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SNOWFLAKE UNIVERSALITY
OF WASSERSTEIN SPACES

 A ANDONI, A NAOR  O NEIMAN

A. – For p 2 .1;1/ let Pp.R3/ denote the metric space of all p-integrable Borel prob-
ability measures on R3, equipped with the Wasserstein p metric Wp . We prove that for every " > 0,
every � 2 .0; 1=p� and every finite metric space .X; dX /, the metric space .X; d�

X
/ embeds into Pp.R3/

with distortion at most 1C ". We show that this is sharp when p 2 .1; 2� in the sense that the ex-
ponent 1=p cannot be replaced by any larger number. In fact, for arbitrarily large n 2 N there
exists an n-point metric space .Xn; dn/ such that for every ˛ 2 .1=p; 1� any embedding of the metric
space .Xn; d˛n / into Pp.R3/ incurs distortion that is at least a constant multiple of .logn/˛�1=p . These
statements establish that there exists an Alexandrov space of nonnegative curvature, namely P2.R3/,
with respect to which there does not exist a sequence of bounded degree expander graphs. It also
follows that P2.R3/ does not admit a uniform, coarse, or quasisymmetric embedding into any Ba-
nach space of nontrivial type. Links to several longstanding open questions in metric geometry are
discussed, including the characterization of subsets of Alexandrov spaces, existence of expanders, the
universality problem for P2.Rk/, and the metric cotype dichotomy problem.

R. – Pour p 2 .1;1/ notons Pp.R3/ l’espace métrique des mesures de probabilité p-in-
tégrables sur R3, muni de la p-métrique de Wasserstein Wp . Nous montrons que pour tout " > 0,
tout � 2 .0; 1=p� et tout espace métrique fini .X; dX /, l’espace métrique .X; d�

X
/ se plonge dans Pp.R3/

avec distortion au plus 1 C ". Nous montrons que cela est optimal quand p 2 .1; 2� au sens où l’ex-
posant 1=p ne peut pas être augmenté. En fait pour n 2 N assez grand il existe un espace métrique
à n points .Xn; dn/ tel que pour tout ˛ 2 .1=p; 1� tout plongement de l’espace métrique .Xn; d

˛
n /

dans Pp.R3/ a une distortion au moins égale à un multiple par une constante de .logn/˛�1=p . Ces
résultats impliquent qu’il existe un espace d’Alexandrov de courbure positive, à savoir P2.R3/, vis- à-
vis duquel il n’existe pas de suite de graphes expanseurs de degré borné. Il en résulte aussi que P2.R3/
n’admet pas de plongement uniforme, grossier ou quasisymétrique dans un espace de Banach de type
non trivial. Nous discutons le lien avec plusieurs questions ouvertes depuis longtemps en géométrie des
espaces métriques, dont la caractérisation des sous-ensembles des espaces d’Alexandrov, l’existence
d’expandeurs, le problème d’universalité pour P2.Rk/, et le problème de dichotomie pour le cotype
métrique.
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0012-9593/03/© 2018 Société Mathématique de France. Tous droits réservés doi:10.24033/asens.2363



658 A. ANDONI, A. NAOR AND O. NEIMAN

1. Introduction

We shall start by quickly recalling basic notation and terminology from the theory
of transportation cost metrics; all the necessary background can be found in [96]. For a
complete separable metric space .X; dX / and p 2 .0;1/, let Pp.X/ denote the space of all
Borel probability measures � on X satisfyingZ

X

dX .x; x0/
pd�.x/ <1

for some (hence all) x0 2 X . A coupling of a pair of Borel probability measures .�; �/ onX is
a Borel probability measure � on X �X such that �.A/ D �.A�X/ and �.A/ D �.X �A/
for every Borel measurable A � X . The set of couplings of .�; �/ is denoted ….�; �/. The
Wasserstein p distance between �; � 2Pp.X/ is defined to be

Wp.�; �/
def
D inf

�2….�;�/

�“
X�X

dX .x; y/
pd�.x; y/

� 1
p

:

Wp is a metric on Pp.x/ whenever p > 1. The metric space .Pp.X/;Wp/ is called the
Wasserstein p space over .X; dX /. Unless stated otherwise, in the ensuing discussion when-
ever we refer to the metric space Pp.X/ it will be understood that Pp.X/ is equipped with
the metric Wp.

