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EICHLER-SHIMURA RELATIONS AND
SEMISIMPLICITY OF ETALE COHOMOLOGY
OF QUATERNIONIC SHIMURA VARIETIES

BY JaNn NEKOVAR

ABSTRACT. — We show that the non CM part of £-adic étale cohomology of any compact quater-
nionic Shimura variety with coefficients in any automorphic local system is a semisimple Galois repre-
sentation. If the local system has weight k = (ky, ..., kgz) with all k; of the same parity, the full £-adic
étale cohomology is semisimple. For Hilbert modular varieties, analogous results are proved for £-adic
intersection cohomology of the Baily-Borel compactification. The proof combines a representation-
theoretical criterion of semisimplicity with Eichler-Shimura relations for partial Frobenius morphisms.

RESUME. — On montre que ’action galoisienne sur la partie sans multiplication complexe de la co-
homologie étale d’un faisceau £-adique lisse automorphe sur une variété de Shimura quaternionique
compacte est semi-simple. Si le poids du faisceau s’écrit k = (k1,...,kg), oules k; ont la méme parité,
toute la cohomologie étale est semi-simple. Les mémes résultats sont montrés pour la cohomologie d’in-
tersection £-adique de la compactification de Baily-Borel des variétés modulaires de Hilbert. La preuve
utilise un critére abstrait de semi-simplicité et les relations d’Eichler-Shimura pour les morphismes de
Frobenius partiels.

0. Introduction

0.1. General conventions and notation

The characteristic polynomial of an endomorphism u of a finite-dimensional vector space
over a field k& will be denoted by P,(X) = det(X -id — u) € k[X]. If kK C K are fields and
X is a k-vector subspace of a K-vector space Y, we denote by K - X the K-vector subspace
of Y generated by X. We abbreviate ®z as ®. For an abelian group A we let A=AQZ. We
denote by A and Ay, respectively, the ring of adeles of Q and of a number field k.

Throughout the article we fix an isomorphism C = Q. For any algebraic object
(=) defined over a subfield of C we denote by (—), its base change to Q. Let Q be the
algebraic closure of Q in C. The reciprocity map of class field theory is normalized by letting
uniformisers correspond to geometric Frobenius elements Fr(P). All representations and
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1180 J. NEKOVAR

characters are assumed to be continuous with respect to the natural topologies involved.
A representation of a profinite group is called strongly irreducible if its restriction to every
open subgroup is irreducible. By an automorphic representation we mean an irreducible
automorphic representation.

0.2. — Let us recall basic facts about decomposition of singular and étale cohomology of
compact Shimura varieties. As in the classical case of cuspidal cohomology of modular
curves, everything boils down to the fact that the Hecke operators act on the space of cuspidal
automorphic forms in a selfadjoint way (up to a twist).

Let (G, &¥) be a (pure) Shimura datum. A rational representation £ : Gc — GL(N)c¢
(whose restriction to the center Z¢ satisfies an appropriate condition) gives rise, for each
sufficiently small open compact subgroup K C G(Q), to a locally constant sheaf of complex
vector spaces Z¢ on the complex manifold Shg (G, )** = G(Q)\(X x G(a) /K).

0.3. — If, in addition, the derived group G4 is anisotropic, then Shg (G, &0)*® is compact
and its cohomology H*(Shg (G, &X)*", Z¢) is described in terms of relative Lie algebra
cohomology.

Write ¥ = G(R)/ K, where Ko, is the stabilizer of a fixed base point in ¢¥, and denote,
for any G(R)-module V, by Vj the subspace of Koo-finite vectors in V. There is a canonical
isomorphism

H' (Shg (G, )™, Z¢)
= H'(9, Koo; C®(G(Q\G(A)/K) ® £) = H' (g, Koo; C(G(Q)\G(A)/K)o ® §),

where g = Lie(G(R)) [4, VII.2.7]. It gives rise to a G(@)-equivariant isomorphism
(0.3.1)
H'(Sh(G. d)*", Zg) = lim H* (Shg (G, &0)*". Zg) = H' (9. Koo: CF(G(Q)\G(A))o ® §).
K

For every character w : Z(Q)\Z(A) — C* fix a character »’ : G(Q)\G(A) — R such
that a)’| za) = |w|. The space G(Q)Z(A)\G(A) is compact (since G4" is anisotropic) and
the completion L?(G, w) of

C=(G.0) ={f e C(GQ\GA)) | f(g2) =w(z)f(g) ¥z € Z(A)}
with respect to the norm

2

/ @)1 /(9 dg
G(Q)Z(A\G(A)

is a unitary representation of G(A) under the action (g * f)(h) = o'(g)"!f(hg). This
representation decomposes as a discrete Hilbert sum L2(G,w) = @m(n’) 7" of unitary
automorphic representations 7’ of G(A) with finite multiplicities m(x”).
Each 7’ has central character w,» = w/|w| and gives rise to an automorphic representa-
tion 7 = &'n’ = 7o ® 7 of G(A) = G(R) x G(Q) with central character w; = .
Matsushima’s formula [4, Thm. VII.5.2] yields a G (Q)-equivariant isomorphism
H'(g,Koo: C®(G,0)0 @) = P  m(r) H (9, Koo Too ® §) @ 7,

=Moo @
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EICHLER-SHIMURA RELATIONS AND SEMISIMPLICITY 1181

with m(r) = m((w’)"'7), hence, after putting the contributions of all @ together, a
G (Q)-equivariant isomorphism
(0.3.2) H'(Sh(G, )™ L) = P  m(m) H (9. Koo: oo ® §) @ T,

=T oo T

where 7 runs through automorphic representations of G(A) and m(sr) is the multiplicity of
the unitary representation 7’ = (o)~ 'z in L?(G, wyz).

0.4. — The Shimura variety Sh(G, &) is defined over its reflex field E = E(G, ) c Q c C.
For sufficiently small K, the representation § : Gg, —> GL(N)g, gives rise to a lisse
Qq-sheaf Z¢ ¢ on Shg (G, éX) and the comparison theorem between analytic and étale coho-
mology defines a G(@)-equivariant isomorphism

HL(Sh(G, X) ®k Q, L) = li_f)nHét(ShK(G, X)) ®r Q, Ley)
K

0.4.1 . .
4.1 ~ H'(Sh(G. )™, Zg)e = PV (x™®) @ 7,
ﬂOO
where Vi(7®) = Homg g (>, Hi), 7 runs through irreducible unitarisable smooth

representations of G(a) for which there exists a unitarisable irreducible (g, Koo )-module 74
such that H (g, Koo oo ® £) # 0 and 74, ® 7 is an automorphic representation of G(A).
If £ is irreducible (more generally, if it admits a central character wg), then the condition
H (g, Koo oo ®E) # 0 (“7o being cohomological in degree i for £7) implies a compatibility
of central characters w|, ® = wy!

oo *

The Q,-vector space V() has finite dimension

dimV (x®) = Y m(r) dim H (g, Koo oo ® £)

=Moo QT

and the natural Galois action of 'y = Gal(Q/E) on étale cohomology (which commutes
with the action of G(Q)) gives rise to a representation

Tg — Autge (V' (1) @ 7°°) = Autg, (V' (1%))

(the last equality follows from dim EndG@ (%) = 1, which holds by a variant of Schur’s
Lemma).

0.5. — There is a huge industry based on pioneering work of Langlands and Kottwitz (with
first steps due to Thara in the case of Shimura curves) whose aim is to determine the isomor-
phism class of the semisimplification of the Galois representation V' (7>°). The main steps in
this approach—which is still far from being completed in full generality—are the following:

(0.5.1) a construction of a canonical integral model Sk,, of Shg(G, X)) over Og ., for
(almost) all finite primes p of E at which Shg (G, &) has good reduction;

(0.5.2) a group-theoretical description of the set of k(p)-rational points of the special fiber
of Sk p;

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1182 J. NEKOVAR

(0.5.3) a comparison of the expression for

2 dim

>0 1 T (Fr(p)" | Ha(Sha (G 50 9 Q. Zeo))

i=0
obtained from the previous two steps (via the Lefschetz formula) with terms occur-
ring in the stable trace formula.

0.6. — In the present article we use a much more elementary method, based on Eichler-
Shimura relations, to obtain information about the Galois representations V'’ (7). The
study of Eichler-Shimura relations in this context has a long history. What is relevant to us is
the approach of Faltings and Chai[17, ch. VII], generalized by Wedhorn [40]. Our results are,
naturally, weaker than those obtained by the Langlands-Kottwitz method, with one notable
exception: in favorable cases we are able to show that Vi (7*) is a semisimple representation
of FE.

0.7. — An Eichler-Shimura relation (a “congruence relation”) is a statement about compat-
ibility of the commuting actions of I'g and the spherical part of the Hecke algebra
G[G(Q)//K] on H!(Shg(G, X)) ®r Q, Zey). In vague terms, the relation states that
the (geometric) Frobenius Fr(p) is a root of a certain Hecke polynomial.

0.8. — In the classical case when G = GL(2)g, K 2 K(N) (N > 2) and £ is the (k-2)-th
symmetric power of the standard representation (k > 2), the Shimura variety ¥ = Shg (G, &X)
is an open modular curve of level dividing N and the classical Eichler-Shimura relation states
that

(0.8.1) Yp{EN  Fr(p)*>—T,Fr(p) + pS, =0
on H' = Hi(Y ®q Q, Z¢ ), where T, and S, denote the Albanese (= covariant) action of
the double cosets [K (2 9) K] and [K (6’ 2) K], respectively.
The spherical Hecke algebra T = Q[T pSp,]pn acts semisimply on cuspidal cohomology
H)' = HL (X ®q Q. jxLe0),

where j : Y — X = Y U{cusps}. For any cuspidal Hecke eigenform ¢ € Si (N, y) of weight
k for T

Sy, =od.  B|,5 =P AP,
the analog of Vi (7®°) from (0.4.1)
p := H,'[¢p — eigenspace for T]

is a non-zero representation of I'g. Let pg : ['qg — GL,(Qy) be the Galois representation
attached to ¢. Its characteristic polynomial is characterized by the fact that

(0.8.2) VPN Poyeon(X) = X2 =2, X + pF 1 x(p).
The Eichler-Shimura relation (0.8.1) implies that
(0.8.3) VP 1IN Ppyre(py (p(Fr(p))) = 0,

4¢ SERIE - TOME 51 —2018 = N° 5



EICHLER-SHIMURA RELATIONS AND SEMISIMPLICITY 1183

hence

(0.8.4) VgeTo  Poy)(p(e) =0.  [*Pp,(p) = 0]

by the Cebotarev density theorem. Of course, p =~ pf'” for some m > 1 (by a variant of
(0.4.1) or by Theorem 3.7 below) and py is constructed as p for a suitable choice of K (the
formula (0.8.2) is deduced from (0.8.1) and Poincaré duality).

0.9. — We are interested in those Shimura varieties for which G = R ,q(H) is the restriction
of scalars of a (connected reductive) algebraic group H defined over a totally real number
field F. In this case the corresponding analytic objects decompose according to the decom-
position of F ® R —> [Tojoo Fv = [0 R

GR) =[] H®). L=][] & Koo=[]Koow 8=]]0o: 7o=Rm0.
v|oo v]oo v]oo v]oo v]oo

If, in addition, § = ®U|OO &y with &, : (Hy)c — GL(Ny)c, the Kiinneth formula

H*(g, Kooi oo ® S) = ®H*(bvv Koo,v;ﬂv & gv)

v|oo

combined with (0.3.1) implies that the analytic cohomology H*(Shk (G, X)*", Z¢) admits
a natural decomposition as a finite direct sum of tensor products |-

0.10. - Such a “weak Kiinneth decomposition” is expected to be of a motivic origin (see the
discussion in [NS,§ 6]). In particular, there should be a finite extension E’/ E depending only
on (G, &) and F for which the Galois representation HZ(Shg (G, ) ®k Q. Z¢ ¢) restricted
to I'g is isomorphic to a direct sum of tensor products &), of representations of T'gr.
Equivalently, each V(7 *°) = @, V! (7*°) in (0.4.1) should be of this form.

This behavior is expected to reflect geometry of the integral models Sk, from (0.5.1) at
those primes p of E (of good reduction) which split completely in E’/E. For such primes
the Frobenius morphism on the special fiber should be a product of partial Frobenius
morphisms, for which a refinement of (0.5.2) and (0.5.3) should be valid. See 5.16 and the
Appendix for a discussion of this phenomenon in a special case.

0.11. - Eichler-Shimura relations in this context lead to identities of the form

Pp 000 Fr(p)) (P(Fr(p))) =0

and

(0.11.1) Vg eTe  Ppe-eme)(P€) =0  [“Ppg.gp(p) =0"]

which generalize (0.8.3-4). Above, p = Vi(7®) ® (7r°°)‘K|F and pi,...,p, are certain
E/
representations of I'g/ attached to .

Note that the formulation (0.11.1) of Eichler-Shimura relations requires the knowledge of
the existence of the Galois representations p;.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1184 J. NEKOVAR

0.12. - It is natural to consider the relation (0.11.1) in the following abstract context. Let
P1, ..., pr be irreducible finite-dimensional representations of I (which can be a group, a
profinite group, a Lie algebra, an algebraic group etc.).

(Q1) If a finite-dimensional representation p of I satisfies P, g..gp, (0) = 0, is it true that

(0121) pss g (,01 R ® pr)GBm)Ss

for some m > 17 Note that p; ® --- ® p, is automatically semisimple if the field of
coeflicients is of characteristic zero.
(Q2) If (0.12.1) holds, under what additional assumptions is p semisimple (i.e., when is
p=p>)?
In fact, the discussion in 0.10 leads naturally to the following, more precise version of (Q2).

(Q2") Let T be a profinite group containing a dense subset ¥ such that, for each g € X,
p(g) = uy---u,, where u; commute with each other and P, () (u;) = 0 for all
i =1,...,r (u; corresponds to the action of a partial Frobenius morphism). Under
what additional assumptions is p semisimple?

If the polynomials P, (¢)(X) (g € X) have distinct roots, then each u; is semisimple, and
so is their product p(g) = u;---u,, for all g € X. It is then natural to ask the following
question.

(Q3) If a finite-dimensional representation p of I' satisfies Pj, g..gp,(p) = 0 and if
p(T) contains many semisimple elements, under what additional assumptions is p
semisimple?

0.13. - Boston, Lenstra and Ribet [5] showed that both questions (Q1) and (Q2) have a posi-
tive answer if r = 1 and p; is a two-dimensional absolutely irreducible representation of a
group I". Their result and its applications were inspired by [32, Prop. 14.2]. Dimitrov [14,
Lemma 6.5] considered a variant of question (Q1) for certain two-dimensional representa-
tions p1,...,pr : I' —> GL,(Fy).

For certain higher-dimensional representations p; : I' — GL,(F,) of a finite group
I" which have a sufficiently large image, Emerton and Gee [16, Sect. 4] showed that (Q1)
for r = 1 has a positive answer.

0.14. - It may be helpful to keep in mind the following two toy models.

0.15. A toy model for (Q1)

If T is the Lie algebra s/(2) (over a field of characteristic zero), every finite-dimensional
representation of ' is semisimple and the irreducible representations V;, = Sym” (V)
(dim(V,) = n + 1) are indexed by their highest weights n € N. As

{weights of V;} = {n,n —2,...,2 —n,—n}
(all weights occurring with multiplicity one), we have

Py, (V) =0 < {weights of V,,;} C { weights of V},,} <= n <m, n=m (mod2).

4¢ SERIE - TOME 51 —2018 - N° 5



EICHLER-SHIMURA RELATIONS AND SEMISIMPLICITY 1185

In particular, question (Q1) has a negative answer even for r = 1 (namely, for p; = V,,
n > 1). On the other hand, the Clebsch-Gordan formula

Va @ Vi = Va1 @ Vi
implies that
PVl®r (Va) =0 <= { weights of V},} C { weights of V,"}
& n<r, n=r(mod2) < V,CV®.

In other words, question (Q1) has a positive answer if py = --- = p, = Vq, forany r > 1.

The key point is that V; is a minuscule representation of s1(2). This is generalized in Propo-
sition 1.6 to representations of arbitrary split reductive Lie algebras. In Proposition 3.10 we
deduce from this result an affirmative answer to question (Q1) for representations py, ..., pr
of a profinite group which have a large image.

0.16. A toy model for (Q3)

Assume that T is a profinite group, 7 = 2, p; = pa, dim(p;) = 2, p1(I') C GL»(Qy) is
big (for example, contains a conjugate of an open subgroup of SL,(Z,)) and the semisimpli-
fication of p is of the form p* ~ ,0‘12’2 = Sym?(p;) ® /\z(pl).

We have (possibly after dualising if necessary) an exact sequence of representations of I’

(0.16.1) 0 — Sym?(p;) — p —> /\2(,01) —> 0.

After choosing a splitting of (0.16.1) we can write p in a matrix form as

k
Sym®(p1(g)) *
— = = d
p(g) ( 0 det(o (g))) , * * c(g) det(p1(g)).

*

where ¢ € Z(T', Hom( /\2(,01), Sym?(p;))) is a 1-cocycle describing the extension (0.16.1).
If the matrix p; (g) = (4 9 ) is diagonal, then

p(g) =

which means that
p(g) is semisimple <= y = 0.

In particular, the condition “p(g) is semisimple for many g € I'” imposes many non-trivial
constraints on the cocycle c. A natural guess would be that these constraints force ¢ to be a
coboundary (which implies that p is isomorphic to p‘lg’z, and therefore is semisimple). This is
indeed the case. A general version of this argument (which uses in a crucial way the fact that
Sym?(p;(g)) and /\2(p1 (g)) have a common eigenvalue) is given in Theorem 2.4 below (note
that our toy model corresponds to Example 2.5 for s/(2) and the adjoint representation).

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1186 J. NEKOVAR

0.17. —In 0.16 we considered a special case of (Q3) when we knew in advance that (Q1) had
a positive answer (a fairly general result in this direction is proved in Theorem 3.3 below). In
his thesis at Université Pierre et Marie Curie, K. Fayad [18] shows that (Q2) has a positive
answer in many cases when (Q1) does not.

0.18. — In this article we consider questions (Q1), (Q2) and (Q3) for representations of a
profinite group I' with coefficients in Q. Our main abstract results proved in §3 involve a
passage to Lie algebras and an application of the general results on Lie algebra representa-
tions proved in § 1 and §2. This means that the assumptions are far from being optimal. In
§4 we consider the simplest possible case of induced representations, when the methods of
§3 do not apply.

0.19. - In § 5 we combine the results of § 3 and §4 with Eichler-Shimura relations on quater-
nionic Shimura varieties Sh(G, ¢X), for which G = D> is the multiplicative group of a
quaternion algebra D over a totally real number field F. As mentioned in 0.6, we recover
only a weak form of the results obtained by the Langlands-Kottwitz method (Theorem 5.18,
Theorem 5.20(1),(2)).

However, we are able to show (Theorem 5.20(3)) that the Galois action on the full (cusp-
idal) étale cohomology with coefficients in Z¢ , of these Shimura varieties is semisimple,
using the Eichler-Shimura relations proved in § 5 and § 6 of the Appendix. This result is new
already in the special case of cuspidal cohomology of Hilbert modular varieties.

In §6 we study étale cohomology of closely related quaternionic Shimura varieties
Sh(G*, &™), where G* is the subgroup of D* consisting of elements whose reduced norm
lies in Q. For local systems Z¢« ¢ of non-motivic weight (i.e., for those whose Tate twists
do not extend to Sh(G, &l)) we show an analogous semisimplicity result, but only for the
non CM part of the cohomology.

Partial results on semisimplicity of the Galois action on certain subspaces of non-
endoscopic étale cohomology of unitary Shimura varieties are proved in K. Fayad’s thesis
[18]. These results are further generalized in [19].

0.20. — The general formalism of Fichler-Shimura relations on essentially PEL Shimura
varieties at split primes is discussed in the Appendix.

0.21. - The author would like to thank A. Genestier, M. Harris and B.C. Ng6 for pointing
out (independently) the importance of partial Frobenius morphisms, to S. Bijakowski,
P. Boyer, K. Buzzard, G. Chenevier, L. Clozel, C. Cornut and B. Stroh for helpful discus-
sions, to L. Clozel and K. Fayad for discovering several inaccuracies in earlier versions of
this article, and to the referee for helpful comments and suggestions.

Much of this work was carried out during the author’s stay at the Fields Institute in
Toronto in spring 2012. He would like to thank the Institute for invitation and for providing
excellent working conditions.
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EICHLER-SHIMURA RELATIONS AND SEMISIMPLICITY 1187

1. Lie algebras

1.1. Notation and conventions (see [6, Ch. VI, VIII])

Let g be a split semisimple Lie algebra over a field k O Q. A choice of a Cartan subalgebra
h C g determines the following objects: the set of roots R C h*, the root decomposition

s=hoPe. g* = k- Xq,
a€R
the root lattice Q = Xqer Za C b*, the dual root system RY = {aV | « € R} C b satisfying
(@¥,a) = 2 forall @ € R, the coroot lattice QV = Zgverv ZaY C b (= the root lattice
of RY), the weight lattice P O Q (the Z-dual of Q") and the coweight lattice P¥ D QV.

A choice of a Weyl chamber C C h* is equivalent to a decomposition R = R4 U R_,
where Ry = {@ € R | (@¥,C) > 0} (resp. R— = —R) is the set of positive (resp. negative
roots). Such a decomposition also determines the set A C R of simple roots (which forms a
Z-basis of Q), a decomposition

g=n_-@hdny, ne = P ¢
a€R
the monoid of dominant weights P14 = PNC C Py = PN Yy4ep, Qo = PN
Y wea Q=0 C P [6,Ch. VI, §l, no. 6], submonoids Q14 = P, NQ C Oy =P, NQO =
Za€R+ Zooa = Y ,en L>oo C Q and a partial order on x + Q (for any x € P) given
byA<u <= pu—~12eQ4+.SetQ_=—-04 C Q.
The universal envelopping algebra

Ums) = P Uma)y

HEQ 4

has a natural grading deg(Xy, --- Xo,) = @1 +--- + a, by O+.

1.2. — More generally, if g is a split reductive Lie algebra over k (of finite dimension), then
g = 3(g) ® Dg is a direct sum of the center 3(g) with the derived Lie algebra g = [g. g],
which is split semisimple. Any Cartan subalgebra b C gisofthe form b = 3(g)®b’, where ' is
a Cartan subalgebra of )g. The “root lattice” of (g, ) is the subgroup of h* generated by the
weights of h occurring in the adjoint representation of g. It is a lattice in Ker(h* —> 3(g)*)
and it corresponds to the root lattice of ) g under the natural isomorphism between the latter
space and h™.

A (non-zero) finite-dimensional simple g-module V' will be called minuscule if its highest
weight—considered as a weight of h’—is a minuscule weight of the semisimple algebra Qg
(in other words, the weights of b’ occurring in V form a single orbit under the action of the
Weyl group of (g, h'); see [6, Ch. VIII, §7, no. 3]).

PROPOSITION 1.3. — Let g be as in 1.1, let V be a non-zero simple g-module of finite
dimension. Write V. = @, V(), where V(i) denotes the subspace of weight jn € h* with
respect to the action of ). Let M C End(V) be a non-zero g-submodule. Then:

(1) The weight zero subspace M(0) = MY C End(V)(0) = End(V)" = @u« End(V(w)) is
non-zero.
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(2) More precisely, if A € Py is the highest weight of 'V, then
Im (M(0) — End(V (X)) # 0.

Proof. — (1) We can suppose that M is simple. All the weights of V' are contained in
A — Q4, which implies that the weights of End(V') (in particular, the highest weight A,y
of M) belongto Q. As Ay € Q4+ C Q4, it follows from [6, Ch. VIII, §7, Prop. 5] that
0€ Pyt N(Ay — Q4) occurs as a weight in M.

(2) Each element m € M(0) is of the form m = (m,,), where m,, € End(V(1)). According
to(l),theset S = {u | 3 m € MO) m, # 0} C A — Q4 is not empty. Let u be
a maximal element of S (i.e., Vv € Q4+ \ {0} w+v & S)If u = A, then we are
done. Assume that ¢ # A and fix m € M(0) such that m, # 0. Recall that X € g acts
on f € End(V)by X * f = X o f — f o X. This implies that, for any positive roots
a1,....0r,B1,...,B8s € Ry (r,s > 1)suchthatay; +---+ao, =1 +--+Bs=v (v e 0y),
the element m’ = Xo, % --- % Xy % Yg *--- % Yg_*m € M(0) satisfies

M), = £Xq 00Xy, 0myoYpg 0---0Yp,

’
u+v

Yve Q4 \{0} Umy)yomyoUm_)_, =0¢€ End(V(u + v)).

by the maximality of u € S. Asm = 0 (again by the maximality of ), we deduce that

Taking v = A — u and using the equality U(n_),—2 V(A1) = V(u) we obtain that

Im(m,) CN(w) == (| Ker(z:V(p) — V().
zeUmy)a—p
An easy induction shows that N(u') = Oforall ' € A— Q4 :indeed, N(1) = 0 by definition,
andif u' # A but N(w' + o) = Oforalla € A, then Xo N(u') C N(u' + «) = 0 for all
such «, which means that N(u') C V(i) N {highest weight vectors} = V(u )N V(L) = 0. In
particular, N(u) = 0, which implies that m,, = 0, contrary to our assumption p € §. This
contradiction shows that . = A, as claimed. O

1.4. — Both statements of Proposition 1.3 still hold if we merely assume that g is a reduc-
tive Lie algebra (of finite dimension) and V' is a (non-zero) simple g-module. In this case
g = 3(9) ® Dy, each element of 3(g) acts on V by a scalar, and the action of g on End(V)
factors through Jg.

