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LOCAL THETA CORRESPONDENCES
BETWEEN SUPERCUSPIDAL REPRESENTATIONS

BY HUNG YEAN LOKE AND Jia-Jun MA

ABSTRACT. — By the works of Yu, Kim and Hakim-Murnaghan, we have a parameterization and
construction of all supercuspidal representations of a reductive p-adic group in terms of supercuspidal
data, when p is sufficiently large. In this paper, we will define a correspondence of supercuspidal data
via moment maps and theta correspondences over finite fields. Then we will show that local theta
correspondences between supercuspidal representations are completely described by this notion. In
Appendix B, we give a short proof of a result of Pan on “depth preservation”.

RESUME. — Par les travaux de Yu, Kim et Hakim-Murnaghan, on a une paramétrisation et une
construction de toutes les représentations supercuspidales d’un groupe réductif p-adique en termes
de données supercuspidales, quand p est suffisamment grand. Dans cet article, nous définirons une
correspondance entre les données supercuspidales par I'intermédiaire d’applications moments et de
correspondances théta sur des corps finis. Ensuite, nous montrerons que les correspondances théta
locales entre les représentations supercuspidales sont complétement décrites par cette notion. Dans
I’Appendice B, nous fournissons une courte démonstration d’un résultat de Pan sur la « préservation
de la profondeur ».

1. Introduction

In this paper, we give an explicit description of the local theta correspondences between
tamely ramified supercuspidal representations in terms of the supercuspidal data developed
in[15,37,17, 11].

1.1. Notation

Throughout this paper, we fix a non-Archimedean local field F of characteristic zero with
ring of integers o, and finite residual field {. Let “val” denote the normalized valuation map
such that val(F) = Z. Suppose E is a finite extension of F or the central simple quaternion
division algebra over F, let og denote its ring of integers, let pg denote the maximal ideal
in og and let fg := og/pEg denote the residue field. We continue to let “val” denote the
natural extension of valuations to E. When £ = F, we sometimes omit the subscript. We
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928 H. Y. LOKE AND JIA-JUN MA

fix a non-trivial additive character y: F — C* with conductor p (i.e., w|p is trivial but ¢ lo is

non-trivial). Let ¥ denote the additive character on f induced by v. For a vector space U0
with an endomorphism +, we let ¢ denote the s-eigenspace of ¥ in Y.

1.2. The set of data

Let (D, ) denote one of the division algebras over F given in Section 2.1 with an F-linear
involution t. Let e € {1} and ¢ = —e. Let (V,(, )y/) (respectively (V', (, }y~)) denote
a right D-module equipped with an e-Hermitian form (, );, (respectively ¢’-Hermitian
form (, )y»). Then W := V ®p V' is naturally a symplectic space. Let (G, G') = (U(V), U(V"))
be an irreducible type I reductive dual pair in the symplectic group Sp := Sp(W). For any
subset E of Sp let E be its inverse image in the metaplectic C*-cover %(W) of Sp(W). See
Section 2 for more details of the notation.

We assume that p is large enough compared to the sizes of G and G’ since we need the
hypotheses in [17, §3.5] to hold. We will give a lower bound for p in Corollary 3.2. We will
review the construction of supercuspidal representations for G following [37, 17] in Section 3.
Let ¥ := (x,T.,¢,p) be a supercuspidal datum as in [17]. We briefly explain the entries
in X: (i) T is a semisimple element in g and G° := Zg (T'); (ii) x is a point in the building
B(GY) of G (iii) ¢ and p are certain representations of G2. See Definition 3.4 for details.
Then X will determine an open compact subgroup K € G and an irreducible K-module 7y
and, 7y = c—IndI(é nx is a supercuspidal representation of G. By [17], under the assump-
tion that p is large enough, this construction gives all supercuspidal representations of G.
Let 2y be the set of all supercuspidal data and let Gy be the equivalence classes of irre-
ducible supercuspidal G-modules. In [11] an equivalence relation ~ on 2y is defined so that
Dy = Dy| ~— Gye given by [Z] — [rx] is a bijection. In other words, Zy parametrizes
Gi.. In fact, the equivalence relation is just G-conjugacy in our situation (cf. Definition 3.6).

Now we consider the covering group G. It is well known that the cover K — K splits.
Given a certain splitting £: K — K, we identify K with K x C*. We call & := (Z,8) =
(x,T. ¢, p.£) a supercuspidal datum of G. Define N5 = nz ® idcx which is an irreducible
K-module. Then Ty = c-Ind%ng is an irreducible supercuspidal representation of G. We
will see in Section 3.5.4 that under the assumption that p is large enough, the construc-
tion of 75 exhausts all the irreducible supercuspidal genuine ) representations of G. The
equivalence relation on the set of data of G could also be deduced from that of G easily (cf.
Section 3.5).

1.3. Statement of the main theorem

We retain the notation in Section 1.2. Fix a Witt tower & of ¢/-Hermitian spaces. The
covering group G in the dual pair (G, G’) = (U(V),U(V")) forall V/ € & are canonically
isomorphic to one another. Let w be the Weil representation of Svp(W) with respect to the
character ¥ and let

(1.1) Z(G,w) = {7 € Iitgen(G) | Homg(w, ) # 0}
() Here genuine means C* C G acts by multiplication.
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CORRESPONDENCES BETWEEN SUPERCUSPIDAL REPRESENTATIONS 929

be the equivalence classes of irreducible smooth genuine G-modules which could be realized
as a quotient of w. Let 6y, y: %’(5 ,w) —> %’(5’ ,w) denote the theta correspondence map.

Let 7 be an irreducible supercuspidal genuine G-module. Note that the 7T-isotypic compo-
nent w[7] of w is naturally a G x G’ module, say o[7] = 7 B Oy y/ () where Oy /() is a
genuine G'-module. Let

m g(7) = min { dimp (V") | Oy,p»(7t) # 0 where V"' € "}
which is called the first occurrence index of = with respect to the Witt tower &
It is well known that (cf. [23, Section 3.1V.4, théoréme principal]):
(1) O,y (7) is either zero or irreducible.
(i) mg () < 2dimV + ags where a g = min {dimp V" | V" € "} is the dimension
of the anisotropic kernel in & (cf. [20]).
(iii) ®y,y(77) # 0if and only if dimp (V') > m g (7) in which case Oy,y/(7) = Oy, v (7).
(iv) Oy,p () is supercuspidal if and only if dim(V') = m g (7). In this case, we say that
the first occurrence of 7 is at V',
The aim of this paper is to describe the first occurrences of theta lifts of supercuspidal
representations in terms of the supercuspidal data.
Let

(1.2) Dgr= || 2v.

veg’
Using the moment maps and theta correspondences over finite fields, we will define theta lifts
of equivalence classes of supercuspidal data in Section 5, i.e., we will define a map

(1.3) By g Dv —— D g
Fix a pair of data (X, X') € 9y x Dy-. There is a canonical splitting
Exx: K x K —— K x K’

constructed from the generalized lattice model (cf. (2.4)). We always set & = (%, x| )
and ' = (X', £ v | )-

MAIN THEOREM. — (i) Suppose & € Py and [E'] = Yy, o ([X]) € Dy for certain
V'e T’ Then by y (i5) = g, (ii) Conversely, suppose Oy,y/(7t) = 7', such that 7t and 7’
are supercuspidal representations. Then there exists ¥ € Dy such that &# = 75 and 7' = 7%,
where [£'] = &y, o ([Z]) and T is the Witt class of V',

REMARKS. — 1. If 7 is a depth zero supercuspidal representation, then @, ¢ () is essen-
tially constructed in [28].

2. After the completion of the first draft of this paper, we received a preprint [30] from Pan
which describes the theta lifts of certain positive depth supercuspidal representations.

3. The main theorem generalizes our earlier results with Savin for epipelagic representa-
tions [22].

4. The construction of ¥, o+ provides a criterion on the occurrence of supercuspidal
representations by conditions on the isomorphism classes of the Hermitian spaces modulo
the theta correspondences over finite fields. On the other hand, for some supercuspidal

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



930 H. Y. LOKE AND JIA-JUN MA

representations, theta correspondences over finite fields do not show up in the descriptions
of their first occurrences. See Section 5.4 for details.

5. In the proof of Main Theorem 1.3 (ii), we need a generalization of [27, Proposition 6.3]
which is proved in Appendix B. This also leads to a simpler proof of Pan’s theorem on “depth
preservation” [2, 27].

6. A similar result in terms of the parametrization developed by Bushnell-Kutzko [5] and
Stevens [34] should also be established. We hope to take on this problem in a future project.

1.4. Organization of the paper

In Section 2 we recall some basic definitions and notations of local theta correspondences
and generalized lattice models. In Section 3, we review the definition of supercuspidal data
and the constructions of supercuspidal representations for both linear and covering groups.

In Section 4 we define the block decompositions of supercuspidal data in terms of valu-
ations of eigenvalues. In Section 5, we first review the correspondence for depth zero repre-
sentations and then define the lift of a single block supercuspidal datum using the moment
maps. By taking direct sum, the lift in the general case is defined in the end.

We begin the proof of the main theorem with the single block case in Section 6 and
Section 7. The geometric structures of moment maps are studied in Section 6 and refined
K-types are constructed in Section 7 using these structures. These two sections are the most
technical parts of the paper.

By induction on the number of blocks, we prove part 1.3 (i) of the Main Theorem in
Section 8. Using Main Theorem and a similar induction, part 1.3 (ii) of the Main Theorem
is finally proved in Section 9.

In Appendix A, we review the Heisenberg-Weil representations over a finite field and the
special isomorphisms of Yu. These are used freely in Sections 6, 8 and 9. In Appendix B, we
first prove the generalization of an identity of Pan needed in Section 9 and then finish the
paper by giving a quick proof of the “depth preservation”.
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2. Preliminaries: Local theta correspondence

In this section, we set up some notations and review some facts about the generalized
lattice model of the oscillator representation.

4¢ SERIE - TOME 51 — 2018 — N° 4



CORRESPONDENCES BETWEEN SUPERCUSPIDAL REPRESENTATIONS 931

2.1. Type I dual pairs and moment maps

Let (D, ) denote a division algebra D over F with an F-linear involution 7 in one of the
following situations:
(a) D = F and 7 is the identity map;
(b) D is a quadratic field extension of F' and t is the nontrivial element in Gal(D/ F);
(c) D is the central division quaternion algebra over F and t is the main involution.

2.1.1. — Lete € {£1}. Let (V,(, )y) or simply V denote a right D-module equipped
with an e-Hermitian form (, ). Let gl(V) := Endp (V) be the Lie algebra of GLp (V).
For X € gl(V), let X* € gl(V) denote the adjoint of X which is defined by

(Xvi,v2)y = (v, X v2)y  Vui, v € V.
Then the isometry group of V' and its Lie algebra are given by
UV)={gegl(V)|gg*=id} and
uV)={Xegl(V)| X +X*=0}=gl(V)""!

respectively. We will always view U(V') and u(V') as subsets of Endp (V).

Let trp;r: D — F be the reduced trace on D. We set trp := trp,r o trigl(V) — F.
Clearly trp(X) = trp (X ™). Let

B(X,Y):= %trp (XY).

It is the invariant non-degenerate bilinear form on gl(V') and u(V') which we fix throughout
this paper.

212, — Let e = —e and (V/,(, )}) be a right D-module equipped with an ¢’-Hermi-
tian sesquilinear form (, )},. We view V' as a left D-module by av = va® for all a € D
and veV’'. Let W=VepV'. We always identify W with Homp(V,V’) by
v® v > (v1 > V' (v,v1)y). Forany w € Homp (V, V'), let w* € Homp (V', V) denote its
adjoint which is defined by

(wv, v’) = (v, w*o’

- YveV,v eV

%
The F-vector space W will be equipped with a symplectic form (, )y, given by
(v1 ® v}, V2 ® v’Z)W = trp/r ({(v1. v2)y (v'l 1/2):,,).

Let G = UV, (, )y)and G' = U(V’,{, )y+). The pair (G, G’) is called an irreducible
reductive dual pair of type I in Sp(W) following Howe. The above construction gives all such
pairs when F varies (cf. [13, §5] or [21, Lecture 5] ).

Letg := u(V) and g’ := u(V’) denote the Lie algebras of G and G’ respectively. For
w € W, itis not hard to see that w*w € g € Endp (V) and ww™ € g’ € Endp (V).

DEFINITION 2.1. — We define the moment maps M: W — gand M": W — ¢’ for the dual
pair (G, G’) by

Mw) =w*w and M'(w)=ww¥ Yw e W.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



932 H. Y. LOKE AND JIA-JUN MA

The Lie algebras g and g’ act on W = Homp (V, V') by
(X -w)(v) = w(=Xv) and (X" - w)(v) = X'(w(v))

forallw € W,v e V,X € gand X’ € g’'. We leave the proof of the following simple formulas
to the reader.

LEMMA 2.2. — Letw,wi,wp, € W, X €egand X' € g'. Then
(i) (w1, w2y = trp(wiwy),

(1) (X -w,w)y =2B(X, M(w)) and

(i) (X' w,w)y =2BX', —M'(w)).

2.2. Lattice functions and Bruhat-Tits Buildings

We recall some well known facts about self-dual lattice functions. We refer to [22, § 4] for
more details.

DEFINITION 2.3. — A lattice function . in V is a function which maps s € R U R* to
an op-lattice .Z; in V such that (i) £, 2 Z; if s < ¢, (i) Lyqvaie) = Lsa foralla € DX,
(iil) L = (), < Z: and, (iv) L+ = ,~, -Z;. For a lattice function .Z, we set

Jump(Z) ={reR| % Z+}.
For an op-lattice L in V', we denote its dual lattice
L*:={veV|{v,L)y Cpp}.
A lattice function . in V is called self-dual if (£)* = Z_,+.

We always let 3(G) denote the (extended) Bruhat-Tits building of G. Then B(G) is
naturally identified with the set of self-dual lattice functions (cf. [3, 4] and [22, § 4]). For any
x € B(G), we let &%, denote the corresponding lattice function. Let G denote the stabilizer
of xin G. Forr € RURT and r > 0 (respectively r € R U RY), we let Gy, denote
the corresponding Moy-Prasad subgroup of G (respectively Lie subalgebra of g) [24, 25].
Forr < t, we set

Ox,rit += gx,r/gx,to
Let % and .7, be two self-dual lattice functions in V and V"’ respectively. We define a lattice
function By x> on W =V ®p V' by
Q2.1 Bt = (L ®p L= Y Lay ®op Larsy-
t=t1+t>
Then %y - is a self-dual lattice function on W. We view Hom, , (% s, Z;/,t,) as a lattice

in Homp (V, V') = W. Then HB s = (), Hom,, (L5 r. .,2”;/’[“).

Now (x, x") > Py gives a natural G x G’-equivariant map @

B(G) x B(G") —— B(Sp(W)).

() One can show that it is an embedding. In fact, the map is a restriction of the natural embedding Breq (GL(V)) X
Bred (GL(V')) = Bred (GL(V ®p V') between reduced buildings.
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CORRESPONDENCES BETWEEN SUPERCUSPIDAL REPRESENTATIONS 933

If it is clear what x and x’ are, then we will suppress x, x’ and simply write .¥ = %,
L' =2, and B = B, . Fors < t, we denote

Ly =)L, Ly =L and By = Bs) By

2.3. Generalized lattice model

Let W be a symplectic space. Let H(W) = W x F denote the corresponding Heisenberg
group and let §15(W) denote the metaplectic C*-covering of Sp(W).

Let (w, ) or simply w denote the oscillator representation of §f)(W) x H(W) with central
character . We recall below the definition of the generalized lattice model of the oscillator
representation. See [36] or [22, § 3] for more details.

2.3.1. — Fix a self-dual lattice function 4 in W. Let b = %y/%By+. The symplectic
form (, )y induces a non-degenerate symplectic form on the f-vector space b. Let
H(b) = b x f be the Heisenberg group defined by b. Let (wp, S(b)) be the oscillator
representation of SH(b) := Sp(b) x H(b) with central character ¥ (cf. Section 1.1). See
Appendix A.1. Let H(%y) := %o x 0 € H(W), Spg := {g € Sp(W) | gBo = By } and
Spzot = 1g€Sp(W)|(g—1)%o S Hy+ ;. By an abuse of notation, we also let wy,
denote its inflation to Sp X H(Z)) via the natural quotient map.

A generalized lattice model with respect to %y of the oscillator representation (w,.%) is
realized on the following space of functions

[ is locally constant and compactly supported,

(A := W — S(b .
(%o) %f ®) F(a +w) = Y (L (w.a)y)@v(a) f(w) Ya € By

Via the generalized lattice model . (%), we get a splitting £: Spz — gvpgg - §Vp(W)
given by

2.2) (@okz(k) /) (w) =@pk) (k' -w) Yk € Spg,w € W, f € S (H).
The splitting £5:Sp, — 55@ extends to an isomorphism
5%3 Spg x C* = %%
given by (k,c) — Eg(k)c.
If there is no fear of confusion, we will write w o £4(k) as w(k) for k € Spg. By [22,
Appendix C], the splitting restricted on Sp o+ is independent of the choices of % and agrees

with Kudla’s splitting. ®. In particular we have following canonical splitting on the pro-
unipotent part of Sp:

2.3)

[l

U Spz,0+ —> U Sp,0+-
2B< B(Sp) 2Be B(Sp)

3 We only checked the compatibility of splittings for lattice model in [22, Appendix C]. We still need to check the
compatibility between generalized lattice model and lattice model. However this is clear by testing on the unique
(up to scalar) fixed vector of a certain self-dual lattice.

Alternatively, one can prove this using the fact that the first and second cohomologies of a pro- p group taking values
in a 2-group is trivial when p # 2. See [12, Proposition 2.3].

We warn that the canonical splitting does not extend to the union |J g B(sp) SPz
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934 H. Y. LOKE AND JIA-JUN MA

For any subset Q C W and any element w € W, we set
S (PBo)g =11 €L (o) | supp(f) € Q + %o }

and .7 (%o),, 1= -7 (Bo) (-
Suppose & = By where (x,x’) is a pair of points in B(G) x B(G’). Then
Gx x G}, € Spg. The restriction of £ gives a splitting

2.4) bxr = 63| 1 Gx X Gy —— Gx x G

of the covering 6; X 5;' = Gy X G;,. The restriction of &  to the subgroup K x K’ C
Gx x G, (still called &y /) is the canonical splitting we referred to in Section 1.3.

2.3.2. — We now study a subspace of . as an induced representation which plays a key role
later in this paper.

Fix an element w € W and let
Sw = Stabs, (W + %Bo) ={heSpg |h-w—-—weHB}.

The evaluation at w given by f — f(w) induces an isomorphism . (%y),, = S(b). Clearly
Sy acts on (%), which translates to an action on S(b). We will denote the resulting
Sw-action on S(b) by @y,.

LEMMA 2.4, — The group Sy, acts on S(b) by

Dy (h) = o(h)op(h™! - w — w)l/f(% (w.h ™ w —w),,)

2.5) "
= B (@ (" - w =) (- w = w,w)y)

forallh € Sy.
Let H be a subgroup of Spgz and S := Staby (w+ %Bo) = H NSy. We have an isomorphism
of H-modules

TS (Bo) Howsy —— c-Ind§ .7 (Bo)w = c-Indy @y
given by (S()() = (@(k) £)(w) for all k < H.
Proof. — Leth € Sy. Then h=! - w — w € By. Hence, for any f € .%(%o),
(@) £)(w) = By(h) F(™ - w) = () f(w + (- w = w))
= B 0w i w )y f(w)
= B (h) f(w).

Observe that (w,h™! - w — w)W = (w.h™' - w)

second equality in (2.5) follows.
Note that & — h - w + %y defines a bijection H/S =~ (H -w + Boy)/ PBo < W/HAy. Hence
F(Bo)gw+z, = Span{w(H)S (%), } and T is an isomorphism. O

w = (h-w,w)y = (h-w—w,w)y. The

REMARKS. — Itis easy to see that (2.5) could be simplified greatly in some cases.
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CORRESPONDENCES BETWEEN SUPERCUSPIDAL REPRESENTATIONS 935

1. Suppose that w € HB_; for certain s > 0. Let 2 := (g,g) = (exp(X),exp(X’)) €
Gy X G;,’S where (X, X') € gx.s ® g;,’s. Then

(w.h™ w—w), =

W (h-w—w,w)y

=
Il

— = N =N =

<(X,X’)-w+%(X,X’)-(X,X’)-w,w> (mod p)
w

(2.6) (X. X" w w)y, — i((x, X')-w, (X, X") - w)y,
= §(X~w,w)W + %(X’~w,w)W
=B(X,M(w)) + B(X',—M’'(w))  (by Lemma 2.2).

This immediately implies W(% (h-w—w, w)y) = Yaw) (&) V—mw)(g) (see (3.2) for
the definition of ¥ps¢)) and
2.7) @w(h) = On(=(X, X') - w)¥maw) (©)V-m ) (&)
2. Suppose h = (g,g’') = exp(X,X') € G, s+ X G, o+. Then (X, X') - w € Hy+ and
(2.7) could be further simplified into

(2.8) Wy (h) = V) (@) V—mrw) ().

3. Preliminaries: Supercuspidal representations

In this section, we will first review the parametrization of tamely ramified supercuspidal
representations for classical groups G when p is sufficiently large. Then we will extend the
notion to the covering groups G. We follow closely the notations and formulation in [17].

3.1. Residue characteristics

We assume that the residue characteristics p is large enough compared to the size of G so
that all the hypotheses in [17, §3.4] hold. In this subsection, we will find a lower bound for p.
Let
(i) ep be the absolute ramification index of D/Q),, if D is a field, or
(ii) ep = 2eF if D is the quaternion division algebra over F.