1.1. Bi-Lipschitz Embeddings

Suppose that .X; dX / and .Y; dY / are metric spaces and that D 2 Œ1;1�. A mapping
f W X ! Y is said to have distortion at most D if there exists s 2 .0;1/ such that
every x; y 2 X satisfy sdX .x; y/ 6 dY .f .x/; f .y// 6 DsdX .x; y/. The infimum over
thoseD 2 Œ1;1� for which this holds true is called the distortion of f and is denoted dist.f /.
If there exists a mapping f W X ! Y with distortion at most D then we say that .X; dX /
embeds with distortion D into .Y; dY /. The infimum of dist.f / over all f W X ! Y is
denoted c.Y;dY /.X; dX /, or cY .X/ if the metrics are clear from the context.

1.2. Snowflake universality

Below, unless stated otherwise, Rn will be endowed with the standard Euclidean metric.
Here we show that Pp.R3/ exhibits the following universality phenomenon.

T 1. – If p 2 .1;1/ then for every finite metric space .X; dX / we have

c.Pp.R3/;Wp/

�
X; d

1
p

X

�
D 1:

For a metric space .X; dX / and � 2 .0; 1�, the metric space .X; d �X / is commonly called
the � -snowflake of .X; dX /; see e.g., [21]. Thus Theorem 1 asserts that the � -snowflake of any
finite metric space .X; dX / embeds with distortion 1 C " into Pp.R3/ for every " 2 .0;1/
and � 2 .0; 1=p� (formally, Theorem 1 makes this assertion when � D 1=p, but for general
� 2 .0; 1=p� one can then apply Theorem 1 to the metric space .X; d �pX / to deduce the
seemingly more general statement).
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SNOWFLAKE UNIVERSALITY OF WASSERSTEIN SPACES 659

Theorem 2 below implies that Theorem 1 is sharp if p 2 .1; 2�, and yields a nontrivial,
though probably non-sharp, restriction on the embeddability of snowflakes into Pp.R3/ also
for p 2 .2;1/.

T 2. – For arbitrarily large n 2 N there exists an n-point metric space .Xn; dXn/
such that for every ˛ 2 .0; 1� we have

c.Pp.R3/;Wp/.Xn; d
˛
Xn
/ &

(
.logn/˛�

1
p if p 2 .1; 2�;

.logn/˛C
1
p�1 if p 2 .2;1/:

Here, and in what follows, we use standard asymptotic notation, i.e., for a; b 2 Œ0;1/ the
notation a & b (respectively a . b) stands for a > cb (respectively a 6 cb) for some
universal constant c 2 .0;1/. The notation a � b stands for .a . b/ ^ .b . a/. If we
need to allow the implicit constant to depend on parameters we indicate this by subscripts,
thus a .p b stands for a 6 cpb where cp is allowed to depend only on p, and similarly for
the notations &p and�p.

We conjecture that when p 2 .2;1/ the lower bound in Theorem (2) could be improved
to

c.Pp.R3/;Wp/.Xn; d
˛
Xn
/ &p .logn/˛�

1
2 ;

and, correspondingly, that the conclusion of Theorem 1 could be improved to state that
if p 2 .2;1/ then c.Pp.R3/;Wp/

�
X;
p
dX
�
.p 1 for every finite metric space .X; dX /; see

Question 23 below.

There are several motivations for our investigations that led to Theorem 1 and Theorem 2.
Notably, we are inspired by a longstanding open question of Bourgain [13], as well as funda-
mental questions on the geometry of Alexandrov spaces. We shall now explain these links.

1.3. Alexandrov geometry

We need to briefly present some standard background on metric spaces that are either
nonnegatively curved or nonpositively curved in the sense of Alexandrov; the relevant back-
ground can be found in e.g., [18, 15]. Let .X; dX / be a complete geodesic metric space. Recall
that w 2 X is called a metric midpoint of x; y 2 X if dX .x; w/ D dX .y; w/ D dX .x; y/=2.
The metric space .X; dX / is said to be an Alexandrov space of nonnegative curvature if for
every x; y; z 2 X and every metric midpoint w of x; y,

(1) dX .x; y/
2
C 4dX .z; w/

2 > 2dX .x; z/
2
C 2dX .y; z/

2:

Correspondingly, the metric space .X; dX / is said to be an Alexandrov space of nonpositive
curvature, or a Hadamard space, if for every x; y; z 2 X and every metric midpointw of x; y,

(2) dX .x; y/
2
C 4dX .z; w/

2 6 2dX .x; z/
2
C 2dX .y; z/

2:

If .X; dX / is a Hilbert space then, by the parallelogram identity, the inequalities (1) and (2)
hold true as equalities (withw D .xCy/=2). So, (1) and (2) are both natural relaxations of a
stringent Hilbertian identity (both relaxations have far-reaching implications). A complete
Riemannian manifold is an Alexandrov space of nonnegative curvature if and only if its

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



660 A. ANDONI, A. NAOR AND O. NEIMAN

sectional curvature is nonnegative everywhere, and a complete simply connected Rieman-
nian manifold is a Hadamard space if and only if its sectional curvature is nonpositive
everywhere.

