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G. C A. W

Y.  C G. W

E. K

Rédaction / Editor

Annales Scientifiques de l’École Normale Supérieure,
45, rue d’Ulm, 75230 Paris Cedex 05, France.

Tél. : (33) 1 44 32 20 88. Fax : (33) 1 44 32 20 80.
annales@ens.fr

Édition et abonnements / Publication and subscriptions

Société Mathématique de France
Case 916 - Luminy

13288 Marseille Cedex 09
Tél. : (33) 04 91 26 74 64
Fax : (33) 04 91 41 17 51

email : abonnements@smf.emath.fr

Tarifs

Abonnement électronique : 420 euros.
Abonnement avec supplément papier :

Europe : 540 e. Hors Europe : 595 e ($ 863). Vente au numéro : 77 e.

© 2018 Société Mathématique de France, Paris

En application de la loi du 1er juillet 1992, il est interdit de reproduire, même partiellement, la présente publication sans l’autorisation
de l’éditeur ou du Centre français d’exploitation du droit de copie (20, rue des Grands-Augustins, 75006 Paris).
All rights reserved. No part of this publication may be translated, reproduced, stored in a retrieval system or transmitted in any form or
by any other means, electronic, mechanical, photocopying, recording or otherwise, without prior permission of the publisher.

ISSN 0012-9593 (print) 1873-2151 (electronic) Directeur de la publication : Stéphane Seuret
Périodicité : 6 nos / an



Ann. Scient. Éc. Norm. Sup.

4 e série, t. 51, 2018, p. 1507 à 1547

SOME CONSTRAINTS ON POSITIVE ENTROPY
AUTOMORPHISMS OF SMOOTH THREEFOLDS

 J LESIEUTRE

A. – Suppose that X is a smooth, projective threefold over C and that � W X ! X is
an automorphism of positive entropy. We show that one of the following must hold, after replacing
� by an iterate: i) the canonical class of X is numerically trivial; ii) � is imprimitive; iii) � is not
dynamically minimal. As a consequence, we show that if a smooth threefold M does not admit a
primitive automorphism of positive entropy, then no variety constructed by a sequence of smooth blow-
ups of M can admit a primitive automorphism of positive entropy.

In explaining why the method does not apply to threefolds with terminal singularities, we exhibit a
non-uniruled, terminal threefold X with infinitely many KX -negative extremal rays on NE.X/.

R. – Soit X une variété projective lisse de dimension trois sur C. Nous supposons qu’il
existe un automorphisme � W X 99K X d’entropie positive. Quitte à remplacer � par un de ses
itérés �n, nous montrons qu’une des affirmations suivantes sera verifiée : i) la classe canonique de X
est numériquement triviale ; ii) � est imprimitive ; iii) � n’est pas dynamiquement minimal. Comme
corollaire, nous montrons que si une variété lisseM de dimension trois n’admet pas d’automorphisme
primitif d’entropie positive, il en est de même pour toute variété construite par une suite d’éclatements
lisses de M .

Notre méthode ne s’applique pas dans le cadre des variétés à singularités terminales. Ceci sera
illustré par l’exemple d’une variété unirégléeX qui admet une infinité de rayons extrémauxKX -négatifs
sur NE.X/.

1. Introduction

Suppose that X is a smooth projective variety over C. An automorphism � W X ! X is
said to have positive entropy if the pullback map �� W N 1.X/ ! N 1.X/ has an eigenvalue
greater than 1. By a fundamental result of Gromov and Yomdin, this notion of positive
entropy coincides with the one familiar in dynamical systems, related to the separation of
orbits by �; we refer to [23] for an excellent survey of these results.

Although there are many interesting examples of positive entropy automorphisms of
projective surfaces, examples in higher dimensions remain scarce. Our aim in this note is

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
0012-9593/06/© 2018 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2380



1508 J. LESIEUTRE

to give some constraints on the geometry of smooth, projective threefolds that admit auto-
morphisms of positive entropy and partly explain this scarcity. These constraints are specific
to automorphisms of threefolds: they hold neither for automorphisms of surfaces, nor for
pseudoautomorphisms of threefolds.

Before stating the main results, we recall two basic ways in which an automorphism of X
can be built out of automorphisms of “simpler” varieties.

D 1.1. – An automorphism � W X ! X is imprimitive if there exists a
variety V with 1 � dimV < dimX , a birational automorphism  W V 99K V , and a
dominant rational map � W X 99K V such that � ı � D  ı � . The map � is called primitive
if it is not imprimitive [33].

For example, if  W V ! V is a positive entropy automorphism, the induced map
� W P.T V / ! P.T V / of the projectivized tangent bundle also has positive entropy, but is
not primitive.

D 1.2. – An automorphism � W X ! X is not dynamically minimal if there
exists a variety Y with terminal singularities, a birational morphism � W X ! Y , and an
automorphism  W Y ! Y with � ı � D  ı � . If no such � W X ! Y exists, � is called
dynamically minimal.

For example, if  W Y ! Y is a positive entropy automorphism, and V � Y is a
 -invariant subvariety, there is an induced automorphism � W BlV Y ! BlV Y . The map �
has positive entropy, but it is not dynamically minimal.

The restriction that Y have terminal singularities is quite natural from the point of view
of birational geometry, for these are the singularities that can arise in running the minimal
model program (MMP) on X . In dimension 2, having terminal singularities is equivalent
to smoothness, and dynamical minimality is equivalent to the non-existence of �-periodic
.�1/-curves on X .

Positive entropy automorphisms of projective surfaces are in many respects well-
understood. IfX is a smooth projective surface admitting a positive entropy automorphism,
it must be a blow-up of either P2, a K3 surface, an abelian surface, or an Enriques surface [8,
Prop. 1]. Blow-ups of P2 at 10 or more points have proved to be an especially fertile source
of examples, beginning with work of Bedford and Kim [3] and McMullen [21]. However,
in higher dimensions, there are very few examples known of primitive, positive entropy
automorphisms. The first such example on a smooth, rational threefold was given only
recently by Oguiso and Truong [24, Theorem 1.4].

One result of this note is that the three-dimensional analogs of the basic blow-up construc-
tions in dimension two can never yield primitive, positive entropy automorphisms.

T 1.3. – Suppose that M is a smooth projective threefold that does not admit any
automorphism of positive entropy, and that X is constructed by a sequence of blow-ups of M
along smooth centers. Then any positive entropy automorphism � W X ! X is imprimitive.

This provides a partial answer to a question of Bedford:
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AUTOMORPHISMS OF SMOOTH THREEFOLDS 1509

Q 1 (Bedford, cf. [29]). – Does there exist a smooth blow-up of P3 admitting a
positive entropy automorphism?

According to Theorem 1.3, if such an automorphism exists, it must be imprimitive.
Truong has also obtained many results on this question, showing that if X is constructed
by a sequence of blow-ups of points and curves whose normal bundles satisfy certain
constraints, then X admits no positive entropy automorphisms, and that under certain
weaker conditions, any positive entropy automorphism has equal first and second dynam-
ical degrees [29].

Whereas every smooth projective surface can be obtained as the blow-up of a minimal
surface, this is far from true for threefolds. Although the sharpest results we obtain are in this
blow-up setting, in combination with classification results from the MMP, the same approach
yields some constraints on positive entropy automorphisms of arbitrary smooth threefolds
for which the canonical class is not numerically trivial.

T 1.4. – Suppose thatX is a smooth projective threefold and that � W X ! X is an
automorphism of positive entropy. After replacing � by some iterate, at least one of the following
must hold:

(1) the canonical class of X is numerically trivial;
(2) � is imprimitive;
(3) � is not dynamically minimal.

The conclusions in all these cases can be refined considerably; a more detailed subdivision
into seven cases appears as Theorem 1.7 below. In Section 2, we show that all seven cases do
occur, and the list can not be shortened.

We caution that Theorem 1.4 should not be construed as a classification of threefolds
admitting a primitive automorphism of positive entropy. The chief difficulty lies in case (3):
when � is not dynamically minimal, the new variety Y on which � induces an automorphism
may no longer be smooth, so the result can not be applied inductively. This leads to the
following.

C 1.5. – Suppose that � W X ! X is a primitive, positive entropy automorphism
of a smooth, projective, rationally connected threefold. Then there exists a non-smooth three-
fold Y with terminal singularities and a birational map � W X ! Y such that some iterate of �
descends to an automorphism of Y .

Experience with the MMP suggests that it is unsurprising that even in studying automor-
phisms of smooth threefolds, it is useful to consider threefolds with terminal singularities.
The unexpected feature of Corollary 1.5 is that such singularities on Y are not only allowed,
but unavoidable.

Results of Zhang show that if X admits a primitive, positive entropy automorphism,
it must be either rationally connected or birational to a variety with numerically trivial
canonical class [33, Theorem 1.2]. Our results are primarily of interest in the rationally
connected setting, and are in some sense complementary to those of Zhang: although we
obtain no new information on the birational type of X , we give some constraints on the
geometry of a birational model on which � acts as an automorphism. For example, we obtain
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1510 J. LESIEUTRE

the following corollary, which was previously shown by Bedford and Kim to be false in
dimension 2 (see Example 2.4).

C 1.6. – Suppose that � W X ! X is a primitive, positive entropy automorphism
of a smooth projective threefold. IfKX is not numerically trivial, then there exists a �-invariant
divisor on X .

A shortcoming of Corollary 1.5 is that it fails to give any further information about the
automorphism of the singular modelY . The essential problem is that running the MMP onY
might require performing a flip Y 99K Y C. If the flipping curve has infinite orbit under �,
the induced map on Y C will be only a pseudoautomorphism. In Section 7, we illustrate the
difficulty in the case of an example of Oguiso and Truong. The flipping curve in this instance
has infinite orbit under �, and our methods do not apply. However, passing to a suitable
branched cover, we obtain:

T 7.1. – There exists a terminal, projective threefold Y of non-negative Kodaira
dimension with infinitely many KY -negative extremal rays on NE.Y /.

This provides a new negative answer to a question of Kawamata, Matsuda, and Matsuki:

Q 2 ([15, Problem 4-2-5]). – Suppose that X is a terminal variety. According to
the cone theorem,

NE.X/ D NEKX�0.X/C
X
i

R�0 ŒCi �:

If �.X/ � 0, must the number of KX -negative extremal rays be finite?

The standard example of a variety with infinitely many KX -negative extremal rays is the
blow-up of P2 at 9 or more very general points, when the infinitely many .�1/-curves on X
generate such rays. The restriction that �.X/ � 0 excludes any simple variations on this
example. A negative answer to Question 2 where .X;�/ is a klt pair was noted by Uehara,
answering [15, Problem 4-2-5] in its original formulation [31]. The example of Theorem 7.1
seems to be the first with � D 0 (cf. [31], [16, Remark III.1.2.5.1]).

The proof of Theorem 1.4 makes use of the interplay between the global geometry of X ,
as governed by the MMP, and the local dynamics of the automorphism � W X ! X around
certain invariant subvarieties.

The following theorem provides a more detailed breakdown of the various subcases in the
statement of Theorem 1.4; the next section shows that each of these can occur.

T 1.7. – Suppose thatX is a smooth projective threefold and that � W X ! X is an
automorphism of positive entropy. After replacing � by some iterate, at least one of the following
must hold:

(1) the canonical class KX is numerically trivial and either:
(a) X is an abelian threefold;
(b) X is a weak Calabi-Yau variety: KX is torsion in Pic.X/ and h0;1.X/ D 0;

(2) � is imprimitive and either:

4 e SÉRIE – TOME 51 – 2018 – No 6



AUTOMORPHISMS OF SMOOTH THREEFOLDS 1511

(a) the canonical class KX is semiample and the canonical fibration � W X ! Xcan

realizes � as imprimitive;
(b) there exists a conic bundle � W X ! V with �.X=V / D 1 realizing � as

imprimitive;
(c) there exists a surface S with an automorphism  W S ! S , a birational morphism

� W X 0 ! X such that � lifts to an automorphism N� W X 0 ! X 0, and a morphism
� W X 0 ! S with all fibers 1-dimensional such that � ı N� D  ı �.

(3) � is not dynamically minimal: there exists a divisorial contraction � W X ! Y , where
Y has terminal singularities, and � descends to an automorphism  W Y ! Y . Either:

(a) Y is smooth;
(b) the unique singularity ofY is locally analytically isomorphic tow2Cx2Cy2Cz2 D

0, w2 C x2 C y2 C z3 D 0, or the cone over the Veronese surface in P5.

We next outline the strategy of the proof of Theorem 1.7. There are three main steps.

Step 1: Initial reductions from the MMP. – First we show that it is possible to make several
simplifying assumptions on X . If KX is nef, the arguments of Zhang show that X satisfies
one of Case (1) or 2 (a). IfKX is not nef, we consider the first step of the MMP for X . There
exists a contraction of a KX -negative extremal ray, and the proof breaks into three cases:

(1) there is a Mori fiber space � W X ! Y ;
(2) there is a divisorial contraction � W X ! Y , and the exceptional divisor E is

�-periodic;
(3) there is a divisorial contraction � W X ! Y , and the exceptional divisor E is not

�-periodic.

Since X is a smooth threefold, there are no flipping contractions. If X is constructed as a
smooth blow-up, as in Theorem 1.3, we may assume that we are in Case (2) or (3). The
divisorial contraction � W X ! Y is just the final blow-up map, with exceptional divisor E.

In Case (1), it follows from a lemma of Wiśniewski that some iterate of � is imprimitive. In
Case (2), we replace � by an iterate �n fixingE. Perhaps after once more replacing � with �2

(to handle the case that E Š P1 � P1 and � exchanges the rulings), � then descends to an
automorphism of Y . This shows that � is not dynamically minimal.

The bulk of the work is in the remaining Case (3): we must show that if the exceptional
divisor E is not �-periodic, then � is necessarily imprimitive. The argument hinges on the
fact that the exceptional divisor E must be a smooth ruled surface (i.e., a P1-bundle over a
curve), and the geometry of such surfaces is fairly simple. The presence of an infinite set of
contractible, ruled surfaces �n.E/ � X has strong geometric implications.

Step 2: Numerical consequences of positive entropy. – The next step is to translate the
condition of positive entropy into a form that can be used to give geometric conclusions.
The starting point is an observation of Truong [29, Theorem 1 (1)]: there is (perhaps after
replacing � with ��1) a dominant eigenvector D of the pullback �� W N 1.X/ ! N 1.X/,
such that D is a nef divisor with D2 D 0. We will exploit the properties of this divisor to
control the intersections �m.E/ \ �n.E/ and ultimately show that � is imprimitive.

