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A FLOER FUNDAMENTAL GROUP

BY Jean-Francois BARRAUD

ABSTRACT. — The main purpose of this paper is to provide a description of the fundamental
group of a symplectic manifold in terms of Floer theoretic objects. As an application, we show that
when counted with a suitable notion of multiplicity, non degenerate Hamiltonian diffeomorphisms
have enough fixed points to generate the fundamental group.

RESUME. — L’objet de cet article est de donner une description du groupe fondamental d’une variété
symplectique en terme d’objets de la théorie de Floer. A titre d’application, on montre que tous les
difféeomorphismes hamiltoniens non dégénérés ont, si on les compte avec une notion convenable de
multiplicité, suffisamment de points fixes pour engendrer le groupe fondamental.

1. Introduction

1.1. Presentation of the results

In many ways, the topology of a space influences its geometry, and this is particularly true
in symplectic geometry. Having a symplectic interpretation of a topological invariant is a
good tool to explore this relationship. The celebrated Floer Homology ([7, 6]) is of course
a strong illustration of this phenomenon. Introduced to prove the homological version of
the Arnold conjecture ([1]), it quickly became one of the most powerful tools in symplectic
geometry.

However, all the techniques derived from the original Floer construction are homological,
or at least chain complex based in nature. The notion of cobordism (among moduli spaces) is
even at the root of the original ideas of M. Gromov [9] of using pseudo-holomorphic curves
to derive invariants in symplectic geometry. The use of local coefficients in Floer complexes
allows Floer theory to involve some homotopical invariants, but purely homotopical tools
are still missing, and it is the goal of this paper to provide a Floer theoretic interpretation of
the fundamental group.

All the objects this construction is based on are still classical Floer theoretic objects, but
the essential non Abelian phenomena that make the difference between the fundamental
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774 J.-F. BARRAUD

group and the first homology group are caught by a deeper use of 1-dimensional moduli
spaces, and the use of “augmentations”.

More precisely, let (M, w) be a connected closed monotone symplectic manifold and
choose an Hamiltonian function H on M, a possibly time dependent almost complex struc-
ture J compatible with w, and a point x in M to serve as the base point. Recall the Floer
trajectories in this setting are (finite energy) maps u : R x S' — M satisfying the Floer

equation

ou ou

5y 8D+ Jiluls.0) - (s.1) = Je(u(s. 1) Xn, (u(s. 1)
where Xy is the Hamiltonian vector field associated to H.

Using a cutoff function y to turn off the non homogeneous Hamiltonian term on the
positive end of the tube (resp. on both ends but preserving it on an annulus of varying
modulus) allows to define moduli spaces denoted by M (x, @) (resp. M (*,@)), which are
Floer counterparts of Morse unstable manifolds (see the comments after Definition 2.4). It
is a classical result of Floer theory that for a generic set of auxiliary data (H, J, «, ), all these
moduli spaces are smooth finite dimensional manifolds.

Similarly to the Morse setting where a loop can be seen as a concatenation of paths
associated to unstable manifolds of index 1 critical points, we use the components of the
above 1-dimensional moduli spaces to define a notion of Floer loop (see Definition 2.8).
These loops come naturally with concatenation and cancelation relations for which they form
a group Z(H, x). The main statement of the paper is then the following theorem:

THEOREM 1.1. — There is a natural evaluation map that induces a surjective group homo-
morphism L(H,J,*) — m1(M, %) .

A description of the relations is also given, but, although they obviously only depend
on H, J, %, and y, we resort to an auxiliary Morse function to get a finite presentation
for them (see Section 4). Nevertheless, we produce explicit relations such that the generated
normal subgroup 2 (H, x) satisfies the following statement:

THEOREM 1.2. — The evaluation map induces a group isomorphism

Z(H, *)/07?/(1{, ) (M, %) .

Notice the construction is presented here in the absolute setting, i.e., Hamiltonian fixed
points problem, but also makes sense in the relative one, i.e., intersections of a Lagrangian
sub-manifold with its deformations under Hamiltonian isotopies problem. Although the
latter can be expected to hold the most interesting applications, we choose to focus on the
former for the sake of simplicity and to highlight better the main ideas: the generalization to
the latter entails exactly the same issues as for the homology and involves no new idea.

Finally, the construction also makes sense in the stable Morse setting (i.e., study of Morse
functions that are quadratic at infinity on M xR”"). Although the corresponding results have
their own interest and would deserve a separate discussion, they will only be quickly sketched
without proofs in the last section of this paper (see Section 6), rather as an illustration and a
simplified finite dimensional model of the Floer setting.
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A FLOER FUNDAMENTAL GROUP 775

A natural outcome of this construction is an estimate on the number of fixed points
of Hamiltonian diffeomorphisms, but not in usual way, since a notion of multiplicity has
to be introduced. Indeed, rather than the critical points themselves, the relevant objects
required to build loops are their unstable manifolds (called “steps” in the sequel), and while
to one critical point corresponds exactly one unstable manifold in the Morse setting, Floer
counterparts of unstable manifolds may have several components, which have all to be taken
into account.

Counting the number vy (x) (resp. vy (%)) of steps through a given Conley-Zehnder
index 1 —n fixed point x (resp. x) defines a notion of multiplicity for these points (that
depends on the almost complex structure, see Definition 2.10 for more details). We then
have the following theorem:

THEOREM 1.3. — Let p(mw1(M)) denote the minimal number of generators of the funda-
mental group. Then:

0] vy + Y () = plri(M)),

lyl=1
where the sum runs over the contractible 1-periodic orbits, or more precisely over the homotopy
classes of cappings of such orbits with Conley-Zehnder index 1 — n.

REMARK 1. — The number v (%) is a sum of contributions of index —n fixed points (see
Definition 2.10), so that inequality (1) can be interpreted as a lower bound for the number
of particular Floer configurations associated to fixed points with Conley-Zehnder index —n
and 1 —n.

REMARK 2. — This statement should be compared to its Morse analog, namely that for
any Morse function f : M — R, we have

2 fCrit1 (f) = p(w1(M)),
where Crit; () denotes the set of index 1 critical points.

As already mentioned, the construction, and hence the definition of the multiplicities
makes sense in the stable Morse and a fortiori Morse settings (moreover, we claim, without
proof, that for C? small Morse functions, Morse and Floer moduli spaces can be identified
like in [7], and that multiplicities coincide in this case). For an index 1 Morse critical point y,
vy (») is the number of components of its unstable manifold, and hence always evaluates to 1.
Similarly, vy (x) 4+ 1 is the number of Morse trajectories through * and hence evaluates to 1.
As a consequence, vy (x) = 0, so that

vi(x)+ Y vr(y) = iCrity (f),
lyl=1
and (1) appears as a generalization of (2) to the more general Floer setting.

REMARK 3. — There is no hope to avoid multiplicities in (1) as long as they result from a
construction that also applies to the stable Morse setting, which is the case of ours.

Indeed, M. Damian showed in [4] that the stable Morse number (which is the minimal
number of critical points of a Morse function which is quadratic at infinity on a
product M x RY) may be strictly smaller than the Morse number (which is the minimal
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776 J.-F. BARRAUD

number of critical points of a Morse function on M), and that stable Morse functions may
not have enough points to generate the fundamental group (for instance, such functions do
exist on manifolds whose fundamental group is (45)2°).

This implies that the multiplicities in (1) are mandatory, and the construction offers a new
point of view on this question: although there may not be enough geometric critical points to
generate the fundamental group, it explains how the same point can define several generators
to overcome this deficit and still recover the fundamental group.

REMARK 4. — The inequality (1) is obviously different in nature from the Morse inequal-
ities derived from the Floer homology, since one may have p(w1(M)) > f1(M) (where
B1(M) is the first Betti number of M). It is also different from the results of K. Ono and
A. Pajitnov ([12], see below) and more generally from any result based on the algebraic study
of a chain complex that would also apply to the stable Morse setting. Indeed, examples are
known of stable Morse functions that have strictly less critical points than the minimal
number of generators of the fundamental group.

The role and the control of the contributions of the multiplicities in general is a deep
and intriguing question, closely related to the estimation of the minimal number of periodic
orbits.

The following theorem ensures the existence of at least one Hamiltonian periodic orbit
with Conley-Zehnder index 1 — n and non vanishing multiplicity provided the fundamental
group is non trivial:

THEOREM 1.4. — Let (M, w) be a monotone symplectic manifold. Suppose w1(M) # {1}.
Then every non degenerate Hamiltonian function has to have at least one contractible 1-periodic
orbit of Conley Zehnder index 1 —n. Moreover, for a generic choice of possibly time dependent
almost complex structure, at least one such orbit has non vanishing multiplicity.

In particular, this result provides at least one index 1 — n orbit even if the first homology
group of the manifold vanishes, provided the fundamental group is non trivial.

One interesting feature of this theorem is that its proof is essentially geometric, where the
usual Floer technics are rather algebraic: it comes down to patching suspensions of 1-dimen-
sional moduli spaces side to side to form a disk. In this sense, although Theorem 1.4 is not
strictly speaking a corollary of the Floer interpretation of the fundamental group given in
this paper, it derives from the same principal idea, namely that 1-dimensional moduli spaces
do contain information that the homology does not catch.