1.5. — There is an analog of Proposition 1.3 (in the form 1.4) in which g is replaced by a split
connected reductive group G over k, h by a split maximal torus 7 C G and V' by a non-zero
irreducible rational representation of G. The Lie algebra g of G then acts on V and End(V),
the weight subspaces for T and its Lie algebra b (which is a Cartan subalgebra of g) coincide
and G-submodules of End(V') are the same as g-submodules.

PROPOSITION 1.6. — Let (g,Y) be as in 1.2, let M be a finite direct sum of finite tensor
products of one-dimensional or minuscule simple g-modules. If N # 0 is a simple g-module
with the property that each weight of b occurring in N occurs in M, then N is isomorphic to a
submodule of M.
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Proof. — Let v be the highest weight of N. By assumption, v occurs in M, hence in
M =M ®---® M, C M, where each g-module M; is one-dimensional or minuscule,
which means that the weights occurring in M; form a single orbit of the Weyl group W
of (g, h). If we denote by u; the highest weight of M;, then v = wi(uy) + -+ + wr(r)
for some w; € W, since v occurs in M’. The statement of the conjecture of Parthasarathy,
Ranga Rao and Varadarajan (proved in [25] and [31]) then implies that there is an injective
morphism of Z)g-modules f : N < M’. The center 3(g) acts on N (resp. on M’) by a single
weight equal to V@) (resp. to Y i _; ii|.,.)- These two elements of 3(g)* coincide (again,

|3(9)
since v occurs in M), which means that f is a morphism of g-modules. O

1.7. - Let V be a finite-dimensional vector space over afield k D Qand g C Endy (V) ak-Lie
subalgebra. Asin [6, Ch. VII, § 5, no. 3], denote by ny (g) the set of all elements of the radical
of g that are nilpotent in Endg (V). It is a nilpotent ideal of g containing the intersection of
the radical with Qg.

Recall that g is a decomposable linear Lie algebra [6, Ch. VII, §5, Def. 1] if both the
semisimple and the nilpotent part of every element of g belong to g. The following facts will
be used in §2.

ProrosiTiON 1.8. — (1) [6, Ch. VII, §5, Thm. 2] The Lie algebra ¢ C Endg(V) is
decomposable <= some ( <= each) Cartan subalgebra of g is decomposable <=
the radical of g is decomposable.

(2)[6, Ch. VI, § 5, Thm. 1] If g is generated as a k-Lie algebra by a subset S C g such that
every X € S is either semisimple or nilpotent in Endg (V), then g is decomposable.

(3) [6, Ch. V11, § 5, Prop. 7] If g is decomposable, then there exists a Lie subalgebram C g,
reductive in Endy (V') (in particular, m is a reductive Lie algebra acting semisimply on'V ), such
that g = m x ny(g).

(4)[6, Ch. VI, § 3, Ex. 16] The set of elements of g that are semisimple in Endy (V') is Zariski
dense ing <= some ( <= each) Cartan subalgebra of g is commutative and consists of
elements that are semisimple in Endg (V).

COROLLARY 1.9. — If'the set of elements of g that are semisimple in Endy (V') is Zariski
dense in g, then:

(1) g is decomposable;
(2) g = m x ny(g) for a suitable reductive Lie subalgebra m C g acting semisimply on V ;

(3) There exists a flag {0} = Vo C V1 C --- C Vs = V of g-submodules such that ny (g)
acts trivially (and w semisimply) on gr(V) = @;_, Vi/Vi—1 (one such flag is Vo = {0} and
Vier ={v e V | np(g)v € V;}). The isomorphism class of the semisimple g/ny (g)-module

gr(V) does not depend on the choice of {V;}.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1190 J. NEKOVAR

2. Semisimplicity criteria for Lie algebra representations

ProrosSITION 2.1. — Letgy, ..., 8m besimple Lie algebras ( of finite dimension) over afield
kD Q. Letg C gy X+ X @m be a Lie subalgebra which projects surjectively on each factor g;.
Then there exist:

e apartition I = {1,...,m} =1, U U I, (for non-empty subsets I; C I),

o foreach j € J ={1,...,n} a Lie algebra g\,

o foreach j € {1,...,n} and each i € I; an isomorphism of Lie algebras fj; gt = gi,
such that

g =1Im ]_[g(”i I1 (g(”)l‘/ N [TITe=]1]e|-

jeJ jeJ jeJiel; iel

where A = (Aj)jey, each Aj : g¥) — (g(j))l" is the diagonal map and f = (f;)jey is a Lie
algebra isomorphism with components f; = (fji)ier; -

Proof. — Thisis well-known. If we denote by p; the projection map g < gy X -+ X g — 8i,
then the image p; (n) of any abelian ideal n C g is an abelian ideal of g;, hence p; (n) = 0 for
all i, which implies that n = 0 and g is semisimple, thus g = g x --- x g™ for simple Lie
algebras g/). Foreach j € J = {I,...,n} the set

Iy ={iel|p (g¥)) # 0} = {i € I | p; induces an isomorphism g’ = gi}
is non-empty. If j # j’ andi € I; N I/, then
VX g VX eg") [£i(X). fin(X)] = pi((X. X)) = 0 € gi.

hence [g;,g;] = 0, which is not true. This contradiction implies that I; N I;; = @.
AsJ; I; = I, the sets I1,..., I, form a partition of /. The rest of the proposition follows
from the previous discussion. O

PRrROPOSITION 2.2. — Let g1, ..., 8m be reductive Lie algebras (of finite dimension) over
an algebraically closed field k D Q. For eachi € I = {1,...,m} let M; be a non-zero simple
gi-module of finite dimension. If § C g1 X- - - X g, is a Lie subalgebra which projects surjectively
on each factor g;, then:

e g is reductive, g = 3(g) ® Dy,

e cach element of 3(g) actson M = M, X --- X M, by a scalar;

o Ngi = [, 9i,r and M; = W; M, ;, where g; ; is a simple Lie algebra and M; ; is a simple
9i s-module;

e applying Proposition 2.1 to g C [1;; 9. and replacing each i, (resp. M; ) for (i,t)
in I; by g (resp. by the g)-module N;,; = fj),k(i,z)(MiJ)’ where fi i ¢ g = iz s the
isomorphism from Proposition 2.1), we have

A=(A))

Dy =1Im | [T —5 (9(’))Ij=l_[ [1 o =[]0

jeJ jeJ J€J (i,t)el; (i,t)
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o if we identify g with [];c; g9 via A, then the Dg-module M is isomorphic
to &je]M(j), where M) is the g -module

MD = &) Nis

@i,r)el;

o ifh) C gV isa Cartan subalgebra, thenty = [;<; b is a Cartan subalgebra of g and
3(g) ® Y is a Cartan subalgebra of g. All weights of 3(g) @ b occurring in M liein u + A + Q,
where Q denotes the root lattice of g, v € 3(9)* is the weight by which 3(g) acts on M,
A= jes Z(i’t)elj Aiy and Ay € §* s the highest weight of the g¥)-module N;;;

o ifeach M, ; is either one-dimensional or a minuscule g; ;-module, then each M U) is a tensor
product (possibly empty) of minuscule g -modules.

e if'each M; is a faithful g;-module, then the following are equivalent:
M is a simple g-module < Dg = Dg1 X -+ x Dgr < Vi # ] pij(Dg) =
Agi ¥ cf/)gj,

where p;; denotes the projection onto the i-th and the j-th factors.

Proof. — We have, foreachi € I, g; = 3(g;) @ £gi, where Dg; = [gi, gi] is semisimple.
Decomposing each )g; = [], gi,» into a product of simple Lie algebras and applying
Proposition 2.1 to Dg C Ng1 X -+ X Dgm, we deduce that Qg is semisimple, hence g is
reductive and g = 3(g) ® Lg. As each element of p;(3(g)) = 3(g;) acts on M; by a scalar,
the same holds for the action of each element of 3(g) on M. The remaining statements follow
from Proposition 2.1 (and the fact that M) is a simple g)-module <= |I il =1,by[15,
Thm. 3.2]). O

COROLLARY 2.3. — For any surjective morphism of Lie algebras f : g —> g, the weights
of any Cartan subalgebrah C gon M = M/Ker(f)M lie in one coset modulo the root lattice

of @.9).

Proof. — This follows from the corresponding statement for g and M, the fact that
Ker(f) C gis a Lie ideal and that g is isomorphic to Ker(f) x g. O

THEOREM 2.4. — Let k D Q be a complete non-discrete non-archimedean field (for
example, k = Qq) and V a non-zero k-vector space of finite dimension. If g C Endg(V) is
a k-Lie subalgebra of finite dimension (over k) such that

(H1) g contains a dense set (in the topology induced by the non-archimedean norm on k ) of
elements that are semisimple in Endg(V), then:

(hg=k-gC Endz(V) is a decomposable linear Lie algebra over k.

(2) Letm C g (m ~ §/nv(§)_), {0y = Vo C V1 € -+ C Vs =V andgr(V) be as in
Corollary 1.9 (over the base field k ). Fix a Cartan subalgebra ) C m.

Assume that the following condition holds:

(H2) all weights of § occurring in gr(V) lie in one coset of the root lattice of (W, b).

Thenny (g) = 0, g = m is a reductive Lie algebra and V' is a semisimple g-module.
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2.5. Example

Let go be a reductive Lie algebra over k = k and M a faithful simple finite-dimensional
go-module. If we identify the semidirect product g = M x go with

X
%(O ’;’)’) ‘X € go C End(M), m € M\ C End(M @ k),
then g will be a decomposable linear Lie algebra, ny(g) = M and m = g¢. The flag
{0}=1Vo CWVi=Mad0C V,=V =M &kisasin Corollary 1.9(3). If go = sl, and M is
the standard two-dimensional representation (resp. the adjoint representation), then (H1) is
satisfied and (H2) is not (resp. (H2) is satisfied and (H1) is not).

Proof of Theorem 2.4. — (1) There exist a finite subextension k’/ k of k /k and a k’-vector
space V' C V of finite dimension such that V' @ k = V and g C Endg (V).
Assumption (H1) implies that the set of all elements of g that are semisimple in Endg/ (V') is
Zariski dense in g, hence in

9@k CEndp(V) @k = P Endp(V' ®p o k).
o:k'—k
Taking the projection onto the factor corresponding to the inclusion of k” into k, we deduce
that g C Endg (V) satisfies the assumptions of Corollary 1.9 (over k), which proves (1).
(2) The arguments in the proof of (1) show that we can replace k by k, g by g and the non-
archimedean topology in (H1) by the Zariski topology. In other words, it is enough to prove
part (2) of the following theorem. O

THEOREM 2.6. — Let V be a non-zero vector space of finite dimension over an algebraically
closed field k D Q. If g C Endy (V) is a k-Lie subalgebra such that

(H1-ZAR) g contains a Zariski dense set of elements that are semisimple in Endg (V), then:

(1) g € Endg (V) is a decomposable linear Lie algebra.

(2) Let @ = ny(g) and fixm C g (m ~ g/n), a Cartan subalgebra ) C W™ and
{0y =Vo C Vi C--- C Vs =V asin Corollary 1.9.

Assume that the following condition holds:

(H2) all weights of b occurring in gr(V) lie in one coset of the root lattice of (W, §).

Thenn = 0, g = m is a reductive Lie algebra and V is a semisimple g-module.

Proof. — (1) See the proof of Theorem 2.4(1).

(2) There is nothing to prove if s = 1. Assume that s = 2. The Lie algebrag = m x n
satisfies [n,n] = 0 (since s = 2) and the normaliser of the abelian subalgebra hxn’ingis
equal to h x T, where ™ = {X e n | h- X € 7%} = 0" (the last equality follows from the
fact that b acts semisimply on gr(V) = V1 @ V/ V1, hence also on Homg (V/ V1, V1) D n). In
other words, h x#” is an abelian Cartan subalgebra of g. Proposition 1.8(4) implies, therefore,
that all elements of A? act semisimply on V', hence i’ = 0. The equality i = 0 then follows
from the fact (used already in the proof of Proposition 1.3(1)) that 0 occurs as a weight of h
in any non-zero simple m-module whose highest weight lies in the root lattice of (m, §) (in
particular, in any non-trivial simple m-submodule of n C Endg (gr(V'))). This shows that g is
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equal to m, which is a reductive Lie algebra acting semisimply on V. This finishes the proof
ifs = 2. O

Assume now that s > 2. We are going to prove the statement by inductionond = dim(V).
The cases d = 1,2 have already been treated. Assume that d > 2 and that the statement has
been proved for all pairs (V,g) with dim < d. Consider the g-submodule V' = Vs C V
and the Lie algebra g = Im(res : § — Endg(V’)). Note that the pair g C Endg (V")
satisfies (HI-ZAR). The image of the radical of g under the restriction map res is contained
in the radical of g, which implies that res(@) C ° = ny/(g’). As a result, res induces a
surjective morphism of reductive Lie algebras r : @ —> g/f — g /. Fix a g'-stable flag
{0}y =Vy C V) C--- CV/ =V’ such that @ acts trivially on gr(V’) = @f/:l V!/Vi_,. Al
weights of h C ™ on the semisimple g'/n’-module gr(V’) lie in one coset modulo the root
lattice of (m, b), thanks to (H2) and the fact that gr(V) ~ gr(V’) @ V/V' as m-modules.
After choosing a decomposition m = Ker(r) x g'/n, we obtain the same statement for an
appropriate Cartan subalgebra of g’ /', which means that the flag {V/} and the Lie algebra g
satisfy (H2). As dim(V’) < d, the induction hypothesis implies that v’ = 0, g’ is a reductive
Lie algebra and V' = gr(V’) is a semisimple g'-module. This means that {0} C V' C Visa
flag of g-submodules of length s = 2 satisfying the assumptions of Theorem 2.6(2). However,
the case s = 2 was already treated, which concludes the proof.

3. Semisimplicity criteria for representations of profinite groups

3.1. — Let I' be a profinite group, V a non-zero vector space of finite dimension over Q, and
p:I'— Aut@ (V) a representation (continuous, according to the convention from 0.1).

In this situation p(I") is a compact subgroup of Autg, (V'), which implies that there exists a
finite extension E of Qg contained in Q, and an E-structure Vg C V (an E-vector subspace
such that Vg ® Q, = V) for which p(I') C Autg (Vg). According to a non-archimedean
version of Lie’s theorem [6, Ch. III, §8, no. 2, Thm. 2], p(T") is a (compact) Lie group of
finite dimension over Q. In particular, the profinite topology on p(I") coincides with the
topology induced by the ¢-adic valuation on Q,. The Lie algebra Lie(p(T")) C Endg (V) C
Endg, (V) is a Q¢-Lie algebra of finite dimension.

3.2. - The following properties of p are equivalent:
3.2.1. p is semisimple.
3.2.2. There exists an open subgroup U C I" such that Ply is semisimple.

3.2.3. V is a semisimple Q, ®q, Lie(p(I"))-module.
This implies that the semisimplification p* of p satisfies p*| = (p|,,)*, for any open
subgroup U C T'.

THEOREM 3.3. — Let T be a profinite group, V, Wy, . .., W, non-zero vector spaces of finite
dimension over Qy and p : T’ —> Autg, (V), pi : T —> Autg, (W;) representations. Assume
that the following conditions hold:

(A) Each p; is strongly irreducible.

(B) The semisimplification p* of p is isomorphic to a subrepresentation of (01 ®- - - ® pr)®™,
for somem > 1.
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(C) There exists an open subgroup T" C T for which p(T’) contains a dense subset consisting
of semisimple elements ofAut@ V).

Then the representation p is semisimple, p = p*s.

Proof. — Assumption (B) (resp. (C)) for p implies the corresponding condition for any
subquotient of p. It is sufficient, therefore, to consider only the case when V is an extension
of two irreducible representations of I'. In addition, we can replace I" by any of its open
subgroups, thanks to 3.2. This implies that we can assume, after shrinking I" and passing
to another subquotient if necessary, that V' sits in an exact sequence of Q,[I"]-modules

0—Vi—V-—V/V; —0,

in which both V7 and V/V; are strongly irreducible.

We want to show that Theorem 2.4 (for s = 2) applies to the Qg-Lie algebra
g = Lie(p(I")) C End@(V) and the Q,-Lie algebrag = Q; - g C End@(V). Firstly,
both V; and V/V; are irreducible g-modules. Secondly, condition (H1) in Theorem 2.4 is
a consequence of (C). It follows that g is a decomposable Lie subalgebra of Endg ’ (V). We
distinguish two cases.

Case (a): there exists a g-submodule 0 C W C V such that W # V. Irreducibility of V;
and V/Vy implies that W N'V; = 0and W + Vi = V, hence W ~ V/ V] is a complementary
g-submodule to Vy;thus V = Vi @ W ~ V @ V/V; is a semisimple g-module, which implies
that p is semisimple.

Case (b): V7 is the only proper non-zero g-submodule of V. This uniqueness implies that
the flag0 C Vi C Vo, = V is as in Proposition 1.9(3): the nilpotent ideal ny (g) C g acts
trivially on gr(V) = V1 @ V/ V7. Moreover, both V7 and V/V; are simple g/ny (g)-modules.

It remains to check condition (H2). Consider the representation pg = p1®---@Gp, : [ —>
[T, Autg K(W,-). Assumption (B) implies that Ker(pg) C Ker(p**), which yields surjective
morphisms po(I") — p*5(I") and Lie(po(I")) — Lie(p**(I")). The Q,-Lie subalgebra

Q; ®q, Lie(po(I") C g1 X -+ X gy, g = Q; ®q, Lie(p; (")),

and the g;-modules M; = W; satisfy the assumptions of Proposition 2.2 (for k = Qy),
thanks to (A). Corollary 2.3 tells us that all weights of a fixed Cartan subalgebra of Q, ®q,
Lie(p**(I")) on gr(V) € (Wi ® --- ® W,;)®™ lie in one coset of the root lattice of Q; ®q,
Lie(p**(I")). The action of this Lie algebra on gr(V') factors through Im(g — Endg, (gr(V))),
which is a quotient of the reductive Lie algebra g/ny (g). This implies, as in the proof of
Corollary 2.3, that condition (H2) in Theorem 2.4 is satisfied. Applying Theorem 2.4, we
conclude that V=V, @ W ~ V & V/V; is a semisimple g-module, as in case (a) (more
precisely, the above argument shows that case (b) does not occur). O

3.4. — Condition (C) in Theorem 3.3 is satisfied if there is a dense subset ¥ C T with the
following property: for each g € X there exist polynomials Py, ..., P, € Q[X] without
multiple roots and pairwise commuting elements u1, ..., u, € Aut@ (V(g)), where V(g) D
V is a finite dimensional vector space over Q, (depending on g) such that P; (u;) = 0 for all
i=1,...,r,Visstable under u; ---u, and p(g) = u; o Ur|y,
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3.5. - For representations V' occurring in cohomology of Shimura varieties (see § 5 and A.5
below) the group T is the Galois group of a suitable extension of the reflex field, the set X
consists of Frobenius elements, P; (X) = P, (¢)(X) is the characteristic polynomial of p; (g)
and u; is induced by a partial Frobenius morphism acting on the special fiber of an integral
model of the Shimura variety in question. In our abstract context, a sufficient (and also
necessary) condition for these characteristic polynomials to be without multiple roots is as
follows.

PrOPOSITION 3.6. — In the situation of Theorem 3.3, assume that condition (A) holds. For
eachi = 1,...,r denote by g; = Qy - Lie(p; (")) the image of g; in End@(Wi). This is a
reductive Lie algebra whose center is contained in Qg -id. If, for eachi = 1, ..., r, afixed Cartan
subalgebrahy; of g; acts on W; without multiplicities, then there exists an open subgroup Ty C T
and an open dense subset Uy C T'g such that for all g € Uy and all a > 1 the characteristic
polynomials Py, gay(X) (i = 1,...,r) are without multiple roots.

Proof. — Using the notation of the proof of Theorem 3.3, set g, = Q, - Lie(po(I")) C
g; X -+~ x g,; then p;(gy) = ;. Foreachi = 1,...,r, the polynomial function A;
End@(Wi) — Q given by the discriminant of the characteristic polynomial is not iden-
tically equal to zero on g;, which implies that (), p; ' (A71(Qg \ {0})) is a dense Zariski
open in g, hence its intersection U with go := Lie(po(I")) is a dense Zariski open in go.
Fix a sufficiently small Z;-module of finite type 7o C go stable under the Lie bracket such
that the exponential map induces a homeomorphism between 7o and po(I'g) (for an open
subgroup I'y C T") and that po(Tp) acts trivially on T/2£T, for some po(T)-stable Z;-lattice
T C &;W;. The image exp(To N U) is open and dense in pg(Iy) (for the profinite topology),
which implies that Uy = py'(exp(To N U)) is open and dense in I'y. By construction, for
each g € Up and eachi = 1,...,r, the polynomial P, () (X) has distinct roots A1, ..., 44,

1

contained in 1 + 2¢Z,, which implies that the powers A, ..., A4 are also distinct, since
1 + 24Z; contains no non-trivial roots of unity. O

THEOREM 3.7. — In the situation of Theorem 3.3 with r = 1, assume that conditions (A),
(B) from Theorem 3.3 and (C') below hold.

(C') There exists an open subgroup I'" C T" such that Py, g)(p(g)) = 0 € Endg, (V') holds
for all elements g of a certain dense subset of T".

Then the representation p is semisimple (and isomorphic to p?", for somen > 1).

Proof. — Asany submodule of p®” is isomorphic to p?m/, we can assume that p*s = p®”.
By induction it is sufficient to consider the case m = 2:
(3.7.1) 0O— W —V—WwW —0.

We can assume that ' = T”, by 3.2. Condition (C’) then implies, by continuity, that

Py (q)(p(g)) =0forallg eI
Denote by G C Autg, (V) (resp. G1 C Autg, (W1)) the Zariski closure of p(I") (resp.

p1(I")). These are (the sets of Q,-valued points of) affine algebraic groups over Q, such that

(3.7.2) G=%g=<ilu)‘gleGl,ueN}szGl,
&1
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for a suitable Q,-linear splitting of the exact sequence (3.7.1) and a Q,-vector subspace
N C Endg, (W1). Our aim is to show that N = 0. We have, again by continuity,

(3.7.3) ve=(%"")eG Py () =0.
0 &

Condition (A) implies that the connected component of the identity G} acts irreducibly
on Wi, hence G7 is a connected reductive group over Q, and its center acts on W; by a
character. Fix a maximal torus T C G7.If N # 0, Proposition 1.3(2) (in its version 1.5)
states that there is a weight A : T — G, which occurs in W; with multiplicity one and
n € NT with non-zero image n; under the composite map
NT C Endg,(W1)" = €D Endg, (W1(1)) — Endg, (Wi (1))
143

Chooset € T such that u(t) # A(¢) for all weights u # A of T occurring in W;. The element
. tn cG
o 0t

. on' .
Pt(X) — H(X_M(t))dlmW] (M)’ Pt(g) = (0 no) s n/A. =n, l—[ (A(I)—/,L(I))dlmwl (1) # 0’
m

MFEA

satisfies

which is impossible, by (3.7.3). This contradiction shows that N = 0, hence p = p?z, as
claimed. O

3.8. Questions

(1) Does Theorem 3.3 still hold if we relax assumption (A) by merely requiring each p; to
be irreducible and without multiplicities after restricting to open subgroups of I'?

(2) Is there a common generalization of Theorem 3.7 and the special case 3.4 of
Theorem 3.3?

3.9. — We are now going to show that a variant of condition (B) of Theorem 3.3 (in its
version 3.4) is a consequence of the other assumptions, provided the representations p; have
sufficiently large image,

ProPoOSITION 3.10. — Assume that the representations p and p; from Theorem 3.3 satisfy
the following conditions.

(A') Each W; is a direct sum of simple modules for the Q-Lie algebra Q, - Lie(p; (T)) (which
is then reductive ), each of these simple modules is one-dimensional or minuscule.

(C') There exist an integer a > 1, an open subgroup T'' C T and a dense subset > C T such
that

Vg ex P(pl®...®pr)(ga)(p(ga)) =0¢€ El’ldae(V)

Then: (1) There is an open subgroup U C T such that p® = (p| U)Ss is isomorphic to a

N
l
subrepresentation of (p1 @ -+ ® p,)@m,for somem > 1.
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2)If p1®- - -Rpy is strongly irreducible anda = 1 ora = 2, then every irreducible constituent
ofpssh,, is isomorphic to (p1 ® - ® ,or)|1,, ® o, for some character o : T' — {£1} satisfying
0% =1.

() Ifa = r = 1and Wy is a minuscule representation of Q;-Lie(p1 (")), then p is semisimple

and Pl is isomorphic to p; |?,”,f0r somen > 1.

Proof. — Thanks to 3.2, we can (and will) assume that I’ = I'. By continuity, (C’) implies
that

(3.10.1) Vg el P(pl®...®pr)(gu)(p(ga)) =0¢ End@ (V)

(1) We proceed in several steps.

