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COMPACT LEAVES OF CODIMENSION ONE
HOLOMORPHIC FOLIATIONS
ON PROJECTIVE MANIFOLDS

 B CLAUDON, F LORAY, J V PEREIRA
 F TOUZET

A. – This article studies codimension one foliations on projective manifolds having a
compact leaf (free of singularities). It explores the interplay between Ueda theory (order of flatness
of the normal bundle) and the holonomy representation (dynamics of the foliation in the transverse
direction). We address in particular the following problems: existence of foliation having as a leaf a
given hypersurface with topologically torsion normal bundle, global structure of foliations having a
compact leaf whose holonomy is abelian (resp. solvable), and factorization results.

R. – Cet article étudie les feuilletages de codimension 1 sur les variétés projectives admettant
une feuille compacte (ne rencontrant pas le lieu singulier du feuilletage). Les interactions entre la
théorie de Ueda (ordre de platitude du fibré normal de la feuille) et la représentation d’holonomie
(dynamique du feuilletage dans la direction transverse) sont explorées. Nous envisageons en particulier
les problématiques suivantes : existence de feuilletages admettant pour feuille une hypersurface donnée
possédant un fibré normal topologiquement de torsion, étude de la structure globale des feuilletages
ayant une feuille compacte d’holonomie abélienne (resp. résoluble) et résultats de factorisations.

1. Introduction

Let X be a complex manifold and F a codimension one singular holomorphic foli-
ation on it. If Y is a compact leaf of F (the foliation is regular along Y ) then the
topology/dynamics of F near Y is determined by the holonomy of Y . Given a base point
p 2 Y and a germ of transversal .†; p/ ' .C; 0/ to Y at p, we can lift paths on Y to nearby
leaves in order to obtain the holonomy representation of F along Y

� W �1.Y; p/ �! Diff.C; 0/ :

This work was initiated during a research stay of the first author at IMPA. He would like to warmly thank the
institute for its hospitality and excellent working conditions. The third author is supported by CNPq and FAPERJ,
and BC, FL and FT benefit from support of CNRS and ANR-16-CE40-0008 project “Foliage”.
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1458 B. CLAUDON, F. LORAY, J.V. PEREIRA AND F. TOUZET

The purpose of this article is to investigate which representations as above can occur as
the holonomy representation of a compact leaf of a codimension one foliation on a compact
Kähler manifold, and how they influence the geometry of the foliation F .

1.1. Previous results

To the best of our knowledge the first work to explicitly study compact leaves of foliations
on compact manifolds is due to Sad [38]. One of his main results, [38, Theorem 1], is stated
below.

T 1.1. – Let C0 � P2 be a smooth curve of degree d � 3 and P be a set of d2 very
general points on C0. If S is the blow-up of P2 along P and C is the strict transform of C0 in S
then C is not a compact leaf of any foliation on S .

This result answered negatively a question of Demailly, Peternell and Schneider [20,
Example 2] about the existence of foliations having a compact leaf on the blow-up of P2

along 9 very general points. Sad (loc. cit.) obtained other results for the blow-up of smooth
cubics which were later subsumed by the following result of Brunella build upon the classi-
fication of foliations according to their Kodaira dimension, see [7, Chapter 9, Corollary 2].

T 1.2. – Let F be a foliation on a projective surface S and suppose F admits an
elliptic curveE as a compact leaf. Then, eitherE is a (multiple) fiber of an elliptic fibration or,
up to ramified coverings and birational maps, E is a section of a P1-bundle. In the former case,
F is the elliptic fibration itself, or is turbulent with respect to it; and in the latter case, F is a
Riccati foliation.

Bott’s partial connection induces a flat connection on the normal bundle of compact
leaves of foliations. Hence, our subject is also closely related to the study of smooth divi-
sors with numerically trivial normal bundle on projective or compact Kähler manifolds.
Serre constructed examples of curves on ruled surfaces with trivial normal bundle, having
Stein complement but without non constant regular (algebraic) function [23, Chapter VI,
Example 3.2]. Precisely, given an elliptic curve C , consider the unique unsplit extension
0 ! OC ! E ! OC ! 0; on the total spaceX D P.E/, the curve Y ' C defined by
the embedding OC ! E provides us with such an example. Motivated by these examples,
Hartshorne asked if the complement of a curveC on a projective surface S is Stein whenever
C 2 � 0 and S � C contains no complete curves [23, Chapter VI, Problem 3.4]. This question
was answered negatively by Ogus, who exhibits examples of rational surfaces [35, Section 4]
containing elliptic curves with numerically trivial normal bundle, without complete curves in
its complement, and which are not Stein. Both Ogus and Serre examples carry global foliations
smooth along the curves. A variation on Ogus example is presented in Example 4.5 below.

Ueda carried on the study of smooth curves on surfaces with numerically trivial normal
bundle, looking for obstructions to the existence of certain kind of foliations smooth
along the curves. The Ueda type k 2 f1; 2; 3; : : : ;1g of Y (utype.Y / for short) is, roughly
speaking, defined by the first infinitesimal neighborhood of Y for which the flat unitary
foliation of NY does not extend as a foliation with linearizable holonomy. See Section 2.1
for a precise definition. There, we also review some of the results of Ueda and Neeman
following [42] and [34].
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1.2. Existence

Although most of our results deal with the global setting, where X is assumed to be
projective or compact Kähler, we first prove the existence of a formal foliation in the semi-
local setting.

T A. – Let Y � X a smooth curve embedded in a germ of surface X such that
Y 2 D 0. If one denotes by Y.1/ the formal completion of X along Y , then Y is a leaf of a
(formal) regular foliation OF on Y.1/.

Turning to the global setting, our second result concerns the existence of foliations smooth
along hypersurfaces with topologically torsion (or flat) normal bundle.

T B. – LetX be a compact Kähler manifold and Y be a smooth hypersurface inX
with normal bundle NY . Assume there exists an integer k and a flat line-bundle L on X such
that L jY D NY ˝k . If utype.Y / � k, then there exists a rational 1-form � with coefficients
in L

� and polar divisor equal to .kC 1/Y . Moreover, if r is the unitary flat connection on L
�,

thenr.�/ D 0, and� defines a transversely affine foliation onX which admits Y as a compact
leaf.

We refer to [18] for the notion of transversely affine foliation.

When utype.Y / > k, where k is the analytical order of NY , this result is due to Neeman
[34, Theorem 5.1, p. 109], where it is proved that Y fits into a fibration.

T 1.3. – LetX be a compact Kähler manifold andY be a smooth hypersurface inX
with torsion normal bundle of order k. Assume that the Ueda type of Y satisfies utype.Y / > k,
then utype.Y / D1 and kY is a fiber of a fibration on X .

The reader interested in other fibration existence criteria may consult [21, 36, 40]. Remark
that, when NY is analytically trivial, Theorem B implies the existence of global foliations
on X for which Y is a compact leaf. This fact is in contrast with Theorem 1.1. Sufficient
and necessary conditions for the existence of a global foliation on compact Kähler mani-
fold having a given compact leaf remain elusive. For instance, we are not aware of smooth
hypersurfaces with torsion normal bundle and Ueda type strictly smaller than the order of
the normal bundle which are not compact leaves. For more on this matter see the discussion
at Section 4.4.

1.3. Abelian holonomy

For arbitrary representation � W �1.Y; p/ �! Diff.C; 0/ there exists a complex mani-
fold U containing Y as a hypersurface, and a foliation F on U leaving Y invariant and with
holonomy representation along Y given by �, see [25]. If we start with an abelian representa-
tion �, it is well-known (see Section 5.4) that there exists a formal meromorphic closed 1-form
in Y.1/, the completion of U along Y , defining F jY.1/. In many cases there do not exist

(convergent) meromorphic closed 1-forms defining F on U , even if we restrict U . Our third
result says that, for codimension one foliations on projective manifolds, this can only happen
when the holonomy is linearizable.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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T C. – Let X be a projective manifold and Y be a smooth hypersurface in X .
Assume there exists a foliation F on X admitting Y as a compact leaf. If the holonomy of F

along Y is abelian, then at least one of the following assertions holds true.

1. There exist a projective manifold Z and a generically finite morphism � W Z ! X such
that �� F is defined by a closed rational 1-form.

2. The holonomy of F along Y is formally linearizable, NY has infinite order and
utype.Y / D1.

Q 1.4. – Let F be a foliation on a projective manifold fulfilling the hypothesis
of Theorem C. Does F automatically satisfy item 1?

We can exclude the existence of hypothetical counter-examples under a more demanding,
but quite natural hypothesis, see Section 6.5. We also obtain similar results (under additional
restrictions) if the holonomy of F along Y is only supposed to be solvable in Section 7.

1.4. Factorization

If Y is a genus g > 1 curve, then there is no difficulty to construct non-abelian representa-
tions of�1.Y / in Diff.C; 0/. IfY is a higher dimensional manifold and � W �1.Y /! dDiff.C; 0/
is a non virtually abelian representation then we are able to prove that the representation
factors through a curve in the following sense (see Section 8 for a more detailed discussion).

T D. – Let Y be a compact Kähler manifold and � W �1.Y / ! dDiff.C; 0/ a
morphism. SupposeG D Im � is not virtually abelian, then its centerZ.G/ is necessarily a finite
subgroup and the induced representation �0 W �1.Y /! G=Z.G/ factors through an orbicurve.

Theorem D admits a foliated counterpart.

T E. – LetX be a compact Kähler manifold and Y be a smooth hypersurface inX .
Assume there exists a foliation F on X admitting Y as a compact leaf whose normal bundle
has finite orderm. Suppose moreover that utype.Y / � m, and that the holonomy representation
�1.Y / ! dDiff.C; 0/ has a non virtually abelian image. Then, there exists a rational map
� W X 99K S to a projective surface S and a foliation G on S such that F D �� G .

We emphasize that this statement includes the case where Y has analytically trivial normal
bundle and also the one where Y is a regular fiber (multiple or not) of a fibration f W X ! C .
This latter case corresponds to utype.Y / > m by virtue of Theorem 1.3.

Q 1.5. – Let Y be a smooth hypersurface on a projective manifold X . Assume
that Y is a compact leaf of a codimension one foliation F on X and that its holonomy
representation is not virtually abelian. Is it true that F is the pull-back of a foliation on a
projective surface?

The present work stemmed from our attempts to answer this last question. Theorem E
is the most compelling evidence in its favor we found so far. Moreover, we can provide a
complete answer to both questions listed above under quasi-smoothness assumptions (see
Section 9).
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1.5. Structure of the article

Section 2 aims at recalling the basics of Ueda theory for compact hypersurfaces with
numerically trivial normal bundle and gives an account of results by Ueda and Neeman used
later. The existence of formal foliations is discussed in Section 3 where Theorem A is proved.
The analogous problem in the global setup is approached in Section 4 where we establish
Theorem B. There we also exhibit a variant of an example by Ogus of a curve contained in a
surface whose complement has no compact curves but is not Stein (Example 4.5). Foliations
with abelian holonomy along a compact leaf are studied in Sections 5 and 6. The former
section recalls the classifications of solvable subgroups of Diff.C; 0/ and Theorem C is proved
in the latter. In Section 7, we try to push one step further the study of foliations according
to the complexity of the holonomy and prove some structure results when the holonomy
is solvable. Factorization results such as Theorem E are proved in Section 8 and the case
of quasi-smooth foliations is treated in Section 9. The paper ends with an appendix on the
extension of projective structures.

2. Neighborhoods of divisors

2.1. Ueda type and Ueda class

We recall below the definitions of Ueda type and the Ueda class of smooth divisors
with topologically torsion normal bundles. The point of view presented here follows closely
Neeman’s exposition of the subject, see [34]. For an attempt to define the Ueda class in the
higher codimension case, we refer the reader to the recent preprint [28].

Let Y be a smooth irreducible compact hypersurface on a complex manifold U . Assume
that the normal bundle NY is topologically torsion and that Y and U have the same
homotopy type. Let us assume that NY carries a flat unitary connection (this condi-
tion is automatically fulfilled if Y is Kähler). Associated to it we get a representation
�Y W �1.Y /! S1 � C�. Since U and Y have the same homotopy type, then we have a line
bundle on U endowed with a flat unitary connection which we will denote by .ÑUY ;rU /.
The line bundle OU .Y / is another extension of NY to the complex manifold U . Notice that
it comes equipped with a flat logarithmic connection with trivial monodromy locally defined
as rY D d � d logf where f is a local equation of Y . Let us call

.U ;r/ D . OU .Y /;rY /˝ .ÑUY ;rU /
�

the Ueda connection and the underlying line bundle, the Ueda line bundle, which are both
defined over U .

Let I � OU be the ideal sheaf defining Y . We will denote the k-th infinitesimal neighbor-
hood of Y in U by Y.k/, that is, Y.k/ D Spec. OU =I

kC1/. The Ueda type of Y (utype.Y /)
is defined as follows. If U jY.`/ ' OY.`/ for every ` < k and U jY.k/ 6' OY.k/, then the

utype.Y / D k. If U jY.`/ ' OY.`/ for every non-negative integer ` then utype.Y / D1.

If utype.Y / D k <1 then the Ueda class ofY is defined as the element inH 1.Y; I k=I kC1/

mapped to U jY.k/ 2 Pic.Y.k// through the truncated exponential sequence

0! H 1.Y; I k=I kC1/! Pic.Y.k//! Pic.Y.k � 1// :

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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In concrete terms and following Ueda’s original definition [42], Y has Ueda type
utype.Y / � k if, and only if there exists a covering Ui of a neighborhood of Y , and
submersions yi 2 O.Ui / vanishing along Y such that whenever Ui \ Uj ¤ ;,

(2.1) �ijyj � yi D aijy
kC1
i

for suitable �ij 2 S1 and aij 2 O.Ui \Uj /. In this case, utype.Y / > k if, and only if one can
write

aij jY
D .��kij aj � ai /jY

for some collection of functions ai 2 O.Ui \ Y /. If not, then the restriction f aij jY g defines
the Ueda class of Y . As observed by Ueda (loc. cit.), this latter is well defined as an element
of H 1.Y;NY ˝�k/ up to multiplication by a non-vanishing constant which comes from the
choice of an isomorphism between OY and U jY . Finally, the triviality of the line bundle U

on an Euclidean neighborhood of Y is precisely equivalent to the existence of a collection of
transverse coordinates yi 2 O.Ui / with

yi D �ijyj

for suitable �ij 2 S1; they are obtained from integration of Ueda connection.

L 2.1. – Let F be a codimension one foliation on a complex manifold U having a
compact leaf Y . If the holonomy of F along Y is linearizable up to order k and its linear part
is unitary, then utype.Y / � k. Moreover, in this case

N F jY.k/ D OY.k/.Y /˝ U˝kjY.k/:

Proof. – The hypothesis on the holonomy of F along Y allows us to choose a covering
fUig of a neighborhood of Y in U and first integrals yi 2 OU .Ui / for F such that

yi D .�ij C aijy
k
j C h:o:t:/„ ƒ‚ …

Dyij

yj ;

where f�ij g is a cocycle with values in S1 defining ÑUY , and aij are complex constants. Note
that the cocycle fyij g defines the line-bundle OU .Y /. It follows that utype.Y / � k according
to equation (2.1).

Differentiating the above expression, we obtain that

dyi D .�ij C .k C 1/aijy
k
j C h:o:t:/dyj :

The cocycle f.�ij C .k C 1/aijykj C h:o:t:/g represents the normal bundle of F and, when

restricted to Y.k/, coincides with the cocycle fykC1ij � ��kij g. Since this last cocycle represents

OU .Y /˝ U˝k , the lemma follows.

R 2.2. – Without assuming the linear part of the holonomy unitary, the lemma
above does not hold true, even if one assumes that the holonomy is linearizable. Indeed, we
will now proceed to construct an example of a surface U containing an elliptic curve Y with
trivial normal bundle, utype.Y / D 1 and such that Y is a leaf of a smooth foliation F with
linear (non unitary) monodromy.

Write Y as C=�, where � D Z˚ Z� and choose a representation  7! c of � in .C;C/.
We want to construct a pair of foliations F and G on a neighborhood of Y such that the

4 e SÉRIE – TOME 51 – 2018 – No 6
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holonomy of F along Y is given by �F ./ D fy 7! exp./yg; while the holonomy of G is
given by � G ./ D fy 7!

y
1Ccy

g. For that sake, onC�.C; 0/with coordinates .x; y/, consider
the functions F D y and G D exp.x/y.