PROPOSITION 3.1. — Suppose V is an e-Hermitian space over D such that n := dimp (V).
Kim’s hypotheses [17, § 3.4] are satisfied for U(V) if

3.1 p>max{2n+ l,epn +2}.
Proof. — We check each of Kim’s hypotheses (Hk), (HB), (HT) and (HN):

1. (Hk.1) requires the exponential map to be well-defined on g, o+, which is ensured
by p > epn + 2 [7, Section B.1].

2. (Hk.2) translates to p > epn + 2 for G C GL, (D).

3. (HB) holds for classical groups when p # 2 since it holds for GL and classical group
is the fixed point of an involution. We would like to thank J. Adler for the discussion.

4. (HT) holds by the Howe factorization (cf. Proposition 4.3).
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5. (HN) consists of the set of hypotheses in [6, § 4.2]. Hypothesis 4.2.3 holds for
p = 2n + 1. Hypothesis 4.2.1 holds by Hypothesis 4.2.3 in characteristic zero case (see
[6, Appendix A]). Hypothesis 4.2.4 and Hypothesis 4.2.5 hold since F' is characteristic
zero. Hypothesis 4.2.7 holds for the exponential map by (Hk).

This proves the proposition. O

COROLLARY 3.2. — Let (G,G") := (U(V),U(V")) beatype Idualpan withn := dimp V.
Let 7 and 7’ be irreducible supercuspidal genuine representations of G and G' respectively such
that 7' = Oy,y/ (7). Then Kim’s hypotheses in [17, § 3.4] are satisfied for U(V) and U(V') if

p>max{4n +9,ep(2n+4)+2}.

Proof. — By Section 1.3 (i) dimp V' < 2dimp V +a g+ < 2n + 4. Then p satisfying the
inequality in the corollary will satisfy (3.1) for both U(V') and U(V"). O

3.2. Good factorization

Let ' € g be a semisimple element. We say that I is tamely ramified if T" lies in a Cartan
subalgebra t which splits over certain tamely ramified extension E of F. Let depth:g — Q
denote the depth function given by

depth(X) = sup {r|X €gx,\gy,+} VX €g.
x€B(G)
We say that I" is good or G-good if for every root a of g(E) := g ®  E with respect to t(E),
do/(T") is either zero or has valuation depth(I"). See [1] and [18, § 2].

DErINITION 3.3. — Suppose I is a tamely ramified semisimple element in g with depth
—r < 0. A decomposition of I' = Zfl:_l I'; in g is called a good factorization if the following
hold:

(a) {I,Ty,...,T— }isaset of commuting semisimple elements in g;

(b) depth(I'~;) > 0 and we set r—; = 0;

(c) If0 <i < d, then T is a good element and —r; := depth(I7;) < 0;

(d) Ty € Z(g);

(e) If 'y = O (called Case I), then —ry_; < --- < —rg <Oandwesetry :=rq_; =r;

(f) If Ty # 0 (called Case II), then —rgy < —rg—q1 < -+ < —rg < Owherery :=r =
—depth(Ty).

Fix a good factorization of I' as above. We define G¢ = G and G' = Zgi+1(Iy)
for0<i<d-1.

REMARKS. — 1. Good factorization of I exists. It is not unique but theset { G' : 0 <i < d }
are independent of the choice of the good factorization (cf. [17, Prop. 4.7)).

2. By [17, Remarks 5.10], I'_; plays no role in the construction of supercuspidal data. In
general, we always assume G° = Zg (I"). For example, this could be achieved via replacing I
by I' — I'_;. By the argument in Section 4.1, the condition G° = Zg(T') is equivalent
tol'_; € Z(g°) = F'[T'y,..., o] for one (and so for any) good factorization I' = Z;jz_l I
where F’ := Z(D) is the center of D.
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3.3. Tamely ramified supercuspidal representations for classical groups

We now quickly review the notion of supercuspidal data and the constructions of super-
cuspidal representations.

We only study classical groups that appear in Type I dual pairs. Let G be such a classical
group. In this case, the center Z(G) is anisotropic so the reduced building and the extended
building of G are the same. Therefore we will use x instead of its image [x] in the reduced
building (cf. [37]).

Under our assumption that p is big enough, the exponential map exp is well defined
on e g(G) 8x,0+- Let log denote the inverse map whenever it makes sense.

3.3.1. — For an element I" € g, we define a function ¥ on the domain of log by

(3.2) Yr(g) := ¢ (B(log(g). T)).

DEFINITION 3.4. — A supercuspidal datum for G is a tuple ¥ = (x, T, ¢, p) satisfying the
following conditions:

(a) T is a tamely ramified semisimple element in g which admits a good factorization
r=Y% TisuchthatT_; e F'[Ty,....Tol;
(b) The center Z(°G?) of the connected component °G® of G® := Z(G) is anisotropic ®;
(c) The point x is a vertex in B(G?), i.., the connected component of G? := Stabgo(x) is
a maximal parahoric subgroup in G%;
(d) ¢: G2 — C*isacharacter such that P go . =Yr|s0 L Note that G2’0+ is the pro-p
x.0 x.0

unipotent radical of G2,

(e) pis an irreducible cuspidal representation of the finite group G2 := G2/G°

x,0t"
We define the depth of the datum X, denoted by depth(X), to be max { —depth(T"), 0 }. Note
that if X is a depth zero data, then I" € Z(g) by definition.

REMARK. — If we only require that the G2-module p in (e) is irreducible but not neces-
sarily cuspidal, then we call the tuple (x,T, ¢, p) a (refined) K-type datum. We will use
such K-type data in Definition 5.17 and Section 9.

332. — Let ¥ = (x,T,¢,p) be a supercuspidal datum. We fix a good factorization of
r= Z;’;O I';. Since Z(°G?) is anisotropic, there are canonical embeddings of buildings

B(GO)—— B(G")— - BG)—— B(G?).

We now define some notations and review the construction of supercuspidal G-module
my, attached to X. These notations will be used freely in the rest of the paper.

DEFINITION 3.5. — Let X be a supercuspidal data. We set

@) si:=ri/2, .

(b) Kl = G)(C)G)lc,S().“G;C,Sifl’ X .

(C) K6+ = Gg,0+ G)lc,sOG)%,sl e G;C,S,',1 = Kl n Gx,0+s
i ._ 0 1 2 i

() K = Gx,0+ Gx,sg_ Gx,sl+ Gx,Sitl '

@ For a general connected reductive group G, this condition would be that Z(G®)/Z(G) is anisotropic. However
this is equivalent to (b) in our case.
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(e) K := K% Ko+ := Kg+ and K := Kjir.

(f) The character ¢ extends to a character of G2K by setting P Ky = Yr. By an abuse
of notation, we still denote it by ¢.

(2) Let «' be the canonically constructed irreducible K’-module such that «’| K, is

V| i -isotypic. See Appendix A.2.2 for the precise definition. Let x := «?.
+

(h) Let ns := p ® «, which is an irreducible K-module. Here p is identified with its
inflation to GY.
(1) Letny := c-Ind,G< nx.

Suppose G is a connected reductive group. Yu proves that ry, is an irreducible supercusp-
idal representations of G [37]. If the residue characteristic of F is big enough (see (3.1)), Kim
proves that the set of 7y exhausts all the supercuspidal representations of connected G [17].

Note that every odd orthogonal group is a direct product of a special orthogonal group
with { £1 }. Hence, the above results of Yu and Kim, as well as those of Hakim-Murnaghan
in Section 3.3.3 below, extend to odd orthogonal groups. We will show in Section 3.4 that
they also extend to even orthogonal groups.

We call 7y, the supercuspidal representation of G constructed from the datum X.

3.3.3. — We now describe the equivalence relation on supercuspidal data.

DEFINITION 3.6. — Let £ = (x,T, ¢, p) and & = (x,T", ¢, p) be two supercuspidal data.
We say that ¥ and 3 are equivalent with each other if there exists an element g € G such that
(@ x=g-x,
(b) Adg(I") €T + gy o and,
© p®¢=(p®¢)oAd, as G-modules .

REMARK. — Since we assume Definition 3.4 (a) in the definition of supercuspidal data,
we may further assume Adg () eT + (Z@E") N 92,0) in Definition 3.6 (b) thanks to [19,
Lemma 5.1.3 (3)]. On the other hand, a depth zero data (x, T, ¢, p) is always equivalent
to (x,0,1, p ® ¢) which is considered as a typical representative of the equivalence class.

Let ¥ and ¥ be two supercuspidal data. Hakim and Murnaghan show that 7y and T,
are isomorphic if and only if £ and ¥ differ by an elementary transform, conjugation and
refactorization. Definition 3.6 could be read off from [11, Lemma 6.4, Theorem 6.7] by
observing that, in our situation, (a) Z(G) is anisotropic so there is no elementary transform;
(b) the refactorization corresponds to a refactorization of the semisimple element I" in terms
of G'-good elements, so the notion of “refactorization” also could be suppressed.

We now record their theorem as follows.

THEOREM 3.7 (Hakim-Murnaghan). — Suppose G is a connected classical group, a special
orthogonal group or an odd orthogonal group. Let ¥ and 3 be two supercuspidal data for G.
Then ity ~ s, if and only if T and X are equivalent with each other. O

We record following easy consequence of the equivalence of data.

) Note that (a) and (b) imply GO = Adg(GY)
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LemmA 3.8. — Suppose G be as in Theorem 3.7. Let & = (x, I, ¢, p) be a supercuspidal
data for G and let k = kx. Then the multiplicity space

(3.3) o = Homg, , (k, 7x)
is isomorphic to p as G2-modules.

Proof. — Let p be an irreducible component of p’. By [17, Proposition 17.2], p is a
cuspidal G2-module. By Frobenius reciprocity and Yu’s construction, 7y = . where
Y = (x,T, ¢, p). Now by Theorem 3.7, p = p. Hence, p/ is p-isotypic with multiplicity

mpy = HomK(p, HomK0+ (K,]TE)) = HomK(nz,ng) = HOInG(TL’E,JT):) = 1. O

3.4. Even orthogonal groups

We now show that the results of Yu, Kim and Hakim-Murnaghan extend to the even
orthogonal groups. The contents in this subsection is well known to the experts. We include
the proofs for completeness.

Let V be an even dimensional quadratic space. Let G = O(V) and °G = SO(V).

Suppose V is anisotropic, then there is nothing to prove. Suppose V is a two dimensional
hyperbolic space, then O(V) = O(l, 1). The subgroup SO(1, 1) in O(1, 1) is defined to be
a parabolic subgroup since it is the stabilizer of an isotropic subspace. This implies that all
representations of O(1, 1) are non-supercuspidal. Therefore it suffices to consider dim V' > 2.

For any subgroup H of G, we denote °H := °G N H. For a subgroup H of G and a
H-module 7, we will let 7 denote the Ad.(H )-module defined by “z(h) = t(Ad,-1 H).

3.4.1. — In this section, we only assume that G is a group and °G is an index two normal
subgroup of G. We first review some simple relationships between irreducible representa-
tions of group G and °G. Let ¢ € G \ °G. Suppose °x is an irreducible representation of °G.
Then Ind§G°n|o G = °m @ ¢(°m). The induced representation Il’ldoGGOJT 1s either (I) an irre-
ducible representation of G, which happens if and only if °x and € (°x) are non-isomorphic
as °G-modules or (IT) it is a direct sum of two irreducible G-modules.

Conversely, the restriction of an irreducible representation w of G to °G is either (I) a
direct sum of two non-isomorphic irreducible °G-modules or (II) an irreducible °G-module.

3.4.2. — As the basic step, we first show that the theory of depth zero supercuspidal repre-
sentation of connected group extends to G. Note that G, N (G \ °G) # 0 for each vertex
x € B(G).
Let 7 be a depth zero supercuspidal G-module. We consider its restriction to °G and relate
to the two cases (I) and (II) in Section 3.4.1 above.
(I) Suppose 7|, = °m1 @ °72. Then there is a depth zero minimal K-type (x, °p) of °m;
where x is a vertex in 3(G) and °p is a cuspidal °G-module. We fix ¢ € G, N(G\°G).
By [25], ¢°p % °p since “°my =~ °m, % °my. Hence, m = c-Inng p where p := Indong °0
is an irreducible cuspidal G,-module.
(II) Suppose 7|, G is an irreducible supercuspidal. Then it has a minimal K-type (x, %)
where x € B(G) is a vertex. Let p be the natural representation of G, on the
G o+-invariant subspace of 7. Clearly Plog, = °0. Hence n = c-Inng p since
c-Ind§

° . . .
Plog = C-Indogx °p = °m is irreducible.
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In summary, Condition D4 and related claims in [37, p. 590] hold for even orthogonal groups.

3.4.3. — The centralizer Zg(y) of a semisimple element y € g is called a twisted Levi
subgroup of G if Zog(y) is a twisted Levi subgroup of °G [37, p. 586]. Therefore a twisted
Levi subgroup is a product of general linear groups, unitary groups and at most one even
orthogonal group. Combining with Section 3.4.2 above, Yu’s definition of generic G-datum
in [37, p. 615] extends to the orthogonal groups without any change.

Our formulation of supercuspidal data follows Kim’s simplification [17, Section 5]. To
translate between Kim and Yu’s formulations, we see that the following variation of [17,
Lemma 5.5] holds for all twisted Levi subgroups appearing in the construction of supercus-
pidal representations:

LEMMA 3.9. — Suppose G is a twisted Levi subgroup of G such that Z(°é)/Z(G) is
anisotropic, y is a negative depth element in the center of the Lie algebra of G and x €
j}((v}), then there exists a character ¢ ofé such that ¢’|é . (g) = v (B(y,log(g))) for every

x,0

g (S G)C,0+'

Proof. — Since Z(°é) /Z.(G) is anisotropic, G cannot have any O(1, 1) factor or general
linear group factor. Therefore, the center of the Lie(G) is contained in a product of unitary
Lie algebra factors. Now the lemma follows immediately from its connected group version
[17, Lemma 5.5]. O

3.4.4. — In this subsection, we refer to Conditions GE1 and GE2 and the notation in [37,
§ 8]. Let X be a good element in G and let G := Zg(X) be the corresponding twisted
Levi subgroup. This is GE1 under our settings. The following modification of GE2 is clearly
implied by GE1 for orthogonal groups:

Cram (GE2’). — Let T C G C G be maximal torus o_fé and X € Lie(T). Let F be
the algebraic closure of F. Let X* be as in [37, p. 596]. Let W .= NG(F)(T(I*:))/T(F)
and Vi/ = Nvé(ﬁ)(T(F))/ T(F) be the absolute Weyl groups of G and G respectively. Then
Zw(X*) =W. O
34.5 - Let ¥ = (x,T,¢, p) be a supercuspidal datum of G as in Definition 3.4. Argue as
in [17, Remarks 5.10], there is a datum (G, x, 7, ¢, p) such that ¢; is represented by the good

element I and p @ ¢ = p ® ]—L-d:o ¢;. In particular, ny constructed in Definition 3.5 (h) is
the same as the K-type constructed following Yu’s recipe.

3.4.6. — We now explain how to extend the proofs in [37] to G.

THEOREM 3.10. — The representation y, := C-IndIG( nx constructed in Definition 3.5 (1) is
an irreducible supercuspidal representation of G = O(V).

Proof. — In [37, § 4], Yu defines conditions SC1;, SC2; and SC3; which do not assume
that the group is connected so they are applicable to G. We now verify these conditions and
then [37, Proposition 4.6] will imply that 7y is an irreducible supercuspidal representation
of G.

First we consider SC1;. Its proof in [37, Theorem 9.4] relies on [37, Lemma 8.3] which
still applies. In the proof of [37, Lemma 8.3], Yu uses conditions GE1 and GE2 which are
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satisfied by the discussion in Section 3.4.4. In addition, one also needs the existence of certain
integral model of the Moy-Prasad groups. This is clear by viewing the orthogonal group as
a symmetric subgroup of the general linear group, see [3].

The condition SC2; is about the existence of Heisenberg-Weil representation. This is taken
care of by Appendix A.2.1.

The proof of SC3; takes up [37, § 12-13]. Though it is long but the proof extends without
change to our case. O

3.4.7. — Next we extend the exhaustion result of [17] to G.

THEOREM 3.11. — Given (3.1), the set of wx, exhausts all the supercuspidal representations
of G = O(V).

Proof. — Let m be an irreducible supercuspidal representation of G. Then 7 contains an
irreducible supercuspidal representation °s of °G. By [17], °& = °moy for some supercusp-
idaldatum °Y = (x, T, °¢, %). Using T and x we define G? and K etc. By Lemma 3.9, we can
assume °¢ extends to a character ¢ of G°. Let « be the K-module defined by the procedure
in Appendix A.2.2.

We note that Ky+ = °Ky+. Define p/ = Homg (k. 7) to be the multiplicity space
of | Kyr It is a natural G%-module and the °p-isotypic subspace p'[°0] # 0. Pick any
irreducible G2-submodule p in p/[%] and define & = (x,T, ¢, p). Then x is a submodule

of ry = c-Indg ns. By Theorem 3.10, 'y, is irreducible so # = mx. This completes the
proof. O

3.4.8. — Finally we extend Theorem 3.7 to G.

THEOREM 3.12. — Let ¥ and 3 be two supercuspidal data for G = O(V). Then ns ~ 5
if and only if T and S are equivalent with each other in the sense of Definition 3.6.

Proof. — Suppose = = (x,T, ¢, p) and = = (%, 1, ¢, p). We argue case by case.

Case A. First we suppose G2 C °G. Then K := Kx C °G and ¥ is also a supercuspidal
datum for °G. Fixing ¢ € G \ °G, then TSlog = c-Inng ns @ c—IndZ?‘ic k) Nex, where
€Y :=(c-x,Ad. T,%¢p,p). On the other hand, let °p; be an irreducible ° K-submodule in p
and °X%; = (&, F,¢|0Gg,°[)1). Then TSlog = Tilog contains c-Indog Moy, - Now by [11],
thereisa g € °G such that °3 is equivalent to either = or ¢X. In particular, K C °G so that
p = °py is an irreducible °G? = G?-module. Hence,  and X are equivalent.

Case B. Next, we suppose that G2 N (G \ °G) # 0. Fix an element ¢ in G2 N (G \ °G).

(1) Suppose p|, G0 = °p @ “(°p) where % is an irreducible cuspidal °G2-module. Using
similar proof in Case A, we see that, up to G-conjugacy, x = x, " € T + gx,0 and
(pe® g[b)|o GO contains °p ® (gz§|0 G")' Hence, ¥ and ¥ are equivalent by applying the discussion
in Section 3.4.1to K > °K.

(2) Suppose p = p|, GO is already irreducible. Let °X = (x,T.¢|, G0,°p) be the
corresponding supercuspidal datum for °G. Then nex = 53|, K is the supercuspidal type
of °G determined by °¥ and 7z |,, = Indzgnog. Again by the argument in Case A, up
to °G-conjugacy, we could assume ¥ = x, ' € T + gy0, ¢ = ¢ and Plogo = [)|OG0.
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One observes that both p and p must be G2-submodules in the multiplicity space p’ in (3.3).
However o logo = Plogo is irreducible. Hence, p = p. O

REMARK. — Asa consequence of Theorem 3.12, Lemma 3.8 also extends to even orthog-
onal groups. We leave the details to the reader.

3.5. Tamely ramified supercuspidal representation for covering groups

We now state and review some results on tamely ramified supercuspidal representations
of G. We will supply some proofs although they follow almost immediately from those in
the algebraic group case. (© Depth zero representations of non-linear covers of p-adic groups
were studied by Howard and Weissman [12].

3.5.1. — The supercuspidal data for G is an extension of the supercuspidal data for G by a
splitting of the covering:

DEFINITION 3.13. — A supercuspidal datum for Gisa tuple T =(x,T, ¢, p, §) such that
¥ = (x,T, ¢, p) is a supercuspidal datum for G as in Definition 3.4 and

() &: K — Kisa splitting of the C*-covering K — K such that £ K.
0

= Elg
ot
where E is the canonical splitting defined in (2.3) and, K and K+ are defined in
Definition 3.5 with respect to X. The splitting £ induces an identification of K with
K x C*. Let

(3.4) £ K xC* = K.
denote the corresponding isomorphism.

REMARK. — Suppose &; is another splitting of K, then £ and &; differ by a character.
More precisely we have a character
(3.5) ug g K — C* givenby g, g(k)&(k) = E(k) forallk € K.
352, — Lets = (x,T, ¢, p, £) be a supercuspidal datum for G. We assume all the notations
in Section 3.3.2. We let
(3.6) Mg = (2 ®idex) 0 €7
which is an irreducible K-module and let

5 = c-Ind%'rTg.
THEOREM 3.14. — The representation 75 is an irreducible supercuspidal representation.

(©) The essences of most proofs for the algebraic groups are related to the positive depth parts. Hence these proofs
translate to our case by identifying the positive depth parts via the canonical splitting (2.3).
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Proof. — Let I(ns) = {g € G| Homexnx(n=,4nx) # 0} be the set of intertwiners
of nx. We will follow the proof of [37, Proposition 4.6] in which Yu proves that

(3.7) I(nz) = K.

(Also see the proof of Theorem 3.10 for even orthogonal groups.) In order to adapt Yu’s proof
to our theorem, it suffices to show that the set

1Gig) = { & € G | Homs gz (75, ¥75) # 0 |
of intertwigers of 75 is exactly K. Fix ge G and let g beitsimage in G. Note that the adjoint
action of G factors through G. Then
(a) #K N K = ¢K N K which we identified with (¥ K N K) x C* using £ in (3.4), and
(b) §,ﬁ§|§imk‘ = (¢ns ®idc) o E_l|gk‘mk‘-

Therefore, we have I(j5) = I/(;_g/) which is K by (3.7). O

DEFINITION 3.15. — We call 75 the supercuspidal representation of G attached to the
datum X.