Following [79], it was shown in [91, Proposition 2.10] and [52, Appendix A] that P2.Rn/ is
an Alexandrov space of nonnegative curvature for every n 2 N; more generally, if .X; dX / is
an Alexandrov space of nonnegative curvature then so is P2.X/. It therefore follows from
Theorem 1 that there exists an Alexandrov space .Y; dY / of nonnegative curvature that
contains a bi-Lipschitz copy of the 1=2-snowflake of every finite metric space, with distortion
at most 1C " for every " > 0. When this happens, we shall say that .Y; dY / is 1=2-snowflake
universal.

1.4. Subsets of Alexandrov spaces

It is a longstanding open problem, stated by Gromov in [31, Section 1:19C] and [32,
§15(b)], as well as in, say, [25, 1, 92], to find an intrinsic characterization of those metric spaces
that admit a bi-Lipschitz, or even isometric, embedding into an Alexandrov space of either
nonnegative or nonpositive curvature.

Berg and Nikolaev [8, 9] (see also [87]) proved that a complete metric space .X; dX / is a
Hadamard space if and only if it is geodesic and every x1; x2; x3; x4 2 X satisfy

(3) dX .x1; x3/
2
C dX .x2; x4/

2 6 dX .x1; x2/
2
C dX .x2; x3/

2
C dX .x3; x4/

2
C dX .x4; x1/

2:

Inequality (3) is known in the literature under several names, including Enflo’s “roundness 2
property” (see [23]), “the short diagonal inequality” (see [54]), or simply “the quadrilateral
inequality,” and it has a variety of important applications. Another characterization of this
nature is due to Foertsch, Lytchak and Schroeder [25], who proved that a complete metric
space .X; dX / is a Hadamard space if and only if it is geodesic, every x1; x2; x3; x4 2 X satisfy
the inequality

(4) dX .x1; x3/ � dX .x2; x4/ 6 dX .x1; x2/ � dX .x3; x4/C dX .x2; x3/ � dX .x1; x4/;

and if w is a metric midpoint of x1 and x2 and z is a metric midpoint of x3 and x4 then we
have

(5) dX .w; z/ 6
dX .x1; x3/C dX .x2; x4/

2
:

(4) is called the Ptolemy inequality [26], and condition (5) is called Busemann convexity [19].

Turning now to characterizations of nonnegative curvature, Lebedeva and Petrunin [47]
proved that a complete metric space .X; dX / is an Alexandrov space of nonnegative curvature
if and only if it is geodesic and every x; y; z; w 2 X satisfy

dX .x; w/
2
C dX .y; w/

2
C dX .z; w/

2 >
dX .x; y/

2 C dX .x; z/
2 C dX .y; z/

2

3
:

Another (related) important characterization of Alexandrov spaces of nonnegative curvature
asserts that a metric space .X; dX / is an Alexandrov spaces of nonnegative curvature if and
only if it is geodesic and for every finitely supported X -valued random variable Z we have

(6) E
�
dX .Z;Z

0/2
�
6 2 inf

x2X
E
�
dX .Z; x/

2
�
;

4 e SÉRIE – TOME 51 – 2018 – No 3



SNOWFLAKE UNIVERSALITY OF WASSERSTEIN SPACES 661

whereZ0 is an independent copy ofZ. The above characterization is due to Sturm [89], with
the fact that nonnegative curvature in the sense of Alexandrov implies the validity of (6) being
due to Lang and Schroeder [46]. Following e.g., [99], condition (6) (which we shall use in
Section 3) is therefore called the Lang-Schroeder-Sturm inequality.

The above statements are interesting characterizations of spaces that are isometric to
Alexandrov spaces of either nonpositive or nonnegative curvature, but they fail to char-
acterize subsets of such spaces, since they require additional convexity properties of the
metric space in question, such as being geodesic or Busemann convex. These assump-
tions are not intrinsic because they stipulate the existence of auxiliary points (metric
midpoints) which may fall outside the given subset. Furthermore, these characterizations
are isometric in nature, thus failing to address the important question of understanding
when, given D 2 .1;1/, a metric space .X; dX / embeds with distortion at most D into
some Alexandrov space of either nonpositive or nonnegative curvature. One can search
for such characterizations only among families of quadratic metric inequalities, as we shall
now explain; in our context this is especially natural because the Definitions (1) and (2) are
themselves quadratic.