Step 1. — It is enough to consider the case when p is irreducible. Furthermore, after
shrinking T if necessary we can assume that p is strongly irreducible. This means that V' is a
simple g-module, where g = Lie(p(I")) and § = Qq ®q, ¢- As in the proof of Theorem 2.4
we deduce that g (resp. g) is a reductive Lie algebra over Qy (resp. over Q) and each element
of the center of g acts on V by a scalar. Consider the representation pg = p1 ® -+ D pr :
' — Autg, (W), where Wy = W) @ --- & W, (cf. the proof of Theorem 3.3).

The subgroup p(Ker(pg)) C Aut@ (V) is a compact Lie group of finite dimension
over Qq. The formula (3.10.1) implies that (p(g?%) — 1)V = 0 for all g € Ker(po) (Where
N = dim(W; ® --- ® W,)), which means that the Lie ideal a = Q, - Lie(p(Ker(po)))
inQ,-g = Im(g — Endg, (V)) consists of nilpotent elements, hence is a nilpotent Lie
ideal [6, Ch. I, §4, no. 2, Cor. 3], and so a = 0, since 64 - g is reductive. It follows that
p(Ker(po)) is a finite subgroup of Autg, (V), hence Ker(pg) N Ker(p) is an open subgroup
of Ker(pg). The surjection I'/(Ker(po) N Ker(p)) — I'/Ker(p) yields a canonical surjection
f g0 = Lie(po(I")) — g. We consider V and all W; as irreducible representations of the
reductive Q-algebra g, = Qy ®q, do-

STEP 2. — The Qqg-Lie algebra go C g1 X --- X g, (where g; = Lie(p;(I"))) satisfies
pi(go) = gi foralli = 1,...,r. After shrinking I" if necessary we can assume that, for each
g € I, all eigenvalues of p(g) and p; (g) (i = 1,...,r)arecontained in 1+2¢ Z,. After taking
£-adic logarithms p; (I') — Lie(p; (I")) (and similarly for p(I")) we deduce from (3.10.1) that

VX =(X1,....Xr) €90 C g1 X - X8 P, x)wme-ew, (f(X)) =0 ¢ Endg, (V).
where (X1,...,X;) € End@(Wl) X oo X End@(Wr) actson Wi ® ---@ W, by ), 1®---®
1®X; ®1®---® 1. As go is Zariski dense in g,, we obtain that

(3.10.2)

VX =(X1.....X,)) €Go C G X X8 Pxy..xnwie-ew, (f(X)) =0 € Endg, (V).

where f 1§y — 8 — Qu-g C Endyg, (V) is induced by f.

STep 3. — Foreachi = 1,...,r we have W, = ®ui Wi, , where each W, ,; is a simple
module for the Q,-Lie algebra g; = Q, ®q, 9i- The Qg-Lie algebras g;,, = Lie(Im(I' —
Autg, (Wiu,))) are reductive and go C [Tiz,e C Hz’,u,— gi,u; 18 a subalgebra projecting
surjectively on each of the factors.

Applying Proposition 2.2 to gy C [, ,,, 8i.., and the simpleg; ,,, (=Q¢ ®q, 8i,u;)-modules

Wi 4, » we obtain an isomorphism of Q,-Lie algebras & : g x---x g — g, where each
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g is a simple Q,-Lie algebra and each 8y, is isomorphic to a product of several g%
(not necessarily distinct). Moreover, for each u = (uy,...,u,) the Jgy-module Wg, =
Win, ® & Wy, satisfies h*(Wg ) = M,fl) X...X M,fs), where M,fj) is a tensor product
(possibly empty) of minuscule representations of the simple Lie algebra g¢/). In addition,
each element of the center 3(gy) C ]—L-’ui 3(8;,4,) acts on both Wg ,, and V' by a scalar.

These properties imply that the go-module W1 ® - - - @ W, = @, W, 1s a finite direct sum
of tensor products of one-dimesional or minuscule representations of g.

Fix Cartan subalgebras h) c g and § C g, such that h N Dgy = A(HD x --- x h©)).
The formula (3.10.2) applied to elements of h implies that each weight of § occurring in V
must occur in Wi ® - -- ® W,.. Applying Proposition 1.6 we deduce that V' is isomorphic (as a
go-module) to a submodule of W, ®- - -® W,., which is equivalent to the fact that there exists an
open subgroup U C TI' such that Ply is isomorphic to a subrepresentation of (p; ®- - -® py) Iy
as claimed.

(2) Denote the representation p; ® - - - ® p, by p. According to (1) the restriction of p* to
some open subgroup U C T is isomorphic to a subrepresentation of 'pv|;‘3m, hence to 'p“@" for
some n < m. It remains to show that p* and p®" are isomorphic as representations of T".

As p** is semisimple, it is enough to consider any of its simple submodules, so we can
assume that p% = p is irreducible. The statement (1) implies, by Frobenius reciprocity, that
p is isomorphic to a simple Q,[I']-submodule of Indg (I)]U)e)” = (FQZ[I/UN®", hence
of 0 ® o, for some irreducible representationo : I'/U —> Aut@ (V5) (after shrinking U we
can assume that it is a normal subgroup of I'). As

Endg, (7 ® o) = Endg, (7 ® 0)"/Y

T/U _
= (Endg, 1)(?) ®q, Endg, (@) = Endg,ryu(0) = Qu.
the (semisimple) representation p ® o is irreducible, hence is isomorphic to p. We distinguish
two cases.

First case: 6(s)* = idforalls € T'/U.If a = 1, then o is the trivial representation
and we are done. If @ = 2, then o(I"/U) is an abelian group of exponent one or two, hence
o :T'/U — {£1} is a trivial or a quadratic character.

Second case: there exists s € I such that o(s)? # id, hence an eigenvalue ¢ # 1 of o (s)%.
Relation (3.10.1) for g = us then gives
(3.10.3) VueU  Pguysy(c(@u)S)?) = 0 € Endg, (V).

where V= W, ® - ® W, and § = o(s) € Auty . (V). Denote by G the Zariski closure
of p(U) in A~ut@ (V). This is an aﬂiIE: algebraic group over Q, whose connected compoilent
of identity G° acts irreducibly on V (thanks to the assumption on ¢ in (2)), hence G° is
reductive. By continuity, we have

VAE€G®  Pusy(c(AS)) = 0 € Endg, (V).

Lemma 3.11 below shows that S = 0, which is impossible. This contradiction implies that
the second case never occurs.

(3) Combine (2) (for a = r = 1) with Theorem 3.7. O
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LEmMaA 3.11. — Let H be a connected reductive group over an algebraically closed field
k D Qandr : H— GL(V) anirreducible rational representation of H. Ifa > 1, ¢ € k*\ {1}
and S € Endg (V) satisfy

(*) Vh e H(k) P(r(h)S)a (c(r(h)S)“) =0¢ El’ldk(V),
then S = 0.

Proof. — As in 1.3, a choice of a maximal torus 7 C H gives rise to weight decompo-
sitions V. = P, V(w), Endg (V) = D, ,» Hom (V(w), V(1')). Denote by A the highest
weight of V' (for a fixed ordering of the roots of (H, T')).

If S # 0, then there exists a non-zero irreducible rational subrepresentation M C End(V)
of H containing S. Proposition 1.3(2) in the form 1.5 implies that there exists hy € H(k)
such that the image of 79Shy! in Endg(V(1)) is non-zero. Condition () for S is invariant
by conjugation by an element of H(k), which means that we can replace S by hoShy! and
assume that the image S of S in Endy (V(1)) = k is non-zero.

Fix a cocharacter § : G;;, —> T such that §(1) > 0 and (1) > B(u) for all weights
@ # A such that V() # 0. Denote by z the standard coordinate on G,, and by f(z) the
image of P B(2))8)a (c(r(B(2))S)%) € Endr(V)]z, Z_l] in Endg (V(1))|z, Z_l] = k[z, Z_l].
The monomial of the highest degree occurring in f(z) is equal to ¢"~!(c — PN B Mna
where n = dim(V'). As the coefficient ¢~ (c — 1)S74 is non-zero, there exists u € k™ such
that f(u) # 0, which implies that 1 = B(u) € H (k) satisfies P(-n)sy (c(r(h)S)¢) # 0. This
contradiction with (x) shows that S = 0, as claimed. O

THEOREM 3.12. — Assume that the representations p and p; from Theorem 3.3 satisfy the
following conditions.

(A") Each p; is strongly irreducible and W; is a minuscule representation of the reductive
Q,-Lie algebra Qy - Lie(p; (I')).

(C") There exist an integer a > 1, an open subgroup T C T and a dense subset ¥ C T such
that for each g € T there are pairwise commuting elements uy, ..., u, € Autg . (V(g)), where
V(g) D V is a finite dimensional vector space over Q, depending on g, such that V is stable
under uy -+ uy, p(g%) = u; e Ur|y, and P, (gay(u;) =0 (i =1,...,r).

Then:

(1) Condition (C') from Proposition 3.10 holds.

(2) The representation p is semisimple.

(3) The restriction of p to a suitable open subgroup U C T is isomorphic to a subrepresen-
tation of (p1 ® -+ ® pr)| 5™, for some m > 1.

@ If pr ® --- @ py is strongly irreducible and if a = 1 or a = 2, then each irreducible
constituent 0fp|F, is isomorphic to (01 ® -+ ® p’)|r/ ® o, for some character o : I/ — {£1}
satisfying 0% = 1.

Proof. — (1) This is a consequence of the following elementary fact: whenever u u, =
UUq and PA[- (Ml) = 0, then PA1®A2(MIM2) =0.

(2) In a minuscule representation each weight occurs with multiplicity one. As a result,
Proposition 3.6 applies in the situation we consider, which means that we can assume—after
replacing IV by a open subgroup I'y C I’ and X by ¥ N Uy, for an open dense subset
Uy C I'p—that for each g € X all polynomials P, ;)(X) are without multiple roots, hence
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each u; € Autg E(V(g)) is semisimple, and so is the restriction to V' of their product p(g%).
Therefore p(g) is semisimple and condition (C) in Theorem 3.3 is satisfied. Furthermore,
condition (B) in Theorem 3.3 is satisfied if we replace I by a suitable open subgroup, thanks
to (1) and Proposition 3.10(1). Applying Theorem 3.3 and taking into account 3.2 we deduce
that p is semisimple.

(3), (4) Combine (2) with Proposition 3.10(1) resp. 3.10(2). O

4. Semisimplicity criteria for representations of profinite groups (bis)

4.1. — Our next goal is to prove a variant of Theorems 3.3 and 3.12 (Theorems 4.4 and 4.7
below) in which assumptions (A) and (A’) are not satisfied.

4.2. — Let I be a profinite group and A < I' an open normal subgroup. Denote by pr :
I' — I'/ A the projection map. There is a natural right action of I'/ A on the set of characters
o A — 62, namely

4.2.1) aP" @ (h) = a(ghg™), gel heA.

4.3. — From now on until 4.7 we assume that I'/A is a cyclic group of order n > 1 and fix
one of its generators 0. We change notation and write I, instead of A. For characters « as
in (4.2.1) the induced representations

() = Indr, ()

are semisimple and have the following properties:

n—1 .
)|, — @ a
Ty
i=0

I@) = I() < FieZ/nZ B=0a",
n—1 )
I(@) ® I(B) = Indp,, (¢ ® [(B)|, ) — €D 1(@B”),
i=0
n—1 ) )
Ie) @@ 1) — P Iemog?---af").

1250y =0
Fix a lift & € pr~1(o) of o and identify the representation space
@) ={f:T— Q| f(hg) =a(h) f(g) YheT, Vgel}
with GZ =@, Qe via
S
n
[ f@ e = f@

i=1

f@h
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The action (g * f)(g1) = f(g1g) of I' on I(«) then becomes
ei—1, i #1
a(@™)ep i=1.

In particular, 6" € T, acts on I(«) by multiplication by the scalar a(6™). This scalar depends
on g, not just on g, since

VheT, h(e)=a" '(h)e,  le)=

VheT, o((id)") =o' ot +"" () a@G™).

The representation /(«) decomposes into a direct sum of n/d irreducible representations of
dimension d

I(@) = P Indr,, @),

whered = min{i > 1 | o = a}isadivisorofn, 'y = pr=!({(o¢))is the inverse image of the
cyclic group generated by 04 and @ runs through all characters @ : Iy —> 6; extending o.

THEOREM 4.4. — Let p; = I(og) (i = 1,...,1r), where ay,...,ap : T}y — 6; are
characters. Assume that a representation p : I' —> Autg, (V) satisfies the following conditions.

(B) The semisimplification p*s of p is isomorphic to a subrepresentation of (p1 ®---® p,)®™,
for somem > 1.

(S) There is a dense subset & C T such that, for each g € X, p(g) is a semisimple element
of Autg ’ V).

If n is a prime number, then the representation p is semisimple.

Proof. — Note that the representations p; and their tensor products are semisimple and
that conditions (B) and (S) are satisfied by any subquotient of p. By induction, it is sufficient
to consider only the case when p sits in an exact sequence

0—Y —p— X —0,

where X and Y are irreducible subrepresentations of p; ® --+ ® p,, hence X & X' = I(a),
Y@®Y = I(B) forsomea = ayad”---a?" and f = oo’ ---a?”". After replacing p

0
by p ® X’ @ Y’ we can assume that
00— I(B) — p—> (@) — O,

where B/a = ¢°~! for a suitable character ¢ : T, — 6; It is enough, therefore, to prove
the following statement. O

PROPOSITION 4.5. — If'n is a prime number and if a, B, ¢ : '), —> 6; are characters such
that B/a = ¢°~ 1, then any representation p : T’ —> Autg, (V) satisfying (S) which sits in an
exact sequence

0—IB)— p— I(a) —0
is isomorphic to 1(B) & I(x).
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Proof. — STEP 1. — For each h € T, the element (h5)" = h,0" (hy, = h(GhG')---
(@ 'h5'7)) acts on both I(«) and I(B) by the same scalar «(h,5") = B(h,o"), since

(B/a) (") = T DT D (1) 071G = "D () 7T @G") = 1.
It follows that
{h € Ty | p(ho) is semisimple} = {h € T, | p((ho)") € 6; -1d}
is a closed subset of T, hence equal to I',, thanks to (S). In particular, ¢ acts semisimply
onV.
STEP 2. — According to Step 1 there exists a G-equivariant Q,-linear splitting of

V — I(a), which we fix. Together with the identifications /() - GZ <~ 1 (B) from 4.3,
this allows us to identify V' with 62’ < 62 in such a way that g € I" acts on V' by a matrix

_[Bc(®)4
p(g)—<0 ) )

where A € GL,(Qy) (resp. B € GL,(Qy)) is given by the action of g on I(«) (resp. on I(8))
and
¢ € Z'(I Hom(I(e), I(B))) = Z'(I. Mx(Qy))
is the 1-cocycle attached to the splitting. Continuity of p implies that the functions
g — A, B, c(g) are continuous, too. By construction, ¢(¢) = 0.
Note that there is an isomorphism of I'-modules
n—1
Hom(I(e). I(8)) — 1(@)" ® I(B) — (™) @ 1(§) — P 1(B/a”")
i=0
under which 7(8/ oz"i) corresponds to the set of matrices C € M, (Q,) which have non-zero
entries C,p only on the shifted diagonal @ +i = b (mod n), since for each g € I';, the matrix
A is diagonal, with diagonal entries equal to a(g), «?(g), . .. a0 (g) (and similarly for B,
when « is replaced by ). Denote by
-1
ro Y ~ 7 ol o/
Prgjac’y - Mn(Q)) — Hom(I(a). I(B)) — €D 1(B/a®) — 1(B/a®")
i=0
the projection on the term /(8 /oe"j) (corresponding to a shifted diagonal of M, (Qy)).
STEP 3. — Assume first that § = «. For each & € T, N X the semisimplicity of p(h) =

Ac(h)A
<0 C(A) ) implies that all terms on the main diagonal of ¢ (%) vanish, since A4 is diagonal.
By continuity of ¢, it follows that
(4.5.1) Yheln  prgje (c(h) =0.

STEP 4. — Assume now that 8 # o (hence ¢° # ¢). Step 1 implies that
n—1 ) n—1 ]
(4.5.2) Vhel, 0=c((ie)") =) (H6) c(hd) =Y (i5) c(h),
j=0 j=0
since c(ho) = hc(0) + c(h) = c(h).
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Let ho,h; € T, be two elements such that kg acts trivially on gr(V) = I(8) @ I(«); set
hy = hohy. The condition on kg implies that ¢(h,) = hoc(hy) + c(ho) = c(hy) + c(hg) and
that the action of 4,5 on gr(V) coincides with that of ;. Subtracting the relations (4.5.2)
for h, and h1, we obtain

n—1 n—1
(4.5.3) 0= ((h:5) c(ha) = (T c(hn)) = ) ()’ e(ho).
j=0 Jj=0

Write x := prg/my(c(ho)) as x = Y I'_, xje; (x; € Q) using the identification 7(8/a) =
I(¢°') —> Q, from 4.3. The formula

(13) (e) = (@ H7 T H () ey = (07 7)) iy
implies that (4.5.3) can be rewritten as

n n—1

n—1
Yhy €Ty 0= Z(hlzf)j X = ZZx,-(w"l_”l_j)(hl)ei_j
j=0

i=1j=0

n n—1
a a+j
= ea/e” (h) | D0 () Xasj |-
a=1 j=0

hence

n .

Vhy € T, > ¢ (h)xi =0.

i=1

Linear independence of the distinct characters ¢, ..., ¢° = ¢ (we are using our assump-

tions that ¢ # ¢ and n is a prime number) then implies that all x; = 0. In other words,

prg/a)(c(ho)) = x = 0.

STEP 5. — Applying Step 3 and Step 4 to the identifications /(c) A | (a"[) = 62’
(when B/’ = @9~ for ¢; = /aTo+" 1) we obtain
Vi=0,....,n—1 pl(ﬂ/a(,i)(c(ho)) =0,
hence c(hg) = 0 for every hg € I';, which acts trivially on gr(V'). This implies that, for every
h € I'y, the value c(h) depends only on the image pgr(v)(h) of p(h) in Aut(gr(V)).

STEP 6. — According to Step 5, the restriction ¢, of the cocycle ¢ to Iy,

n—1
cn € Z'(Ty. Hom(I(a). 1(B)) = @D Z" (Tw. 1(B/a""))

i=0
lies in the image of the inflation map

n—1 ) n—1 .
inf: Z'(4, Hom(I(«), 1(B)) = P Z' (A, [(B/a”")) — P Z' (Tw. 1(B/a”)).

i=0 i=0
where A 1= pg,(v)(I'n) C Aut(I(a) @ I(B)) is an abelian profinite group.
Ifa® # B, then H'(A, B/a®") = 0, by Sah’s lemma.
If«®' = B, then (4.5.1) implies that Pr(gjactyCn = 0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1204 J. NEKOVAR

In either case, the cohomology class of p 1B/acy <N vanishes in H!(T,,, 1(8 /oz"i)), hence
the cohomology class of ¢ lies in the group

Ker (res : H' (I, Hom(I(), I(B))) — H'(I'y, Hom(I(e), I(B))))
s HY(T/ T, Hom(I(a). I(B)™).

which is trivial, since Hom(Z(«), I(8))" is a Q-vector space. This finishes the proof of the
fact that p = I1(B) & I(«) (and of Theorem 4.4). O

PROPOSITION 4.6. — Let p; = I(o;) (i = 1,...,r) be asin Theorem 4.4. Let p : T —
Autg, (V) be a representation satisfying the following condition.

(S") There exist an open subgroup T' C T such that pr(I'") = T'/ T, and a dense subset
> C IV such that

Vg e X P(pl@"‘@pr)(g)(p(g)) =0¢€ End@ (V)
Then there is an open subgroup U C T’ such that pr(U) = T'/T,, and Py = (p|,)" is
isomorphic to a subrepresentation of (p1 ® --+ ® p,)@m, for some m > 1.

Proof. — STEP 1. — (§') holds for all subquotients of p, which means that we can—and
will—assume that p is irreducible. Note that conditions (A’) and (C’) from Proposition 3.10
are satisfied (with @ = 1). Step 1 of the proof of Proposition 3.10(1) shows that

;
Ker(p) 2 Ker(po) = () Ker(pi) = (") Ker(a”")
i=1 ivj
(where pg = p1 @ - -- ® pr), which means that we can replace I' by I'/Ker(pg), hence assume
that ', is abelian. In this case p is necessarily of the form (cf. 4.3)

p =Ind} (B) C I(B). B:Ty—Q,. d=min{i>1|p" =g}
-1 _
Plr, =P B Bl =B
i=0

The proof of Proposition 3.10 (1) implies that there is an open subgroup A C T, such that
n—1 ) .
Bl,Co®-®p),= B o' o,
01 5eees ir=0
hence there exist {i;} for which the character y = a?il ---oz;’i’ /B has finite order. We can
replace each oz;’ij by o; without changing /(«;); then y = oy --- o /B.

STEP 2. — By continuity, the equality in (S’) holds for all g € T, in particular for all
ge’Npr (o). Fixd e I Npr!(o) and write g = Gh, where h € T';, = " N T,. If we
denote by N the product aa? - - ! (for any character « of I',,), then

Ppy@-0p)@h) (X) = (X" = (N(a1 -+~ o)) (h) (1 -+ ) @")"

r—1

and

Poan(X) = X4 = (BB - B ) ) BGY).  p@h)" = (NB)() B@") - idy.
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Condition (S') then yields
Vhel,  (Nh) = N(i-a/B)(h) = (@r---a/B)E") " = x@)7,
which is equivalent to y(6") = 1 and (N )()|F},1 = 1, hence to
VheT, x(@h)") = 1.

STEP 3. — The following open subgroup of '},
. n—1 .
Up={hel,|VieZ " (h)=1}=T"n()Ker(x")
i=0
is stable under the conjugation action by the cyclic group (o). The extension class
[["] € H2((0).T}) of
1 —T, —>TI"— (o) —1

is equal to the image of 3" € (I',)°=! under the periodicity isomorphism (depending on o)
)=+ 0 4+ 0" O, = H(0).T,) — H((0).T).
The conclusion of Step 2 implies that " € U, hence
[['] € Im (H?((0). Un) — H?({0).T})).

which means that there is a commutative diagram of group extensions

1 Uf T (o) 1
1 r, T‘[’ (o) 1
1 T, r (o) 1

such that ﬂ|U = (1 -~a,)|U . We have p C I(B), hence

Ply C 1(B)|, = ndg, (B|,, ) = Indg, (1 -+-ar |, ) € @) Indg, (@], ) = (p1®---Bp,)] .

i=1

as claimed. O
THEOREM 4.7. — Let p; = I(oy) (i = 1,...,1) be as in Theorem 4.4. Assume that n is
a prime number and that oe,-/ozl‘.’j is a character of infinite order, for eachi = 1,...,r and

j=1,...,n—1.Letp: I — Aut@(V) be arepresentation satisfying the following condition.
(S") There exist an open subgroup T" C T such that pr(I'") = T/ T, and a dense subset
Y C IV such that for each g € X there are pairwise commuting elements uq,...,u, €
Autg Z(V(g)), where V(g) D V is a finite-dimensional vector space over Q; depending on g,
such that V is stable by uy ---u,, p(g) = uy e Ur|y, and P, (e)(u;)) =0 (i =1,...,r).
Then:
(1) Condition (S') from Proposition 4.6 holds.
(2) The representation p is semisimple.
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(3) The restriction of p to a suitable open subgroup U C T satisfying pr(U) = T/ T}, is
isomorphic to a subrepresentation of (p1 ® --+ ® p,)@m,for somem > 1.

Proof. — (1) See the proof of Theorem 3.12(1).

(2) Thanks to (1), Proposition 4.6 applies to p, which yields an open subgroup U C T’
such that pr(U) = TI'/T, for which Ply satisfies condition (B) in Theorem 4.4 (where we
replace (I', T, ;) by (U,U, = U N I‘n,ai|Un)). Condition (S”) implies that, for each
element g of ¥ N U N pr~! (o) (which is a dense subset of U N pr=!(o)), we have p(g) =
Up--ur|, with pairwise commuting u; € Aut@ (V(g)) satisfying 0 = P, (g)(u;) = u} —
a; (g")id. It follows that each u; is semisimple, and so is the restriction of their product p(g).
After replacing o by other generators of I'/ I, = U/ U, we obtain the same statement for all
g € XN(U\Uy). The assumption on ; /oy ’ implies that for all elements g of a suitable open
dense subset U, C U, the characteristic polynomials P, ,)(X) (i = 1,...,r) have distinct
roots. As above, this implies that p(g) is semisimple for each g € £ N U,,. This means that
condition (S) in Theorem 4.4 is also satisfied by p|,, (with X replaced by (X N (U \ Up)) U
(X N U,)). We deduce from Theorem 4.4 that p|y» hence p as well, is semisimple.

(3) Combine (2) with Proposition 4.6 (which applies, by (1)). O

5. Cohomology of quaternionic Shimura varieties

5.1. - In this section we apply the abstract results of §3 and §4 to Galois representations
occurring in étale cohomology of quaternionic Shimura varieties. Historically, this was the
first class of Shimura varieties of dimension dim > 1 to which the Langlands(-Kottwitz)
method was applied [29], [7].