The exceptional divisor of the contraction � W X ! Y is a smooth ruled surface E � X .
The restriction DjE is a nef divisor with .DjE � DjE /E D 0; thus DjE is not ample, and it

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1512 J. LESIEUTRE

lies on the boundary of the nef cone Nef.E/. Because a ruled surface has Picard rank 2, there
are only three such divisors, up to rescaling: the zero divisor, the class of a fiber, and a second
boundary ray. Moreover, after an appropriate rescaling, we can assume that DjE is actually
a rational class, even though D itself is not. The cases in which DjE is zero or equivalent
to a fiber can be quickly excluded, so we may assume that DjE is on the second boundary
ray of Nef.E/. An intersection-theoretic trick then shows that for all non-zero n, the divisors
�n.E/jE

have numerical class proportional to ˛, a generator of one of the two extremal rays

on the cone of curves NE.E/.

Step 3: From numerical data to an equivariant fibration

The geometry of the ruled surface E now enables us to draw some geometric conclu-
sions, using the condition that Œ�n.E/jE � is extremal on NE.E/. There are two possibilities,
depending on whether the set of curves inE with numerical class on the extremal rayR>0 ˛ is
finite or infinite. Both situations are possible: for example, ifE Š Fn is a Hirzebruch surface
with n � 1, then R>0 ˛ is represented only by the negative section, while if E Š P1 � P1,
then R>0 ˛ is represented by a 1-dimensional family of sections.

Suppose first that R>0 ˛ is represented by a one-dimensional algebraic family of curves,
and that �n.E/\E contains infinitely many different curves insideE as n varies. In this case,
we show that there exists a curve � � E that moves in algebraic families covering �n.E/ for
infinitely many different values of n. A Hilbert scheme argument implies that � must in fact
deform in a family of dimension at least 2, covering all of X . The map � sends curves in
the deformation class of � to other curves in the deformation class of �, and so � induces an
automorphism of the space parametrizing such curves: this parameter space is an irreducible
component HilbŒ��.X/ of the Hilbert scheme Hilb.X/.

We next argue that HilbŒ��.X/ is two-dimensional and that there exists a �-equivariant
rational map X 99K HilbŒ��.X/. The essential point is that deformations of � “exactly”
cover X , in the sense that through a general point x on X there is a unique curve � 0

deformation-equivalent to �. The map X 99K HilbŒ��.X/ then sends x to the point Œ� 0� on
the Hilbert scheme parametrizing this curve. In other words, the corresponding compo-
nent UnivŒ��.X/ of the universal family maps birationally to X , and the composition
X 99K UnivŒ��.X/! HilbŒ��.X/ presents � as an imprimitive map.

The second case is when the ray R>0 ˛ is represented by only finitely many curves. In
this setting, the infinitely many contractible divisors �n.E/must intersect only along a finite
number of curves �i � X . We show in Section 5 that this is impossible. The crux of the
argument is a local dynamical result, given earlier as Theorem 5.1.

Roughly speaking, we show that there is a uniform bound on the orders of tangency
between the divisors �m.E/ and �n.E/ along each curve �i , independent of m and n. Then
there exists a sequence of blow-ups � W Y ! X centered above the curves �i , such that the
strict transforms of the infinitely many divisors �n.E/ all become disjoint on Y . But this is
impossible: each of these divisors is negative on some curve contained in it, contradicting the
finite-dimensionality of N 1.Y /.
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E

�.E/

�2.E/

�

� 0

� 00

X

HilbŒ��.X/

�

F 1. Case 1: Deformations of � determine a map to a surface

E

�.E/
�2.E/

: : :

�
E

�.E/
�2.E/ � � �

�

F 2. Case 2: Separating the divisors �n.E/ by a blow-up

2. Examples

We now collect some examples illustrating the conclusions of the theorem, as well as the
necessity of the hypotheses. These show that Theorem 1.7 is sharp in the sense that all seven of
the cases can occur. We begin with a few examples of automorphisms of surfaces, the building
blocks for many examples on threefolds.

E 2.1. – Let E Š C=ƒ be an elliptic curve, and let A D E � E be an abelian
surface. There is an action of SL2.Z/ on A by automorphisms. If M 2 SL2.Z/ has an
eigenvalue greater than 1, then the induced automorphism � W A! A is of positive entropy.

E 2.2. – Let A be as in Example 2.1, and i W A! A be the involution x 7! �x.
The map � above descends to an automorphism  W A=i ! A=i . The quotient A=i has
sixteen nodes, but  lifts to a map N W S ! S , where S is a Kummer surface, the minimal
resolution of A=i . This is a positive entropy automorphism of a K3 surface.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1514 J. LESIEUTRE

E 2.3 ([7, Prop. 2.2]). – Let E � P2 be a smooth cubic curve and fix a general
point p onE. Given a general point z 2 P2, the line p̀z meetsE at two points x and y other
than p. Define a rational map �p W P2 99K P2 which acts on each line p̀z by the unique
involution of P1 fixing the two points x and y.

This map is defined at z unless the line p̀z is tangent to E. There are four points
p1; p2; p3; p4 on E at which such tangency occurs. One may check that �p lifts to an invo-
lutive automorphism of the blow-up Xp D Blp;p1;:::;p4 P2, which fixes the strict transform
of E pointwise.

Carrying out the same construction twice more with the same curveE but using different
initial points q and r instead of p yields automorphisms of the analogous 5-point blow-
ups Xq and Xr , which again fix the strict transform of E pointwise. The maps �p, �q , and
�r all lift to automorphisms of the common resolution X D Blp;pi ;q;qi ;r;ri .P2/, a blow-up
of P2 at 15 points. Although the three maps are individually involutions, the composition
�p ı �q ı �r has positive entropy.

Other constructions give examples of blow-ups of P2 at only 10 points which admit auto-
morphisms of positive entropy. These were the first examples of positive entropy automor-
phisms of rational surfaces, due to Bedford–Kim [3] and McMullen [21].

Examples 2.2 and 2.3 typify the two basic constructions of positive entropy automor-
phisms of rational surfaces [24]:

1. Start with a positive entropy automorphism  W Y ! Y , and a finite order automor-
phism g W Y ! Y commuting with  . Then  induces an automorphism of Y= hgi,
which lifts to an automorphism � W X ! X of a resolution X ! Y= hgi. Examples
with X rational can be obtained when Y is an abelian surface.

2. Start with a carefully chosen birational automorphism  W Y 99K Y . By a sequence
of blow-ups, construct a model X on which  lifts to an automorphism � W X ! X .
Many examples with X rational can be obtained when Y D P2.

The result of Theorem 1.3 is that the second of these approaches can never yield primitive
automorphisms in dimension 3. In contrast, blow-up constructions do yield many interesting
pseudoautomorphisms in higher dimensions, as in e.g., [25], [2], .. .

The next example shows that the two-dimensional analog of Corollary 1.6 is not true.

E 2.4 ([4, Theorem 4.2]). – There exist a rational surface S and a positive
entropy automorphism � W S ! S with no �-invariant curves.

We now give some three-dimensional examples illustrating the various cases of
Theorem 1.4 and the more detailed Theorem 1.7.

E 2.5 (Case 1 (a)). – The construction in Example 2.1 generalizes to dimension
three. Let E be an elliptic curve and M 2 SL3.Z/ a linear map with an eigenvalue greater
than 1; then M induces a positive entropy automorphism of A D E �E �E, which can be
primitive.

4 e SÉRIE – TOME 51 – 2018 – No 6



AUTOMORPHISMS OF SMOOTH THREEFOLDS 1515

E 2.6 (Case 1 (b), [24]). – Let ! D .�1C
p
3i/=2 and consider the elliptic curve

E D C=.Z˚Z!/. Then Z=3Z acts onE�E�E via the map �.x; y; z/ D .!x; !y; !z/. The
quotient .E�E�E/=� has canonical singularities of type 1=3.1; 1; 1/. LetX ! .E�E�E/=�

be the crepant resolution given by blowing up each singular point. Then X is a smooth
Calabi-Yau threefold which admits a primitive automorphism of positive entropy, induced
by an element of SL3.Z/.

E 2.7 (Case 2 (a)). – Let S be a projective K3 surface admitting a positive
entropy automorphism W S ! S . Let C be a curve of genus at least 2, and takeX D S�C
with � D  � id. Then �.X/ D 1, the canonical class KX D p�2KC is nef, and the canonical
model of X is the projection � W X ! C , given by the linear system j3KX j. The canonical
fibration realizes � as an imprimitive map.

E 2.8 (Case 2 (b)). – Let  W S ! S be a surface automorphism of positive
entropy and E be a rank-2 vector bundle on S for which there exists an isomorphism
 �. E / ! E . Then  induces a positive entropy automorphism of X D PS . E /. The total
space X is a P1-bundle over S . For example, take  W S ! S to be an automorphism of a
rational surface, and set E D TS or E D O ˚ O.KS /

˝n.

E 2.9 (Case 2 (c), cf. also Theorem 1.3). – Let Y D P2 � P1. By blowing up ten
curves pi � P1, we obtain X D S � P1, where S is a rational surface. If the points pi are
chosen carefully, then S admits a positive entropy automorphism  W S ! S , and X has an
automorphism � D  �id W X ! X . This is consistent with Theorem 1.3, which shows that if
a blow-up of a smooth threefold with no positive entropy automorphisms admits a positive
entropy automorphism, the automorphism must be imprimitive. In this example, we have
X 0 D X in the formulation of case 2 (c).

E 2.10 (Case 3 (a)). – Let  W Y ! Y be a positive entropy automorphism
of a smooth threefold, and let V be  -invariant closed subscheme of Y . Then  lifts to an
automorphism ofX D BlV Y . For example, V might be a -invariant point or smooth curve.

E 2.11 (Case 3 (b), [24]). – Let ! and E be as in Example 2.6, and consider the
order 6 automorphism of E � E � E given by �.x; y; z/ D .�!x;�!y;�!z/. Let X be
a resolution of the quotient .E � E � E/=� . It is checked in [24] that X a smooth rational
threefold and that the action of SL3.Z/ induces primitive automorphisms of positive entropy.
However, these automorphisms are not dynamically minimal in the sense of Definition 1.2,
because some of the exceptional divisors of the resolutionX ! .E�E�E/=� are �-invariant
and can be contracted to terminal singularities. We explore the geometry of this example in
more detail in Section 7.

R. – Since the variety X of Example 2.11 admits an imprimitive automorphism
of positive entropy, it follows from Theorem 1.3 thatX can not be obtained by a sequence of
smooth blow-ups of P3, answering [23, Question 5.11]. Bisi, Cascini and Tasin have recently
given a more direct proof of this fact for a broad class of quotients of abelian threefolds [6].
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3. Preliminaries

To begin, we collect some conventions. Suppose that X and Y are projective varieties.
A map � W X ! Y written with a solid arrow indicates a morphism, while a map
� W X 99K Y denotes a rational map. By an automorphism � W X ! X , we mean a biregular
automorphism. A birational map � W X 99K X is called a birational automorphism. A
pseudoautomorphism � W X 99K X is a birational automorphism that is an isomorphism
in codimension 1, i.e., such that neither � nor ��1 contracts any divisors.

Suppose that X is a smooth, projective variety. If V � X is a closed subscheme of X ,
we write BlV .X/ for the blow-up of X along V . We will say that Y is a smooth blow-up of X
if there is a sequence of maps �i W XiC1 ! Xi , with Xn D Y and X0 D X , such that each
map �i is the blow-up ofXi along a smooth subvariety. This is stronger than the assumption
that Y is smooth and can be obtained as the blow-up of some closed subscheme V � X (cf.
[17, Ex. 22]).

If � W X ! X is an automorphism of a variety, and � W Y ! X is a morphism from some
other variety, we say that � lifts to an automorphism of Y if there exists an automorphism
 W Y ! Y such that�ı D �ı� . Similarly, if� W X ! V is a morphism fromX to another
variety, we say that � descends to an automorphism of V if there exists an automorphism
 W V ! V with � ı  D � ı � .

A normal variety X is said to have terminal singularities if:

1. mKX is Cartier for some integer m;
2. on a smooth resolution � W Y ! X , we can write mKY D f �.mKX /C

P
aiEi , and

the coefficients ai are all positive. Equivalently, given a regular n-form! onX (or more
generally a section of mKX for any m > 0), the pullback of ! to Y vanishes along all
the exceptional divisors.

In dimension two, X has terminal singularities if and only if it is smooth. In higher
dimensions, this class of singularities arises naturally in the course of running the MMP.

WriteN 1.X/ for the R-vector space of divisors on X modulo numerical equivalence, and
N 1.X/Z for the lattice in N 1.X/ spanned by divisors with integral coefficients. The Picard
rank �.X/ is the dimension ofN 1.X/, which is finite. IfD is a divisor or line bundle onX , we
write ŒD� for its numerical class. Dually,N1.X/ is the R-vector space of curves onX modulo
numerical equivalence, ŒC � is the numerical class of a curve C , and NE.X/ � N1.X/ is the
Mori cone, the closure of the span of effective curve classes.

The proof of Theorem 1.4 will require some results from the threefold MMP. We collect
these below as a single result for the convenience of non-specialists.

T 3.1 (The cone theorem for smooth threefolds, etc.). – Suppose that X is
a smooth, projective threefold. There is a countable set of rational curves Ci � X with
�4 � KX � Ci < 0 such that

NE.X/ D NEKX�0.X/C
X
i

R�0 ŒCi �:

Let R be a KX -negative extremal ray; if KX is not nef, then there exists at least one such ray.
There exists a contraction map cR W X ! Z to a projective varietyZ such that a curveC � X is
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contracted to a point by cR if and only if ŒC � lies on the rayR. Moreover, .cR/�. OX / D OZ and
�.Z/ D �.X/ � 1.

The contraction cR is of one of the following types.

(1) (Mori fiber space). We have dimZ < dimX , and the general fiber of cR is a Fano variety.
There are three subcases:

(a) Z is a surface, and the fibers of cR are plane conics;
(b) Z is a curve, and general fibers of cR are del Pezzo surfaces;
(c) Z is a point, and X is a Fano variety of Picard rank 1.