1.4.1. Quadratic metric inequalities. – For n 2 N and A D .aij /; B D .bij /, n by n matrices
in Mn.R/ with nonnegative entries, say that a metric space .X; dX / satisfies the .A;B/-qua-
dratic metric inequality if for every x1; : : : ; xn 2 X we have

nX
iD1

nX
jD1

aijdX .xi ; xj /
2 6

nX
iD1

nX
jD1

bijdX .xi ; xj /
2:

The property of satisfying the .A;B/-quadratic metric inequality is clearly preserved by
forming Pythagorean products, i.e., if .X; dX / and .Y; dY / both satisfy the .A;B/-quadratic
metric inequality then so does their Pythagorean product .X ˚Y /2. Here .X ˚Y /2 denotes
the space X � Y , equipped with the metric that is defined by

8.a; b/; .˛; ˇ/ 2 X � Y; d.X˚Y /2
�
.a; b/; .˛; ˇ/

� def
D

p
dX .a; ˛/2 C dY .b; ˇ/2:

The .A;B/-quadratic metric inequality is also preserved by ultraproducts (see e.g., [39,
Section 2.4] for background on ultraproducts of metric spaces), and it is a bi-Lipschitz
invariant in the sense that if .X; dX / embeds with distortion at mostD 2 Œ1;1/ into .Y; dY /,
and .Y; dY / satisfies the .A;B/-quadratic metric inequality then .X; dX / satisfies the
.A;D2B/-quadratic metric inequality.

The following proposition is a converse to the above discussion.

P 3. – Let F be a family of metric spaces that is closed under dilation and
Pythagorean products, i.e., if .U; dU /; .V; dV / 2 F and s 2 .0;1/ then also .U; sdU / 2 F

and .U ˚V /2 2 F . FixD 2 Œ1;1/ and n 2 N. Then an n-point metric space .X; dX / satisfies

inf
.Y;dY /2F

cY .X/ 6 D

if and only if for every two n by n matrices A;B 2 Mn.R/ with nonnegative entries such that
every .Z; dZ/ 2 F satisfies the .A;B/-quadratic metric inequality, we also have that .X; dX /
satisfies the .A;D2B/-quadratic metric inequality.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



662 A. ANDONI, A. NAOR AND O. NEIMAN

The proof of Proposition 3 appears in Section 4 below and consists of a duality argument
that mimics the proof of Proposition 15.5.2 in [54], which deals with embeddings into Hilbert
space.

R 4. – It is a formal consequence of Proposition 3 that if the family of metric
spaces F is also closed under ultraproducts, as are Alexandrov spaces with upper or lower
curvature bounds (see e.g., [39, Section 2.4]), then one does not need to restrict to finite
metric spaces. Namely, in this case a metric space .X; dX / admits a bi-Lipschitz embedding
into some .Y; dY / 2 F if and only if there exists D 2 Œ1;1/ such that .X; dX / satisfies
the .A;D2B/-quadratic metric inequality for every two n by n matrices A;B 2 Mn.R/
with nonnegative entries such that every .Z; dZ/ 2 F satisfies the .A;B/-quadratic metric
inequality.

R 5. – The Ptolemy inequality (4) is not a quadratic metric inequality, yet it
holds true in any Hadamard space. Proposition 3 implies that the Ptolemy inequality could
be deduced from quadratic metric inequalities that hold true in Hadamard spaces. This is
carried out explicitly in Section 5 below, yielding an instructive proof (and strengthening) of
the Ptolemy inequality in Hadamard spaces that is conceptually different from its previously
known proofs [25, 17].

Theorem 1 implies that all the quadratic metric inequalities that hold true in every Alexan-
drov space of nonnegative curvature “trivialize” if one does not square the distances. Specifi-
cally, since P2.R3/ is an Alexandrov space of nonnegative curvature, the following statement
is an immediate consequence of Theorem 1.

T 6. – Suppose that A;B 2 Mn.R/ are n by n matrices with nonnegative entries
such that every Alexandrov space of nonnegative curvature satisfies the .A;B/-quadratic metric
inequality. Then for every metric space .X; dX / and every x1; : : : ; xn 2 X we have

(7)
nX
iD1

nX
jD1

aijdX .xi ; xj / 6
nX
iD1

nX
jD1

bijdX .xi ; xj /:

While Theorem 6 does not answer the question of characterizing those quadratic metric
inequalities that hold true in any Alexandrov space of nonnegative curvature, it does show
that such inequalities rely crucially on the fact that distances are being squared, i.e., if one
removes the squares then one arrives at an inequality (7) which must be nothing more than
a consequence of the triangle inequality.