3.5.3. — Now we describe the equivalence of supercuspidal data for covering groups.

DEFINITION 3.16. — Let T = (x,T,¢,p, &) and T = . T.¢,p, é) be two supercuspidal

data for G. We say that S and ¥ are equivalent data if there exists an element g € G such
that

(@) x=g-x,
(b) Adg(f‘) €I' + gyx,0and
7—1 ~ ~
© (@) Ridex)0of = ((p® ¢) Ridex) 0 E7! o0 Adg as G¢-module 7.

We remark that Condition (c) is equivalent to

N PpO®P® e = (p®P)o as G}-module where ju; ., is defined by (3.5) an

() g i ( ) o Adg G;’ dule wh i e defined by (3.5) and
£8 1= Adg—1 of o Adg.

Since our choices of splittings agree on the pro-unipotent part, Ki ge is a character that is
trivial on G{ ., i.e., a character of G} := G? /G .. Condition (¢) is simpler and seems
easier to check because Wi ge is trivial in most of the cases (cf. [26]).

The following theorem is a variation of a result in [11]. The reader may consult [11] for
notations when reading the proof and should note that the notations in the proof may not
agree with other parts of our paper.

THEOREM 3.17. — Let & = (x, T, p.$.8) and 3 = (x, f‘,[),d},é) be two supercuspidal
data. Then 75 = fri if and only if S and T are equivalent with each other.

(M Here Adg acts on G since the adjoint action factors through the center.
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Proof. — Suppose T and ¥ are equivalent. By definition 75 and 7]% are isomorphic up
to G-conjugacy so 75 = fri.

We now assume 75 = 7%. Let K and K be the compact subgroups determined by (x, I')

and (x, I") respectively. Let o — ()" denote the operation of taking contragredient.

In order to apply the result in [11, § 5], we make following definitions. We let  := G x G
equipped with an involution € sending (g1, g2) to (g2, g1) and identify G with the diagonal
subgroup of (. Let £ = (x, T, p,¢) and ¥ = (x,—I",p¥,¢"). We view W := ¥ x XV asa
supercuspidal datum for (.

The G-module T ® (fr;j)v factors to a G-module and we have
C = Homg (g ® 7Y, 1) = Homg (c- Ind (772 o ) 1)
= Z Hom (5 ® ¢ 7’% ,1).
geK\G/K
Therefore, exactly one term of the above summation is non-vanishing and of dimension 1.
By replacing ¥ by its G-conjugate, we may assume that

(3.8) Homz =(75 ®'ﬁf’§,1) =

By Section 2.3.1 §| Kynky . Hence (3.8) implies

= é |K+ ﬂK+
HomK+mK+ Wr ® 1,0_1:‘, 1) #0.

This means W is weakly compatible with the involution 6 in the sense of [11, Definition 5.6].

Now [11, Proposition 5.7] implies that W is weakly @-symmetric up to a conjugation of K x K .

By the definition of weakly §-symmetric in [11, Definition 3.13], we may assume I' = I" and
0G0 =Zg(M) =Zg() = G°

Since we are in the “group case”, the theorem could be proven by reducing to the depth
zero case: Thanks to [17, Lemma 5.5], we can fix a character ¢y of G° extending yr| G0,
Con51der the depth =zero supercuspidal data o= (x,0,1, PR ® Py, E) and

= (x,0,1,p ® ¢ ® o 1,5) Let 7 %, and 7 75, be depth zero supercuspidal K-types

of G0 defined by data $¢ and o respectively. Restricting (3.8) to G% N Gg gives
0 # Homgongo (75 ® ’ﬁ)\é, 1) = Homgongo (75, ® Tfé ,1H)em
x x x X 0
where m is certain multiplicity. On the other hand, Homgomgg (5, ® 'ﬁZ ,1) # 0 implies

the depth zero supercuspidal G°-modules Ty, = ¢ Ind~0 N5, and 7 g, = Ind~ 5, are

isomorphic to each other. Since all depth zero unrefined mmlmal K-types are assomates (see
[12, Proposition 3.6]), there is an element g € G° such that x = g-x € $(G°) = Brea(G?)

and (p ® ¢ ® g5 ") Bidex) o€ 1o Ady = (0 ® ¢ ® ¢py!) Bidex) 0 & as Go-modules
This finishes the proof of the theorem. O
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3.5.4. — Wewill extend the results of [17] to every covering group G appearingin a type I dual
pair. More precisely we will show that the set of 75 exhausts all the genuine ® supercuspidal
representations of G under the assumption that p is big enough. Gan and Kim are currently
preparing a manuscript on such kinds of non-linear covering groups [9].

Since all covering groups in this paper occur in a type I dual pair, these are split central
covering groups except the odd orthogonal-metaplectic dual pairs. Therefore Kim’s exhaus-
tion result applies except for metaplectic groups. We now show that the exhaustion for meta-
plectic groups could be obtained from that of odd-orthogonal groups:

COROLLARY 3.18. — Let V' be a symplectic space over F of even dimension n. Let Mp be
the metaplectic C*-cover of Sp(V’). Suppose p > max{2n + 3,ep(n + 1) + 2} where ef is
the ramification index of F/Qp. Then every genuine supercuspidal representation of Mp is of
the form w5 where Sisa supercuspidal data of Mp.

Proof. — Let 7’ be an irreducible supercuspidal genuine Mp-module. By the conservation
relation [35], there is an odd dimensional quadratic space V such that (i) dimg V <n + 1,
(i) (G, G") = (U(V), U(V")) form a type I dual pair so that G’ = Mp and (iii) 7’ = Oy, v (7T)
for an irreducible supercuspidal genuine G-module.

By Proposition 3.1 both U(V) and U(V’) satisfy Kim’s hypotheses [17, § 3.4]. Hence
there is a supercuspidal data ) such that 7 := 3 by [17]. This is the starting point of
the proof of 1.3 (ii) of the main theorem in Section 9.1. Using Proposition 9.1, the proof
gives supercuspidal data ¥ and ¥’ such that ) and X are equivalent (i.e., 7 = 75) and
a’ = 7}%,. In particular, 7' is realized as a supercuspidal representation of G’ attached to the
supercuspidal datum 5. This finishes the proof. O

REMARK. — The proof of Proposition 9.1 does not depend on Kim’s work on exhaustion
except a variation of [17, Proposition 17.2]. Hence there is no circular reasoning.

4. Good factorizations and block decompositions

In this section, we first construct GL-good factorizations which will be used in Section 6.
Then we will define a notion of block decompositions for supercuspidal data. The theta
lifting map of supercuspidal data in Section 5 is defined based on this notion. We remark
that parts of the treatment resemble those of [33]*§ 3.

4.1. GL-good factorization

We now construct a good factorization of a tamely ramified semisimple element I € g
following Howe [15]. Let F’ := Z(D) be the center of D which is also identified with the
center of Endp (V).

Let A := F'[T'] € Endp (V). Then A is isomorphic to a product ]_[jGG F; of (tamely rami-
fied) finite extensions of F’ where J is a finite index set. Furthermore, we have factorization
of the A-module V' = (P, V; where V; is an (F}, D)-bimodule. Since I'* = —T', * induces
an involution on A and on the set J respectively. An orbit of the *-action on J has at most 2
elements. Therefore we have a decomposition of J and A4 such that

® Here “genuine” means the restriction of the representation on C* is the scalar multiplication idcx .
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(Al) 3 =3JoUJ1Ux(@1)and A = F'[T'] = ]_[j630 Fj x Hjéﬁl (FjJr X Fj_) where FjJr = F;
and Fj_ = Fyj for j € Ji;

(A2) the *-action is an involution or the identity © on the field F; when j € Jo.

(A3) the x-action permutes F j+ and F I3 when j € J;.

LEMMA 4.1. — Let °G° be the connected component of G° := Zg(I"). Let g° be its Lie
algebra and let gI° := Zgi,v)(I'). Then

(i) Z(g!°) = F'[T);
(ii) the center Z(°G°) is anisotropic if and only if (a) J1 = 9 in the decomposition ((Al))
and (b) there is no SO(1, 1)(F) factor in °G°;
(iii) Z(g®) = F'[T'] N g when the equivalent conditions in part (ii) hold.

Proof. — Let D; := F; ®p/ D. Then D; is a central simple algebra over F; and
D[I'l =[], D;. Hence gl® = Zgi,,v)(T') = []; Endp, V; where each factor gl; := Endp, V;
is a central simple algebra over F;. This proves part (i).

The *-action permutes gl; and gl,(;). If j € Jo, then the form (, ), restricted on V; is
non-degenerate. If j € Jo and F; # F’, then the x-action on F; is nontrivial since
(F|V,-)* = _F|V,' In this case, U; := {g € Endp,(V}) | g*¢ = idy, } is a unitary group
defined over the x-fixed point sub-field F* of F;. In summary, we have

G'=J]GLp,v)x [] Uix [] uom.
JE J€30 J €30
Fj#F’ Fj=F’

Now parts (ii) and (iii) follow. O
By Lemma 4.1 and Definition 3.4 (b), we may and will assume that J; = @ and (A3)
will not happen since we only study those I which are contained in supercuspidal data.

Lemma 4.2 and Proposition 4.3 below also apply to J; # @. We will leave the details to
the reader.

LEMMA 4.2. — Let y € g be a tamely ramified semisimple element. If it is GLp (V')-good,
then it is G-good.

Proof. — 1t is enough to prove this lemma after a base change to a tamely ramified
extension of F such that I is contained in a split Cartan subalgebra of g. Since the set of

roots of g is the restrictions of a subset of roots of glp ('), the lemma follows. O

ProOPOSITION 4.3. — Let T be a tamely ramified semisimple element in g. Then there is a
G-good factorization T = Z:‘i:—l I such that T; is GLp (V)-good for 0 <i <d.

The construction of the factorization is essentially the Howe factorization.

©) This is because F; could be equal to F in certain cases. For example, if D = F and I is not a full rank matrix,
then F[I'] = F & (F[x]/P(x)) where P is the minimal polynomial of T".
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Proof. — Wefix a uniformizer wp of F. Werecall that A = F'[I'] = [, ¢4 F; isa product
of fields.

First we assume that the product has only one factor, i.e., I' # 0and A = F’[I'] is a field.
Let e4 be the ramification index of A/ F. Suppose I' has valuation % such that k and e are
coprime. Consider b := w;k I'¢. Thenb € 04 \pa. Let C be the set of roots of unity in F'[T].
Then (b + p4) N C has a unique element, say b.

Cramm 1. — The equation w;kye = b has a unique solution y = y in A such that T = J

k
(mod p 4 eAH). Moreover p* = —y, ie., J € g.

Proof. — Note that p 1 e. Hence themap 1 + pg4 — b + p4a = b(1 + py) given
by 1 4+ x + b(1 4 x)¢ is a surjection (in fact it is a bijection) for any b € 04 \ p4. Therefore
w;kye = b has a solution y = I'(1 + x) for certain x € p4. On the other hand, all solutions

of w;k ye = b are of thke form y := ¢y such that ¢® = 1. However among them only
ceatl

y satisfies ' = y (mod p ). This proves the first assertion of the claim.

Both * and —y are solutions of w;kye =b* = (-1)hand p* = T* = - = —

k
(mod p g eAH). Hence p* = —7 by the uniqueness of the first part. This finishes the proof
of the claim 0

Next we consider the general case when F'[I'] = A = [[;; Fj is a product of fields.
Let '/ denote the F; component of I' to F;. Let —r; denote the valuation of I'/ and let
—r = % denote the depth of I" where k and e are coprime integers. Let b; = w;k I} e

or; \ pr; when r; = r. Define l;j and y; as before. Let f1 =}, _, 7).
CLAIM 2. — The element B, is GLp (V)-good.

Proof. — We could base change to a tamely ramified extension E of F which at least
contains a e-th root wg of wr and sufficiently many roots of unity so that §; splits over E.

Each factor j; satisfies w % Vi o= b; and b; is a certain root of unity. The eigenvalue
of B1 is of the form {;w% where {; is a root of unity. The evaluation of B; on any root
(with respect to any split maximal torus in gl(V) ®f E containing f;) is a difference of
two eigenvalues. It is either 0 or has valuation IEC = —r. This proves the claim. O

Let IV = T" — 8. Apply the same construction to I'” and stop if depth(I'') > 0. Note that
depth(I'”) > depth(I"). Moreover the denominator of depth(I'’) is bounded by the maximum
of the ramification index of F;/F, since I'' C F’[T']. Therefore the procedure stops after
finitely many steps. We get 81, 82, ..., Ba for certain d’ > 1. If B; & F’, then we define
d =d,Ty=0andTy;_; = Biforl <i <d.If 81 € F', then we defined = d’' — 1,
Iy=piandTy_; = 14, for1 <i <d.Finallyweset T_y =T — Y% T

Now ' = Zfz_l I'; is the required factorization. O
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4.2. Block decomposition

Let ¥ = (x,T, ¢, p) be a supercuspidal data of G = U(V).
Let I'/ be the F; component of I" in [] jey Fj in Section 4.1 (A1). Let

4.1) (br>.c.> Py ={—val/)>0|,j €3}

be a set of positive numbers arranged in decreasing order where b is the size of the set. We
set
=[] F VI=I=<D
val(T/)=—"1r

For ! = 0, we define U4 := ]_[j F; where product is taken over those j € J = Jo such that
I'” =0orval(I'’) > 0.

Let 1 and ‘1 be the multiplicative identity elements of A4 and 4 respectively. Then we set
'T="1.T-"1and 'V ="1.V. These give

b b b b
(4.2) A=Fr=[]4 1=p1. T='T and V=PV
1=0 1=0 1=0 1=0
It is easy to see that {, ), restricted to V is non-degenerate and V = @ﬁ;o vy is

an orthogonal decomposition 19, We call (4.2) the block decompositions of A, 1, T and V
respectively.

DEFINITION 4.4, — (a) We say that a supercuspidal datum ¥ = (x, T, ¢, p) is a single
block of positive depth r if T'/ has the same valuation —r < O forall j € Jin Section 4.1 (A1).
Equivalently this means depth(I') = —r, ' = T'and V = 'V in (4.2).

(b) A depth zero supercuspidal datum X = (x, T, 1, p) is called a single block of zero depth.

ProrosiTiION 4.5. — Let ¥ = (x, T, ¢, p) be a supercuspidal datum of G. Then there exists
an orthogonal decomposition of V = @?:0 'V such that
() T = @’_, 'T where 'T' € Endp('V) Ng;
(i) br >---> ¥ > 0= % where 'r = max {—depth(T"),0};
(ifi) G® = [T/ 'G°
(i) x = (%, ..., %) € B(°G%) x---x B(*G®) — B(G);
V) ¢p="%w--wlpandp="%m---®8pasG? = ]_[?:0 lG?x-modules;
(vi) 'S = (!x,'T, !, !p) is a single block supercuspidal datum of positive depth 'r for 1 <
[ <b,;and
(vii) 2% = (%, °T, %, °p) is a single block supercuspidal datum of zero depth.
Here G° := Zg(T"), 'G :== G NEndp('V) = U(*V) and 'G° = Z:5('T") for 0 <1 < b (¢f.
Section 4.1).

Proof. — The proposition is straightforward probably except (iii). Part (iii) follows easily
from the fact that ‘1 € F/[I"] forall 1 <[ < b (cf. (4.2)). O

Motivated by the above proposition, we make the following definition.

a9 Ifwe set T—; = 0, then OV is the kernel of .
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DEFINITION 4.6. — Retaining the notation in Proposition 4.5, we write ¥ = @?:0 'y
and we call it the block decomposition of X (cf. next section). In this situation, we say that
Y has b blocks (by counting from 0).

In fact, the block decomposition is unique. See [33, Remark 3.3 (iii)] for an elementary
argument.

4.3. Direct sum of supercuspidal data

We now define the direct sum of single block supercuspidal data with different depths.

LEMMA 4.7. — Suppose b is a positive integer and { 'S : 0 < [ < b} is a set of supercuspidal
data for U('V') such that

(@) 'V is an e-Hermitian space;

(b) °% has zero depth;

(c) 'S is single block of positive depth 'r for 1 <1 <b;
(d) br>-->1r>0.

LetV = @5’:0 'V be the orthogonal direct sum of e-Hermitian spaces. Define x, T, ¢ and p
by the formula in Proposition 4.5 (1), (iv) and (V) respectively.

Then X = (x, T, ¢, p) is a supercuspidal datum with depth r for U(V) called the direct sum
of { '3} and we write ® = @, '%.

REMARK. — This construction also induces a notion of direct sum on the set of equiva-
lence classes of data.

Proof. — Werecall G® = Zyy(T') and !G = U('V) asin Proposition 4.5. We claim that
G° = I !GO, Indeed this follows from the observation that, after a certain base change,
v is exactly the direct sum of eigenspaces of I' whose eigenvalues have valuation —r if
1 < [ < b. The lemma now follows from this claim and we will leave the details to the
reader. O

5. Theta Lifts of supercuspidal data

The purpose of this section is to define the notion of theta lifts of supercuspidal data.
We first define the lift for a single block of zero depth or positive depth. The general case
is defined using direct sum (cf. Section 4.3).

Recall that f is the residual field of F and fp is the residual field of D which is at most a
quadratic extension of f. We fix an uniformizer wp € pp such that 7(wp) = epwp and
€p € {£1}. We retain the notation of Section 2.1.

5.1. Theta lifts of depth zero representations

Local theta lifts between depth zero supercuspidal representations were studied by Pan
in [28]. It is reduced to theta correspondences over finite ficlds. We summarize these results
below.
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5.1.1. — We recall the definition of the dual lattice in Definition 2.3. A lattice L in V is called
a good lattice if L*pp C L C L*.

The set of vertices in J3(G) naturally corresponds to a subset of good lattices. 1D

Let L be a good lattice in V corresponding to a point or a good lattice x € B(G). Then

(@) Gx={geG|gL=L}

(0) Gyor ={geGl(g—DL* SL.(g— DL S L*pp}.

(¢) The fp-modules £ := L/L*pp and £* := L*/L are equipped with fp-sesquilinear
forms induced by wj! (, )y and (. )y respectively. Clearly ¢ is epe-Hermitian and
£* is e-Hermitian.

(d) We have Gy /G, o+ = U(£) x U(L¥).

The Witt classes of £ and £* are completely determined by the Witt class of V' but
independent of the choices of L in V. Indeed, the anisotropic kernel of the Witt class of £
(resp. £*) is equal to Lin/L, pp (resp. Ly ../ Lmax) Where Ly (resp. Lmax) is @ minimal

(resp. maximal) good lattice.
Let & be a Witt class of e-Hermitian D-modules. Let .7 and .7* be the corresponding
Witt classes of £ and £* determined by &/ . Then it is clear that there is a map
Y: IxT*— G
U, Y—V

.1

such that dims, £ + dims, £* = dimp V, and £ and £* are constructed from a vertex

x € BUW)).

DEFINITION 5.1. — (a) We say that a pair (x, p) is a depth zero K-type for G := U(V)
when x is a vertex in (3(G) and p is an irreducible G, := G /G, o+-module.

(b) Suppose G is a certain central C*-covering of G in (a). We say that a pair (x,p) is a
depth zero K-type for G when x is a vertex in J3(G) and p is an irreducible
Gx := Gx/Gy o+-module.

(c) We equip an equivalence relation on the set of depth zero K-types by G-conjugacy.
(d) A G-module 7 is said to have a depth zero K-type (x, p) if p occurs in 77 &

We warn that the depth zero K-type in (5.1) (a) and (5.1) (d) above is more general than
the depth zero minimal K-type in [24, 25], where p must be cuspidal.

Clearly, a depth zero supercuspidal datum ¥ = (x,0,1, p) corresponds to the depth
zero K-type (x, p). This gives an embedding of the set of equivalence classes of depth zero
supercuspidal datum to the set of equivalence classes of depth zero K-types. The image
precisely consists of the equivalence classes [(x, p)] where p is cuspidal.

(D Suppose x is a vertex in J3(G) and & is the corresponding lattice function, then . +— %+ gives the
correspondence. The subset of good lattices could be proper, see [38, Example 2.2.3.1].
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5.1.2. — We review some basic results of theta correspondences over a finite field. Let
(U®),U(l)) be a type I reductive dual pair in a symplectic f-space W and let @ww be the
oscillator representation of Sp(W) with respect to the additive character ¥ (cf. Section 1.1).

DEFINITION 5.2. — Let p and p’ be irreducible representations of U(£) and U(£’) respec-
tively. Then p and p’ are said to correspond with each other if p ® p’ is a submodule
of oWl OXUE)’ Such correspondence is not one-to-one in general, so we can only say that
P’ is “a” theta lift of p.

If p is cuspidal, then there is at most one p’ which corresponds to p. In particular, when

restricted to cuspidal representations, theta lift still provide an one-to-one correspondence
(cf. [23, Section 3.IV.4]). In this case, we write p’ = 6 ¢/ (p).

5.1.3. — In the definition of lift of data, a zero dual pair (i.e., £ = 0 or £ = 0) may occur as
the degenerate case (12,

DEFINITION 5.3. — A type I reductive dual pair (U(£), U(¢’)) defined over the field f is
called a zero dual pair if £ or £’ is the zero vector space.

In this case, Sp(¢ ®;,, ¢’) degenerates to the trivial group and the corresponding oscillator
representation is the trivial representation. Since the roles of £ and £’ are symmetric, we will
assume that £ = 0. Then U(¥) is the trivial group and it has only one representation, namely,
the trivial representation 7 := 1y). Now 6y ¢ () is the trivial representation of U(¢’). Note
that, the trivial representation of U(¢’) is cuspidal if and only if £’ is anisotropic.

5.1.4. — Fix a Witt tower & of ¢/-Hermitian D-modules. The discussion in Section 5.1.1
also applies to & and we add primes ’ to extend the corresponding notations.