(2) (Divisorial contraction). The map cR W X ! Z is birational, and the exceptional locus
of cR consists of a single irreducible divisor E. One of the following sub-cases occurs:
(E1) Z is smooth, and cR W X ! Z is the blow-up of a smooth curve.
(E2) Z is smooth, and cR W X ! Z is the blow-up of a smooth point.
(E3) E Š P1 � P1 with normal bundle of bidegree .�1;�1/, and the two rulings on E

are numerically equivalent in X . The map � W X ! Z contracts E to a singular
point locally analytically isomorphic to x2 C y2 C z2 C t2 D 0.

(E4) E is isomorphic to a singular quadric cone, with normal bundle OE .E/ D OE ˝

OP3.�1/. The image Z has a singularity locally analytically isomorphic to x2 C
y2 C z2 C w3 D 0.

(E5) E is isomorphic toP2 with normal bundle OP2.�2/, and cR contractsE to a singular
point. The singularity is locally analytically isomorphic to the vertex of the cone
over the Veronese surface in P5, the quotient A3C=.˙1/.

Furthermore, the number of rays R determining contractions of type (1) is finite.

Proof. – The first parts are the cone and contraction theorems, which can be found e.g.,
as [18, Theorem 3.7]. The fact that �.Z/ D �.X/�1 is [18, Corollary 3.17]. The classification
of contractions on a smooth threefold is a fundamental result of Mori [22]; the breakdown of
case (2) into subcases appears as [22, Theorem 3.3]. Note that on a smooth threefold, there
are no flipping contractions.

The final claim on the number of rays giving Mori fiber spaces is an observation of
Wiśniewski [32, Theorem 2.2] (see also [16, Exercise III.1.19]). Let V � N 1.X/ denote
the affine cubic hypersurface defined by D3 D 0. If cR W X ! Z is the contraction of a
KX -negative extremal ray, then �.Z/ D �.X/�1, and in particular c�R.N

1.Z// � N 1.X/ has
codimension 1. IfR determines a Mori fiber space, then dimZ < dimX and so .f �D/3 D 0
for any class D 2 N 1.Z/. In particular f �.N 1.Z// � V is a hyperplane contained in V .
However, V is a degree 3 affine subvariety, and so contains at most 3 hyperplanes. The
number of extremal rays determining Mori fiber space structures is thus at most 3.

R. – The reader interested primarily in automorphisms of smooth blow-ups,
as in Theorem 1.3, need not worry about the MMP. When we consider a contraction
� W X ! Z of the MMP, it can be assumed to be the final of the sequence of blow-ups used
in constructing X , so that � W X ! Z is either the blow-up of a point or a smooth curve.
These correspond to contractions of Type (E1) or (E2) in Theorem 3.1. Lemmas 4.1 and 4.2
below are not needed in this case, but the rest of the argument is essentially the same.
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L 3.2. – Suppose that � W X ! X is a positive entropy automorphism, and that
cR W X ! Z is the contraction of an extremal ray on X . If ��.R/ D R, then � descends to
a automorphism  W Z ! Z. If cR is a divisorial contraction, then  has positive entropy as
well.

Proof. – The composition cR ı � contracts every curve with numerical class on the ray
��.R/ D R, and so has the same fibers as cR itself. Since .cR/�. OX / D OZ , by the rigidity
lemma, cRı� factors through cR, inducing a map W Z ! Z [9, Lemma 1.15 (b)]. Applying
the same argument with cR and cR ı � exchanged shows that the induced map on Z is an
automorphism.

X

cR

��

�
// X

cR

��

Z
 
// Z:

If cR is divisorial, we have a decomposition N 1.X/ D c�RN
1.Z/ ˚ RŒE�, where E is the

exceptional divisor. The divisorE is �-invariant, so the block form of �� with respect to this
decomposition is �� D

�
 � 0
� 1

�
. In particular, the eigenvalues of � coincide with those of ��,

but without one eigenvalue 1. As �� has an eigenvalue bigger than 1, so must  � too.

The geometry of ruled surfaces contained inX plays an essential role in the argument, and
we next recall some basic facts about cones of divisors on ruled surfaces. By a ruled surface
we mean the projectivization of a rank-2 bundle over a smooth curve, sometimes called a
geometrically ruled surface.

P 3.3. – Suppose that C is a smooth curve, E is a rank-2 vector bundle over C
and S D PC . E /, with projection g W S ! C and general fiber f . Then N 1.S/ is generated by
two classes: the class Œf � of a fiber, and the class � D Œ OS .1/�. The cone of curves NE.S/ �
N1.S/ is spanned by two boundary classes: the class Œf � of a fiber, and a second class ˛. The
ray R>0 ˛ satisfies one of the following:

(R1) ˛2 < 0 and R>0 ˛ is represented by a unique irreducible curve.
(R2) ˛2 D 0 and either:

(R2a) there is only a finite set of curves with numerical class in R>0 ˛;
(R2b) there is a map h W S ! P1 such that the fibers of h are all in the class ˛. Every

irreducible curve with class in R>0 ˛ is a rational multiple of a fiber of h.

Dually, the nef cone is spanned by Œf � and a second ray ˇ satisfying ˛ �ˇ D 0. Both NE.S/ and
Nef.S/ are rational polyhedral cones. In Case (R2), the rays ˛ and ˇ coincide.

Proof. – Because ˛ spans an extremal ray on NE.S/, it must be that ˛2 � 0. Moreover,
if ˛2 < 0, then the ray R>0 ˛ is spanned by the class of an irreducible curve and there is only
a single curve B with ŒB� 2 R>0 ˛ [9, Lemma 6.2 (d,e)].

It remains to consider the case in which ˛2 D 0. Suppose that there exist three irreducible
curves B1, B2, and B3 whose classes lie on the ray R>0 ˛. Since ˛2 D 0, these curves are
necessarily pairwise disjoint, and [27, Theorem 2.1] implies that there exists a map h W S ! �

with each of the curves Bi a multiple of a fiber of h. The fibers of g W S ! C are rational
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curves which are not contracted by h, so it must be that � Š P1. Every curve with class
on R>0 ˛ must be a fiber of h.

If ˛2 < 0, then R>0 ˛ is represented by an irreducible curve, and the ray R>0 ˛ is certainly
rational. If ˛2 D 0, write ˛ � af C �, and then ˛2 D .af C �/2 D 2a C �2 D 2a C deg E .
This gives a D � deg E =2, and the ray is again rational. The dual statements for the nef cone
are immediate.

A ruled surface of type (R1) corresponds to the case that E is unstable, while (R2) arises
when E is semistable. In case (R2), we will say that an irreducible curve C is an S -covering
curve if ŒC � lies on the ray R>0 ˛, andC moves in a linear system covering S . We say thatC is
an S -rigid curve if ŒC � is on the ray R>0 ˛, but C is rigid (even if some multiplemC moves).
In Case (R2a), any C with class on R>0 ˛ is S -rigid. In Case (R2b), both S -covering and
S -rigid curves can occur: a general fiber of h is S -covering, while the support of a multiple
fiber of h is an S -rigid curve. In either case, the number of S -rigid curves is finite.

�

Œf �

Nef.S/

NE.S/

ˇ

˛

F 3. Cones in N 1.S/

E 3.4. – We recall some examples of ruled surfaces to illustrate the various possi-
bilities.

1. (R1) Let S D PP1. OP1˚ OP1.n//with n � 1 be a Hirzebruch surface. There is a unique
curve of negative self-intersection representing the class ˛.

2. (R2a) Let C be a curve of genus at least 2, and let E be a general semistable rank
2 bundle on C . The ray ˛ on NE.PC . E // is not represented by any curve [19,
Example 1.5.1].

3. (R2a) Let E be an elliptic curve and E be the non-split extension of OE by OE . The
ruled surface S D PE . E / ! E has a section determined by E ! OE , which is the
unique curve representing the ray R>0 ˛.

4. (R2a) Let E be an elliptic curve and let L be a degree 0 nontorsion line bundle on E.
Consider the rank-2 bundle E D O˚L. The ruled surfaceS D PE . E / has two sections,
determined by the quotients E ! O and E ! L, each representing the class ˛. There
are no other curves with class on R>0 ˛.

5. (R2b) Let S D C � P1 ! C . The class ˛ is represented by all sections C � x, which
are S -covering curves.
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6. (R2b) Let E be an elliptic curve and let M be a degree 0 n-torsion line bundle with
n � 2. Take E D O ˚ M , and S D PE . E / ! E. As in (4), there are two sections
B1,B2 of S , with normal bundlesM andM �. These sections are S -rigid curves. There
is a map h W S ! P1 whose general fibers are n-fold multisections of S ! E. The
general fibers are S -covering curves. The curves B1 and B2 appear as the supports of
the multiple fibers of h.

4. Geometric consequences of positive entropy

We are now in position to begin the proof of Theorem 1.7. Suppose that X is a smooth
threefold, and � W X ! X is an automorphism of positive entropy.

L 4.1 ([33]). – If KX is nef, then � W X ! X satisfies Theorem 1.7.

Proof. – Since KX is nef, the abundance theorem in dimension 3 [14] implies that KX is
semiample and � W X ! X preserves the canonical fibration

X ! Xcan D Proj
M
m�0

H 0.X; OX .mKX //:

If 1 � �.X/ � 2, then Case 2 (a) of Theorem 1.7 is satisfied. If �.X/ D 3, then X is of
general type and has finite birational automorphism group, and in particular can not admit
any positive entropy automorphism. This shows that � must be imprimitive unless �.X/ D 0.

If KX is nef and �.X/ D 0, then KX must be numerically trivial, and � satisfies Case (1)
of Theorem 1.7. The breakdown into subcases is an observation of Zhang [33]. Consider the
Albanese map AlbX W X ! Alb.X/. Since �.X/ D 0, AlbX is surjective with connected
fibers by a result of Kawamata [13, Theorem 1]. The automorphism � is imprimitive with
respect to AlbX unless h0;1.X/ D 0 or h0;1.X/ D 3. In the former case, X is a weak Calabi-
Yau variety, which is case 1 (b) of Theorem 1.7. In the latter case, AlbX must be birational,
and since KX is nef, it must be that X D Alb.X/ and case 1 (a) is satisfied.

From now on, we will assume that KX is not nef. By the cone theorem, there must exist a
KX -negative extremal ray R on NE.X/, and a contraction morphism � W X ! Y .

L 4.2. – Suppose thatX admits the structure of a Mori fiber space� W X ! V . Then
after replacing by an iterate, any automorphism � W X ! X of infinite order is not primitive,
and � satisfies Case 2 (b) of Theorem 1.7.

Proof. – We note first that the map �� W N 1.X/Z ! N 1.X/Z and its inverse .��1/� W
N 1.X/Z ! N 1.X/Z are both defined by integer matrices, and in particular both have
determinant˙1.

By the final claim of Theorem 3.1, the number of extremal rays which determine Mori
fiber contractions is finite, and after replacing � by an appropriate iterate we may assume
that the rayR determining � is fixed by ��. By Lemma 3.2, � descends to an automorphism
of V .

If the image of the � W X ! V is a single point and �.X=V / D 1, it must be that X is a
Fano variety of Picard rank 1. But the condition of Picard rank 1 is incompatible with the
existence of a positive entropy automorphism. If the image of � W X ! V is a curve, then
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�.X/ D �.V / C 1 D 2. This too is incompatible with the existence of a positive entropy
automorphism, because KX is a non-zero 1-eigenvector of �� W N 1.X/ ! N 1.X/ (as X is
uniruled) and �� has determinant˙1.

The final case is that � W X ! V is a map to a surface, and the general fiber is P1. By
Mori’s classification of threefold contractions, � must be a conic bundle. This is Case 2 (b)
of Theorem 1.7.

L 4.3. – Suppose thatX admits a divisorial contraction � W X ! Y with exceptional
divisorE, corresponding to the contraction of an extremal rayR � NE.X/. IfE is �-periodic,
then some iterate �n descends to an automorphism of Y . The map � satisfies either Case 3 (a)
or Case 3 (b) of Theorem 1.7.

Proof. – Suppose that E is �-periodic. Replacing � by �n, we may assume that
�.E/ D E. The map �jE W E ! E is an automorphism of the exceptional divisor. If
the image of N1.E/ ! N1.X/ is 1-dimensional (as in cases (E2), (E3), (E4), and (E5)
of Theorem 3.1), then �n fixes the ray R and �n descends to an automorphism of Y by
Lemma 3.2.

If the image of N1.E/ ! N1.X/ is 2-dimensional, then the restriction ��jE W N1.E/ !

N1.E/ either fixes both boundary rays on NE.E/, or exchanges the two rays. Replacing �
by �2 if needed, we may assume that �jE acts by the identity on N1.E/ and so fixes R. By
Lemma 3.2, � descends to a positive entropy automorphism of Y .

If � is of type (E1) or (E2) in the classification of Theorem 3.1, then Y is smooth and
� satisfies Case 3 (a) of Theorem 1.7. If � is of type (E3), (E4), or (E5), then Y satisfies
Case 3 (b).

R. – When E is �-periodic this is essentially a step in the �-equivariant MMP.
However, when � has infinite order, there might not exist a ��-invariant KX -negative
extremal ray.

For simplicity, let us give a name to the following condition on a positive entropy auto-
morphism � W X ! X :

(A) There exists a divisorial contraction � W X ! Y , with exceptional divisor E, such that
E is not �-periodic.

In this setting, we write f for a general curve contracted by � , with En the divisor �n.E/,
and fn D �n.f / � En. The divisor En is contracted by the map � ı ��n W X ! Y .

R. – If X is a smooth threefold of non-negative Kodaira dimension, every
KX -negative extremal contraction is divisorial. The only divisors that can be contracted
are those in the stable base locus of jKX j, and there are only finitely many such divisors.
Consequently, Condition (A) can never hold if �.X/ � 0, so this condition implies that
X is uniruled. If X is uniruled but not rationally connected, then any automorphism
� W X ! X descends to a birational automorphism of the target of the mrc fibration on X
and so is imprimitive [33]. The results that follow are mostly of interest when X is rationally
connected, although they hold in general.
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Lemmas 4.1, 4.2, and 4.3 show that if � does not satisfy Condition (A), then � satisfies the
claims of Theorem 1.7. It remains to prove the theorem when � does satisfy Condition (A).
In fact, we will show that in this case � must be imprimitive. We next observe that the divisors
�n.E/ must have nonempty intersection.

L 4.4. – Suppose that � W X ! X is an automorphism satisfying Condition (A).
Then there are infinitely many values of n for which En \E is nonempty.