Obtaining a full characterization of those quadratic metric inequalities that hold true in
any Alexandrov space of nonnegative curvature remains an important challenge. Many such
inequalities are known, including, as shown by Ohta [77], Markov type 2 (note, however,
that the supremum of the Markov type 2 constants of all Alexandrov spaces of nonnegative
curvature is an unknown universal constant [78]; we obtain the best known bound on this
constant in Corollary 26 below). Another family of nontrivial quadratic metric inequalities
that hold true in any Alexandrov space of nonnegative curvature is obtained in [3], where it
is shown that all such spaces have Markov convexity 2. By these observations combined with
the nonlinear Maurey-Pisier theorem [58], we know that there exists q < 1 such that any
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Alexandrov space of nonnegative curvature has metric cotype q. It is natural to conjecture
that one could take q D 2 here, but at present this remains open. For more on the notions
discussed above, i.e., Markov type, Markov convexity and metric cotype, as well as their
applications, see the survey [67] and the references therein.

The above discussion in the context of Hadamard spaces remains an important open
problem. At present we do not know of any metric space .X; dX / such that the metric
space .X;

p
dX / fails to admit a bi-Lipschitz embedding into some Hadamard space. More

generally, while a variety of nontrivial quadratic metric inequalities are known to hold true in
any Hadamard space, a full characterization of such inequalities remains elusive. In Section 5
below we formulate a systematic way to generate such inequalities, posing the question
whether the hierarchy of inequalities thus obtained yields a characterization of those metric
spaces that admit a bi-Lipschitz embedding into some Hadamard space.

1.4.2. Uniform, coarse and quasisymmetric embeddings. – A metric space .X; dX / is said to
embed uniformly into a metric space .Y; dY / if there exists an injection f W X ! Y such
that both f and f �1 are uniformly continuous. .X; dX / is said [30] to embed coarsely
into .Y; dY / if there exists f W X ! Y and nondecreasing functions ˛; ˇ W Œ0;1/! Œ0;1/

with limt!1 ˛.t/ D1 such that

(8) 8 x; y 2 X; ˛.dX .x; y// 6 dY .f .x/; f .y// 6 ˇ.dX .x; y//:

.X; dX / is said [10, 94] to admit a quasisymmetric embedding into .Y; dY / if there exists an
injection f W X ! Y and � W .0;1/ ! .0;1/ with limt!0 �.t/ D 0 such that for every
distinct x; y; z 2 X ,

dY .f .x/; f .y//

dY .f .x/; f .z//
6 �

�
dX .x; y/

dX .x; z/

�
:

A direct combination of Theorem 1 with the results of [58, 66] shows that P2.R3/ does
not embed even in the above weak senses into any Banach space of nontrivial (Rademacher)
type; we refer to the survey [55] and the references therein for more on the notion of type of
Banach spaces. In particular, P2.R3/ fails to admit such embeddings into any Lp.�/ space
for finite p (for the case p D 1, use the fact that the 1=2-snowflake of an L1.�/ space
embeds isometrically into a Hilbert space; see [97]), or, say, into any uniformly convex Banach
space. It remains an interesting open question whether or not these assertions also hold true
for P2.R2/.

T 7. – If p > 1 then Pp.R3/ does not admit a uniform, coarse or quasisymmetric
embedding into any Banach space of nontrivial type.

Note that a positive resolution of a key conjecture of [58], namely the first question in
Section 8 of [58], would “upgrade” Theorem 7 to the (best possible) assertion that P2.R3/
does not admit a uniform, coarse or quasisymmetric embedding into any Banach space of
finite cotype.

R 8. – Very few other examples of Alexandrov spaces of nonnegative curvature
with poor embeddability properties into Banach spaces are known, all of which are not
known to satisfy properties as strong as the conclusion of Theorem 7. Specifically, in [3]

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



664 A. ANDONI, A. NAOR AND O. NEIMAN

it is shown that P2.R2/ fails to admit a bi-Lipschitz embedding into L1. A construc-
tion with stronger properties follows from the earlier work [38], combined with the recent
methods of [68]. Specifically, it follows from [38] and [68] that for every n 2 N there exists
a lattice ƒn � Rn of rank n such that if we consider the following infinite Pythagorean
product of flat tori

(9) T
def
D

� 1M
nD1

Rn=ƒn
�
2

;

then T fails to admit a uniform or coarse embedding into a certain class of Banach spaces
that includes all Banach lattices of finite cotype and all the noncommutative Lp spaces for
finite p > 1. Since for every n 2 N the sectional curvature of Rn=ƒn vanishes, it is an
Alexandrov space of nonnegative curvature, and therefore so is the Pythagorean product T .
It remains an interesting open question whether or not T admits a uniform, coarse or
quasisymmetric embedding into some Banach space of nontrivial type, and, for that matter,
even whether or not T is 1=2-snowflake universal. We speculate that the answer to the latter
question is negative.

