conclude that as a section of O.dƒ/ on Cm, �m is equal
to ˆ˝d up to the multiplication by an invertible function on D. It will be more convenient
below to use the coordinates .x; t/ (even if those are only coordinates away from x D 0) in
which

�m D

Q
s2I1

.�xs/
d�sQ

s2I0
.x � xs/d�s

Q
s2I1

.x � txs/d�s
.dx/˝d

and where we used the notation xs WD 1=ys if s 2 I1.

8.3. Other formulas for the volume and proof of Theorem 1.3

As a direct consequence of the discussion in Section 8.1, we get

T 8.4. – Under the assumptions of Proposition 8.2, let � be a global section of OL
˝d

over M 0;n and let us define D� WD 1
d

div.�/ where div.�/ is the divisor of � . ThenZ
M 0;n

�N� D
1

.N C 1/N
.KM 0;n

CD�/
N
D DN

� :
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In what follows, we will construct explicitly a holomorphic section � of OL
˝d

and deter-
mine the corresponding divisor D� . Our goal is to prove Theorem 1.3.

In [14], Y. Kawamata constructs global sections of OL
˝d

over M 0;n. For our purpose, we
present here a slight variation of those sections: define J D .j1; j 01; : : : ; jd ; j

0
d
/ 2 N2d by

ji D s if d
s�1X
kD1

�k < i � d

sX
kD1

�k ;

j 0i D s if d
s�1X
kD1

�k < d C i � d

sX
kD1

�k ;

for all 1 � i � d , where by convention
P0
kD1 �k D 0. The only two important points in the

definition of J are that (1) each s appears d�s times in J , and (2) for any i , ji 6D j 0i .
For each 1 � s < s0 � n, we define

�.s; s0/ D
1

d
#
˚
i; .ji ; j

0
i / D .s; s

0/
	

that is the number of times the pair .s; s0/ occurs as .ji ; j 0i / divided by d . Alternatively, with
our choice of J ,

(21) �.s; s0/ D

(
0 if

Ps0

kDs �k � 1 or
Ps0�1
kDsC1 �k � 1;

min
˚
�s; �s0 ;

Ps0

kDs �k � 1; 1 �
Ps0�1
kDsC1 �k

	
otherwise:

Let fx1; : : : ; xng be n distinct points on P1C. For any pair .j; j 0/ of distinct elements
of f1; : : : ; ng, we denote by !j;j 0 the unique non-vanishing rational 1-form on P1C with
simple poles at xj and xj 0 , and satisfying resxj D 1, resxj 0 D �1. If the points xj ; xj 0 are
in P1Cnf1g then

!j;j 0 D .xj � xj 0/
dz

.z � xj /.z � xj 0/
:

Finally, let us define

!J WD

dY
iD1

!ji ;j 0i
2 �

�
P1C; d

�
KP1C
C

nX
sD1

�sxs
��
:

Remark that !J is invariant by the action of PGL.2;C/, thus it gives rise to a well-defined
non-vanishing section of L

˝d on M 0;n. This section extends to the whole M 0;n as a

section � of OL
˝d

. We are now going to determine its zero divisor div.�/, whose support must
be contained in the boundary divisor of M 0;n, by using the above trivializations �m. Let us
fix S D fI0; I1g as before. In the notation of Section 8.2, and using the coordinates .x; t/ for
the universal family above a small disk D transverse to DS at a generic point m, the section
!J writes

!J D

Q
ji ;j
0
i
2I0
.xji � xj 0i

/
Q
ji2I0;j

0
i
2I1
.xji � txj 0i

/
Q
ji2I1;j

0
i
2I0
.txji � xj 0i

/
Q
ji ;j
0
i
2I1

t .xji � xj 0i
/Q

s2I0
.x � xs/d�s

Q
s2I1

.x � txs/d�s
.dx/˝d ;

that is,
!J D t

#fi; ji ;j
0
i
2I1gf .t/�m D t

d
P
1�s<s0�n ıS .s;s

0/�.s;s0/f .t/�m;
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where f is an invertible function on D and ıS .s; s
0/ D

(
1 if fs; s0g � I1
0 otherwise

:As a consequence,

we obtain the

P 8.5. – The section !J extends as a global section � of OL
˝d

so that

(22) OL �Q D� WD
1

d
div.�/ D

X
S

X
1�s<s0�n

ıS .s; s
0/�.s; s0/DS :

Notice that � and D� depend on the multi-indices J . By choosing other multi-indices J
satisfying conditions .1/ and .2/ above, we would obtain other divisors to which OL is
Q-linearly equivalent.