Proof. – Suppose thatEn\E is nonempty for only finitely many values of n. Then there
is someN for which En\E is empty for any n with jnj � N . Replacing � by the iterate �N ,
we may assume that En \ E is empty for all n. Then Em \ En D �m.E \ En�m/ is also
empty for any distinctm and n. Since E �f < 0, we have Em �fm < 0. However, Em �fn D 0
form ¤ n becauseEm andEn are disjoint. This implies the classes of the infinitely manyEm
are linearly independent in N 1.X/, contradicting the finite-dimensionality of N 1.X/.

L 4.5. – Suppose that � W X ! X is a positive entropy automorphism satisfying
Condition (A). Then the image of E under � W X ! Y is not a point.

Proof. – By Lemma 4.4, we may replace� by an iterate and assume thatE1 has nonempty
intersection with E. Suppose that the map � W X ! Y contracts E1 \ E � E to a point.
Let C be a curve contained in this intersection. Since � is a divisorial contraction of a ray
R � NE.X/ and C is contracted to a point by � , the class ŒC � lies on R. On the other hand,
C is contained in E1 and so is contracted by � ı��1, so ŒC � lies on ��.R/. ButR and ��.R/
are distinct rays, a contradiction.

Contractions of types (E2), (E3), (E4), and (E5) all contract a divisor to a point, so if
� W X ! X satisfies Condition (A), the contraction � W X ! Y must be of type (E1), so
that Y is smooth and � is the blow-up of a smooth curve in Y . Lemma 4.5 provides another
proof of the familiar fact that if M has no positive entropy automorphisms, then no variety
obtained by blowing up a set of points in M can have a positive entropy automorphism.

Next we collect some observations about properties of the leading eigenvector of
�� W N 1.X/! N 1.X/ in the case that � has positive entropy.

L 4.6 ([29, Theorem 1 (1)]). – Suppose that � W X ! X is an automorphism of
positive entropy, and let � D �1.�/ be the spectral radius of �� W N 1.X/ ! N 1.X/. After
replacing � with ��1 if necessary, there exists an R-divisor class D such that

(1) D is nef and ��D D �D,
(2) D has numerical dimension 1 (i.e., D2 D 0 in N 1.X/),
(3) D is not a multiple of any rational class.

Moreover, all of these properties hold even after replacing � by any positive iterate �n.

Proof. – Recall from the proof of Lemma 4.2 that �� has determinant 1. Consequently,
if �� has an eigenvalue of norm greater than 1, then it also has one of norm less than 1, and
it follows that ��1 is of positive entropy as well. We may therefore later replace � with ��1

and retain the assumption of positive entropy.
The map �� preserves the strongly convex cone Nef.X/ � N 1.X/, and by a standard form

of the Perron-Frobenius theorem � is in fact a real eigenvalue of ��, and there exists a nef
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class D with ��D D �D [5]. Let �0 D �1.��1/ be the spectral radius of .��1/� W N 1.X/!

N 1.X/. By the same argument, there is a nef class D0 with .��1/�.D0/ D �0D0.

Suppose that D2 and .D0/2 are both non-zero. Then D2 is an eigenvector of �� W
N 2.X/! N 2.X/with eigenvalue �1.�/2, and .D0/2 is an eigenvector of .��1/� W N 2.X/!

N 2.X/ with eigenvalue �1.��1/2. This yields the two inequalities �1.�/2 � �2.�/ and
�1.�

�1/2 � �2.�
�1/. The maps �� W N 1.X/! N 1.X/ and .��1/� W N 2.X/! N 2.X/ are

adjoint, hence �1.�/ D �2.��1/ and �2.�/ D �1.��1/, and so

�1.�/ D �2.�
�1/ � �1.�

�1/2 D �2.�/
2
� �1.�/

4:

By assumption �1.�/ > 1, so this is a contradiction. It must be that either D2 D 0 or
.D0/2 D 0. Replacing � by ��1 if needed, we can assume that D2 D 0.

Because the determinant of �� is˙1, the only possible rational roots of the characteristic
polynomial det.�� � �I/ are � D 1 or �1. The leading eigenvalue is a real number greater
than 1, so it must be irrational, and the eigenvector D is not a multiple of a rational class.

The same arguments apply to �n for any positive integer n, and so we may freely replace
� by suitable iterate in later proofs and still assume that � is irrational, while the eigenvector
D remains unchanged. In particular, �n is irrational for all non-zero n.

Observe that Lemma 4.6 makes use of the fact that � is an automorphism, and not merely
a pseudoautomorphism: in the latter case, the action of �� is not always compatible with
intersections, and D2 is not necessarily an eigenvector.

Taken together, Lemmas 4.4, 4.5, and 4.6, show that Condition (A) is equivalent to the
following condition, up to replacing � with ��1:

(A0) There exists a divisorial contraction � W X ! Y with Y smooth. The exceptional
divisor E is a ruled surface over a smooth curve, and E is not �-periodic. There is a
nef eigenvector D of �� W N 1.X/ ! N 1.X/ with D2 D 0. The largest eigenvalue
of �� is real, and no power �n is rational if n ¤ 0.

L 4.7. – Suppose that � W X ! X is an automorphism satisfying Condition (A0).
After a suitable rescaling, the class DjE is rational. Moreover, .D � E � En/X D 0 for every
non-zero n.

Proof. – Since D is nef, so too is DjE . We have .DjE � DjE /E D .D � D � E/X D 0

by Condition (A0), which shows that DjE is not ample and hence lies on the boundary
of Nef.E/. The first claim is then a consequence of Proposition 3.3, because the nef cone
of a ruled surface is bounded by rational classes. We now assume that DjE is rational.

For the second claim, we compute .D �E �En/X in two different ways:

.D �E �En/X D .DjE
�EnjE

/E(1)

.D �E �En/X D
�
.��/n.D/ � .��/n.E/ � .��/n.En/

�
X

D .�nD �E�n �E/X D �
n.DjE

�E�njE
/E :(2)

The right-hand side of (1) is the intersection of two Q-Cartier divisors on a smooth surface,
hence rational. The right-hand side of (2) is an irrational multiple of a rational number. The
only possibility is that .D �E �En/X D 0.
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L 4.8. – Suppose that S is a smooth projective surface, and that D is a non-zero nef
class inN 1.S/. The set of rays inN 1.S/ represented by an irreducible curveC withD �C D 0 is
finite.

Proof. – It is an easy consequence of the Hodge index theorem that the number of
irreducible curves with D � C D 0 and for which ŒC � is not on the ray R>0D is bounded
by 2.�.S/ � 2/ [28, Lemma 3.1]. Together with the ray R>0D itself, which may or may not
be represented by a curve, this gives at most 2�.S/ � 3 rays in N 1.S/ represented by curves
with D � C D 0.

We retain the notation that if g W S ! C is a ruled surface, with fiber f , then ˛ is a
generator of the bounding ray of NE.S/ not spanned by Œf �, and ˇ is a generator of a ray
of Nef.S/ not spanned by Œf �.

L 4.9. – Suppose that � W X ! X is an automorphism satisfying Condition (A0).
Then the ruled surface E is of type (R2) in the classification of Proposition 3.3, so that ˛ D ˇ.
The restriction DjE is a non-zero multiple of ˛. For every non-zero n, the restriction ŒEnjE � is
a (possibly zero) multiple of ˛.

Proof. – In light of Lemma 4.7, in what follows we always assume that D is nef but not
ample and is normalized so thatDjE is a rational class. There are three cases, which we treat
separately: DjE D 0; DjE is a non-zero multiple of a fiber Œf � of �jE ; DjE is a non-zero
multiple of the nef boundary class ˇ. We will see that the first two of these are impossible.

IfDjE D 0, thenD�E D 0 inN 2.X/, and so .��/n.D�En/ D �n.D�E/ D 0, which implies
thatDjEn

D 0 for any n. LetH � X be a very general member of a very ample linear system.
Each divisor En is contractible, and so is the unique effective divisor with class on the ray
R>0 ŒEn� � N 1.X/. The restriction mapN 1.X/! N 1.H/ is injective by the Grothendieck-
Lefschetz theorem, so the classesEnjH lie on distinct rays inN 1.H/ as well. AsD is nef and
non-zero and H is ample, DjH is nef and non-zero, and we then compute

.DjH
�EnjH

/H D .D �En �H/X D 0:

This shows that DjH vanishes on the infinitely many classes EnjH . By Bertini’s theorem,
sinceH is very general, each intersectionEn\H is an irreducible curve. Since the rays ŒEnjH �
are distinct and represented by irreducible curves, this contradicts Lemma 4.8.

Suppose next thatDjE lies on R>0 Œf �. The restrictionE1jE can be assumed non-zero by
Lemma 4.4, and E1jE is an effective class with .DjE � E1jE /E D 0 by Lemma 4.7. It must
be that ŒE1jE � lies on R>0 Œf � as well. As before,

D �E1 D ��..�
�/.D �E1// D ��.�

�D �E/ D ���.D �E/:

SinceDjE is on the ray R>0 Œf �, the restrictionDjE1
is on the ray R>0 Œf1� � N1.E1/. Then

.DjE1
� EjE1

/E1 D .D � E � E1/X D 0, so the restriction ŒEjE1
� must lie on the ray R>0 Œf1�

in N 1.E1/. The only curves on a ruled surface numerically equivalent to a fiber are fibers,
so any curve contained in E1 \ E is both a fiber of E and a fiber of E1. But since the rays
corresponding to the divisorial contractions of E and E1 are distinct, this is impossible.

The only remaining possibility is thatDjE is a non-zero multiple of ˇ. For a ruled surface
of type (R1), the class ˇ has ˇ2 > 0, but .DjE �DjE /E D 0, and so E must be of type (R2),
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with ˛ D ˇ. At last, 0 D .D �E �En/X D .DjE �EnjE /E . SinceDjE is proportional to ˇ D ˛,
ŒEnjE

� must be a multiple of ˛ for every non-zero n.

In Example 2.9, we have ŒE1jE � 2 R>0 ˛. So we should not hope to prove that this subcase
is impossible; instead we show that if X is of this type, the automorphism � W X ! X is
imprimitive. Indeed, in this and similar examples, the curves contained inE1\E are all fibers
of a map to a surface. We will show that this is always the case: if � is a curve inE1\E, then
there exists a rational fibration X 99K S with � as a fiber.

5. Some semilocal dynamics

We now pause to prove some local dynamical results, dealing with the behavior of an
automorphism � W X ! X in a formal neighborhood of a �-invariant curve, which is not
necessarily fixed pointwise. An extension of the following theorem to higher dimensional
settings appears in [20]; the proof there is by entirely different methods, based on p-adic
dynamics. The result here is somewhat stronger than that of [20], for it remains valid in the
analytic category.

T 5.1. – Suppose that X is a smooth, projective threefold with an infinite order
automorphism � W X ! X . Let C be an irreducible curve with �.C / D C . Suppose that
E � X is an irreducible divisor, containing C and nonsingular at the generic point of C , and
which is not �-periodic. Then there exists a smooth, projective threefold Y with a birational
morphism � W Y ! X such that, after replacing � by an iterate:

(1) The map � lifts to an automorphism  W Y ! Y ;
(2) � W Y n ��1.C /! X n C is an isomorphism;
(3) the strict transform F of E is isomorphic to E;
(4) �. m.F / \  n.F // does not contain C for any m ¤ n.

E 5.2. – Consider the variety X D P2 � �, where � is an elliptic curve. Let
M W P2 ! P2 be an infinite order automorphism of P2 with isolated fixed points, and let
 W � ! � be a non-torsion translation on �, so that � D M �  W X ! X is an infinite
order automorphism. The map M W P2 ! P2 has at least one fixed point p, and the curve
C D p�� is invariant under �, but does not contain any fixed points. If L � P2 is a general
line through p, then E D L � � is a divisor containing C which has infinite order under �.
The divisors �n.E/ are all separated by the single blow-up � W BlC X ! X .

We first sketch the proof of the two-dimensional analog of Theorem 5.1, which suggests
the strategy of the full proof. A sharper two-dimensional statement in which it is not neces-
sary to replace � by an iterate is due to Arnold, but the proof does not readily generalize
to higher-dimensional settings in which � has no fixed points [1]. The results of this section
roughly extend Arnold’s observation to threefolds, at the expense of requiring that � be
replaced by an iterate.
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L 5.3. – Suppose that� W X ! X is an automorphism of a smooth projective surface,
and that p is a fixed point of �. Let C � X be a curve, smooth at p and with infinite order
under �. After replacing � by some iterate, there exists a birational map � W Y ! X such that
the strict transforms of the curves �n.C / do not intersect above p.

Proof. – Choose local analytic coordinates x and y on a neighborhood of p so that C is
defined by x D 0. Let � W CŒŒx; y�� ! CŒŒx; y�� be the pullback map induced by �, so that
�n.C / is defined by �n.x/ D 0.

WriteM D . a cb d / for the linear part of �with respect to the basis given by x and y. If
�
1
0

�
is

not an eigenvector of M n for any n, then the curves Cn D �n.C / all have distinct tangent
directions at p, and blowing up the point p gives the resolution required by the lemma. If
there is some n so that

�
1
0

�
is an eigenvector, we may replace � by �n and suppose that the

coefficient b is 0, so that �.x/ has no y1 term. ThenC is tangent to �n.C / at p for all n. Since
M is invertible, a and d are both non-zero.

We now require an elementary observation on roots of unity. Suppose that a and d are two
non-zero complex numbers. Then there exists an integerm such that for any positive integer k
we have either: .dm/k=.am/ is not a root of unity, or .dm/k=.am/ D 1. Write� � C� for the
group of roots of unity. Then the subgroup faid j g\� of roots of unity of the form aid j for
integers i and j is a finitely generated subgroup of�, and finitely generated subgroups of�
are finite cyclic groups. If we replace a by am and d by dm, the corresponding subgroup is
replaced by itsm-th power. The claim follows by takingm to be divisible by the orders of all
elements of

˚
aid j

	
\�.

Replacing � by the iterate �m, we may then assume that for every value of k, the
quotient dk=a is either not a root of unity, or is equal to 1. The curve C is not invariant
under �, so the function �.x/ must have some term not divisible by x; suppose the lowest-
order such term is fyk , with non-zero f and k � 2. Then � descends to an automorphism
of the two-dimensional vector space V D .x; yk/=.x2; xy; ykC1/, a quotient of ideals
in CŒŒx; y��. Since in the quotient �.x/ D ax C fyk and �.yk/ D dkyk , the matrix for the
action of � on V with respect to the basis given by x and yk is

P D

 
a 0

f dk

!
D a

 
1 0

e ı

!
;

where e D f=a and ı D dk=a. By assumption, the entry ı is either 1 or is not a root of unity.
Then we have

P n D an

 
1 0Pn�1

jD0 eı
j ın

!
:

If ı is not equal to 1, the sum is computed as

P n D an

 
1 0

1�ın

1�ı
e ın

!
:

However, ı is not a root of unity, so the factor 1�ı
n

1�ı
is non-zero, as is e. If ı D 1, then

P n D an

 
1 0

ne 1

!
:
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Either way, we have verified that P n has a non-zero entry in the lower left, so �n.x/ has non-
zero yk term for all n. Then a sequence of blow-ups at the point p separates all of the curves
�n.C /.