Moreover, the orbit exhibited in this statement has explicitly non vanishing multiplicity,
while this is not immediately obvious in other constructions that provide lower bounds on
the number of periodic orbits.
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A FLOER FUNDAMENTAL GROUP 777

Relation to the Arnold conjecture and other results

Theorem 1.3 is obviously a variation on the Arnold conjecture. In its non degenerate and
strongest form, this conjecture claims that the total number of 1-periodic orbits of a non
degenerate Hamiltonian flow can not be less than the minimal number of critical points for
a Morse function. A weaker but maybe more convincing and tractable version involves the
stable Morse number, which is the minimal number of critical points of Morse functions
which are quadratic at infinity on products M x RV .

This conjecture is closely related to the birth of symplectic geometry itself. A strong
breakthrough was achieved by A. Floer who constructed his chain complex to establish the
homological version of the Arnold conjecture for compact monotone symplectic manifolds,
opening the way to huge efforts by many authors to generalize his original construction.

Until very recently however, work regarding this conjecture was focused on its homolog-
ical version.

In arecent work [12], K. Ono and A. Pajitnov use the Floer complex with local coefficients
to extend these constraints to the Hamiltonian setting. In particular, they show the following

THeOREM 1.5 (K. Ono, A. Pajitnov). — Suppose M is a weakly monotone symplectic
manifold and let H be a Hamiltonian function on it. Then, if they are all non degenerate, the
number p(H) of fixed points of the associated Hamiltonian diffeomorphism satisfies

p(H) =1 if [m(M)] = +oo,
p(H) = §(m1 (M) if |m1(M)] < +o0,

where §(my(M)) is the minimal number of generators of the kernel of the augmentation
Zmr(M)] — Z.

Similarly to the stable Morse setting, the points of view of this theorem and Theorem 1.3
are essentially different: the former focuses on the number of geometric fixed points, while
the latter associates possibly several generators to the same geometric orbit to overcome an
eventual lack of generators and still recover the fundamental group.

1.2. Organization of the paper

In the second section of the paper (the first is this introduction), the main definitions, state-
ments and technical tools are presented. The third section is dedicated to the comparison of
Morse and Floer loops, and the proof of Theorem 1.1. The fourth section is devoted to the
description of the relations, and the fifth to the proof of the application (Theorem 1.3) and
Theorem 1.4. Finally, the last section is a sketch without proofs of the construction in the
stable Morse setting.

This work would not exist without the crucial help of a few people. I am particularly
thankful to O. Cornea, whose deep topological insight and generosity nourished me for
years, to J.-Y. Welschinger and B. Chantraine to whom I am indebted for the keystone of this
paper, which is the notion of augmentation, to A. Oancea who served as a compass to me and
to M. Damian who also owns a large part of this work. Finally, I’'m particularly grateful to
A.V. Duffréne who indirectly but deeply influenced the birth of this paper.
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778 J.-F. BARRAUD

2. Main definitions and statements.

2.1. Preliminaries

Let (M,w) be a 2n-dimensional connected compact symplectic manifold without
boundary. For technical reasons, M will be supposed to be either

— symplectically aspherical, which means @ vanishes on the image of the Hurewicz
homomorphism (M) — Hy(M), or

— monotone, which means c; (TM) and w are proportional by a positive constant on the
image of the Hurewicz homomorphism 7,(M) — Hy(M).

These assumptions will allow us to easily

— avoid the transversality issues related to the multiply covered negative curves,
— avoid bubbles on 0 and 1-dimensional moduli spaces,
— ensure finiteness of the number of (lifted) orbits of given Conley-Zehnder index.

Given a Hamiltonian function H : M xS! — R, we let Xz be the associated Hamiltonian
vector field, ¢}, its flow, and JP(H) the set of its contractible 1-periodic orbits.

To handle the index computation when ¢; (7'M does not vanish on 7, (M), we consider
the covering CC/5(H ) associated to the group m2(M)/ kercy. It is obtained from J2(H) by
adjoining a capping class to the orbit in the following way:

3) PH) = 10.7)y € PH).7: D~ Mjap =y},

where D is the 2-disk and (y, 7) ~ (y', ") iff y = y" and ucz(¥) = pncz(7’) (ucz denoting
the Conley-Zehnder index).

Notice that this last equality implies that the two cappings also have the same symplectic
area: glued along their boundary, 7 and 7’ with the reversed orientation form a sphere S
with vanishing first Chern class, and because of our asphericity or monotonicity assumption,
I 5 @ = 0, which means that y and y’ have the same symplectic area. As a consequence, both
the Conley-Zehnder index and the symplectic area are well defined for equivalence classes of
cappings.

In the sequel, (95(H ) will completely replace SP(H) and no explicit reference to the
covering will be made anymore. In particular, what we call a Hamiltonian orbit from now
on will in fact be a lift of such an orbit to P(H).

Each element x in (,75(H ) then has a well defined Conley-Zehnder index ucz. For conve-
nience, we shift the Conley-Zehnder index by n and let

x| = pcz(x) +n.
The set of orbits C75(H ) splits according to this index, and we let
Pr(H) = {x € P(H), x| = k}.

Given a (possibly time dependent) w-compatible almost complex structure J, we are
interested in the Floer moduli spaces and some classical variants of such that we describe

below. Recall the Floer equation for a map u : R x S! — M is the following:
ou

ou
() o+ J,(u)(5 - XH(t,u)) —0.
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A FLOER FUNDAMENTAL GROUP 779

Moreover, we fix once for all a smooth function y : R — [0, 1] such that

xs) =1 ifs <-1,
x)=0 ifs>0

and use it to cutoff the Hamiltonian term of the Floer equation on one or both ends of the
cylinder by considering the equation

du du
(F) 5= oG 1) X () =0
for different functions y; : R — [0,1],i = 1,2,3 and i = (4, R), derived from y, namely
(see Figure 1)

1. y; = 1 defines the usual Floer equation,

2. x2(s) = x(s) defines the “lower capping equation,”
3. x3(s) = x(—s) defines the “upper capping equation,”

4. xa,r(s) = x(s — R) x(—s — R) defines “R-perturbed sphere equation”.

1 X1
1 1
\ X2 X3 /
0 -1 0 0 1
1
X4,R \
—-R 0 R

FiGUrE 1. Cutoff functions.

In (F4,r), R is a real parameter, but notice that for R < 0, the equation has no Hamilto-
nian term anymore and does not depend on R: R will hence be considered in [0, 4+00).
Recall that the energy of a solution u of this equation is defined as

ou Ju du
£ = [ G 5 = xio)Xundsds = [[1ZH1E, s

where |.||; = (., J;.). Solutions of finite energy of this equation have converging ends, either
to a point by the classical removal of singularities argument ([2],[10]) if the Hamiltonian term
is cut off on this end, or to a Hamiltonian orbit if not ([5]). In the former case, considering the
end as a neighborhood of 0 in C\ {0}, the map u extends holomorphically through 0, and the
equations (F;) above could equivalently be considered as defined on the sphere CP! with 2,
1 or no puncture (see for instance [11] for a more uniform description of these equations, or
[10] Chapter 8 for the case without punctures, i.e., equation (Fy r) with fixed R). Anyway,
on an end where the Hamiltonian term is cut off, the limit value will be denoted by u(+00)
or u(—o0). We abusively but conveniently write that such a trajectory ends at the @ symbol
to describe the fact that this limit point is not constrained.

We are interested in the moduli spaces described below and depicted on Figure 2. Let x be
apointin M, and 9 be the space of smooth maps u : RxS! — M that have finite energy i.e.,
such that [[ || g—’s‘ |?dsdt < +o0. If a is an oriented disk, let @ denote the disk with opposite

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



780 J.-F. BARRAUD

orientation, and if b is another disk or tube having the same boundary as a , let affb denote
the gluing of the two.
o lims—>—c>o )= -
(5) M(y,x) = {ue U, (Fl)’lims—>+oozg,3=§’ and [y fu i x] = 0}/R’
6)  oM(y.0) = f{ue U (F), lim u(s,) =y, and[yfu] =0},

(7)) M(*,x) = {u € U (Fs), D260 and [u f 3] = 0},

> limg—s 4 oo u(s,)=Yy
Q) o M(x,90) = {(R,u) € [0, +00) x U, (Far), lim_u(s,") = +and [u] = 0},

where the brackets denote classes in m,(M)/kercy, and their vanishing expresses the
compatibility of the trajectory u with the prescribed lifts of its ends to the covering
space @(H ).

Notice that in the last case, the parameter R is allowed to vary, and that the moduli
space Jgi(*, @) is endowed with the map c];[(*, )} LN [0, +00) given by 7 (u, R) = R.

vy >

H
M(y,z) My, o)
(1) (2)

FIGURE 2. Floer moduli spaces.