We fix V' € & and a vertex x’ € B(G’). Then (U(£), U(¢*)) and (U(£*), U(¢)) form
two reductive dual pairs over the finite field fp. Here the zero dual pair may appear.

DEFINITION 5.4. — Let (x, p) and (x’, p’) be two depth zero K-types of G and G’ respec-
tively. We write p = py ® pg» and o' = pp B pg« where p, is an irreducible U(¢)-module
with o € {£,0*, 0/, 0™ }. We say (x', p) is a (theta) lift of (x, p) if pg« is a theta lift of pg and
o 1s a theta lift of pg«.

Now we are ready to state a theorem of Pan.

THEOREM 5.5 ([28, Theorem 5.6]). — Let (G,G') = (U(V), U(V")) be a type I dual pair
over F and ' = Oy y/ (7). Suppose & has a depth zero K-type (x, p). Then there exists a depth
zero K-type (x, p) and a theta lift (X', p') of it such that (see (2.4) for the definition of &x x)

(@) p=(pwidex) o €L, and
(b) 7’ has depth zero K-type (x', §') where §’ := (p/ ® idcx) o 5;;/ O
On the other hand, suppose (x/, p') is a theta lift of (x, p). Let § and § be defined as

in Theorem 5.5 (a) and (b). Then the G x G},-module 6 ® p" occurs in .7 (%p) 5, Where
B = B xr-

(12) Similar notion also applies to dual pairs over other fields.
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5.1.5. — Now let ¥ = (x,0,1,p) be a depth zero supercuspidal datum of U(V') and let
" be a fixed Witt tower of ¢/-Hermitian spaces. Then we have £, £*, 7', 7" defined in
Section 5.1.1. Moreover, p = pg ® pg= with py and pg= cuspidal.

Let pg= 1= 0,7+ (p¢) be the theta lift of py such that it is at the first occurrence, say
0* e 7, with respect to the Witt tower .7"*. Likewise define £’ and the U(¢')-module
pr = Bp= z/(pg=). Note that py ® pg+ is a cuspidal representation. By (5.1), let
V' =Yt/ £*) € " and let x’ be the corresponding vertex in B(U(V")).

DEFINITION 5.6. — Define X/ := (x/,0,1, py ® pgr+) € Py and call it the theta lift of T
with respect to the Witt tower &/ ' Furthermore, the theta lift of data map vy, g is defined
by

By, g ((Z]) = [Z]
when restricted on the set of depth zero supercuspidal data. By an abuse of notation, we also
write " = dy,y/(E) = Py, g7 (X) where X7 is any element in the equivalence class [E'].

The next corollary follows immediately from the above discussion (cf. [28, § 9]).

COROLLARY 5.7. — The Main Theorem holds when restricted on the set of depth zero
supercuspidal representations. O

5.2. Theta lift of a single block of positive depth

Throughout this subsection, we assume that ¥ = (x, T, ¢, p) is a single block datum of
positive depth r for G = U(V). Let s := r/2 and .£ = %,. Since x is a point in B(G?), we
have

(T1) %_, =T.% forallt e RUR™, and
(T'2) each elementin I" + g, _,+ is invertible with depth —r.

DEerINITION 5.8. — For I' € g which is invertible in gl(V), we define Vr to be the
(—e€)-Hermitian D-module with the same underlying D-module as V' and equipped with the
form (v1, va)y,. := (v1,Tv2)y for vy, vz € V7.

REMARK. — In fact, there is an element w € W := Homp (V, Vr) such that M(w) = T.
Let ¢ € Homp (V, Vr) be the identity map with respect to the underlying D-modules of Vp
and V. Letw := (. Thenw* =T o/ ! and M(w) = w¥w =T,

5.2.1. — In this subsection, we let V' be an ¢’-Hermitian D-module such that

dimp V' =dimpV and € = —e.

LEMMA 5.9. — Suppose that there is a w € Homp (V, V') such that M(w) € T + g, _,+.
By (T'2)), w is an isomorphism of D-modules. We define a lattice function in V' by
(5.2) L= wLgs.
Then

(1) Jump(¥’) = Jump(Z) — s,
(ii) the lattice function &’ is self-dual and
(i) &' is the unique self-dual lattice function on V' such that w € (£ ®p £’)s.
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Proof. — (i) This is clear from the definition of .#”.
(i) Forany v € V, (wv,.Z]), = (wo,wZiis)y = (v.w¥wsys), = 0.T L)y =
(v, Z—s)y . Therefore (£))* = (WL__g+) = .Z/ﬁ, ie., . is self-dual.

(iii) Clearly, w € (£ ®p £’)_; by the definition of £”. Suppose £ is another self-dual
lattice function such that w € (£ ® £")_s. Then &) = w.%4s € £/ forallt € R. Taking
the dual lattices gives & | = (£))* € (£))* = &’ forallt € R. Hence & = %], [

5.2.2. — The following proposition shows the surjectivity of moment maps on certain cosets.
This is a key proposition in the single block of positive depth case.

PROPOSITION 5.10. — Let &’ be a self-dual lattice in V' and B = £ ®p £’ Let
w € B_s. Suppose that M(w) € T + g, _,+. Then
MW+ Z0) = M) + gx—4: V1 > —s.

Proof. — We first prove the following claim.

CLAwm 1. — The map

w+ % — (M(w) + gx,—s+t) /gx,—s-i-t"' - g/gx,—s+t+

given by w' = M(w') 4 g, _;y,+ is a surjection.

Proof. — Letb € %,. Since t > —s, we have
Mw+b)=w+b)*w+b) =w w+w¥b+ b w + b¥b

(5.3)
=Mw)+w*b+b*w (mod g, 4 +).

On the other hand, by Lemma 5.9, X + wX gives an isomorphism gl(V), .4, —> %;.
Hence we assume that b = wX for some X € gl(V), 4.

Pick a good element I € M(w) + Ox—r+ =1 + g5 _,+. We have
w¥bh 4+ b¥w = w¥wX + (WX)*w = M(w)X + X*M(w)

(5.4) . e
=I'X+X*T (mod g, _s4,+).

We set gl(V) x4y, = 8UV )y s, /8UV )y s, fOr 11 < 5. Now Claim 1 reduces to the following
claim.

Cramm 2. — Themap B: UV )y syriste+ = Ox —str—sto+ defined by X I'X + X*T s
surjective.

Under the -action, gl(V), sy, = @x—s+1 D g[(V);ZJ_FSIH where g[(V);ZJ_FSIH is the
x-invariant subspace. Under the I"-action, we have decomposition g = § @ g+ where
g =74 (I') and g+ is the orthogonal complement of § in g under the G-invariant bilinear
form B. We also have a similar decomposition of gl(V'). Since I is *-skew invariant, these
decompositions are compatible with each other.

First assume that X € gy g4+, 1.6, X* = —X. Then (X) = I'x —xI' = [f‘, X].

Now [18, Lemma 2.3.4] states that X +— [f‘, X] induces an isomorphism

xl ~ %l
(55) :3 gx,s+t:s+t+ - gx,—s+t:—s+t+‘
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. _ v VJ_ . . v .
Since Ox,—s+ti—s+1t = Bx,—sr:—s+1+ ®gx,—s+t:—s+t+ it remains to show that Ux,—s+t:—s+t+ 18

. . v v vk, +1
in the image of 8. Let gl = Zgy)(I"). Suppose X € g[;,;t C gl**!  Then

X,5+t"
(5.6) BX)=TX+X*T=TX+XI"=2I'X.
. . . ovktl B v v . .
Therefore B restrict to an isomorphism gl, ¢, —> gl, _ .\, = gx,—s+¢. This proves Claim 2
and also Claim 1. O

We now prove Proposition 5.10. By (5.3) we have M(w + %;) € M(w) + gx,—s+:. Fix
an element y € M(w) + gx,—s+¢. Clearly M(w) € y + gx,—s+:- Let wy := w and t; := ¢.
We construct sequences { w; } and {¢; } inductively. Suppose we have M(w;) € y + gx,—s+4
for some w; € w + %B;. Apply the above claim with w = w; and r =¢;, we get a
certain b; € 9By, such that M(w; + b;) € y + g +. Let w;j4+1 := w; + b; and

X,—s+t;
tiv1 =max{t |t >t;, gx—s+¢ .+ ) € Jump(gx) where g denote the lattice func-
1

= gx,—s+
tion on g corresponding to the Moy-Prasad filtration. Clearly M(w;+1) € y + g,

,—s+ti+ -
Y + Ox,—s+1;4,- Since Jump(gy) is a discrete set in R, ; — oo and w; converges to some
Weo € W+ %;. Since the moment map is continuous, we have M (wyso) = lim; 0 M(w;) = .
This proves the proposition. O

Now we present some corollaries of Proposition 5.10.

COROLLARY 5.11. — The set of self-dual lattice functions &' in V' such that
(T + gy, +) "ML ®p L)) # 0
is a G'-orbit.

Proof. — Let ¢ and .Z” be two self-dual lattice functions in the set. Letw € (£ ® &)
such that M(w) € T + g, ,+. By Proposition 5.10, we may assume that M(w) = T'. By
Lemma 5.9 ¢ = w.% 4 for all ¢. Similarly we pick a 'w € (¢ ® £”)_; such that
M('w) = T and ¢ = 'w 4, for all 1. Note that " is invertible. By Witt’s theorem

(see [8, Section 1.11] and [14, Thm 3.7.1]) there is g’ € G’ such that 'w = g’w. Hence
KL= WS = gwlis = g L] forallt. O

We recall the definition of ¥ in Definition 5.8.
COROLLARY 5.12. — The set of €' -Hermitian D-modules
F={V'|dimp V' =dimp Vand M~ (T + g, _,+) # 0}
is the isometry class of Vr.
Proof. — By the remark after Definition 5.8, we see that 2}, contains Vr. Let V' € Ur.. By
Proposition 5.10 there exists a w € Hom(V, V') such that M(w) = I'. Now (wvy, wvz)y, =

(v1,Tv2)y = (v1, v2)y,. forallvy, va € V. In other words w gives an isometry from Vr to V'
This proves the corollary. O

Corollary 5.12 shows that Vr is the unique €’-Hermitian D-module V' up to isometry such
that dimp V' = dimp V' and there exists a w € W such that M(w) € T" + g, ,+.
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5.2.3. — Recall the notation in the beginning of Section 5.2, where ¥ = (x,[,¢,p) is a
single block supercuspidal datum of positive depth r. We assume that V' is isomorphic to V.
Let W = V ®p V' and fixaw € W such that M(w) = T. Let G’ = U(V’) and let
x" € B(G’) be the point corresponding to the lattice function .#”’ defined by (5.2). We define
I":=M@w)=ww*=uwlw'eg.
PROPOSITION 5.13. — Let I’ = Z;i:_l Iy be a GLp(V)-good factorization of T in g
(which always exists by Proposition 4.3). Let

Ii=wlhw "
Then FJ( egandl’ = Z;-i:_l F]{ is a GLp (V')-good factorization of T in g'.
Proof. — Since I' commutes with I';, we have
TH* =@ H*Trw* = - 'Tw* =—w*)~'[Tw™!
=—w" 'IMjw™ =—whw ' =-T.
This shows that I'} € g’. Note that w: V' — V' is an isomorphism of D-modules. Hence
I'= Zj’z_l I} is a GL(V’)-good factorization. O
REMARKS. — We collect some easy consequences of Proposition 5.13.
1. By Lemma 4.2, T/ = Z}i:_l I'} is also a G’-good factorization.
2. T satisfies Definition 3.4 (a) with respect to G’ and therefore
G°:=Zs(T),....T{) =Ze/(I).
3. We have an isomorphism
(5.7) a:G% = G defined by g wgw .
Thanks to Lemma 5.9,  restricted to an isomorphism | G = GU.
4. The point x” € B(G'°) is also a vertex.
Let ¢’ ;= ¢p*oa~'and p’ := p* oa~! viewed as a character and a cuspidal representation
of GI%/ G;‘Z’ o+ Tespectively. Clearly
(5.8) S =T ¢ 0)
is a single block supercuspidal datum of positive depth r for G’ = U(V”).

The following lemma shows that (5.8) is well-defined up to equivalence classes.

LEmMMA 5.14. — Let ¥ = (x,T, ¢, p) be a single block datum of positive depth r. Let
w € M~YT) and define E/E,w as in (5.8). Then the equivalence class [E’E’w] is independent
of the choice of the element in the equivalence class [X] and w.

Proof. — First we fix ¥ = (x,T,¢,p) in [Z]. For any w € M~YI), let E’E’w denote
the datumn defined via (5.8). Since M~1(I") is a single G’-orbit, we see that elements
in { E’E’w | w e M~1(T") } are G'-conjugates of one another.

Suppose £ = (x.1,¢.p) € [Z]. We will show that 5., and E/i,u'; are equivalent.

By G-conjugacy, we could assume x = x and I’ = I' + y such that y € Z(g°) N gx,0 C F'[T]
(see remarks after Definition 3.6 and Lemma 4.1).
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CrLam. — Let F'[T]¥ = F'[T] N g[(V);jr+1 be the set of elements in F'[T"] which are
s-invariant and whose depth is not smaller than r. Then there is an element ¢ € F'[T']} such
that M(w(1 + ¢)) = T..

Proof. — By a similar calculation asin (5.3), (5.4), we have M(w(1+c)) = T+T'(2c+c?).
Then M(w(1 + ¢)) = I"if and only if 2¢ + ¢2 = I'"!y. Observe that F/[I'] N gl(V)*+1 is
a product of non-Archimedean local field(s) and F’[T'[* is an ideal in its integral ring. Since
p # 2, the map F'[T]* — F'[T']F defined by ¢ + 2¢ + ¢? is a bijection by Hensel’s lemma.
Now the claim follows because 'y € F/[T]*. O

Let ¢ be the element given by the above claim and w := w(1 4 ¢). It is straightforward to
check that IV = T’ +y’ with y’ 1= w(2c + > )w* € Zy(I') N g, ,. Moreover G, x', a, ¢/,
p’ are exactly the same objects for w and w. In other words, X%, and E/}.: , are equivalent.
This completes the proof of the lemma. , O

DEFINITION 5.15. — We retain the notation in Lemma 5.14. The isomorphism class
of V' is independent of the choice of the element in [X] by Corollary 5.12. We define
?+([Z]) to be the equivalence class [Z/E,w] € Zy. By an abuse of notation, we will also
write ' = 9+ (X) where ' := X% and w is implicitly fixed.

5.3. The general case

Let ¥ = (x,T,¢,p) be a supercuspidal datum of G := U(V). By Definition 4.6, let
Y= @5’:0 'S be the block decomposition of T into b positive depth blocks { 'S | 1 </ < b}
and a depth zero block °%. In addition, we have ' =@ T and V = @ 'V.

For any ¢’-Hermitian D-module V’, let [V’] represent its Witt class in the Witt group.

o DEFINITION 5.16. — Let & be a fixed Witt class of ¢’-Hermitian D-modules. We recall
2 g in (1.2). We set

(@) ' =09t e Dy, for 1 <1 <b;

(b) °F" = F' =Y r_ ['Vir] and

() %" := Doy 0g7(°%) (cf. Definition 5.6).
Then we define

By, g (E) 1= [ Dl 'T'| € T,
b

By an abuse of notation again, we also write X' = @, o+ (X) where X' := P;_, Iy,

REMARKS. — 1. Note that the /Y’s have different depths. It follows from Lemma 4.7 that
Y= Oy g (X) = (X, -T",¢",0') is a supercuspidal datum of U(V’) for a well-defined
vhe g’

2. In the construction, we get an element ‘w € 'V ®p 'V’ such that ‘T = M(‘w) and
T = M'('w) for each 0 < [ < b. Therefore we get an element

(5.9) wi=@@ we @ Vep'VcvepV
0<I<b 0<I<b

so that ' = M(w) (mod gx,0) and I = M’ (w) (mod g/, ().
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3. In the above definition of ¥, ¢, the key is the correspondence of semisimple elements
via the moment maps. We expect an explicit description of the correspondences between
cuspidal representations of dual pairs over finite fields using similar construction. Indeed
there are some partial results in this aspect by Pan [31, 30].

4. The discussions in Sections 3 to 5 extend to K-type data defined in the remark to
Definition 3.4. More precisely, the notion of K-type data extends to the covering group
and the notions of equivalence relation, block decomposition, direct sum etc. extend under
exactly the same definition as well.

5. Suppose X (resp. i) is a K-type data for G (resp. 5). Then nx and 75 are also defined
in the same way.

DEFINITION 5.17. — A K-type datum X' is a theta lift of a supercuspidal datum X for
the dual pair (U(V), U(V")), if
(a) = @fzo 'S is a block decomposition of a K-type datum;
(b) '~ =v9t(T)forl1 < <b;
(c) °%’is a (not necessary supercuspidal) depth zero data which is a theta lift of %% (cf.
Definition 5.4);
d V' =@b_, V' and &' := PF_, 'S,

5.4. An example

To illustrate the content of the definitions made above, we provide the following example
which could be considered as a generic case:

EXAMPLE. — Let & be a supercuspidal datum of G such that °V is the zero space under
the block decomposition (cf. Section 4.2). Equivalently, this means every eigenvalue of I’
over F has negative valuation when we view V as an F-vector space and I" as an F-linear
map on V. Since I is invertible, we let V1 denote the ¢’-Hermitian space in Definition 5.8.
Let V&,_[VF] be the anisotropic € -Hermitian space in the Witt tower & — [Vr]. Then the
first occurrence of 7 isat V' := Vr @ VCOT’—[Vr] in the Witt tower & . Using this explicit
formula, one may check the conservation relation [35] of the first occurrence indices directly
in this case. If " = [Vr], then Uy, g7 (%) is essentially the “contragredient” of X (cf. (5.8)).
Otherwise, #y, o7 (X) is the direct sum of dy,[y1(¥) and the datum attached to the trivial

representation of U(Vg“’—[vp])'

6. One positive depth block case I: orbit structure

6.1. Assumptions

Throughout this section, we retain the notation in Section 5.2 and make the following
assumptions.

(D Let ¥ = (x,T,¢,p) be a single block datum with positive depth r = 2s. In partic-
ular T is an invertible element in End(V). We fix a GL(V)-good factorization
['= Z?:—l L.

(IT) The space (V',(, )y-) is isomorphic to (Vr, (, )y,.) and w € Homp (V, V') is a fixed
element such that M(w) = T. In particular dimp V = dimp V".
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We make following definitions:

DEeFINITION 6.1. —  (a) We refer to Cases I and I1 in Definition 3.3. If we are in Case I,
ie., 'y = 0, then we set Jr := {0,. —1}and I = I';_1. Otherwise if we are in
Case 11, i.e., T; # 0, then we set Jp = {O . d } and I' = I'y. Under this definition
I" is a nonzero good element in F + Gy —rt- Let G:=Zg (F)

(b) Define G* with its Lie algebra g’ as in Definition 3.3. In particular G® = Zg(I").

(c) Let g'~'+ be the orthogonal complement of g'~!in g’ with respect to the invariant
bilinear form B in Section 2.1.1,1i.e, g’ = g/~ @ g’ !+, Let gx - =gt Ngyr

(d) Letgl:= gl := gl(V) and gl' = Zyi+1(Iy)for0=<i <d.

(e) Let £ be the self-dual lattice function on V corresponding to x. Let .’ be the self
dual lattice function in V' defined by .4} = w.%;+s as in Lemma 5.9 and let x” be the
corresponding point in B(G"?) .

() Let TV = M'(w) and TV = Z?:—l I'/ be the good factorization of I given by
Proposition 5.13.

(g) We define similar notation for G’ as in (b) to (d).

(h) Let Z .= £ op .&'. Then w € %_; by Lemma 5.9 (iii).

(i) Let a: G® = G'° be the group isomorphism glven by a(g) = wgw™! (cf. (5.7)).

() Let g+ := gl(V/)*+1. Then gl' := gl(V’) = ¢’ ® g’ under the *-action.

(k) For each X € g, we define da: g — ¢’ and dat: g — g'+ by

1 1
da(X) = E(wa_l —(wXw™H*) and dot(X)= E(wa_l + (wXw™H*).
Clearly wXw™! = da(X) + dat(X).

6.2. Structure of orbits

We apply Definition 3.5 (a)-(e) to data (x,T") and (x’, I'”). The purpose of this section is
to study the K x K'-orbit of the coset w + %y in W/ %.

6.2.1. — We start by investigating some properties of do and da’ by elementary linear
algebra.

LEMMA 6.2. — Foranyt € R, wesett] := r —ri_j +t. Then the following statements hold.:
(i) da(gl,,) C g, for0<i <d.
(ii) dal(g;’t) - g[;,’ti, for0<i<d.
(iii) da:g® — g0 is an isomorphism which is the differential of a and da*(g°) = 0.
(iv) da(gh, \ o) ,+) S g, \oh 4 fori € Jr.
(v) The map da|g;4t:t+ : gx T g it induced by da| lS an isomorphism for i € Jr.
Hence, da| i (s gx, and d0l| i gt — g are also isomorphisms fori € Jr.
(vi) da(git) c g’;lfm 0 <i <d and so da(g'3; 1) C g/”- by (ii).
Proof. — Weset X := wXw™' = da(X) + dat(X). By the definition of ., it is clear
that X € gl/, t1fand onlyif X € gl,,. Note that (w™")* = (w*)'and X* = (wXw™')* =
(w*) ™ X*w
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(i) Suppose X € g'. Then [X.T]] = [wXw™ !, wliw™!] = w[X.T;Jw™! = 0 for all
i <l<d,ie,X egl" Similar argument gives X* € gl’. Now da(X) = (X —X*)/2 € ¢".
This shows that da(g’) C g". Since X* € gl,/, for X € gy, da(gl,) © gl

(ii) Let X € g;’t. Then

dert(X) =%(wa—1 + (wXw™H*) = %(wa_l — (W) Xw¥)

1 1
=—(w*) 'w¥wX - Xu¥w)w ! = E(u}*)_l[l", X]w™!