We want to construct � such that

F ı � D exp./F and G ı � D
G

1C cG
:

From the first equation we deduce that � .x; y/ D .a .x; y/; exp./y/ and the second
equation implies that

exp.a .x; y// exp./y D
exp.x/y

1C c exp.x/y
:

This last equation determines a , that is,

a .x; y/ D x �  � log.1C c exp.x/y/ :

Hence, if we take
U D f.x; y/ 2 C2 I jyj < j exp.�x/jjc�1 jg

then we can define � W U ! C2. If we take the quotient ofU1\U� by �1 and �� we obtain a
surface containing Y and having a pair of foliations with the sought properties. If we choose
the representation  7! c non commensurable with the periods of Y then utype.Y / D 1.

R 2.3. – Lemma 2.1 holds true without unitary assumption if the compact leaf Y
admits a germ of transverse fibration. Indeed, given a system of non unitary flat coordinates
as in equation (2.1), the cocycle f�ij g 2 H 1.Y;C�/ is equivalent in H 1.Y; O�Y / to a unitary
cocycle f�ij g 2 H 1.Y;C�/, that is, �ijuj D ui�ij with ui 2 O�.Ui \ Uj \ Y /. The
transverse fibration allows to extend the coboundary ui to the neighborhood of Y , that is,
ui 2 O�.Ui \ Uj /, so that in new variables yi D ui Qyi we get a unitary Ueda cocycle (2.1)
linear up to order k.

In the example of Remark 2.2, there is a posteriori no fibration transversal to Y , and
this makes impossible to change the linear part of equation (2.1) into unitary ones without
perturbing higher order terms in the cocycle.

2.2. Hypersurfaces of infinite type

Let Pic� .Y / denote the group of line bundles with torsion Chern class, that is, with zero
real Chern class. Let d W Pic� .Y / � Pic� .Y / ! R be a homogeneous distance on Pic� .Y /,
that is, if L;L0 and L00 are elements of Pic� .Y / then d.L ˝ L0; L ˝ L00/ D d.L0; L00/ and
d.L0�; L00�/ D d.L0; L00/: Let E0 � Pic� .Y / be the subset of torsion line bundles, and
E1 � Pic� .Y /� E0 be the subset defined by the following Diophantine condition: L 2 E1 if
and only if there exists real constants ˛; � > 0 (depending on L) such that

d. OY ; L
˝�/ �

�

�˛

for every integer � � 1.
By definition, if utype.Y / D1, then the restriction of U to the completion of U along Y

is trivial, that is, U is trivial on a formal neighborhood of Y . The theorem below due to
Ueda (cf. [42, Theorem 3]) gives sufficient conditions to the triviality of U on an Euclidean
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neighborhood of Y in U . Although Ueda states his result only for curves on surfaces, his
proof works as it is to establish the more general result below.

T 2.4. – Let Y be a smooth compact connected Kähler hypersurface of a complex
manifold U with topologically torsion normal bundle. If utype.Y / D 1 and NY 2 E0 [ E1,
then the Ueda line bundle U is trivial on an Euclidean neighborhood of Y .

Given a compact complex manifold Y with non-zeroH 1.Y;Q/, it is possible to construct
a neighborhood of Y (with Y a hypersurface) such that NY is topologically trivial,
utype.Y / D1, but there is no Euclidean neighborhood in which U is trivial. It suffices
to take an abelian representation of �1.Y / to Diff.C; 0/ which is formally linearizable, but
has infinitely many periodic points converging to zero and consider the suspension of this
representation, see [2, §37] and [42, Section 4]. Since these examples have infinitely many
pairwise disjoint hypersurfaces with proportional Chern classes and which do not fit into
a fibration, they are not open subsets of compact complex manifolds, see for instance [36]
and [40]. Up to date there are no known examples of hypersurfaces of compact manifolds
with utype.Y / D 1 but no Euclidean neighborhood over which the Ueda line bundle U is
trivial.

2.3. Curves of finite type

Smooth compact curves C on smooth surfaces S (not necessarily compact) having
numerically trivial normal bundle and finite Ueda type present a mixed behavior, combining
features of ample divisors and fiber of fibrations. According to [24, Section 5] the transcen-
dence degree of the field of formal meromorphic functions is infinite (like for fibers of a
fibration). On the other hand, the only formal holomorphic functions are the constants (like
for ample divisors): indeed, such a function should be constant along the curve, say zero,
and would provide a (non reduced) equation for C , contradicting finiteness of Ueda type.

A much more striking similarity with ample divisors is given by the following result of
Ueda [42, Theorem 1], see also [34, Proposition 5.3, page 35].

T 2.5. – Let C be a smooth curve on a smooth surface S . If C 2 D 0 and
utype.C / < 1, then there exist a neighborhood U � S of C and a strictly plurisubharmonic
function ˆ W U � C ! R such that limp!C ˆ.p/ D 1. In particular, if S is compact, then
S �C is strongly pseudoconvex, and it contains only finitely many compact curves; these curves
can be contracted, and the resulting space of the contraction is a Stein space.

Actually, Ueda gives precise estimates of the growth ofˆ nearC . In particular, such curves
embedded in complex compact surfaces provide natural examples of nef line bundles which
do not carry any smooth hermitian metric with semi-positive curvature (see [27]).

From the above theorem, it follows that C , like an ample divisor, has a fundamental
system of strictly pseudoconcave neighborhoods [42, corollary of Theorem 1]. Conse-
quently [1, Theorem 4], the field of germs at C of (convergent) meromorphic functions has
a transcendence degree bounded by the dimension of the ambient space, like for an ample
divisor.

We will mainly use this pseudoconvexity statement through its combination with [43,
Theorem 3 and Lemma 5]. This gives rise to the following extension result.
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T 2.6. – LetC be a smooth curve on a smooth surfaceS and let E be a holomorphic
vector bundle on SnC . If C 2 D 0 and utype.C / < 1, then any holomorphic section of E

defined on U nC (where U is an euclidean neighborhood of C) has a meromorphic extension to
the whole of SnC .

Moreover, in the particular case E D �1, any closed holomorphic one form defined on U nC
extends holomorphically to SnC .

2.4. Hypersurfaces of finite type

Back to the case of divisors on projective manifolds, or more generally on compact Kähler
manifolds, we have yet another similarity between numerically trivial divisors with finite
Ueda type and ample divisors: the Lefschetz-like statement below.

P 2.7. – Let X be a compact Kähler manifold and Y a smooth divisor on X
with numerically trivial normal bundle. IfH 1.X; OX /! H 1.Y; OY / is not injective, then Y is a
multiple fiber of a fibration onX . In particular, if utype.Y / <1, then the restriction morphisms
H 1.X;Q/! H 1.Y;Q/ and H 1.X; OX /! H 1.Y; OY / are injective.

Proof. – If H 1.X; OX / ! H 1.Y; OY / is not injective, then the morphism between
Albanese varieties Alb.Y / ! Alb.X/ is not surjective. The composition of the Albanese
morphism of X with the quotient map Alb.X/ ! Alb.X/=Alb.Y / is a non-constant
morphism, which contracts Y . Since the normal bundle of Y is numerically trivial, it follows
that some multiple of Y is a fiber of a fibration. For more details see [34, page 104 and proof
of Theorem 5.3 in pages 109-110] and [40, proof of Theorem 2.1].

A slightly more general version, where we replace smooth divisor by a simple normal
crossing divisor also holds true, see [32, proof of Theorem 2.3].

3. Existence of formal foliations

In this section we present the proof of Theorem A. Its content is not used in the remainder
of the article, and the readers interested only on the global aspects of our study can safely
skip it.

3.1. Notation

Before going into the details of the proof of Theorem A, let us introduce the following
notations and definitions.

Select an open covering fUig of some neighborhood of Y . Let V D fVig be the open
covering of Y defined by Vi WD Ui\Y . One can choose fUig in such a way that V is an acyclic
covering by disks. Denote by bUi the formal completion of Ui along Vi . Let fyig 2 O.bUi /
be an admissible coordinates, which means that yi is some formal submersion such that
fyi D 0g D Vi and such that

tijyj � yi D aijy
2
i ;

where the cocycle ftij g 2 Z1.V; NY �/ is unitary and faij jVi\Vj g 2 Z
1.V; NY �/.
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D 3.1. – The coordinates fyig as above are said to be foliated whenever yi and
yj satisfy

tijyj � yi D

C1X
lD2

a
.l/
ij yi

l ;

where the a.l/ij ’s are locally constant.

R 3.2. – Note that a system of admissible coordinates is foliated if and only if
dyi ^ dyj D 0. The existence of such coordinates is thus equivalent to the existence of a
regular foliation on Y.1/ leaving Y invariant.

We will make use of the following classical vanishing result (see for instance [42, end of §1]).

L 3.3. – Let † be a non trivial rank one unitary local system on a smooth compact
and connected curve Y , then

H 2.Y;†/ D 0:

Let r the unitary flat connection defined on NY and †1 be the corresponding rank one
local system. More generally, for each integer k, we will denote by †k the local system
associated to r˝k whose underlying line bundle is then NY ˝k .

Let us fix some positive integer �. Let fyig be a system of admissible coordinates and
suppose that one can write

(3.1) tijyj � yi D a
.�C1/
ij yi

�C1
C � � � C a

.�/
ij yi

�
C a

.�C1/
ij yi

�C1;

where � < �, a.l/ij is locally constant for � C 1 � l � � and a.�C1/ij 2 O.bUi \cUj /.
D 3.4. – A system of admissible coordinates fyig (with respect to �) which

satisfies equation (3.1) is said to be a �-foliated system of coordinates.

This means that we have a foliation on the �-th infinitesimal neighborhood.

R 3.5. – Note that fa.�C1/ij g 2 Z1.V; †��/. We will denote by Œa.�C1/ij � the
corresponding class in H 1.Y;†��/.

3.2. Auxiliary results

The proof of our result will be a consequence of the following sequence of lemmas.

L 3.6. – The bilinear pairing

H 1.Y;†��/ �H
1.Y;†�/! H 2.Y;C/ D C

given by the cup-product is non-degenerate. In particular, if fyig is a �-foliated system of
coordinates (with respect to �) and if fa.�C1/ij g, seen as a cocycle in Z1.V; NY ˝��/, is not
cohomologous to 0, then there exists Œbij � 2 H 1.Y;†�/ whose cohomology class is trivial
in H 1.Y;NY ˝�/ and such that Œa.�C1/ij � [ Œbij � 6D 0.

Proof. – One can see Œa.�C1/ij � as an NY ˝�� valued harmonic form ˛ 2 H1
.NY ˝��/

whose .0; 1/ part � is non trivial. One can then write � D ! where ! 2 H 1;0.Y;NY ˝�/.
The form ! corresponds to a cocycle Œbij � 2 H 1.Y;†�/ satisfying the conclusion of the
lemma.
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L 3.7. – Let fyig be a �-foliated system of coordinates which satisfies equation (3.1)
and fzig another admissible system of coordinates related to fyig by

yi D zi �Hizi
�C1;

where Hi 2 O.bUi /. Then fzig is still a �-foliated system of coordinates and the changes of
coordinates are given by:

tij zj � zi D a
.�C1/
ij zi

�C1
C � � � C a

.�/
ij zi

�
C b

.�C1/
ij zi

�C1;

where the functions b.�C1/ij 2 O.bUi \cUj / satisfy

b
.�C1/
ij jY

D .a
.�C1/
ij C t

��
ij Hj �Hi /jY

:

Proof. – It is a straightforward computation.

Consider the coboundary in Z2.V; N
��
Y / defined as

a
.�C1/

ijk
D .a

.�C1/
ij C t

��
ij a

.�C1/

jk
C t
��

ik
a
.�C1/

ki
/jY
:

It is a priori given by a collection of holomorphic functions but the following lemma shows
that these functions are actually locally constant.

L 3.8. – Let fyig be a�-foliated system of coordinates which satisfies equation (3.1).

1. Whenever � � 2� C 1, there exists a universal polynomial

P�C1 2 CŒXij ; Xjk ; Xik ; Y .l/ij ; Y
.l/

jk
; Y

.l/

ik
�; � C 1 � l � � � �

such that

a
.�C1/

ijk
D P�C1.tij ; tjk ; tik ; a

.l/
ij ; a

.l/

jk
; a
.l/

ik
/

C .� � � � 1/a
.�C1/
ij t

�.���/
ij a

.���C1/

jk
� �a

.���C1/
ij t��ij a

.�C1/

jk
:

2. If � < � < 2�, then
a
.�C1/

ijk
D 0:

3. If � D 2�, then
a
.�C1/

ijk
D �.� C 1/a

.�C1/
ij t��ij a

.�C1/

jk
:

In particular, a.�C1/
ijk

is always locally constant and is hence well defined as an element
of Z2.V; †��/.

Proof. – Set ˛ij D tijyj � yi . Consider

Aijk D ˛ij C tij j̨k C tik˛ki D ˛ij C tij j̨k � ˛ik

and expand this expression with respect to yi . As ˛ij ; ˛ik are already expressed as a polyno-
mial in the variable yi , it is enough to work with the middle term j̨k , replacing yj by yi in
accordance with equation (3.1). Using that fyig is �-foliated, one easily observes that

Aijk D ˛
.�C1/

ijk
y�C1i C � � � C ˛

.�/

ijk
y
�
i C .a

.�C1/
ij C t

��
ij a

.�C1/

jk
C t
��

ik
a
.�C1/

ki
� ˛

.�C1/

ijk
/y�C1i ;

where ˛.l/
ijk

is locally constant for � C 1 � l � � and ˛.�C1/
ijk

2 O.bUi \cUj \ cUk/ with the

additional property that ˛.�C1/
ijk jY

is locally constant.
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Moreover, Aijk vanishes identically. This forces the equality

˛
.�C1/

ijk jY
D a

.�C1/

ijk

to hold. The expansion ofAijk with respect to yi allows us to express explicitly ˛.�C1/
ijk jY

and
we obtain in that way the expected result.

Denote by Œa.�C1/
ijk

� the cohomology class of a.�C1/
ijk

in H 2.Y;†��/.

L 3.9. – Let fyig be a �-foliated system of coordinates. Assume moreover that
Œa
.�C1/

ijk
� D 0; then there exists a .�C 1/-foliated system of coordinates fzig such that

yi D zi CO.zi
�C1/:

Proof. – One can write a.�C1/
ijk

D ˛ij C t
��
ij j̨k C t

��

ik
˛ki with ˛ij ; j̨k and ˛ik locally

constant. This means that a.�C1/ij � ˛ij defines a cocycle in Z1.V; NY ˝��/. This cocycle is
cohomologous to a locally constant one; in other words there exist hi 2 O.Vi / such that

eij WD a
.�C1/
ij C t

��
ij hj � hi

is locally constant. Using Lemma 3.7, we are done setting

yi D zi �Hizi
�C1;

where Hi 2 O.bUi / and coincides with hi when restricted to Vi .

L 3.10. – Let fyig be a �-foliated coordinate. Assume moreover that � � 2�. Then
Œa
.�C1/

ijk
� D 0.

Proof. – By Lemma 3.8, this is obvious if � < 2�. When � D 2�, the same lemma shows
that Œa.�C1/

ijk
� coincides with the cup-product �.� C 1/Œa.�C1/ij �2 D 0.

L 3.11. – Let fyig be a �-foliated system of coordinates written with the notation of
equation (3.1) and assume that� � 2�C1, then there exists an admissible system of coordinates
fzig of the formyi D ziCO.zi ���C1/ such that fzig is a .�C 1/-foliated system of coordinates.

Proof. – According to Lemma 3.9, we are done whenever Œa.�C1/
ijk

� D 0. This occurs in
particular if N��Y is non trivial, in virtue of Lemma 3.3. One can then assume that N��Y is

trivial and that Œa.�C1/
ijk

� ¤ 0. Note that a simple change of �-coordinates of the form

yi D ziCO.z
�C1
i / does not affect Œa.�C1/

ijk
� 6D 0, this justifies that we have to act retroactively,

as stated in the lemma, in order to modify suitably this cohomology class.
To this end, let us consider f˛ij g 2 Z

1.V; †�.���// which is a coboundary when seen as

a cocycle in Z1.V; NY ˝�.���// and such that

Œa
.�C1/

ijk
� D �.2� � � � 1/Œa

.�C1/
ij � [ Œ˛ij �:

Remark that †�.���/ D †� , hence such an ˛ij exists, according to Lemma 3.6.

Let hi 2 O.Vi / such that t�.���/ij hj�hi D ˛ij . ConsiderHi 2 O.bUi / such thatHi jVi
D hi .