5.2. —Let F C Q C C be a totally real number field of degree r = [F : Q]. Fix a quaternion
algebra D over F which is not totally definite. Let H (resp. G = Rp/q(H)) be the group D>,
viewed as an algebraic group over F (resp. over Q). Define G* to be the fiber product

G —— G
J{ J{Nrd
Gm,Q B RF/Q(Gm,F)y

where Nrd is the reduced norm.

5.3. — The set of infinite primes of F naturally decomposes as
{v:F—>R}={v| Dy~ M, R)}U{v | D, > H} = QUQC, |Q]=r>1, |Q=r—t.
We fix the corresponding isomorphisms
DR~ MR xHY,  GR)x~GL,(R)S x (H)™.
Let
(5.3.1) h:S=Rc/rGmc — Gr ~ GL(2)¥ x (H)®
Xy

be the standard morphism x +iy ( 5% )Q x 192° Its G(R)-conjugacy class & is naturally
identified with (C \ R)% and % with the point {i }%*.
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5.4. — The Shimura variety Shx (G, ¢¥) has dimension ¢ and its reflex field E = E(G, &) is
equal to
E=Q(Zv(a) lae F)c F®!cQcC.
veEQ

Equivalently, Tg = Gal(Q/E) = {y € Tq | y(Q) = Q}, if we consider 2 € Hom(F,C) =
Hom(F, Q). Define an intermediate field £ C E’ C F2! to be the fixed field of T'gr =
Gal(Q/E) ={y € Tq | Yv € Q y(v) = v}.

If ¢ = 1 (the case of Shimura curves), then E = E’ = F.If t = r (the essentially PEL
case), then £ = Qand E’ = Fe&al,

5.5. — Our main objects of interest will be the cohomology groups H.(Sh(G, ¥)®£Q, Lep)
(in the notation of Introduction), where

£:Ge=GLQR)E™ER _, GL(N)c

is an irreducible rational representation such that §| Ze factors through Nf,q. Explicitly,
(5.5.1)
t=Q)t. & =Sym"2(Std") ® (det o Std¥) /2 1 GL(2)¢c —> GL(ky — I)c.
v]oo
where StdY is the dual of the standard two-dimensional representation of GL(2),
k : Hom(F,R) — Zs,, w € Z and Yv|co k, = w (mod?2). The reason why we
consider Std" rather than Std is explained by the discussion in A.5.6 below.
The corresponding £-adic sheaf Z¢ ¢ is pure of weight 7 (w — 2).

5.6. - If t = r (i.e., if the quaternion algebra D is totally indefinite), then the morphism
(5.3.1) factors through Gy. Its G*(R)-conjugacy class &* is naturally identified with
(ST Hom(F.R) (g~ )Hom(F.R) (€ \ R)Hm(FR) where ST and &%~ denote the upper
and lower half planes in C, respectively.

The Shimura variety Sh(G*, &(*) is of PEL type. It is defined over the common reflex field
E = Qof (G*, &*) and (G, ).

PROPOSITION 5.7. — If t = r, then the morphism i : Sh(G*, {*) — Sh(G, &)
defined by the inclusion (G*, ) C (G, &) induces an isomorphism of the connected
components Sh(G*, )"+ ~ Sh(G, J)*™* containing T x {1}, where (X)) = HT =
(HHmER)  Gc* — & Moreover, the map i is an open immersion.

Proof. — This is a well-known consequence of Chevalley’s theorem on units (cf. [13,
Cor. 2.0.12]). According to [11, Prop. 1.15], the map i is an open immersion. It is enough,
therefore, to show that for any pair of open compact subgroups K} C G*((A)), K, C G(a)
such that K{ C K there is a smaller pair (K3, K») C (K}, K1) for which the following
diagram can be completed by a diagonal morphism making the two triangles commutative.

(K3 N GHQOWH)T —— (K2 NGQ\X™

—
—
—
—
—
—
—

+
(K N G*Q\(T)T —— (K1 N GQ\ T

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



1208 J. NEKOVAR

Above, G(Q)+ = G(Q) N G(R) 4+ (resp. G*(Q)+ = G*(Q) N G*(R)4), where G(R) 4 (resp.
G*(R)4) is the subgroup of elements of G(R) (resp. of G*(R)) whose reduced norm lies
in (Ri)Hom(F R (resp. in the diagonally embedded R%). In concrete terms, it is enough to
find (K7, K>) such that

K2 N GQ+ C (K] NG (Q+)Z(R),
where Z C G is the center. We can assume that
KiNGQ) Cc(1+ MOp)N Op, KN G*(Q) D (I + M'0p)Nd=!

for some Of-order Op C B and integers 3 | M | M’. According to [C, Thm. 1] there
exists an integer N > 1 such that (1 + M'NOp) N O C (Of N (1 + M'OF))>. Taking
K>, =01+ M/Nag) N Ky and KJ = K, N K7, the reduced norm of any a € K> N G(Q) C
1 + M'NOg is of the form Nrd(a) = u=2 for some u € O N (1 + M’OF). It follows that
a=(awyu~' e+ MNOpN=IZR) C (K} N G*(Q)+)Z(R),

as required. O

In fact, a more sophisticated version of the above argument [39, Lemma 2.5] shows that
one can choose K and K so that Shgs (G, &*yan+ = Shg, (G, F)*™*. However, we are
not going to use this refined statement.

COROLLARY 5.8. — (1) Thereisa G(Q) -equivariant isomorphism Sh(G*, ) xV G((A)) ~
Sh(G, &), where U C G(Q) = DX is the stabilizer of Sh(G*, ).

(2) For any € as in 5.5 there is a I'g x G(Q)-equivariant isomorphism
H(Sh(G. 90) ®F Q. Zgp) ~ Ind @ HJ(Sh(G*. &%) ®F Q.i* L ).

with smooth induction on the right hand side.

59. - If D 2 M,(F), then Shg (G, X)*" is compact (for each open compact subgroup
K C G(Q)) and the formula (0.4.1) applies (with m(r) = 1 in (0.3.2), by the multiplicity
one theorem for automorphic representations of D}):

(5.9.1) H' = HL(Sh(G, &) ®£ Q. Lgo) = PV (x™) @ 7,

T

where 7o, ® 7 is an automorphic representation of G(A) = D} such that

(5.9.2) YveQ H*(gl,, OQR*;m, ® &) #0
and
(5.9.3) YveQf m,~§) .

If D ~ M,(F), then Shg«(G*, &™) and Shg (G, &) are Hilbert modular varieties and the
formula (5.9.1) applies to the intersection cohomology of the Baily-Borel compactification
J :Shg(G, ) — Shg (G, A)pp = Shk (G, X) U {cusps}:

H' = E%H(Hi)K = 11KI§ H (Shg (G, H)pB ®q Q. j1x Le ) = liKIEHi(ShK,BB),
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with 1 = 7me ® 7™ being a discrete ( <= cuspidal or one-dimensional) automorphic
representation of GL(Ar) [2]. As in the case D % M,(F), the Galois representation (H')X
is pure of weight i + ¢(w — 2) at all unramified primes not dividing .

The canonical map (H')X = H'(Shg pp) — H'(Shx) = H: (Shx(G, X) ®q Q, L¢.r)
is almost always injective (see Proposition A.6.17 below), the only exception being the case
i =2r,ky, = 2forallv | oo, when H?"(Shg pp) is dual to a Tate twist of H(Shg gg) =
H°(Shg).

5.10. - For fixed v € 2, the condition (5.9.2) can be made explicit as follows.

(5.10.1) If dim(wr,) < o0, then necessarily dim(wx) = 1 and # = y o Nrd for some
X : A%/ F* — C*.The central and infinitesimal characters of &, ® (), oNrd) must
be trivial [4, Thm. 1.5.3], hence k, = 2 and y2(a)a®> % = 1foralla € F} = R*,
which implies that y|| - ||;_w/ 2 is a character of finite order. In this case

1, i=0,2

dim Hi(gl,, OQ)R*; 71, ® &) = .
0, otherwise.

(5.10.2) If dim(mr,) = oo, then the matching of central and infinitesimal characters of 7,
and the dual of &, [4, Thm. 1.5.3] implies that 7, is a discrete series representation
of weight k, (and appropriate central character). In this case

. 2, i=1
dim H' (gl OQR  my @) =1 '
0, otherwise.

5.11. — Combining 5.10 with (5.9.3) and the strong multiplicity one theorem for automor-
phic representations of D (specifically, the fact that m(7) = 1 and 7 is determined by 7*°),
we deduce that V() # 0 precisely in the following two mutually exclusive cases.

(A) m = y oNrd, where y : A% /F* — C* is a character such that x| - ||};w/2 is of

finite order, dim(§) = 1 (<= Vv|oo k, = 2) and

&mW@ﬂ={@’i=%m§j§ﬂ

0, otherwise.

This corresponds to the universal cohomology classes given by the cohomology of
the dual compact symmetric space P! (C)".

(B) 7 corresponds by the Jacquet-Langlands correspondence to a representation
M = JL(w) of GL,(AF) attached (up to a twist) to a holomorphic cuspidal
Hilbert modular newform ¢ (this still holds in the case D >~ M,(F) when IT = n,
since 7 was necessarily cuspidal). In this case

V(™) =V (x®), dim V(7*®) = 2°.

In the case (A) we consider y|| - ||}_w/ % as a Galois character of finite order Ty =

Gal(Q/F) — C* ~ 62(, via the reciprocity map recr : AR /F* — I’;‘,b. By abuse of
language, we denote by y : I'r — GZ the tensor product of this Galois character of finite
order by Q;(w/2—1) (this is the £-adic Galois representation attached to the algebraic Hecke
character y, [37, ch. 0, § 5], [22, p. 20)).
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In the case (B) denote by p, = pr : I'r —> GL»(Qy) the Galois representation attached
to IT. It is irreducible, unramified outside £ cond(IT) and satisfies

(5.11.1) P, py(X) = X> —apX + o(P)(NP)

for all finite primes P { £ cond(IT) of F. Above, w denotes the central character of IT (hence
also of w) and ap (resp. w(P)) is the eigenvalue of the Hecke operator Tp (resp. Sp) acting on
the spherical vector of mp = ITp (see A.1.6 below). The character w satisfies w, (a)a?™% =1
for all v | oo, which implies that w|| - |%* has finite order. The Galois representation py is
pure of weight 3 — w at all P { £ cond(IT).

The Langlands-Kottwitz method yields the following information ([29], [7], [35], [8]).
(5.11.2) For = = y o Nrd as in (A) the dual representation is 7¥ = y~! o Nrd and

V3 (%) ~ ( /\j Indg Q(-1)) ® det(Inda(x ")) = ( /\j Indg Q,(—1)) ® IndS (x ™).
(5.11.3) If JL(;r) = II is attached to = as in (B), then
V! (x%)* ~ Ind8 (o),
where the dual representation 7V satisfies JL(rY) = IV ~ I ® o~ ! and p,v =~
P (—1) (cf. (A.5.6.3); this Galois representation is pure of weight w — 1).
Had we used 4! instead of &, then p,v would have to be replaced by py.

5.12. Partial (tensor) induction

In (5.11.2-3) we have denoted by Indg and Ind&, respectively, the partial induction and
partial tensor induction functors which associate to a representation of I'r of dimension m
a representation of I'g of dimension ¢tm (resp. m?). They are defined as follows.

The set X = Hom(F,Q) = Hom(F,R) = Q U Q€ is naturally identified with T/ T'r.
A choice of a section s : X — T'g of the canonical projection defines an injective group
morphism

is:To=> Sy x T,  is(y) =(0,8),  y(s(x)) = s(0(x)(x).
By definition,
Tg =i ((Sq x T®) x (Sqc x TE)).
Let M be any A[I"r]-module (where A is an arbitrary commutative ring). The wreath product
Sq x I'$? acts naturally on M®? and M®2. We let Sgc x ' act trivially and define
Indo(M) =i (M®%), Ind§(M) = i*(M®%).
The isomorphism classes of these two I'g-modules do not depend on s.
For y € I'g/ the image of is(y) in Sq X I‘g lies in FIS,?; it is equal to (s(x)"lys(x))xeq. It
follows that
~ s(x) ® ~ s(x)
(5.12.1) Indg (M), == E% M. Indg(M)| =~ (% M,
xe xe

where we have denoted by *® M the pull-back of M via the map

int(s(x))™! : Tgr — s(x) ' Tgs(x) C T'r, y = s(x) Lys(x).
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5.13. — It follows from (5.12.1) and (5.11.2-3) that

j (. 00\SS O H x),~1)8(;
(5.13.1) VI @ = Q=) © @ x ) G
xX€R
in the case (A) and
t(_00\ss ~ s, .,
(5.13.2) ViE)® ~ () * s
xeQ

in the case (B).

The finiteness of the class number implies that H, L (k,Qg) = 0 for any number field k. As
a result, any representation o : I'y —> GL,(Qy) Wthh is de Rham at all primes above £ and
for which 0% ~ a®" for some character o« : Iy —> Qe is necessarily semisimple, 0 = 0%, In
particular, (5.13.1) together with 3.2 imply that, in the case (A), each V27 () is semisimple.
Consequently, we can replace V2/ (7%°)% by V% (7%°) in (5.11.2).

5.14. — In 5.11-13 we have summed up the information about the Galois representa-
tions V' (7°) which can be obtained by the Langlands-Kottwitz method. In fact, this
method yields (5.11.3) in a form which does not assume the existence of the Galois repre-
sentation pyv.

We are now going to revisit the representations V? (n°°)|FE/, by applying Eichler-Shimura
relations together with the abstract results of §3 and §4 (but, unlike in the Langlands-
Kottwitz method, assuming the existence of p,v).

5.15. - Fix  asin 5.11, i.e., assume that V' (7™) # 0. Fix a neat open compact subgroup
K C G(Q) such that (#*°)X £ 0. This implies that
(5.15.1) 0# V7™ @ ()X ¢ H. (Shx (G, X) @ Q, Le.r).

There exists a finite set S of primes of F such that K = Ky KS, where K5 = ]_[v¢s K,
with (Ky, G(Fy)) >~ (GL2(OFy), GL2(Fy)) for all v ¢ S. We can, and will, assume that
S contains all infinite primes, all primes dividing 2¢ and all primes at which F/Q and D
are ramified. Denote by Qg /Q the maximal subextension of Q/Q which is unramified at all
rational primes not lying below S. Note that Qg D F!.

Fix an intermediate field E/ ¢ E C F&l We are going to consider primes Pg of Qg
which are unramified in Qg/Q and which satisfy

(5.15.2) Frog/0(Ps) € Gal(Qs/E).
Denote by _
p=PsNZ, P =PsnOg, P =PsnN Oz
the respective primes of Q, £ and E below Pg. It follows from the condition (5.15.2) that
Q,=FEp = Ep.
Moreover, for each x € Q2
5(x) " Frog/q(Ps)s(x) € s(x) "' Gal(Qs/E)s(x) C s(x) " Gal(Qs/E")s(x) C Gal(Qs/F).
which implies that the following primes of F
(5.15.3) P, =s(x)"'Ps N OF (x € Q)
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are distinct and satisfy Fp, = Q,.

5.16. Eichler-Shimura relations

The following statements are discussed in A.6 below.

In the situation of 5.15, the Shimura variety Shx (G, &X) has (for sufficiently small K?) a
canonical model Sk over Og p = Z,. Denote by Sg = Sk ®z, F,, its special fiber.

The Frobenius morphism ¢ : Sg —> Sp has degree deg(¢) = p’ and the action
of Fr(Ps) on H'(Shg) = Hl(Shg(G, ) ®k Q. Ley) ~ Hi(Sy ®x, Fp. Zg ) is given
by the action (¢ ® id)* of ¢ ® id : Sy ®r, F, — Sy ®, Fp.

A cohomological form of Eichler-Shimura relations in our situation asserts that
(p ®id)* € Auty, (H (Shg)) naturally decomposes as a product of pairwise commuting
cohomological partial Frobenius automorphisms

(p@id)* =[] er.  or €Autg,(H' (Shg)),  ¢ip; = ¢5or

xeQ

satisfying the following quadratic equations, which generalize (0.8.1):
(5.16.1) VxeQ 0x(@}) =0,  0x(Y)=Y>—(Tp,/Sp,)Y + p/Sp,.

The relations (5.16.1) are proved in A.6.4 and A.6.19 (the case t = r) and A.6.14 (the case
t < r)below for E = F&a,

In the totally indefinite case 1 = r (see A.6.4) the automorphisms ¢} are given by the
action of ¢, ® id on H?(Shg), where ¢, : Sg —> Sg are mutually commuting (¢x¢, =
¢y @x) geometric partial Frobenius morphisms of degree deg(¢x) = NP, = p. In the case
t < r we construct geometric partial Frobenius morphisms on the special fiber of a closely
related unitary Shimura variety, and then transfer the corresponding cohomological partial
Frobenius automorphisms to the quaternionic Shimura variety (see A.6.13).

The relations (5.16.1) imply that the action of Fr(Ps) = (¢ ® id)* = [l eq¢s
on H'(Shy) satisfies the following equation of degree 2°:

(5.16.2) 0" =0, 0= 0..

xeQ

where ) is the “Rankin-Selberg product”: writing formally Q(Y) = (Y —ax,1)(Y —ox,2),
then

(5.16.3) omy= [ (r=]]ewiw)

1:Q—>{1,2} xeQ

In the essentially PEL case t = r (when E = Q and E' = E=F galy the formula (5.16.2)
follows from [34, Cor. 4.2.15] and [40, Theorem, p. 44] (taking into account Corollary 5.8(2)).

In the isotropic case D >~ M, (F) the relations (5.16.1-2) also hold for the action of the ¢}
on H' = H'(Shg gp), in the notation of 5.9 (see A.6.19).
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5.17. —For w = yoNrdin the case (A), the formulas (5.16.1) and (5.16.2) imply, respectively
(thanks to (5.15.1)) that

(5.17.1) vxeQ (o5 —px (PO))(@x = X7 (PO))|yi rooygmooyk = O
resp.
(5.17.2) I1 (Fr(Ps) -] Px)) =0

1cQ xeQ ViEe)@@e)k

THEOREM 5.18. — For m = y o Nrd in the case (A), the relation (5.16.2) (which holds
for E = F& thanks to [34] and [40] in the case t = r and (A.6.14.3) in the caset < r)
implies (5.13.1). In other words, the Eichler-Shimura relation for the usual Frobenius morphism
(for Ps as in (5.15.2)) determines the isomorphism class of each V' (n°°)|FE (thanks to the

remarks at the end of 5.13).

Proof. — As H? is pure of weight 2j +¢(w—2) and y/||-|| ;—w/Z is of finite order, it follows

from (5.17.2) that, for each Pg satisfying (5.15.2), Fr(Ps) acts on V%/ (7%°)% by the scalar
2 (I'Iieq Px)- The set of elements Fr(Pg) is dense in Gal(Qs/E), which implies that

VI = @) e @)Y,
X€Q

as claimed. Note that one can rewrite the above formula in a more succint form as
~ -1 7e) O ®1
V(7T°°)S5|FE ~ (X' ® Q@ Qu(—1))) |FE'

As remarked in 5.13, the finiteness of the class number implies that each V% ()% =
V2 (72°) is semisimple. O

5.19. —If we are in the case (B) and JL () = II, write @ = {x;,...,x;}and p; = *®)p v :
I'er — GL2(Q)) (1 < i < t). Denote by p : Tgr —> GL,(Qy) the action of T'g
on VI (x®).

The relation (5.16.1) implies (again thanks to (5.15.1)) that, for each Pg satisfying (5.15.2),

(5.19.1) p(Fr(Ps)) = uy---uy, u; = (p;i, Wiu; = uju;, Py, (Fr(Pg)) (i) = 0.
Similarly, the relation (5.16.2) implies that

(5.19.2) P(p, @-®py)(Fr(Ps)) (P(FT(Ps))) = 0,

hence

(5.19.3) Veels  Ppa-eome (0g) =0,

by the Cebotarev density theorem.

THEOREM 5.20. — Assume that we are in the case (B) and JL () = I1.
(1) The relation (5.16.2) implies that there exist a finite extension E”/ E and an integer

m > 1 such that
Vi@, © (®S°‘)pnv)

xe€Q

®m

Tpn
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If, in addition, ¢ has complex multiplication by a totally imaginary quadratic extension M of F,
then E” satisfies M8 ¢ (M) E", where M & denotes the Galois closure of M in Q and
(MY the maximal totally real subfield of the CM field M &,

(2) If ¢ does not have complex multiplication and if the weights (ky)xeq are distinct, then
the representation Q) ,.cq * &) ppv of T is strongly irreducible and the relation (5.16.2) implies
that (5.13.2) holds after restricting to T'g.

(3) The relation (5.16.1) implies that the representation V' (x®) is semisimple.

Proof. — We must distinguish two cases.

If ¢ has complex multiplication, then p,v = Indll:; (¢) = I(a), where M C 6 is a totally
imaginary quadratic extension of F and « : I'yy —> 6; a character. Let M’ be the Galois
closure of M in Q. It is also a CM field and its maximal totally real subfield F’ is a Galois
extension of Q containing F&% (hence E). Using the notation from 5.19, we have, for each
i=1,....1,

Pi |FF’ = Ind;/];/ (Olj), o = S(Xi)(a|l"M/)'

Thanks to (5.19.3) (resp. (5.19.1)), Proposition 4.6 (resp. Theorem 4.7(2)) applies to the
restrictions of p and p; to T'p/ (note that n = 2,5 = c is the complex conjugation and the
character o; /af has infinite order, since the Hodge-Tate weights of & and o are distinct).
The statement (1) (resp. (3)) of the theorem follows.

If ¢ has no complex multiplication, then Q, - Lie(p,v (I'r)) = gl,(Q,) and p,v is strongly
irreducible. Thanks to (5.19.3) (resp. (5.19.1)), Proposition 3.10(1) (resp. Theorem 3.12(2))
applies to the representations p = VI(n®) and p; of T = TV = Gal(QS/E) and to
3 = {Fr(Ps)}. The statement (1) (resp. (3)) of the theorem follows. The statement (2) will
follow from Proposition 3.10(2) once we show that X, <o S®) ppv = p1 -+ ® py is strongly
irreducible.

Fix I <i # j <t. The Q,-Lie algebra
g =Q - Lie((p; @ pj)(T")) C Qg - Lie(pi(I')) ® Qg - Lie(p; (I') = gl»(Qy) x gl>(Qp)

satisfies p1(g) = p2(g) = gl (Qy). If the desired strong irreducibility statement does not
hold, the last part of Proposition 2.2 implies (together with Proposition 2.1) that )(g) C
s,(Qy) x sl,(Qy) is the graph of a Lie algebra isomorphism sl (Qy) = s[,(Qy). Every
automorphism of sl,(Qy) is inner, which means that, after conjugating p; by a suitable matrix
A € GL»(Qy), &(g) will coincide with the diagonally embedded sl,(Q,). Moreover, the
determinants of p; and p; differ by a character of finite order, which implies that g itself
coincides with the diagonally embedded gl,(Q,). As a result, the restrictions of p; and pj to
an appropriate open subgroup U C T are isomorphic (this is equivalent, by Schur’s Lemma,
to the existence of a character of finite order o : ' — 6; such that p; ~ p; ® a, but we
do not need this fact). This is impossible, since the Hodge-Tate weights of p; (with respect
to E' € Q € C ~ Qy) are equal to (1 — (w + kx;)/2, (kx; —w)/2), hence are different from
those of p;. This contradiction concludes the proof of (2). O
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5.21. Remarks

(1) The proof of Theorem 5.20(2) shows that the conclusion holds more generally, namely,
if we assume that ¢ has no complex multiplication and ™ p,v 2% $0)p v ® « for any
x # y € Q and any character of finite order o of I'g-.

(2) Is it possible to deduce from Theorem 5.20(2) the full statement of the restriction of
(5.13.2) to I' (for ¢ without complex multiplication) by letting ¢ vary in a £-adic family?

COROLLARY 5.22. — Forevery£ asin5.5, the action of Tg on Hl(Shx (G, ) ®E Q, Ls.4)
in the case D % M(F) (resp. on H! (Shg (G, &)pa ®Q6, Jisx Le g) in the case D >~ M>(F))
is semisimple, and the same result holds for Shx=(G*, X*) (andi* Le)) if D QR =~ M (R)".

6. Cohomology of quaternionic Shimura varieties (bis)

6.1. — In this section we investigate the cohomology of Sh(G*, §{*) with coefficients in local
systems that do not come from Sh(G, &0). The notation is as in § 5. We assume throughout
§6that D ® R >~ M,(R)" (i.e,that Q = X, ¢t =r).

6.2. — Anirreducible algebraic representation £* of G is a restriction to G of a representa-
tion ®,cx & of Ge, where &, = Sym**~2(Std") @ (detoStd")" : GL(2)¢c —> GL(ky—1)c
(ky > 2, my € Z). The corresponding £-adic local system Zg« ¢y = Ty on Shg=(G*, X*)
(for small enough K* C G*((j)) is pure of weight w* = ) v (ky — 2 + 2m,) and satisfies
Liem = Li,0(— D yex My). This implies that Zy ,, is a Tate twist of i * Z¢ ¢ for some & as in
(5.5.1) iff

(6.2.1) Yo, v e X ky = ky (mod ?2)

(in other words, iff k = (ky)yex 1s a “motivic weight” in the language of [1]).