The three last types of moduli spaces are used in [13] (in conjunction with a Morse
function that we do not use here) to define the PSS homomorphisms and compare Morse
and Floer homologies.

Since the elements of cﬂgl (x,0) forx € 06/50(H ) can be used to define an augmentation on
the Floer complex, we use the following terminology:

DEFINITION 2.1. — Given an index O Hamiltonian periodic orbit x € oc/io(H), a capping
a € oM(x,0) is called an “augmentation” of x, and the couple (x, «) an augmented orbit.

Itis well known (see Remark 5 below) that for a generic choice of (H, J, , ), these moduli
spaces are smooth manifolds whose dimension is prescribed by the end constraints and the
homotopy class of the tube.

REMARK 5. — The transversality issues for the three first moduli spaces are discussed

in [8]. The last moduli space (%, @) is somewhat special with this respect, one reason being
that for R = 0, it involves constant maps, for which the key argument of being “somewhere
injective” fails. Transversality for the constant maps is particularly relevant to us since it

4¢ SERIE - TOME 51 —2018 - N° 3



A FLOER FUNDAMENTAL GROUP 781

implies that such curves are regular for the projection ¢M(*, @) — R, which in turn means
that they can be locally “followed” as R varies (see Proposition 2.6).

The following proposition ensures that constant spheres are indeed regular (for any almost
complex structure).

PROPOSITION 2.2. — Recall the projection c]ﬁl(*,ﬂ) = [0,400). For R=0,
7 Y(R) consists in the single point (u.,0) where u, is the constant map at . This solu-
tion is regular, which means that (in the suitable functional spaces) the equation (Fa) is a
submersion at this point. In particular, 0 is a regular value of .

Sketch of proof. — Glossing over the definition of the functional spaces in use, observe
that the problem can be reformulated in terms of maps from CP! to M in the trivial
homology class. For R = 0, equation (F4,g) simply becomes
9) Du + Jo(u) Dui = 0.

Points of ¢ (x, @) lying above R = 0 are hence Jy-holomorphic spheres in the trivial
homology class and are therefore constant. The additional condition u(0) = * implies
771(0) = {(ux, 0)}.

The linearization (with respect to u) of the left hand term in (9) at the constant map u.
leads to a linear operator L defined for maps from CP! to a fixed C* = T, M of the form

(10) Lu = Du+ JoDui,

where Jo = Jo(*) is constant. The kernel of L consists of the holomorphic spheres in C* and
hence of the constants. It is therefore 2n-dimensional and since 27 is also the index of L, this
implies that L is surjective, which easily implies the required submersion property. O

In particular, under a generic choice of (H, J, %, y), we have :
dim (v, ) = |y| = x| - 1,
dim o7(y. ) = |yl.
dim o (x, ¥) = —|x|,
dim M (x,0) = 1.

From now on, (H, J, , x) will be supposed to be chosen so that all these moduli spaces are
indeed cut out transversely.

Moreover, all these moduli spaces are compact up to breaking or bubbling off of spheres,
and we let

M(x.y) = M(x.y) M(x.0) = HM(x.0)
M(x.y) = M(x.) M(x.0) = M(*.0),

be the Gromov-Floer compactifications of the previous moduli spaces.

REMARK 6. — Notice however that M (*,@) has a “built-in” (i.e., already present

in ¢M(*, ?)) boundary component, , that does not come from the Gromov compactification
but from the limit case R = 0.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



782 J.-F. BARRAUD

In all this paper, only 0 and 1-dimensional moduli spaces will be considered, and no
bubbling of sphere can occur on such moduli spaces. This means they will all be compact
up to breaking and smooth.

In particular, each 0-dimensional moduli space ¢} (y, x) is compact, and hence finite, and
we let

fabs(M(y. X)) = > (+1)
yeM(y,x)
denote the cardinality of oM (y, x).

REMARK 7. — Itisusual, when working with pseudo-holomorphic curves or Floer trajec-
tories, to consider the algebraic number ffa1; ¢} (x, y) of elements in a 0-dimensional moduli
space, i.e., to take signs coming from some orientation of the moduli space into account.
We stress however that this definition refers to the absolute number, i.e., the sum where each
element counts for +1.

2.2. Floer steps and loops

Given a configuration of two consecutive isolated Floer trajectories (8, «) € M(y, x) x
M(x,d) with x € 0750 (H)and y € Q‘/51 (H) U {x}, the gluing construction ([6], [10]) gives
rise to a one dimensional family of trajectories starting with (8, @) and ending at some other
broken configuration (8’,a’) € M(y,x’) x M(x',0). This relation between (8, «) and
(B', ') will be denoted by

(11) B.0) = (B.a).

REMARK 8. — Recall the gluing construction defines an homeomorphism between a
neighborhood of the broken configuration («, 8) in the compactified moduli space M (y, 9)
and {(B,a)} x [0,¢€) for some ¢ > 0. In particular, this proves that the compactifica-
tion is a segment and not a circle, and hence that relation (11) necessarily implies that

(B.a) # (B.o).

This “move” from one end of a moduli space to another described above in (y, @)
makes sense for all kinds of configurations, and will be the main ingredient of all the subse-
quent constructions. It therefore deserves a general definition:

DEFINITION 2.3. — A Floer step is an oriented connected component with non empty
boundary of a 1-dimensional moduli space.

REMARK 9. — In particular, the same component defines two steps with opposite orien-
tations.

Depending on the type of moduli space under consideration, there are several types of
Floer steps. Floer loops will be built out of special steps, called Floer loop steps, which are
depicted on Figure 4 and specified in the following definition:

DEFINITION 2.4. — A Floer loop step is a Floer step in some M(y,d) for y € 551 (H) or
in oM(x,0).
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A FLOER FUNDAMENTAL GROUP 783

This somewhat abstruse definition is the heart of the construction and deserves some
comments.

An enlightening point of view is that of Morse theory. Consider a function f and a
Riemannian metric g on a manifold M such that the pair (f, g) is Morse-Smale. Starting
with any generic loop in the manifold and pushing it down by the flow of f deforms it into
the concatenation of elementary paths, called “Morse steps,” that consist in traveling once,
in one or the other direction, along the unstable manifold of an index 1 critical point.

It turns out that these steps can be interpreted from the moduli space point of view: let
y be an index 1 critical point and W*(y) its unstable manifold. To a point p in the unstable
manifold is associated a path, namely the piece of Morse trajectory from y to p, and there
is a one to one correspondence between such trajectory pieces and the unstable manifold
(see [3] for a detailed presentation of this point of view, and a nice compactification of the
unstable manifold derived from it). More precisely, define an “interrupted” Morse trajectory
as a solution of the following modified Morse equation
(1) Y = OV )
where the cutoff function y is the same as the one used in (F3), i.e., a smooth decreasing
function such that y(s) = 1 fors < —1 and y(s) = 0 fors > 0.

Using the same notation as in the Floer setting, let

(13) HMtorse (7, 8) = {y 1 R > M. (12)and_Tim y(s) = y}.

This space is naturally endowed with an evaluation map (recall the trajectories are constant
for s > 050 y(+00) = y(0)),

(’jMMorse(yv Q) g W"(y) cM
y = y(+00),

which is one to one and provides an identification between cﬂoﬁMorse (y,@) and WH(y).

Lt

FIGURE 3. The unstable manifold of an index 1 Morse critical point seen as a
1-dimensional moduli space of “interrupted” trajectories.

Moreover, cMmorse(y,d) has a natural compactification cMyorse(V, @) as a 1-dimen-
sional segment whose ends are the two “broken” configurations (y+, X+) where

— Y+ and y_ are the two Morse trajectories rooted at y,
— x4 is the index O critical point such that x4 = limy_, o0 V4,
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— X4 isthe constant solution of (12) at x . It is the one and only one augmentation of x .

The evaluation map extends to this compactification and defines a path running along W¥*(y)
from x_ to x4, which is the “Morse loop step” associated to y.

From this point of view, a Floer loop step through an index 1 periodic orbit is the exact
counterpart of a Morse loop step through an index 1 critical point.

REMARK 10. — One noticeable difference between the Morse and Floer settings however,
is that the Floer moduli space ¢*(y, @) needs not be connected: each connected component
can be interpreted as being one “Floer unstable manifold” of the orbit y, which hence has to
be considered as as many virtually distinct orbits.

REMARK 11. — For orbits y of higher index, the components of the moduli space
M (y,®) can still be regarded as “Floer unstable manifolds” of y. However, there is no
control a priori on the topology of such a space: it need not be connected, nor need the
connected components be balls.

Similarly, assuming by genericity that x is not critical for f, the Morse counterpart of the
space oM(x, ) is the collection of segments of the (unique) trajectory passing through «,
running from » down to some arbitrary point p below it along this trajectory. It is in one to
one correspondence with (the closure of) the piece of trajectory flowing from « down to the
index O critical point below it.

ﬁ (ﬂfn (1*)

R=0 R =+00

FIGURE 5. The moduli space M (x, 9).