2
1 d 1 i—1
=5 )T M XDw™ = ST [T, XDw™.

I=—1 I=—1
Note that, forany 7 € R, we have w™'.%} = %, (w¥)"\.% = &/,
X% € %, (cf. Section 5.2.1). Hence da™ (X) € gl _,._ ;.
(iii) This is clear from the definition of o, G and G’ (cf. Definition 6.1 (b) and (i)).
(V) If X € gi,\ g;ﬁ, then X = wXw™! € gl \ g[;,ﬁ. Since r > ri_1,
da(X) € gl 1 by (ii). Therefore, da(X) = X —da™(X) € gl , \ gl .
(v) The injectivity of do g

| i
x.tat

sion counting. Note that the roles of G and G’ are symmetric. We could define da’: g’ — g
in the same way. Now

% € %, and

is a restatement of (iv). The surjectivity follows by dimen-

i do do’
Oy rat 8y rat Oy rat
1
X/ttt
is an isomorphism. The claim for da|gi and da|gi immediately follows.
x.t

where da and do’ are injections. Hence do’ o der is an injection, dim; g; o = dimg g
and de| ;
Srat

(vi) Note that (w*)~'[yw®* = (w*) 'w ! Iww* = I""'T/T" = I}. Therefore, for all
Xeg,

dor 0 adr, (X)

STy, Xl = @) [, X )

S X1 = @) T =X )

6.1)
= S X = [ ™) Xu*)
— adpy o da(X).
Now (vi) follows since g'* and g”* are the sums of non-trivial isotypic components in g’ !
and g *! under the actions of adr; and adp’( respectively. O

6.2.2. — We define symplectic forms on g and g’ respectively by (13

(X1, X2)r = B([X1, X2], 1) VXi1,X2,€g and
(6‘2) / / . / / _ ! i / ’
(X1. X3)_r =B(X]. X3].-T) ¥X[.X;eq.

We equip g & g’ with the form {, )p & (, )_p.

(3) Do not confuse with (, )y~ on Vr in Definition 5.8.

T
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LEMMA 6.3. — Themap 1:g ® g —> W given by

X X)X w+X w=—-wX+Xw

is an isometry.

Proof. — Let X, X1, X» e gand X', X{, X} € ¢'. Then
1
(X1, X2)r = B([X1, X2],.T) = EtrF(Xlel" —XoX1I')

1 1
= EtI'F(X1X2F — (X2X1F)*) = EtI‘F(Xler + FX1X2)

= trp (X1 Xow™w) = —trp ((—wX2) ¥ (—wX1))
=— (X2 w, Xy - w)y = (((X1), ((X2))w -

Similarly, we have
(X{.X3) 1 = -B(X{, Xj].T") = —~trp (X] X3T) = —trp (X Xjww™)
= trp (Xqw)* Xow) = (X] - w, X5 - w)y, = (((X]), 1(X3))y -

On the other hand
(L(X),L(X’))W = (—wX,X'w)W = trr ((—wX)* X' w) = trr Xw* X'w)
=trr(W¥ X' wX) = trg (X 'w)* (—wX)) = (L(X’),L(X))W
= —(t(X). (X)), -

Hence (¢(X), ((X"))y = 0. Therefore, ((g) and ¢(g’) are orthogonal to each other. O

6.2.3. — Let mr denote the f-symplectic form on gy s+ induced by (, )p. Let

v:=Rad((, )p) be the radical of (, )r in g, .+. Likewise we define (.)_p and

v :=Rad({, )_p).

LEMMA 6.4. — (1) In Case I (i.e, Ty = 0), we have v = gi;_lﬁ. In Case II (i.e.,

Lqg #0), wehave (, )p =0andt =g, ;.+.

.. . . / 1d—1 . A ] .
(i1) Likewise v’ = TN Case I andt' = R Case I1.

Proof. — For X1, X2 € gx.s,
(X1, X2)r = B([X1, X2],T) = —B(Xz, [Xi1, T')]).
= adln|gx' . We get

S:S+

Hence v = { X1 + g, ¢+ | adr(X1) € g, _,+ }. However adp|g .

the conclusion in Case I by (5.5). ’
In Case I, we have I' = Ty € Z(g). So [X;,T] = [Xl,f‘] = 0 (mod g, _,+) and
(Xl, Xz)r €p. O
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6.2.4. — We recall that b := %,.,+ is an f-symplectic space. By Lemma 6.3, ¢ induces an
isometry
Uiy s+ @ g;/,s;s+ —b.

Define A:g —> g @ g’ by X — (X, da(X)). It induces an injection
(63) A: gx,s:s"‘(—> Ox,s:5t @ g/

x/,s:st"
Let by := T(t @ /). Then by is the radical of Im (7). Let by := bi/b+.

LEMMA 6.5. — The following statements hold:

(1) do:v — v is an isomorphism,

!

7 .
et b is exact,

(i) 0——t—2sg .+ Dg
(i) by = 7(rv) = 1(¥),

(iv) dimj g, .o+ + dimg g;,,m 4+ =dimgb,
(v) bt =Im(7),

(vi) in Case I, the composition of maps

T Lgd—11 rd—11 ¢ / t 1
Lhot Oy gt D By oot Ox st DO, o p —— by —bo
is an isomorphism of non-degenerate symplectic spaces over f,
(vii) in Case II, Im(1) = by = bi is a maximal isotropic subspace of b and by = 0.

Proof. — Throughout this proof, we let (X, X) € gx,s @ g, ; and we let (X, X') denote
its image in g, ;.;+ @ ‘g;c/,s:s+'
(i) This follows from Lemma 6.2 (v) and Lemma 6.4.
(i) Let X et C Ox, 5.5+ Lhen

Toa(X)=—wX +da(X)w = (—wXw™ + da(X))w

= —daJ‘(X)w (mod %()Jr).

Since r > rg— in Case I (resp. r > rg—; in Case II), Lemma 6.2 (ii) implies
dat(X) € g[;,,ﬁ. Hence dat (X)w € PBy+. This proves A(t) CKerrt.

Now we show the opposite inclusion. Suppose 7 (X, X’) = 0. Since 7 is an isometry,
(X.X) ev®v = Rad({, )r ® (. )_p). Now a(X) = (X,da(X)) € Keri so
7(0, X' — da(X)) = 0. Note that U] is an injection. This implies X’ = da(X)

x/,s:st

and proves the exactness of (ii).
(iii) By (ii), 1(X) = —1(da(X)) for X € t. Now 7(¢r) = I (v') by part (i).
(iv) Since .7} = w.Z; s, we have gl, .+ = b by X — wX. Therefore,

(64) dlmfb = dimfg[x,s:ﬁ.

Consider the isomorphism 71: gl = gl’ defined by X — w™* Xw.
Since (w*)* = —w, we have n(X)* = (W¥Xw)* = —w*X*w = n(-X*). By
reducing to the residue field, 7: gl .+ => gl/, _.._ 4 induces an isomorphism

—. rx,+1 ~ /%, —1 7 ~ /
n'g[x,s:ﬁ - g[x/,—s:—er - gx/,—s:—sJr = Homf(gx/,s:ﬁ’f)'
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Therefore
(6.5) dim; gl .+ = dimg g, .o+ + dimy g + = dim; g, .o+ + dim; gx, g
Combining (6.4) and (6.5) yields ((iv)).
(v) Note that T is an isometry. So Im (7) € 7(x)* = bz by ((iii)). Since I, is an

injection and b is a non-degenerate symplectic space, dim b}r = dimb —xd;;n by =
dimgy ;.c+ @ gx st —dimt = dim Im (7) by ((iv)) and ((i1)).

(vi) By Lemma 6.4 ((1)), gf ’S}Sﬁ <) g;‘{*slsﬁ is a maximal non-degenerate symplectic subspace
of gy g5+ @ Gy 5:5+- Now the claim follows from ((v)), since ¢ is an isometry.

(vii) This follows by a similar argument as that of part (vi) using Lemma 6.4 ((ii)). O

6.2.5. — We begin with definitions which will be used in the rest of the section.

DEFINITION 6.6. — In order to simplify the notation, let
(a) k'—KXK' 150+ =K0+><K’+ andI?+ =K, xK';

(b) Gi_ =Gl x Gl landG’ - —Gx + ><G” s for0 <i <d;and
© G°:=GIxGYand G), := G o4 X G)’CO,,OJF.
We define

) S::Stabk(w—i—%’o):{(h lﬂ)e]?‘(h,h’)«wew—i—%’o},
(€) S':=SNG!_ and S} := SDG’ fori >0,

l 1

() $O:=85NG°% S, :=8SNK,; and Sg+ := S N K+
We extend the group isomorphism a: G? = G’ 9 in Definition 6.1 ((i)) to a map
(6.6) o: GxGx’OJr — GX,GX,,OJr by gexp(X)— (wgw™!)exp(da(X))

forall g € G2 and exp(X) € G, o+- This map « is well-defined because w exp(X ywl =
exp(da(X)) forexp X € G2 N Gy o+ = Gg o+ We warn that the map o is not necessarily a
group homomorphism. We define

(2) A%:={(g, Ot(g))lgEGO}“GONGQ,
() A= {(g.a(9)) |g €GO, } =G0 L =G0,
() AP i={(g.a(g) | g€ Gx,s,-_l } fori > 0 and

() A% = {(g.0(@) g €GL , }ori >0,

By Lemma 6.2, the map « restricts toamap(14)a| :G! - G, s forl=i=d

G, sj_ X,8i—1
and this restricted map is a bijection if i € Jr. Therefore Al c Géi and A’ c G’ for
1 1
all0 <i <d.
Obviously Gy sG’, . C S. The following is a key lemma which claims that S is generated

x’ P
by these sets.

—1

LemMa 6.7. — () If (g.g) € A, then (g.¢') - w = w. Moreover, . and T are
A\ -equivariant.

(14) We reiterate that « is not necessarily a group homomorphism.
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(i1) Suppose 0 < i € Tr. Let g = exp(X) with X € g;’sl__l. Then dat(X)w € B+,
[da(X), dat(X)w € B and

(g, a(g) - w Cw—dat(X)w— %[da(X), dat(X)w + B+ € w + By

In particular, \' C S.
(i) SNG =Gy sand SNG =G, .
(iv) Foreachi € Jr, S' = AN'GY, = NG (G .
(v) InCasel,ie., Tyg=0andr =rqg =rg_1,

S=ANY A6 Gl and
St = ALAL - ATGETGET GGl
InCasell,ie, Ty #0andr =rg > rq_1,
S=AAY - ATUNIG, (Gl and

d— d
S = AYAL - ATTALGL G
Proof. — (i) Clearly, (g,¢") - w = g'wg™! = a(g)wg™! = wgw 'wg™' = w. The claim
that ¢ and 7 are /A\°-equivariant also follows by a straightforward computation which we will
leave to the reader.

(i) Let X’ := da(X), Y’ := da*(X) and g’ := exp(X’). Then (g, g") = (g,a(g)) € A
Note that r > r;—; > 0Oand sor —s;—1 > s,. By Lemma 6.2 (i) and (ii), X’ € g[;,,sl__l -
g[;,,OJr and Y’ € gl , S 9[;/,54- - g[;,,OJr. Therefore X'Y',Y'X" € gl ., Y'w € By+

x/,r—s;

and [X',Y'|w € %s. By Zassenhaus formula,
((g,&") - ww™ =g'wg™ w™" = exp(X") exp(—wXw™") = exp(X") exp(—X' — Y")

1
=exp(X') exp(—X") exp(-Y") exp(—5[X Y'Del s
1
=exp(=Y ) exp(—[X". Y'Dg,+.

where g/, € GL(V'),/,+. Hence (g,g') - w —w = exp(-Y’) exp(—%[X/, YDhw —w =
—Y'w — %[X’, Y'lw (mod Z,+). This finishes the proof of (ii).

(iii) We only prove the identity for G’ and the proof for G is similar. Note that T + Tw ™!
induces an isomorphism %; — g[;,’, +s- Therefore, for g’ € G', g'w + By = w + %, if and
onlyif g’ € 1+ gl ;. Hence S N G’ = GL(V')v s NG’ = G, .

(iv) By ((i)) to ((ii))) , S 2 A'G} (GY, 2 APGJ, (. Tt remains to show S* € ATGY, .
Indeed suppose (g.g’) € S' C Géiq .Then (1,a(g)"'g") = (g.2(g)) " '(g.g) € S'NG" C
G, ; by ((iii)). Hence (g.g") € A'GY, .

(v) Let 8" = A°... A4G, G, . Note that A? C G, G,  in Case L. By (i)-(iv),
S D §’. Observe that the projection to the first factor pry: S’ — K is surjective. Suppose
(g.g") € S. Then thereisa g” € K’ such that (g, g"”) € S’. Therefore (1,g""'g') e SNG' =
G\, by (ii). Hence S € §'G}, . = S’. This proves that § = S’. Intersecting S with K
gives S . O
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6.3. A key identity of

We recall the function ¥ in (3.2) which is clearly well-defined on 150+.

LEMMA 6.8. — Suppose 1 <i € Jr and (g.g') € A\" or (g.g") € Gy 5 X G s Then

(67) VG . (2.8) ™ w—w)y) = YY)

REMARK. — For (g.¢") € A% (5 (w.(g.¢)"" - w—w),) =1 by Lemma 6.7 ((i)).
€ g, and X' =

Proof. — Suppose (g,g") = (exp(X).exp(X’)) € /' where X
da(X). Let Y’ := dat(X). By Lemma 6.7 ((i)), (g.¢)' - w —w = Y'w — %[X’, Y'w

(mod %+ ).
We claim that % (w,[X",Y]w)y € p. Indeed by Lemma 2.2,

1
3 (w. [X". Y Tw), =BI.[Y X)) =B(I". X'.Y)
=B(I".X'].Y") (mod p)

=0 (because X' € Zy(I") by Lemma 6.2 ((i)) and i € Jr).
Note that wXw™! = X’ + Y’ and so we have
_ _ 1 _
V(e W-r(@ Y (5 (w. (2.8 - w—w)y)
I 1 1 ! /
=y (IB%(F, —X)+B(-I",-X") + E(w,Y’w)W — Z(w XY ]w)W)
1 # 1 TN ey
=Y Etrp(—w wX) + Etrp(ww X+ Etrp(w Y'w)
1
=y (Etrp(—ww*(wa_l) +ww* (X' + Y’)))
=yY0) =1.

This proves the lemma for (g, g') € A%
Next suppose (g, g') := (exp(X),exp(X”)) € Gx,sG, ;. Then

(w. (8.8 w—w)y) = Yy B, Mw) + yBX',—M'(w)) (by (2.6))

1
1//(E
= Vmw)@V—mw) (&) = ¥r(@)v-r(g).

This proves the lemma.
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6.4. A maximal totally isotropic subspace

We refer to Appendix A.2.1 for the notation. Also see [37, p. 591] and [17, Section 12].
Suppose 1 < i € Jr. Let J' := (G'™'. Gy (r,_,,5;,_p and J 1= (G'71.G")_ ity
i—1-5; 1

Likewise we have subgroups J” and J/ in G'. Let J* := J' x J and JL := JL x J/.

Note that exp induces a group isomorphism g; Sll . = J'/JL and we identify
171 i_l. . . .
both sides from now on. We let W/ = Ji/JI = gi-l& , W= J I =

ot
X818

g1t and W' := Ji/JL = W x W Note that W’ has a natural non-degenerate

X/ Si—118; 4 .
symplectic space structure over f induced by (, )p @ (., )_p (cf. (6.2)). Let D' be the
image of /A’ N J? under the natural quotient map J? — W’. By Lemma 6.2, A! n J =
{ (exp(X),exp(da(X)) | X € er,l @ g, ot ). Although A' N J' is not a subgroup

i—1L1

of G x G, D' is an f-subspace in W isomorphic to Oy 4

LEMMA 6.9. — For 1 <i € Jr, D is a maximal totally isotropic subspace of W',

Proof. — By Lemma 6.2 ((v)),

dimy g;l 11LS = = dim gf o /gSI st = = dim; g”" 1:S[_tl/g;"i—im_+ = dimy g’jﬂ -
Therefore, by Lemma 6.2 ((v1)) da induces an isomorphism g;, IIJ- + = g;’l it 3 and
dim; D' = 1dim; W'. It remains to show that D' is isotropic. Let X;,X> € gi 't and
let Y7 = da(X4), Y2 = da(X3). Then the symplectic form is given by
(X1, Y1), (X2, Y2)) = B([X1, X2), Tiz1) + B([Y1, V2], -T/_))

= B(Xz.adr,_, (X1)) - B(Y2,adr;_ (Y1)

= B(X2,adr,_, (X1)) — B(Y2, de(adr,_, (X1))) (by (6.1))

= B(Xz.adr,_, (X1)) — B(wXow™", w(adr,_, (X)w™")

(by r —ri—1 > 0, Lemma 6.2 ((i)) and ((i1)))

=0 (mod p).
This finishes the proof. O
6.5. Triviality of y°+

We recall the f-vector space by = i(r) = (') in Section 6.2.4. The space by is an

isotropic subspace in b and A acts on it. Let yP+ be the character of A? as defined in
Appendix A.1. More precisely, y*+ (g, a(g)) = det((g, oz(g))|b+)(‘1_l)/2 where (g, 0(g)) € A°

and g = [fl.
LEMMA 6.10. — We have x*+ (g, a(g)) = 1 for all (g.a(g)) € A°.

The rest of this section is devoted to the proof of the above lemma. The proof does not
affect the rest part of the paper, so the reader may skip it without loss of continuity.

First we introduce some notation. Suppose { is an extension of f and % is an f'-module.
Let G be a group acting {'-linearly on . Let det;(g] m) denote the determinant of g € G

when we view 9 as an f-vector space. Let )(f be the character g — detf(g| YIf=1/2 More
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conceptually, Xfm (g) 1s 1 if detj(g| m) is a square in §* and is —1 if otherwise, i.e., it is the
Legendre symbol of detf(g|m) in f.

Note that G2 =~ A%via g — (g,a(g)) and v = by via X — 7(X). Clearly for g € G
and X e,
i(g-X)=-—wgXg™' = —a(gwXg™' = (g, a(g)) - 1(X)

o £{(9) = (deti(g] N2 = deti((g.a(e)], )V = sP+((g.alg)). Then
Lemma 6.10 is equivalent to the following statement:
(6.8) 1@ =1 VgeGy

Recall I" and G in Definition 6.1 ((a)). Note that G? is a subgroup of Gy and Gy acts
ont = g, ...+. Hence (6.8) is a consequence of the following:

(6.9) K@ =1 VgeG,.

If we replace I by I, then every object in (6.9) remains unchanged. Therefore, we could
assume that I' = . In this case Gy = G2.

We recall that F/ = Z(D). We consider Case I and Case II separately.

1. In Case I, F'[T'] = []; F; is a product of fields F; with involution x and V = p, V'
such that each V7 is a certain Hermitian space over F;. Let F? be the * fixed subfield
of F;. Then U(V?) is an algebraic group defined over F°. Under this decomposition,

i i u(Vi)x-,s:s+
GO =T UV, x =) e[l; BUWV)and f =TT 1 7.
Ve o
The residue field §7 of F;° could be a finite extension of f. Note X:? Xt (g) =1
means that detf? (g) = a” isasquare in (7)*. Hence det;(g) = Normf? /5 © detf? (g) =

(Vi)xi,s:s"‘

(Normf?/f(a))2 is a square in f*. So )(;l (g) = 1. In order to prove (6.9), it

Vl)xi,x:.vJF
luwiyy,
2. In Case II, G° = G is a unitary group over D = F’ = F[I].

u( ..
suffices to check that y o is trivial for each i.

To summarize, we have reduced Lemma 6.10 to the following claim.

CLAIM. — Suppose

(a) D is a quadratic field extension of a certain p-adic field F;
(b) t is the nontrivial element in Gal(D/ F),

(c) V isa D-vector space with a Hermitian form { , );

(d) G=UW),g=uV)and x € B(G, F),

(e) T is an element in Z(g) = D% with valuation —r = —2s.

Then )(?'““Jr (g) =1forall g € Gy.
Proof of the Claim. — Without loss of generality, we may assume val(D) = Z. Let .Z be
the self-dual lattice function corresponding to x. Define the fp-space L; := .%;/.Z,+.

1. If D/ F is unramified, we let @wp be the fixed uniformizer of both D and F'. The residue
field fp is a quadratic extension of f. Moreover Ly and L 1 (possibly zero spaces) are
Hermitian spaces over fp.
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2. If D/F is ramified then fp = f. We fix a uniformizer wp of D such that w}, = —wp.
Then Ly is an orthogonal space over f whose form is induced by (, ) and L ! is a
symplectic space over f whose form is induced by wy! ( , ).

Note that X?”:ﬁ factors through the group

(6.10) G:=Gy/Gygr = I1 GLy, (L) | x U(Lo) x U(Ly).

teJump(ZL)N(0,%)
Now we consider two separate cases in the next two subsections.

6.5.1. Case 1: s € val(D) = Z.— First we claim that D is an unramified extension of F.
Indeed, if D/ F is ramified, then val(F) = 2Z and —r = val(T") is odd because I' € D%~
This implies s € Z, a contradiction.

Now X +— wpX gives a G-equivariant isomorphism g, o.o+ —> @y 5.+ Therefore
det; (g|g +) = detf(g|g +) = 1 since all the simple factors of G in (6.10) are of type A
X,8:8 x,0:0

acting on its Lie algebra via adjoint action. Note that GLs, (L;) should be viewed as a group
defined over f by restriction of scalars, but this does not affect the conclusion. Hence we have
proved the claim in this case.