6.3. — We fix k and m = (my)yex and write H' = H! (Sh(G*, ") ®q Q, Lk ) in the case
D # M, (F) (resp. H' = HL(Sh(G*, X™)pp ®¢ Q. jix Tk.m) in the case D ~ M, (F)).

If the weight k is motivic, Corollary 5.22 implies that H' is a semisimple I'g-module. If
k is not motivic, we are going to prove in Corollary 6.20 below an analogous result for the
non CM part of H'. The techniques of §5 do not apply in this case directly, only after a
passage to an auxiliary totally imaginary quadratic extension F, of F. For a good prime p
that splits completely in F./F one cannot define the partial Frobenius morphism ¢, on the
special fiber of Shg+(G*, ™) at p, only a certain twist of its square ¢2. Similarly, there is
no Galois representation of I'F attached to a Hilbert modular form of non-motivic weight
involved in the decomposition of H”, but there is a Galois representation of I'r,. attached to a
suitable twist of the base change of the Hilbert modular form to F, [1]. Working over F, with
such twisted objects leads to a proof of a variant of Theorem 5.20, but only in the non CM
case (see Theorem 6.19 below). Instead of the Eichler-Shimura relation for the action of ¢,
on the cohomology of Shx (G, &) given in A.6.4 below we use the results of [34] and [40],
which apply to the action of the twisted version of ¢2. This method also works for motivic
weights; it reproves the non CM case of Theorem 5.20 for ¢ = r.
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6.4. —Asin§5, thereisa I'g x G*(Q)-equivariant decomposition

Hi — @ Vi((n*)oo) ® (n*)oo’
(r*)ee
where 7* = n} ® (n*)* is an automorphic representation of G*(A) such that =3 is
cohomological for £* in degree i and 7* is one-dimensional or cuspidal (which is automatic if
D # M, (F)). We are going to investigate the ¢-adic representation V! ((7*)®) of ', which
is pure of weight i + w* at all unramified primes. As in 5.11, V¥ ((7*)*®) # 0 only in the
following two cases.

6.5. — Case (A): dim(r*) = 1. In this case 7* = x* o Nrd, y* : A¥/Q* — C*, k, =2
forallv € X, Zex g = Qu(—m) = (i* Leg)(—m), m = Y, my, & is the trivial representation
of Gc and y¥ (a) = a®™.

We can assume that m, = 0 for all v € X; then y* can be identified (via the reciprocity
map) with a Galois character of finite order y* : '¢ — C* =~ 62( The arguments from
5.18 show that the Eichler-Shimura relation (proved in [34] and [40]) for the usual Frobenius
acting on H' (at good primes that split completely in F/Q) implies that V'’ ((x*)*®) = 0 if
i €{0,2,...,2r} and

(6.5.1) V(@)™ = QD )T

F[:gal

O=<j=r).

6.6. — Case (B): dim(7*) = oo, * cuspidal.

As the restriction of 7% to SL,(F ® R) is of infinite dimension and cohomological
in degree i for £*, we have necessarily that i = r and ”:o| SLy(F®R) is a direct sum of
tensor products ),y of (holomorphic or antiholomorphic) discrete series representations
of weight k,, of SL,(F,) = SL»(R).

The central character wy* : A*/Q* —> C* of n* satisfies (wr*)oo = ws_*l ca>av’,
which implies that 7*(—w*/2) = 7n* ® (|| - [lg © Nrd)~*"/2 has central character of
finite order. As in [26, Prop. 3.5], every cuspidal automorphic form on G*(A) extends to a
cuspidal automorphic form on G(A) = D}. As a result, there exists a cuspidal automorphic
representation 7 of Dy with central character w, of finite order such that 7*(—w*/2) is
isomorphic to a quotient of the restriction of 7 to G*(A). Fix such a 7.

For each v € X, m, is a discrete series representation of weight k, and central character
Or, = (sgn)*» of GL,(R). The Jacquet-Langlands transfer JL(x) of 7 to GL»(AF) is
cuspidal, since 7 is cuspidal in the case D >~ M, (F).

6.7. — The representation JL () corresponds, up to a twist, to a cuspidal holomorphic
Hilbert modular newform ¢ of weight & = (ky)yex. Blasius and Rogawski [1] attached
compatible systems of Galois representations to suitable twists of JL(7r) by Hecke charac-
ters. Their setup is the following.

Fix an auxiliary imaginary quadratic field Ey and let F, = EoF (if ¢ has complex
multiplication by a totally imaginary quadratic extension M of F, assume that Ey ¢ M),
Fix an embedding of Eq into C (as F € Q C C by assumption, this defines a distinguished
embedding F, < Q c C) and denote by {0, : F. < C}rcx the induced CM type of F,.
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According to Proposition A.6.15 there exists a character ¥ : A}C /FX — C* satistying

Ve =o' VreX yu(@) = (0x(@)/lox(@)*:
fix such a . The twisted base change
(6.7.1) = BCrr(JL(m) @Y

is a cuspidal automorphic representation of GL,(AF,) (since JL () does not have CM
by F.) such that

NV ~1M°  on=v/¥v°, VxeX (omx(a)= (0x(a)/ox(a)*
(above, ¢ denotes the non-trivial element of Gal(F,/F) and (¥¢)(a) = ¥ (c™'(a))).
According to [1, Thm. 2.6.1] there exists a semisimple Galois representation
pr = prie i Tr, — GL2(Qp)

such that (note that our normalisations—including the values of (ky)yex—differ from those
of [1])

(6.7.2) Ly(pm1,s) = Ly(I1,Std, s — 1/2) (Vv 1 £ cond(IT) cond(y) DE,.).

6.8. — From now on, until 6.19, assume that V" ((7*)*°) # 0. There exists an open compact
subgroup K C G(Q) = D* such that (7®)X # 0 # ((7*)®)K", where K* = K N G*(Q);
fix such a K.

Let S be a finite set of primes of F satisfying the properties listed in 5.15; we require, in
addition, all primes ramified in F,./ F to be contained in S. Let p be a rational prime not lying
below S. After shrinking Kg if necessary, there exists a smooth quasi-projective model Sk
(projective if D % M,(F)) of Shg=(G*, ) over Z, constructed in [Ko, §5] (cf. A.6.3
below). As in 5.16, H' (Shg+) is isomorphic to Hgt(SI%* ®r¥, F,, ﬁig*,z), where Sg. denotes
the special fiber of Sk (this is also true in the case D >~ M,(F), as explained in A.5.11.2).

6.9. — Let Ps be a prime of Qg unramified in Qg/Q such that
(6.9.1) Frog/0(Ps) € Gal(Qs/F&Y),

where chal denotes the Galois closure of F, in Q. The rational prime p = Pg N Z is then as
in 6.8; moreover, it splits completely in F,/Q. Extend each element o, : F, < C (x € X) of
the CM type of F; to an element s(x) € I'g. Asin 5.15 and A.5.9, we obtain primes above
pin F and F_, respectively, given by

P, =s(x)"'Ps N OF, P, =s(x)"'Ps N OF,
that depend only on o, and such that

pOF = ]_[ Py, P.Of. = PP/, Fp, = (Fo)p, = Qp.
xeX
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6.10. — The pair (G(Qp), K,) is isomorphic to

[[(GL2(Fp,), GL2(OF p,)) = (GL2(Qy), GL2(Z,))¥;
xeX

its subgroup (G*(Q,), K;) corresponds to the elements whose determinant lies in the diag-
onally embedded subgroup (Q.Zy) C (Qy.ZX)*.

As in A.4.3, the cocharacter u : Gpm,q, — Gq, = GL(Z)gp from A.3.2 (attached
to the Shimura datum h) decomposes as 4 = (up,)xex, Where up, (@) = (§9). The
corresponding parabolic P, C Gq,, (see A.1 below) is the product of upper Borel subgroups;
its Levi subgroup M is the product of the diagonal maximal toriin GL(2)q,. We identify M
with its set of Qp-points and we write M* = MNG*(Qp), L = MNKpand L* = M*NK.

The maps K, gK, +— K,gK)p (resp. mL* > mL) define embeddings of Hecke algebras

FUG*(Qp)// Ky, Q) — FUG(Qy)//Kp, Q)
= () FUH(Fp)//Kp.Q) ~ JUGL2(Qp)//GL2(Z,). Q)"

Plp

and

FUM* [/L*.Q) — FUM//L.Q) = Q) S (Mp//Lp.Q) ~ FU(QyxQp)//(ZyxZy). Q¥

Plp
that are compatible with the twisted Satake transforms
Sy UG (Qp)// Ky, Q) — FUM™//L*,Q),
S FUGQp)//Kp, Q) — FUM[/L,Q)

from A.1.4. These Hecke algebras contain the following important elements (with P = Py,
x € X, NP = p):

e Sp.Tp,Tp> € SH(H(Fp)//Kp.Q), where Sp = Kp (f))g)KP, Tp = Kp (59)Kp

and Tp> = Kp (z;f g) Kp =T2— (NP + 1)Sp.

e T7/Sp.Sp =T1p|, Sp € FUG*(Qp)//K}. Q).
epp = up(p) 'Lp € U Mp//Lp,Q) (the partial Frobenius at P)
oo =pu(p) IL* = [1p, op € H(M™//L*, Q) (the total Frobenius)

o 9p = ¢pllpzrSpt = 0pSeS,' € GUM*//L* Q) (twisted square of ¢p),
[lp, 9 = ¢*S,7".

The important point is that the partial Frobenius ¢p does not lie in S#Z(M*//L*, Q), but
its twisted square gp does.
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6.11. - For a non-zero polynomial Q € A[Y] with coefficients in a commutative ring A and
ae AX let

(6.11.1) (R Q)(Y) = a®¥ D Q(a™'Y); then (Ra; Q1) ® (Ray 02) = Rayar (01 ® 02),

where the Rankin-Selberg product Q1 ® Q5 is defined analogously as in (5.16.3). If Q is
monic, factor it formally as Q(Y) = (Y — 1) --- (Y — «y) and let

0@¥)= (Y —af)--- (Y —a?) € A[Y].

The Eichler-Shimura relations in our situation are consequences of the following abstract
polynomial identity (see A.1.6-A.1.8):

(6.11.2) Sup(QpP)|y_,, =0€ F(Mp//Lp.Q).
where P = P, NP = p and
Qp(Y)=Y?—(Tp/Sp)Y + (NP)/Sp € JUH(Fp)//Kp.,Q).
It implies that
(6.11.3) S.(Q) 0r)|y_, =0€ JUM*//L*,Q)

Plp

and
Sup (QF))|y—yp, =0 JUMp//Lp.Q).

hence
EMP (RSP/Sp 1(92))|Y=¢P =0¢€ C%(M*//L*’Q)’

(6.11.4) @ 5 . 5
Rsps,0p (Y) =YY"+ (2NP —Tp/Sp)Y/Sp + (NP/Sp)".

6.12. — These polynomials are related to the Euler factors of the Galois representation pry
as follows. If we write P = Py, P’ = P, and P” = P/, then

Lp/(BCr,yr(JL(7)),Std,s)"" = Lp(m,Std,s) ™' = 1=Tpp~'/>7* + Spp~*| «,
P
and the relations (6.7.1-2) imply that
Porrpry(¥) = Y2 = Tpy (P)Y + pSpy (P)’| x5

For x € X let py be the representation py = *®pv = prv o int(s(x))~" : FF(gal —
GL,(Qy), as in 5.12. Its Euler factor at Pg is given by
(6.12.1)

Py (Ex(ps)(Y) = Pov py(Y) = Popyppy(Y) = Y2 = Tp y(P)Y + PSPXW(P!)ZLIQJX

= (Rsp,vp)QP.)|_xpy
Px
since IV >~ TI° ~ M @ o' ~ T ® (V°/¥).

PROPOSITION 6.13. — There exists a character y : T pga —> 6: with the following
property: for every Ps satisfying (6.9.1) we have
xFr(Ps) = p 2 [Ty, (Q) 2r)V)|n ks = Pue®.cx pwepsn(Y).
xeX xeX
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Proof. — The character
T LT W) 0 Npsut . 05(0) ™" A% /(FED — €
xeX ¢
sends a uniformiser at Ps N O ga to PP 2 1 ex ¥ (PL). The infinity type of ¥'is algebraic:

if 7 : F& < Cextends Ey <> C, then

Te(@) = @™ @)/ r@* = c@ @ ",

wherek =) .y kyandw* = _y(kx —2+2my) = k —2r + 2m. The {-adic character
X Do — 6: attached to ¥ ([37, ch. 0, § 5], [22, p. 20]) then satisfies y(Fr(Ps)) =

PP 2 ] ex ¥ (PL), as claimed. The remaining statement follows from the fact that

Ry2(@) Q)| i = (@ 2p)| 10 = &) (] xr.)

xeX xeX xeX
= X (Ra, Po,(r1(Ps)) = RaP(@ py)(Fr(Ps)-
xeX

where
ay = W(P;)_ISPA”II)@X = w(P)g)_l(wn)Px (Px) = I/f(P;)v

a =[] ax=p " 2 y(Fr(Ps) 0
xeX

PROPOSITION 6.14. — Denote by p the L-adic representation of T'q given by its action
on V' ((7*)®°). The dense subset ¥ = {Fr(Ps) | Ps asin (6.9.1)} C [ pga has the following
properties. '

()vVge X Po®,cx o) (P(8) = 0.
(2) Forevery g € X there exist mutually commuting endomorphismsuy € Endg ’ (V" (*)*®)

—X
(x € X ) and non-zero scalars ¢, cx € Q, such that

p(8) =c[Jux. VxeX P, (2(cxux)=0.
xeX

Proof. — If Pg | pisasin (6.9.1), then the group G* splits over Q, and the main result
of [40] (see also [34, Cor. 4.2.5]) applies. Explicitly, there is a stack (in fact, a scheme, after
imposing a level structure outside p) of p-isogenies p-Isogg+»r —> Sk* x Sk* (Where Sg+ is
the Kottwitz model of Shg+ over Z(,)) and a commutative diagram (see A.4 below for the
notation and the sign conventions, which differ from those in [40])

JUG*(Qp)—// K, Q) —— Q[p-Tsogg+r ® Q]

lsu J/a
GUM* [/L*.Q) —— Q[p-Isoggr @ F,]

equipped with compatible G*(@)-equivariant actions on

H'"(Shg+) = H" (Shg+(G*, &*) ®q Q, Lex )
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(hence also on V" (7*)®°) ® (x*)® c (H")X™, since (H")X" = H"(Shg+) if D % M,(F)
and (H")X" injects into H” (Shx+) if D ~ M,(F), by Proposition A.6.17).

(1) The action of Fr(Ps) on H"(Shg+) is given by the action of ¢ € SA(M*//L*,Q).
Letting the relation (6.11.3) act on V" ((7*)*°) ® (7*)* we obtain the Eichler-Shimura
relation for the usual Frobenius

(@) 22z (FHPS 1 (rorooygimeyes) = 0 € BNV (7)) ® (7)),
xeX
which is equivalent to
Px@®ex px)Fr(Ps) (P(FT(Ps))) = 0,
thanks to Proposition 6.13.

(2) As explained in A.5.5, the G*(a)—equivariance implies that the action of each
gp, € SHAMZ//L*,Q)on V(™)) ® (7*)* is of the form uy ® id, where u, is in
Autg, (V" ((7r*)*)) (but we do not really need this fact) and uxuy = uyuy. The relation
(6.11.4) combined with (6.12.1) implies that u, is a root of the polynomial

(RSPX /Sp Ql(sz)) |(ﬂ;)1<§ = Ryu+ (RSPx/Sp Q1(°2x)) |(7TPX)KP)J
= Ryw Rsp, 15, R 2y (pty2 P brps)2 | epy K1
= R Pp (Fr(ps)?)
x = P Y (P SpSp e € Q0

Therefore P, (gr(pg)2)(cxttx) = 0. Finally

2N 2 _ ¢or—1 ~ _ _ ¢or—1
p(Fr(Ps)") = ¢ lyr(Geeyooy = S, | | PPl yr (aryoey = € | | Uy, c=S, |n£<p. [
xeX

xeX

COROLLARY 6.15. — If Ps is as in (6.9.1) and if, for each x € X, the polynomial

P, (r(ps)2) has two distinct roots, then p(Fr(Ps)) acts semisimply on V' ((w*)*°).

0

6.16. — Note that, if ¢ has complex multiplication by a (totally imaginary) quadratic exten-
sion M of F and if Fr(Ps)|, # id, then px(Fr(Ps)) = (29%) and P, (gr(pg)2y(Y) =
(Y — ay)? has a double root, for all x € X.

In general, the representations pr; : I'r, —> GL2(Qy) and px = *®ppv = S®ppe -

I, et —> GL,(Qy) have the following properties.

FB*

ProPOSITION 6.17. — (1) Let A | £ be the prime of F. above £ induced by the fixed
embeddings F, C Q C C ~ Qq. For every x € X the restriction of the representation py
to I'(g,y, is Hodge-Tate. Its two Hodge-Tate weights are distinct; their difference is equal
toky —1.

(2) The representation pry is irreducible.

(3) If ¢ does not have complex multiplication, then the representation pry is strongly irre-
ducible and, for each x € X, Qg - Lie(Im(px)) D sl (Qy).
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Proof. — (1) This is a special case of a general compatibility between the Hodge-Tate
weights and automorphic weights for n-dimensional f-adic Galois representations pry
of I'r, attached to self-dual (ITY =~ II¢) regular algebraic automorphic representations IT
of GL,(AF,), proved in [10, Thm. 3.2.5].

(2) The argument from [38, Prop. 3.1] in the case of motivic weight applies.

(3) If pr is not strongly irreducible, then it is induced from a character I'y, — 6;,
where [L : F.] = 2. It follows that [T ® « ~ II, where « : A}C/FcX —> {£1} is the
quadratic character attached to L/ F,. Therefore a® = «, which implies that« = B o N,/ r
for some B : A% /F* — {%l1} and BCp,/r(JL(7)) = BCf,r(JL(7) ® B), hence
JL(r) ~ JL(n)® B or JL(m) ~ JL() ® Bn, where n is the quadratic character of A%, / F
attached to F,/F; thus JL(;r) has complex multiplication by § # 1 or by 8n # 1.

If py is strongly irreducible, then the Q,-Lie algebra Q, - Lie(Im(orv)) C gl,(Q,) acts
irreducibly on 6?, which means that it must contain sl (Q,). O

PROPOSITION 6.18. — If'¢ does not have complex multiplication, then there exists an open

subgroup U C T pga1 and a dense subset Ty C U such that each element of Xy acts semisimply
on V7 ((*)®).

Proof. — Combine Proposition 6.17(3) with Proposition 3.6 (for p; = px and a = 2) and
Corollary 6.15. O

THEOREM 6.19. — Assume that we are in the case (B) and BCp,/p(JL(7)) @ ¥ = IL

(1) There exists a finite extension E" / chal and an integer m > 1 such that

®m
®S(X)PHV) ® X

xeX

Vr ((T[*)OO)SS|FE” C (

Tgr
If, in addition, ¢ has complex multiplication by a totally imaginary quadratic extension M of F,
then E" satisfies M& ¢ (M&)TE".

(2) If ¢ does not have complex multiplication and if the weights (kx)xex are distinct, then
the representation @Q,.cy * ®pyv of T Fe is strongly irreducible and

It = (® S(X)PHV) ® x
FC

r
xeX FE

®dm
Vr ((ﬂ*)OO)SS

(3) If ¢ does not have complex multiplication, then the representation V" ((r*)*°) of T'q is
semisimple.

Proof. — The arguments used in the proof of Theorem 5.20 apply, with references to 5.19
to be replaced by those to Proposition 6.14 and Proposition 6.17. In concrete terms, (1) is
a consequence of Proposition 6.14(1) and Proposition 3.10(1) (resp. and Proposition 4.6) if
¢ does not (resp. does) have complex multiplication. The statement (2) follows from Propo-
sition 3.10(2) applied to p; = px and a = 1; the assumptions (A’) and (C’) are consequences
of Proposition 6.17(3) and Proposition 6.14(1), respectively, and the strong irreducibility is
a consequence of the argument from 5.20 that uses the Hodge-Tate weights. The statement
(3) follows from Theorem 3.12(2) applied to p; = px and a = 2; the assumptions (A”) and
(C) are satisfied, respectively, thanks to Proposition 6.17(3) and Proposition 6.14(2). [
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COROLLARY 6.20. — For every £* as in 6.2, the action of I'q on the non CM part
of H: (Shg+(G*, H*) ®q Q. Lex ) in the case D % Ma(F) (resp. on H.(Shg+(G*, X*)pp ®¢ Q,
Jis Lg= ) in the case D ~ M>(F)) is semisimple.

Appendix
Eichler-Shimura relations

In this appendix we indicate how the methods of [17] and [40] for proving Eichler-Shimura
relations in the split case also work for partial Frobenius morphisms. We try to keep consis-
tent sign conventions, but it is conceivable that some of the formulas hold only up to a sign.
This is not important, however, for the applications to semisimplicity in the main body of
this article.

A.1. The Satake transform (the split case)

A.1.1. — In this section we recall various versions of the Satake transform in the simplest
possible setting. Let € be a finite extension of Q, with ring of integers O. Let | - | be
the normalized valuation on € (so that the valuation of any uniformiser w is equal to
|| = g1, where ¢ is the cardinality of the residue field O/w O).

A.1.2. — Let G be a split connected reductive group over &; it is the general fiber of a group
scheme over O (which will also be denoted by G) with reductive special fiber.

Assume that we are given a cocharacter it : G,,0 —> G (defined over O). Fix a maximal
torus T C G such that u factors through 7. This defines subgroup schemes T C M C
P, C G, where M is the centraliser of y in G and P, is a parabolic subgroup of G with
Levi subgroup M and unipotent radical N, characterized by the fact that Lie(N ) is the
direct sum of those root spaces Lie(G)® with respect to T for which o o . > 0.

We obtain the corresponding groups of points T = T( %) C M = M(F) C P, =
P (X)) =MxN, CG=G(HX) DK = G(0),where N, = N, (). The modulus
morphism

8u: M —> g%  m>|det(Ad(m) | Lie(N,))|

: _ o1
satisfies SM—I = Su .

A.1.3. — Let S#(G// K, Q) be the Hecke algebra of locally constant functions with compact
support f : G —> Q satisfying f(kgk’) = f(g) forall g € G and k,k’ € K. The product
is given by the convolution

(i % fo)(h) = [G Fi(9) folg ™ h) d.

where dg is the Haar measure on G giving K volume 1. The algebra ¢/ is commutative and
the characteristic function char(K) of K is its unit. We define similarly SZ(M//M N K, Q).
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A.1.4. — Let du be the Haar measure on N, normalized by giving N, N K volume 1. We
define two twisted Satake transforms

SuSu UG//K.Q) — FUM//(M 1 K). Q).
related by S, = §,, - S ., by the formulas

Suon = [ fomydn.  Gupyom = [ famd
Nu Ny
and the usual (normalized) Satake transform
S =82Sy = 8,125 JUGC//K.Q) — FUMJ/(M 0 K), Q) @ Z[g*'"?],
A.1.5. The Hecke polynomial. — In the special case when M = T the parabolic subgroup

P, = B = T x U isa Borel subgroup and the normalized Satake transform induces an

isomorphism
S GUGIK.2) ® Zlg=2) > (SUT//T N K).2) © Zig™ )

The target group is canonically identified with R(G) ® Z[g*1/?], where R(G) is the
Grothendieck ring of algebraic representations of the complex dual group G, via the
bijections
ZIX(D)] — JUT//(T N K).2). [A] > char(A(@)(T N K)).

R(G) = Z[x*(D)” = Z[X.(D)]", [V] > Trace(V|).
Using this isomorphism, we define, for any algebraic representation V' of G, the Hecke
polynomial (“the characteristic polynomial™)

dimV

Hy(X) =Y (-DF[AFVI X* e (SUG//K. 2) ® Zg*' D [X].  Hy(X) = XV Hy(1/X).
k=0

For any cocharacter A € X« (T) (considered as a character of the dual torus T C 6) there
exists w € W such that wA will lie in the positive Weyl chamber with respect to B. We denote
by V, the irreducible representation of G with highest weight wA and we let

Hiy(X) = Hy,(X),  Hu(X) = Hy,(X).
For example, if G = T is a torus, then
(A.1.5.1) H)(X)=1-char(AM(w)K)X, H;(X) = X — char(\(w)K).

A.1.6. — Consider the following toy model: G = GL(2) and A(¢) = ((’) ‘1)) In this case T is
the diagonal torus, V), is the standard two-dimensional representation of G = GL,(C) and

Hy(X) = (1 —X char((zg (1)) (TN K))) (1 —X char(((l) :;) (TN K)))

=1—g 2Ty X + Sp X2,

where

Ty = char(K (w O) K).  Sp=char(K (w 0) K) € JUG//K.Z).
01 0w
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Similarly, V-1 is the dual of ¥, hence V-1 —> V), ® (A2V;)~! and
Hy-1(X) = 1=¢7"2(T /Sw)X + (1/Se)X?. Hy-1(X) = X> — g7 V2(Ty /Sep) X + (1/S).
(A.16.1) qH~1(q7"?X) = X* — (T /Sw) X + (q/Sw).