Definitions 2.3 and 2.4 are not very explicit and a more usable description of a step is
obtained by specifying its ends:
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ProrosITION 2.5. — For y € 06/51 (H), a Floer loop step through y is characterized by a
quadruple (o, B, B', ") witha € M(x,9), B € M(y,x), B’ € M(y,x"), anda’ € M(x',0)

for some x,x" € Po(H) such that

(B.a) 5 (8.

The situation of Floer loop steps through * is slightly different, as there is one special step
that does not look like the others.
Recall that the moduli space M (*, @) comes with a projection to the non negative reals

M(x,0) 5 [0, +00)
(R,u) —» R.

This projection is proper, and extends continuously to a map M (x, @) LS [0, +00] where
all the broken configurations lie above R = +0c0. Moreover, the gluing construction ensures
that exactly one component of oM (*, @) ends at each broken configuration.

Observe now that the same holds over R = 0: exactly one component of oM (*, @) ends
at the constant map (u«,0). This is a direct consequence of the regularity of this solution
stressed in Proposition 2.2 (surjectivity of L implies that 7 : oM(%, @) — R is a submersion
at (U, 0)).

As a consequence, oM (x, ) has exactly one connected component that relates {x} to a
broken configuration, and all the other components either have no boundary or relate two
broken configurations:

(14) Ix, € Po(H), N (Burte) € M(x,x2) X M(xe, D), (Bartn) o> %

PROPOSITION 2.6. — There are exactly one orbit x, € jjo(H) and one pair (B«, ) €
M(*, x4) X M(x4, D) such that a Floer loop step through * is

— either the special step x _ﬁ) (Bx,0tx)
— or characterized by a quadruple (o, B,p',a') with a € M(x,0), B € M(x,x),
B’ € M(x,x"), anda’ € M(x', D) for some x,x" € Po(H) such that

(B.0) > (B.a).

REMARK 12. — Considering loop steps entering the second case in the above statement
might seem unnatural since, as already mentioned in the Morse setting, only the special step

* _ﬂ) (B, ax) does exist. In the Floer context however, as well as in the stable Morse setting
where examples are much easier to produce (see Section 6 and Figure 20), such steps might
exist, and have to be taken into account.

REMARK 13. — Notice there are only finitely many Floer loop steps: there are finitely
many periodic orbits, and because of the monotonicity assumption, finitely many lifts of each
can have index 0 or 1, and finally, each 0-dimensional moduli space is compact and hence
finite.

Notice finally that Floer loop steps are oriented and hence have a start and an end:
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DEFINITION 2.7. — With the notations of Propositions 2.5 and 2.6, a step (a, B, 8, ') is
said to start at o and end at o

Similarly, if one of the pairs (B, ) or (B',a’) is replaced by *, the corresponding end is said
to be x itself.

Two loop steps are said to be consecutive if the end of the first is the start of the second.

i
v =y v

FI1GURE 6. A Floer based loop.

DEFINITION 2.8. — A Floer based loop is a sequence of consecutive Floer loop steps starting
and ending at x.

In other words, a Floer based loop is a sequence

(*. Ber o). (@, B1. B 22). (2. 2. B3 03). ... (an . BN . By ). (ot B %)

such that (letting 1 = ay4+1 = @4):
. #
Vie{l,....,N+1}, (Bi,ai) > (B}, it1)-

Let Z~Z(H , %) be the set of all Floer based loops. Notice it depends on all the auxiliary data
(H, =, J, x) but the dependency on J and y is kept implicit to reduce the notation. It carries
an obvious concatenation rule that turns it into a semi-group.

It also carries obvious cancelation rules. More explicitly, if o = («, 8, 8/, ') is a Floer
loop step, define its inverse 0! to be the same step with the opposite orientation:
ol =, p.B.a).
Denote by ~ the associated cancelation rules in Zz(H ,*):
-1

01...0i0;

i +..ON~01...0i{—10j41...0N.

The concatenation then endows the quotient space

(15) T(H. ) = LH%),

with a group structure.
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A Floer loop step being a one parameter family of tubes, evaluation at the +oco end of the
tube defines a path in M (an arbitrary parameterization can be chosen for each step, since
we are only interested in the resulting homotopy class), and induces a map

(16) T(H, %) = 11(M, *).

This map is compatible with both the concatenation and the cancelation rules and hence
induces a group homomorphism

(17) L(H, %) <> (M, %).

All the objects involved in Theorem 1.1 are now defined and we recall its statement:

THEOREM 2.9. — With the above notations, the evaluation map induces a surjective homo-
morphism

(18) T(H, *) — 11(M, *) .

The description of the relations still requires the introduction of further technical ingre-
dients, and we postpone it to Section 4 to focus in the next section on the application to the
count, with multiplicity, of Hamiltonian periodic orbits, since it only requires the surjectivity.

2.3. Application

DEFRINITION 2.10. — Define the multiplicity of a Hamiltonian orbit y € 531 (H) as the
number of steps through it, that is

=3 Y s M) Bas M),

x€Po(H)

Define the multiplicity of the point x as the number

wM%(anMwwWMwyé

x€Po(H)

Notice the counting here is not algebraic but geometric: it is not hard to see that the
algebraic count would always be 0.

REMARK 14. — Although they may seem to be %N valued, these numbers are in fact
integer valued: as already observed, the gluing construction groups the broken trajecto-
ries (B8, a) from some y € P1(H) to @ in pairs, so there is an even number of such, and the
same holds for broken trajectories from « to @ but for (B, o), which proves there is an odd
number of such configurations.

REMARK 15. — For x € Po(H), letting vy, (x) = 1 - flas M(x, X) - fabs H(x, 9),
we have vy (%) + 1 = erp“/%(H) v7,+(x), so that vy(x) can also be expressed as a sum of

(%N -valued) “multiplicities” of index 0 periodic orbits.
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REMARK 16. — Recall from (13) that all the involved moduli spaces, and hence the notion
of multiplicity itself, make sense in the Morse setting. However, the Morse situation is
much more constrained, and we know there are exactly two trajectories rooted at each
index 1 critical point, and exactly one through «: this implies that in the Morse setting, the
multiplicity is always 1 for index 1 critical points and 0 for x.

The following statement is a reformulation of Theorem 1.3 and is a direct corollary of our
construction. It will be proven in Section 5.1.

THEOREM 2.11. — Let p(7r1(M)) be the minimal number of elements in a generating family
of m1(M). Then

(19) vy(x) + Z vy (y) = p(1(M)).
yeP1(H)

In other words, counted with multiplicities, {x} U P1(H) contains sufficiently many elements
to generate w1(M).

REMARK 17. — According to Remark 16, the left hand side in (19) in the Morse setting
is exactly the number of index 1 critical points, so that in this setting the inequality (19) is
nothing but the usual lower estimate of the number of index 1 critical points of a Morse
function by the minimal number of generators of the fundamental group 71 (M).

REMARK 18. — The term vy(x) in (19) may be unexpected, since it automatically
vanishes in the Morse setting. It is a very natural question to ask how essential it is and if it
can be controlled.

The Theorem 1.4, stated in a more precise form below as Theorem 2.12 and proven in
Section 5.2, ensures that when (M) # {1}, the contribution of the index 1 orbits is at
least 1, since it provides at least one such orbit with non vanishing multiplicity.

This lower bound on the number of index 1 orbits may seem rather small, but no better
result seems to be known without further assumption on the fundamental group yet. More-
over, the proof itself is very geometric and might be of independent interest: it is a variation,
in the usual context of PSS moduli spaces, on the main guiding principle of this paper of
using 1-dimensional moduli spaces to catch extra information. We stress however that it is
not an application of the construction of the fundamental group, but an illustration that the
multiplicities cannot be arbitrary.

THEOREM 2.12. — Suppose m1(M) # {1}. Let H be a non degenerate Hamiltonian
function and J a generic choice of a time dependent almost complex structure J compatible
with .

Then H has at least one contractible 1-periodic orbit with Conley-Zehnder index 1 — n and
with non vanishing multiplicity with respect to J.
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vy

Fi1GuRE 7. Hybrid moduli spaces.

2.4. More notations and tools.

2.4.1. Mixed moduli spaces. — In addition to the already introduced moduli spaces we will
need hybrid Morse-Floer moduli spaces, depicted in Figure 7 and defined below.

Let f be a Morse function and g a Riemannian metric on M. By convention, the Morse
flow associated to (f, g) is the flow of the negative gradient —V f of f* with respect to g. Let
Crity (f) be the set of index k critical points, and suppose Critg(f) = {x}. For y € 21(H)
and a € Crit(f), we let

M(y,a) = {u € M(y,0),u(+o0) € W(a)},
where W*(a) is the stable manifold of a.
Similarly, for b € Crit;(f) and x € Po(H), we let

b, x) = {u € HM(B, %), u(~00) € W' (D)},
where W¥(b) is the unstable manifold of b.

The couple (£, g) is supposed to be chosen generically, so that all these spaces are cut out
transversely. In particular, they have the expected dimensions:

dim M(y.a) = |y| —la| ~ dim HM(b.x) = |b] — |x|.