1.4.3. Expanders with respect to Alexandrov spaces. – Fixing an integer k > 3, an unbounded
sequence of k-regular finite graphs f.Vj ; Ej /g1jD1 is said to be an expander with respect to a
metric space .X; dX / if for every j 2 N and fxugu2Vj � X we have

(10)
1

jVj j2

X
.u;v/2Vj�Vj

dX .xu; xv/
2
�X

1

jEj j

X
fu;vg2Ej

dX .xu; xv/
2:

Unless X is a singleton, a sequence of expanders with respect to .X; dX / must also be a
sequence of expanders in the classical (combinatorial) sense. See [74, 61, 62, 68, 76] and
the references therein for background on expanders with respect to metric spaces and their
applications.

In contrast to the case of classical expanders, the question of understanding when a metric
space X admits an expander sequence seems to be very difficult (even in the special case
whenX is a Banach space), with limited availability of methods [53, 80, 42, 43, 61, 50, 68, 62,
64] for establishing metric inequalities such as (10). Theorem 1 implies that Pp.R3/ fails to
admit a sequence of expanders for every p 2 .1;1/. The particular case p D 2 establishes
for the first time the (arguably surprising) fact that there exists an Alexandrov space of
nonnegative curvature with respect to which expanders do not exist.

T 9. – Forp > 1 no sequence of bounded degree graphs is an expander with respect
to Pp.R3/.

To deduce Theorem 9 from Theorem 1, use an argument of Gromov [33] (which is repro-
duced in [61, Section 1.1]), to deduce that if fGn D .Vn; En/g1nD1 were a k-regular expander
with respect to Pp.R3/ then, denoting the shortest-path metric thatGn induces on Vn by dn
(the assumption that Gn is an expander with respect to a non-singleton metric space implies
that it is a classical expander, hence connected), the metric spaces f.Vn; dn/g1nD1 fail to admit
a coarse embedding into Pp.R3/ with any moduli ˛; ˇ W Œ0;1/! Œ0;1/ as in (8) that are
independent of n. This contradicts the fact that by Theorem 1 we know that for every n 2 N
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the finite metric space .Vn; dn/ embeds coarsely into Pp.R3/ with moduli ˛.t/ D t1=p and,
say, ˇ.t/ D 2t1=p.

The above question for Hadamard spaces remains an important open problem which goes
back at least to [33, 74]. See [62] for more on this theme, where it is shown that there exists
a Hadamard space with respect to which random regular graphs are asymptotically almost
surely not expanders. We also ask whether or not the Alexandrov space of nonnegative
curvature T of Remark 8 admits a sequence of bounded degree expanders; we speculate that
it does.

1.5. The universality problem for P1.Rk/

A metric space .Y; dY / is said to be (finitely) universal if there existsK 2 .0;1/ such that
cY .X/ 6 K for every finite metric space .X; dX /.

In [13] Bourgain asked whether .P1.R2/;W1/ is not universal. He actually formulated
this question as asking whether a certain Banach space (namely, the dual of the Lipschitz
functions on the square Œ0; 1�2), which we denote for the sake of the present discussion
by Z, has finite Rademacher cotype, but this is equivalent to the above formulation in
terms of the universality of .P1.R2/;W1/. It is not necessary to be familiar with the notion
of cotype in order to understand the ensuing discussion, so readers can consider only the
above formulation of Bourgain’s question. However, for experts we shall now briefly justify
this equivalence. For Banach spaces the property of not being universal is equivalent to
having finite Rademacher cotype, as follows from Ribe’s theorem [86] and the Maurey-
Pisier theorem [56]. As explained in [73], every finite subset of Z embeds into P1.R2/ with
distortion arbitrarily close to 1, and, conversely, every finite subset of P1.R2/ embeds intoZ
with distortion arbitrarily close to 1. HenceZ is universal if and only if P1.R2/ is universal.
So, Z has finite Rademacher cotype if and only if P1.R2/ is not universal.