ProposiTION A.1.7 ([9, Prop. 3.4], [40, Prop. 2.9]). — If the cocharacter pu in A.1.2 is
minuscule, then (F,L(lel))(q_("’mchar(M/L(w)_lM)) =0€ sHM//(M N K),C), where
2p € Z[X*(T)] denotes the sum of all positive roots of (G, B, T).

A.1.8. — In the situation of A.1.6 the cocharacter © = A is minuscule, P, = B is the upper

triangular Borel subgroup, (p, u) = 1/2 and

(Su(H,-))(X)

= (X —qV? char((wo_l ?) (TN K))) (X —q'/? char(((l) O_1> (T N K))) .
w

A.2. Hecke correspondences and their action on cohomology

V2

A.2.1. — Let (G, &0) be a pure Shimura datum, let K C G(a) be an open compact subgroup.
Throughout this Appendix (with the exception of A.5.6, A.5.11-12 and A.6.16-20) we assume
that G9°* is anisotropic, hence the Shimura variety Shy = Shx (G, &) is projective (and
smooth if K is small enough) over the reflex field E = E(G, &0).

Any diagram (Shg Lz Shg) with finite morphisms ¢; defines a correspondence
cl(Z) = (q1,92)+(Z) € Corr(Shx)q = CHY™ShK(Shg x Shg)q. The product of
correspondences is given by Ao B = (p14)«((AX B)-Az3). For example any finite morphism
o : Shy — ShK has a graph I'y, = c/(Shg <i Shg N Shg) and its transpose

= cl(Shg <— Shg X, Shg) satisfying Iy 0 T'g = I'gog and ‘T 0 'T'g = "T'yop.

For every reasonable cohomology theory H* with coefficients in a field of characteristic

zero (such as H* = HX(— Qg Q. Qy)) the ring of correspondences Corr(Shg)q naturally
acts on the left on H*(Shg) via the formula

L(A) : x = (p1)«([A] U p3(x)),
where [A] € H*(Shg x Shg) is the cohomology class of a correspondence A € Corr(Shg)g.
In particular, L(Shg DL AN Shg) = (q1)« 0g5 : H*(Shg) — H*(Shg), L(Ty) = a*,
L('Ty) = ax, L(Ao B) = L(A) o L(B).
A.2.2. — Forany g € G(Q) the diagram

[-¢]
Sthg—an e ShKﬂg_lKg

Prll lpfz

ShK ShK

(where [-g] denotes the standard right action of g on the tower {Shg}) defines a Hecke
correspondence

[KgK] = (Shx ") Shgny 1 g ©3 Sh) € Corr(Shy)g
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depending only on the double coset KgK € K \G(Q) /K. Define the global Hecke algebra
SH(G(Q)//K,Q) as in A.1.3, with K of volume 1. The Q-linear extension of the map
char(KgK) + [KgK] defines a ring homomorphism ¢#(G(Q)//K,Q) —> Corr(Shk)e.
The corresponding left action on cohomology

L([KgK]) = (pr; o [-g~ ']« o pr3 = (pry)« o []" o pr3
corresponds to the natural left action of G(a) on H*(Shg) given by L(g) = [-g]*.

A.2.3. — Asamultivalued map pr, o[-g] o (pr;)~!, the Hecke correspondence is given, using
the standard notation [x, y]g for the class of (x, y) € ¥ x G(Q) in Shg, by

[x.ylk = Y [x.veiglk. K=]]sgi(Kngkeg™). KgK=]]gigk.

1 1

See A.5.5 below for the action of Hecke correspondences on cohomology with coefficients
in a local system.

A.3. The PEL data

A.3.1. — Assume that we are given the following data: (B, *, V,{, )r), where B is a finite-

dimensional simple Q-algebra, * is a Q-linear positive involution on B, F = Z(B)*=id
(a totally real number field), V is a non-zero left B-module of finite typeand (, })p : VXV — F
is a non-degenerate alternating F-bilinear form such that (bv,v')r = (v,b*v')F for all

beBandv,v € V.

The center Z(B) = F, of B is equal either to F, or to a totally imaginary quadratic
extension of F. Set ( , ) = Trrgo( , )Fr : V xV — Q; this is a non-degenerate
alternating Q-bilinear form satisfying the same hermitian property as ( , ). The centraliser
C = Endp(V) is a simple Q-algebra with center F, and an F-linear involution # given by
the adjoint with respect to (, )r.

Let H = GSpp(V, (, )Fr) be the algebraic group over F whose points with values in any
F-algebra S are given by

H(S)={heGLg(V ®F S)|Ivh) € S* Vv,v' €V (hv,hv'yr = v(h)(v,v)F}
={he(CQF S| hh* =v(h) e $}
and let G* be the algebraic group over Q such that
G*(R) ={g € (C® R)* | gg" = v(h) € R*}
for all Q-algebras R. Asin 5.2, there is a cartesian diagram

G* —G

P

Gm,Q B RF/Q(Gm,F)7

where G = Rp/q(H). We assume, from now on, that the group G is anisotropic.
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A.3.2. — Recall [24, § 1] that (B ® r F, * ® id) is isomorphic either to End(W) x End(W)°?
with (a,b)* = (b, a) (type (A)), or to End(W) with * being the adjoint map with respect to
a symmetric (resp. alternating) bilinear form on W (type (C)) (resp. type (BD)).

From now on, assume that our datum is of type (A) (when F, # F)or (C) (when F, = F).
This implies that H, G and G* are connected reductive groups and that the derived group
of H (hence of G) is simply connected ([33, Prop. 8.7]). Furthermore, there exists a morphism
of R-algebras 1 : C — C ® R such that 4(Z) = h(z)* for which the symmetric R-bilinear
form (v, h(i)v’) : Vg x Vg —> R is positive definite. The morphism / is unique up to
conjugation by an element ¢ € (C ® R)* such that cc# = 1 ([24, Lemma 4.3], [33, Prop.
8.12]).

It follows that 4 defines a Shimura datum (G*, &%) (resp. (G, X)), where ™ (resp. )
is the G*(R)-conjugacy class (resp. the G(R)-conjugacy class) of 4. The real group Gg =
]_[U‘oo H ®F, Ris isomorphic to [[, GSp(2n)r (resp. to [[, GU(ay, by), ay + by = n)if
(B, *) is of type (C) (resp. of type (A)).

The action of i(i) defines a complex structure on Vg, hence a Hodge decomposition
Ve = V- 10q 1V 0~1 of weight -1, with 2(z) ®id acting as z (resp. Z) on V=10 (resp. on VO~1).
The cocharacter u = up : Gm,c — Gc attached to i acts on V¢ as follows: u(z) actsas z-id
(resp. as id) on V=10 (resp. on VO71),

The common reflex field E = E(G*, X*) = E(G, &) c Q C C is the field generated
over Q by the coefficients of the characteristic polynomial

(A3.2.1) det(Xqoq + -+ + Xea, | VIO,
for any Q-basis {«; } of B.

A.3.3. — The arguments in [24, § 7] show that the group G satisfies the Hasse principle. The
key point is a description of the torus 7 = G/G9%" in terms of tori ;T = Rijo(Gpi). If
(B, %) is of type (C), then v induces an isomorphism v : T —> ¢T. If it is of type (A) and
n > 1is asin A.3.2, then the map “determinant” together with v induce an isomorphism
T = {a,b) € .T x rT | Np./r(a) = b"}. Forn = 2k + 1 (resp. n = 2k), the map
(a,b) — ab™* (resp. (a,b) — (ab™*, b)) defines an isomorphism g : T = F, T satistying
Npjpof =v(resp. B = (B1,v): T = Ker(Np.)r 1 F,T — rT) x pT). All tori T
have trivial H' and the Hasse principle holds for the norm N, /r. It follows that T satisfies
the Hasse principle, hence so does G (cf. [33, Lemma 8.20, 8.21]).

A.3.4. Unramified local data at p. — Let p be a prime number; fix an embedding Q < Q,,.
Write (A)(I’) =1 e£p L) ®Q for the ring of finite adeles outside p. Assume that each term in
the decomposition Bq, = [[p|, B ® r Fp is a matrix algebra over an unramified extension
of Q, (in particular, p is unramified in F,/Q). This assumtion will be further strengthened
in A.4.3 below.

Assume, furthermore, that we are given the following data: an open compact subgroup
K? C G(G(p)), a x-stable Or ® Z,y-order Op C B such that Op ® Z, is a maximal order
in Bq, and an Of ® Z,-lattice A C Vg, which is self-dual (up to a scalar in (F ® Q,)*)
with respect to (, )r. Fixsucha A andlet K, = {g € G(Qp) | g(A) = A}, K = K, K? C
G((AQ). As in [24, p.390], the characteristic polynomial det(b | V~1%) in (A.3.2.1) will have
coefficients in O ® Zp), if we choose {a; } to be a Z(,)-basis of Op.
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A.3.5. Amoduli problem. — A p-integral model Sk of Shg (G, &X) (for sufficiently small K?)
can be constructed as follows (see [35, 2.14] and [39, 2.3-2.8, 4.6] for special cases).

Forany o € (F®)* = (F ® Q) consider the following moduli stack My g r Over the
category of locally noetherian schemes S over O ® Z,). Its objects over S are quadruples
(A,1, A, (n,u)), where

e A is an abelian scheme over S up to prime-to-p isogeny (notation: A is an object
of (AV/S) ® Z(p));

el:A—>Aisa Z(,)-polarization of degree prime to p;

e : Op —> End(A) is a *-morphism (with respect to * on Op and the Rosati involution
coming from A on End(A4));

e for a fixed geometric point s of (every connected component of) S, (1,u) is a
71(S, s)-invariant KP”-level structure. By the latter we mean a K?-orbit of pairs (1, u),
where u € (5(Fp))x and n: V ® QP = VP (4)isa B ® QW -linear isomorphism such
that the Weil pairing ( , ), : VP (4,)x VP (4;) — QP on VP (4,) = Q[ Texp Te(As)
attached to A satisfies

(), )N r = Trrqlau(x, y)F).
An element g € K? acts on (n,u) by (n,u)g = (no g, uv(g));

o the Kottwitz determinant condition should be satisfied: det(b | Lie(A4)) = det(b | V"10) as
polynomial functions on Op.

Morphisms between (A4, ¢, A, (n,u)) and (4", . X', (', u’)) are given by Op-linear isomor-
phisms f : A —> A’ in (AV/S) ® Zp such that A = f*(1') (= f oA’ o f)and (7. ) =
(f on,u).

Note that the degree of A is determined by the above conditions. Moreover, (A4, ¢, A, (7, u))
has no non-trivial automorphism if K7 is small enough (cf. [35, 2.13]), which we assume,
from now on.

This implies, as in [24, §5] and [35], that ¢}, g» is represented by a smooth quasi-
projective scheme over O ® Zp), which will be denoted by My k».

There is an action of the group of totally positive units O, on ¢}, g» given by the
formula

g (A1, A, (nu)) = (A, 1, 1(e)A, (1, cu)).
If ¢ = Np./r(¢') for some ¢’ € O;C NK? C F}=Zg(Q) C G(Q(l’)), then multiplication
by t(¢') on A defines an isomorphism
[t(e)] 2 (A, e, A, (i u) — 71+ (A, 0, A, (1, ).
It follows that the finite abelian group
A = Ofp /Nr./r(Of N KP)

acts on My k». It turns out that, after replacing K# by a suitable open subgroup, the group A
will act on the scheme M, kx» freely by permuting its connected components. This is proved
in [23] in general and in A.3.9-10 below in the cases (C) and (A even).

In particular, the quotient scheme My x»/A exists and is quasi-projective and smooth
over Og ® Z(p).
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A.3.6. The moduli problem over C. — Following [24, § 8], we define a map
Mo k7 (C) —> Shx (G, H)(C) = GQ\(X x G(Q,)/ K, x GQP)/KP)

(see also [39, 2.4], [33, 6.3, 6.9]).

If (A, A, ¢, (n.u)) is a quadruple over C, then H = H; (A, Q) is a B-module via ¢, equipped
with a skew-Hermitian pairing (, )g,2 : H x H — F such that Trg g o (, ) g 4 is induced
by A.

As in [24, p. 338-339], one checks that Hg, and Vg, are isomorphic skew-Hermitian
Bg,-modules, for all places v of Q. For v # oo, p this follows from the existence of n;
for v = oo one uses the determinant condition and [24, Lemma 4.2]. For v = p, T,(4) =
Hi(A,Zy) C Hyg, is a self-dual Op ® Z,-lattice and a variant of [24, Lemma 7.2] applies.

The validity of the Hasse principle for G implies that there is a B-linear isomorphism
a : H =V, unique up to left multiplication by G(Q), which sends { , )g, to an
F>*-multiple of {, ). We fix such an isomorphism.

The natural complex structure iy on Hg = Lie(A) defines a complex structure ahy =
(z+ aohy(z)oa™') on V which lies in & (when interpreted as a pure real Hodge structure
of weight -1 on VR), thanks to [24, Lemma 4.2].

At p, a(Ty(A)) C Vg, is an Op ® Zy-lattice, self-dual up to a scalar in (F ® Qp)*.
A variant of [24, Lemma 7.3] shows that there exists g, € G(Q,) (with g, K, depending
only on a(7,(A))) such that a(T,(A)) = g,A. Equivalently, n, =a1og,: Va, AN Hq,
satisfies 7, (A4) = n,(A).

Finally,aon:V ® Q@ = V @ QW is an element of G(Q?)).

The map My x»(C) —> Shx (G, &)(C) given by sending (4, A, 1, (1, u)) to

(A3.6.1) [ah.g,Kp.a o)k € GQ\(X x G(Qp)/Kp x GQP)/KP) = Shx (G. I)(C)
is well-defined and factors through the quotient My x» (C)/A.

A.3.7. A p-integral model Sx of Shg (G, X). — Choose a (finite) set ¥ = {a} C (F\(P))X of
representatives of the double cosets

(FPy* = ]_[ (OF ® Z(p))s a (0.

oEY
The maps (A.3.6.1) induce a bijection ([18, Prop. 3.6.3])
(A3.7.1) [ [ (Max»(C)/A) —> Shx(G. X)(C).

aEY
which implies that the smooth quasi-projective O ® Z,)-scheme
Sk = | [(Maxr/B) = Mgr /A, Mg» = | [ Makr
oEY oEY

is a model of Shg (G, X). Moreover, (A.3.7.1) identifies Sx ® E with a canonical model
of Shg (G, h), not of Shg (G, h~!)—see the discussion in [33, p. 347].

A.3.8. — Recall that G9¢* is anisotropic, by assumption, hence Shx (G, &) is compact. In
this case each M, g» (hence Sk, too) is projective over O ® Z(p), by [24, p. 392]if C isa
division algebra, and by [27, Thm. 4.6] in general.
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A.3.9. — Deligne’s description of the set of geometric connected components
1oShg (G, J0)(C) ([11, Thm. 2.4], [33, Thm. 5.17]) in terms of the map G — G/GI* =T
yields the following bijections (depending on a choice of a connected component of &¥):

70Shi (G, I0)(C) —> (OF ® Z(p))*\F /u(KP)
in the case (C),
70Shi (G, I)(C) —> (OF, ® Z(p)) \FP> /B(K?)
in the case (A odd) (when n = 2k + 1) and
moShk (G, 0)(C) —> Ui (KP) x U»(KP),
Ur(K?) = Ker(N : (OF, ®Z(p)* — (OF ®Z));)\Ker(N : FP> — F0>)/8,(K?)
U2(K?) = (OF ® L) \F P> Jv(K?)

in the case (A even) (wWhen n = 2k).
In the case (C),

7oMa,x2(C) = (O /v(K?) = OF [v(K),
70(Ma,k»/A)(C) = OF ,\OF /v(K)
and the stabilizer in A of any connected component of M, g»(C) is equal to
Ao(K) = (0 4 Nv(K)) /(OF N K)?

(see [39, 2.3, 2.4] in the case of Hilbert modular varieties, when H = GL(2) ).
Similarly, in the case (A even),

o Ma, k2 (C) = Ui (K?) x (0)*/v(K?) = Uy (K?) x OF /v(K),
70(Ma, k2 /A)(C) = Uy (K?) x OF ,\OF /v(K)
and the stabilizer in A of any connected component of M, gx»(C) is equal to
Ao(K) = (O + Nv(K)) /NF. r(OF, N K).
ProrosiTION A.3.10 ([39, Lemma 2.5]). — Assume that (B, *) is of type (C) or (A even).

After replacing KP by a suitable open subgroup if necessary one can achieve Ag(K) = 0, hence
A will act on each My k» (C) freely by permuting certain connected components.

A.3.11. The Frobenius morphism. — The absolute Frobenius morphism
(A.3.11.1) ¢:Sxk ® Op/pOg — Sk ® Og/pOE

is induced by the relative Frobenius morphism F4 : A —> A® on abelian schemes
in characteristic p. More precisely, let S be a (locally noetherian) scheme over Og/pOg
and (4, t, A, n, u) a 5-tuple representing an element of My x» (S). There is a canonical action

/?) . Op —> End(A®)) compatible with ¢ via F4 and a Z,)-polarization AP AP A/(;)
satisfying F (A(P)) = pA. The formula

o(A,1, A, m,u) = (AP P AP Fyon, pu)
gives an explicit description of

¢ Mykr® Og/pOg — Myxr @ Og/pOg
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and of the restriction of the map (A.3.11.1) to (M, x»/A) ® O/ pOE.

A.3.12. Partial Frobenius morphisms. — One can write the map ¢ in (A.3.11.1) as a product
¢ = [1p|, pp of mutually commuting partial Frobenius morphisms

op : Sk ® O /pOg — Sk ® Og/pOE,

for primes P | p of F above p (see [39, 4.6] in the case of Hilbert modular varieties).

Fix a totally positive element ¢ € FJ such that vp(c) = 1 and vp/(c) = O for all
P’ | p, P’ # P.Let S and (4,(,A,n,u) be as in A.3.11. Consider A’ = A/Ker(Fy4)[P]
and denote by fp : A —> A’ the quotient map. Again, there is a canonical morphism
' : Op —> End(A4’) induced by ¢ and fp. We define

(A3.12.1) ep(A, 0, A, n,u) = (A, ), 7' u),

wherecA = fp (1), n = fponand cau = o’u’. The recipe (A.3.12.1) is compatible with the
right K”-action on the pairs (1, u), with isomorphisms and with the action of A. However,
it depends on the choice of c.

If we replace ¢ by ¢, then'e = ec withe € O , and the 5-tuple (4", ', A", ', u’) is replaced
by (A’, !, A, 1, eu’). This implies that the above formula gives rise to a well-defined partial
Frobenius morphism

op : (Ma,xr/A) ® O/ pOg — (Mo .kr/A) ® Op/pOE,
hence to ¢p : Sk ® Og/pOg — Sk ® Og/pOk.

A.4. The p-isogenies ([17, VII.3-4], [40, §3-5])
We continue to assume that K7 is sufficiently small.

A4l — Letv | p be the prime of E C Q defined by the fixed embedding Q < Q,,.
As in [40, §3], a p-isogeny f : (A1,t1,A1,(n1,u1)) — (Az,t2, A2, (n2,u2)) between
objects (4;,¢j,A;, (n;,uj)) of (JVZ(,/.,Kp (S) (for ascheme S over Og, ) is an Op-linear isogeny
in (AV/S) ® Zp) of p-power degree such that f o7, = 7, and f*(A2) = cA; for some
c € F¥ suchthatvp(c) > Oforall P | pin F.

A morphism f —> f’ between two p-isogenies is given by a pair of Op-linear isomor-
phisms g; : A; —> A} (j = 1,2) in (AV/S) ® Z,) satisfying

gof=fog, gQ)=2%, gion =1 (Jj =12).
The p-isogenies (for all possible combinations of «; and «,) form a stack of groupoids
p-Isogg » over (Sch/ Ok, ), equipped with canonical projections p; : p-Isogg, —> Mgr =
[y, Maxr (j = 1,2) sending f to (Aj,tj,Aj, (n;,u;)). As in [40], the restriction of each
p; to the substack p-Isogy, of p-isogenies with fixed value of m = (mp = vp(c))p|p is
represented by a proper surjective map (which is finite étale when restricted to (Sch/ Ey)). As
a result, p-Isogg» is, in fact, a scheme equipped with a morphism (p1, p2) : p-Isoggr, —
MKp X MKp, where MKP = ]_[a Ma,Kp.
The composition of isogenies

(p-1808g ») Xps, My p,p (P-1808g») —> p-Isogxp. Si. o> fao fi

defines a ring structure on Q[p-Isogx,/S], the Q-vector space on the set of connected
components of p-Isogg»(S) (see [17, p. 252)).
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A.4.2. p-isogenies in characteristic zero. — If f is a p-isogeny over S = Spec(C), then f
identifies H1(A41.Q) = Hi(A2,Q) = H and induces an injection T,(f) : H1(A1,Zp) =
Ty(A1) — Hi(A2,Z,) = T,(A2) C Hg,. The corresponding elements g, ; € G(Qp)
from A.3.6 satisfy g, 1(A) = a(Tp(A1)) C a(Tp(A2)) = gp2(A), hence g,2 = gp,18 With
g €G(Qp)- ={uecGQp)| g '(A) C A}. We define the type of f to be the double coset
KpgK, € Kp\G(Qp)-/Kp; it depends only on f.

If C is replaced by an arbitrary algebraically closed field of characteristic zero, then there
are isomorphisms ¢; : T,(A4;) —> A. They satisfy ¢, o Ty(f) o7 H(A) = g7 1A for some
g € G(Qp)—; we define the type of f to be again K, gK,,. The type of the geometric fibers of
any p-isogeny over a base S over Spec(E) is locally constant on S.

Note a sign change compared to [40, 4.1]; this is forced on us by the formula (A.3.6.1),
which relates the moduli problem to the canonical model of the Shimura variety.

Asin [17, p. 253] and [40, 4.2], define a map
h: JUG(Qp)-//Kp. Q) — Qlp-Isogk»/E]

by sending the characteristic function of any double coset K,gK, to the union of the
connected components on which the p-isogeny has type K,gK,. This is a ring morphism (if
we let K, have volume 1) and its composition with

(p1, p2) : Q[p-Isogg»/E] —> Corr(Mgr ® E)q

is given by char(K,gK,)— (prxpr)* o [KgK], in the notation of A.2.2 (where
pr: Mgr ® E — Sk ® E is the map (A.3.6.1)).

In particular, the action of 4(g) on étale cohomology of Mk » ® E leaves stable the image
under pr* of étale cohomology of Sx ® E = Shx ®g E and acts on the latter as the Hecke
operator L([KgK]).

A.4.3. — From now on, we impose the following additional assumption:
(A4.3.1) p splits completely in F,./Q.

This implies that £, = Qp, k(v) =F,, FRQ, = ]_[P‘p Fp, Fp = Qp, B, =~ [[; My;(Qp),
O ®Z, ~ []; My,(Zy), each group H @ Fp is split over Fp = Q,, (cf. the discussion in
[33, 8.5-8.6]), G splits over Q,. Of course, G(Qp) = [[p, = H(Fp) and K, = [[p|, Kp,
where K p is a maximal compact subgroup of H(Fp).

As in [40, 5.1], the conjugacy class [u] of the cocharacter u; from A.3.2 (considered
over 61,, via the given embeddings 61, <> Q cC C) contains a cocharacter defined over Qp,
which extends to u : Gp,z, —> G, where G is a reductive model of G over Z,, defined
by A. The decomposition A = []p, Ap defines, for each P | p in F, a cocharacter
Wp Gm,OFP = Gyp,z, — Hp, where H p is a reductive model of H ® g Fp over Of, = Z,.

Fix w as above; then A = A~10 @ A%, where u(z) = z -1id (resp. u(z) = id)
on A710 (resp. on A%~1). In [40], A=10 is denoted by Ay and A%~! by A;. The centraliser
M ={gcG|g(A")= A" }isa Levifactor of the parabolic P, = {g € G | (A™"0) =
A~"%) attached to p asin A.1.2. Let L = M(Z,) = K, N M, where M = M (Q,).
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A.4.4. Ordinary p-isogenies ([17, VIL.4], [40, §5]). — A p-isogeny over a field of character-
istic p is ordinary if A; (hence A,, too) is an ordinary abelian variety. A general p-isogeny
is ordinary if its fibers over points in characteristic p are ordinary. They form a subscheme
p-Isogds of p-Isoggn.

Let (4,0, A, (n.u)) € Mg kr(k), where k is an algebraically closed field of characteristic
p. If A is ordinary, it is shown in [40, 5.2-3] that there are Op-linear isomorphisms

Tp(A) —> Tp(A) — Homg, (A", Z,) — A%,

with the first isomorphism induced by A, the third by (, ) and with Op acting on the third
term by (b-u)(x) = u(b*x). Above, T,(A4) = l(iLnA(k)[ p"] denotes the physical Tate module
of A. "

This implies that a p-ordinary isogeny f over k gives rise tom; € Endo,gz, (A%~ 1) and
its dual f to my € Endo,gz, (Homgz, (A1, Z,)), hence to my € Endo,ez, (A0). We
define the type of f to be the double coset L(mg,m;) 'L € L\M_/L (note the change of
sign with respect to [40, 5.3]), where M_ = {m € M | m~'(A»)) C ABJ}.