(where the Morse index is also denoted by | - |). Moreover, these spaces are compact up to
bubbling of spheres and breaking, either at an intermediate Hamiltonian orbit or at an inter-
mediate Morse critical point (see [13]), and the compactifications are denoted by M (y,a)
and oM (b, x). When they are 0 or 1-dimensional, no bubbling can occur on such moduli
spaces and they consist of a finite set of points when they are 0-dimensional, and a finite
set of circles and segments whose boundary consists in broken configurations when they are
1-dimensional. Finally, recall there is a gluing construction proving every broken configura-
tion does indeed appear on the boundary of a bigger moduli space.

2.4.2. Crocodile walk.— We now introduce the main technical tool.

Consider a Hamiltonian orbit z of index 2. Let B(z) be the space of twice broken trajec-
tories from z to 0:

B(z) = | oM(z,y) x M(y.x) x M(x,0).

[y|=1
[x]=0
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For each such trajectory (y, 8,a) in some oM(z,y) x M(y,x) x M(x,d), the gluing
construction can take place either at the upper breaking y or at the lower one x. Gluing at
the upper breaking defines an involution

f*: B(z) > B(z)
v B.a) = (V. B ),

where (y’, B) is such that (y, B) _ﬂ) (y’, B’). Similarly, gluing at the lower breaking defines
another involution
fle : B(z) > B(z)

(. B.o) = (v, p'. ).
According to Definition 2.3, upper and lower gluings are both Floer steps, and lower
gluings are Floer loop steps.
Iteration of alternately upper and lower gluings then naturally appears as a walk on the
space of twice broken trajectories. Moreover, since the intermediate Floer trajectory form a
zigzag pattern (see Figure 9), we use the following vocabulary:

DEFINITION 2.13. — [teration of alternately upper and lower gluings ffle o fi* ofle 0 4% 0 ...
will be abbreviated as running a “crocodile walk” on the set B(z) of twice broken trajectories
from z to @.

REMARK 19. — Given a twice broken configuration, the crocodile walk can be started
with an upper or a lower gluing: because {{* and . are involutions, this only affects the
walking direction along the orbit, but not the underlying non-oriented orbit. We consider
orbits as oriented however, so through one configuration go exactly two orbits of the
crocodile walk, which differ only by the orientation.

REMARK 20. — A more geometric interpretation of the crocodile walk can be given by
considering the boundary components of the 2-dimensional moduli space oM(z, @) (see
Figure 8). The set oM (z, @) \ o];l(z, @) consists in bubbling configurations, which are 2 codi-
mensional, and “boundary components” which are 1 codimensional and consist in broken
configurations. The latter components are circles that are either smooth (when they are the
product of two smaller moduli spaces without boundary) or have “corners” at twice broken
configurations. The crocodile walk consists in moving along such an “angular” boundary
component from one corner to the next.

REMARK 21. — Crocodile walks can in fact be defined on any kind of 0-dimensional
moduli space of twice broken configurations, like the space of twice broken Floer trajectories
between orbits of relative index 3 for instance, or hybrid moduli spaces mixing Floer and
Morse trajectories as in the next paragraph.

The crocodile walk is the iteration of a one to one map (ffe ©4°*) on a finite set, so the orbits
all have to be cyclic.

Moreover, if a configuration is reached after an upper (resp. lower) gluing, it has to be left
with a lower (resp. upper) one. As a consequence, being cyclic, an orbit has to contain the
same number of upper and lower gluings. In particular, it counts an even number of steps.
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— =

F1GURE 8. The crocodile walk as a way to explore “angular” boundary compo-
nents of 2-dimensional moduli spaces (here in ¢M(z, @) for z € P, (H)).

To an orbit of the crocodile walk is not only associated a sequence of twice broken
trajectories, but also an abstract polyhedron representing the way the trajectories in the
different moduli spaces fit together.

FIGURE9. An orbit of the crocodile walk on the space of twice broken trajectories
fromz € P, (H) to @.

An orbit W of the crocodile walk is a sequence
((y1, B1, 1), (Vz,ﬂ/l,al), (2, B2,02), ..., (yn. BN, ON))
such that (yq, B1,01) = (yn, BN, an) and

(20) Ve B > s B and  (Bhan) & (Brsr. i),

LEMMA 2.14. — Let W be an orbit of the crocodile walk like above. There exists an abstract
disk A(W) endowed with a continuous map A(W) =5 M whose restriction to the boundary is

the concatenation of evaluation of the Floer steps (B}, 1) —ﬂ> (B2.02), ... (By_1-aN—-1) —ﬁ>

(Bn.an).
Proof. — Let oM}, (resp. cMe) be an abstract copy of the component of the moduli space

relating (yk. Bi) to (Vk+1. By )(resp. (B, ox) to (Bxs1.ak41)). Let T My be its suspension:
it is the suspension of a segment and hence can be identified with the standard diamond.
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Recall that before compactification, the evaluation along the real line R x {0} C R x S!
defines a map
M xRS M.
Since the action is strictly decreasing along the Floer trajectories, it can be used to define a
parameterization of the trajectories, and to define a continuous map

My x[-1,1] 5 M

that extends continuously to the compactification and descends to the suspension

o €V

S My — M.

FI1GURE 10. Steps suspensions.

We think of ¥ }}, as a diamond (see Figure 10), and on the four sides, the evaluation
map is the action-normalized evaluation along the broken trajectories (yx, Bx) on the left
and (yx+1. By) on the right.

A similar construction can also be achieved for the ¢/, spaces. The lower end of the
trajectories is not constrained however, and the suspension should be replaced by the half
suspension X' oMq; = Ma x [-1, Iy Mo x {1} We think of this as a truncated diamond,
or a pentagon (see Figure 10). It is endowed with an evaluation map whose restriction

— to the upper left side (i.e., [0, 1] x {(B}.. ax)}) is B
to the lower left side (i.e., [1,0] x {(B;., ax)}) is ag;
to the upper right side (i.e., [0, 1] X {(Bx+1, ¥k +1)})1S Br+1;
to the lower right side (i.e., [—1,0] X {(Bx+1, ¥k+1)})IS Xk +1;
to the bottom side (i.e., {—1} X ¢Mqx) is the evaluation at the center of the augmenta-
tions ev(u) = u(+400).

We identify all these diamonds and pentagons along their shared sides in the order of the
gluings appearing in the orbit W (see Figure 11). Formally, we let

N
(Ll =t u s ou)
(21) AW) =T, /e
where ~ is the identification, for each k of

— the upper right side of = o}, with the upper left side of T My ;;
— the lower right side of ¥ ¢/}, with the upper left side of = My y1;
— the lower left side of T ¢ , | with the upper right side of = cMeg 1.
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FIGURE 11. The disk A(W).

The resulting 2-dimensional polyhedron A(W) is a disk. Moreover, since it is compatible
with all the identifications, the evaluation map descends to A(W) and defines a continuous
map

(22) AW) S M.

and has the desired behavior on the boundary. O

REMARK 22. — Reversing the orientation of W reverses the orientation of the associated
disk.

REMARK 23. — Regarding the crocodile walk orbit W as a boundary component of a
2-dimensional moduli space, the disk A(W) is essentially the same as the half suspension
of this boundary component.

This geometric point of view does not avoid the above description however, since the
structure of the disk and in particular the behavior of the evaluation on its boundary is crucial
to our construction.

2.4.3. Hybridwalks. — As already observed, the “crocodile walk” can in fact be run on many
kinds of moduli spaces, in particular on a hybrid moduli space mixing Morse trajectories
rooted at an index 1 critical point of our Morse function f and Floer tubes.

Letb € Crit;(f),let {y_, y+} = M(b, x) be the two Morse trajectories rooted at b (recall
Crito(f) = {*}). Let
B)= |J  oMb.y)x M. 9).
yeP1(H)U{x}

This space plays the role of twice broken trajectories, but as already observed, the
space dcM(*, @) has one (and only one) point which is not a breaking: B(b) splits as
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the union B(b) = B’(b) U B, (b) of the set of twice broken trajectories
Bh)y= |J oMb,y x My x)x Mx,0),

yeP1 (H)U{}
x€Po(H)

and the two special isolated configurations that are not broken twice:

B*(b) = W(b» *) X {*} = {(V—’ *)a (y+’ *)}’
where  is seen as the constant sphere in M(*, @).

Upper and lower gluings can be performed on B’(b), but have to be replaced by the
relevant Floer steps on B, (b), and we let

17 (r£. %) = (v %),

23
) HO(V:I:’*) = (V:I:, ﬂ*, o).

If the latter was already discussed, observe the former is rather a Morse step. To
see it as a Floer step, consider the moduli space of solutions (v, R) of (F4 r) such that
u(—o0) € WH(b), but restrict attention to the boundary component given by R = 0: the
configurations (y+, x), regarded as such configurations that underwent a Morse breaking,
are related by the moduli space obtained by gluing at the Morse breaking and preserving
the R = 0 condition.