6.5.2. Case2.— s ¢ val(D) = Z. Thens = % € 17\ Z. We recall that

(6.11) Olegisr = €D Homg, (L, Ligs).
teQ/Z

The adjoint action * (cf. Section 2.1.1) permutes the terms in (6.11) and g, ;..+ is the
(=1)-eigenspace of * in gl . c+. Let /; := dimg, L,.

Now we consider the value of X?x"““Jr on each factor of (6.10).

(1) Supposetz—t (mod Z) and t£— (¢t +5) (mod Z). We consider the action of GL(L;).
We have

k1 HOme (Ltv Lt+s) = HOme (L—Z—S’ L—t) and
*: Homg,, (L—, L—s4s) = Homys, (L;—s, Ls).

The two domains and codomains are distinct terms in (6.11). Moreover [;4+5 = [;—
since L;—; =~ L,y via multiplication by wlz)s. Therefore

detf(Ad(g)|g‘ ' +) = Normys,, /s (deth (g|L[)_lf+5deth (g|L,)lt75) =1 Vg e GL(L,).

Hence )(?x'”Jr (g) = 1for g € GL(L,).
(i1) Suppose t = —t,ie,t = 0or % (mod Z). We consider the actions of U(Ly) and
i)
U(L ! ). Now —s + % is an integer and multiplication by st+ 2 induces isomorphisms
Hom(Lg, Ly) = Hom(L,, L%) and Hom(L_%, L_%H) = Hom(L_%, Lo).

Now *:Hom(Lo,L%) ~ Hom(L_%,LO). Combining with the above gives
Hom(Lg, Ly) = Hom(L_%,L_%ﬂ). As a U(Lo)-module, g, .+ is isomorphic
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to Hom(Lg, L ! ) direct sum with certain copies of the trivial representation. Suppose

go € U(Lo). Then detf(g0|gx m) = det;(go| ) 3.
- If D/F is unramified, then U(Ly) is a unitary group. Now det;,, (g0|L0) € fp has
norm 1 so detf(g0|L0) = 1. By a similar argument, det;(g 1 |gxm+) = 1 for

g % [S U(L % )
— If D/F is ramified, then L is an orthogonal space and L ! is a symplectic space.

Hence detf(go|g W+) = detf(g0|L0) 3 = 1 since l% is even. Since L% isa

symplectic space,’detf(g% +) =1 for g1 € U(L%).

g
Hence, we have shown that )(?)C'”Jr is trivial on U(Lg) x U(L%).

(iii) Suppose t = —t — s (mod Z). Then t = :i:% (mod Z). We consider the actions

1

3

of GL(L 1 ) in (6.10). Composing with multiplication by w;, induces an isomor-

phism
Hom(Lk,L%H) padt Hom(L%,L_%)

and the x-action on the left hand side commutes with the (¢x)-action on the right hand
side. Here ¢ = 1 if D/ F is unramified and ¢ = (—1)S+% if D/ F is ramified.

sl
Similarly composing with multiplication by st+ 2 induces an isomorphism
Hom(L_%, L—£+s) = Hom(L_%, L%)

and = action on the left hand side commutes with the (¢’%)-action on the right hand
side with ¢’ = 1 if D/F is unramified and &’ = (—1)5_% if D/F is ramified.

Lets := Hom(L_%, L%) and s’ = Hom(L%, L_%). Clearly s and s’ are dual to
each other as GL(L 1 )-modules over fp via the trace form (X,Y) > trs, (YX). Since
the form is #-invariant, ¢ and s*¢ are dual to each other fore € {+1}. Asa
GL(L 1 )-module, g, .+ is isomorphic to s*7° @ ¢’ *~¢ direct sum with copies of the
trivial representation. Let g 1€ GL(L ! ).

— If D/F is unramified, then ¢ = &’

other, we have det;,, (g% g +) =1.

— If D/F is ramified, then ¢ = —¢’. Since detf(g% |5) = detf(g%

*,—1

1. Since s*~! and &’ are dual to each

21

L, ) i is a square
iy

and 5 = ¢ @ s, we have Xf*'g = )@*'_8. Hence
Iy sist *,—¢€ rx,—g’ *,€ 1.8
@D =0 @oxp o (@D =a7 (goxp (@) =1
We conclude that )(?"’”Jr =1lon GL(L%).

Combining (i), (ii) and (iii), we have proved the Claim in view of (6.10). O

This concludes the proof of Lemma 6.10. O
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7. One positive depth block Case II: the constructions of refined minimal K-types

We retain the notation in Section 6. Recall that ¥ = (x, T, ¢, p) is a single block datum
with positive depth » = 2s as in Section 6.1. We have ' = M(w), I' = M’'(w) and a
group isomorphism o: G? => G7. In Definition 5.15, we had defined &' := 91 () =
(x', =T, ¢, p') where ¢’ :== ¢p* oo™ and p’ = p* o™ .

7.1. A key proposition

[T 2]

We always use to mark an object in G x G’ having two similar copies in components
of G and G’ as below. We set

- K:=KxK' Ko+ = Ko+ x Koy and K, = K, x K/.;
-G =G xGY = GY/GY oy x GO/GY 1

- p:=p& p bethe K x K’-module inflated from the G°-module p & p';

= k ® k' be the Heisenberg-Weil representation of K constructed by (I, —=I"/) (cf.
Appendix A.2.2);

-7:=n®ny =p®Kand

—Q=K-wt+%ByCW.

|
b4

REMARK. — The above notations also apply to multiple block ¥ and its lift X’ defined in
Remark 5.3 of Definition 5.16.

7.1.1. — If J is a compact group, U is a J-module and y is an irreducible J-module, then
we let U[y] denote the y isotypic component of U. Now we can state a key proposition.

PROPOSITION 7.1. — Under the settings in Section 7.1, we have /' (Bo)qn® ] = n& 7'

The proof will be given in Section 7.1.4 based on Lemma 7.4 below.

7.1.2. — We now record an elementary fact which will be used freely in this paper. Suppose
H and J are compact groups and J is a subgroup of H. For a J-module 7, we will identify
the induced representation with a space of functions:

Indfr={f:H->t|f(jh)=1()f()VjeJ heH},
where H acts by right translation.
LEMMA 7.2. — Suppose J is a compact normal subgroup of H. Let J, be a subgroup of H
such that J < Jy < H. Let t be a J1-module and y be an irreducible J-module. Suppose that

H stabilizes x, i.e., y o Ady = y as J-modules for all h € H. Then t(y] is a Ji-module and
(Ind% 1)[x] = Ind (z[x)). O
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7.1.3. — Lety := yr ® ¥_p be the function on Gy o+ X G; o+ Recall that V restricted
on K isacharacter, K normalizes K ; and stabilizes v %, We could extend v to a function

on A°Gy o+ G’ . by letting V(xg):=y(g)forallx e A®and g € Gyt Gl i

Combining Lemma 2.4, Lemma 6.7 ((v)) and Lemma 6.8 yields the following lemma.

LEmMA 7.3. — As an S-module realized on S(b), @y, is given by

Dw(h) = () @y(h)Dy(h™ - w—w) VheS. O

We recall the definitions of by and by := bi /b, in Section 6.2.4. Let S(b)™+ be the
@p(b.y) invariant subspace in S(b). Then S(b)*+ =~ 1>+ ® @p, as P(by) x H(bﬂ;)-modules
where P(b ) is the parabolic subgroup in Sp(b) stabilizing b (see Appendix A.1 for nota-
tion).

From Lemma 6.7 ((v)), S = (Hjeﬁr Aj) Gy and

. N AN ANATK L G, in Casel,
sky =[] &7 | R+, = e A
; ANV NYK, Gy inCasell

LeEmMmA 7.4. — (1) The evaluation map eva defined by f +— f(1) gives an isomorphism
between the vector spaces

7.1) eva: (Ind§k+5w) g, ] —— S+,

Note that S(b)®+ = S(by). The S K.-module structure on the left hand side of (7.1)
translates to an action ¥ 0fS1€+ on S(bo). The action S is given as following:
@ Ifh€lli<jerr AN K, then w5 (h) acts on S(bo) by the scalar  (h). 1
(b) If h = (exp(X),exp(X')) € Gx,s X Gy 5, then ¥S(g) = &(h)abo(b) where b is
the image inbg of K™ -w —w = wX — X'w (mod %y+).
(© 1//S|AO is the inflation of @y, via /\° —> Sp(by).

og o o
(i) We have (IndsA Kot Ew) WI;&J =~ ’;|AOI€0+ as /\°K o+ -modules.

(ii1) Let A0 denote the image of \° in GO. Then we have following K-module isomorphisms
B~ \1J ~ Tk JARY RN - &o y
(Indsww) e, = df, e ((Indg " @ ) [0z, 1) = (mdS51 ) @ &

Note that ((iii)) follows immediately from ((ii)). Before we embark on the proofs of ((i))
and ((i1)), we will use the lemma to give a proof of Proposition 7.1.

(19 By definition ¥ | o = 1. Therefore by ((a)) the function ¥ is a character when restricted on [Tiesr AT K +.
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7.1.4. Proof of Proposition 7.1. — We have
Homy (7. # (%o)q) = Homp (i, (Ind§ @y ) [V )
(by Lemma 2.4 and the fact that 7, £y sy &y -isotypic)
= Homg (5 ® %, (IndS51) @ ) (by Lemma 7.4 ((iii)))
o &o o .
= Homgo (5, (Ind%on ® Homg  (k.K))

. Ny &o .. . S
(since p and IndGA(—Ol are trivial when restricted on K+ )

= Homy, (p, Ind%l) (since /2| Ky is irreducible)
= Hom45(p,1) =C (since p' = p* o).

This proves the proposition. O

7.2. Proof of Lemma 7.4
The rest of this section is devoted to proving Lemma 7.4.

7.2.1. Proof of Lemma 7.4 ((1)). — Werecall that S+ := SN K +. Frobenius reciprocity gives
the following natural isomorphism of vector spaces:

SKi_ i Ki_ - ~ 3
eva: (IndS +a)w) [1//|I€+] =~ (IndS:a)w) [W|k+] — a)w[l/f|s+].
Now the key is to prove the following claim.

CLAIM. — We have

(7.2) Dul|g,]=5m)" < S(b).

Proof. — We will only prove it for Case 1. The proof for Case II is similar and easier, so
we leave it to the reader.
We recall Lemma 6.7 ((v)) that

(73) S+ = Ag_A_l’_ Ai‘lG?;lG;d/;lijerG;/,sJ’“

Now we consider the w,-action (cf. Lemma 7.3) of each factor on the right hand side of (7.3).
Note that 5b|S+ is trivial since S1 € G, o+ G;,’OJF.

(1) Suppose = exp(X) € G, (+ where X € g, ;+. Then htw—w € wX +B+ C B+
Hence @y, (h) = ¥ (h) @y(h~! - w — w) = ¥ (h) . By the same argument, we also have
@y (h) = Y (h) forh € Gl

(2) Suppose h = exp(X) € G471 with X € gd ' Then h™' - w — w € wX + By+ C Ho.
Hence @y, (h) = ¥ (h)@y(wX). The same argument gives @y, (h') = ¥ (B )on(—X'w)
for ' = exp(X’) € G7! where X' € g/¢7!. Hence aw[x/?|s+] C S(b)"+ since
by = 1(ed5" @ g = wed St + 09w + By S Bo/ B+

(3) Suppose h = (g,g’) € Aﬂr for0<i <d —1.ByLemma 6.7 (i) and (ii), h'w — w €
B+ . Therefore wy, (h) = v (h).
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Combining (1)—(3), we see that the 1/; | sy isotypic component is exactly the wy, (b4 )-invariant
subspace in S(b). This proves the claim. O

Now we calculate the translated SK4 = A° [To<ies, & K4 action ¢S onS(bg) = S(b)"+.

s o
(4) Clearly y°| gy = v [
(5) Suppose h € AP for0 <i € IJr. Thenh € G, o+ G, , and h™' - w —w € Hy+ by
Lemma 6.7 ((ii)). So ¢S (h) = @y, (h) = 1/v/(h). Combining this with (4) proves (a).
(6) Suppose h € Gxs x G, .. By Appendix A.1 (iii),
¥ () = @u(h) = Y (@y(h™" - w —w) = ¥ (@b, (b).

This proves part (b).
(7) Suppose i € A°. By Appendix A.1 (iii) and Lemma 6.10,

Y3 (h) = @ (h) = By(h) = 1+ (), (h) = Dy (h).
This proves part (c).

These complete the proof of Lemma 7.4 (i).

7.2.2. Proof of Lemma 7.4 ((i1)). — By Part ((i)) and Lemma 7.2, we have
AOK + — ~ ~ AOK + SI% — v ~ AOI;' +,8
(7.4) (Inds 0 a)w) W|1€+] >~ Indsk+0 ((IndS +a)w) [W|k+]) > Ind”h0 Y

as /\°Ky+-modules.

CLAIM. — We have

.
(1.5) dimInd =, %o 48 = dimz.
SK4

Proof. — Let K1 5 := Ky NGysand Ky := K N Gy = Gy Let Q 1= #(Sy+/5+),
N = #(Ko+/K4), Ny :=#(Ks/K+5), N' ;== #(K | /K}) and Ny := #(K[ /K, ).

We note the following facts.
1. By the definition of %, we have dim# = (#Ky+/K4+)2 = VNN'.
2. By Lemma 6.5 ((vi)), we have dimS(bg) = #by = \/#(KS/K+,S)#(K§/K;J) =

VNsNj.
3. By Lemma 6.7 ((v)), the projection to the first coordinate S+ — K+ is surjective and
its kernel is Kg. Hence Ko+ 2= So+/Kj. Similarly, we have Ky =~ S, /K’, (. Hence

(7.6) Kot /Ks = (Sot /KD/(S4/Ky ) = Sot /KiS4 = (Sg+ /S+)/(K.S+4/S+).

Note that K{/K', = K(S;/S. Counting the elements of the both sides of (7.6), we
get N = Q/N/. A similar argument yields N' = Q/Nj.
4. NOte that K0+ N SK+ = S0+K+ and S0+K+/K+ = S0+/(K+ n S0+) = S0+/S+.
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Hence
. AOKVO+ S . hd hd
dim Indsk Y2 = dimS(bg) - #(Ky+/So+ K+)
+
= dimS(bo) - #(Ko+ /K1) /#(So+ K1/ K+)
= /NsN/NN'/Q = VNN’ = dim«.
This proves the claim. O

In Section 7.2.3, we will show that

. y AOK . .
(7.7 dim HomAOKOJr (k, Indslﬁ ot Sy = dim Homg g (%, vS) =1.
Combining (7.4), (7.5) and (7.7) gives Lemma 7.4 (i1). This also completes the proof of the
whole Lemma 7.4. O

7.2.3. Proof of (7.7). — The first equality in (7.7) is just Frobenius reciprocity. It remains to
prove the second equality. We only give the proof for Case I. The proof for Case II where
by = 0 is essentially contained in the proof of Lemma 7.5 (ii) below.

We assume the notation and the construction of k in Appendix A.2.2. We also retain the
notion in Section 6.4. Recall J/ := (G/™'. G/ r;_, .5, /1 = (G, GY)
J7:=JJ x J" and Jui = Ji X erj.

—Forl<j<dletQ/ = Al---AjI?i and Q; ;= (A/ N ij)Jv_{.

—For0<j<d-—1leti/ :=«/ m«7 and P/ := SK, NG/ = AOAl-nAjI?i.

Moreover, let P := Rd_l.

x,(rjfl,sj__l)’

. ~j _j _j .
- Forl<j=<dletop_ = a){ajil a)’_F}_I and 1x Yz, := (Ix ¢p;) & (IXY_p))
be K/l x JJ = (K/71' x J7) x (K”~! x J"7)-modules. Here TV := Z;jzj I'; and
. . d
M=y T

By definition we have
(a) asurjection P x J¢ — SK,;
(b) Q7 and Q; are groups such that 9/ = Q/71Q;;
(c) PO = A°K? and P/ = A°Q/ = PI71Q;;
(d) Pulling back via P/~ x J/ — Iéj,/?f|P_,_1ij =i le (éf;j_l ® (1xy,)), where
the K/~!-module /=1 is inflated to P/=! x J7 via P/~ x JJ — PI=1 < KJ=1 (cf.
Appendix A.2.2). In particular, as P x J<-module,

vd
=k o wy,
Now
o vd— ~d
8) Homg g (K. S = Homp ju & 1,Homc(a)fd71,1lfs))

cd— ~d
= Homp (¢4 1,Homjd(a)f-d_l,ws)).

The map ¢ defined in Section 6.2.4 induces a P-equivariant isomorphism of symplectic
spaces:

(7.9) Ty W= gl @ g1l —~ .

x,s:8T x/,s:5t
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In fact, this is just a rephrase of Lemma 6.5 ((vi)) and Lemma 6.7 ((i)) since the P actions on
the both sides of Ty, factors through A°.
Consider the map (19

bo. Jd (b+/b+) x f = Hi(bo)

(7.10)

h = (exp(X),exp(X)) —— (—(X, X') - w, % (w,h=1-w — w)y).

By the explicit description of special isomorphism in Appendix A.2.1, (2.6), (7.9) and
Lemma 7.4 ((i)) part (b), the following diagram commutes:

SH(W4)
v /
A0 x J4 l%
%0 SH(bo)
Hence, as /A° x J9-module,
s . =d
(7.11) v =g .

Y .. ~d v
On the other hand, Q¢~! C ngl acts trivially on @y, = and acts as ¥ on VS (cf.

. od y
Lemma 7.4 (i) (a)). Therefore, as P = A°Q9~'-modules, Hom, (@5, . ¥5) = Vi p-
Putting this into (7.8), (7.7) becomes

(7.12) dim Homp (8™, 9| ,) = 1.

This follows from part (ii) of the next lemma.

LEmMa 7.5. — (1) For1 < j <d —1, we have
o v o v
(7.13) Homyg; (wf‘/—l ® AxVYyp,) ) =y

as P/~ Y-modules.
(i) For0 < j <d — 1, we have dim Homp,; R/, y/) = 1.
Proof. — (i) We first check that the right hand side of (7.13) has dimension one. The image
of Q; under J/ — J//J{ =: W/ is D/ which is a maximal isotropic subspace in W/
according to Lemma 6.9. Note that the Q;-character 1) 1/71:j_l = vYr,_, 1//_1~j<_ o~

1
Vi, ® gy |J_/.)_1 factors to a D/ -character. Therefore

dim Homyg; (éf‘j—l ® (1x 1,7/1:]«), V) = dim Homy, (5fi—1 , 1}1:]__1) =1.
We now check that the actions of P/~! = A%Q/~1 on both sides of (7.13) agree.

— The character ¥ is trivial on A%, By the Appendix A.1, the left hand side of (7.13) is
isomorphism to y®’ as A %-module. We claim that P’ | o is trivial. Indeed D/ =~ W/

as A% =~ GY%module. Since the right hand side has a symplectic form preserved
by G2-action, detj(h|,;) = 1forallh € A\°. This proves the claim.

(16) Note that there is a negative sign before (X, X') - w.
a7 One can see that ¥ . is a character of Q directly from the discussion in Appendix A.2.1.
i
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— The group Q/~! € P/~ N 155:1 has trivial action on 51:1,71 ® (1 x Yy, ). Therefore
the left hand side of (7.13) is Y-isotypic as Q7 ~!-module.
This proves (i).

(i1) We prove by induction on ;.

1. By definition, dim Hompo (0, /) = 1.
2. Now assume dim Homp ;-1 (¢/~1, y/) = 1. By (i)

Homp; (K7, V) = Hoij_l(ij_l,HomQj (él‘j,] ® (1x 1}1;,-), V) = Homp 1 (K771, V).
Hence dim Homp, (k/, ¢) = 1.

This completes the induction process and proves (ii). O

Now (7.12) holds and the proof of (7.7) is complete. O

8. Proof of the main Theorem I: construction of K-types in the general case

In this section, we will prove the part (1.3) of the Main Theorem by reducing the statement
into one block cases. The idea is old, already appeared in [16, § 2.4] and [32, Section 3.3] for
example. Hence we will omit the proofs of some simple facts.

We retain the notation in the Main Theorem. The Main Theorem of the Main Theorem
is a consequence of the following proposition.

PROPOSITION 8.1. — Suppose &' := B, o(2) = (x', =", ¢', p). Let w € V ®p V' be
the element defined by (5.9) via the construction of ¥'. We retain the notation in Section 7.1
with respect to w, X and ¥’ so that Q := K - w + %By. Then

dim Hom g (77, .7 (%o)q) = 1.

REMARK. — More generally, if X/ a theta lift of X as in Definition 5.17, then the same
proof in this section would show that

Hom  (il, & (Bo)q) # 0.

The rest of this section is devoted to proving the proposition by induction on the number
of blocks. We first state the induction hypothesis in Section 8.1. Then we prove some lemmas
on the block decomposition in Sections 8.2 and 8.3. The proof is completed in Section 8.4.
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8.1. Induction hypothesis
Let

(a) V be an e-Hermitian space such that dimp V < dimp V;
(b) 9 be a Witt tower of €’-Hermitian spaces;
(c)  be a supercuspidal data for G := U(V) such that 3 has b blocks and b < b;
(d) 3 := 19‘./’0;7/(2'3) be a supercuspidal data of ¥/ where [V'] € 9’.
We extend all the notations to this dual pair by adding “ * ”. We assume that Proposition 8.1
holds for (X, ¥'), i.e.,
dim Hom ¢ (i, (%)) = 1.

Note that the hypothesis holds when b = 0, ie., the depth-zero case (cf. [28] and
Section 5.1).