Proof of Theorem 1.3

Proof. – Applying Theorem 8.4 with D� given by (22), we see that Theorem 1.3 is
proved if the weights in � are all rational. If not, one can approximate them by rational
numbers in such a way that the numbers ıS .s; s

0/ remain unchanged. From (21) we see
that �.s; s0/ depends continuously on �. Thus D� depends continuously on �. Moreover,
from Theorem 1.1, we know that the total volume of M 0;n with respect to �� depends
also continuously on �. Thus by continuity with respect to �, Theorem 1.3 is shown in full
generality, that is for all � satisfying the hypothesis of Theorem 1.1.

8.4. Another look at Theorem 1.1

As a final remark, we would like to show now that the point of view adopted in this section
also provides an alternative way to find the expression of f��g obtained in the proof of the
main theorem.

Here, as before, we have to assume the weights �s to be rational, multiply them by a

positive integer d in such a way that the numbers d�s are integers, and consider OL
˝d

. The
general case of real weights then follows again by continuity arguments. However, as the
reader can easily check, the computations can be made directly as if OL was actually a line
bundle.

In Section 8.3 we exhibited sections of OL whose zero divisor provides representatives
of c1. OL / which is equal to f��g. As OL is the pushforward of a line bundle on the universal

curve, it is also natural to use the Grothendieck-Riemann-Roch formula to compute c1. OL /.
Again, we refer to [1] or [25] for the basic material. Let us define � as the codimen-

sion 2 subvariety of C 0;n consisting of the nodes of the singular fibers of the projection
� W C 0;n ! M 0;n and K D KC0;n=M 0;n

.
P
s �s/. The Todd class of � is given by

td.�/ D 1 �
1

2

�
K �

X
s

�s

�
C

1

12

�
K2 C

X
s

�2s C�
�
C � � �

and recall that OL D �� O.ƒ/ where

ƒ D KC0;n=M 0;n
C

X
s

�s �s �
X

S

.1 � �S /F
1
S :
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Notice thatR1�� O.ƒ/ D 0 as O.ƒ/ is trivial along the fibers of� , hence by the Grothendieck-
Riemann-Roch formula, a representative of c1. OL / is

1

2
��

8<:
 
K C

X
s

.�s � 1/�s C
X

S

.�S � 1/F
1
S

! X
s

�s�s C
X

S

.�S � 1/F
1
S

!9=;
because 1

12
��

�
K2C

P
s �

2
s C�

�
represents the first Chern class of the Hodge bundle, which

is zero on M 0;n. Now, it is well known that for any s and any s0 6D s,

K � �s D 0 ; �s � �s0 D 0 ; ��
�
�2s
�
D � s

and straightforward computations show that

��.K � F
1
S / D .jI1j � 1/DS ;

��.F
1
S � F

1
S 0
/ D

(
0 if S 6D S 0

�DS if S D S 0;

and ��.F 1S � �s/ D

(
0 if s 62 I1
DS if s 2 I1;

for any s, S and S 0. Therefore,

c1.
OL / D

1

2

0@�X
s

�s.�s � 1/ s C
X

S

�S .�S � 1/DS

1A :
Finally, by a slight variation of the computation in Section 7.3 we obtain

.n � 2/
X
i

�i .2 � �i /  i D
X
i;j;k

�i .�j C �k/  i

�

X
i;j;k

�i .�j C �k/ ıi jjk

D

X
S

��
jI1j � 1

� X
j2I1

�j
X
i2I0

�i C
�
jI0j � 1

� X
j2I0

�j
X
i2I1

�i

�
DS

D .n � 2/
X

S

�S .2 � �S /DS ;

which implies

c1.
OL / D

1

2

0@�X
s

�s s C
X

S

�SDS

1A
as expected.

Appendix A

Intersection theory on M 0;n

In this section we describe an algorithm to compute the intersection numbers of vital
divisors in M 0;n. This algorithm is well known to experts in the field and can be found
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in [17]. We include it here only for the sake of completeness. We are grateful to D. Zvonkine
for having explained it to us.

Intersections of vital divisors in M 0;n will produce formal sums of trees whose vertices
are labeled by subsets in a partition of f1; : : : ; ng. At every vertex, the sum of the cardinal
of the corresponding subset and the number of edges containing it must be at least 3. Such
a tree corresponds to a stratum of M 0;n. Note that we allow ; to be part of a partition. A
vital divisorDS , where S D fI0; I1g is a partition of f1; : : : ; ng such that minfjI0j; jI1jg � 2,
corresponds to a tree with two vertices labeled by I0 and I1.

Here below we will give the rule to compute the intersection of a divisor DS with a tree
T as above. Recursively, this allows us to compute any product DS 1 � � � � � DS n�3 . We first
color the vertices of T with respect to the partition fI0; I1g as follows: the vertices labeled by
subsets contained in I0 are given the red color, those labeled by subsets contained in I1 are
given the blue color. The vertices corresponding to subsets which are not contained in I0 nor
in I1 are given the black color. Finally, the vertices corresponding to the empty set are given
the white color. We have three cases:

Case 1. – There is more than one black vertex. In this case the intersection is empty, we get 0.