Defined in this way, the maps {{* and ffo form two involutions on B(b) again, and iterated
composition of alternately §* and #, defines a walk, still called a crocodile walk, whose orbits
are all cyclic.

REMARK 24. — Notice for later use that the steps used in the definition of {f are all Floer
loop steps.

F1GURE 12. The orbit W, () of the crocodile walk associated to an index 1 Morse
critical point b.

DEFINITION 2.15. — The orbit of (y—, %) starting with a lower gluing will be denoted
by W, (b).
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It is a cyclic sequence of the following form

Y~o%), (" Bero), (1, Broan). ... (yn. By o), (¥ T Baoa), (T %),
where

— N is even (the orbits being cyclic, they have to count the same number of upper and
lower steps, and hence an even number of elements),
—forl <i <N ~
e yi € M(b,y) forsome y € {x} U P1(H),
o Bi € M(y,x) for some x € Py(H),
e o; € M(x,0),
— foralli with0 <i < N/2:

#
(v2i, B2i) = (v2i+1, B2i+1) and Q2 = 0241

#
V2i+1 = V2i+2  and  (B2it+1,a2i+1) = (B2i+2,02i12).

(with the convention (yo. fo) = (v, Bx) and (yn+1. Bn+1) = (V+. B+)).
In particular (recall Remark 24), the sequence of lower steps

(24) (%, Bes ), oo (@2i—1, P2i—1, B2is @2i), . . (0tu, By %)

form a Floer loop.

B 7+ J-

Qe

FiGure 13. Half suspensions of the steps (B, @) _Ii) * and (y+, *) —ﬂ> (y=, *).

FIGURE 14. The disk A(W, (b)).

The construction of the polyhedron A(W, (b)) still makes sense for this special orbit:
exactly two new kinds of moduli spaces have to be taken into account, namely the ones
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associated to the steps

(yio%) & (e rocts)  and (. %) = (. %),

In both cases the bottom ends of the configurations are free and the half suspension of the
relevant moduli space component is endowed with a continuous evaluation map.

In the former however, one side is not associated to a broken trajectory but to the constant
one * and the half suspension is seen as having 4 sides. The evaluation map restricts to (see
Figure 13)

— Bu|, and o, (suitably rescaled using the action) on the broken side;
— the constant path {x} on the “non broken” side;

— the evaluation in M of the Floer step (B, ox) _ﬁ) * on the bottom.

In the latter, the half suspension can again be represented by a pentagon and the evalua-
tion map restricts to (see Figure 13)

— y+ and y_ on the upper left and right sides;
— the constant trajectory * on the lower left and right sides;
— the concatenation y; - y— on the bottom side.

The gluing construction used in (21) adapts straightforwardly to the 3 special steps and
results in a disk endowed with a continuous evaluation map to M

(25) AW, (b)) = M.

The restriction of the evaluation map to the boundary is the concatenation of the trajecto-
ries y+ and y_ and of the Floer loop formed by the lower steps used in the crocodile walk.

3. Generation of the fundamental group

In this section, homomorphisms from the group of Floer loops to that of Morse loops and
vice versa are constructed, in order to prove Theorem 2.9, and to later study the relations.

In Section 3.1, we use the classical operation of pushing arbitrary loops down by the flow
in order to turn Floer loops into Morse loops. This operation itself is not required for the
proof of Theorem 2.9, but it is reinterpreted purely in terms of moduli spaces which makes it
compatible with Floer theory. This is used in Section 3.2 to define a similar operation in the
reverse direction, turning Morse loops into Floer loops in the same homotopy class. Finally,
Section 3.3 gathers the proof of Theorem 2.9, which immediately follows from the possibility
of deforming Morse loops into (homotopical) Floer ones, since the result is well known in
the Morse setting.

Let f be a Morse function having a single minimum at %, and g a Riemannian metric
on M such that the pair (f, g) is Morse Smale, and all the relevant hybrid moduli spaces are
cut out transversely.

Recall the Morse version of the Definitions 2.4 and 2.8: each choice of orientation on the
unstable manifold of each index 1 Morse critical point defines a path we call a Morse step
(notice that since f has a single minimum, all the steps are in fact loops). Picking an arbitrary
orientation for each such point b allows to represent the associated Morse steps algebraically
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as b*, and hence to identify the group of Morse loops Z( f. *) to the free group generated
by Crity (f).

3.1. From Floer to Morse loops

LEMMA 3.1. — There exists a group homomorphism Z(H, %) 2, Z(f, %) making the
following diagram commutative:

(26) T(H, %) —— 71(M, *) ,

s

L f, %) ——— 71 (M, %)

Id

i.e., such that
Yw e Z(H,*), ev(pw)) ~ev(w) in m1(M, x).

Proof. — Pushing a generic topological loop y down by the flow of the Morse function f
deforms it into a Morse loop <p;[°°(y), i.e., a word in the index 1 critical points. Here generic
means that the loop avoids the stable manifolds of all the index k > 2 Morse critical
points. Notice that the evaluation of the Floer steps form a finite collection of 1-dimensional
segments in M, and the stable manifolds of index k > 2 critical points of f are codimension
k > 2 submanifolds. Therefore, for a generic (and even open dense) choice of (f, g), Floer
loops and such unstable manifolds do not meet, and we get a well defined map

ZH, )% 21
v e evy).

This map is obviously compatible both with the concatenation and cancelation rules, and
hence induces a group homomorphism

@7

(28) L(H, %) S (%),
Finally, ¢ is defined using a deformation and hence preserves the homotopy class, which
means that the diagram (28) is commutative. O

Since the second row of (26) is onto, Theorem 2.9 comes down to proving that any Morse
loop can be deformed into a Floer loop. Unfortunately, this deformation can not be obtained
like ¢ by pushing a loop down by a flow, since there is no such thing as a Floer flow on the
loop space.

However, a reinterpretation of ¢ in terms of moduli spaces and crocodile walks can be
given, allowing to generalize this definition to the Floer setting and obtain a map in the
reverse direction. This reinterpretation is quickly sketched below, to serve as an introduction
for the reverse construction and to stress that the two constructions are essentially the same,
but will not be discussed in details and could be skipped by the reader. The construction in the
reverse direction on the other hand, for which all the relevant technical material was already
introduced in Section 2.4.3, will be discussed in the next section. ~

Consider a Floer loop step 0 = (a, 8, B’.a’) through some y € P1(H). From our
genericity assumption, the Morse flow line y, (resp. y,/) passing through the center a(4+00)
(resp. o/ (+00)) of o (resp. «’) ends at x. Denote by & (resp. @’) the configuration obtained
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by appending to « (resp. &) the piece of trajectory y, (resp. o) running from «(+o00) (resp.
o' (400)) down to *.

A crocodile walk can be run on the space of configurations consisting of

— atrajectory from y to some x € Crity(f) U j)o(H);

— atrajectory from x to x;

— the (trivial!) Morse trajectory * € cMyrorse (%, 0).

F1GURE 15. From Floer to Morse loops.

Starting with the configuration (8, @, ), the first upper step consists in gluing 8 and &. The
other end of the associated component of ¢#(y, *) is a configuration broken either at an
index 0 Hamiltonian orbit x, or at an index 1 Morse critical point b (see Figure 15).

In the former case, the new configuration has to be (8’,a’, x) (simply forget what
happened to the Morse flow line and consider the definition of a Floer loop step).

In the latter, the lower part of the configuration is a Morse trajectory y+ € oM(b, x) =
{y—., y+}. The next (lower) step consists in replacing y+ by yF (recall from the comments
on Definition 2.8 that this can be interpreted as a step along the Morse moduli space
Mutorse (D, 9)). The next upper step is then a gluing at b, and the same alternative holds
again.

After a finite number of iterations of this process, the configuration (8’,&’, x) has to be
reached (from an upper step). Similarly to (23), moduli spaces involving interrupted Morse
trajectories give rise to the following special steps

fo(B', 0, %) = (B, ),
(8" o) = (B, ),
flo(B. o) = (B.ax. %)
that close the walk orbit.
Let W, be the orbit of the crocodile walk described above. The lower non special steps in

this orbit form a sequence of consecutive Morse steps ¢ (o).
Repeating this process for all the Floer loop steps o; in a Floer loop y = (01,...,0n)

(including the first and last ones « —ﬂ> (B, 0x) and (B, ay) —ﬁ> * for which it still makes
sense), we get a sequence ¢(y) = ¢(07)...¢(oy) which is a Morse loop. This defines a map
ZT(H, x) — Z(f, ) which is a group homomorphism, and it is a straightforward observation
that this map is the same as (28).
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Finally, observe that all the disks A(W;;,) patch side to side to form a disk endowed with
an evaluation map realizing a homotopy from ev(y) to ev(¢(y)).

3.2. From Morse to Floer loops.

LEmMMA 3.2. — There exists a group homomorphism Z(f, %) i) Z(H, ) making the
following diagram commutative:

(29) T f, %) —— 11(M, %)

v

T(H, %) —— 11(M, *),

1d

i.e., such that
Yw e Z(f, %), ev(y(w)) ~ev(w) in (M, *).