8.2. Block decomposition of vector spaces
We have already treated the depth zero case, so we assume that b > 1.
821 - Let S = @, 'Tand T = @Y_, T be the decomposition of datum ¥
according to Proposition 4.5 where T has depth —‘r. We denote % := EB?;& 'S so
that ¥ = »X @ 3. In the rest of the section, the index i is reserved specially fori = b, a.
DEerINITION 8.2. — We collect the following definitions and facts.
(i) Let r = ®r be the depth of £ and s = r/2 as usual.
(ii) We have V = bV @ 4V where 9V := @3 V.
(iii) Let ‘G := U('V). Then °G x G < Endp (V)@ Endp(?V)sittingin G € Endp (V)
block diagonally.
(iv) We have I' = °T' @ “I" where “T" := @b >
(v) We have x = (%x, %) e B(*G) x $(“G) and ¥ = b¥ @ ¥ gives the
decomposition in terms of the corresponding lattice functions.
(vi) We have GY = bG(;x.x G, p = b,o.& ap and ¢ = %¢ = ag.
(vii) Let 'K := KN 'G, 'Kg+ 1= Ko+ N 'G, 'Ky := K4 N 'G and 5K := bg x eK.
(viii) Let g := g N ?End and %g, , := “g N gy s Where
“End := Homp (*V, “V) & Homp (“V. *V) € Endp (V).
(ix) Let ?J := Gy exp(“gx,s) and ?J4 := PJ N K4 = Gy, exp(“gy (+). Obviously
exp: gy o+ —> S/ 0T =1 PW
isa °G b, X “Gax-equivariant isomorphism between abelian groups.
(x) We have

(8.1) K="5K? =%k 9K ?] and K, =9K,%J, = K, ,%J,.

(xi) Let %k be the pull back of @ ew via
8K x 2] — Sp(?"W) x H("W)
where 2J — H(®W) is the restriction of special morphism given by (A.1).
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(xii) Let S be the Heisenberg-Weil representation of 5K = %K x %K determined
by (PT, “T') and let % := ®; ® 9 where ' is the ‘K-module defined by the
datum ‘X,

(xiii) We identify S¢ and Sp with their inflations to K x “J. Directly from the construction
of k and n, we get

(8.2 k=%%® % and n="p® %.

as 9K x 2J-modules.
For the data X', we define similar notations by adding “prime” and get corresponding
conclusions.

8.2.2. — We now consider the block decomposition in the context of theta correspondence.

DEFINITION 8.3. — We collect the following notations and facts.

() Let ‘W := 'V @p V', 24W := PV ®@p V', PW := V @p PV', SW = bW @ W
and 2W := P4W @ “°W. Then we have following orthogonal decompositions of the
symplectic spaces:

(8.3) W=VepV =Wa&°2W=_"Wa W) W a*w).
(i) We have irreducible reductive dual pairs (‘G, ‘G’) in Sp(‘W) for i = b and a. They
form a reducible reductive dual pair (G, 5G’) := (G x *G, PG’ x *G’) in Sp(SW).
(iii) By the construction of lifting of datum (see Definition 5.16), Y’ = 9+ (%) and
% = Vaya g’ (*X) where ¢ T =" —[®V"]. In addition, we have w = Pw @ “w €
bW @ W so that “w = @24 'w, M(‘w) = T and M'(‘w) = T".
(iv) Define lattice functions
"B, = "W NH and b = "B/ "By+ form =b,a,ba,ab, N, 1.
Wehave B =2 ¢ tig=1tyeiy, bp=ay¢by,
B=SB®°B="Bd°B)d ("B D B and
b= Nb@ Ol — (bb D ab) ® (bab ® abb).
(v) Define doubled objects K := K x K', 'K := 'K x 'K', 2] := 2] x 2]/ Sj:=

8y, Bk := B ® P’ etc. as usual.

(vi) Let iQ:= ‘K'w + ‘B and 'S := Stab, g (‘w + ‘%) fori = a,b. We have
SS 1= Stab g, (W + Bo) = °S x S and S := Stabg(w + B,) = S °J.

8.2.3. — Similar to (7.9), we have following lemma.

LemMA 8.4. — Consider the map PT: g, .o+ ® P9, . — "Pyo+ = b induced by

(X.X) > (X, X)-w=—wX +Xw VXeX €%,

Both the domain and codomain of ®t have natural SK-module structures and the actions factor
through K / ®Ky+. Moreover 21 is an SS-equivariant isomorphism between f-vector spaces.
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Proof. — Let (X, X') € Pgx s ® P, ,. In terms of matrices with respect to the decompo-
sitionV =%V @ 9V and V' = 8V’ @& 9V’, we write

0 4 . 0 A bw 0
X = , X' = and w = .
—A* 0 —A™* 0 0 “w

Here A € Hom(%.%, b.¢); € Homp (%V, ®V) and *: Homp (4V, 2V) => Homp (2V, 4V) is
defined by (Avi, v2) sy = (v1, A*v2)ay forall vy € 4V v, € by . The notation for V' is
defined similarly. Then

0 —bwA 4+ 44
X, X)) w = —wX + X'w = wA ATy
apA* — A™ by 0

CrAM 1. — Then map Pt is injective.

Proof. — Suppose 2(X, X') € 2%+, i.e.,
(8.4) —PwA+ A% =0 (mod °B,+) and

0

(8.5) WA* — A%y =0 (mod P9%y+).

Applying < to (8.5) gives

(8.6) AW —Py* A =0 (mod “Zy+).

Note that ‘w € Hom(’.Z, ©.%)_, fori = a,b. Hence bw*(8.4) + (8.6) “w yields
—TA+ A4°T =0 (mod Hom(“%, 2.2)_+).

By the definition of block decomposition, “I' € “guay _@w-1,y+ < “gay_,+ and so

—TA4 € Hom(“Z,%%)_,+. On the other hand, the datum °X is a single positive

o . . . br._
depth block so multiplying by °T" induces an isomorphism *.%,, —= °.%,,_,. Hence

A € Hom(“Z,2%) 4, ie, X € “g. s+ A similar argument yeilds X’ € ®g’, .. This
proves Claim 1. O

CLAIM 2. — We have dim; g, s = dim; b and dim; %9/, = dim; .
Proof. — We recall that Pw?%, = 2%/ _ by the construction of lift of datum. Hence
A — PwA induces an isomorphism
29, g5+ = Hom(°.Z, °.2) ..+ = Hom(“Z, °.Z")g.0+ = “Pb.
Similarly, A’ — A™ bw induces an isomorphism
G ot = Hom(“.2", 22" . = Hom(".Z, “L )0 = P O

Claim 1 and Claim 2 prove that 27 is an isomorphism of f-vector spaces.

The group 5SS stabilizes the coset w + 5%y € SW/5%,. Using this fact and a direct
computation show that 97 is ®S-equivariant. O

REMARK. — We only use the fact that “w € “%a,_s when we prove the injectivity
of 21 | g . Therefore we could and will reuse this proof in Section 9.2.3.

X.XZSJF
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8.3. Block decomposition of representations

As in the one blocl§ case, we consider the space . (%y)q. By Lemma 2.4, ¥ (%o)q =
Indg S (PBo)w = Ind§ Wy . We now decompose w,, according to the decomposition of data.

8.3.1. — Using the formula in (7.10), we get a morphism ¢™®: 2/ —> H(2b). Its natural
extension to 58S x 2J —> SH(®b) is again denoted by ¢ .

Let %@ denote the pull back of @ a, via ™ which isan 55 x 2J -module realized on S( 2b).
More precisely, for 2 = (u, (exp(X), exp(X’)) € 58S x 2J,

1
(8.7  o(h) = wmU)om(—(X. X') - w)v (5 {w. (exp(X),exp(X")) ™" - w —w)y,).

LEMMA 8.5. — We have B =~ %w as ®S x 2J-modules.

Proof. — By (2.6), we have 3 (w.h™! - w —w),, = B(X.T)+B(X',—T’) (mod p) for all
h = (exp(X),exp(X')) € 2J C Gy % G;,,S. Now the lemma follows immediately from
Lemma 8.4 with the same proof of (7.11). O

Since b = b @ b, we have wp, = @ s, B Wy, as SH(b) x SH(“b)-module, realized on
(8.8) S(b) = S(®b) = S(“b)

Note that w = (Pw, w) € "W . Evaluation at w gives an isomorphism of C-vector spaces
(8.9) L (bBo) by ® S (“Bo)aw = 7 (5Bo)w —— S(®b) = S(’b) = S(“b).

Translating the ®S-module (resp. ‘S-module for i = a, b) structure via (8.9), we let @ sg
(resp. @ig) be the resulting module acting on S(®b) (resp. S(’b)). Clearly, by Lemma 2.4,

@es(h) = oM@ w—w)y (5 (. h ™ w = v)a)

=wrg(Ph)y R @ag(®h)  Vh = (®h, °h) € BS.

(8.10)

We state a key lemma for the induction process.

LEMMA 8.6. — By an abuse of notation, let @ss also denote its inflation to SS x 2J. Then
Oy =0ss ® %o
as 58 x 2J-module under the factorization (8.8).

Proof. — Suppose h € 5S. Then h™! - w — w € 5%, i.e., its component in 2%, is zero.
Therefore by Lemma 2.4, (8.7) and (8.10),

@w(h) = @y(Woy(h™" - w — W)Y (% (w, A~ w — w)W)

1
= (@ B @ap)(Wosy(h™' - w — w)y (5 (w,h™w— w)EW)
= wug(h) ® “o(h).
Suppose h = (exp(X), exp(X’)) € 2J C Gy,s X Gy 5. Then wp (k) = id. Since

low—we—(X,X') w4 Bo+ € “By+ ® 2%y
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we see that @y (h™1 - w —w) = idg(spy ® @ ap(—(X, X') - w). Putting the above into (2.5) gives
_ _ 1 _
@y (h) = Dap(—(X, X') - w)l/f(i (w, ™ w —w)y,) = “@(h).

This completes the proof of the lemma. O

8.4. Proof of Proposition 8.1
Note that 4% has b — 1 blocks and the data (4%, #Y’) satisfies the induction hypothesis

in Section 8.1. Also note that 2@ is an irreducible 2J-module since it is a Heisenberg
representation. Now
Homy (i, #(%0)g) = Hom (7. Ind§ @) = Homs (7. @)
= Homsgw oy (" ® %, wss ® “@) (by (8.2) and Lemma 8.6)
= Homsg (%, @ss ® Homay (%%, “@))
= Homug (¥, @ ng) (by Lemma 8.5)
= Hom g (%), @ rg) ® Homas (%, @ag).

It has dimension 1 by Proposition 7.1 and the Induction Hypothesis. This completes the
induction process and proves the proposition. O

9. Proof of the main Theorem II: Exhaustion

In this section, we prove 1.3 (ii) of the Main Theorem.

9.1. Occurrence of refined K-types

Part 1.3 (ii) of the Main Theorem is a easy consequence of following Proposition 9.1. Its
proof consists of the whole Section 9.2 which uses the key identity (9.1).

Recall the notion of K-type data in the remark of Definition 3.4 and its extension to
covering groups in Remark 5.3 of Definition 5.16.

__ProrosiTioN 9.1. — Let (G,G") = (U(V),U(V")) be a type I reductive dual pair. Let
D = (x,T.,9¢,p,8) be a supercuspidal datum of G. Suppose that GVy/(ﬁ%) # 0 (or
equivalently w[?f'@] # 0) with respect to (G, G’). Then there exist a supercuspidal datum %
for G and a K-type datum X' for G’ such that

1) E: is a theta lift of T (c¢f. Definition 5.17 ), and the pair (£, X') defines a splitting &x x/;
(i) & is equivalent to S = (2,6 x), Le., g~y and
(iii) w[ns ® %] # Ounder the splitting & x where ng andn's, are the refined K and K'-types
defined by X and X' respectively.
Proof of Main Theorem 1.3 (ii). — Let ;G/\j be a supercuspidal datum such that 7 = 7.
By Proposition 9.1, we have X and X’ such that 7 = 75 := C—Ind%?fg and
0 # Homg, g (15 ® 7y, ) = Homg, g/ (7 ® 7, @)

= Homg, g/ (7 87y, 7 B fy,y (7).
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Therefore 7%, occurs in 6,y (7). By [17, Proposition 17.2 (2)], we conclude that p’ in s
cuspidal since 7/ = 6Oy, () is supercuspidal by assumption. Hence ¥/ = By g7 (%) by

definition, ¥’ is a supercuspidal datum and 7’ = g, O

REMARK. — In the proof of [17, Proposition 17.2], [17, Lemma 15.4] is used to treat the
depth-zero case (see [17, p 315]). The covering group version of this lemma also holds since
“The proof of Proposition 6.7 in [25] goes through without changes” as stated in [12, proof
of Theorem 3.10]. Meanwhile the other parts of the proof of [17, Proposition 17.2 (2)] only
involves subgroups of G which split canonically (because they are either unipotent or pro-p).
Thus the proof [17, Proposition 17.2] also adapts “mutatis mutandis”.

9.2. Proof of Proposition 9.1
When @ has no positive depth block, i.e., @ is a depth zero data, this is proved by Pan
in [28]. See Section 5.1 and in particular Theorem 5.5.

__We prove by induction on the number of blocks similar to Section 8. We now assume
) has b positive depth blocks with b > 0.

INDUCTION HYPOTHESIS. — Assume Proposition 9.1 holds for (:57), V.V’) where
dimV < dimV, dim V' < dim V' and & has b positive depth blocks with b > b.

9.2.1. — Suppose D = (x,T.¢,p.8). Let O = (x,T.p,p)and N = 2D ® 2 be the
decomposition of ) as that for = in Section 8.2 so that depth(? ) = r and depth(¢ D) < r.
We adopt the notation defined in Definition 8.2 with respect to ).

Let prg_ , (resp. prry and pr%) be the projection operator to the Gy, -invariant
spaces (resp. the vr|g +-isotypic component and the ﬁ’@-isotypic component). Clearly,

Prry = Prrj°pPig and Pl © PIir] = Ply-

LEMMA 9.2. — There exist an x" € B(G') and a w € By x.—s such that

(@) pri (' (Bxx,0)w) # 0and
(i) M(w) € T + Pgn, _, ® “gay s C Pg @ %.

Proof. — Since Jump(.%;) C Q, we have

9.1) SOt = N Sy,
y'€B(G")

See Appendix B for the notation and a quick proof of (9.1).

Note that K € Gy preserves . _ , _ . Therefore, we can find an x" € JB(G") such that
Pl (Z#, o _;) # 0since Pl () #0.

We denote Ay x»; by %;. Since B_5 = Uwegg_Y (w + AByp), there is a w € HB_g such that
Pl ((%o)y) # 0. Clearly priry((%o)y) # 0.

Cram. — If prir|(#(%o)y,) # 0, then M(w) € T + gx —s.
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Proof. — Let g = exp(X) € G, (+ with X € g, .+. By (2.8), w(g) f = ¥Ymw)(g)f for
each [ € S (%0)y+2,- Hence priry (S (%o)y +2,) 7# 0 is equivalent to Yarw)(g) = ¥r(g)
for all g € G, ¢+. This is equivalent to

YBMw)—T.X) =1 VX g, +.

Since v is a non-trivial character with conductor p, the above condition is equivalent
tO IB(1‘4(‘“}) - Fv gx,s+) g p» i~e~9 M(w) € F + gx,7s~ D

By Proposition 4.3, let I'bea GL(®V)-good element in bg by —, TEpresenting by + by by, —pt -
Then I is also a good element in g , representing I' + g, _,+. Clearly G = Zg (f’) C
bG x 4G.

We now recall a result of Kim-Murnaghan.

LeEMMA ([19, Lemma 5.1.3 (3)]). — Letx € B(G)and X € §x.—rNG_,+. Thenfort > —r
we have
(Ad G s) (T + X + §a) = T+ X + g O

Setting X =T'— I',and 7 = —s, the above lemma gives (Ad Gy ) (T +gx,—s) = T+ gx —s-
In other words, there is an & € Gy s such that

M(h-w)=h-Mw) €T +§x—s S (°T + Pgoy ) ® “gax,—s.

Since G, normalizes ,773)’ P (L (PBo)pw) = h - Py (~(%0)y) # 0. Therefore by
replacing w with & - w, we may assume that w satisfies Lemma 9.2 ((ii)).

This completes the proof of Lemma 9.2.

9.2.2. — Let x” and w satisfy Lemma 9.2. Let # := %y y» and
(9.2) Mw) = °X + X,
where 2X € bT 4 bgbx’,s and X € T + “gay .
We define 2V’ = w(®V) and 4V’ = bV'+ Let 'w := w|,,, fori =aandb.

LeEmMMA 9.3. — The following statements hold:

() Restricting on °V, the map Wyt by = bV’ is an isomorphism.
(i) The restriction of { , Yy to PV' is non-degenerate. In particular, V' = V' @ 4V’
(iii) The image w(%V) C 4V, i.e.,, “w € Hom(4V, 4V’).

Proof. — (i) All elements in °I" 4 bg by.—s are invertible elements in End( by). In particular
bX is invertible. Since w*w = ?X restricted on 2V, w: ¥V — 2V’ is an injection and hence
an isomorphism.

(i) Let vi,v2 € °V. Then (wvy, wva)y: = (v1, M(w)va)y = (v1, vaz)bV. Since %X is
invertible, the claim follows.

iii) Suppose v € “V. Then (wu,wv)y, = (—?Xu,v), = 0forallu € PV.Hence
14 v

wo € byt = ay’, O
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By Lemma 9.3, we see that ‘w € Hom(?V, V') and w = ®w & %w is a block diagonal
decomposition. Moreover ‘M (‘w) = X for ‘X in (9.2) where ‘M is the moment map
defined with respect to the dual pair (U(?V), U('V")).

Let .¥ = Z N 'V which is the lattice function corresponding to ‘x € B(‘G) and
& = b 2@ 2%, The following lemma says that the lattice function .#” corresponding to x” is
split under V' = 2V’ @ V',

LEMMA 9.4. — Let '.L) = £/ NV’ fori = b,a. Then
(i) 2.2 = Pw(bL,1s) and it is self-dual in PV,

() & =42 & 2% and

(i) 2L is self-dual (.

Proof. — (i) Let .2/ := bw(.Z45) = w(P.%+s). By Lemma 5.9, it is a self-dual lattice

function in 2V’ Since w € B_,, b.L" < £/ N PV’ = b.¥/ for all t € R. Taking dual lattice
¢ ¢ t g

in PV, we have .2 = (b)) 2 (PL)* 2 (L)*n by =ty | forallt € R. Hence

(1) holds.

(ii) Obviously .Z/ 2 2./ @ “&/. Conversely let v = bv 4+ % € &’ 4+ = (Z)* with
iy € V'  Then %v € bfiﬁ = (2.Z})* since (v, b.,i”t’),,v = (v, bﬁ,’)w C (v..Z))y S pp.
Now % =v—"bv e (Z bfiﬁ)ﬂ W= 422" . Therefore, £’ | b‘fiﬁ ®°Z
for any ¢ € R. This proves part (ii).

(iii) By () and (i), .2’ , & .2, = L, = (Z)* = L) e (“L)* =
b,flﬁ ® (“Z))*. Hence °.¢" | = (“Z))*, i.e., °L" is self-dual. O

Note that ?M(bw) € °T + ng,_s. By Proposition 5.10, there is a bwg € bw + 2%, such
that °M(Pwg) = PT'. Replacing w with wy & “w € w + 2By € w + Py, we assume that
by (Pw) = PT from now on.

9.2.3. — We retain all the notations in Definition 8.3 (??). On the other hand, we do not have
enough information about ¥’ to define K’ at the moment. Instead, we replace K by K in
Definition 8.3 ((vi)) and define the following notations.
(vi") Let Qg := Kw + %y and Sk := Stabg (w + %y).

Let Qg 1= ‘K'w + ‘%By, 'Sk := Stabig (‘w + ‘%) fori = a,b.

Let 5SSk := Sk x %Sk = Stabigag (W + %) so that Sx = Sk 2J.
By the remark of Lemma 8.4, we see that the map

|74 Rl v %] — @
LK "By sist — ‘%0:0"" ="b

induced by X + X -w is an ¥Sg-equivariant injection between f-modules. Moreover %1 g is
an isometry with respect to natural symplectic forms of the domain and codomain. Let
by be the orthogonal complement of the image of ?I g in Zb.

The next lemma is a variation of Lemma 8.5 and Lemma 8.6 which follows by the same
arguments.