E 5.4. – To see why it is necessary to know that dk=a is not a root of unity for
any value of k, consider the following simple example:

�.x/ D x C y2 C f .y/

�.y/ D dy;

where f .y/ is divisible by y3. We might hope to take k D 2 in applying the argument to �,
so that �n.x/ has non-zero y2 term for all n. However, we have

�2.x/ D .x C y2 C f .y//C ..dy/2 C f .dy// D x C .1C d2/y2 C � � �

If d2 D �1, then �2.x/ has no y2 term, and so the �n.x/ do not all have non-zero y2 term as
needed. We must replace � by �2 and try again. After passing to this iterate, �.x/must again
have some non-zero term fyk with k � 3, but it is difficult to control the value of k that
occurs. If dk=a is a root of unity (for the new value of k), some iterate will have vanishing
yk term, and it will be necessary to iterate a second time. The observation on roots of unity
shows that we can pass to a single fixed iterate, and that no matter what value of k appears
in the leading yk term of �.x/, the ratio dk=a is not a root of unity.

E 5.5. – The lemma is no longer true if � is not an automorphism: consider the
map � W P1 � P1 ! P1 � P1 defined on A2 by �.x; y/ D .x; y2/. The curve C defined
by y � x D 0 has �n.C / defined by y � x2

n
D 0. The curves �n.C / and �m.C / have

unbounded orders of tangency at .0; 0/ when m and n are both large, and there is no fixed
blow-up on which these infinitely many curves are separated.

The strategy of the proof of Theorem 5.1 is similar: we consider the map �� W bOX;C !bOX;C induced on the completion of the local ring at C . The proof is again a computation in
coordinates, but this requires some care: although bOX;C is isomorphic (as a local ring) to a
power series ring over the function fieldK.C/, the pullback �� W bOX;C ! bOX;C is not a map
of K.C/-algebras. A second difficulty is that the induced map �� W K.C/ ! K.C/ on the
residue field is not the identity. As a result, we will see that when carrying out power series
manipulations in bOX;C , cancelations of coefficients as in Example 5.4 occur not only when
dk=a is a root of unity, but when dk=a is of the form ! f=��.f /, where ! is a root of unity
and f is an element ofK.C/. To address this difficulty, we must first prove some facts about
the elements of K.C/ of this form.

We begin with some definitions. Suppose that k is an algebraically closed field of charac-
teristic 0, and that K=k is an extension field. Let r W K ! K be an automorphism of K
fixing k. Given a non-zero element f of K and a non-negative integer n, define

�r .f / D f=r.f /

˛r .f; n/ D f r.f / � � � r
n�1.f /:

Here ˛r .f; n/ is defined for any non-negative integer n, with ˛r .f; 0/ D 1. Both �r .�/ and
˛r .�; n/ define multiplicative homomorphisms K� ! K�.
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The next lemma collects some additional identities satisfied by these functions, which will
simplify some of the upcoming calculations.

L 5.6. – Suppose that f 2 K, c 2 k, and n 2 Z�0. Then �r and ˛r satisfy the
following identities.

(1) ˛r .cf; n/ D cn˛r .f; n/,
(2) ˛r .�r .f /; n/ D f=rn.f / D �rn.f /,
(3) f r.˛r .f; n// D ˛r .f; nC 1/ D ˛r .f; n/rn.f /,
(4) ˛r .˛rm.f; n/;m/ D ˛r .f;mn/.

Proof. – For (1),

˛r .cf; n/ D .cf / r.cf / � � � r
n�1.cf / D cnf r.f / � � � rn�1.f / D cn˛r .f; n/:

For (2), we have

˛r .�r .f /; n/ D
f

r.f /

r.f /

r2.f /
�
rn�1.f /

rn.f /
D

f

rn.f /
D �rn.f /:

For (3), simply note that

f r.˛r .f; n// D f r.f r.f / � � � r
n�1.f // D f r.f / r2.f / � � � rn.f /

D ˛r .f; nC 1/ D ˛r .f; n/r
n.f /:

The last claim (4) is checked by

˛r .˛rm.f; n/;m/ D ˛r .f r
m.f / � � � rm.n�1/.f /;m/

D .˛r .f;m// .˛r .r
m.f /;m// � � �

�
˛r .r

m.n�1/.f;m//
�

D
�
f r.f / � � � rm�1.f /

� �
rm.f / � � � r2m�1.f /

�
� � �

�
rm.n�1/C1.f / � � � f mn�1.f /

�
D ˛r .f;mn/:

We say that r W K ! K is shifting over k if for any f in K:

(S1) If ˛r .f; n/ D 1 for some n � 1, then f is an n-th root of unity in k.
(S2) If �r .f / is a root of unity, then �r .f / D 1.

Consider also the related condition

(S10) If f is an element of K with f D rn.f / for some n � 1, then f lies in k.

Suppose that .R;m/ is a local k-algebra with residue fieldK D R=m, and that r W K ! K is a
shifting automorphism. We say that a local k-algebra automorphism � W R! R is r-shifting
if the induced map on the residue field coincides with r W K ! K. The next lemma collects
a few elementary observations about r-shifting automorphisms.

L 5.7. – Suppose that r W K ! K is an automorphism fixing k.

(1) If r satisfies condition (S10), then r satisfies condition (S1).

Suppose further that r W K ! K is shifting, and � W R ! R is an r-shifting automorphism of
a local ring.

(2) If ˛r .f;m/ is an n-th root of unity, then f is an mn-th root of unity.
(3) The iterate rm W K ! K is shifting for any integer m � 1.
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(4) The iterate �m W R! R is rm-shifting for any m � 1.

Proof. – First we check (1). Suppose that r satisfies condition (S10). By (3) of Lemma 5.6,
we have f r.˛r .f; n// D ˛r .f; nC 1/ D ˛r .f; n/rn.f /. If ˛r .f; n/ D 1, then r.˛r .f; n// D 1
as well, and so f D rn.f /. By (S10), we have f 2 k, and so 1 D ˛r .f; n/ D f n and f must
be an n-th root of unity.

Next we prove (2). Suppose that ˛r .f;m/ D !n. Let � be an m-th root of !n in k. Then
˛r .�;m/ D �

m D !n, and so ˛r .f =�;m/ D 1. By (S1), it must be that f=� is an m-th root of
unity. Since � is an mn-th root of unity, f is itself an mn-th root of unity.

To prove (3), we first check condition (S1) for rm. Suppose that ˛rm.f; n/ D 1. Then
˛r .f;mn/ D ˛r .˛rm.f; n/;m/ D ˛r .1;m/ D 1, by (4) of Lemma 5.6. By condition (S1) for r ,
f is anmn-th root of unity in k. That f is in k implies that ˛rm.f; n/ D f n D 1, and f is in
fact an n-th root of unity as needed. Suppose now that �rm.f / D !n is an n-th root of unity.
Then˛r .�r .f /;m/ D �rm.f / D !n by (2) of Lemma 5.6. By (2) above, �r .f / is anmn-th root
of unity. But Condition (S2) for r implies that �r .f / D 1. Then �rm.f / D ˛r .�r .f /;m/ D 1,
as required for (S2).

Claim (4) is immediate from the definition.

L 5.8. – Suppose that � W C ! C is an automorphism of an integral curve over k.
Let r W K ! K be the pullback map on the function fieldK D K.C/. Then some iterate of r is
shifting.

Proof. – If � has finite order, then some iterate of r is the identity, which is trivially
shifting. If � has infinite order, some point z 2 C has infinite, hence Zariski dense, orbit.
Suppose that f is an element ofK with f D rn.f / for some non-zero n, so that f D rmn.f /
for any integerm. Then f .z/ D f .�mn.z// for allm, and f must be constant. Consequently
r satisfies condition (S10) and condition (S1).

To prove (2), suppose that f=r.f / D !n is an n-th root of unity. Then f=rn.f / D 1, and
so f is constant by the argument above. Then f=r.f / D �r .f / D 1, as required.

Say that f 2 K is an r-coboundary if f D �r .g/ for some g. Similarly, say that f is an
n-th r-root of unity if f D !n �r .g/, where!n 2 k is an n-th root of unity and g 2 K. We now
collect some simple observations about r-coboundaries and r-roots of unity, generalizing
properties of the roots of unity in k.

L 5.9. – Suppose that f is an element of K.

(1) The r-roots of unity and r-coboundaries are multiplicative subgroups of K�.
(2) If f is an n-th r-root of unity for some n, then ˛r .f; n/ is an rn-coboundary.
(3) If ˛r .f; n/ D !k�rn.g/ is an rn-root of unity, then there is a root of unity � for which

f D � �r .g/, so that f is an r-root of unity.
(4) Suppose that f and g are two elements ofK. There existsm > 0 such that for all k, either

˛r .f
k=g;m/ is an rm-coboundary, or ˛r .f k=g;m/ is not an rm-root of unity.
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Proof. – Statement (1) is clear. For (2), if f D !n�r .g/, then

˛r .f; n/ D ˛r .!n�r .g/; n/ D !
n
n˛r .�r .g/; n/ D �rn.g/:

Moreover, for (3), suppose that ˛r .f; n/ is a k-th rn-root of unity, so that ˛r .f; n/ D
!k�rn.g/. Let f0 D � �r .g/, where � is chosen so that �n D !k . We have

˛r .f0; n/ D ˛r .��r .g/; n/ D �
n˛r .�r .g/; n/ D !k�rn.g/ D ˛r .f; n/;

and so ˛r .f =f0; n/ D 1. By (S1), we have f=f0 D !n some some n-th root of unity !n, which
gives f D !nf0 D .!n�/�r .g/, and we conclude that f is an r-root of unity.

The set †f D fn W f n is an r-root of unityg is evidently a subgroup of Z.
Let †f;g D fn W f n=g is an r-root of unityg. If †f;g is empty, then (4) holds with m D 1.

Otherwise, notice that if k and ` both lie in †f;g , then we can write f k=g D !m�r .a/ and
f `=g D !n�r .b/ and so

f k�` D
f k=g

f `=g
D
!m

!n
�r .a=b/:

Thus f k�` is an r-root of unity and k � ` is a member of †f . It follows that †f;g is a coset
of †f in Z.

Suppose first that no non-zero power of f is an r-root of unity, so†f D f0g is trivial. Then
there is at most one value k such that f k=g is an r-root of unity; write f k=g D !m�r .h/. We
claim that (4) holds for this value ofm. Indeed, since f k=g is anm-th r-root of unity, by (2)
˛r .f

k=g;m/ is an rm-coboundary. On the other hand, if ` ¤ k, then f `=g is not an r-root
of unity, and by claim (3), ˛r .f `=g;m/ is not an rm-root of unity.

Suppose instead that †f is infinite, and let e 2 †f be the positive generator. Write
f e D !m�r .a/. Fix some k0 in†f;g and write f k0=g D !n�r .b/. If k is any element of†f;g ,
we have k D e`C k0 for some `. Then

f k

g
D
f e`Ck0

g
D .f e/`

f k0

g
D .!m�r .a//

`.!n�r .b// D .!
`
m!n/�r .a

`b/:

This shows that f k=g is an mn-th r-root of unity, independent of k 2 †f;g . By observa-
tion (2), if k 2 †f;g , then ˛r .f k=g;mn/ is an rmn-coboundary. On the other hand, if k 62
†f;g , then f k=g is not an r-root of unity, and so ˛r .f k=g;mn/ is not an rmn-root of unity
by claim (3). This completes the proof of (4).

L 5.10. – Let k be an algebraically closed field of characteristic 0. Suppose thatR is
a regular local k-algebra of dimension 2 with maximal ideal m and residue field R=m Š K,
and that � W R ! R is a local k-algebra automorphism inducing a shifting automorphism
r W K ! K. Let I be a height-1 prime ideal not contained inm2 and which is not periodic under
�. After replacing � by a suitable iterate, there exists an integer N such that for any non-zero
n, we have I C �n.I / D I CmN .

Proof. – Let bR be the completion of R along m. Suppose that J � bR is an ideal with
�.J / D J . We will write �J W J ! J for the restriction of � to J (as a map of bR-modules),
and �J W J=mJ ! J=mJ for the induced map on the quotient by the maximal ideal. For
any such J , the map �J is a �-semilinear map of bR-modules, in the sense that if f 2 bR and
j 2 J , we have �J .fj / D �.f / �J .j /. The induced �J W J=mJ ! J=mJ is an r-semilinear
map ofK D R=m-modules, so that if f 2 K and j 2 J=mJ , we have �J .fj / D r.f /�J .j /.
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Since R is a regular local ring, it is a UFD and every height-1 prime ideal is principal. In
particular, we can take I D .x/with x not an element ofm2. By the Cohen structure theorem,
there exists some y in bR such that bR Š KŒŒx; y�� [11, Proposition 10.16]. This isomorphism is
not canonical: for example, � W KŒŒx; y��! KŒŒx; y�� is not necessarily a map ofK-algebras,
and the coefficient fieldK � KŒŒx; y��may not be fixed by �. It will nevertheless be convenient
to work with bR as a power series ring: we fix some such y and an identification bR! KŒŒx; y��.
Observe that any prime ideal containing I must be either I itself or of the form I C mk ; in
particular, each of the ideals I C �n.I / we are considering is of this form for some k.

Write �.x/ D
P
i;j aijx

iyj and �.y/ D
P
i;j bijx

iyj , with aij and bij in the coefficient

fieldK � bR (note, however, that �.aij / and �.bij / are not necessarily elements ofK). We first
consider the linear part �m W m=m2 ! m=m2. By semilinearity, if c and d are any elements
of R=m, we have

�m.cx C dy/ D r.c/ �m.x/C r.d/ �m.y/

D r.c/.a10x C a01y/C r.d/.b10x C b01y/

D .a10 r.c/C b10 r.d//x C .a01 r.c/C b01 r.d//y;

which shows that if v 2 m=m2 is regarded as a vector with respect to the basis given by x
and y, we have �m.v/ DM r.v/, where M D

� a10 a01
b10 b01

�
. Iterating gives

�nm.v/ DM r.M r.� � �M r.v///

DM r.M/ � � � rn�1.M/rn.v/ D ˛r .M; n/.r
n.v//;

where r acts on matrices entrywise. In particular, �nm.x/ D ˛r .M; n/.x/. If there is no n > 0
for which .1; 0/ is an eigenvector of ˛r .M; n/, then �nm.x/ has a non-zero y component for
all non-zero n. In this case, �n.x/ also has a non-zero y component for non-zero n, and the
lemma holds with N D 1.