Proof. — Letb be anindex 1 critical point of f and (y,, y;“ ) be the two Morse trajectories
from b to *.

Recall that the crocodile walk on the space
B(b) = g M(b,y) x dcM(y, D)
yeP1(H)U{x}
was described in Section 2.4.3. In particular, using the notations introduced there, it has a
special orbit W, (b) (see Figure 12) of the form
Vy %) V> Bas @), (V1 Bro @), (YN, BN @), (7 B @0), (v %),

Recall from (24) that the lower steps in this orbit form a Floer loop. Denoting it by ¥ (b), we
have

VY (b) = ((*. Bur&ta), ... (@2i—1, B2i—1, B2i. 02i), . .. (U, Bu, %)),

and we get a map
D(fix) S T(H.»).

which is obviously compatible with both the concatenation and cancelation rules, and hence
induces a group homomorphism

(30) Z(fx) L 2(H, »).

Finally, the homotopy is provided by the disk A(W, (b)) and the evaluation map (25):
its restriction to the boundary is the concatenation of the Morse loop y~! and the Floer
loop ¥ (b). O
3.3. Proof of Theorem 2.9.

Proof of Theorem 2.9. — Theorem 2.9 is now a straightforward corollary of Lemma 3.2:

since the map on the first line of (29) is onto, so has to be the map on the second. O
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4. Relations and fundamental groups

Itis natural to ask for a Floer theoretic interpretation of the relations. It is the object of this
section to provide a family of generators of ker(Z(H, *) BANPS (M, %)) that can be expressed
in terms of Floer and PSS moduli spaces.

REMARK 25. — Although the subgroup of relations obviously only depends on (H, J, *, x),
the proposed generators will depend on the choice of an additional auxiliary Morse function
(and metric). Being able to a priori select a finite family that would generate the relations
and depend on (H, J, , y) only would be more satisfactory but is unfortunately unclear.

Moreover, resorting to a Morse function may seem to weaken the construction since
Morse functions already give full access to the fundamental group. It should be observed
however, that the Morse function is used in a different way from the usual one here: it is used
to define hybrid moduli spaces, mixing Morse and Floer objects, and the present description
of the relations depicts how the Morse relations have to be transported from the Morse to
the Floer setting by some configurations of 1-dimensional hybrid moduli spaces, and hence
may gather some non trivial information.

4.1. Floer-Morse-Floer relations

Given a Floer loop y € Z(H, x), observe that the evaluations of ¥ (¢(y)) and y are
homotopic (since both ¢ and v preserve the homotopy class), so that y 11 (¢(y)) is always
a relation.

DEFINITION 4.1. — Define the set of “Floer-Morse-Floer relations” as

Reme(H) = {y"'¥(#(0), v € L(H, »)}.

FIGURE 16. A relation in Rppmp(H).

REMARK 26. — The notation Rgymp(H ) only highlights the dependency on H but this set
depends in fact on all the auxiliary data (H, J, f, g. *, }).
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REMARK 27. — The set Rpmp(H) is not finite since there is one relation for each Floer
loop. However, it is induced by the substitution rule at the Floer loop steps level
o — Y(¢(0))

which is finite.

Since ¢ and ¥ are described in terms of crocodile walk, so can these relations. Glossing
over the moduli spaces involving %, consider a Floer loop step o through some yg € 21(H).
The configurations consisting of

— atrajectory § from yg to some z € Crity(f) U 350(H),
— atrajectory y from z to some y € {x} U CG/51 (H),

— atrajectory B from y to some x € 550 (H),

— atrajectory o € oM(x,?d),

are broken three times and hence present 3 levels where to perform a gluing (or more gener-
ally a step). The relation is obtained by running the crocodile walk on the two lower gluings
“from = to x,” then performing one upper gluing, and repeating this process.

4.2. Relations associated to Morse 2-cells

Given an index 2 Morse critical point ¢ of f, let p. be the relation in Z( f, x) given by the
boundary of the associated 2 cell and define:

(31 Rva(f) = {pc, ¢ € Crita(f)},
(32) Ry (H) = {¥(pc), ¢ € Crita(f)}.

REMARK 28. — The notation Ry (H) only highlights the dependency on H but this set
depends in fact on all the auxiliary data (H, J, f, g, *, x).

F1GURE 17. A Floer relation associated to a Morse 2-cell.
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REMARK 29. — For all p € Ry2(H) we have ev(p) = 11in 71 (M, %), so that Ryz(H) is
indeed a collection of relations.

REMARK 30. — These relations can also be described in terms of crocodile walks.
Glossing over the moduli spaces involving * again, consider an index 2 Morse critical
point ¢ and the configurations consisting of

a trajectory & from ¢ to some z € Crit; (f);

a trajectory y from z to some y € P1(H) U Crito(f);
a trajectory B from y to some x € Po(H);

a trajectory a € M(x, d).

The relation associated to ¢ can be obtained using the same algorithm as discussed previ-
ously, i.e., running the crocodile walk on the two lower levels “from % to %,” then performing
one upper step and repeating this process.

4.3. Fundamental group

We can finally define the subgroup of relations:

DEFINITION 4.2. — Denote by R(H,x) the normal subgroup of T(H,x) generated
by Remr(H) and Rz (H):

SRUH, x) = <Rpmr(H), Rm2(H)>.

REMARK 31. — The group R(H, ) obviously depends on (H, J, %, ), but it is a conse-
quence of Theorem 4.4 that it does not depend on ( £, g).

DEFINITION 4.3. — The Floer fundamental group associated to (H, J, x, x) is defined as
the group
m(H,x) = Z(H,*) | R(H, *).

REMARK 32. — The group should be denoted as 7y (H, J, %, x) to emphasize its depen-
dency on all the auxiliary data but it is kept implicit to reduce notations.

In the same way, let JR/( f, x) = <Rm2(f)> be the normal subgroup of Z( f, *) generated
by the boundary of Morse 2-cells, 1 (f, x) := Z(f, *) / RAf, x) and recall the well known
fact that my (f, x) = m1(M, ).

THEOREM 4.4. — The evaluation induces a group isomorphism
T (H, ) — 71(M, %).

The maps ¢ and ¥ also induce isomorphisms which are inverse one of the other
¢
w1 (H, *) e 1 (S, %).

Proof. — 1. Compatibility with the relations for ¥: observe that R/(f, x) = <Rma(f)>

and Y (<Rm2(f)>) C <¥(Rm2(f))>. Since ¥ (Rm2(f)) = Rm2(H) and
<Rma2(H)> C RAH, *), we have

Y(R(f. %) C R(H, *).
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2. Compatibility with the relations for ¢: Similarly, ¢ (R(H, *)) C <¢(Rrmp(H)) U
¢(Rmz2(H))>. But for p € Rpmr(H)) U Rmo(H), we have ev(¢(p)) = ev(p) = 1, so
that

P(RAH, %)) T R(f.*).

3. The fact that ¢ oy = Idy, (f.«): This follows directly from evog oy = ev. In particular
this implies surjectivity of ¢ and injectivity of .

4. The fact that o¢ = Idy, (m,+): This is built in the definition of the relations Remr (H ):
fory € Z(H, =), we have y "' (¢(y)) € Remr(H), so that y = ¥ (¢(y)) in 1 (H, *).
This implies injectivity of ¢ and surjectivity of .

5. The fact that ker (ev : Z(H,*) — m1(M,*)) = JR(H, *): The relation JR(H, x) C
ker ev is obvious since this is true for all the generators of R/(H, x). Conversely, let y €
Z(H, ) such that ev(y) = 1in 71 (M, ). Then ev(¢(y)) = 1 so that ¢(y) € R f. *).
As a consequence

V(p(y) € V(RS %) C R(H, *).

Finally, since y ™ ¥ (¢ (y)) € R(H, %), we have y € R(H, *).
This ends the proof that 71 (H, ) = 1(M, %) is injective, and hence an isomor-
phism since it was already proven to be surjective. O

5. Application and proof of Theorem 2.12.

5.1. Generating (M) with steps

The Theorem 2.11 is a direct consequence of a weaker version of Theorem 2.9 where Floer
loops are replaced by Floer steps.

Proof of Theorem 2.11. — Fix a generic set of data (H, J, , y, f, g) where « is the single

minimum of the Morse function f. Let o, denote the special step x —ﬁ> (Bx, o). Let 5 (H) be
the free group generated by all the Floer loop steps but the special one.

Recall that the map ¢ was defined at the step level:

(33) S(H) —2 (f %) — m1(M. %)

(notice that although Floer loop steps evaluate as free paths in M and not necessarily as
based loops, they are still pushed down into Morse based loops by ¢ because the Morse
function was chosen to have only one index 0 critical point).

Notice that the left hand side of (19) is nothing but the number of generators of & (H),
so that Theorem 2.11 reduces to proving that in (33), ev o ¢ is onto.

Observe now that in a loop w € ii(H , ), the only occurrences of o, and o ! are:

— 0, at the beginning of w,
— o ! at the end of w,
— possible pairs (o !0, ) within w.
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In particular, this means that removing o, and o, ! at the ends of the loops defines an
injective group homomorphism

Z(H, *)——— S(H).