Define fzig such that yi D zi�Hizi ���C1. By Lemma 3.7, fzig is a .���C1/-foliated system
of coordinates and more precisely,

tij zj � zi D a
.�C1/
ij zi

�C1
C � � � C a

.���/
ij zi

���
C b

.���C1/
ij zi

���C1
C b

.���C2/
ij zi

���C2;
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where b.���C1/ij is constant and equal to a.���C1/ij C ˛ij . If �� � C 2 < �C 1, then one has

automatically Œb.���C2/
ijk

� D Œa
.���C2/

ijk
� D 0. Actually, equality holds thanks to Lemma 3.8,

noticing that the coefficients a.l/ij ; � C 1 � l � � � � associated to fyig remain the same

for fzig. Invoking again Lemma 3.9, one can assume that b.���C2/ij jY
is constant. One can

repeat the same operation for b.���C3/
ijk

provided that � � � C 3 < � C 1. Proceeding
inductively, we can eventually assume that fzig is a �-foliated system of coordinates which
satisfies the relation

tij zj�zi D a
.�C1/
ij zi

�C1
C� � �Ca

.���/
ij zi

���
Cb

.���C1/
ij zi

���C1
C� � �Cb

.�/
ij zi

�
Cb

.�C1/
ij yi

�C1;

where b.�C1/ij 2 O.bUi \cUj /. Applying again Lemma 3.8, and recalling that

b
.���C1/
ij D a

.���C1/
ij C ˛ij ;

one obtains that

b
.�C1/

ijk
D a

.�C1/

ijk
C .� � � � 1/a

.�C1/
ij t

�.���/
ij j̨k � �˛ij t

��
ij a

.�C1/

jk
:

One can recognize a cup-product in the right hand side, namely

Œb
.�C1/

ijk
� D Œa

.�C1/

ijk
�C .2� � � � 1/Œa

.�C1/
ij � [ Œ˛ij �:

One concludes observing that ˛ij has been chosen in such a way that Œb.�C1/
ijk

� D 0. One thus
obtains the desired .�C 1/-foliated system of coordinates.

3.3. Proof of Theorem A

Note firstly that when utype.Y / D 1 the existence of a formal foliation having Y as a
compact leaf follows from the definition of Ueda type. From now assume that � D utype.Y /
is finite. In particular there exists a .� C 1/-foliated system of coordinates fyig. Note also
that a.�C1/ij is nothing but the Ueda class and then satisfies the hypothesis of Lemma 3.6.
Combining Lemmas 3.9 and 3.10, one can assume that fyig is indeed a .2� C 1/-foliated
system of coordinates. The existence of a formal foliation follows from Lemma 3.11.

R 3.12. – The formal foliation constructed above comes equipped with a
holonomy representation O� W �1.Y / ! dDiff.C; 0/ whose linear part is unitary and
utype.Y /C1 coincides with the first jet for which the representation O� fails to be linearizable.

3.4. Higher dimensional version of Theorem A

In the above proof, we use essentially the vanishing of the second cohomology group for
non trivial unitary rank one local systems, and the surjectivity of the cup product map (from
H 1^H 1 toH 2). These properties are rather specific to the curve case. However, it is possible
to prove the existence of formal foliation in some higher dimensional cases. In particular, it
is possible to prove the following statement.

T 3.13. – Let Y � X be a smooth hypersurface (compact Kähler) embedded in a
germ of neighborhood X . Assume moreover that NY D OY and that h1.Y; OY / D 1. If Y.1/
denotes the formal completion ofX along Y , then Y is a leaf of a (formal) foliation OF on Y.1/
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defined by a closed formal one form O!. If � D utype.Y / is finite, then O! can be described locally
as follows:

O! Dloc
dy
y�C1

C �
dy
y
; � 2 C:

Proof. – As above, we can assume that � WD utype.Y / is finite and we consider first the
case � D 1. Let us choose fyig a system of coordinates such that

yi D yj � aijyj
2
C o.yj

2/

or equivalently
1

yi
�
1

yj
D aij C o.1/;

where Œaij jY � defines a cocycle whose class (in H 1.Y; OY /) is not trivial and which can be
assumed to be locally constant (every cocycle is cohomologous to a constant one). One can
then write

1

yi
�
1

yj
D aij C bijyj

with n > 0 and aij locally constant in Y.1/.

C. – fbij jY g is a cocycle with coefficients in OY . Indeed, differentiate the previous

equality and set !ij D �
dyi
yi
2 C

dyj
yj
2 . Let k be such that Vk \ Vi \ Vj 6D ;. Because

yk D yi C o.yi /, one obtains that ResY
!ij
yk

is independent of k, hence defines a cocycle which
is nothing but fbij jY g.

Because H 1.Y; OY / is one dimensional, there exists � 2 C such that Œbij � D �Œaij �. Let
a
.1/
ij 2 O.bUi \cUj / be such that

1

yi
�
1

yj
C � log

yi

yj
D aij C a

.1/
ij yj :

The cocycle fa.1/ij jY g is then cohomologous to 0.
The proof can then be simply deduced from the following sequence of observations (whose

proofs are omitted for the sake of brevity). As in the proof of Theorem A, we use changes of
coordinates in order to force obstructions to vanish inductively.

L 3.14. – Assume that for some n > 0,

(3.2)
1

yi
�
1

yj
C � log

yi

yj
D aij C a

.n/
ij yj

n

then fa.n/ij jY g is a cocycle.

L 3.15. – Assume that the coordinates fyig satisfy the relation (3.2) with n > 1. The
cocycle fa.n/ij jY g is then cohomologous to �.n/Œaij � (for some �.n/ 2 C). In the new system of
coordinates given by

zi D yi �
�.n/

n � 1
yi
nC1;

the relation (3.2) becomes
1

zi
�
1

zj
C � log

zi

zj
D aij C Qa

.n/
ij zj

n;
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where f Qa.n/
ij jY
g is cohomologous to zero.

L 3.16. – Assume that the coordinates fyig satisfy the relation (3.2) with fa.n/ij jY g

cohomologous to zero. Write a.n/ij jY D ai � aj and consider the transformation

1

zi
D

1

yi
� Aiyi

n

with Ai 2 O.bUi / such that Ai jY D ai . The relation (3.2) can then be read as

1

zi
�
1

zj
C � log

zi

zj
D aij C a

.nC1/
ij zj

nC1:

Noticing that the order (with respect to yi ) of the transformations which are involved in
these successive reductions increases with n, one obtains (in the limit) the sought formal
foliation. If the Ueda type satisfies � > 1, the same proof works when considering the
quantity

1

y�i
�
1

y�j
D aij C o.1/:

This concludes the proof of Theorem 3.13.

4. Existence of global foliations

In this section we turn our attention to the existence problem of foliations with prescribed
compact leaves on compact Kähler manifolds.

4.1. Proof of Theorem B

Let Y � X be a smooth divisor on a compact Kähler manifold with normal bundle NY .
Let L be a line bundle on X , topologically torsion, such that NY ˝k D L jY . We will denote

by r the unique flat unitary connection (identified with its .1; 0/ part) on L
�.

Since utype.Y / � k, there exists an open covering fUig of X and holomorphic functions
yi 2 OX .Ui / such that Y \ Ui D fyi D 0g; and if Ui \ Uj \ Y ¤ ;, then

(4.1) yki D .�ij C y
k
j rij /y

k
j

for some constants �ij 2 S1 and some holomorphic functions rij 2 OU .Ui \Uj /. Of course
the cocycle f�ij g represents the line-bundle L in H 1.X; S1/.

Whenever Ui \ Uj ¤ ;, set

(4.2) aij D
1

yki
�

1

�ij

1

ykj
:

Equation (4.1) implies that aij 2 OX .Ui \Uj /. The collection faij g determines an element ˛
of H 1.X; L

�
/.

One can then write
aij D hi � hj ;

where the hi ’s are smooth local sections of L
�. Note that the collection of @hi defines a

globally defined .0; 1/ form � valued in L
�. Consequently, � D r� is closed with respect
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to r C @. By harmonic theory on compact Kähler manifold (1), � is not only r-exact but
is actually r@-exact. One can then assume that � D 0. This obviously implies that one can
locally express the differential of the cocycle aij as

daij D !i �
1

�ij
!j ;

where !i is a closed holomorphic form. This proves that

� D d.
1

yki
/ � !i D

1

�ij

 
d.

1

ykj
/ � !j

!
defines a r-closed rational section of �1X ˝ L

� with polar divisor equal to .k C 1/Y .

C 4.1. – Let Y � X be a smooth divisor on a compact Kähler manifold with
normal bundle torsion of order k and utype.Y / � k. Then there exists a closed rational form
on X with poles of order k C 1 on Y which defines a foliation having Y as a compact leaf.

Proof. – Apply Theorem B with L D OX .

R 4.2. – In this case (see proof of Theorem B), one can notice that the Ueda class,
which lies in H 1.Y; OY /, is a restriction of some global class in H 1.X; OX /.

Recall that the case utype.Y / > k D ord.NY / gives more specific information and
is covered by Neeman’s result (Theorem 1.3 stated in the introduction). For the sake of
completeness, we give a simplified proof of this statement.

4.2. Proof of Theorem 1.3

Assume that utype.Y / > k and let us consider (as in the proof of Theorem B) an open
covering fUig of X and holomorphic functions yi 2 OX .Ui / such that Y \ Ui D fyi D 0g;
and if Ui \ Uj \ Y ¤ ; then

(4.3) yki D .1C y
k
j rij /y

k
j

for some holomorphic function rij 2 OU .Ui \ Uj /.
Whenever Ui \ Uj ¤ ;, set

(4.4) aij D
1

yki
�
1

ykj
:

Equation (4.3) implies that aij 2 OX .Ui \ Uj /. The collection faij g determines an element
˛ of H 1.X; OX /.

The cohomology class�k˛jY 2 H
1.Y; OY / coincides with Ueda’s original definition (2) of

the k-th Ueda class of Y inX . The assumption utype.Y / > k implies that�k˛jY D 0 and to
conclude the proof we argue differently according to the injectivity (or not) of the restriction
map H 1.X; OX /! H 1.Y; OY /.

(1) This can be done exactly along the same lines than the classical @@ lemma, replacing the @ operator by the unitary
flat connection r.
(2) Recall that ˛ is only well-defined up to multiplication by a complex constant which comes from the choice of an
isomorphism between OY and I k=I kC1.
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IfH 1.X; OX /! H 1.Y; OY / is not injective then Proposition 2.7 implies that kY is a fiber
of a fibration and we have utype.Y / D1.

If H 1.X; OX / ! H 1.Y; OY / is injective, ˛ is then zero in H 1.X; OX / and we can write
aij D ai jUi\Uj

� aj jUi\Uj
for suitable ai 2 OX .Ui /. Hence, we can construct a morphism

f W X ! P1 such that f �1.1/ D kY by setting f jUi
D y�ki � ai . It follows that

utype.Y / D1, and that kY is a fiber of a fibration.

R 4.3. – The smoothness of the divisor is not really important in the proof of
Theorem 1.3. In particular, the argument here presented can be easily adapted to give an
alternative proof of [32, Theorem 2.3].

4.3. Hypersurfaces with non-torsion line-bundles

Below is a version of Theorem 1.3 for non-torsion normal bundles, also due to Neeman
[34, Theorem 5.6, p. 113].

T 4.4. – Let Y be a smooth and irreducible hypersurface of a compact Kähler
manifold X . Assume that NY D OX .Y /jY has topologically torsion normal bundle but has
analytically infinite order. If utype.Y / D 1 and for some positive integer k > 0, the k-th
power �k of the unitary representation � W �1.Y / ! S1 associated to NY extends to a
representation Q� W �1.X/! S1, then there exists an integral effective divisorD, disjoint from Y

and cohomologous tokY for some positive integer . In particular, at a sufficiently small Euclidean
neighborhood of Y , the Ueda line bundle U is trivial.

E 4.5. – Consider a genus g > 1 curve C and a representation � W �1.C / !
Aut.P1/ into the unitary dihedral subgroup with infinite image: the elements are all elliptic,

permuting f0;1g � P1. On a 2-fold (étale) cover QC
2W1
! C , the representation lifts as

� W �1. QC/! S1 with infinite image (fixing 0 and1). Considering the suspension of �, we get

a Riccati foliation F on a ruled surface� W X ! C with an invariant 2-sectionX � Y
2W1
! C .

After fiber product

QX
2W1 //

Q�
��

X � Y

�

��
QC

2W1 // C;

we get the total space Q� W QX ! QC ' Y of a non-torsion line bundle on which Y lifts
as the zero and infinity sections; the germ of neighborhood .X; Y / is isomorphic to the
germ . QX; QY0/ at the zero section. The Ueda line bundle is therefore trivial at a neighborhood
of Y where we have local flat analytic structure. However, no power of the local holonomy
representation of �1.Y / extends to a representation of �1.X/. The complement X � Y
contains no complete curve since such a curve would lift as a finite section, contradicting
that NY is non torsion. Moreover, X � Y is not Stein. Indeed by virtue of the maximum
principle, every f 2 O.X � Y / is constant on the closure of the leaves in X � Y (which are
compact Levi-flat hypersurfaces). This implies that f is actually constant. In particular, this
answers negatively [23, Chapter VI, Problem 3.4].
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As already mentioned, the previous example is a variation of an example by Ogus [35,
Section 4], where the ambientX is singular but rational. The construction is similar. It starts
with Q� W QX ! QC , the total space of a non torsion line bundle over an elliptic curve QC ,
equipped with a holomorphic connection, and then form the quotient X by a lift of the
elliptic involution. There are 8 fixed points away from the zero and infinity sections, giving
rise to singular points for X . Take Y to be the image of any of the two sections of Q� .

Another interesting example, which is somehow opposite to Hartshorne question, is
provided by the surface S obtained by blowing up 9 points on a smooth cubic curve C0
on P2. For a generic choice of these 9 points, related to the Diophantine condition stated
in Theorem 2.4, the strict transform C is left invariant by a regular foliation (only defined
in its neighborhood) such that the leaves closure are compact Levi-flat hypersurfaces. This
prevents S � C from being Stein. However, it is still unknown whether there exists some
exceptional configuration of points for which S � C is Stein (see the discussion in [8]).

4.4. Curves with torsion normal bundle

Theorem B says nothing about the existence of smooth foliations along Y when
utype.Y / < ord.NY /. In particular, it leaves open the following natural question:

Q 4.6. – Is every curve C � S with torsion normal bundle on a projective
surface S a compact leaf of a foliation?

Given any curve C of genus g.C / > 1, it is relatively easy to construct smooth foliations
on projective surfaces having C as a compact leaf satisfying utype.C / D 1 and ord.NC/
arbitrary. If we take a general representation � W �1.C / ! Aff.C/ with linear part of
order k then the Riccati foliation obtained through the suspension of � is an example with
utype.C / D 1 and ord.NC/ D k. Taking some Kawamata coverings of these examples (see
[29, Proposition 4.1.12]), one can obtain examples with utype.C / D n and ord.NC/ D kn

for arbitrary k and n.

Perhaps one of the simplest tests for Question 4.6 is the existence of foliations along a
smooth curve C of genus 3 with utype.C / D 1 and ord.NC/ D 2 constructed in the
following way, see [34, page 119]. Start with a smooth quartic C0 � P2 and consider two
bitangents to it. The two bitangents determine 4 points on C0. Choose twelve other points
as the intersection of C0 with a generic cubic. The blow-up of P2 on these 16 points gives
a rational surface containing a curve C , the strict transform of C0, having torsion normal
bundle of order two and Ueda type equal to one. We do not know if there exists a foliation
on S regular along C .

5. Groups of (formal) germs of biholomorphisms

In this section we review the bits of the theory of subgroups of Diff.C; 0/ and dDiff.C; 0/
relevant to our study. The only new result in this section is Proposition 5.11.
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5.1. Formal classification of solvable subgroups

Let Diff.C; 0/ denote the group of germs of analytic diffeomorphisms of one variable
fixing 0 2 C and dDiff.C; 0/ its formal completion. In order to state the classification of
formal subgroups of dDiff.C; 0/, it will be convenient to use the vector fields (or rather theirs
flows/exponentials)

vk;� D
zkC1

1C �zk
@

@z

for k 2 N� and � 2 C. Note that h D exp
�
vk;�

�
2 Diff.C; 0/ is tangent to identity at order k,

that is, h.z/ D zC zkC1C � � � . We recall firstly the classification of elements of dDiff.C; 0/ up
to formal conjugacy (see for instance [30, §1.3]).