If there is a value of n for which �nm.x/ has zero coefficient on y, we can replace � by �n and
then assume that a01 D 0. The fact that � is an automorphism implies thatM is invertible, so
that a10 and b01 are both non-zero. SinceM is upper triangular, so too is ˛r .M; n/ for any n.
If we replace � by �n, then in the linear term, a10 is replaced by ˛r .a10; n/ and b01 is replaced
by ˛r .b01; n/. By Lemma 5.9(4), applied to b01 and a10, there exists some m such that for
every k, either ˛r .bk01=a10; m/ is an rm-coboundary, or ˛r .bk01=a10; m/ is not an rm-root of
unity. Replacing � by an iterate �m replaces the coefficient bk01=a10 with ˛r .bk01=a10; m/, and
so after replacing � by �m, we assume that for every k, if bk01=a10 is an r-root of unity, then
bk01=a10 is an r-coboundary.

Because I D .x/ is not invariant under � by assumption (even if � has already been
replaced by an iterate), it must be that �.x/ is not contained in I . Let a0kyk be the lowest
order non-zero term in �.x/ that is not divisible by x. Because a01 D 0, we have k � 2.

Let J be the ideal .x; yk/ � bR. We have �.y/ 2 m, so �.yk/ 2 mk � J . Similarly,
�.x/ 2 .x; yk/ D J , and so �.J / D J . We now consider the map �J W J=mJ ! J=mJ .
This is an r-semilinear map of K-vector spaces, so that if a 2 K and v 2 J=mJ , we have
�J .av/ D r.a/ �J .v/. Since �J .x/ D a10x C a0kyk and �J .yk/ D bk01y

k , the matrix for �J
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with respect to the basis given by x and yk is

P D

 
a10 0

a0k b
k
01

!
:

The map �J is r-semilinear, so the matrix for the action of �nJ is P r.P / � � � rn�1.P / D
˛r .P; n/. For readability, set e D a0k=a10 and ı D bk01=a10, and consider the matrix

P1 D a
�1
10 P D

 
1 0

e ı

!
:

Then ˛r .P1; n/ D ˛r .a
�1
10 ; n/˛r .P; n/. By the above reduction, if ı is an r-root of unity,

it is an r-coboundary. We claim next that by r-semilinearity of �J , for any n the matrix
for ˛r .P1; n/ with respect to the basis given by x and yk is given by

˛r .P1; n/ D

 
1 0Pn�1

iD0 ˛r .ı; i/r
i .e/ ˛r .ı; n/

!
:

This is correct for n D 1, while we find

˛r .P1; nC 1/ D ˛r .P1; n/r
n.P1/ D

 
1 0Pn�1

iD0 ˛r .ı; i/r
i .e/ ˛r .ı; n/

! 
1 0

rn.e/ rn.ı/

!

D

 
1 0Pn�1

iD0 ˛r .ı; i/r
i .e/C ˛r .ı; n/r

n.e/ ˛r .ı; n/r
n.ı/

!

D

 
1 0Pn

iD0 ˛r .ı; i/r
i .e/ ˛r .ı; nC 1/

!
;

as required. We will show that the lower-left entry of this matrix is non-zero for all non-
zero n, so that �nJ .x/ (and hence �n.x/) has non-zero coefficient on the term yk . Let Sn DPn�1
iD0 ˛r .ı; i/r

i .e/. Then

e C ı r.Sn/ D e C ı r

 
n�1X
iD0

˛r .ı; i/r
i .e/

!
D e C ı

n�1X
iD0

˛r .ı; i C 1/

ı
r iC1.e/

D e C

nX
iD1

˛r .ı; i/r
i .e/ D

nX
iD0

˛r .ı; i/r
i .e/ D Sn C ˛r .ı; n/r

n.e/:

Suppose that Sn D 0. Then ı r.Sn/ D 0, and this implies that e D ˛r .ı; n/r
n.e/, whence

˛r .ı; n/ D e=rn.e/ D �rn.e/. Lemma 5.9(3) implies that ı is an r-root of unity, and in fact
that ı D !n�r .e/ for some !n. However, we have reduced to the case that if ı is an r-root
of unity, then ı is an r-coboundary, and so it must be that ı D �r .h/ for some h. This gives
�r .h/ D !n�r .e/, and so �r .h=e/ D !n. By shifting hypothesis (S2), we have !n D 1, and so
in fact ı D �r .e/. At last, we compute

Sn D

n�1X
iD0

˛r .ı; i/r
i .e/ D

n�1X
iD0

˛r .�r .e/; i/r
i .e/ D

n�1X
iD0

�ri .e/r
i .e/ D

n�1X
iD0

e

r i .e/
r i .e/ D ne;
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which is non-zero because K has characteristic 0 and e ¤ 0. Consequently Sn cannot be 0,
which shows that ˛r .P1; n/, and thus ˛r .P; n/, has non-zero entry in the lower-left. In other
words, for any positive integer n, the iterate �nJ .x/ has a non-zero coefficient on the yk term.

The claim of the theorem now holds with N D k. Since �n.x/ has no terms of pure y of
degree lower than yk , and �n.I / is the principal ideal generated by �n.x/, we have IC�n.I / �
I CmN . On the other hand, the coefficient on yk in �n.x/ is non-zero, so mN � I C �n.I /.

The claim for negative n follows by the same argument. The analog of the matrix P
for ��1 is r�1.P�1/, and the corresponding value of ı is ı0 D r�1.ı�1/. If ı0 D ! �.g/ is
an r-root of unity, then ı D !�.r.g�1//, and so ! D 1. Thus ı0 is either not an r-root of
unity, or is an r-coboundary, and the same argument applies with the same value of N .

This proves that I C �n.I / D I C mN for all non-zero n. The corresponding equality of
ideals in the non-completed ring R is immediate from faithful flatness of R! bR.

Proof of Theorem 5.1. – Suppose that � W X ! X is as in the statement. Then � induces
an automorphism of the local ring �� W OX;C ! OX;C . Because C is smooth, OX;C is
a regular local ring, with residue field K.C/. After replacing � by an iterate, the induced
automorphism r W K.C/ ! K.C/ can be assumed to be shifting by Lemma 5.8, and the
map �� W OX;C ! OX;C is r-shifting. Let m be the maximal ideal in OX;C , and let I � OX;C
the ideal defined by E. As E is a divisor smooth at the generic point of C , I is a height-1
prime contained inm and not containingm2. The divisor E is assumed to have infinite orbit
under � and is irreducible, so the ideal I has infinite order under ��. By Lemma 5.10, there
exists N such that I C �n.I / D I CmN for all non-zero values of n.

We now realize Y by a sequence of smooth blow-ups centered above C . Let I � OX be
the ideal sheaf ofE, and let n � OX be the ideal sheaf of C . The restriction of I to the stalk
at the generic point of C is I � OX;C , while the restriction of n to this stalk is the maximal
ideal m � OX;C . For 1 � i � N define I �i D

Qi
kD1 I C nk .

Let X0 D X , and for 1 � i � N let �i W Xi ! X be the blow-up of X along the ideal
sheaf I �i . Since I �iC1 D I �i �.ICmiC1/, there is an induced morphism�i W XiC1 ! Xi .
Indeed, XiC1 ! Xi is the blow-up of Xi along the curve ��1i .C / \ QE, where QE is the strict
transform ofE onXi . As a result,Xi is smooth for every value of i , and the strict transform
of E on any Xi is isomorphic to E. For example, �1 W X1 ! X is the blow-up of X along C ,
and �2 W X2 ! X1 is the blow-up along E \ F1, where F1 is the exceptional divisor of �1.

We claim that � lifts to an automorphism of Xi for every 1 � i � N . Indeed, in the local
ring OX;C we have �.I C mi / D �.I / C �.mi / � .I C mN / C mi � I C mi . The reverse
inclusion follows from the same argument, and so �.I C mi / D I C mi . This holds at the
generic point of C , so it holds on some open set U � X , and because neither �.I Cmi / nor
ICmi has embedded points onC (except the generic point), this yields ��.I Cni / D I Cni

as ideal sheaves in OX . It follows that �.I �i / D I �i , and � lifts to an automorphism ofXi .
Take Y D XN , so that � lifts to an automorphism of Y and condition (1) of the theorem is
satisfied. Note that the cosupport of I �i is equal toC , and so � W Y ! X is an isomorphism
away from C , as required by (2).

For every n > 0, we have I C �n.I / D I C mN in the local ring OX;C . Thus for each n,
there is an open set Un � X , containing the generic point of C , such that .I C�n.I //jUn

D

.I C nN /jUn
. Let �0 W Y0 ! X be the blow-up of X along I C nN . By [12, Ch. II,
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Exercise 7.12], the strict transforms of EjUn
and EnjUn

are disjoint in ��10 .Un/ � Y0. Since

I �N D I �N�1 � .I C nN /, the map � W Y ! X factors through Y0, and so the
corresponding strict transforms are disjoint in ��1.Un/ as well.

Write Fn for  n.F /. We have seen that �.F \ Fn/ does not contain all of C . For the
intersectionsFm\Fn, we use the fact that � lifts to an automorphism W Y ! Y to conclude
that

�.Fm \ Fn/ D �. 
m.F \ Fn�m// D �

m.�.F \ Fn�m//:

The intersection �.F \ Fn�m/ does not contain all of C , and C is �-invariant, we conclude
point (3). Note that for eachm and n, the image �.Fm \Fn/ is at most a finite set of points,
and so over a very general point of C , the strict transforms of the divisors Em and En are
disjoint.

6. Construction of an equivariant fibration

Suppose now that � W X ! X is an automorphism satisfying Condition (A0). We next
apply Theorem 5.1 to pass to a birational model on which there are no E-rigid, �-periodic
curves.

L 6.1. – Suppose that � W X ! X and E � X satisfy Condition (A0). After
replacing � by an iterate, there exists a birational model � W Y ! X with Y smooth for which:

(1) the map � lifts to an automorphism  W Y ! Y ;
(2) the strict transform F of E on Y is isomorphic to E;
(3) no F -rigid curve is  -periodic;
(4) the strict transform g � F a general fiber f � E satisfies F � g < 0.

Proof. – We will construct a sequence of birational models Xi such that � lifts to an
automorphism �i W Xi ! Xi . Let X0 D X and �0 D �. On each model Xi , we will write
Fi for the strict transform of the divisor E D F0 � X0. Each Fi will be a ruled surface
isomorphic toE, and we letN.�i / be the number of �i -periodicFi -rigid curves. This number
is certainly finite, for there are only finitely many Fi -rigid curves. Suppose that � � Fi is an
Fi -rigid �i -periodic curve. Replacing �i by a suitable iterate, we may assume that � is fixed
by �i . Passing to an iterate does not change the set of periodic curves.

By Theorem 5.1, there exists a birational map �i W XiC1 ! Xi with the property that �i
lifts to an automorphism �iC1 W XiC1 ! XiC1, and such that �i .FiC1 \ �niC1.FiC1// does
not contain � for any non-zero n.

XiC1
�iC1

//

�i

��

XiC1

�i

��

Xi
�i // Xi :

The map �i jFiC1
W FiC1 ! Fi is an isomorphism by Theorem 5.1. Let N� � FiC1 be

the curve mapping to �, so N� is an FiC1-rigid curve. We claim that N� is not �iC1-periodic:
indeed, if �niC1. N�/ D N� for some n, then N� is contained in FiC1 \ �niC1.FiC1/. But �i . N�/ D �,
contradicting (4) of Theorem 5.1.
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Moreover, if  � FiC1 is a �iC1-periodic curve, with �niC1./ D  , then �ni .�i .// D
�i .�

n
iC1.// D �i ./, so �./ is �i -periodic. Hence passing to the blow-up XiC1 does not

introduce any new periodic curve. The curve N� is not �iC1-periodic, so the number of periodic
Fi -rigid curves decreases and N.�iC1/ < N.�i /. By induction, we eventually reach a model
Y D Xn for which there are no Fn-rigid �n-periodic curves.

Let � W Y ! X be the blow-down, and letGi be the exceptional divisors of � . Then there
exist non-negative integers ai such that

F � g D .��E �
X
i

aiGi / � g D E � f �
X
i

ai .Gi � g/:

The right side is negative, because E � f < 0, ai � 0, and g is not contained in any of
the Gi .

L 6.2. – Suppose that � W X ! X and E � X satisfy Condition (A0). Then there
exists some non-zero n and a curve � � En \ E such that � � E is an E-covering curve, and
� � En is an En-covering curve.

Proof. – Let � W Y ! X be the birational model constructed in Lemma 6.1, and
let F � Y ,  W Y ! Y , and g � F be as in the lemma. Consider the set

‡ D f.�; �; n/ W  n.�/ D �g ;

where � and � are irreducible curves in F , and n is a non-zero integer. As in Lemma 4.4, the
fact that F � g < 0 by Lemma 6.1(3) implies that Fn \ F is nonempty for infinitely many n,
and so the set ‡ is infinite.

Suppose first that some curve � � F appears in infinitely many elements of ‡ , so
that there are infinitely many non-zero integers nj with  nj .�/ D �j a curve in F . If
there are distinct i and j for which �i and �j both coincide with some curve �, then
 ni .�/ D  nj .�/ D �. But then  ni�nj .�/ D �. Since there are no  -periodic F -rigid
curves by (2) of Lemma 6.1, the curve � must be F -covering. But then  ni�nj .�/ D � is also
an Fni�nj -covering curve.

Otherwise, the curves �j are all distinct. There are only finitely many F -rigid curves, so
there exist distinct i and j so that �i and �j are both F -covering curves. Then  ni .�/ D �i
and  nj .�/ D �j implies that  ni�nj .�j / D  ni .�/ D �i . Then �i is an F -covering curve
and an Fni�nj -covering curve.