(% We warn that ./ # wg “.% 4.
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LEMMA 9.5. — Let @ be the Heisenberg-Weil representation of 5K x BJ defined in
Definition 8.2 ((xi)). Let wss, and “w be the "Sk x PJ-modules realized on S(®b) and S(“b)
respectively as in Section 8.3.1 (see (8.7) and (8.10)). Then, as SSg x BJ-modules,

(i) %@ = % ® S(%bL) = (%), where ¢ = dimS(%k) = (#2bL)2,

(i) wss, = Whg, RWagy, and
(ill) wsx = wss, ® “. O

924. — Let &) = (x.I.¢.p) where p 1= p ® pgg , andlet ) = °D & *

be the corresponding block decomposition. Note that (), £x x7) ~ f@ by definition and
Pl (-7 (%o),,) 1s nonzero (see Definition 3.16 and Lemma 9.2 ((i))). By Lemma 9.5, we have

0 # Homg (775, -7 (%o)a,) = Homk (n e, 7 (%o)ay)
= HOl‘nK(ﬂ:’@, Ind‘IS(KESK) = Homg, (r]:@,ask)
= HOmISIS[XZ‘](EIY]C?/) ® ZK,ENSK ® “w)

= (HomgSK(n,ENSK))GBC

dc
= (HothK(ch"@’wth) HOl’IlaSK (ﬂacgb, 5“S[()) .
In particular, 0 # Homuag, (nac%),msk) - HomaK(nac%), S (%%A)).-

Let “:@ = (", T, “9, g, Eax ayr). Then “@ has b — 1 blocks. Applying the induction
hypothesis to (“:@, ay, 4V’), we get 4% and Y = Gay,aps (4X).
Now we define
(@) ' := (°", ') € B(*G', F) x B(G', F) € B(G', F);
(b) % := (Px, oL, ¢, bp) where 25 1= bp @ (ee, |np) = 2B ® (e i v
(c) := bty @ 23, by := 9+ (P%) with respect to w and &' := b5’ @ 2%/,

Obviously, X/ is a lift of ¥ and x’ occur as a part of the datum X’. By the functoriality of the
construction of lattice model, one can see that

/’qux,ux//,faxiax/ - Ms(bx,“x),(bx”,“x”)’é(bx.ax).(hx”,“x’)|“Gax = MEX.X”’SX,X’|“G£JX'

Hence, we conclude that (X,&; /) ~ ’@ Applying the argument in Section 8, we conclude
that

0 # Homgx g (nx 7’]/2/, S (Bx,x:0)KKw)-

This finishes the proof of Proposition 9.1 and hence also completes the proof of 1.3 (ii) of
the Main Theorem. O

Appendix A

Heisenberg-Weil representations

In this appendix, we collect some facts about Heisenberg-Weil representations.
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A.1. Heisenberg-Weil representation after Gérardin

Let § be a finite field with ¢ elements and let ¥ be a nontrivial character of f. Let W be
a non-degenerate symplectic space over f. Let H(W) = W x f and Sp(W) denote the
corresponding Heisenberg group and symplectic group as usual. We let (ow, S(W)) denote
the space of the Heisenberg-Weil representation of SH(W) := Sp(W) x H(W) with central
character V¥ realizing on S(W). In [10], Gérardin carefully studied the isomorphism class
of ww. We now recall the mixed model of this representation. See [10, § 2] for details.

For any subspace V. C W, let H(V) be its inverse image in H(W) under the projection
H(W) — H(W)/f = W. Let W, be a non-trivial totally isotropic subspace of W. Then
Wy = Wi /W is naturally a non-degenerate symplectic space. Let P(W ) be the parabolic
subgroup stabilizing W_.. By an abuse of notation, we let ww, denote the pull back of ww,
to P(W4) x H(Wi) via the natural quotient

P(W,) x H(W) — Sp(Wo) x H(W,).

Let yW+ be the (unique real) character of P(W ) given by g (detg|w+)(q*1)/ 2 e {£1}
for all g € P(W4). Then

(1) ww is the unique SH(W)-module extending Ind" W+ <HW)

P(W+)><H(WJ+-)
(ii) Fix a totally isotropic subspace W_ such that W = W_ @ W=, then the induced
module in ((1)) could be identified with the set of functions on W_ with values in S(Wy).
The group actions could be easily work out.
(iii) The space (@w)W+ of W -invariants in @w is isomorphic to @w, asan H(W+)-module.
Moreover P(W) acts by yV+ ® ow,.
(iv) The module @w has dimension v/#W = g2 dimi W,
Note that when W, is a maximal isotropic subspace in W, we have H(Wy) = f and
w, = ¥ so that we get the Schrodinger model of wy.

(XWJr ® EWO)

A.2. Construction of «.

Following [37], we discuss the construction of the K’-module «’ which extends ¥ ki -
+

A.2.1. Special isomorphism. — As Yu [37] has pointed out, the extension of a Heisenberg
representation to a “Weil representation” of K is subtle. The problem is that, H(W) has a
large subgroup of the automorphism group (isomorphic to W) whose action on the center f
and on H(W)/f are identity. Therefore, / — H(W) in [37, § 11] is far from unique and, Yu
gives a canonical construction from root datum.
We retain the notation and situation in [37, § 11] and [17]:
(i) T € gisa good element of depth —r;
(i1) (é, G) is a tamely ramified twisted Levi sequence with G =7Zg (I);
(iii) B(G) = B(G) is a fixed embedding of buildings;
(iv) x € B(G);
(V) g = §®g" is an orthogonal decomposition with respect to the form B in Section 2.1.1;
(vi) J = (G,G)(F)x 5y and J4 = (G, G)(F)y r.s+). See [37, p. 586] 19

(19) In our cases, (é, G)Y(F)x,(ry.r0) = exp(@x.r; @ ﬁf;.rz) for 0 < %rl <rs.
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Taking a clue from Lemma 2.4, we could define a “canonical” morphism for J below.
The symplectic space W = J/J is identified with ﬁim + via the exponential map. Suppose
X1, X, € ﬁim . with lifts Xy, X> € g5 respectively. Then we have a non-degenerate
symplectic form on W given by (X1, X») = B([X1, X2].T) € f (cf. [37, Lemma 11.1]). By
the Baker-Campbell-Hausdorff formula, we have a group homomorphism 9

(A1) &:J — HW)=Wx§f givenby exp(X)— (X,B(X,T)).

Note that ¢ agrees with the special morphism defined in [37, Section 11] since they agree
on root subgroups. By an abuse of notation, we also let ¢ denote its natural extension

&Gy x J —> Sp(W) x H(W) = SH(W).

A2.2 — We fix a good factorization I' = Zid=0 I'; and therefore get a sequence of
subgroups G' as in Definition 3.3. We follow the notation in [37, p.591]: K/ := K N G =
GOGL, -Gl = (G Gy, L= (GTGY), s and W= Ji/JE
g »Si— i—18;
Now we define a sequence of representations «* of K’ inductively such that K, acts by
the character . This is essentially Yu’s construction in [37, § 4].

0. First we set k* = ¢ (cf. Definition 3.5 ((f))).

Suppose we have constructed k' 1. We now construct the K’-module «':

1. Note that K = K7'J!. Let {': Ki~! x J* — SH(W') denote the special homo-
morphism with respect to the Levi sequence (G'~!, G') and the good element I'; _; (cf.
Appendix A.2.1). Let 5?5—1 denote the K'~! x Ji-module obtained by pulling back
of oy (cf. Appendix A.1) via ¢*.

2. Weset I := Zf=i I'; which is in the center of g'. We see that Y is a character
of G;,OJF D Ji. Let 1 x Y beits extension to K*~! x J¥ such that K'~1 acts trivially.
As a subgroup of J/, Ji~! acts by the character Y on @f,_ ® (1 X yrpi).

3. We inflate «¥'~! to a K'~! x Ji-module. Since K" N J! = Gt < JLN K, the
K'=! % Ji-module k' ® @} | ® (1 x yry) factors through K=" x J' — KI=1JF = K'.
Let «' be the corresponding K'-module. It is clear that K, = K "!J! acts by Y.

Appendix B

A quick proof of a result of Pan

As the reader may notice, (9.1) is a generalization of [27, Proposition 6.3]. Our proof
follows Pan’s idea. Although we use the exponential map to identify gy , with Gy ., the
statements and proofs in this appendix also hold if we replace the exponential map by the
“Cayley transform” and in which case we only assume the residual characteristic p # 2. To
ease notation, we normalize the valuation map such that val(wp) = 1.

@0 We check that §| ; 1s a group homomorphism. Indeed by the Baker-Campbell-Hausdorfl formula
logexp(X)exp(Y)) =X +Y + %[X, Y] (mod gl ,+) and

£t ) = (X,BE D) (F,BED) = (X +7,BX +¥ + 2[X,Y],1) = t(e¥e”).
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B.1. Invariant vectors under the action of lattices

Let . be any realization of the oscillator representation of Sp(W) x H(W). Here
H(W) := W x F denotes the Heisenberg group of W and we identify W as a subset
of H(W).

Suppose L is a lattice in W such that L D A* for a certain good lattice 4. Let .#L"
denote the space of L*-fixed vectors in .¥ under the Heisenberg group H(W) action. Let
7 (A*) be the generalized lattice model of the oscillator representation with respect to A*
and let . (A*); be the subspace of functions in .7 (A4*) supported on L. We identify .7
with .7 (A4*) via a fixed intertwining map. It is easy to see that .”~” is exactly the image
of #(A*)r (cf. [27, Lemma 8.2]). Since .#~” neither depends on the choice of A nor the
choice of intertwining map, it makes sense to let .#7 denote .”~" to emphasis that it is the
space of functions with support on L under the generalized lattice module with respect to
any A* C L. In particular, for a self-dual lattice function & in W, we identify .##s+ with
S (Ao) #z_, and denote it by Sz_ .

B.2. Proof of (9.1) and depth preservation

We only need to consider rational points in the building for our study of minimal K -types.
These points correspond to lattice functions with rational jumps.

In the rest of this section, we will prove the following theorem which is a slightly stronger
version of (9.1).

THEOREM B.1. — Suppose Jump(Zy) C %Z so that Jump(gy) C %Zfor certain positive
integer m. Let
1
B(G')2m =1y € BG) | ump(Z)) € 5-L}.
Then forall0 < r € 17,
SOt = Z L —rs2-
y€B(G)2m

B.2.1. — We will call .Z an op-module function in V if % is only an op-submodule in V' in
Definition 2.3. In this case, .5 ®,,, D may not equal to V and

LF={veV (v, %)y Srp}
may not be a lattice.

The following are the key lemmas:

LEmMaA B.2 (cf. [27, Lemma 10.1]). — Suppose A is an o p-module function in V such that
Jump(A) € 5--Zand(A;, «/Vtz)V Cppln +0245 1. Then there is a self-dual lattice function &

such that N; C .Z+ L and Jump(Z) C ﬁZ

Proof. — Since <</V2,7</V_2, 1>V C pDrl R - pp, we have JVZ - JV*
particular, we have 4y C A A C Ay*. Fix a good lattice R which COl’ltdlnS . Deﬁne

JV—l + R* when — 1 <
B.1 L =
(B.1) am .ff,H:c/V* N R when0 <

2m
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Observe that <,/V_%, R*> = wp! <</V% R*>V C wp' (M, R*)y € wp' (R, R*)y = op.

174
Therefore we have (.,2”_,2"“ ,.f_,zn+1 >V = </V_% + R*,JK% + R*>V C op which is equiva-

lent to
,,2”—,21;-4-1 C (.ip—rzn-;-l )*w51 = fﬁwgl
Hence (B.1) determines a lattice function . such that Jump(.¥) C ﬁZ. Moreover, £ is
self-dual since .£* = Z—;1+1 by definition.
2m

2m
Note that
| .

Ligi=Ni +R*DNi when ——fl—<0;

2m 2m 2 2 7 2m

j 1

L =L, =N NRD2N, NNy=.AN,  when 0<— <~

2m 2m 2m 2m 2m 2m 2

Therefore .Z, S 2 ; forall ¢ € R by the definition of .£. O

LemMA B.3 (cf. [27, Proposition 10.5]). — Suppose x' is a point in J3(G’) and j is a posi-
tive integer. Then

Gx Jj/m
T S 2 TR, =g
Y€B(G )am

Proof. — Letr := j/mand s :=r/2 = j/2m. Note that Gy, C G, ;+ and

y‘%x.x/.—j/Zm = @y('@x,x/ﬁ)w
w

as G ,-module where w is running over representatives of %y y/ —s.0. By Remark 2. of
Lemma 2.4, the summand (% x/,0)w 18 Gy ,+-isotypic and exp(X) € Gy, acts by the
scalar ¥ (B(X, w*w)). Now fix a w such that y(@x,x,,o)SX~’ # 0. Since ¢|0 is non-
degenerate, B(gx,r, w¥w) € p,ie, M(w) = w*w € g, _,+. Clearly, /(B x'0)w < S Cxr

Define 47 := (W + PBxx',0)-Lx.t+s- It is clear that .47 is an op-module function in V’
and Jump(4;) C ﬁZ. On the other hand, wfwz = M(w) =0 (mod gl(V), _,+) for any
Wi, w2 €W+ By oand gl(V), _,+ = g[(V)x,_rJr%. Therefore,

(f/‘/tl s JVtz)V/ C (fx,tl +s> g[(V)x’_r_’_% . gx,t2+s>v

t1+ta+3k
- (gx’tl+5’fx,t2—s+%>v < pDr 1™ ”'].
By Lemma B.2, there is a self-dual lattice function .i”y’ such that .4; C .Zy/ L Hence we
At o
have
/ —
W+ By xo C m Hom,, (gx,t+s~$y’t+ﬁ) = ‘%)x,y,—s+ﬁ
te57
and %x,x’,o = {wl — Wy | w1, Wy €W + %x,x’,o} - ‘%)x,y,—s+ﬁ'
This means ' (%x,x'0)w € % _;,, and proves the lemma. O
XV Tom
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B.2.2. Proof of Theorem B.1. — The “2” direction is obvious. We now prove the “C” direc-
tion. Let r = k/m and fix any x’ € B(G’)2m. For each integer j > k, we have

Gyt G, k1 G, i\G k+1
ffﬂgg’ _j:(y.@ ,71') T :((y@,fj)'{q) s
“‘“W XX 5 x.x" 5
G ki1
g Z (yggxy_(j_l)) X Tm gg Z y'%x.y.z_—k
YeBG2m o YeBG2m "
by Lemma B.3. Now the theorem follows from the fact that & = ;4 Y, _, - O

= x. x5

B.2.3. — By the argument in the proof of [27, Theorem 6.6], “depth preservation” of theta
correspondence is an immediate consequence of Theorem B.1. Indeed let ®: . — 7 ® 6(x)
be the G x G’ -intertwining map. Suppose 7 has depth r. Then there is a certain x € B(G)
such that Jump(%;) € Q and 7Gxt # 0. By Theorem B.1, ®(“%, ,, _, ,) # 0 for some
y € B(G') so (G(Jr))G;f+ # 0. Hence depth(f(xr)) < depth(x). Since the roles of x
and 6(;r) are symmetric, we have depth(zr) < depth(6(,r)) as well which proves the “depth
preservation”.

We remark that in proving his result [29, Theorem 5.5], Pan uses the fact that an irreducible
representation of a classical group of positive depth has an unrefined minimal K-types of the
form (G¢,,.¢) where ¢ is a character of G4 ,..,+ and Z is some regular small admissible lattice
chain. See [29, Proposition 3.4]. By the result in this appendix, this could be circumvented
and we could replace “a regular small admissible lattice chain Z in V> by “a rational point
in the building of U(V')” or simply “a point in the building of U(V)” (since unrefined minimal
K-type always could be achieved at a rational point) in the statement of [29, Theorem 5.5].

BIBLIOGRAPHY

[1] J. D. ADLER, S. DEBACKER, Some applications of Bruhat-Tits theory to harmonic
analysis on the lie algebra of a reductive p-adic group, Michigan Math. J. 50 (2002),
263-286.

[2] A.-M. AuUBERT, Conservation de la ramification modérée par la correspondance de
howe, Bull. Soc. Math. France 117 (1989), 297-303.

[3] P. BrRoussous, S. STEVENS, Buildings of classical groups and centralizers of Lie
algebra elements, Journal of Lie Theory 19 (2009), 55-78.

[4] F. BruHAT, J. TiTs, Schémas en groupes et immeubles des groupes classiques sur un
corps local, II. Groupes unitaires, Bull. Math. Soc. France 115 (1987), 141-195.

[5] C. J. BusHNELL, P. C. KuTzko, The admissible dual of GL(N) via compact open
subgroups, 129, Princeton Univ. Press, 1993.

[6] S. DEBACKER, Parametrizing nilpotent orbits via Bruhat-Tits theory, Ann. of math.
156 (2002), 295-332.

[7] S. DEBACKER, M. REEDER, Depth-zero supercuspidal L-packets and their stability,
Ann. of math. 169 (2009), 795-901.

[8] J. DIEUDONNE, La géométrie des groupes classiques, Springer, 1963.

[9] W. T. GaAN, J.-L. Kim, Tame types of nonlinear covering groups, in preparation.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#4
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#9

990 H. Y. LOKE AND JIA-JUN MA

[10] P. GErRARDIN, Weil representations associated to finite fields, J. of Algebra 46 (1977),
54-101.

[11] J. HAakiM, F. MURNAGHAN, Distinguished tame supercuspidal representations, Int.
Math. Res. Pap. 2008 (2008).

[12] T. K. HowarD, M. H. WEIssMAN, Depth-zero representations of nonlinear covers of
p-adic groups, Int. Math. Res. Not. 21 (2009), 3979-3995.

[13] R. Howg, 6#-series and invariant theory, in Automorphic Forms, Representations and
L-functions, Proc. Symp. Pure Math 33, 1979, 275-285.

[14] R. Howeg, Perspectives on invariant theory: Schur duality, multiplicity-free actions and
beyond, in The Schur lectures (1. Piatetski-Shapiro et al., eds.), Isr. Math. Conf.
Proc. 8, Ramat-Gan: Bar-Ilan University, 1995, 1-182.

[15] R. Howg, Tamely ramified supercuspidal representations of gl,,, Pacific J. Math. 73
(73), 437-460.

[16] R. HowEg, A. Moy, Harish-Chandra homomorphisms for p-adic groups, CBMS
Regional Conference Series in Mathematics 59, Amer. Math. Soc., 1985.

[17] J.-L. Kim, Supercuspidal representations: An exhaustion theorem, J. Amer. Math. Soc.
20 (2007), pp. 273-320.

[18] J.-L. KiMm, F. MURNAGHAN, Character expansions and unrefined minimal k-types,
Amer. J. Math. 125 (2003), pp. 1199-1234,

[19] J.-L. KM, F. MURNAGHAN, k-types and I"-asymptotic expansions, J. reine angew.
Math. 592 (2006), 189-236.

[20] J.-S. L1, Singular unitary representations of classical groups, Invent. math. 97 (1989),
237-255.

[21] J.-S. L1, Minimal representations and reductive dual pairs, in Proceedings of Represen-
tation theory of Lie groups, Park City, UT, 1998, IAS/Park City Math. Ser. 8, Amer.
Math. Soc., 2000, 293-340.

[22] H. Y. Lokg, J.-1. Ma, G. SaviN, Local theta correspondences between epipelagic
supercuspidal representations, Math. Z. 283, 169-196.

[23] C. M&GLIN, M.-F. VIGNERAS, J.-L. WALDSPURGER, Correspondances de howe sur
un corps p-adique, Lecture Notes in Math. 1291, Springer.

[24] A. Moy, G. PrasaD, Unrefined minimal k-types for p-adic groups, Invent. math. 116
(1994), 393-408.

[25] A. Moy, G. Prasap, Jacquet functors and unrefined minimal k-types, Comment.
Math. Helvetici 71 (1996), 98U121.

[26] S.-Y. PaN, Splittings of the metaplectic covers of some reductive dual pairs, Pacific J.
Math. 199 (2001), 163-226.

[27] S.-Y. PaN, Depth preservation in local theta correspondence, Duke Math. J. 113 (2002),
531-592.

[28] S.-Y. PaN, Local theta correspondence of depth zero representations and theta
dichotomy, J. Math. Soc. Japan 54 (2002), 793-845.

[29] S.-Y. PAN, Local theta correspondence and minimal k-types of positive depth, Israel
J. Math. 138 (2003), 317-352.

4¢ SERIE - TOME 51 — 2018 — N° 4


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#21
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#27
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#29

CORRESPONDENCES BETWEEN SUPERCUSPIDAL REPRESENTATIONS 991

[30] S.-Y. PaN, Supercuspidal representations and preservation principle of theta corre-
spondence, J. reine angew. Math. (2016).

[31] S.-Y. PaN, Supercuspidal representations and theta correspondence, preprint http:
//ir.1lib.nthu.edu.tw/handle/987654321/52348.

[32] S. STEVENS, Intertwining and supercuspidal types for p-adic classical groups, Proc.
London Math. Soc. 83 (2001), 120-140.

[33] S. STEVENS, Semisimple characters for p-adic classical groups, Duke Math. J. 127
(2005), 123-173.

[34] S. STEVENS, The supercuspidal representations of p-adic classical groups, Invent. math.
172 (2008), 289-352.

[35] B. Sun, C. ZHu, Conservation relations for local theta correspondence, J. Amer. Math.
Soc 28 (2015), 939-983.

[36] J.-L. WALDSPURGER, Démonstration d’une conjecture de dualité de Howe dans le cas
p-adique, p # 2, Israel Math. Conf. Proc. 2 (1990), 267-324.

[37] J.-K. Yu, Construction of tame supercuspidal representations, J. Amer. Math. Soc. 14
(2001), 579-622.

[38] J.-K. Ywu, Bruhat-Tits theory and buildings, in Ottawa lectures on admissible represen-
tations of reductive p-adic groups, 26, Amer. Math. Soc., 2009.

(Manuscrit regu le 28 décembre 2015 ;
accepté, apres révision, le 17 mars 2017.)

Hung Yean LOKE
Department of Mathematics
National University of Singapore
2 Science Drive 2, Singapore 117543
E-mail: matlhy@nus.edu.sg

Jia-Jun Ma
School of Mathematical Sciences
Shanghai Jiao Tong University
800 Dongchuan RD
Shanghai, China 200240
E-mail: hoxide@sjtu.edu.cn

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE


http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#31
http://ir.lib.nthu.edu.tw/handle/987654321/52348
http://ir.lib.nthu.edu.tw/handle/987654321/52348
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#34
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_4.html#38




	1. Introduction
	2. Preliminaries: Local theta correspondence
	3. Preliminaries: Supercuspidal representations
	4. Good factorizations and block decompositions
	5. Theta Lifts of supercuspidal data
	6. One positive depth block case I: orbit structure
	7. One positive depth block Case II: the constructions of refined minimal K-types
	8. Proof of the main Theorem I: construction of K-types in the general case
	9. Proof of the main Theorem II: Exhaustion
	Appendix A. Heisenberg-Weil representations
	Appendix B. A quick proof of a result of Pan
	Bibliography