T 5.1. – Let f .z/ D az C � � � 2 dDiff.C; 0/; a 2 C�, be distinct from the identity.
Then f is conjugated to one and only one of the following models:

1. f0.z/ D az where a 2 C�.
2. f0.z/ D a � exp

�
vk;�

�
I ak D 1.

In the first case f is said to be (formally) linearizable. In the second item, remark that
z ! az commutes with exp

�
vk;�

�
and that f0 (hence f ) has infinite order.

The formal classification of solvable subgroups of dDiff.C; 0/ is given in [17]; we also refer
to [30, §1.4] and to the recent monograph [12].

T 5.2. – Let G � dDiff.C; 0/ be a subgroup. If G is virtually solvable, then there
exists ' 2 dDiff.C; 0/ such that '�G is a subgroup of one of the following models:

1. L D ff .z/ D azI a 2 C�g;
2. Ek;� D ff .z/ D a � exp

�
tvk;�

�
I ak D 1; t 2 Cg, for some k 2 N� and � 2 C;

3. Ak D ff .z/ D az=.1 � bzk/1=k I a 2 C�; b 2 Cg, for some k 2 N�.

When G is abelian, we are in cases (1) or (2). Indeed, abelian subgroups of Ak actually lie
(up to conjugacy) in L or Ek;0.

D 5.3. – Let dDiff.C; 0/1 D fh 2 dDiff.C; 0/ j h.z/ D zCo.z/g be the subgroup
of dDiff.C; 0/ whose elements are tangent to identity. More generally, if k � 1, let us definedDiff.C; 0/k D fh 2 dDiff.C; 0/ j h.z/ D z C o.zk/g:

Notice that for h 2 dDiff.C; 0/1, the following assertions are equivalent: h D Id; h has
finite order; and h is linearizable. More generally, we have the useful linearizability criterion,
see [30, Corollaire 1.4.2].

T 5.4. – Let G be a subgroup of dDiff.C; 0/. Set G1 D G \dDiff.C; 0/1. Then, up
to formal conjugacy, G is a subgroup of L if and only if G1 D fIdg.

C 5.5. – Let G be a subgroup of dDiff.C; 0/. Then every element of G has finite
order if, and only if, G is conjugated to a subgroup of

LQ WD ff .z/ D azI a 2 e
2i�Q
g:
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5.2. Non solvable subgroups

For further use, we recall the characterization of non solvable subgroups of dDiff.C; 0/ [30,
Theorem 1.4.1].

T 5.6. – Let G be a subgroup of dDiff.C; 0/. Then the following properties are
equivalent:

1. G is non solvable.
2. G is non virtually solvable.
3. G is not metabelian.
4. For every k > 0, we have G \dDiff.C; 0/k 6D fIdg, that is, there exist non trivial elements

of G tangent to the identity at arbitrarily large order.

5.3. Centralizers

Let h 2 dDiff.C; 0/ and denote by C .h/ the centralizer of h in dDiff.C; 0/.

T 5.7 ([30] Proposition 1.3.2). – The group C .h/ is given by

1. If h.z/ D az where a 2 C� is not a root of unity, then C .h/ D L.
2. If h.z/ D a � exp

�
vk;�

�
with ak D 1, then C .h/ D fe2i�p=k � exp

�
tvk;�

�
; p 2 Z; t 2 Cg.

T 5.8. – LetG a subgroup of dDiff.C; 0/. Assume in addition thatG is non virtually
abelian. Then the centerZ.G/ ofG is finite, hence conjugated in dDiff.C; 0/ to a finite subgroup
of L.

Proof. – WhenG is non solvable, this is covered by [30, Proposition 1.5.1]. Let us assume
thatG is solvable and non abelian. Up to conjugation,G is a subgroup of Ak such thatG1 is
non trivial. Hence it contains an element conjugated to g1 D exp

�
vk;�

�
. Now let us choose

h 2 Z.G/: in particular h lies in C .g1/ andG is contained in C .h/. According to Theorem 5.7,
there exists th 2 C such that h D a � exp

�
thvk;�

�
with ak D 1. Assuming that th 6D 0 and

using Theorem 5.8 once more, one can infer thatG � C .h/ is abelian. Since we assumed this
was not the case from the beginning, we get th D 0 and Z.G/ is necessarily conjugated to a
subgroup of fz ! e2i�p=kz; p 2 Zg.

R 5.9. – IfG is a subgroup of dDiff.C; 0/1, the following properties are equivalent:

(i) G is abelian.
(ii) G is virtually abelian.

(iii) G is solvable.
(iv) The non trivial elements of G are tangent to identity to the same order.
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5.4. Interpretation

The groups appearing in Theorem 5.2 are groups of symmetries of meromorphic 1-forms
or of vector spaces of meromorphic 1-forms.

The group L is the group of symmetries of the logarithmic 1-form ! WD dz
z

, while for fixed
k 2 N� and � 2 C, the group Ek;� is precisely the group of symmetries of the 1-form

!k;� D
dz

zkC1
C �

dz

z
:

Moreover, for a fixed k 2 N�, the group Ak is the subgroup of dDiff.C; 0/ that preserves the
vector space of 1-forms C dz

zkC1
. Notice that Ek;0 is a subgroup of Ak .

R 5.10. – It follows from the above description and Theorem 5.2 that an abelian
subgroup G � Diff.C; 0/ preserves a formal meromorphic 1-form !. Consequently, if G is
the holonomy group of the compact leaf Y of a foliation on a complex manifold U , then by
standard arguments using flow-box, the 1-form ! extends to a formal meromorphic 1-form
on the completion Y.1/ of U along Y .

5.5. Ueda type and formal closed meromorphic 1-forms

If Y is a hypersurface of a complex manifold U , the existence of formal closed meromor-
phic 1-forms on Y.1/ gives information about the Ueda type of Y .

P 5.11. – Let Y be a smooth irreducible compact hypersurface on a complex
manifold U . Let O! 2 H 0.Y.1/;�1

Y.1/
..k C 1/Y // be a formal closed meromorphic 1-form

on Y.1/ with poles of order k C 1 on Y . If k � 1 then utype.Y / � k and the order of the
normal bundle of Y divides k.

Proof. – The 1-form O! can be locally written as dz

zkC1
C �dz

z
where z is a formal

submersion cutting out Y . More precisely, there exists an open covering Ui of Y.1/ and
zi 2 H

0.Ui ; OY.1// such that O!jUi
D

dzi

z
kC1
i

C �dzi
zi

and Y \ Ui D fzi D 0g. It follows

from the interpretation of Ek;� given in Section 5.4 that, once the covering is fixed, the only
freedom we have in the choice of the functions zi is left composition by elements of Ek;�.
Therefore, over non-empty intersections Ui \ Uj , the formal functions zi satisfy

zi D .�ij C aij z
k
j C bij z

2k
j C � � � / � zj

with �kij D 1 and aij ; bij 2 C. The proposition follows from Lemma 2.1.

5.6. Rigidity

The analytic classification of subgroups of Diff.C; 0/ does not coincide with the formal
classification. Nevertheless, for a large class of groups we have the following rigidity state-
ment proved in [17, Proposition 1].

T 5.12. – Let G be a subgroup of Diff.C; 0/ and let G1 � G be the subgroup of
elements with trivial linear part. IfG1 is not cyclic, then every formal conjugation ' 2 dDiff.C; 0/
of G with another (convergent) subgroup QG � Diff.C; 0/ is in fact holomorphic, that is,

'�G D QG H) ' 2 Diff.C; 0/ :
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C 5.13. – Let G � Diff.C; 0/ be a solvable subgroup. If the rank of G1 is at
least two then G is holomorphically conjugated to a subgroup of Ep;� or Ap for some � 2 C
and some p 2 N�.

5.7. Exceptional solvable subgroups

The solvable subgroups of Diff.C; 0/ which are not analytically normalizable are
described in the next result (see [30, Proposition 2.10.4]).

T 5.14. – IfG � Diff.C; 0/ is a solvable subgroup such thatG1 has rank one (that
is, is infinite cyclic), then we have one of the following possibilities.

1. G is abelian and is formally conjugated to the group generated by f D exp.vkq;�/ and
g D exp.2�i

q
/ exp.n

q
vkq;�/, where � 2 C, q; k 2 N� and n 2 Z. In particular, G1 is

generated by f .
2. G is not abelian and is formally conjugated to the group generated by f .z/ D z=.1 � zp/1=p

and g.z/ D exp.2�i=2q/z, where p; q 2 N� satisfies p D kq for some odd natural
number k. In this case, the subgroup generated by f and g2 is an abelian subgroup of
index two.

5.8. Formally linearizable case

This corresponds to the situation where G � Diff.C; 0/ is formally conjugated to a
subgroup of L. It is well known that there exists examples where this conjugation cannot
be made analytic and that this obstruction is related to the presence of small divisors, see for
instance [37]. Note also that analytic conjugation to a subgroup ofL holds if and only if there
exists a germ of logarithmic 1-form G invariant, cf. [30, Proposition 3.1.1].

6. Abelian holonomy

Most of this section is devoted to establish Theorem C. The core of its proof naturally
splits in two different cases according to the Ueda type of Y . The case of infinite Ueda type
is treated in Subsection 6.2 while the case of finite Ueda type is treated in Subsection 6.3.
In Subsection 6.5 we show how to treat the case of foliations with formally linearizable
holonomy under additional assumptions.

6.1. Closed formal meromorphic 1-forms

We start by showing that the formal analog of Theorem C holds true at the formal
completion of X along Y .

P 6.1. – Let Y be a smooth compact divisor on a projective manifold X .
Assume that Y is a compact leaf of a foliation F onX and that the holonomy of F along Y is
abelian. The following assertions hold true:

1. there exists a closed formal meromorphic 1-form O! on Y.1/ defining F jY.1/;
2. if the holonomy of F is formally linearizable, then O! is logarithmic and utype.Y / D1;
3. if the holonomy of F is not formally linearizable, then ordY . O!/1 � 1 is an integral

multiple of ord.NY /.
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Moreover, the 1-form O! is convergent on a neighborhood of Y whenever the holonomy group has
non unitary linear part in case (2), or its subgroup tangent to the identity is non cyclic in case (3).

Proof. – (1) The existence of a closed formal meromorphic 1-form defining F jY.1/ is
explained in Remark 5.10.

(2) If the holonomy is formally linearizable, then the holonomy of F is formally conju-
gated to a subgroup of L, and consequently O! is logarithmic. If it is formally linearizable and
unitary, then utype.Y / D1 by definition. If it is formally linearizable, but not unitary, then
holonomy group of F along Y is holomorphically linearizable, and we obtain a closed loga-
rithmic 1-form ! on an Euclidean neighborhood of Y . Aiming at a contradiction, assume
utype.Y / ¤ 1. Taking general hyperplane sections, we can reduce to the case where Y is
a curve on X . If utype.Y / ¤ 1, then Theorem 2.6 implies that ! extends to a closed loga-
rithmic 1-form onX with polar set contained in Y . Since the residue of! along Y is not zero,
we arrive at a contradiction with the Residue theorem.

(3) If i W .C; 0/ ! X is a germ of transversal to F through a point of Y , then i� O! is a
formal 1-form on .C; 0/ invariant by the holonomy of F . It cannot be logarithmic, since in
this case, the holonomy would be linearizable. The assertion follows from Proposition 5.11.

Finally, the convergence follows from Koenigs linearization theorem in case (2), when the
holonomy contains a contraction; and from Corollary 5.13 in case (3).

R 6.2. – Recall from Remark 2.2 that (2) does not hold true when F is only
defined on an analytic neighborhood of Y .

6.2. Fiber of a fibration

P 6.3. – Let Y be smooth compact divisor on a projective manifold X which
is a fiber (multiple or not) of a fibration f W X ! C . Assume that Y is a compact leaf of a
foliation F onX , and that the holonomy of F along Y is abelian. Then, there exists a projective
manifoldZ, and a generically finite morphism� W Z ! X , such that�� F is defined by a closed
rational 1-form.

Proof. – Proposition 6.1 implies the existence of a closed formal meromorphic 1-form O!
defining F jY.1/. In particular, N F jY.1/ D OY.1/.nY / where n is the order of poles of O!

along Y . Using the fact that Y is a fiber, we can infer thatN F ˝ OX .�nY / is actually trivial
on a Zariski open neighborhood of Y . The sheaf f� .N F ˝ OX .�nY // being torsion free
on a curve is a vector bundle (see for instance [26, Chap.V, Cor.(5.15)]) and has thus locally
a nowhere vanishing section if it is non zero. To see that it is indeed the case, it is enough
to prove that the formal completion at f .Y / is non zero. But Grothendieck’s comparison
theorem [22, Theorem 4.I.5] implies that the formal completion of f�.N F ˝ OX .�nY //

at f .Y / is isomorphic to f�.N F ˝ OY.1/.�nY //. As N F ˝ OY.1/.�nY / D OY.1/, we
finally get

̂f� .N F ˝ OX .�nY // ' f�
�
N F ˝ OY.1/.�nY /

�
D f�. OY.1// D ÔC;f .Y /;

the fibers of f being connected. Thus there exists a Zariski open neighborhoodU of Y where
N F jU ' OU .nY /. Consequently, F is defined by a rational 1-form ! having poles of
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order n on Y and no other poles onU . Therefore, there exists on Y.1/ a formal holomorphic
function Og such that O! D Og!jY.1/. Differentiating, and recalling that d O! D 0, we obtain that

d!jY.1/
D �

d Og

Og
^ !jY.1/

:

But again, the connectedness of the fibers of f implies that Og D Oh ı f for some formal
holomorphic function Oh on a formal neighborhood of f .Y /. It follows that for any rational
1-form ˛ on C without zeros or poles on f .Y /, d! and f �˛ ^ ! are holomorphically
proportional on Y.1/ and consequently rationally proportional on all X . More explicitly,
there exists a rational function g, regular on a neighborhood ofY , such that d! D g�f �˛^!.
Since g is regular on Y , it must be constant along fibers of f and d.g � f �˛/ D 0. Therefore
F is a transversely affine foliation and the result follows from arguments used in [18] as we
will now explain.

Let � D g �f �˛ and notice that the multi-valued 1-form exp.
R
�/! is closed. If the periods

of � are not rational multiples of �i , then the monodromy of exp.
R
�/! factors through C

[18, Theorems 4.1 and 5.1] and F must coincide with the fibration. If � has poles of order
greater than one, then the restriction of exp.

R
�/! to a general fiber of f is exact [18, proof

of Theorem 5.2]. Therefore F must coincide with the fibration. At this point, we deduce
that, if F is not the fibration, then � has at worst logarithmic poles, and all its periods are
rational multiples of �i . It follows that F is defined by a rational closed one-form on a
suitable finite ramified covering of X . Taking the resolution of singularities of this covering
gives the generically finite morphism � W Z ! X such that �� F is defined by a closed
rational 1-form.

R 6.4. – We can also prove that F is defined by a closed meromorphic 1-form
at the (analytic) neighborhood of Y by the following alternative argument. Locally along Y ,
we can define F by !i D dy C ykC1˛i with y a (global) reduced analytic equation of Y ,
˛i a holomorphic 1-form on Ui and k 2 Z�0 maximal with these properties. In fact, k is
the contact order of tangency between F and the fibration dy D 0. On Ui \ Uj , we have
˛i D j̨ C gij!j so that ˛i jY D j̨ jY

define a global holomorphic 1-form ˛ on Y . The
1-form ˛ measures the discrepancy between the foliation and the fibration at the order k, the
first order for which they differ.

More precisely, if k D 0, then the holonomy along a loop  2 �1.Y / computed in
variable y writes

y 7! e
R
 ˛y C � � � ;

since all periods of ˛ cannot be imaginary, we deduce that the linear part of the holonomy is
not unitary. This implies that the holonomy group is analytically linearizable and the formal
1-form O! constructed in Proposition 6.1 is actually analytic.

Now, when k > 0, then the holonomy along a loop  2 �1.Y / computed in variable y
writes

y 7! y C

�Z


˛

�
ykC1 C � � � ;

since all periods of ˛ cannot be Q-proportional, we see that the holonomy cannot be cyclic
and the formal 1-form O! constructed in Proposition 6.1 is actually analytic.
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C 6.5. – Let Y be a smooth compact divisor on a projective manifoldX . Assume
that Y is a compact leaf of a foliation F onX , and that the holonomy of F along Y is abelian
and non formally linearizable. If utype.Y / D1, then there exists a projective manifold Z and
generically finite morphism � W Z ! X such that �� F is defined by a closed rational 1-form.