Suppose instead that no curve � appears as the first entry of infinitely many elements of‡ ,
so that infinitely many different curves appear. There are only finitely many F -rigid curves,
so there exists an infinite sequence �1; �2; : : : of F -covering curves such that  ni .�i / D �i is
contained inF . If �i is anF -covering curve for some value of i , then �i is both anF -covering
curve and an Fni -covering curve. If no �i is F -covering, then there must exist distinct i and j
with �i D �j , as there are only finitely many F -rigid curves. But then  ni�nj .�i / D �j , and
�j is both an F -covering curve and a Fni�nj -covering curve.

The map �jFn
W Fn ! En is an isomorphism, and if � � Fn is an Fn-covering curve, then

�.�/ � En is an En-covering curve. The above shows that there is a curve � � F that is an
F -covering curve and an Fn-covering curve for some non-zero n; the curve �.�/ is then an
E-covering curve and an En-covering curve, as required.
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R. – The proof here is somewhat more convoluted than the one sketched in the
introduction. The reason is that some care is required to handle the case when E is a
ruled surface of type (R2b) with both E-rigid curves and E-covering curves, as in (6) of
Example 3.4. In essence, we first blow up any �-invariant E-rigid curves, and then argue as
in the first case discussed in the introduction, when there do not exist any E-rigid curves.

It is worth considering what happens when E is of type (R2a). The argument essentially
hinges on property (2) of Lemma 6.1, the fact that after a sequence of blow-ups we can
assume there are no  -periodic F -rigid curves. In this case, the proof above is finished
after the second paragraph, because there are no F -covering curves. For a ruled surface of
type (R2a), the Fn would all be disjoint on the blow-up, which is impossible by (3) of the
same lemma. This case was illustrated in Figure 1 of the introduction.

The next lemma relies on the action of the automorphism � on the Hilbert scheme
Hilb.X/. Since � does not fix any polarization on X , it seems worth clarifying the nature
of this action. IfH is a polarization on X and P is a Hilbert polynomial with respect to this
polarization, we write Hilb.X IH;P / for the Hilbert scheme parametrizing subschemes ofX
with Hilbert polynomial P . We write Hilb.X/ for the union

S
P Hilb.X IH;P /, a scheme

which is locally of finite type, but has countably many components. The union Hilb.X/ is
independent of the choice of polarizationH , although the labeling of components by Hilbert
polynomials is sensitive to the polarization [26, p. 216]. Write � W Univ.X/ ! Hilb.X/ the
universal family, with � W Univ.X/ � X �Hilb.X/! X for the evaluation map; Univ.X/ is
similarly independent of the choice of polarization.

Given a closed subscheme V � X , write ŒV � for the corresponding point on the Hilbert
scheme Hilb.X/. If � W X ! X is an automorphism, it induces a map �H W Hilb.X/ !
Hilb.X/, by sending the point ŒV � corresponding to a subscheme V to the point Œ�.V /�.
However, in general �.V / can not be deformed to V , and so the corresponding points ŒV �
and Œ�.V /� lie on different components. In particular, the action of �H permutes the infinitely
many components of Hilb.X/ in some complicated way. The key point of the following
lemma is to identify a subvariety V for which �.V / is deformation-equivalent to V , so that
�H fixes the corresponding component of the Hilbert scheme, and we may then consider the
automorphism induced on this single component of Hilb.X/.

L 6.3. – Suppose that � W X ! X and E � X satisfy Condition (A0). Then the map
� W X ! X is imprimitive and satisfies Case 2 (c) of Theorem 1.7.

Proof. – Let �n � En be an En-covering curve. For every value of n, the curve �n moves
in a flat family covering En, and this deformation determines a curve n � Hilb.X/.

By the final part of Lemma 6.2, there is a curve � � E which is both an E-covering curve
and an En-covering curve for some non-zero n. The curves 0 and n intersect at Œ�� and so
lie in the same connected component of Hilb.X/. Because �nH .0/ D n, this component
is invariant under �H . Replacing � by �n, we may assume that the connected component
containing 0 is invariant under �H .

The connected component of the Hilbert scheme containing Œ0� has only finitely many
irreducible components and these are permuted by the map �H , so we may replace � by a
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suitable iterate and assume that there is an irreducible component HilbŒ��.X/ of Hilb.X/
containing all of the curves n and fixed by �H .

Now, the curve n D �nH .0/ is contained in HilbŒ��.X/ for every n. Because the divisors
En are distinct, so too are the curves n, and the irreducible component HilbŒ��.X/ contains
infinitely many curves. It follows that HilbŒ��.X/ has dimension at least 2, and so

dimH 0.�; N�=X / D dimTŒ�� HilbŒ��.X/ � dim HilbŒ��.X/ � 2:

Next we show that in fact equality holds in the above, so that HilbŒ��.X/ has dimension
exactly 2. There is a short exact sequence of normal bundles

0 // N�=E // N�=X // NE=X j� // 0 :

The first term N�=E is a trivial O� , since � � E is an E-covering curves. Let �n be a general
En-covering curve. The intersectionE\En � En is a union ofEn-covering curves. These are
disjoint from �n, and soE ��n D 0. Since � and �n are numerically equivalent, we haveE �� D 0
as well, so that NE=X j� has degree 0. Now consider the exact sequence in cohomology

0 // H 0.�; N�=E / // H 0.�; N�=X / // H 0.�; NE=X j�/
ı // H 1.�; N�=E / :

The first term has dimension 1, while the third term H 0.�; NE=X j�/ has dimension 1 if
NE=X j� is trivial and 0 otherwise. This yields H 0.�; N�=X / � 2, with equality if and only
if dimNE=X j� D 1 and the map ı is 0. We have already seen H 0.�; N�=X / � 2, and so it
must be that equality holds and NE=X j� is trivial. The boundary map ı W H 0.�; NE=X j�/!

H 1.�; N�=E / then computes the extension class of the normal bundle sequence, and since ı is
zero the extension of normal bundles is split and N�=X Š O� ˚ O� is a trivial rank-2 bundle.
We conclude that dim HilbŒ��.X/ D 2, that Œ�� is a smooth point, and thatN�=X Š O�˚ O� is
trivial. In particular, HilbŒ��.X/ is generically smooth.

Take UnivŒ��.X/ to be the component of Univ.X/ lying over HilbŒ��.X/. The image of
�� W UnivŒ��.X/! X contains everyEn, and these divisors are Zariski dense, so the map �� is
surjective. BecauseX and UnivŒ��.X/ both have dimension 3, the map �� is generically finite.

We claim next that �� is in fact birational. Suppose that �� is generically d to 1, with d > 1.
Because � is smooth and irreducible, the irreducible component HilbŒ��.X/ is birational to an
irreducible component ChowŒ��.X/ of the corresponding Chow variety of X , parametrizing
cycles equivalent to � [16, Cor. I.6.6.1]. The map ChowŒ��.X/ ! X is generically d to 1
as well. (More simply, there is an open set U � HilbŒ��.X/ parametrizing smooth cycles
numerically equivalent to �, and the pre-image of a general point of X under ��1

�
is given

by d points in ��1.U /.)
The divisors En are dense on X , so there exists a point x on some En for which the

pre-image of �� consists of d distinct points. One of the points of ��1
�
.x/ parametrizes the

En-covering curve �n through x. Suppose that one of the others parametrizes a cycle � onX .
We have � �En D 0 because � is numerically equivalent to � onX . Since � passes through the
point x 2 En, it must be that � is contained in En. However, En � fn D �1 and En � � D 0.
As fn and � generate the two rays on NE.En/, the intersectionEn ��must be negative unless
� is numerically equivalent to � on En. But then .� ��/En D .� � �/En D 0. This is impossible,
because � and � meet at the point x 2 En. Consequently we must have d D 1, so that
� W UnivŒ��.X/! X is birational, and there exists an inverse map ��1

�
W X 99K UnivŒ��.X/.
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The automorphism �U W UnivŒ��.X/! UnivŒ��.X/ permutes the fibers of UnivŒ��.X/!
HilbŒ��.X/. The schemes HilbŒ��.X/ and UnivŒ��.X/ might not be varieties, for they could
be nonreduced away from Œ��. However, taking the induced maps on the underlying reduced
schemes, we obtain a map � W X 99K UnivŒ��.X/red ! HilbŒ��.X/red which realizes
� W X ! X as an imprimitive automorphism over a 2-dimensional projective variety.

X
�

//

��

X

��

UnivŒ��.X/red //

��

99

�
%%

UnivŒ��.X/red

��

99

�
%%

HilbŒ��.X/red
�H // HilbŒ��.X/red:

Take X 0 D UnivŒ��.X/red and S D HilbŒ��.X/red. The map � W X 0 ! S has all fibers
one-dimensional, since UnivŒ��.X/ ! HilbŒ��.X/ is flat. This shows that � satisfies the
conclusions of Case 2 (c) of Theorem 1.7.

S . – If one is willing to allow X 0 in Theorem 1.7, Case 2 (c) to be a non-
reduced scheme, then the map � W X 0 ! S may be assumed to be flat. However, it is possible
that flatness is lost after replacing HilbŒ��.X/ with HilbŒ��.X/red.

The map �H W S ! S is a positive entropy automorphism of a surface, so a general point
has dense orbit. The fiber over the point �nH .Œ��/ 2 S is a smooth curve isomorphic to �, and
so there is a Zariski dense set of fibers of X 0 ! S which are isomorphic to �. It is possible,
however, that there are some singular or nonreduced fibers.

The fact that HilbŒ��.X/ generically parametrizes smooth curves with trivial normal
bundle does not itself imply that UnivŒ��.X/! X must be birational; it really is necessary to
use the specific geometry of this setting. If Y � P4 is a general smooth cubic threefold, then
through a general point there are six lines `, each with trivial normal bundle. The component
HilbŒ`�.Y / in this case is a smooth surface of general type (a so-called Fano surface), and
the universal family UnivŒ`�.Y /! Y is generically 6 to 1.

E 6.4. – It is worth pointing out an example where the map UnivŒ��.X/red ! X

is not an isomorphism. Consider again Example 2.9, with � W S ! S an automorphism of
a rational surface and � � id W S � C ! S � C an automorphism. Let p 2 S be a fixed
point of � not contained in any .�1/-curve, and let q be any point on C . Take X to be the
blow-up of S�C at .p; q/, with exceptional divisorF , so that ��id lifts to an automorphism
� W X ! X . The divisorial contraction � W X ! Y may be taken to blow down `�C , where
` � S is a .�1/-curve. The exceptional divisorE of � is disjoint from the exceptional divisor
F of X ! S � C .

As the curve � D p0 � C moves to p � C , the flat limit is given as the union of
the strict transform of p � C and a line in the exceptional divisor F , which depends on
the direction from which p0 approaches p. The corresponding component HilbŒ��.X/ is
isomorphic to Blp S , and the universal family UnivŒ��.X/red ! X is birational. However,
the pre-image in UnivŒ��.X/red of p � z for any z ¤ q is 1-dimensional.
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Lemma 6.3 completes the proofs of the theorems claimed in the introduction.

T 1.3. – Suppose that M is a smooth projective threefold that does not admit any
automorphism of positive entropy, and that X is constructed by a sequence of blow-ups of M
along smooth centers. Then any positive entropy automorphism � W X ! X is imprimitive.

Proof. – The proof is by induction on �.X=M/, the number of blow-ups used in
constructing X . When �.X=M/ D 0, we have X D M and there is nothing to check.
Otherwise, let � W X ! Y be the last of the sequence of blow-ups in the construction of X ,
with exceptional divisor E. If E has infinite orbit under �, then � must be the blow-up of
a curve by Lemma 4.5, and � must be imprimitive by Lemma 6.3. Otherwise, some iterate
of � descends to an automorphism  W Y ! Y . Since Y is also a smooth blow-up ofM and
has smaller Picard rank, we conclude by induction that  is imprimitive, which means that
� is imprimitive as well.

T 1.4. – Suppose thatX is a smooth projective threefold and that � W X ! X is an
automorphism of positive entropy. After replacing � by some iterate, at least one of the following
must hold:

(1) the canonical class of X is numerically trivial;
(2) � is imprimitive;
(3) � is not dynamically minimal.

Proof of Theorems 1.4 and 1.7. – If � does not satisfy Condition (A), the theorem was
proved in Section 4 as a consequence of Lemmas 4.1, 4.2, and 4.3. If � does satisfy Condi-
tion (A), it satisfies Condition (A0) by Lemmas 4.4, 4.5, and 4.6. But if � satisfies Condi-
tion (A0), it satisfies 2 (c) of Theorem 1.7 by Lemma 6.3.

C 1.5. – Suppose that � W X ! X is a primitive, positive entropy automorphism
of a smooth, projective, rationally connected threefold. Then there exists a non-smooth three-
fold Y with terminal singularities and a birational map � W X ! Y such that some iterate of �
descends to an automorphism of Y .

Proof of Corollary 1.5. – Let � W X ! Y be a contraction in the MMP for X . Since
� is primitive, � can not be a Mori fiber space by Lemma 4.2. So � must be a divisorial
contraction. If the exceptional divisor E had infinite orbit, then � would be imprimitive.
HenceE is �-periodic, and some iterate of � descends to an imprimitive automorphism of Y .
If Y is not smooth, then the claim is proved. Otherwise, we replace X with Y and repeat the
argument; since the Picard rank decreases at every step, the process must eventually yield a
non-smooth threefold on which � induces an automorphism.

C 1.6. – Suppose that � W X ! X is a primitive, positive entropy automorphism
of a smooth projective threefold. IfKX is not numerically trivial, then there exists a �-invariant
divisor on X .

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1540 J. LESIEUTRE

Proof of Corollary 1.6. – If KX is not numerically trivial and X admits a primitive,
positive entropy automorphism, then KX is not nef by Lemma 4.1. Let � W X ! Y be a
contraction of the KX -MMP. The map � is not a Mori fiber space, because X admits a pri-
mitive automorphism of infinite order. Hence � is a divisorial contraction. If the exceptional
divisor E of � is not �-periodic, then �.E/ is a curve by Lemma 4.5, and � is imprimitive
by Lemma 6.3. Hence E must be �-periodic, and the divisor

S
n �

n.E/ is �-invariant.

Note that in Corollary 1.6 it is not necessary to replace � by an iterate to obtain the
conclusion. If E is invariant for some iterate �m, then

Sm�1
nD0 �

n.E/ is invariant for �.