We end up with the following commutative diagram:

(34) L(H, %) —2— L[ %) — 711(M, %)

\[; J/T/ J/TH
¢ ev
S(H) —— L(fo %) —— w1 (M, »),
where 7/ and 7 are the conjugation by ¢ (o, !) and ev(¢ (o !)) respectively. In particular,

surjectivity of the composition of the maps appearing on the first row implies that of the
second. O

5.2. Proof of Theorem 2.12.

In this section, we want to prove Theorem 2.12, namely that if 71 (M) # {1}, then every
non-degenerate Hamiltonian A should have at least one contractible 1-periodic orbit of
index 1 (i.e., Conley-Zehnder index 1 — n) with non vanishing multiplicity.

This is not a consequence of the above construction, but uses similar ideas arranged
slightly differently: it is based on a variant of the crocodile walk to patch (suspensions of)
1-dimensional PSS moduli spaces together and fill any Morse loop with a disk when there
are no index 1 Hamiltonian orbits.

Let H be a non degenerate Hamiltonian, and pick a triple (J, f, g) where J is an (possibly
time dependent) almost complex structure compatible with w, f a Morse function with a
single minimum denoted by * and g a Riemannian metric such that (H, J, , x, f, g) satisfies
our transversality assumptions. We pick coherent orientations on all the 0 and 1-dimensional
moduli spaces oM (b, x) for b € Crito,1(f) and x € Po(H) U Crito(f).

Suppose H has no index 1 orbit, or more precisely that it has no index 1 orbit with non
vanishing multiplicity: this means there are no Floer trajectories from an index 1 to an index 0
orbit that admit at least one augmentation. For convenience, let

Po(H)* = {x € Po(H), M(x.0) # 0.
Our assumption can then be written as:
¥y e Pi(H),Yx € Po(H)*, M(y,x)=0.

Let b be an index 1 Morse critical point, such that the unstable manifold of b defines a
non trivial loop y in M, and let y— and y be the two Morse flow lines rooted at b. For
convenience, we consider y as based at b and let:

y=v+ vl
For x € (7750(H )* consider the space
B(b) = {y—,y+} x M(x,x).

Since H has no index 1 orbit related to x by a Floer trajectory, B(b) is the set of all broken
hybrid trajectories from b to x.
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In particular, gluing y+ with a trajectory B € oM (x, x) defines a 1-dimensional family of
trajectories from b to x whose other end has to be of the same form. This defines a one to
one correspondence:

B(b) > B(b)
(ve.B) = (yer. ) such that (ve. ) > (ye.. 8.
Permuting y_ and y4 defines another one to one correspondence
B(b) > B(b)
(r+.B) = (v=.B).

Notice both ¢ and t reverse the orientation.
Consider now an orbit of p = 7 o ¢. It has to be cyclic, and is a sequence

(yel 7.31)7 cees (yékvﬁk)v

(with ¢ = £1) such that (yg,B:) _ﬂ) (Y—€i41> Bi+1), with the convention that
(Vék+1 s ,Bk-i-l) = (VEl P :81)

To each gluing, is associated a 1-dimensional space, and we let X; be its suspension. It is
a diamond, endowed with an evaluation map to M that coincides with

— ¥, on the upper left edge,

— Bi on the lower left edge,

- Y—e4, ON the upper right edge,

— Bi+1 on the lower right edge.

Gluing all these diamonds side by side along the lower edges provides a disk, endowed
with a continuous evaluation map to M, whose restriction to the boundary is

Ve V-eVs -+ Ve Ve Ver -

This loop is therefore trivial, but y_e; y; 1 — y=€ g0 yX€ = 1. Moreover, the orientation
of the couple (y,, B:i) is constant with respect to i (because one moves from one to the
next by two gluings and the orientation is reversed by each gluing) and it can be supposed
to be positive without loss of generality. This means that ¢; = ¢(8;) for all i and hence
> € = > e(B;i) (where €(B;) is the orientation of ;). As a consequence, we get

y2€B) L 1in (M, *).
Observe now that the orbits of p induce a partition of oM(*, x), so repeating this for all
the orbits Oy, ..., Oy of p, we derive
yZOI €«B) J/ZON €(Bi) _ yz,sew(*,x)é(ﬂ) =™ ~ lin 71 (M, %),
where ny = flaig M (x, x) is the algebraic number of elements in M (*, x) (i.e., the sum of
signs £1 associated to each element in (%, x) according to a choice of coherent orienta-

tions). Recall this number is the component along x of the image of * under the PSS homo-
morphism from the Morse to the Floer complex (using Z coefficients):

PSSMF(*)Z Z Nx X.
x€Po(H)
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Let PSSFp be the PSS homomorphism from the Floer to the Morse complex. Since
PSSFEy o PSSy F induces the identity in homology, we have

Z nymy =1,
x€ Po(H)
where my = flaig(M(x, 0)). In particular we also have erc‘ﬁo(H)* nymy = 1.
As a consequence we have

Y = ylxePo XM _ s (M ).

This is a contradiction, since we supposed y was non trivial. This ends the proof of
Theorem 2.12.

6. Stable Morse version

To some extent, a stable Morse function can be considered as a simplified finite dimen-
sional model for the action functional on the free loop space. This section is devoted to a
quick sketch of the analog of the main construction in the stable Morse setting. Although
it would deserve a dedicated discussion, it is only addressed here to shed some light on
the phenomena encountered along the construction that do not appear in the usual Morse
setting, like the existence of several steps through the same critical point or of steps through *.
Therefore, we limit ourselves to defining the relevant moduli spaces, and leave all the proofs
to the reader.

6.1. Setting

Let M be a smooth closed manifold of dimension n, » a point in M, N1 be two integers,
N = Ny + N_and H a Morse function on M x R that is quadratic at infinity with
signature (N4, N_). Namely, we suppose that there is a compact set K such that V(m, u,v) €
(M xRN+ x RN=)\ K, H(m,u,v) = |Ju||®> = |v|]?.

For convenience, the Morse index will be shifted by N_ and we let, for a critical point x
of H:

x| = p(x) — N-

where © denotes the usual Morse index.

We also pick a Riemannian metric g on M x RY and denote by ¢’ the associated negative

gradient flow of H.
6.2. Moduli spaces
For x, y € Crit(H) the usual space of trajectories from y to x can be described as
M(y.x) = (W*(y) N W*(x)) p-

The counterpart of the “augmentations” required for the construction are now trajectories
“hitting M x RN+,” namely

M(y.0) = W*(y) N (M xRN+ x {0}),
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and the counterpart of the evaluation map u > u(400) is the projection M x RN+ ™ M
M(y.0) = M
(m,u,0) — m.
Similarly, the spaces
M(x,x) = ({x} x RN=) n W (x),
M(x,9) = {(p, R) € {x} x RY=x]0, +oo[, % (p) € M x RN+}

are the counterparts of the spaces that were denoted by the same notations in the Floer
setting.

FIGURE 18. Augmentations and other configurations in the stable Morse setting:

Y1 € M(x,0), y2 € M(x,X), y3 € M(x,0).

The triple (H, g, x) is supposed to be chosen generically so that all the considered moduli
spaces are cut out transversely. In this situation, they are all smooth manifolds of dimension:

dim M(y,x) = [y| — |x| - 1,
dim M(y,9) = |yl,
dim M (*,x) = —|x|,
dim M(*, @) = 1.
Moreover, they are compact up to breaking at intermediate critical points (although
M x R¥ is not compact), and the gluing construction also makes sense in this setting.
Notice in particular that ¢ (x, @) still has a projection 7 to [0, +0c], and that 7~1({0})
consists of exactly one point, namely « itself, since 771 ({0}) = ({*} x RN=)n (M xRN+) =
{(*,0)}.
With these notations, the definitions given in the Floer setting make sense literally
and give rise to suitable notions of “stable Morse steps and loops” and to the associated
group Z(H, x).

Picking now a Morse function f on M having a single minimum at x and a metric on M,
one can consider the following hybrid moduli spaces (see Figure 19):

M (b, x) = xZ (W} (b)) N W*(x),
M(x,b) = W*(x) N2 (W} (D)),
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where Wf” and Wfs denote the stable and unstable manifolds with respect to the negative

gradient of f in M, and 74 are the projections M x RV= SENY VS

FIGURE 19. Hybrid trajectories between Morse and “stable Morse” critical points.

Using these hybrid moduli spaces, the proof of the following statement follows literally
that of its Floer analog and is left to the reader:

THEOREM 6.1. — The map T(H, ) — m1(M, *) is onto.

6.3. Multiplicities

Since the stable Morse situation is much easier to handle than the Floer one, it is now not
hard to give examples where several steps are associated to the same index 1 critical point
or where there is more than one step going through %. The Figure 20 illustrates the former
phenomenon, and the latter is similar.

RN+

FIGURE 20. Two steps through the same index 1 critical point y: one involves x and
x’, the other x” and x”.
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