Proof. – According to Proposition 6.1 (item (3)) the normal bundle of Y is torsion. Since
utype.Y / D 1, Theorem 1.3 gives a fibration f W X ! C having Y as one of its fibers, and
the corollary follows from Proposition 6.3.

6.3. Finite Ueda type

P 6.6. – Let Y be smooth compact divisor on a projective manifoldX . Assume
that Y is a compact leaf of a foliation F onX , and that the holonomy of F along Y is abelian.
Assume moreover that utype.Y / < 1. Then, the holonomy of F along Y is not linearizable,
and F is defined by a closed rational 1-form.

Proof. – By taking general hyperplane sections, we can assume (3) that dim.X/ D 2. Let
G � Diff.C; 0/ be the image of the holonomy representation of Y , and G1 the subgroup of
elements in G with trivial linear part.

IfG1 is trivial, that is, if the holonomy of F alongY is formally linearizable (Theorem 5.4),
then Proposition 6.1 item (2) implies that utype.Y / D 1 contrary to our assumption. This
shows that the holonomy of F is not linearizable.

If G1 is not cyclic, then G is analytically normalizable according to Corollary 5.13 and
there exists a closed meromorphic 1-form defined on a (germ of) transversal of F through
a point of Y which is invariant by the holonomy of F . Using the local triviality of the
foliation, we deduce the existence of a meromorphic closed 1-form on a neighborhood of Y
defining F . Then Theorem 2.6 allows us to extend the 1-form to a global meromorphic
1-form defined on the whole surface X .

If G1 is infinite cyclic and G1 is not analytically normalizable, the holonomy is then
described up to formal conjugacy by item (1) of Theorem 5.14. In particular there exists a
formal coordinate z such that the formal 1-form

dz

zkC1
C �

dz

z

is invariant by holonomy for some suitable choice of � 2 C. The holonomy of the foliation
(evaluated along a loop  2 �1.Y /) is thus given by

h .z/ D a

�
z Cmz

kC1
C o.zkC1/

�
where ak D 1 and m is an integer. Equivalently, we can choose local formal submersive
first integrals zi for F vanishing on Y such that

(6.1) zi D aij

�
zj Cmij zj

kC1
C o.zj

kC1/
�

(3) It is a consequence of the extension property of integrating factors, see for instance [16, Theorem 5.1, p.47]. See
also the appendix.
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with aij k D 1 and mij 2 Z and such that

b! D dzi

zkC1i

C �
dzi

zi

defines a formal closed meromorphic 1-form on Y.1/. From equation (6.1), we can derive

�
1

kzki
C

1

kzkj
D mij C o.zj /:

Since utype.Y / <1, one can infer from Theorem 1.3 and item (3) of Proposition 6.1 that
k D utype.Y / coincides with the order of NY .

Let now yi be a system of local analytic equations for Y such that yi D zi mod zi kC2.
From the previous equality, one can deduce (4) that

�
1

kyki
C

1

kykj
D mij C fij ;

where fij D 0 on Y . Let gij D mij C fij be the (non trivial) cocycle in H 1.X; OX / (away
from Y , we complete the system of coordinates by yi D 1 for instance). From the exponential
sequence in cohomology (and the fact that X is Kähler), it follows that exp.2i�gij / 2
H 1.X; O�X / defines a flat line bundle onX : it admits a unitary connection, that is, there exist
local units hi ; hj and constants bij (with jbij j D 1) such that

exp.2i�gij / D h�1i hj bij :

In restriction to Y , we get that exp.2i�gij /jY D exp.2i�mij / � 1 is the trivial connection.
By uniqueness of the unitary connection, we must have bij jY D 1, and all hi are constants
in restriction to Y . By construction,

� D
dyi

yi kC1
C

1

2i�

dhi

hi

is a well defined closed 1-form such that the induced foliation G has holonomy along Y equal
to the holonomy of F up to order k C 1 (note that dhi jY � 0).

We want to compare � and b!. Notice that the integration of � defines a representation
�� W �1.U / ! C where U is a tubular neighborhood of Y (C1 neighborhood of course).
Even if b! is only a formal 1-form, it defines a representation � O! W �1.U � Y / ! C as
follows. Let� W . QU ;E/! .U; Y / be the real analytic polar blow-up along Y . The exceptional
divisor is a S1-bundle over Y with fiber over a point y 2 Y parametrizing the rays on
a transversal to Y through y. Take two adjacent simply connected open subset V and W
of E. We can naturally associate to them two primitives of O!: those are formal complex
functions of the form � 1

kzk
C � log z where log z is a branch of the logarithmic meaningful

along the rays parametrized by V and W . On the intersection V \W , these two primitives
differ by a constant since their differentials are the same. Following paths on E we obtain
a representation � O! W �1.E/ ! C. Since E is a retraction of U � Y , we have the sought
representation.

Notice that the S1-principal bundle E comes endowed with a flat connection with
monodromy given by j 1� W �1.Y / ! Z=kZ � S1 the first jet of the holonomy of F . If

(4) Let us note that we are using the same construction as in the proof of Theorem B, but we use the additional
information coming from the assumption on the rank ofG1.
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K D ker j 1�, then we can injectK into �1.E/ by lifting paths inK to flat sections ofE ! Y .
Let us compare � O! with �F for  2 K. Along  , we see that formal first integrals zi defined
before are simply related by

zi D zj .1Cmij z
k
j C � � � /

so that mij 2 Z can be identified with the image of  under the .k C 1/-th jet

j kC1�F W K ! .C;C/ � dDiff.C; 0/

of the holonomy of F along Y . From the equation above we deduce that

�
1

kzki
C � log zi D �

1

kzkj
C � log zj Cmij

(recall that we work with a fixed determination of the logarithm which makes sense along 
in K). Therefore the restrictions of j kC1�F and � O! to K coincide. An analogous relation
holds for the restrictions of j kC1� G D j

kC1�F and �� toK. Therefore, the period represen-
tation � O!�� W �1.E/! C of O! � � vanishes on K.

Since yi D zi mod zi kC2, we deduce from local expressions of O! and � that

O! � � D �
dzi

zi
C holomorphic:

Therefore, after integrating, we get a collection of formal reduced equations

wi D exp
�
2i�

Z
O! � �

�

�
for Y , which are well-defined up to multiplication by constants, that is, a local system. By
construction, the corresponding representation �1.Y / ! C� is trivial on K, which has
finite index in �1.Y /, hence it is finite. We deduce that wi D aijwj along Y with akij D 1,
contradicting that utype.Y / <1. We conclude that this case does not happen, that is, � D 0
and O! � � has no pole.

We can argue as before that periods of O! � � along Y vanish on the finite index subgroup
K < �1.Y /, and therefore on �1.Y /. We can then write O! � � D df with f formal along Y .
As utype.Y / <1, we can deduce that f is constant (see Section 2.3). Therefore, O! D � is a
closed rational 1-form on X defining the foliation F .

R 6.7. – The starting point of the proof of Proposition 6.6 is the existence of
a closed formal meromorphic 1-form O! defining F jY.1/ and the induced isomorphism

N F jY.1/ D OY.1/..k C 1/Y /. A posteriori, we prove that this isomorphism extends to

an isomorphism of N F jU and OU ..k C 1/Y / where U is suitable Zariski neighborhood
of Y in X . If we could prove that such isomorphism holds true, a priori, for some Euclidean
neighborhood U , then it would be easy to conclude the proof of Proposition 6.6 since there
would exist (because of the isomorphism) a meromorphic 1-form ! (convergent but not
necessarily closed) defining F jU and with polar divisor equal to .kC1/Y . Comparing!jY.1/
and O!, we see that they differ by multiplication by a formal holomorphic function. But since
Y has finite Ueda type, it is G1 in the sense of [24, Section 5]: this holomorphic function must
be constant. We deduce that !jY.1/ is closed and so is !.
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6.4. Proof of Theorem C

If the holonomy of F along Y is formally linearizable, NY has infinite order and
utype.Y / D 1 then there is nothing else to prove (this is item (2) of the statement).
If utype.Y / D 1 and NY torsion then Proposition 6.3 implies the result. If instead
utype.Y / < 1 then now it is Proposition 6.6 that proves Theorem C. The only remaining
possibility is that utype.Y / D1,NY has infinite order and the holonomy groupG along Y is
not formally linearizable. In this situation, G is formally conjugated to a subgroup of Ek;�
(see Theorem 5.2) and in particular has finite linear part. This obviously contradicts the fact
thatNY has infinite order. Since these three further cases exhaust all possibilities, Theorem C
follows.

6.5. Formally linearizable holonomy

If F is a codimension one foliation on a projective manifold X with a compact leaf Y
having formally linearizable holonomy, then the existence of a formal logarithmic 1-form O!
defining F jY.1/ implies that the bundle N F ˝ OX .�Y / has trivial restriction to Y.1/. It

seems reasonable to imagine that this is only possible becauseN F ˝ OX .�Y / is trivial at an
Euclidean neighborhood of Y , and even better that it is numerically trivial at a Zariski neigh-
borhood of Y . Except when Y is a fiber of a fibration, and we can appeal to Grothendieck’s
comparison theorem, we are not aware of results supporting these hopes. In order to be able
to push forward our investigations, in the remaining of this section, we will work under the
following hypothesis: N F ˝ OX .�Y / is numerically equivalent to a Q-divisor D whose
support is disjoint from Y .

P 6.8. – Let Y be a smooth compact divisor on a compact Kähler manifold X
with utype.Y / D 1. Assume that Y is a compact leaf of a foliation F on X having formally
linearizable holonomy and thatN F ˝ OX .�Y / is numerically equivalent to a Q-divisorD with
support disjoint from Y . Then F can be defined by a logarithmic closed form, possibly after a
finite ramified covering étale over Y . In particular, the non analytically linearizable case does
not occur under these assumptions.

Proof. – Assume first thatD is a divisor such that N F ˝ OX .�Y / is linearly equivalent
to OX .D/ and such that jDj \ Y D ;. It follows that F is defined by a rational 1-form !,
logarithmic along Y , and with poles contained inD. If, as above, we denote by O! the formal
logarithmic 1-form defining F jY.1/ then we can write ! D Og � O! for a suitable section

of OY.1/. If Og is not constant and we denote by Og.Y / its value at Y then Og � Og.Y / is a
non-constant formal holomorphic function that vanishes on Y . ThereforeNY is torsion and
Y is a fiber of a fibration according to Theorem 1.3. We can then apply Proposition 6.3 to
conclude. If Og is constant then the restriction of d! to Y.1/ vanishes identically since O! is
closed. The identity principle implies that d! vanishes identically on X .

The general case can be reduced to the case just studied as follows. Let r be the smallest
positive integer such that rD is a divisor (that is, Z-divisor). The line bundle N F ˝r ˝

OX .�rY � rD/ has torsion Chern class and therefore admits a flat unitary connection r.
When restricted to Y this connection has no monodromy since N F jY D OX .Y /jY and
jDj \ Y D ; by hypothesis.
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If the monodromy of r has order at least three, then we can take a finite étale covering QX
of X in such a way that QX contains at least three pairwise disjoint hypersurfaces with
numerically trivial normal bundles. Hodge index theorem implies that these hypersurfaces
have proportional Chern classes (the pre-images of Y ) and we can apply [40] (see also [36])
to ensure the existence of a fibration having these hypersurfaces as fibers. It follows that the
original Y is itself a fiber of a fibration on X and we can apply Proposition 6.3 to conclude.

If the monodromy ofr is trivial and r > 1 then we apply the ramified covering trick (using
that .N F ˝ OX .�Y //

˝r D OX .rD/) to produce a connected ramified covering � W QX ! X

of degree r (since r is minimal) and which does not ramify along Y (since jDj\Y D ;) such
that �� F satisfies the assumptions made on the first paragraph of this proof.

Finally if the monodromy of r has order two then we reduce to one of the previous cases
by taking an étale double covering.

7. Solvable holonomy

This section is built around the question below. As in the case of abelian holonomy, we
have split our study according to the Ueda type of Y and the order of NY .

Q 7.1. – If F is a foliation on a projective manifold having a compact leaf Y
with solvable holonomy, is it true that F is transversely affine ?

7.1. Fiber of a fibration

The next statement gives an affirmative answer to Question 7.1 when Y is a fiber of a
fibration.

P 7.2. – Let Y be a smooth compact divisor on a projective manifold X which
is a fiber of some holomorphic fibration p W X ! C onto a projective curveC . Assume also that
Y is a compact leaf of a foliation F on X , and that the holonomy of F along Y is solvable.
Then F is a transversely affine foliation K ’.

Proof. – For the sake of simplicity, we will suppose that Y is a regular fiber, that is,
NY ' OY . Indeed, every case can be reduced to this latter by an appropriate finite base
change; on the other hand, a foliation is transversely affine if, and only if, its pull-back by
a dominant morphism is ([13, Theorem 1.4], [18, Proposition 2.9]). Let U � C be the open
subset of regular values of p, and let u1 W U1 ! U be the universal covering of U . If we set
V D p�1.U /, then we have the diagram

Y // X

p

��

Voo

p

��

V1
�oo

p1

��

C Uoo U1:
u1oo

We will assume that the holonomy is solvable but non abelian, since the abelian case
has been settled in Proposition 6.3. In particular, the linear part of the holonomy group
is analytically equivalent to a subgroup of Ak for a suitable k 2 N�. Indeed, being solv-
able non abelian, the linear part of the monodromy cannot be trivial (see Section 5.1) and
we can argue as in Remark 6.4 to deduce that the linear part is not unitary: we are not
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in the exceptional case of Section 5.7 and we can conclude by Corollary 5.13. Therefore,
there exists an Euclidean neighborhood W of Y in X , a holomorphic flat connection rW
on .N F ˝ OX .�.k C 1/Y // jW and a meromorphic 1-form ! defined on W with coeffi-
cients in N F ˝ OX .�.k C 1/Y / and polar divisor equal to .k C 1/Y which defines F such
that rW .!jW / D 0.

We will first prove that the monodromy representation of this transversely affine structure
for F jW extends to a representation of the fundamental group of a Zariski neighborhood
of Y .

Let E be the rank one local system onW defined by the flat sections ofrW . If we consider
its pullback �� E to V1 then the simple connectedness ofU1 allows us to identify �1.V1/with
�1.Y / and, as a byproduct, to extend �� E to a rank one local system D defined on V1. Let
D D D˝ OV1 be the associated line bundle.

We claim thatD ' ��.N F ˝ OX .�.kC 1/Y // ' �
�N F . Indeed, let Jac.p1/! U1 the

relative Jacobian of p1 W V1 ! U1. SinceD and ��N F are both flat on the fibers, they both
induce holomorphic sections

sD; s��N F W U1 ! Jac.p1/:

Actually, these sections are the same as they coincide on some neighborhood of p1.��1.Y //.
One can then conclude that D and ��N F are equal on restriction to fibers (up to isomor-
phism). By triviality ofH 1.U1; O�U1/, we infer that equality holds on the whole V1. Similarly,
we deduce that D ' ��.N F ˝ OX .�.k C 1/Y //.

Let rD be the flat holomorphic connection on D determined by D. Set � D ��.!/.
Modulo the previous identification of line bundles, rD� is well defined as a meromorphic
section of �2V1 ˝D.

We are now going to compare the connection rW (a priori only defined on a neigh-
borhood W of Y ) with rD . Since rW .!jW / D 0, we have that ��rW� D 0. On the
other hand, as ��rW has the same monodromy as rD on W1 D ��1.W /, it follows that
��rW � rD D p

�
1� where � is a meromorphic form on p1.W1/. But, since ��rW .�/ D 0,

we also have that

(7.1) rD.�/ D p
�
1� ^� :

Moreover, p�1� can be expressed asAp�1�
0 where �0 is a well defined meromorphic form onU1

(recall that U1 is nothing but the unit disk) and A is a meromorphic function defined onW1.
By re-injecting Ap�1�

0 D p�1� in equation (7.1), one observes that A, hence p�1�, extends as
a global meromorphic object on V1 (rD.�/ and� being both globally defined). This shows
that the connection ��rW extends to a flat meromorphic connection r1 on V1.