Bourgain proved in [13] that .P1.`1/;W1/ is universal (despite the fact that `1 is
not universal), but it remains an intriguing open question to determine whether or not
.P1.Rk/;W1/ is universal for any finite k 2 N, the case k D 2 being most challenging.
Here we show that Wasserstein spaces do exhibit some universality phenomenon even
when the underlying metric space is a finite dimensional Euclidean space, but we fall short
of addressing the universality problem for P1.Rk/. Specifically, Theorem 1 asserts that
.Pp.R3/;Wp/ is universal with respect to 1=p-snowflakes of metric spaces, and if p 2 .1; 2�
then this cannot be improved to ˛-snowflakes for any ˛ > 1=p, by Theorem (2). The
1=p-snowflake of .X; dX / becomes “closer” to .X; dX / itself as p ! 1, and at the same time
.Pp.R3/;Wp/ becomes “closer” to .P1.R3/;W1/, but Theorem 1 fails to imply the univer-
sality of .P1.R3/;W1/ because the embeddings that we construct in Theorem 1 degenerate
as p ! 1.

R 10. – The universality problem for P1.Rk/ belongs to longstanding traditions
in functional analysis. As Bourgain explains in [13], one motivation for his question is an idea
of W. B. Johnson to “linearize” bi-Lipschitz classification problems by examining the geom-
etry of the corresponding Banach spaces of Lipschitz functions defined on the metric spaces

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



666 A. ANDONI, A. NAOR AND O. NEIMAN

in question. For this “functorial linearization” to succeed, one needs to sufficiently under-
stand the linear structure of the spaces of Lipschitz functions on metric spaces, but unfortu-
nately these are wild spaces that are poorly understood. The universality problem for P1.Rk/
highlights this situation by asking a basic geometric question (universality) about the dual
of the space of Lipschitz functions on Rk . Despite these difficulties, in recent years the above
approach to bi-Lipschitz classification problems has been successfully developed, notably by
Godefroy and Kalton [28] who, among other results, deduced from this approach that the
Bounded Approximation Property (BAP) is preserved under bi-Lipschitz homeomorphisms
of Banach spaces. In addition to being motivated by potential applications, the universality
problem for P1.Rk/ relates to old questions on the structure of classical function spaces:
here the spaces in question are the Lipschitz functions on Rk , which are closely related to the
spaces C 1.Rk/ whose linear structure (in particular its dependence on k) remains a major
mystery that goes back to Banach’s seminal work. Understanding the universality of clas-
sical Banach spaces and their duals has attracted many efforts over the past decades, notable
examples of which include work [81, 11] on the (non)universality of the dual of the Hardy
space H1.S1/, work [95, 82, 40, 14] on the universality of the span in C.G/ of a subset of
characters of a compact Abelian groupG, and work [93, 83, 16] on the universality of projec-
tive tensor products. Despite these efforts, understanding the universality of P1.Rk/ (equiv-
alently, whether or not the dual of the space of Lipschitz functions on Rk has finite cotype)
remains a remarkably stubborn open problem.

Our proof of Theorem 1 relies on the fact that the underlying Euclidean space is (at least)
3-dimensional, so it remains open whether or not, say, the 1=2-snowflake of every finite
metric space embeds with O.1/ distortion into .P2.R2/;W2/. In [3] it is proved that every
finite subset of the metric space .P1.R2/;

p
W1/, i.e., the 1=2-snowflake of .P1.R2/;W1/,

embeds with O.1/ distortion into .P2.R2/;W2/. Thus, if .P1.R2/;W1/ were universal (i.e.,
if the universality problem for P1.R2/ had a negative answer) then it would follow that the
1=2-snowflake of every finite metric space embeds with O.1/ distortion into .P2.R2/;W2/.

R 11. – Another interesting open question is whether or not P1.R3/ (or P1.R2/
for that matter) is 1=2-snowflake universal. There is a perceived analogy between the spaces
Pp.X/ and Lp.�/ spaces, with the spaces Pp.X/ sometimes being referred to as the
geometric measure theory analogs of Lp.�/ spaces. It would be very interesting to investi-
gate whether or not this analogy could be put on firm footing. As an example of a concrete
question along these lines, since L2 is isometric to a subspace of Lp, we ask for a char-
acterization of those metric spaces X for which P2.X/ admits a bi-Lipschitz embedding
into Pp.X/, or, less ambitiously, when does there exist D.X/ 2 Œ1;1/ such that every finite
subset of P2.X/ embeds into Pp.X/ with distortion D.X/. If this were true when X D R3

or X D R2 (it is easily seen to be true when X D R) and p D 1 then it would follow
from Theorem 1 that P1.R3/ (respectively P1.R2/) is 1=2-snowflake universal. By [58], this,
in turn, would imply that P1.R3/ (respectively P1.R2/) fails to admit a coarse, uniform
or quasisymmetric embedding into L1, thus strengthening results of [73] via an approach
that is entirely different from that of [73]. There are many additional open questions that
follow from the analogy between Wasserstein p spaces and Lp.�/ spaces, including various
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questions about the evaluation of the metric type and cotype of Pp.X/; see Question 23
below for more on this interesting research direction.