For example, the Frobenius isogeny f = F4 has purely multiplicative kernel, which means
that m; = p and my = 1 ([40, 5.9]), so (mg,m1) = u(p) and the type of f in our sense is
equal to Lu(p)~'L.

More generally, if P | p is a prime of F above p, then the invariant (mg,m;) attached
to the isogeny fp : A —> A/Ker(F4)[P] used in the definition of the partial Frobenius
morphism ¢p : Sg ® k(v) = Sk @ F, — Sk ® k(v) is equal to (mg,m;) = pup(p); thus
the type of fp is Liup(p) 'L = Lpup(p)~'Lp.

The relation between the type of a p-isogeny in characteristic zero and the type of its
reduction modulo p (assumed to be ordinary) is explained in [17, p. 263]: let O be a complete
DVR of mixed characteristic with residue field k = k D F,. Let f be a p-isogeny over O
with ordinary special fiber f. The Barsotti-Tate objects A = T,(A;)0) sitin exact sequences

0— (A;)mult — A; — (A;')et —0

and f induces injections (A})? < (A})2 (? = @, mult, et). If we consider A; C Hq, =
Hy(A;.Qp) and if we fix an isomorphism a : Hg, = Vq,,» then we obtain lattices a(A}) =
g1(A) Ca(A}) = g2(A) C Vg,, where g = grlgr € P, (Qp)- = (Py)-. By definition, the
type of f is equal to K,gK,. If we denote by m(g) € M_ the projection of g onto the Levi
part of P,, then the type of f will be equal to L(mg,m1) 'L = Lm(g)L.

The arguments in [40, 5.5-7] show that the restrictions of the projections pi, p»
p-Isog}’gS F, — M I‘;r,il ® F, to the subscheme of ordinary p-isogenies of a fixed type
LmL are finite and flat and their geometric fibers have pure multiplicity given by explicit
constants mult; (LmL).

As in [40, 5.8], one defines a map
h: GUM-//L,Q) — Q[p-Tsoggs ® k(v)] = Q[p-Isoggs @ F]

by sending the characteristic function of LmL to (1/multy(LmL)) times the union of all
connected components corresponding to ordinary p-isogenies of type LmL (again, L is of
volume 1).
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In particular, the correspondence h(char(Lu(p)~'L)) (resp. h(char(Lup(p)~'L)))
on Mgr ® k(v) = Mgr ® F, is equal to the pullback by pr x pr of the graph of the
Frobenius morphism ¢ : Sk ® F, — Sk ® F, (resp. of the graph of the partial Frobenius
op : Sk ® F, — Sk ® F,,). As a result, its action on étale cohomology of Mg» ® F,
leaves stable the image under pr* of étale cohomology of Sk ® F,, and its action on the latter
coincides with the action of ¢ ® id (resp. of p ® id).

ProrosiTioN A.4.5 ([17, p. 263], [40, Prop. 5.10]). — The following diagram commutes
(the map o is given by specialization of cycles).

FUG(Qp)—// Kp. Q) —— Q[p-Tsogds ® E,]

L
GUM_J/L. Q) —— Q[p-Tsogld @ F,].

Proof. — Asin[17, p. 263], this follows from the discussion in A.4.4 relating the types of f
and f. Note that [17] work with classical objects, such as I'\Hg, defined as quotients by a
left action, whereas Shimura varieties Shxy = Sh/K are quotients by a right action. This
accounts for a sign change in the formulas involving the action of the Hecke algebra. More
precisely, one uses the Iwasawa decomposition G(Qp) = P, (Qp)K, = P, K) to determine
the number of cosets K,gK, /K, lying in the fiber of the map

GQp)/Kp = Pu/(KyN Py) — M/L, g m(g)

above a fixed classmL. As P, = MU (with U N K, of volume 1), the above number is equal
to

|, (ehar (KK ) du = (5 schar(KyigK ).

as claimed. O

A.5. Eichler-Shimura relations for partial Frobenii

A.5.1. — The principal geometric result of [40, § 6] is the relative density theorem for the
moduli problem giving rise to an integral model of Shg«(G*, ™). The theorem states that
the ordinary p-isogenies in characteristic p are dense in all p-isogenies, provided the group
G* is split over Qp. Using Serre-Tate theory, this is deduced from a deformation statement
about p-isogenies of principally quasi-polarized Op ® Z,-modules [40, Prop. 6.10], which is
then sufficient to prove only for Op ® Z, = Z, or Z, X Z,.

This reduction argument to a special case of [40, 6.10] is also valid in our situation
(i.e., for the union of the Kottwitz models Mx» = |[, My k»), which yields an equality
Q[p-Isogxr ® F,] = Q[p-Isog‘jgj‘,1 ® F,]. The commutative diagram in Proposition A.4.5
then becomes

(A.5.1.1) JUG(Qp)-// Kp, Q) —— Q[p-Tsogx» ® E,]

Js. l

FUM_JJL.Q) —"— Q[p-Tsogg» ® F,].
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A.5.2. — Both Hecke algebras decompose into tensor products:

FUG(Qp)-//Kp. Q) = (X) FUH(Fp)-//Kp.Q)
Plp
FUM-//L,Q) = Q) FUMp—//Lp,Q).
Plp
The discussion in A.4.4 justifies the following definition: the partial Frobenius at P
in Q[p-Isogg,» ® F] is defined as

op =h(Lppp(p)~"'Lp).
Their product is equal to

¢ =[]er =hLup)'L).
Plp

THEOREM A.5.3 (Eichler-Shimura relation for partial Frobenius morphisms).

If p splits completely in F./Q and satisfies the assumptions from A.3.4, then the following
relation holds, for every prime P | pin F:

H, (p7r#?gp) = 0 € Qlp-Tsoggr ® Fy,

where pp denotes the half sum of all positive roots of H @ p Fp.
Proof. — Combine (A.5.1.1) with Proposition A.1.7. O

A.5.4. — Similarly, the full Frobenius ¢ satisfies the “Rankin-Selberg product” of the rela-
tions A.5.3, in the sense of (5.16.2). This relation differs by a sign from the one stated in [40],
but it is compatible with the reciprocity law giving the Galois action on H°, which is dual
to the action on 1y, hence is given by the reciprocity morphism attached to !, rather than
to u.

A.5.5. The Eichler-Shimura relation for the action on cohomology. — The center Zg of G
contains the torus 7 and the quotient torus Zg /T is anisotropic over R. Fix an irre-
ducible algebraic representation £ : Gc —> GL(Vg) such that § |7 = N ?/Q forsomem € Z.
This condition implies that £§(Zg(Q) N K) = {1}, for all sufficiently small open compact
subgroups K C G(Q), hence the local sections of G(Q)\ (X x Vg x G(Q) /K) over Shg (C)

define a localy constant sheaf of complex vector spaces Z¢ on Shg (C).

Asin 0.1, fix an isomorphism C = Q,. Itis explained in [22, IT1.2] how to attach to & a
smooth {-adic étale sheaf Z¢ ¢ on Shg. This sheaf is G(Q)-equivariant ([22, 111.2], [24, § 6)),
which means that there is a natural left action of G(Q) and S#(G(Q)//K. Q) on H' (Shg) =
H! (Shg (G, X)) ®E Q. Z¢ 1). Moreover, &, can be obtained by a suitable tensor construction
from the representation Vg, (which coincides with V;(A) for the abelian variety A appearing
in the moduli problems ¢}, g»). This implies that the ring Q[p-Isoggx, ® E] also acts
on Hi(Mkr) = H'(Mkr ® Q,pr*Ze ) (cf. [17, p. 253]). Moreover, Z¢ extends to the
(proper) integral model Skx» and H(Mx») is isomorphic to the étale cohomology of the
special fiber of Mk », which is equipped with an action of Q[p-Isogg » ® F,,]. The maps & and
o in (A.5.1.1) are compatible with the actions on pr* H (Shg) C H'(Mg»r) of the various
rings appearing in the diagram, thanks to the discussion at the end of A.4.2.
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These compatibilities yield, together with Theorem A.5.3, the Eichler-Shimura relation

(A5.5.1) VP |p  H,(plermr = 0 € End(H' (Shg)).

)
wp ep |Hi(ShK))

The action of ¢p on étale cohomology of the special fiber can be defined directly (thanks to
the compatibility alluded to at the end of A.4.4), by observing that Z¢ ¢ is obtained by a limit
procedure from finite Galois étale covers Sx» —> Sk (K’ = K, K'?, where K'? is a suitable
open normal subgroup of K”) and that ¢p from A.3.12 acts compatibly on both Sx» @ F),
and Sg ® F,.

The decomposition (0.4.1) yields H?(Shg) = @ Vi(x*®) ® (7*)X, where 7™ is the
non-archimedean component of an automorphic representation 7 of G(A) and V' (7)is a
finite-dimensional £-adic representation of I'g.

The action of each pp on H'(Shx) commutes with the action of both G(a(l’)) (by the
functorial definition of ¢p in (A.3.12.1)) and #(G(Q,)-// K, Q) (since the Hecke algebra
SH(M_//L,Q) is commutative). As a result, each term Vi (7®) ® (#*)X c H!(Shg) is
@p-stable. Furthermore, dim EndG(a( ») (7%°)X» = 1 by Schur’s Lemma, which implies that
op € End V().

Assume that (7*°)K £ 0. If we write 7%° = ®' 7y, Where 7y, is a representation of H(Fy),
then dim(n{f” ) = 1 and we obtain from (A.5.5.1) the following relation (the notation means
that we replace each element of the Hecke algebra ¢#(G(Q,)—-//Kp.Q) by its eigenvalue

Kp.
onmp”):

(A.5.5.2) (ﬁw

—{pp,up) — i K
,,KP) (PP 0p] i ooy paony) = 0 € End(V (1) ® (7))
P
A.5.6. A toy model: GL(2). — Let us discuss the relation (A.5.5.2) in the simplest case
F=B=QandV = Q? whenG = H = G* = GL(2)q and the Shimura varieties Shx are
modular curves. They are not compact, but the relation still holds for V' (7°°) contributing
to the cuspidal cohomology H, !1 discussed in 0.8.

The standard two-dimensional representation Std of GL(2) corresponds to H;(A) of the
universal abelian variety (= elliptic curve), hence is of weight -1. Its dual Std" corresponds
to H'(A) and is of weight 1.

A general irreducible algebraic representation of G is of the form § = Sym*~2(Std") ®
(detoStd¥)®@—k)/2 where k > 2and w € Z, w = k (mod2). Its central character is
wg(x) = x>7%. The sheaf Z¢, is pure of weight w — 2, hence V!(7*) C H,' is pure
of weight w — 1. If  is a cuspidal automorphic representation of GL(2,A) such that
T is cohomological for £, then w,_(x) = x*~2, which implies that the central character
Wy : A¥/Q¥ — C* of m is of the form w,, = y||- ||8_2, where y is a character of finite order,
which will be identified with a Dirichlet character such that y(—1) = (—1)¥.

If p # {is a prime such that 7, is unramified, then the Hecke operators 7, and S, defined
in A.1.6 have the following eigenvalues on nf” (Kp = GL(2,Zp)):

2—w
b

Sp}nfp = wx,(p) =Pl x(p) = P> x(p). Tp|”§p = ap.
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The respective local L-factors at p of 7 and of the Galois representation p,; : T'g —> GL2(Qy)
attached to & are given by

Lp(.s)™" = 1= p™2app™ + p"x(p)p™ = (L= p™ 2T, p™ + S, ™) s
and

Lp(px.5)~" =det(1 — p~px(Fr(p)) =1 —app™ + p*" ' x(p)p™ = Lyp(w.s —1/2)7"
= —-ap™)(1-pp~)

(where Fr(p) is the geometric Frobenius). The formula (A.1.6.1) together with the relation
A.5.3 imply that the action ¢ € Aut(H,') of ¢, on H,' satisfies

(A.5.6.1) 0p(@y) = 0. Qp(X) = X>—(Tp/Sp)X + p/Sp.

which means that Fr(p)|(V!(x®) ® (x®)X) = ¢*|(V(7>®) ® (7*°)X) is a root of the
polynomial

0p(X)| kp = (X = pa™)(X = pB™") = det(X — p; (~=1)(Fr(p)).
This being true for almost all p, the Cebotarev density theorem implies that
(A.5.6.2) Ppg(_l)(Vl(n"o)) =0.

In fact, V! (7®) is two-dimensional, isomorphic to py(—1), which is, in turn, isomorphic
to prv. Indeed, 7V ~ 7 ® w; ! and

Spliepyro = 1/(p"2x(p)) = pa ' 7.

Dol uyyxr = ap/(P* 2 x(p)) = p@™ + B71).
Lp(m¥.5)™h = (1= p' 2™ p=)(1 = p!2p71p™),
Lp(pzv.5)™ = (1= pa™ p™)(1 = pB7'p™") = Lp(px(=1).5)7".

The relation (A.5.6.2) thus reads as follows:
(A.5.6.3) P, ., (Vi(z*>)) =0.
Note that 7 is cohomological for
£¥ = Sym*2(Std) ® (det oStd)®¥/2 ~ ¢ @ (det oStd)¥ 2,

which means that Zgv ¢ is pure of weight 2 — w and V! ((7")*) is pure of weight 3 —w. We
deduce from (A.5.6.3) that

(A.5.6.4) P, (V' ((xV)®)) = 0.

In fact, V((xV)®) = px.
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A.5.7. Shimura varieties of type (A). — Assume that (B, x) is of type (A). In this case F is
a CM field and [F, : F] = 2. For each prime v | oo of F fix an embedding o, : F, — Q C C
extending v : F — R; then ® = {0, } is a CM type of F,. This induces an isomorphism

B®R = HB@)F’,,R: HB®FC,UU c— HMN(C)
v|oo v|oo v|oo
under which V=10 = Do ((CN)“U <) (GN)bv), where a, + by = nand C ® R —
I—[v\oo Mn (C)

As explained in [22, 1.6], there is a canonical isomorphism H ®r F, = C* x G, F,,
where we consider C* = GLpg (V) as an algebraic group over F,. This induces an isomor-
phism
(A.5.7.1) H®Fk — (C*) X Gt
for any field embedding F, < k. In particular, the choice of ® yields an isomorphism

Gc = H(H ®F F) ®F.0, C— H(GL(H)C X G, c)
v]oo v]oo

under which p = py, is given by u(z) = ((z1ay Ip,)vjoos Z)-

A58 — Let & Z¢ and Zg g be as in A.5.5. Assume that 7 = 7o ® 7™ is an auto-
morphic representation of G(A) = H(AF) such that 7 is cohomological for &. We
further assume that & admits a transfer to a cuspidal automorphic representation (I1, ¥)
of GL(n,AF,) x A}c (cf. [22, Thm. VI.2.1]). All we need to know is that: (a) TTY ~ TII¢;
(b) IT is cohomological for a suitable algebraic representation &' of Rf,.,o(GL(n))c; (c)
Y = ¢ is an algebraic Hecke character of F; (d) let u { oo be a prime of F that splits
in F, asu = ww. The inclusion F, — (F.),, = F, defines, by (A.5.7.1), an isomorphism
H(F,) — GL(n, F,) x FX. If the representation m,, of the left hand side is unramified,
then it is isomorphic to the representation (I1,,, ) of the right hand side.

The cuspidality of IT together with (a) and (b) imply [10] that there is a Galois represen-
tation

pr i Tr, — GLn(Qy)
such that
Ly (I1,8tdy,, s) = Ly (pm, s + (n —1)/2),

for all primes w 1 £oo at which IT is unramified. Similarly, one can attach to ¥ a one-
dimensional Galois representation py : I'r, — 62( such that L(y, s) = L(py. ).

A.5.9. — We are going to make the relation (A.5.5.2) explicit in terms of pr7 and py. Fix a
finite set of primes S D {{, oo} of Q such that F./Q, H and & are ramified only at places
above S.

Let Qs D F£' be asin 5.15 and let Pg be a prime of Qg not above S such that
(A.5.9.1) Frog/o(Ps) € Gal(Qs/F£&).
Then PsNZ = (p), where p & S is a prime that splits completely in F,/Q. Fix an embedding

Q— 61, inducing Pg; then all the assumptions on p imposed in A.3 and A.4 are satisfied.
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Fix F, Cc Q. For each prime v | oo in F extend 0, : F, <> Q to an automorphism
%, : Q — Q. The prime P! = G, 'Ps N Of, of F, above p depends only on o,, and
P, = P, N OF splitsin F, as P, = P)(P))°.

For a representation p of Gal(Qgs/ chal) denote by % p the representation (°?p)(g) =
p(G, 1g5,) of the same group; then

(v p)(Fr(Ps)) = p(G, 'Fr(Ps)5,) = p(Fr(P))).

A.5.10. — Fix v | oo in F and consider the relation (A.5.5.2) for P = P,. Firstly, the
embedding F. <~ (Fc)p; = Fp = Q, gives a canonical isomorphism H(Fp) -
GL(n, Fp) x Fp under which up can be chosen as up(z) = ((z14, Ip), z), where a = a,
and b = b, = n — a. Secondly, the number (2pp, up) is equal to the dimension of the
symmetric space for SU(a, b), namely, to ab = a(n — a). Thirdly, VM;I is the representation

(A% Std)) ® Stdy of the dual group GL() x Gy = GL(n,C) x C*.
Write

n
Lp;(pm.s) = [ [ =i p™)7h
i=1
then

n
Lpy(M.Std,. ) = [[A—tp™)7", 1= plt™ ;.
i=1

The Satake parameters of Ilp; are given, therefore, by the semisimple element
t = diag(ty,...,In) of the dual GL(n). Similarly, the Satake parameter of yp; is equal
to u = py (Fr(P))). By definition (and by the fact that 7p ~ (I, ¥) p;),

Hyi (00 e = det (X = (0] (/\"s14) @ 51d)
- 1_[ X —i'u™) = ]_[ (X — p=Da/2g 1y =1y

[I|=a [I|=a

where I C {1,....n}, 11 = [|;e; ti and @y = [[;; ;. This implies that
(A.5.10.1)

~ a
PCH, 1 (p P X)| ey = det (X —Fr(P)|(A\"p) ® o} (ala + 1)/2—an)).
for some C € Z. Consider the representation
~ ay J—
po =" (N pi0) ® o} (@y(@y + 1)/2 = aum)) : Gal(Qs/ FE") — GLu, Q).

The right hand side of (A.5.10.1) is then equal to det(X — o, (Fr(Ps))) = Pp, Fr(Ps))(X) and
the relation (A.5.5.2) reads as follows:

(A.5.10.2) Py, (Er(Ps)) (¥P,

Of course,

Vi (n-oo)®(noo)K) =0.

1_[(§0Pv |Vi(ﬂoo)®(ﬂoo)K) = Fr(PS)|Vi(ﬂoo)®(ﬂoo)K~

v|oo
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A.5.11. The isotropic case. — What happens in the general PEL situation of A.3 if we
drop the assumption made in A.3.1 that the group G is anisotropic (but if we keep the
assumptions from A.3.2 and A.3.4)? If G9° is isotropic, then Shx (G, &) is no longer proper
over E and the discussion in A.5.5 needs to be modified as follows (as explained to the author
by B. Stroh).

The (pull-back of the) sheaf ¢, extends to the union of the Kottwitz models
Mkr = [l,ex Mo x» from A.3.5 and there is a canonical I'r x G(Q)-equivariant isomor-
phism

(A5.11.1) HY(Mk» ® Q.pr*(Ze) ~ Hi(Mgr ® k(v), pr*(Ze.))

([17, Thm. VI.6.1] in the case of Siegel modular varieties, [28, Thm. 6.1] in general). The
point is that the cohomology of pr*(Zs ) is, up to a Tate twist, a direct summand of the
cohomology of the constant sheaf Q, on a suitable Kuga-Sato variety. The integral model of
the Kuga-Sato variety over Mg » admits a smooth toroidal compactification whose boundary
is a relative normal crossing divisor, which means that the general result of [12, Th. de
finitude, App. 1.3.3(1)] applies.

Passing to A-invariants, one obtains from (A.5.11.1) an isomorphism
(A.5.11.2) H!(Shx ®F Q, Zey) ~ H.(Sk @ k(v), Le ).

Under the assumption (A.4.3.1) the arguments of [40] establish the existence of the diagram
(A.5.1.1) even in the isotropic case. Hecke correspondences on Shg (resp. the p-isogenies
on Mk ») are proper correspondences in the sense that their projections on each of the factors
in Shg x Shg (resp. Mgr X Mgp) are proper (and generically finite). As explained in [17,
VII.2], one can generalize the definitions recalled in A.2 to this situation and define

e an action of S#(G(Q,)—//K,,Q) on Hl (Shx ®E Q, Z¢4);
e an action of Q[p-Isogg,» ® E,] on Hi (Mk»r ® Q, pr*(Zep));
e an action of Q[p-Isogg,» ® F,] on Hl(Mgr ® k(v), pr*(Zee));

asin A.5.5, these actions are compatible with the isomorphisms (A.5.11.1-2). As a result, the
Eichler-Shimura relation (A.5.5.1) holds (if p splits completely in F,/Q) for the action of ¢p
on H'(Shg) = Hét(ShK Rk Q, zg,().

A.5.12. — The decompositions (0.3.2) and (0.4.1) no longer hold in the isotropic case. For
any irreducible smooth representation 7°° of G(Q) one can consider the 7 °°-eigenspace
in H(Sh) = lim H’(Shg), namely,

x

(A.5.12.1)
H'(Sh)[7*®] = Im(V} (#*®°) ® 7°%° — H'(Sh)), V(™) = Homg g, (>, H' (Sh)).

In general, the action of G((/j) on H(Sh) is not semisimple (as pointed out by the referee,
this happens already for G = GL(2)qg,i = 1and § = 1, when some 7 can occur as
a subquotient but not as a submodule). This means that, a priori, H’(Sh)[z*] could
be smaller than the corresponding generalized eigenspace (in other words, the space
Homg g, (7, H(Sh)/H' (Sh)[7*°]) could be non-zero).
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As in the isotropic case, Vi (7*) is of finite dimension over Q, and the action of I'g
on H(Sh) gives rise to a representation

T'r — Autg g, (H' (Sh)[7™]) = Autg, (V! (7).

If K = K,K” is as in A.5.11 (with p split in F./Q) and (7>)X % 0, then the G (Q)-equiv-
ariance of the gp’s implies again that the subspace Vi (7®) ® ()X = H(Sh)[z*®]K C
H!(Sh)® = Hi(Shk) is ¢p-stable and that each ¢p acts on it through an action
pp € Autg, (V! (1)) on Vi (n).

As in A.5.5, restricting (A.5.5.1) to H'(Sh)[7*°]X vyields the formula (A.5.5.2) for the
space V' (7™) defined in (A.5.12.1).

An important subspace of Vi(7x®) arises as follows. The analytic intersection coho-
mology of the Baily-Borel compactification j : Shx (G, X) < Shg (G, &)pp is isomorphic
to the L?-cohomology of Shx (G, )" ([30], [36]) and the latter space admits a decompo-
sition analogous to (0.3.2), by [2, Th. A] combined with [3, Prop. 5.6]. As a result, there is a
I'g x G(G)—equivariant decomposition of the intersection étale cohomology

H'(Shpp) = h_r)nHét(ShK(G, X)ee Ok Q. jix Les)
K
of the form
(A.5.12.2)
Hi(Shgp) = P  maisc(m) H (9. Kooi oo ® £) @ 1° = (P Vi (™) @ 7,
T=Moc@T X A

where 7 runs through discrete automorphic representations of G(A) and mgjsk () denotes
the multiplicity of 7’ = (w},) ™' in the discrete part L3, (G, wx) C L*(G, o).

In general, the canonical T'g-equivariant map Vi, (7®°) — V¥ (x*) induced by
H'(Shpp) — H'(Sh) is not injective, nor surjective (cf. Proposition A.6.17). It would be of
interest to define compatible actions of various rings in the diagram (A.5.1.1) on the inter-
section étale cohomology of Shx (G, X)pp (for which, again, isomorphisms analogous to
(A.5.11.1-2) hold, thanks to [28, Thm. 6.1]) and deduce the formula (A.5.5.2) on V(fisk (7).
All that we can say at the moment is that Vi (7)) = Im(Vi, (7®) — Vi(z™®)) C
Vi(x®) is [ g-stable and that, for Pg as in (A.5.9.1), the action of Fr(Ps) on Vi, (7%) is
given by the restriction of the action of [[p, pp € Aut(Vi (7)), with each ¢p satisfying
(A.5.5.2).

This issue does not arise for the contribution of cuspidal representations 7 to (A.5.12.2),
since cuspidal cohomology injects into H’(Sh).

A.6. Quaternionic Shimura varieties

A.6.1. — Throughout A.6 we assume that F C Q C C,r = [F : Q], D, Q,t = |Q|, E
and £ are asin 5.1-5.5. In A.6.1-A.6.14 we assume that D # M, (F). The Shimura varieties
involved and their integral models will then all be proper.

Denote by d + d the main involution on D. Let v | p be the prime of E induced by a
fixed embedding Q < Q. Let K = KsKS C (D ® Q)* be an open compact subgroup as
in 5.15 (with S containing all primes of F dividing 2£co and all primes at which F/Q and D
ramify).
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The action of I'g on Hgi,K = Hi (Shg(D*)®EQ, Lt ) then factorithrough Gal(Qs/E).
The goal of A.6 is to verify the Eichler-Shimura relation (5.16.1) for E = F&! namely, that
for every prime Ps of Qs satisfying Frog/q(Ps) € Gal(Qs/F&l) (< p = Ps N Z does
not lie below S and p splits completely in /Q) the action of Fr(Pg) on H Sl x can be written
as
(A.6.1.1)

Fr(Ps)| = [Ter oie;=¢ier.  @)>—(Te./Sp)¢} + p/Sp, =0.