Let b D p.Y /, a and a0 be two points in u�11 .b/ andr1a,r1a0 be the germs ofr1 alongFa
and Fa0 . An easy calculation gives

��r1a � ��r1a0 D � C p
��;

where � a meromorphic closed one form tangent to F defined in a neighborhood of Y and
� is a meromorphic form defined near p.Y /. The non abelianity of the holonomy group
forces � to vanish identically. This clearly implies that the monodromies associated to both
connections��r1a and��r1a0 are the same (near Y ). But this implies that the connectionr1
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descends to a connection over the Zariski open neighborhood U of Y ; therefore, the trans-
versely affine structure of F originally defined only at an Euclidean neighborhoodW of Y , is
now defined on U . In particular, the monodromy of the transversely affine structure of F jW
extends to a representation � W �1.U / ! Aff.C/ of the fundamental group of the Zariski
open neighborhood U of Y .

Since � is not virtually abelian (remind that its linear part is not unitary), we deduce
from [3] the existence of a rational map f W X 99K B from X to a curve B which is regular
at a neighborhood of Y (that is, an actual morphism) and factors �. To wit, there exists a
representation Q� W �orb

1 .B/ ! Aff.C/ such that � D Q� ı f�. This allows us to construct a
global connection r on the trivial line bundle over U , having the same monodromy as rW
when restricted to W . Indeed, r is of the form d C f �� where � is a holomorphic 1-form
on B. This implies that the normal bundle of F is trivial when restricted to a neighborhood
of Y , and globally can be written as the line bundle associated to a divisor with irreducible
components contained in fibers of p. Therefore, there exists a rational 1-form Q! defining F

with divisor of zeros and poles contained in fibers of p. Furthermore, we can assume that,
at a neighborhood of Y , the polar divisor of Q! is .k C 1/Y .

Since r and rW have the same monodromy on W , they differ by an exact 1-form dH .
OnW , we also have that Q! D g!jW for some holomorphic function g defined onW . Hence,
on W , we can write

r. Q!/ D rW .g!jW
/ � dH ^ Q! D

�
dg

g
� dH

�
^ Q!:

We thus see that dg
g
� dH is the restriction to W of a closed rational 1-form which can be

written as p�˛ for a suitable rational 1-form ˛ defined on C . We have thus established the
identity �

r � p�˛
�
Q! D 0 ;

showing that F is transversely affine, concluding the proof of the proposition.

7.2. Finite Ueda type

In the proof of the next proposition, we will make use of Atiyah’s interpretation for a
holomorphic connection on a locally free sheaf [4] which we now proceed to recall. If E is
a locally free sheaf, then we define another locally free sheaf D. E / as follows. As a sheaf
of C-modulesD. E / is E ˚�1X ˝ E , but the structure of OX -module onD. E / is not a usual
one. Multiplication by an element f 2 OX is given by

f � .s; �/ D .f s; df ˝ s C f�/:

The sheaf D. E / fits into the natural exact sequence

0! �1X ˝ E ! D. E /! E ! 0 :

Atiyah proved that holomorphic connections on E are in bijection with splittings ' W E ! D. E /

of this exact sequence. In particular, given a holomorphic connection r on E , we obtain a
section of E �˝D. E / which maps to the identity in E �˝ E through the morphism induced
by the exact sequence above.
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P 7.3. – Let F be a foliation on a projective manifoldX . Assume that F has
a compact leaf Y with solvable holonomy, and that the Ueda type of Y is finite. Then, one of the
following assertions holds true:

1. F is a transversely affine foliation.
2. The holonomy of Y is virtually abelian, and there exists a positive integer q such that the

Ueda type of Y is at least q and the normal bundle of Y is torsion of order 2q.

Proof. – There is no loss of generality in assuming that the holonomy is not abelian since
the abelian case is covered by Proposition 6.6. Also, we can assume that X is a surface since
a foliation on a projective manifold is transversely affine if, and only if, a general hyperplane
section of it is transversely affine, see the appendix.

Assume first that the holonomy of F along Y is analytically normalizable. In this case,
we can construct a transversely affine structure for F at an Euclidean neighborhood U
of Y , that is, we can construct a flat meromorphic connection rU on N F jU having polar
divisor supported on Y such that rU .!jU / D 0 where ! 2 H 0.X;�1X ˝ N F / is a
twisted 1-form defining F . From the discussion on Atiyah’s interpretation of connections,
we obtain a meromorphic section � of .N F � ˝ D.N F //jU

over U inducing rU . Ueda’s
Theorem 2.6 allows us to extend � to a rational section of N F � ˝D.N F /. Equivalently,
we are able to extend the connection rU to a rational connection r over allX . Since flatness
is a closed condition, r is flat and, similarly, r.!/ vanishes identically. This proves that F is
transversely affine.

Assume now that the holonomy group G of F along Y is not analytically normalizable.
Since we are assuming thatG is not abelian, we have that there exist positive integers p; q and
an odd integer k satisfying p D kq such thatG is formally conjugate to the group generated
by

f .z/ D
z

.1 � zp/1=p
and g.z/ D exp.

2�i

2q
/z ;

see Theorem 5.14 item (2). It follows that utype.Y / � p D kq and ord.NY / D 2q. If k > 2
then Theorem 1.3 implies that utype.Y / D 1 and Y is a fiber of fibration contrary to our
assumptions. Since k must be an odd integer according to Theorem 5.14, we conclude that
k D 1 and p D q as stated.

7.3. Virtually abelian holonomy

As in the case of formally linearizable holonomy, we do not know how to deal with the
case of non-analytically normalizable virtually abelian holonomy. Anyway, in that case we
have that

N F jY.1/ D OY.1/..q C 1/Y /˝ T;

where T is a flat line bundle of order two. If we assume that a global version of this identity
holds, then we are able to reduce to the case of abelian holonomy treated by Theorem C.

P 7.4. – Let Y be a compact leaf of a codimension one foliation F on a
projective manifold X . If utype.Y / < 1, F is as in item (2) of Proposition 7.3, and there
exists a Q-divisorD disjoint from Y such thatN F is numerically equivalent to .qC 1/Y CD,
then there exists a generically finite morphism � W QX ! X , which is étale over a neighborhood
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of Y , and such that the holonomy of �� F along �.�1/.Y / is abelian. In particular, the foliation
�� F satisfies conclusion (1) of Theorem C.

Proof. – If D is a Z-divisor then L D N F ˝ OX .�.q C 1/Y �D/ belongs to Pic� .X/.
The restriction of L to Y coincides with NY ˝�q which is a torsion line bundle of order
two according to our hypothesis. Since utype.Y / < 1, it follows from Proposition 2.7 that
L itself is a torsion line bundle. The conclusion follows by taking the associated covering.

If D is not a Z-divisor then let r be the smallest positive integer such that rD is. The line
bundle L D N F ˝r ˝ OX .�r.q C 1/Y � rD/ is torsion. Thus, after taking the associated
covering, we can assume that it is trivial. Applying the ramified covering trick, we produce
a finite covering ramified only over the support of D, and such that the pull-back of our
foliation satisfies the assumption of the first paragraph of this proof.

8. Factorization

For a fixed k � 1, the group J kdDiff.C; 0/ of k-th jets of formal diffeomorphisms
of .C; 0/ is a solvable linear algebraic group. In [10, 11] (resp. [5, 6]), representations of
Kähler groups on solvable groups (solvable matrix groups) are studied. In view of the
results obtained in these articles, it is natural to ask if some factorization results hold true
for arbitrary non virtually abelian representations on dDiff.C; 0/. As recalled in Section 5,
Theorem 5.8, the center Z.G/ of a non virtually abelian G < dDiff.C; 0/ is necessarily finite
(thus justifying the first assertion of Theorem D), hence conjugated to a group of unit roots.
We split now the study according to the order of tangency of the given representation.

8.1. Representations with trivial linear part.

We consider a compact Kähler manifold Y and a representation

� W �1.Y /! dDiff.C; 0/� ;

where � is a positive integer and dDiff.C; 0/� is the subgroup (5) of dDiff.C; 0/ whose elements
are tangent to identity to order � � (see Definition 5.3). We assume moreover that � is
the greatest integer having this property. Let J k� the induced representation on k-jets. In
particular, � is the first positive integer such that J �C1� is not trivial. The first lemma
shows that factorization of the full representation is equivalent to factorization of a finite
truncation.

L 8.1. – Assume that, for some k � � C 1, J k� factors through a curve C (via a
morphism Y ! C), then J kC�C1� factors through C . In particular, by induction, � factors
through C .

Proof. – By assumption, we have a fibration f W Y ! C such thatJ k� factors throughC .
Let U be a dense Zariski open subset of C over which f is a smooth fibration. Let
V D f �1.U / and F � V be a smooth fiber of f . The monodromy representation will
be denoted by

� W �1.U /! GL.H1.F;C//:

(5) By convention dDiff.C; 0/0 WD dDiff.C; 0/.
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The jet filtration on dDiff.C; 0/ provides us with the following exact sequence:

0! C�C1 ! J kC�C1dDiff.C; 0/� ! J kdDiff.C; 0/� ! 0:

Note that we have a non trivial natural action of J kdDiff.C; 0/� onto C�C1 induced by
conjugation in J kC�C1dDiff.C; 0/, namely

(8.1) g � .bkC1; : : : ; bkC�C1/ D .bkC1; : : : ; bkC� ; bkC�C1 C .� � k/a�C1bk/;

where g.x/ D x C � � � C akx
k mod .xkC1/. By hypothesis, the truncated representation

J kC�C1� induces by restriction a representation � W �1.F / ! C�C1 which factorizes
through ' W H1.F / ! C�C1. Set H D '.H1.F // and HC D H ˝ C. Remark that
�1.U / acts onH by multiplication as defined in equation (8.1), and denote by q this action.
Define G as the subgroup of GL.H1.F;C// which preserves the kernel of the morphism
'C W H1.F;C/ ! HC induced by ' and let ˇ W G ! Aut.HC/ the canonical surjection.
Because the action of �1.U / on H1.F / is inherited from the action of �1.X/ onto itself by
conjugation, one obtains the following commutative diagram:

G
ˇ
// Aut.HC/

�1.U /:

�

OO

q
99

Let Z be the Zariski closure of �.�1.U //. According to Deligne’s semi-simplicity theorem
[19], the identity component Z0 � Z is semi-simple On the other hand, by equation (8.1),
ˇ.Z0/ is infinite abelian, which leads to a contradiction unless HC D f0g and consequently
J kC�C1� factorizes through f .

R 8.2. – This kind of factorization results are probably well known by specialists
working on representation of Kähler groups. However, we didn’t manage to extract a precise
statement in the literature. The use of Deligne’s theorem in the proof of Lemma 8.1 above
is due to Campana ([11], proof of Theorem 4.1, p.619) and our argumentation follows the
same line than loc.cit.

The next proposition is purely group theoretic and is in a way reminiscent from the proof
of Theorem 3.13.

P 8.3. – If � is a non abelian subgroup of dDiff.C; 0/1, then there exist two
classes of a; b 2 H 1.�;C/ which are not proportional and such that a ^ b D 0 in H 2.�;C/.

Proof. – To simplify, let us first assume that � is not contained in dDiff.C; 0/2. It implies
the following: if g.z/ D z C a.g/z2 C � � � then the morphism a W � ! C is not zero. Now,
consider the following expression:

F0.g/ WD
1

g.z/
�
1

z
D

1

z C a.g/z2 C � � �
�
1

z

D �a.g/C b.g/z C c.g/z2 C � � �
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Using the fact that F0 satisfies the obvious cocycle relation F0.gh/ D F0.g/ ı hCF0.h/, we
infer the following equality:

a.gh/C b.gh/zCc.gh/z2 C � � � D �a.g/C b.g/.z C a.h/z2 C � � � /

C c.g/.z C a.h/z2 C � � � /2 C � � � � a.h/C b.h/z C c.h/z2 C � � �

Identifying the coefficients of z and z2, we get: b.gh/ D b.g/Cb.h/ so that b 2 H 1.�;C/ and
c.gh/ D c.g/C c.h/C b.g/a.h/. This last identity exactly amounts to saying that a^ b D 0
inH 2.�;C/. If b is not proportional to a, we are done. We can thus assume that b D �a and
consider the following:

F.g/ D F0.g/ � � log
�
g.z/

z

�
:

It satisfies the same cocycle relation (F.gh/ D F.g/ ı h C F.h/) and it has the following
expansion:

F.g/ D �a.g/C �a.g/z C � � � � � log.1C a.g/z C � � � / D �a.g/C a2.g/z2 C � � �

Assume from now on that there exists a coordinate in which F can be written:

F.g/ D �a.g/C ak.g/z
k
C akC1.g/z

kC1
� � �

for some k � 2 and some functions .aj /j�k . Using the cocycle relation, we see that

�a.gh/C ak.gh/z
k
C akC1.gh/z

kC1
C � � � D �a.g/C ak.g/.z C a.h/z

2
C � � � /kC

akC1.g/.z C a.h/z
2
C � � � /kC1 C � � � � a.h/C ak.h/z

k
C akC1.h/z

kC1
C � � �

We still identify coefficients and get: ak.gh/ D ak.g/ C ak.h/ and akC1.gh/ D akC1.g/ C

akC1.h/Ckak.g/a.h/. This means exactly that ak is a class inH 1.�;C/ such that ak^a D 0.
If ak D �ka we can (exactly as in the proof of Theorem 3.13) perform the change of
coordinate

y D z C
�k

k � 1
zkC1:

Expanding F.g/ with respect to y we get:

F.g/ D �a.g/C a0kC1.g/y
kC1
C � � �

If we can go on this procedure inductively, we end up with a formal coordinates (still denoted
by z) such thatF.g/ D �a.g/. This is equivalent to saying that any g 2 � preserves a rational
formal 1-form expressed as

dz

z2
� �

dz

z
:

According to the interpretation of Section 5.4, we conclude that � is abelian. If it is not
the case, the process above has to stop at some point, and it gives a class ak that is not
proportional to a and such that ak ^ a D 0.

In the general case, if � is contained in dDiff.C; 0/� but not in dDiff.C; 0/�C1, we have to
modify the expression of F :

F.g/ D
1

g.z/�
�
1

z�
C � log

�
g.z/

z

�
:

We also recall a variation of the Castelnuovo-De Franchis theorem due to Catanese [14,
Theorem 1.10].
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L 8.4 (Catanese). – Let Y be a compact Kähler manifold and ˛; ˇ 2 H 1.Y;C/ such
that ˛ [ ˇ D 0. Then

1. either ˛ and ˇ are colinear,
2. or there exists a morphism f W Y ! Cg with connected fibers onto a curve of genus � 2

and ˛0; ˇ0 2 H 1.Cg ;C/ such that ˛ D f �˛0 and ˇ D f �ˇ0.

For the case of representations tangent to identity and thanks to Remark 5.9, Theorem D
follows from

T 8.5. – Let � W �1.Y / �! dDiff.C; 0/� be a representation where � � 1. Then

1. either � has abelian image,
2. or � factors through a curve.

Proof. – Lemma 8.1 reduces the proof of this result to Lemma 8.4 and Proposition 8.3.

8.2. Representation with finite but non trivial linear part.

We assume here that the image of � is non virtually abelian with finite linear part, that is,
Im J 1� < 1. Let � W Y 0 ! Y be the finite étale Galois cover determined by Ker J 1�.
From the previous analysis, the pull-back representation ��� is tangent to identity and
factors through a curve C . If F denotes a fiber over C , ��� is trivial in restriction to ˛.F /
for any deck transformation ˛. On the other hand, ��� has infinite image. This implies
that ˛ preserves the fibration. Projecting the fibers onto Y and taking if necessary Stein
factorization, we obtain a surjective morphism p W Y ! C 0 from Y to a curve C 0 with
connected fibers along which � has finite image. Taking the exact sequence associated to this
fibration (up to shrinking the base), we get that the image of �jF , F a generic fiber, lies in the
center (6) of Im �. This proves Theorem D for representations with finite linear part.

8.3. Representation with infinite linear part.

We assume here that the image of � is non abelian with infinite linear part: Im J 1� D1.
Let � W Y 0 ! Y a finite étale Galois cover such that Im J 1� is torsion free. We begin by a
result analogous to Lemma 8.1.

L 8.6. – Assume that, for some k � 1, J k� factors through a curve C , then J kC1�
factors through C . In particular, by induction, � factors through C .

Proof. – Once again, the proof resorts to Deligne’s semi-simplicity theorem. Indeed,
we conclude similarly to the proof of Lemma 8.1 observing here that the jet filtration
on dDiff.C; 0/ provides us with the following exact sequence

0! C! J kC1dDiff.C; 0/! J kdDiff.C; 0/! 0:

(6) A priori, this only establishes that Im �jF is normal in Im �. In order to justify Im �jF � Z.Im �/, simply note
that Im �jF is finite, hence lies in a finite subgroup of L (Corollary 5.5) and that the linear part is preserved under
conjugacy.
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The natural action of J kdDiff.C; 0/ onto C induced by conjugation in J kC1dDiff.C; 0/ is then
defined by

(8.2) g � a D ��ka;

where g.x/ D �x C � � � C akxk mod .xkC1/. The end of the proof is then parallel to the one
of Lemma 8.1.