7. The problem with flips

A shortcoming of the proof of Theorem 1.7 is that if a divisorial contraction � W X ! Y

gives rise to a singular variety Y , no further progress is possible. There are two basic obstruc-
tions to extending the arguments to the singular case. First, running the MMP on Y might
require performing a flip � W Y 99K Y C. If the flipping curve C � Y has infinite orbit under
�, then � induces only a pseudoautomorphism of Y C. Second, even if there is a divisorial
contraction � W Y ! Z, the exceptional divisor might not be isomorphic to a smooth ruled
surface E and Lemma 4.7 does not apply; some contractions of this type are described in
[18].

To illustrate the difficulty with flips, we describe the first steps of a run of the MMP for
Example 2.11 of Oguiso and Truong. Let! D .�1C

p
3i/=2 andE D C=.Z˚!Z/. Consider

the action of � W E ! E given by multiplication by �!, a sixth root of unity. There are six
points on E with nontrivial stabilizer under the action of � :

1. Stab.x/ D h�i: f0g,
2. Stab.x/ D

˝
�2
˛
: f.2C !/=3; .1C 2!/=3g,

3. Stab.x/ D
˝
�3
˛
: f1=2; .1C !/=2; !=2g.

Consider the threefoldE�E�E, with the diagonal action of � , denoted �� W E�E�E !
E �E �E. Let r W E �E �E ! Xsing be the quotient by this cyclic action. A point .x; y; z/
on E � E � E is fixed by �k� if and only if each of its entries is fixed by �k , so the points
on E �E �E with nontrivial stabilizer are:

1. Stab.x; y; z/ D h��i. There is a unique point of this form, giving rise to a singularity
of type 1=6.1; 1; 1/ on Xsing.

2. Stab.x; y; z/ D
˝
�2�
˛
. There are 3 points fixed by �2 onE, and hence 33�1 D 26 points

with stabilizer
˝
�2�
˛
. The orbits of these points have size 2, giving 13 singularities of type

1=3.1; 1; 1/ on Xsing.
3. Stab.x; y; z/ D

˝
�3�
˛
. There are 43 � 1 D 63 points with stabilizer �3�. The orbits have

size 3, giving 21 singularities of type 1=2.1; 1; 1/ on Xsing.

Let us briefly recall some standard facts about singularities of type 1=d.1; 1; 1/. Let ! be
a d -th root of unity, and let Z=dZ act on CŒx; y; z� by multiplication by ! in each variable.
The ring of invariants of the action is generated by monomials xiyj zk with i C j C k D d ,
and so the singularity is isomorphic to that of the projective cone over the degree-d Veronese
embedding P2 ! PN .
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Write Ycone for this cone, and let � W Yres D PP2. O ˚ O.d// ! Ycone be blow-up at the
cone point. The singularity 1=d.1; 1; 1/ is resolved by a single blow-up, and the exceptional
divisor E is isomorphic to P2, with normal bundle OP2.�d/. WriteKYres D �

�KYcone C aE,
so KYres C E D ��KYcone C .a C 1/E. By adjunction we have KE D .a C 1/EjE

. But

KE D OP2.�3/, while EjE D OP2.�d/, yielding a D 3
d
� 1.

When d D 2 we have a D 1
2

, which shows that the singularities of type 1=2.1; 1; 1/ are
terminal. When d D 3 we obtain a D 0, and so 1=3.1; 1; 1/ is canonical but not terminal.
At last, when d D 6, this yields a D �1

2
, and so the singular point of type 1=6.1; 1; 1/ is

klt but not canonical. The map � W Xsmth ! Xsing which blows up each singular point is a
resolution. WriteE6 for the exceptional divisor over the 1=6.1; 1; 1/ point, andEi3 andEj2 for
the exceptional divisors over the singular points of type 1=3.1; 1; 1/ and 1=2.1; 1; 1/. Let `6, `i3,
and `j2 be lines in the corresponding exceptional divisors. Since r is étale in codimension 1
and KE�E�E D 0, the computation of the discrepancies gives KXsmth D

1
2

P
i E

i
2 �

1
2
E6.

Now consider a run of the MMP on Xsmth. Each of the curves `j2 has KXsmth � `
j
2 D �1

and spans an extremal ray on NE.Xsmth/. There is a sequence of divisorial contractions of
type (E5), contracting all of the divisors Ej2 and yielding a variety Xterm. The model Xterm

can be obtained directly from Xsing by resolving the singularities of types 1=6.1; 1; 1/ and
1=3.1; 1; 1/, but not blowing up the terminal singularities of type 1=2.1; 1; 1/. The canonical
class is given by KXterm D �

1
2
E6, and the anticanonical class is effective.

LetC be the strict transform onXterm of NC D r.E�0�0/ � Xsing. Since NC passes through
the singularity of type 1=6.1; 1; 1/, C meets the exceptional divisorE6, and soKXterm �C < 0.
We claim that in fact C spans a KXterm -negative extremal ray on NE.Xterm/.

Let Ssing D .E � E/=� , and let �23 W Xsing ! Ssing be the projection onto the last
two coordinates. Consider the composition N�23 W Xterm ! Xsing ! Ssing. The fiber
of �23 over .0; 0/ is the curve NC . There are three singular points of Xsing on r.E � 0 � 0/,
of types 1=6.1; 1; 1/ and 1=3.1; 1; 1/, and 1=2.1; 1; 1/. The first two of these are blown up
on Xterm, and so N��123 .0; 0/ � Xterm is the union of C and two exceptional divisors E6
and E03 , which are disjoint and meet C at one point each. Since the relative canonical
classKXterm=Ssing is N�23-numerically equivalent to�1

2
E6, the onlyKXterm=Ssing -negative curve

contracted by N�23 is C . In particular, there exists a flip � W Xterm 99K XC of C over Ssing.
The same map is a flip for theKXterm -MMP. Observe that C passes through a singular point
of Xterm, as any flipping curve on a terminal threefold must.

It is straightforward to explicitly describe the flip � by a resolution; the map is locally a
familiar one, described e.g., in [9, §6.20]. LetX0term denote the threefold obtained by blowing
up the unique singular point on C , with exceptional divisor E02 . There is a resolution of �
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illustrated in the following diagram.

W

h

||

i

!!

X0term
 

//

�

��

X 0

�C

��

Xterm
� //

f
""

XC

g
}}

Z:

The map � is the blow-up at the singular point onC , with exceptional divisorE02 isomorphic
to P2. The strict transform C 0 of C on X0term is a rational curve which does not meet any of
the singular points of X0term. The normal bundle of C 0 is OP1.�1/˚ OP1.�1/, and the map
 W X0term 99K X 0 is the standard flop of C 0: h blows up C 0, with exceptional divisor F
isomorphic to P1 � P1, and i contracts F along the other ruling. The strict transform of E02
on X 0 is isomorphic to a Hirzebruch surface F1, and �C is the contraction of E02 to P1.

There is an action of SL3.Z/ on Xterm by automorphisms, and the image of C under any
automorphism is another flipping curve. Since C has infinite orbit under the action of this
group, there are infinitely many flipping curves on Xterm. If � is such an automorphism,
the induced map �C W XC 99K XC might no longer be an automorphism; it becomes
indeterminate along the flipped curve. We next turn our attention to Question 2 from the
introduction.

Observe that for a surface of non-negative Kodaira dimension, the number of KX -nega-
tive extremal rays on NE.X/ is always finite: if KX is numerically equivalent to an effective
divisor D, any KX -negative irreducible curve must be one of the finitely many components
ofD. If dimX D 3 and �.X/ � 0, there are again only finitely divisors that can be contracted,
and a given divisor can be contracted in only finitely many ways. Since a non-uniruled three-
fold can not admit a Mori fiber space structure, a variety with infinitely many KX -negative
rays must contain infinitely many flipping curves. The example Y will be constructed as a
branched cover of the variety Xterm.

T 7.1. – There exists a terminal, projective threefold Y of non-negative Kodaira
dimension with infinitely many KY -negative extremal rays on NE.Y /.

Proof. – Let N�3 W Xterm ! Xsing ! E=� Š P1 be the third projection, with 0 2 P1 the
image of 0 2 E. The curveC lies in the fiber N��13 .0/. There are infinitely many flipping curves
for the Xterm-MMP over P1, since the orbit of C under the subgroup of Aut.Xterm/ induced
by matrices of the form

M D

 
SL2.Z/ 0
0 1

!
is still infinite, and this subgroup commutes with N�3. All the curves in this orbit are
KXterm -flipping curves contained in the fiber N��13 .0/. Now, let � be a curve of genus at
least 1 with a map ˇ W � ! P1 not ramified over any point of the finite set �3.SingXsing/.
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Let Ň W Y ! Xterm be the branched cover of Xterm constructed as the pullback family
Y D Xterm �P1 �.

Y
Ň
//

N�

��

Xterm

N�3
��

�
ˇ
// P1:

Because the ramification locus of Ň is disjoint from the singularities of X , the variety Y has
only terminal singularities. The general fibers of N� are smooth abelian surfaces E � E, and
since � is not rational, through a general point of Y there does not pass any rational curve,
so Y is not uniruled. Let E16 ; : : : ; E

d
6 be the pre-images of the divisor E6 on Xterm, where

d D deg.ˇ/. We have

KY D Ň
�KXterm CR D �

1

2

dX
iD1

Ei6 C N�
�R� ;

where R� � P1 is the ramification divisor of ˇ. Let  be any point with ˇ./ D 0. The fiber
of N� over  is isomorphic to the fiber of Xterm over 0 2 P1, and the restriction of KY=� to
this fiber is isomorphic to the restriction of KXterm=P1 . The curves in Y which map to C and
its orbit under Aut.Xterm/ are all contracted by N� , and so giveKY -negative curves which are
extremal on NE.Y=�/. These curves can be flipped over �, and indeed define KY -flipping
contractions. As a result, there are infinitely manyKY -negative extremal rays on NE.Y /.

The fiber N��1./ is a union of six two-dimensional components, illustrated in Figure 4.
One is a rational surface S0, which is a partial desingularization of the quotient .E �E/=� .
There are five singularities of Y of type 1=2.1; 1; 1/ lying on S0; as singularities of the surface,
these points are ordinary double points. The other five components are the pre-images on Y
of the exceptional divisors of the map Xterm ! Xsing, and are mutually disjoint. One of
these,E6, is the resolution of a 1=6.1; 1; 1/ singularity, while the other four,Ei3, are resolutions
of 1=3.1; 1; 1/ singularities. The divisorE6 intersects S0 along a .�6/-curve in S0, while theEi3
intersect along .�3/-curves. The flipping curves are contractible curves on S0 which pass
through a singular point Y and meet the divisor E6. These lift to certain .�1/-curves on the
minimal resolution of S0.

8. Threefolds with two commuting automorphisms

If X is a projective threefold, the rank of an abelian subgroup of Aut.X/ is at most 2
[10, Théorème I]. The study of threefolds achieving this upper bound, i.e., admitting two
commuting, positive entropy automorphisms, is a problem of particular interest. When
X is not rationally connected, it is a result of Zhang that X must be birational to a torus
quotient [34].

In this section we point out applications of Theorem 1.4 in the case that X is smooth and
rationally connected. These rely on the following result in the two-dimensional case.
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�

E �E

S0

E6

�

Ei3

�

�

�

�

�

C

F 4. The family N� W Y ! �

P 8.1 ([10]). – Suppose that S is a smooth projective surface and that � and 
are two commuting, positive entropy automorphisms of S . Then there exist integersm and n so
that �m D  n.

In analogy with Theorem 1.4, we show that if � W X ! X and W X ! X are commuting,
positive entropy automorphisms of a smooth threefold, then either � and  must both be
imprimitive over the same surface (in which case Proposition 8.1 gives further results), or
there is a singular variety Y on which � and  both induce automorphisms. In this case we
can say nothing more, though it is perhaps evidence that even in the rationally connected
case, quotient constructions may be the best source of examples.

T 8.2. – Suppose that X is a smooth, rationally connected threefold and that �
and are commuting, positive entropy automorphisms ofX . After replacing both � and with
appropriate iterates, either:

(1) there exists a birational morphism � W X ! Y to a singular threefold Y with terminal
singularities, and with �.Y / < �.X/, such that � and both induce automorphisms of Y ;
or

(2) there exists a map � W X 99K V with dimV < dimX and an automorphism
� 2 Aut.X=V / such that � D  ı � .

If M is a smooth threefold with no positive entropy automorphisms and X is a smooth blow-up
of M , (2) must hold.

Proof. – Let � W X ! Y be the first step of the MMP applied to X . Suppose first that
� W X ! Y is a Mori fiber space. By Lemma 4.2, after replacing � and  by suitable
iterates, we may assume that Y is a surface and that both � and descend to automorphisms
N� and N on Y . According to results on relative dynamical degrees [30], since the fibers are
one-dimensional, the maps N� and N are again of positive entropy. Again replacing � and
 by iterates, by Proposition 8.1 we may assume that N� D N . Then � D � ı  �1 is an
automorphism of X over Y , and outcome (2) of the theorem is satisfied.
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We must now treat the case in which � W X ! Y is a divisorial contraction, with
exceptional divisor E. Suppose that E is either �-periodic or  -periodic; replacing by an
iterate and exchanging � and  if needed, we may without loss of generality assume that E
is fixed by �. Then for any n > 0, we have �. n.E// D  n.�.E// D  n.E/, so that n.E/ is
�-invariant. But � can fix at most finitely divisors, and it must be that the divisors  n.E/ are
only a finite set, soE is  -periodic. After replacing  by an iterate, we may assume thatE is
invariant for both � and  , and then by Lemma 3.2 the automorphisms � and  descend to
commuting automorphisms of Y . If Y is not smooth, this establishes case (1). If Y is smooth,
we replace X with Y and continue by induction.

Suppose instead that E has infinite orbit under both � and  . Let � � E be a general
E-covering curve. By the proof of Lemma 6.3, after replacing � and  by suitable iterates,
both are imprimitive over the same surface HilbŒ��.X/red:

X

��

�; 
// X

��

HilbŒ��.X/red
N�; N 
// HilbŒ��.X/red:

If N� and N do not coincide, then the maps N� and N lift to commuting positive entropy auto-
morphisms of the minimal resolution S of HilbŒ��.X/. By Proposition 8.1, after replacing �
and by suitable iterates, the maps N� and N coincide. Then �ı �1 is an automorphism ofX ,
which fixes the fibers of � W X 99K S , and � ı  �1 D � 2 Aut.X=S/ is an automorphism
of X over S .

E 8.3. – Let S be a rational surface with an automorphism � W S ! S , and let �
be an infinite order automorphism of P1. Then we can take � D � � id and  D � � � to
obtain two commuting automorphisms of X D S � P1.
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