Case 2. – There is exactly one black vertex. If there is an edge in T which connects a red
vertex and a blue one then we get 0. Otherwise the black vertex separates the red vertices from
the blue ones. We subdivide the subset corresponding to the black vertex into two subsets:
one is contained in I0, the other in I1. We then replace this vertex of T by an edge whose ends
are labeled by the two subsets above. We color the new vertices using the same rule. There is
a unique configuration such that the new edge separates the red vertices from the blue ones.
The intersection is then given by this new tree.

Case 3. – There are no black vertices. We will say that a vertex or an edge of T separates the
red vertices from the blue ones if it is contained in any path joining a red vertex to a blue one.
We have several subcases:

(a) There are no edges and no vertices that separate the red vertices from the blue ones. In
this case the intersection is 0.

(b) There are no edges that separate the red vertices from the blue ones, but there is a
vertex A that satisfies this property. Note that A is then unique. We first notice that
all the leaves of T must be either red or blue. Thus we can subdivide the set of edges
incident to A into two subsets: E 0 is the set of edges that are contained in some
paths joining A to a red leaf, E 00 is the set of edges that are contained in some paths
joining A to a blue leaf. That fE 0; E 00g is a partition of the set of edges incident to A is
a consequence of the hypothesis that A separates the red vertices from the blue ones.

We form a new tree by splitting A into two vertices A0; A00 connected by an edge,
where A0 is attached to all the edges in E 0, and A00 is attached to all the edges in E 00.
We associate to A0 the subset A \ I0, and to A00 the subset A \ I1. In more concrete
terms, if A is red then A0 D A;A00 D ;, if A is blue then A0 D ;; A00 D A, if A D ; then
A0 D A00 D ;. This new tree is the intersection ofDS and T. Notice that it is necessary
stable because otherwise, there would exist an edge separating the red vertices from the
blue ones.
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(c) There is an edge e that separates the red vertices from the blue ones. In this case this
edge must be unique. Let A and B denote the ends of e. By a slight abuse of notation
we will also denote by A and B the corresponding subsets of f1; : : : ; ng. Note that A
and B can be empty.

Let OA be the union of the indices contained in A and the edges incident to A. We
pick a pair fa1; a2g in OA such that e 62 fa1; a2g. Consider all the partitions of OA into
two subsets f OA1; OA2g such that e 2 OA1, fa1; a2g � OA2, and minfj OA1j; j OA2jg � 2. For
any such partition, we remove the vertex A from T and construct a new tree from T as
follows: form two new vertices A1 and A2, attach Ai to all the edges in OAi and add a
new edge connectingA1 andA2. The new vertexAi is associated with the set of indices
in f1; : : : ; ng \ OAi . Let †A denote the formal sum of all the trees obtained this way.

We apply the same to B, and let †B denote the corresponding formal sum. The
intersection of DS with T is then equal to �.†A C†B/.

The intersection numberDS 1 � � � � �DS n�3 is then the sum of all the coefficients of the trees
in the final formal sum obtained from this algorithm.

Using this algorithm, we can compute the intersection numbers of vital divisors in M 0;5

and M 0;6. As S D fI0; I1g is of course determined by either I0 or I1, we denote belowDS

by DI0 or DI1 .

Case M 0;5. – We have

Dij �Dij D �1; Dij �Djk D 0; Dij �Dk` D 1:

Case M 0;6. – Recall that DI �DJ D 0 if neither J nor J c is contained in I or in I c . The
intersections which do not vanish due to this simple rule are recorded here below:

Dij �Dij �Dij D 1; Dij �Dij �Dijk D 0; Dij �Dij �Dk` D �1;

Dij �Dijk �Dijk D �1; Dij �Dijk �Dj 0k0 D 1;

Dijk �Dijk �Dijk D 2;

Dij �Dk` �Dk0`0 D 1: :

Appendix B

Computation of the volume in M 0;5

Here we compute the volume of M 0;5 with respect to �� using the results of Section 8.
We may assume that 1 > �1 � �2 � �3 � �4 � �5 > 0. Note that in any case, �2C�4 � 1
since

P
�s D 2. As a consequence, only the following can happen:

� �2 C �3 � 1 and
♦ �1 C �5 � 1:

D� D .1 � �1/D13 C .1 � �1/D14 C .1 � �1/D25 and
Z

M 0;5

�2� D .1 � �1/
2:
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♦ �1 C �4 � 1, �1 C �5 � 1:

D� D .1 � �1/D13 C �5D14 C .1 � �1 � �5/D24 C �5D25 andZ
M 0;5

�2� D .1 � �1/
2
� .1 � �1 � �5/

2:

♦ �1 C �3 � 1, �1 C �4 � 1:

D� D .1 � �1/D13 C .1 � �2 � �3/D14 C .1 � �1 � �5/D24 C �5D25 andZ
M 0;5

�2� D .1 � �1/
2
� .1 � �1 � �4/

2
� .1 � �1 � �5/

2:

♦ �1 C �2 � 1, �1 C �3 � 1:

D� D �3D13 C .1 � �2 � �3/D14 C .1 � �1 � �5/D24 C �5D25 andZ
M 0;5

�2� D 2�3 �5 � .1 � �1 � �4/
2
� .1 � �2 � �4/

2:

♦ �1 C �2 � 1:

D� D .1 � �4 � �5/D13 C .1 � �2 � �3/D14 C .1 � �1 � �5/D24

C .1 � �3 � �4/D25 C .1 � �1 � �2/D35

and
Z

M 0;5

�2� D 2

5X
iD1

.1 � �i�1 � �i /.1 � �i � �iC1/ �

5X
iD1

.1 � �i � �iC1/
2:

� �2 C �3 � 1 and �1 C �4 � 1:

D� D .�4 C �5/D13 C �4D24 C �5D25 and
Z

M 0;5

�2� D 2�4 �5:

All the formulas are obtained as a straightforward application of Theorem 8.4. However, one
can prove after some more (tedious) computations that if �2 C �3 � 1 and �1 C �s�1 � 1,
�1 C �s � 1 for some 2 � s � 6 (which happens for all but the last exceptional case) thenZ

M 0;5

�2� D .1 � �1/
2
�

5X
iDs

.1 � �1 � �i /
2:

Appendix C

An example in M 0;6

The fact that�� is a representative of the first Chern class of the Kawamata line bundle OL
can be exploited to simplify the evaluation of

R
M 0;n

�n�3� in certain cases, especially when
the weight vector � has some symmetry. To illustrate this observation, let us consider the
family of weights � D .˛; ˛; ˛; ˇ; ˇ; ˇ/, with 0 < ˇ � ˛ and ˛ C ˇ D 2=3. Assuming that
˛ and ˇ are both rational, we can find d 2 N� such that d˛ 2 2N and dˇ 2 2N. Define a
section � of the Kawamata line bundle by

� D
.x1 � x2/

d ˛2 .x2 � x3/
d ˛2 .x3 � x1/

d ˛2 .x4 � x5/
d ˇ2 .x5 � x6/

d ˇ2 .x6 � x4/
d ˇ2

.z � x1/d˛.z � x2/d˛.z � x3/d˛.z � x4/dˇ .z � x5/dˇ .z � x6/dˇ
dz˝d :
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We will use the following equality (which is a consequence of Theorem 8.4)
R

M 0;6
�3� D�

div.�/
d

�3
to compute the volume of M 0;6 with respect to ��.

In what follows, for any subset I � f1; : : : ; 6g such that 2 � jI j � 4, DI is the boundary
divisor of M 0;6 corresponding to the partition fI; I cg. In particular, any boundary divisor
of M 0;6 can be written as DI with jI j � 3. Set

A1 D D123; A2 D
X
1�i�3

X
4�j<k�6

Dijk ; B D
X

1�i<j�3

Dij ; C D
X

4�i<j�6

Dij :

Applying the algorithm described in Appendix A, we get the following8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

A31 D 2; A32 D 18; B3 D 3; C 3 D 3;

A1A2 D 0;

A21B D A
2
1C D �3; A1B

2
D A1C

2
D 0;

A22B D A
2
2C D �9; A2B

2
D A2C

2
D 0;

B2C D BC 2 D �9;

A1BC D A2BC D 9:

We have two cases

– Case I: 0 < ˇ � 1
6
, ˛ � 1

2
. We have div.�/

d
D

3ˇ
2
A1C

ˇ
2
A2C

3ˇ
2
B C ˇ

2
C . Therefore�

div.�/
d

�3
D .3A1 C A2 C 3B C C/

3

�
ˇ

2

�3
D 48 �

ˇ3

8
D 6ˇ3:

– Case II: 1
6
� ˇ � 1

3
,

1
3
� ˛ � 1

2
. We have div.�/

d
D

3ˇ
2
A1 C

ˇ
2
A2 C

˛
2
B C ˇ

2
C . It

follows �
div.�/
d

�3
D
3

8
..˛ � 3ˇ/3 C 16ˇ3/ D 6ˇ3 � 3.2ˇ �

1

3
/3:

To sum up, we haveZ
M 0;6

�3� D 6ˇ
3 � 3.maxf2ˇ � 1

3
; 0g/3; for all ˇ 2 .0; 1

3
�:
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