’ xX€EQ
These relations follow directly from Theorem A.5.3 if ¢t = r (see A.6.4), but require an
auxiliary unitary Shimura variety if ¢ < r (see A.6.14).

A.6.2. The PEL data in the case t = r. — In the totally indefinite case D ® R >~ M,(R)”
one only needs to use the fact that the main involution 4 — 4 = Tr(A)-I — A on M,(R) is
not positive, but is conjugate to the positive involution A — A’ by the matrix (‘1) o )

Consider the following PEL data of type (C), in the sense of A.3: B = D, % = a positive
involution on D ( <= d* = udu~" for some u € D*, unique up to F*, such that w = —u
and Nrd(u) = —u? € FY), V = D with a left action of D given by d - x = xd*. The
F-bilinear form (x, y)r = Trd(xuy) on V is skew-symmetric and satisfies (d - x,y)r =
(x.d*™-y)r.

The centraliser C = Endp (V) is isomorphic to D, with d € D acting by left multipli-
cation x > dx. As (dx,y)r = (x.dy)r, the involution # on C coincides with the main
involution on D and

GSpB(V,(, )F)ZDX, v = Nrd.
A morphism/ : C — C ® R = D @ Rasin A.3.2is given, for example, by (i) = u/~/—u?
(with a totally positive square root), hence is conjugate to the one in (5.3.1). This identifies
Sh(D*) with the Shimura variety attached to the above PEL data (B, %, V, {, )r) of type (C).

A.6.3. — Given a rational prime p which does not lie below S, we can choose u € D* in
A.6.2 in such a way that u> € (Of ® Z,)*, which implies that unramified local data Op
and A as in A.3.4 exist. We can assume that K is sufficiently small; then the construction
from A.3.7 yields a smooth projective model Sk of Shx(D>) over Og,, to which the local
system Z¢ ¢ naturally extends. Let Sg = Sk ® k(v) be the special fiber of Sk.

A.6.4. The Eichler-Shimura relation in the case t = r. — In the situation of A.6.3, let us
assume, in addition, that p = Pg N Z, where Pg is a prime of Qg such that Frg,q(Ps) €
Gal(Qs/F#"). This is equivalent to requiring p to split completely in F/Q; in fact,
pOF = [],ex Px, where Py are asin (5.15.3) (and Fp, = Qp).

The absolute Frobenius morphism ¢ : Sp = Sx ® F, — Sg decomposes as a
product of mutually commuting partial Frobenius morphisms ¢ = [[,cx ¢p, defined in
A.3.12. The action of Fr(Ps) on H' = H! (S5 ® Fp, L) is given by the action (¢ ® id)*
ofp®id: Sy ® F, — Sp ® F,. It follows that

Fr(Ps)| i = [[ o of=(pp. ®id)|,,.  oror =olor.
xeX
Theorem A.5.3 applies to each ¢p, and yields, thanks to (A.1.6.1), the sought for Eichler-
Shimura relation (¢})% — (Tp, /Sp. )¢t + p/Sp, = 0 € End(H").
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A.6.5. The auxiliary PEL data in the case 1 < t < r. — In this case the quaternionic
Shimura variety Sh(D>) is not of the form considered in A.3-A.5, but it can be related to
other Shimura varieties defined in terms of suitable PEL data of type (A) (and signature
(1, 1) x (2,0)" ). The following construction, which differs from the standard one ([11, § 6],
[35, p. 11]), was communicated to the author by C. Cornut.

Fix injections F < F, < D, where F, is a CM field and [F, : F] = 2. Fix elements
n € FXand j € D*such that n* = —n, j* = —j, jn = n*j = —nj, where * denotes
the main involution of D (whose restriction to F, is positive). For every infinite prime v | co
of F we have j2 € F = R* and sgn(j2) = +1 (resp. = —1) if v € Q (resp. if v € Q°).

Consider the following PEL data of type (A) in the sense of A.3: (B, x) = (F¢,*),V =D
as a left F.-module, (x, y)r = Trd(nxy™). Explicitly,
VX1,%2,y1,y2 € Fe (x1 4+ x2/, 31 + y20)F = Trg  r (01 y} — j2x295)).
The morphism
1 FxD* — GLF.(V), A, d) = (x > Axd™)
gives rise to an exact sequence of algebraic groups over F
(A651) 1 —> Gur—> R,/ (Gm.p,) x DX —— H = GSpg(V. (. )r) —> 1,

where A(a) = (a,a™'). Note that G,, r has trivial H!, which implies that the map 7 in
(A.6.5.1) is surjective on adelic and F-rational points.

A.6.6. — The previous data define a CM type ® = {0, : Fe. — Q}y|c of F characterized
by oy(n) = —sgn(j2)|ny|i. Denote by 0 : C ~ F, ®  Fy,(— D ®F F,) the maps induced
by the inverse of a,,. Let

(A.6.6.1) h=(hp..hp) :C— (F, @ R) x (D ® R)
be the morphism whose components i, : C — (F,® Fy)x(D ® g F,) are given as follows:
hy = (1,0)) (resp. hy = (0, 1)) if v € Q (resp. if v € Q°).
Explicitly,
. ) N
hy (D) (Xy + Yo jv) = —— (X — Yy sgn(j;)jv),

7]

Vxls-x29ylsy2 e Fc ®R
(x1+x2/, h(@D)(y1 + y2)))F = Z 10| T Fo@p FoFo (1010 + L 1X2,005.0)
v|oo

which means that £ satisfies the positivity property from A.3.2. Moreover, hp is conjugate
to the morphism (5.3.1) and

_ FC®FFU+(FC®FFU)jU v e,

y-1.0 _
(Fe ®F Fy) + (Fe ®F Fy) j v e Q°,

v

which implies that the signatures of H in the sense of A.5.7 are equal to (ay, by) = (1,1)
(resp. (2,0)) if v € Q (resp. if v € QF).
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A.6.7. — The base change of the exact sequence (A.6.5.1) to F, becomes isomorphic, via
(A.5.7.1), to

Ac c
(A6.7.1) 1 —> Gp.p, ——>Gm.p, X Gm.p. x GLE, (V) ——> GLp, (V) X G5, — 1,

where Ac(a) = (a,a,a™ ") and t.(a1, a2, g) = (a1, a1a» det(g)). Above, we have identified
G, F, ®F Fe with Gy, F. X Gy, F. in the usual way: for every F.-algebra R, the corresponding
isomorphism (F, ®  R)™ 5 R*x R*sendsa ® r to (ar,a*r).
The cocharacters
M= (Mx : Gm,C — H QF,0x C)xex : Gm,C — Gc¢
attached to the morphism /4 from (A.6.6.1) are given, up to conjugation, by

.(1,1,(% 1)) x €Q,
e(z, 1, (') x € QF.
A.6.8. — Assume that v is a finite prime of F at which D splits and which splits in F,/F

as vOfp, = v'v”. Choose one of the factors (say, v') and identify F, as an F.-algebra via
F, — (F.)y = F,. The sequence (A.6.7.1) then gives

(A.6.7.2) VxeX  px(z)=

(A681) 1 —> Gur, —> Gm(r.), X G (Foyyr X GL(2)F, —> H ®F Fy —> 1,

with H ® g F, split over F,.
Consider a cocharacter 4 : G, 5, — H ®F F, given by one of the formulas in (A.6.7.2).
The corresponding Hecke polynomial of ™! is as follows.

(Case Q): If u(z) = (1,1, (% ;)), then (A.1.6.1) implies that
(A.6.8.2) (Nv) H,~1 (Nv)"Y2Y) = Y2 — (T,,/Sy)Y + (Nv)/S,.

(CASE Q°): If u(z) = t.(z, 1, I), then (A.1.5.1) implies that
(A683) Hy(Y)=Y —1/Sy., Sy = char(wy Oy,) € FUE /] Of,y,, D).
A.6.9. Quaternionic and unitary Shimura data [35, §1]. — Consider the following algebraic
groups over F: F) = Rp./pGm,F., D™ and t : (F x D*)/A(F*) S H = GSpr,. (V).
Their respective restrictions of scalars to Q (notably G = Rp/q(H)) are equipped with

the Shimura data hf,, hp (conjugate to the one from (5.3.1)) and hg = tg o h, where
h = hF. x hp was defined in (A.6.6.1). Their reflex fields are equal to

E(G,hg) = E(FX,hF,) = E(®|Q°) ={y e g | Vv € Q° yo, =0y} D E(D*,hp) = E.
The morphism 7 induces a map
Sh(F.) x (Sh(D*) ® E(®|Q)) — Sh(G),

which is FCX x D -equivariant (in particular, A(I? X) acts along its fibers).

If K ¢ D*isan open compact subgroup which is small enough in the sense that
K = K4K? for a prime g such that K, N (F ® Qu)* C 1+ ¢°(Of ® Z,), wheree = 1
ifg > 2 (resp. e = 2if ¢ = 2), then there exist open compact subgroups K(F,) C I?CX
(defined in [35, (1.4)]) and K(G) = ©(K(F,) x K) C G(Q) such that

Shi(r.)(F)) x (Shx(D™) g E(®|Q2€)) — Shk()(G)
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is a Galois covering with Galois group A(F*\F*/(K N F*)). In particular, its fibers are the
A(F*)-orbits.

A.6.10. The Kiinneth formula. — Fix an algebraic representation &’ of (. T)c whose restric-

tion to (7 T') ¢ coincides with wg (= N 1%75’ ); then £’ ® £ = &g o 7 for an algebraic representa-

tion &g of G¢. The Kiinneth formula combined with the discussion in the previous paragraph
implies that the cohomology groups

H} = H(Sh(D*) ® Q. Zg.0).
Hg‘, = HZ(Sh(F)) ®E@|a0) Q. Lg 1),
HE*G = H}(Sh(G) QE(a|ac) Q. Lgg 0)
are related as follows (note that Sh(F.) has dimension zero):

S~ N\ AGF)
(A.6.10.1) Hi, = (Hp ® HY)

Assume that 7 is asin 5.11 and 5.15: it is an automorphic representation of D such that

Too 1s cohomological (in degree i) with respect to £. Fix an open compact subgroup K C D*
such that (7%°)X #£ 0. Asin 5.15,

0# V' (x®)® (r™)X C Hf = (H)X.
with F* acting on this subspace by wy .

Assume, furthermore, that y : Af,c /FX — C* is a character such that
(A.6.10.2) Yoo = E)T K| = @n
AF

(these two conditions are compatible, since W, = oy ). Denote by y* : 1’7;X — C* >~ 62(
its finite part.

If K(F,) C I?C>< is sufficiently small in the sense that
(A.6.10.3) FXNK(F)COF,,  K(F)CKer(x®),
then the y*°-eigenspace
V) = V™) =Af € HY |Va e B a-f = x®(@)f}
satisfies dim(V(x®) ® (y*®)KF)) = 1.

The representation y ® = of Az x Dy is of the form y ® © = ng o 7, where 7g is
an automorphic representation of G(A) = H(Ap), with (7g)ee cohomological (in degree
i) with respect to £g. The previous discussion combined with (A.6.10.1) implies that, for K
sufficiently small,

(A.6.10.4) Vind) ® (ﬂg;O)K(G) =V®) V' (r®) @ (1° ® (ﬂm)K)A(fX)
= V(™) @V (@®) @ (1™ & (1°)%) #0,
hence

ViEg) = V(™) ® Via™®) £0.
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In particular, there are canonical identifications
End(V! (7Z)) = End(V' (#*)),

(A.6.10.5) . .
End(V (&) ® (&)X (@) = End(V (#®) ® (®)K).

A.6.11. The partial Frobenii. — Assume that K = KgKS C D*isasin 5.15 and that K is

sufficiently small. Let p be a rational prime which does not lie below S and which satisfies

the following two conditions: 12, j2 € (Of ® Z,)* and every prime P | p above p in F

splitsin F./F: POf. = P'P".

These conditions imply that there exist unramified data Op and A at p (asin A.3.4) for the
PEL data from A.6.5. As before, this gives a smooth projective model Sk(g) of Shx()(G)
over the ring of integers of E(®|Q2€),, where v | p (note that K(G), ~ t((Of, ® Zp)™,
GL,(OF ® Zp)) in this case; cf. [35, (1.4)]).

Moreover, the construction in A.3.12 defines, for primes P of F above p, partial Frobe-
nius morphisms @p : SI‘}(G) = Sk) ®k(v) — SI"((G) satisfying ¢ = nPlp op.

A.6.12. The Eichler-Shimura relation for the unitary Shimura variety. — Denote by S. the
following finite set of primes of F: S, = S U {v | v ramified in F,/F or ord,(n?) # 0 or
ord, (j2) # 0} and assume that Pg, is a finite prime of Qs, C Q such that

(A.6.12.1) Frog, /o(Ps.) € Gal(Qs, / F£Y).

Extend each o : F, <> Q (x € X) to an element Gy € g. Asin A.5.9 (and 5.15) we obtain
primes P, =G, 1 Ps.NOF, and Py =G, ! Ps,NOF of F, and F, respectively, which depend
only on o, and lie above a rational prime p satisfying the conditions from A.6.11. Moreover,
(A.6.12.1) implies that p splits completely in F,/Q:

pOr =[] P PxOr = PPl Qy=Fp, = (Fo)p = EQ@I2),.
xeX

The discussion from A.6.8 applies to each v = Py and v/ = PJ. After identifying H ® r Fp,
with GL(2)q, x GL(1)q, asin (A.6.8.1), the cocharacters up, : Gm,rp, — H ®F Fp,
from A.4.3 can be chosen as in A.6.8, with the case 2 (resp. the case Q2¢) occurring if x € Q
(resp. if x € Q°).

Theorem A.5.3 applies to the action of each partial Frobenius ¢p, : S;((G) = SkiG) ®

F, — Sz on Hgig,K(G) = (HsiG)K(G) = Hét(SI"((G) ® F,, Z¢, ¢) and yields, thanks to
(A.6.8.2) and (A.6.8.3),
(A.6.12.2) Vx e Q Ox(pp, ®id)| =0

£G.K(G)

0x(Y)=Y?—(Tp,/Sp,)Y + p/Skp,.

(A6.123) VxeQ¢  (pp, ®id—1/Sp;)

i
He k)

The action of Fry_/q(Ps,) on Hsi(;,K(G) is given by the action of ¢ ® id = [[,cx (¢p, ®id).
We have Hf _ xc) = BV (x&) & (7K@ 1f

(A.6.12.4) Viag) ® (xg)K©G £ o,
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then ng ot = y®m, where y and 7 are as in (A.6.10.4). For all x € X, the action of pp, ®1id

onVi(xg) ® (zF)K©G ¢ HgG’K(G) defines, via the identification (A.6.10.5), elements

¢; € End(V (z®) ® (x™)%),  ¢le = ore;
satisfying
(A.6.12.5) VxeQ Qx(p}) =0, VxeQ° ¢f=>P)7"

On the other hand, the action of g = Fr(Ps,) satisfies

[T@r. @iy memsco = 8lvigm e xo = Elrym) © 8lvigesmeox:
xeX

8lyee) = [T x=en™
xeQf

(the last equality holds thanks to the reciprocity map for the Shimura variety Sh(F}) [35,
p. 10]), which implies, thanks to (A.6.12.5), that

(A.6.12.6) []er= Fr(Ps.)|yi (rooyg ooy

xX€Q
One can show that, under the above assumptions, each ¢} (x € ) is induced by a geometric
morphism ¢y : Sp ® F, — Sg ® F,, (using the discussion in [35, p. 48-49]), but we are not
going to use this fact.

A.6.13. — Tt is convenient to carry out the constructions in A.6.12 for K = Kg = K5 =
K, K? (where p ¢ S, is fixed) and then pass to the limit K# — {1} (in other words, replace
KP? by an arbitrarily small open subgroup K'? C K? and work with all groups of the form
K' = K,K'? C K).

This yields, for all x € 2, G(G(P))-equivariant automorphisms ¢} of the space

(Hj)KrFKr — (HY ® H@A@X){Kp(n)xm)

(A.6.13.1) _ @(V(XOO) ® (XOO)KP(FC)) ®Vir™®) ® (noo)Kp’
X
where y : AL /F —> C* is unramified at all primes above p, Yoo = ()7, mis an

automorphic representation of Dy such that 7., is cohomological in degree i with respect
t0 § (= wn, = 07'), 1 = @xex7p, is unramified and yxx = wg.
As
dim V() ® (3°)%rF) = dim V(3®) ® 1> = 1,
G(Q)-equivariance of @} together with irreducibility of 7°° and Schur’s Lemma imply (as
in A.5.5) that

% € Endg g (V(x™®) @ (™) F)) @ V(™) ® (1%)%7)
= End gy« (V! (1%) ® (1) %7) = End V' (7).

We have not shown that 97 € End V(7™) is independent of y. Such an independence
follows from the geometric description of ¢} that was alluded to at the end of A.6.12, but
we do not need it for the applications in 5.18-5.22.
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We deduce from (A.6.12.5) and (A.6.12.6) that

(A.6.132) Vx € Q 0Q,(¢¥) =0eEndV(x™), [ [ ¢k = Fr(Ps,) € End V¥ (z®).
xeQ

A.6.14. The Eichler-Shimura relation for the quaternionic Shimura variety. — The relations

(A.6.13.2) give what we need for (5.16.1) in the case t < r, provided we can reverse the above

arguments and find F, < D and y for which (A.6.12.4) holds.

In order to do that, assume that we are given K = KgK*S asin 5.15 (with K sufficiently
small) and a prime Ps of Qg satisfying (5.15.2) with E = Fel (which implies that the
rational prime p below Pg splits completely in F/Q). There are infinitely many totally
imaginary quadratic extensions F./F such that all primes of F above p (resp. all primes at
which D is ramified) are split (resp. inert or ramified) in F,/F. Fix such an extension F, and
embeddings F < F, < D (they exist, by construction). There also exist elements 5, j € D
as in A.6.5 satisfying n?, j? € (Of ® Z,)*. By construction, p splits completely in F,/Q,
which implies that the prime Pg extends to a prime Pg, satisfying (A.6.12.1). Fix & as in
A.6.10.

Finally, for every automorphic representation 7 = 7o ® 7 of D} such that
(A.6.14.1) 0# V(™) ® (@™)X C Hf x = (H)X.
Proposition A.6.15 below implies that there exists a character y : A% ] F X — C* which

is unramified at all primes above p and which satisfies x| A = W and Yoo = (§)71. The

pair (y, ) then contributes to the sum (A.6.13.1) and the arguments in A.6.13 give mutually
commuting elements (for x € Q)

(A.6.142) ¢ € End V' (7™), Vx e Q Qx(pr) =0, H vy = Fr(PS)|V,»(”oo).
xeQ

As a result, (5.6.1) holds (for E = F#a!). The relations (A.6.14.2) imply the Eichler-Shimura

relation (5.16.2) for the full Frobenius, namely, that

(A.6.14.3) O (Fr(Ps))

Hi X = 0»
where QO = @), cq O is the Rankin-Selberg polynomial defined in (5.16.3).

PROPOSITION A.6.15. — (1) For every pair of characters a : A%/F* — C* and
B:(F.QR)* — C* salisfying,B|(F®R)X = Woo there exists a character y : AL [FZ —> C*
such that X|A} = and yoo = P.

(2) For every finite set T of finite primes of F there exists y as in (1) satisfying
ordy (cond(y)) = ordy (cond(w)) for all primes w of F, above T. In particular, if « is
unramified at v € T, then x is unramified at all w | v.

Proof. — (1) Denote by Cx = Af/k™ the idele class group of a number field k and
by C}! = Ker(| - ||« : Cx — RX 1) its compact subgroup of unit norm ideles. We have

Cr. D Cr-(F.®QR)* = Cr-U(1)’, CFCDCF-U(I)’, CrNUQ)" = CENUQ)" = {£1}.
The compactness of the groups involved implies that the product morphism

m : C}, x U(l) — C}c (m(x,y) = xy) is strict: it induces a topological isomorphism
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between the compact groups Coim(m) = (C} x U(1)")/Ker(m) with quotient topology and
Im(m) = C}V - U(1)" with topology induced from Cll%'

The compatibility between « and 8 implies that the restriction of a ® 8 : C }V xU()" —
U(1) to Ker(m) = {(a,—a) | a € {£1}"} is trivial. It follows that there exists a unique
character C }V -U(1)" ~ Coim(m) —> U(1) whose restriction to the first (resp. to the second)
factor is given by « (resp. by 8). Such a character extends to a character ¢ : C 11”(,- — U(1).

Fix an infinite prime vy, of F and define continuous sections
s:R} — (F®R)} — A%, se 1Ry — (F®@R)} — A%

of | - ||F and || - || ., respectively, by s(¢), = 1 for all v # veo and s(¢)y., = ¢, and s.(t) =
s(t'/2). The formula

x(0) = Blse(lxllr) ¥ (x/se(llxlr)).  x € AR,
then defines a character y : Cr, —> C* with the required properties.

(2) Let y be as in (1). For each v € T, the restriction y, of y to (F. ® F,)™ satisfies
Xv| g = Qo Recall the following elementary fact: given finite abelian groups H C G D G,
and acharacter A : G —> U(1) such that Agng, = 1, there exists then a character A’ : G —
U(1) such that )V|H = A|, and /V|Gl = 1. Applying this statement to G = Of o . D
H = 01{51) (rather, to their quotients by a suitable piece of the canonical filtration on G) and
A = x, we deduce that there exists a character of finite order y® of (F, ® p F,)*/ F such
that ord,, (cond(y ™ y,)) = ord, (cond(e)), for all w | v in F,. The value y® (x) depends
onlyon x'=¢ = x/x¢ € '"(F, @ F,)* C (F. ®F Fy)*, where c is the non-trivial element
of Gal(F,/F). The character x!~¢ - y®(x) of 1"¢(F, ® r F,)* extends to a character
of finite order §® of (F, ®  F,)*, which means that y® = 17¢§® _There exists a global
character of finite order § : Cr, —> C* such that §, = 8@ for all v € T the character
¥’ = (17¢8) x then has the required properties. O

A.6.16. The Eichler-Shimura relation in the case D >~ M,(F). — Inthiscase H = GL(2)f
and Shg is a Hilbert modular variety of dimension t = r and reflex field £ = Q. It is defined
by the simplest possible PEL data of type (C): B = F,* = id, V = F2?,(, )p = the
standard symplectic form.

The Baily-Borel compactification j : Shx <> Shgx gp = Shg U {cusps} has as a
boundary a reduced zero-dimensional scheme of cusps. For any £ as in (5.5.1), the canonical
G(Q)-equivariant map

can; : H'(Shi g) = H'(Shif pg. jix Le)
= H'(Sh¥ pp. <r—1Rjx Lg) — H'(Sh{}, Z¢) = H' (Shi

has the following property.

PROPOSITION A.6.17. — The map can; is injective in all cases except when i = 2r and
ky =2 forall v | co.
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Proof. — The exact sequence
-+ —> H'(Sh¥ pg) — H'(Shi)
— H({cusps}™, (1=, Rju Lg)[i]) — H' 1 (Shi gg) —> -+

implies that can; is an isomorphism for i < r and injective for i = r. In the decompo-
sition (A.5.12.2) of h_I)n H (Shi’ gp), only cuspidal or one-dimensional automorphic repre-
K

sentations 7 = 7y ® 7 of GL,(AF) appear, with s cohomological in degree i for &.
For cuspidal &= we have i = r, when the injectivity of can; has been proved. It remains to
investigate the (non-)injectivity of can; (fori > r) when restricted to the cohomology classes
corresponding to one-dimensional 7, i.e., to the universal cohomology classes in the case
when k,, = 2 for all v | co. This is done, for example, in [20, Lemma II1.5.6] (in the classical
language) or in [21, Prop. 3.2.4]. O

A.6.18. — In the exceptional case i = 2r and k,, = 2 for all v | oo the corresponding étale
sheaf Z¢ is a Tate twist of the constant sheaf Q, and the étale intersection cohomology
group H2" (Shg s ®q Q. jix Zs ) is dual to a Tate twist of H3(Shk g ®q Q. jixQq) =
HS(Shg ®q Q. Q).

A.6.19. — If p is a rational prime that splits completely in F/Q and such that K = K,K?
with K, >~ GL,(OFf ® Z,), then the discussion in A.5.11 implies that the Eichler-Shimura
relation A.6.4 holds for the action on étale cohomology of the open Hilbert modular variety
H! (Shx ®q Q. Zz ). It follows from Proposition A.6.17 that these relations also hold for
the action on Heit(ShK, BB QQ Q. jis Ze ¢), unless we are in the exceptional case. However,
A.6.18 implies that they also hold in the exceptional case.

A.6.20. — In the case D >~ M, (F), both Proposition A.6.17 and A.6.18 remain valid for
the Hilbert modular variety attached to (G*, ™) and for any £* from 6.2. As a result, the
Eichler-Shimura relation used in the proof of Proposition 6.14 holds, thanks to the discussion
in A.6.19.
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