Let m � 2 be the first positive number such that Jm� has a non abelian image. In this
context, this is equivalent to saying that, for every  2 �1.Y /, Jm�./ D �z C az

m with
 ! a a non trivial map. In particular, J 1�˝m�1 possesses a nontrivial affine extension,
that is, H 1.Y; J 1�

˝m�1
/ 6D 0. According to [11], there exists a Galois finite étale cover

� W Y 0 ! Y , a surjective morphism f 0 from Y 0 to a curve C 0 through which ��J 1�˝m�1

factors.

Let us choose � such that ��J 1� factors through f 0. According to the previous lemma,
the whole representation ��� factors through f 0. Arguing as in Section 8.2, f projects to
a morphism f W Y ! C which after Stein factorization provides the factorization given in
Theorem D and concludes its proof.

R 8.7. – For infinite linear part, Theorem D has been established under the sole
assumption of non abelianity of the image of �. Actually, it is not difficult to see in this setting
that “non abelian” is equivalent to “non virtually abelian”.

8.4. Factorization of foliations. Proof of Theorem E.

Let X be a compact Kähler manifold of dimension at least 3, F be codimension one
foliation on X and Y � X a compact leaf of F such that NY has order m.

Suppose first that utype.Y / > m, that is, Y is a fiber of a fibration f W X ! C over a
curve. If F coincides with the fibration, then there is nothing else to prove; from now on, we
will assume that F and the fibration are distinct foliations.

The normal bundle of F restricted to Y coincides with the normal bundle of Y and
is therefore torsion. In particular, N F jY has zero real Chern class. If we restrict N F to
Yt D f

�1.t/ for a general t 2 C then it is perhaps not true that N F jYt
is still torsion, but

certainly the real Chern class ofN F jYt
is zero. Two possibilities can occur: (a) for a general

t 2 C , N F jYt
is not torsion; or (b) N F is torsion on a Zariski neighborhood of Y .

Let us consider first case (a). Let ! 2 H 0.X;�1X ˝N F / be a twisted 1-form defining F ,
and let it W Yt ! X be the inclusion. Since F is distinct from the fibration f , the pull-back
i�t ! 2 H

0.Yt ; �
1
Yt
˝ N F jYt

/ is non-zero for a general t . Also, by assumption, N F jYt
has

zero Chern class but it is not torsion. Therefore, according to [11], there exists a morphism
gt W Yt ! Ct to a curve such that i�t ! is the pull-back of a twisted 1-form on Ct . In
particular, the leaves of F jYt

are the fibers of gt . Since t is general, we obtain through a
general point x 2 X an analytic subset of codimension two which is everywhere tangent
to F . The existence of a morphism � W X ! S to a normal surface and a foliation G

on S such that �� G D F follows from standard properties of the Chow’s scheme (see [31,
Lemma 2.4]).
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Assume now that we are in case (b). Maybe passing to a finite cover, we can assume that
N F is trivial on a Zariski neighborhood of Y . The normal bundle can be expressed by a
divisor supported on finitely many fibers of f . Therefore, there exists a 1-form ˇ defining
F with zeros and poles also supported on fibers of f . On the one hand Frobenius theorem
implies that ˇ ^ dˇ D 0, and on the other hand the closedness of i�t ˇ for a general t (fibers
of f are Kähler compact) implies dg^dˇ D 0 for any rational function g constant along the
fibers of f . Putting these two equations together yields

dˇ D hdg ^ ˇ H) 0 D dh ^ dg ^ ˇ

for some rational function h. If dh^dg ¤ 0, then (the irreducible components of) the fibers
of .h; g/ W X 99K P1 �P1 are tangent to leaves of F , and after taking the Stein factorization
of .h; g/, we obtain a morphism � W X ! S to a normal surface and a foliation G on S such
that �� G D F as before. If dh^dg D 0 then hdg D f �˛ for some rational 1-form on C , so
we can conclude as in the proof of Proposition 6.3 that the pull-back of the original foliation
by a generically finite morphism is given by a closed rational 1-form. This clearly implies
that the holonomy along Y is virtually abelian and proves the assertion of the theorem when
utype.Y / > m.

Now, let us deal with the case utype.Y / D m. We suppose that the image G of the
holonomy representation is not virtually abelian. According to Theorem D, there exists a
morphism Y ! C such that the holonomy representation is finite in restriction to the fibers.
Let F be a smooth fiber and m0 the order of the holonomy representation restricted to F .
Note thatm0 necessarily dividesm. On some neighborhood of F (in X ), the foliation is thus
defined by a holomorphic first integral g D ym where y is a locally defined submersive
first integral of F along Y . The Ueda connection .U ;r/ is thus trivial along F . This easily
implies that the Ueda’s class c 2 H 1.Y; OY / is trivial along F (this can be done mimicking
Ueda’s original proof that c is unambiguously defined up to a constant factor, [42, §2]). On
the other hand, recall that c is induced by an element c0 2 H 1.X; OX / (Remark 4.2). As
c D c0jY

is not trivial, this means that there exists onX a holomorphic 1-form! (for instance
the conjugate of c0) such that !jY is not identically zero and projects onto C . In particular,
one can write on a neighborhood U of F in X , ! D dG where G 2 O.U /. Intersecting
the levels of G and g, one can then fill up a neighborhood of F with codimension 2 analytic
subsets contained in the leaves of F . Let� 2 H 0.X;�1X˝N F / a twisted one form defining
F . From the previous observations, the leaves of the codimension 2 foliation defined by�^!
are algebraic and thus provide the sought factorization.

9. Quasi-smooth foliations

In this section, we will study foliations on projective manifolds having a compact leaf
and such that c1.N F /2 D 0 in H 4.X;C/. This assumption is certainly satisfied by smooth
foliations thanks to Bott’s vanishing theorem. More generally (see for instance [9]), Baum-
Bott index theorem implies that N F 2

D 0 for foliations having the following division
property: for every local generator ! of the conormal sheaf N F � (regarded as an invertible
saturated subsheaf of �1X ), there exists some holomorphic local one form ˇ such that

d! D ˇ ^ !:
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In particular, this division property holds whenever every irreducible component † of the
singular set Sing.F / satisfies one of the following conditions:

1. † has codimension at least three; or
2. over a general point of †, F admits a holomorphic first integral with critical set

contained in †.

D 9.1. – We will say that a codimension one foliation F satisfying
c1.N F /2 D 0 is a quasi-smooth foliation. Furthermore, if the foliation satisfies the division
property above then we will say that the foliation is divisible.

9.1. The normal bundle of a quasi-smooth foliation

L 9.2. – If F is a quasi-smooth foliation on a compact Kähler manifoldX admitting
a compact leaf Y , then the following assertions hold true.

(1) There exists a rational number � such that N F is numerically equivalent to �Y .
(2) If r is the smallest positive integer such that r� 2 Z then L D N F ˝r ˝ OX .�r�Y / is

in Pic� .X/ (the group of line bundles with torsion Chern class), and L jY coincides with
NY ˝r.1��/.

(3) If � D 1, then either the image of the holonomy of F along Y is abelian, or Y is a fiber
of a fibration.

Proof. – (1) Since both c1.N F /2 and c1.N F / � c1. OX .Y // vanish in H 4.X;C/, Hodge
index theorem implies thatN F is numerically equivalent to �Y for some rational number �.
The conclusion of (2) follows from item (1) and the fact that N F jY D OX .Y /jY D NY .
To prove (3), we argue according to the order of L D N F ˝ OX .�Y / in Pic� .X/. We
first remark that L cannot be trivial: the Residue theorem implies that F cannot be given
by a logarithmic 1-form whose poles are only on Y . If ord. L / D 2, then F is given by a
logarithmic 1-form after a double étale cover, which is an isomorphism along any connected
component of the pre-image of Y ( LY D OY ), and the holonomy is thus abelian. If
ord. L / > 2, we can argue as in the proof of Proposition 6.8 and conclude that Y is a fiber
of a fibration.

R 9.3. – Let ! be a Kähler form. By Hodge index theorem (assuming again
the existence of a compact leaf), one can notice that F is quasi-smooth if and only if
c1.N F /

2
^ Œ!�n�2 � 0 (n D dim.X/), which is a priori a weaker condition.

9.2. Factorization of the foliation

This paragraph is devoted to the proof of the following result.

T 9.4. – Let Y be a compact leaf of a codimension one quasi-smooth foliation F

on a compact Kähler manifoldX . If the holonomy of F along Y is not abelian, then there exists
a morphism � W X ! S to a surface S and foliation G on S such that F D �� G .

Let us note that it gives a positive answer to Question 1.5 in the case of quasi-smooth
foliations. We split the proof according to the order of the normal bundle of Y .
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9.2.1. Normal bundle of infinite order

P 9.5. – Let Y be a compact leaf of a codimension one quasi-smooth folia-
tion F on a compact Kähler manifold X . Assume that ord.NY / D 1 in Pic� .Y /. If the
holonomy of F along Y is not abelian, then there exists a morphism � W X ! S to a surface S ,
and foliation G on S such that F D �� G .

Proof. – Let � W �1.Y / ! Diff.C; 0/ be the holonomy representation of F along Y .
Since the image of � is not abelian, and its linear part is infinite, we can appeal to Theorem D
(see also Remark 8.7): there exists a non-constant morphism p W Y ! C such that the
restriction of � to a general fiberF ofp has finite order. Moreover,NY is of the formp�NC�

where N 2 Pic0.C / and � 2 Pic� .Y / is torsion.
The inclusion p� W H 0.C;�1C /! H 0.Y;�1Y / induces a surjection p� W Alb.Y /! Alb.C /.

The morphism p W Y ! C can be seen as the Stein factorization of the composition of the
Albanese morphism alb W Y ! Alb.Y / with p�.

Consider the Zariski closure G of the subgroup generated by NY in Pic� .Y /. Since
ord.NY / D 1, we have that G has positive dimension. Moreover, since some power
of NY extends to a line bundle over X (Lemma 9.2) and the restriction morphism
Pic� .X/! Pic� .Y / has finite kernel (Proposition 2.7), it follows that

GX D G \ ImagefPic� .X/! Pic� .Y /g

has the same dimension as G. In particular G.0/, the connected component of the identity
of G, is contained in GX .

If we dualize the inclusions G.0/ ! Pic0.Y / and G.0/ ! Pic0.X/ we obtain surjective
morphisms to Alb.Y /! A and Alb.X/! A where A is a compact torus with the following
commutative diagram

Alb.X/ // A

Alb.Y /:

OO ;;

It follows from the definition of G.0/ that G.0/ � p� Pic0.C / and hence we get the
factorization

Y ! Alb.Y /! Alb.C /! A :

Since the fibers of Y ! Alb.C / have codimension one in Y , the same holds true for
'Y W Y ! A. Thus both morphisms have the same Stein factorization and the restriction
of � to fibers of Y ! A is finite.

Now, consider the morphism 'X W X ! A. Since its restriction to Y coincides with 'Y ,
which has codimension one fibers in Y , it follows that the fibers of 'X have codimension one
or two in X .

If a general fiber F of 'X has codimension one, then the restriction of F to F is a
codimension one foliation which has a compact leaf with finite holonomy. It follows that all
the leaves of F jF are algebraic (or more exactly locally closed, as the ambient manifold is not
necessarily algebraic). Thus there exists a codimension two foliation H on X by algebraic
leaves tangent to F . This provides us with the existence of the morphism � W X ! S and of
the foliation G on S such that F D �� G as in the proof of Theorem E.
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If the general fiber of 'X has codimension two, then we claim that it is contained in a
leaf of F . Let F be a general fiber sufficiently close to a fiber F0 contained in Y . Since the
holonomy representation is finite in F0, there exists an analytic neighborhood U of F0 such
that F jU admits a holomorphic first integral. The restriction of this first integral to F must
be constant by the maximum principle. Therefore, the fibers of 'X define a foliation H onX
by algebraic leaves which is tangent to F . The result follows as in the previous case.

9.2.2. Torsion normal bundle

P 9.6. – Let Y be a compact leaf of a codimension one quasi-smooth foliation
F on a projective manifold X . Assume that ord.NY / <1 in Pic� .Y /. If the holonomy of F

along Y is not virtually abelian, then there exists a morphism � W X ! S to a surface S and
foliation G on S such that F D �� G .

Proof. – By item (2) of Lemma 9.2, for some suitable positive integer m, there exists in
a neighborhood of Y a meromorphic section � of N F �

˝m (seen as an invertible subsheaf
of�1X

˝m) with poles only on Y and which defines the foliation. On the other hand, according
to Theorem D, the holonomy representation �F (essentially) factors through a fibration onto
a curve f W Y ! C . If F denotes a smooth fiber of F , the restriction of �F to F has finite
image, and there exists a small analytic neighborhood U (in X ) of F on which the foliation
admits a first integral. This can be expressed as zq where z is some local defining coordinate
for F vanishing on U \Y and q is the order of the holonomy group along F . Consequently,
F is defined on U by

! D .
dz

zqC1
/˝m 2 H 0

�
U;�1X

˝m
.m.q C 1/Y /

�
:

Let us compare the two meromorphic 1-forms � and ! . They coincide on U up to a
multiplicative meromorphic function g which can be assumed to be holomorphic (up to
replacing g by 1=g). If this function is constant along the leaves, � can be locally expressed
as a power of a closed meromorphic 1-form; hence, its restriction to a transversal to the
codimension one foliation will be invariant by the holonomy group along Y , and this group
is thus virtually abelian according to Section 5.4, contrary to our assumptions.

Suppose now that g is not constant. For simplicity, we will firstly assume that q D 1. Let
k be the vanishing order of the 2-form dg^ dz along Y . We can see !z D dg=zk (for z 6D 0)
and

!0 D ReszD0

�
dg ^ dz

zkC1

�
as an analytic family of 1-forms on the (pieces of) leaves of F parametrized by z. For the
leaves z D const ¤ 0 , !z is an exact 1-form, thus the same holds true for !0, which is also
nontrivial. By leafwise integration, one can then construct a holomorphic function G on U
which is non constant on U \ Y but necessarily constant on F and the nearby fibers (by
compactness). Thus, on restriction to nearby leaves of F in U , G will also have compact
levels. By standard properties of the Chow’s scheme of X , we get codimension 2 analytic
subsets tangent to the foliation through a general point of X , and it allows us to factorize.
The case q > 1 can be reduced to the preceding one replacing U by some suitable finite étale
cover.
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In the rest of this section, we investigate Question 7.1 under the assumption that the
foliation is quasi-smooth. Except for one situation (see Proposition 9.8), we are able to give
a positive answer to the latter question.

9.3. Quasi-smooth foliations with abelian holonomy

P 9.7. – Let F be a quasi-smooth foliation on a projective manifold X .
Assume that F has a compact leaf Y with abelian holonomy. Then, there exists a projective
manifold Z and generically finite morphism � W Z ! X such that �� F is defined by a closed
rational 1-form.

Proof. – In view of Propositions 6.3, 6.6, and Corollary 6.5 the only case to deal with
is utype.Y / D ord.NY / D 1 and formally linearizable holonomy. In this situation, it
suffices to prove that the hypotheses of Proposition 6.8 are fulfilled. Keeping the notations of
item (2) of Lemma 9.2, consider L D N F ˝r ˝ OX .�r�Y /. If � D 1, we are done. Assume
that � 6D 1, then L jY D NY ˝r.1��/ is not trivial (recall that NY has infinite order). By
Theorem 4.4, there exists an effective divisor D numerically equivalent to r.1 � �/Y whose
support is disjoint from Y and such that L D OX .r.1 � �/Y �D/. Thus we get

N F
num
� Y �

1

r
D

and we can then apply Proposition 6.8.

9.4. Quasi-smooth foliations with solvable holonomy

P 9.8. – Let F be a quasi-smooth foliation on a projective manifold X .
Assume that F has a compact leaf Y with solvable holonomy and that

1. either the order of NY is finite
2. or the Ueda type of Y is finite,

then F is transversely affine.

Proof. – This is already covered by Propositions 7.2, 7.3 and 7.4 (without quasi-
smoothness assumptions), except when the holonomy group is formally conjugated to
the group generated by

f .z/ D
z

.1 � zq/1=q
and g.z/ D exp.

2�i

2q
/z

and Y has finite Ueda’s type. Suppose now that we are in this latter case. Recall (Section 7.3)
that F is defined in Y.1/ by a section ! of�

N F j
�

Y.1/
˝ OY.1/..q C 1/Y /

�˝2
which can be locally written as .dz=zqC1/˝2. Moreover, F is defined on the wholeX by some
� 2 H 0.X;N F �

˝r
˝ OX .pY // for some integers r; p > 0 (second item of Lemma 9.2). One

can suppose that r D 2r 0 is even. We thus obtain that !˝r
0

and� coincide on Y.1/ up to a
multiplicative factor F 2 OY.1/ which is necessarily constant by finiteness of the Ueda type.
We conclude observing that F satisfies the hypothesis of Proposition 7.4.
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Concerning the remaining case, utype.Y / D ord.NY / D 1, we have only obtained the
following partial result where we use the notion of divisible foliation, notion recalled in the
beginning of the present section.

P 9.9. – Let F be a divisible (hence quasi-smooth) foliation on a Kähler
manifold X . Assume that F has a compact leaf Y with solvable holonomy and that the order
of NY and the Ueda type of Y are infinite. Then F is transversely affine.

Proof. – Let � 2 Q such that N F is numerically equivalent to �Y . Thanks to Proposi-
tion 9.7, one can assume that the holonomy is not abelian. In particular, � ¤ 1 (item (3) of
Lemma 9.2).

For the sake of simplicity, suppose for the moment that � is an integer. One firstly observe
that � > 0, otherwise the foliation could be defined by a one form � twisted by a flat line
bundle L, with zero divisor .�/0 D �Y . By Hodge identities, we would have r� D 0 where
r is the flat unitary connection attached to L. This clearly implies that the holonomy group
along Y is conjugated to a subgroup of fz ! az; jaj D 1g, contradicting the non abelianity
assumption.

Keeping the notation of Lemma 9.2, consider the flat line bundle L D N F ˝ OX .��Y /,
L jY D NY .1��/. According to Theorem 4.4, one can claim that there exists an effec-
tive divisor D cohomologous to .� � 1/Y , jDj \ Y D ;. In particular the line bundle
L
0
D O

�
.� � 1/Y �D

�
is flat and coincides with L

� in the neighborhood of Y . Actually,
these two line bundles coincide on X , otherwise the (unitary) monodromy of L

0
˝ L would

be non trivial and we would be able to exhibit (see the proof of Proposition 6.8) on a finite
étale covering QX of X three pairwise disjoint effective divisors having numerically trivial
normal bundle (both of them being copies of Y ), implying that Y is a fiber of a fibration
on X and thus contradicting ord.NY / D 1. The foliation is thus defined by a global
meromorphic form � without zero divisor, and whose polar divisor is equal to Y C D.
Thus, in order to prove that F is transversely affine, it is sufficient to exhibit a global closed
meromorphic one form ˇ such that

(9.1) ˇ ^� D d�:

On the other hand, according to §4.4, F is defined (7) in a small connected neighbor-
hood U of Y by a twisted meromorphic one form �1 with pole of order p C 1 along Y

�1 2 H
0.U;�1..p C 1/Y /˝E/

such that E is a line bundle equipped with a flat holomorphic connection r with respect
to which �1 is closed. Note that E is identified on U with O.�pY / and then carries two flat
structures: the first one being defined byr and the second one being the flat unitary structure
on O.�pY /, which makes sense because the Ueda connection is trivial on an euclidean
neighborhood of Y (Theorem 4.4). By r-closedness, one can then deduce that there exists
a holomorphic one form � D ru � r (a priori only defined on U ) such that

(9.2) � ^�1 D ru�1;

(7) From utype.Y / D 1, we infer that the linear part of the holonomy is infinite. This implies that this holonomy
group is analytically normalizable (Theorem 5.14).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1500 B. CLAUDON, F. LORAY, J.V. PEREIRA AND F. TOUZET

where ru is the flat unitary connection attached to E.
Now, observe that if ! is a meromorphic defining 1-form for F at some point m, if !1 is

a germ of meromorphic one form at m satisfying !1 ^ ! D d! and if f is a germ of
meromorphic function, then

.!1 C df=f / ^ .f!/ D d.f!/:

According to this rule, the equality (9.2) can be rewritten as

.� �
ruF

F
/ ^� D d�;

where ru is the unitary flat connection attached to L and F is a meromorphic section
of O.�pY / defined on U and such that .F /1 D pY .

Set ˇU D .� � ruF
F
/. This is a closed form (with pole of order one on Y ) defined a

priori only on U . We claim that ˇU extends meromorphically on X , thus giving the sought
integrating factor ˇ in equation (9.1).

Let us proceed with the proof. Let .Ui / be a sufficiently fine open covering ofX . By virtue
of the divisibility assumption, we can exhibit a meromorphic form ˇi on Ui which satisfies
ˇi ^� D d�. Let us set

1. ˇi D ˇU jUi
if Ui \ Y ¤ ;,

2. ˇi D ˛i � dfi=fi if Ui \ Y D ;, where ˛i 2 �1.Ui / and fi 2 O.Ui / is a defining
function of D \ Ui . The 1-form ˛i is given by the divisibility property for the local
(holomorphic) generator fi� of the foliation F on Ui .

Thanks to this local expression of ˇi , we can notice that ˇi� ǰ 2 �
1.Ui\Uj /. In particular,

and because � has no zeros in codimension one, we have

ˇi � ǰ D hij�;

where hij 2 O.Ui \Uj / is a cocycle. By construction, this cocycle is trivial in restriction to Y ,
hence has a trivial class in H 1.X; OX / thanks to Proposition 2.7. Then, there exists on X a
meromorphic 1-form!1 satisfying!1^� D d�which can be written onUi as!1 D ˇiChi�
where hi 2 O.Ui /. In particular, on U one obtains !1 D ˇ C h� where h 2 O.U / is indeed
constant as ord.NY / D1. This yields the closed extension of ˇ as wanted.

If � is not an integer, we reduce to the previous case by ramified covering trick.

9.5. Quasi-smooth foliations with holonomy tangent to identity

P 9.10. – Let Y be a smooth compact divisor on a projective manifold X such
that utype.Y / < 1. Assume that Y is a compact leaf of a quasi-smooth foliation F on X
such that the holonomy of F along Y is tangent to identity. Then F can be defined by a
meromorphic closed one form whose polar divisor coincides with 2Y . In particular, the holonomy
of F along Y is abelian.

Proof. – Recall that in this context, NY is trivial and utype.Y / < 1 means exactly
utype.Y / D 1 by Theorem 1.3. Let us consider

L D N F ˝ OX .�2Y /:

All we have to do is to prove that L is trivial on an euclidean neighborhood U of Y .
Let us take it for granted one moment and see how to conclude the proof. In this case,

4 e SÉRIE – TOME 51 – 2018 – No 6



COMPACT LEAVES 1501

the foliation F is defined on U by a meromorphic one form � whose polar locus is 2Y .
Moreover, Theorem B provides us with the existence of a closed rational 1-form ! with poles
of order 2 along Y . Up to multiplying� by a suitable scalar number � 2 C�, one can observe
that ! �� D !0 is a well defined form in U with at worst a logarithmic pole on Y . Assume
firstly that dim.X/ D 2. We can apply Theorem 2.6 and extend !0 as a holomorphic (8) form
on XnY . The Residue theorem shows that !0 is in fact holomorphic on the whole of X and
is hence closed. At the end, the foliation F is given by the (global) closed rational one form
� D ! C !0. If dim.X/ � 3, we can apply the argument above to a surface obtained as
a general complete intersection in X and extend the one form to the ambient space using
results of the appendix.

Now we prove thatL is trivial on a neighborhood of Y . It is enough to prove thatL is flat:
if L is given by a locally constant cocycle, this cocycle has to be trivial on a neighborhood
of Y since LjY is trivial. By Lemma 2.1, we first note that LjY.1/ is trivial. Now, let us use

Lemma 9.2: there exists � 2 Q such that N F is linearly equivalent to OX .�Y /. If r is an
integer such that r� 2 Z, we can write:

OX .r.� � 2/Y / D L
˝r
˝ OX .r�Y /˝N F �˝r„ ƒ‚ …

flat

:

From the triviality of LjY.1/, we deduce that OX .r.� � 2/Y /jY.1/ is flat (that is, given by a
locally constant cocycle) and then trivial since its restriction to Y is so (the cocycle being
locally constant, being trivial on Y is equivalent to being trivial on Y.1/). But the assumption
utype.Y / D 1 implies that no multiple of OX .Y / can be trivial when restricted to Y.1/ and
we conclude that the only possibility is � D 2 and L is flat. In view of the above argument,
it ends the proof.

R 9.11. – We cannot expect a result analogous to Proposition 9.10 when
utype.Y / D1. For instance, takeCg a compact curve of genus g � 2 and consider the ruled
surface X D Cg � P1. Let z be a projective coordinate on P1 and !1, !2 2 �1.Cg/ � f0g.
The foliation given on X by the rational form

dz C z2pr�1!1 C z
3pr�1!2

leaves the fiber Y WD fz D 0g invariant, is regular in the neighborhood of Y and has
holonomy along Y tangent to identity at order one. Let us also remark that N F D O.3Y /

and accordingly that F is quasi-smooth. However, this holonomy is not abelian, hence not
solvable as soon as !1 and !2 are C-independent. Indeed, assume that abelianity holds.
Recall that ! admits a formal integrating factor g.z/ D U=z2 that is, d.g!/ D 0 where U is
a unit in Y.1/ and consequently depends only on the variable z. On the other hand, the
residue of d.g!/=z along Y is equal to U 0.0/!2 C U.0/!3 whose vanishing implies that !1
and !2 are C-dependent.

(8) Applying Theorem 2.6 only yields a meromorphic extension since we do not know a priori that !0 is closed.
However, extending ! shows that N F is linearly equivalent to 2Y C E where E is a (non necessarily effective)
divisor supported on curves contained in XnY and that can be contracted (Theorem 2.5). It follows that the
intersection form is negative definite onE and using thatN F 2

D 0, we conclude that!0 is holomorphic onXnY .
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R 9.12. – Except for Propositions 9.9 and 9.10, the propositions established in
Section 9 remain valid (without any fundamental changes) replacing “quasi-smooth” by

N F
num
� �Y CD;

where � is a rational number andD is a Q divisor whose support does not intersect Y . Notice
that we are not aware of a single example of foliation possessing a compact leaf and which
does not satisfy this property.

Appendix

Extension of transverse structures

Here, we prove an extension result for transverse structures needed in various places to
reduce the proofs to the surface case. Precisely, we need to extend affine transverse structure
from a general 2-dimensional section to the ambient space. This was proved in [41] in the
local setting. The analogous extension result for meromorphic/rational first integrals, or for
Euclidean structure (foliation defined by meromorphic/rational closed 1-form) is classical,
see [16, 12]. Here, we provide a proof which works for more general projective structures,
which is missing in the literature. We explain at the end how to adapt to the easier affine case.

In the local/projective setting, a transversely projective foliation F is the data of a triple
.!0; !1; !2/ of meromorphic/rational 1-forms satisfying

(A.1)

8̂̂<̂
:̂
d!0 D !0 ^ !1

d!1 D 2!0 ^ !2

d!2 D !1 ^ !2

with !0 6� 0. The foliation F is defined by !0 D 0, and outside of poles of !i ’s, we can
deduce from the triple a collection of local first integrals for F that are unique up to left
composition by Moebius transformations. For more details, see [39, 15, 32].

Any two triples .!00; !
0
1; !

0
2/will define the same foliation, with the same collection of first

integrals (up to Moebius transformations) outside of poles, if, and only if, it can be deduced
from the initial triple by a combination of

(A.2)

8̂̂<̂
:̂
Q!0 D f � !0

Q!1 D !1 �
df
f

Q!2 D
1
f
� !2

8̂̂<̂
:̂
Q!0 D !0

Q!1 D !1 C 2g!0

Q!2 D !2 C g!1 C g
2!0 � dg

with f; g meromorphic/rational. Given F , given !0 a meromorphic/rational 1-form
defining F , it is easy to construct another 1-form !1 such that d!0 D !0 ^ !1 (see
[16, 12, 15]); it is unique up to addition by a 1-form proportional to !0. One easily check
that any projective triple for F is equivalent to a triple .!0; !1; !2/ with the given .!0; !1/;
in other words, a projective structure for F is equivalent to the data of a 1-form !2 satis-
fying (A.1) with respect to the given 1-forms .!0; !1/. We will call .!0; !1/ a preprojective
data for F .

Let .z; w/ 2 CnC1 with variables z D .z1; : : : ; zn/ and consider the hyperplane section
† D fw D 0g.
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L A.1. – Let F be a regular codimension one foliation at the origin p of CnC1 and
assume † is not F -invariant. Then, any transversely projective structure for the restriction
F D F j† extends uniquely as a transversely projective structure for F at the neighborhood
of p.

More precisely, let .!0; !1; !2/ be a projective structure for the restriction F and let
.!0; !1/ be a preprojective data for F extending .!0; !1/ at the neighborhood of p. Then !2
admits a unique meromorphic extension !2 such that .!0; !1; !2/ is a projective triple for F .

Proof. – At the neighborhood of p, let H be a primitive first integral for F , with
H.p/ D 0. The restriction H WD H j†

is a primitive integral for F as well (see [33]). We

have !0 D FdH and !1 D �dFF C GdH for some meromorphic functions F;G at the
neighborhood of p. In restriction to †, we can redefine the projective structure by a unique
triple .!00; !

0
1; !

0
2/ with .!00; !

0
1/ D .dH; 0/; from integrability conditions, we have

0 D d!01 D 2!
0
0 ^ !

0
2 D 2F dH ^ !

0
2

and therefore !02 D �.H/dH for some germ of meromorphic function � on .C; 0/. The
extension

!02 WD �.H/dH

defines a projective triple for F at the neighborhood of p extending the given projective
structure in restriction to†. Finally, using the change of projective triple defined byF andG,
we can deduce the extension !2 from !02 at the neighborhood of p.

We note that we have not used that † was of codimension 1; it could be even a curve
provided that it is not F -invariant. For the singular case below, we really need that † is a
dimension � 2 section.

L A.2. – Let F be a singular codimension one foliation at the origin p of CnC1,
n � 2. Assume † is not F -invariant and cutting-out the singular set S WD Sing.F / in
codimension 2. Then, any transversely projective structure for the restriction F D F j† extends
uniquely as a transversely projective structure for F at the neighborhood ofp, as in Lemma A.1.

Proof. – Consider an open neighborhood U of p in † together with a Hartogs-like
domain V � U whose domain of holomorphy is U , but not containing the codimension 2
set S WD S \ †. For instance, one can choose a small polydisk for U , and deduce V by
deleting the �-neighborhood of S inU for � > 0 small enough. Fix .!0; !1/ on the neighbor-
hood U of U (in the ambient space) such that !0 is defining F on U and d!0 D !0 ^ !1.
The projective structure for the restriction F is defined by .!0; !1; !2/ for a (unique)
meromorphic 1-form !2 on U . By Lemma A.1, the 1-form !2 extends as a meromorphic
1-form !2 on the neighborhood V of V (in the ambient space) extending the projective
structure for F jV . The domain of holomorphy V of V obviously contains a neighborhood
of p. Consequently, the meromorphic 1-form !2 extends on V , extending by the way the
projective structure of F on a neighborhood of p.

A direct consequence of the above lemmata is
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C A.3. – Let F be a (singular codimension one) foliation on a projective
manifoldX of complex dimension� 3 and let† � X be a smooth hypersurface. We assume that
S WD Sing.F /\† has codimension 2 in†. If F j† is transversely projective in restriction to†,
then it is also transversely projective on an Euclidean neighborhood U of†. More precisely, the
projective structure in† extends onU in the following sense: given .!0; !1/ onX , the 1-form!2
defining the projective structure for F in † extends uniquely on U .

If † is a general hyperplane section (with very ample normal bundle), then the projective
structure actually extends on the whole of X .

All above results remain valid when replacing projective transverse structure by affine
transverse structure, Euclidean transverse structure or meromorphic/rational first integral.
For instance, given !0 defining F , an affine transverse structure is equivalent to the data of
a meromorphic 1-form !1 satisfying d!0 D !0 ^ !1 and d!1 D 0. If F is locally defined
by a (minimal) holomorphic first integral H , then we can choose !0 D dH and an affine
structure is defined by !1 D �.H/dH . It is therefore straightforward to adapt the proof of
the previous lemmata to the affine case.
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