1.5.1. Towards the metric cotype dichotomy problem. – The following theorem was proved
in [58]; see [57, 63, 60] for more information on metric dichotomies of this type.

T 12 (Metric cotype dichotomy [58]). – Let .X; dX / be a metric space that
isn’t universal. There exists ˛.X/ 2 .0;1/ and finite metric spaces f.Mn; dMn/g

1
nD1 with

limn!1 jMnj D 1 and

8n 2 N; cX .Mn/ > .log jMnj/
˛.X/:

A central question that was left open in [58], called the metric cotype dichotomy problem, is
whether the exponent ˛.X/ 2 .0;1/ of Theorem 12 can be taken to be a universal constant,
i.e.,

Q 13 (Metric cotype dichotomy problem [58]). – Does there exist ˛ 2 .0; 1�

such that every non-universal metric space X admits a sequence of finite metric spaces
f.Mn; dMn/g

1
nD1 with limn!1 jMnj D 1 that satisfies cX .Mn/ > .log jMnj/

˛?

It is even unknown whether or not in Question 13 one could take ˛ D 1 (by Bourgain’s
embedding theorem [12], the best one could hope for here is ˛ D 1). A positive answer to
the following question would resolve the metric cotype dichotomy problem negatively; this
question corresponds to asking if Theorem 2 is sharp when p 2 .1; 2� and ˛ D 1 (the same
question when ˛ 2 .1=p; 1/ is also open).

Q 14. – Is it true that forp 2 .1; 2� and n 2 N every n-point metric space .X; dX /
satisfies

cPp.R3/.X/ .p .logn/1�
1
p ‹

A positive answer to Question (14) would imply that ˛.Pp.R3// 6 1 � 1=p, using the
notation of Theorem 12. Taking p ! 1C, it would therefore follow that there is no ˛ > 0 as
in Question 13.

We believe that Question 14 is an especially intriguing challenge in embedding theory
(for a concrete and natural target space) because a positive answer, in addition to resolving
the metric cotype dichotomy problem, would require an interesting new construction, and a
negative answer would require devising a new bi-Lipschitz invariant that would serve as an
obstruction for embeddings into Wasserstein spaces.

Focusing for concreteness on the case p D 2, Question 14 asks whether cP2.R3/.X/ .
p

logn
for every n-point metric space .X; dX /. Note that Theorem 1 implies that .X; dX / embeds
into P2.R3/ with distortion at most the square root of the aspect ratio of .X; dX /, that is

(11) c.P2.R3/;W2/.X; dX / 6

vuuut diam.X; dX /
min
x;y2X
x¤y

dX .x; y/
;

but we are asking here for the largest possible growth rate of the distortion ofX into P2.R3/
in terms of the cardinality of X . While for certain embedding results there are standard
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methods (see e.g., [6, 34, 59]) for replacing the dependence on the aspect ratio of a finite
metric space by a dependence on its cardinality, these methods do not seem to apply to our
embedding in (11). See Section 6 below for further discussion.

2. Proof of Theorem 1

In what follows fix n 2 N and an n-point metric space .X; dX /. Write X D fx1; : : : ; xng
and fix � W f1; : : : ; ng � f1; : : : ; ng ! f1; : : : ; n2g to be an arbitrary bijection between
f1; : : : ; ng � f1; : : : ; ng and f1; : : : ; n2g. Below it will be convenient to use the following
notation.

(12) m
def
D min

x;y2X
x¤y

dX .x; y/
1
p and M

def
D max

x;y2X
dX .x; y/

1
p :

Fix K 2 N. Denoting the standard basis of R3 by e1 D .1; 0; 0/, e2 D .0; 1; 0/, e3 D .0; 0; 1/,
for every i; j 2 f1; : : : ; ng with i < j define five families of points in R3 by setting
for s 2 f0; : : : ; Kg,

Q1
s .i; j /

def
D
Mi

m
e1 C

M�.i; j /s

mK
e2;(13)

Q2
s .i; j /

def
D
Mi

m
e1 C

M�.i; j /

m
e2 C

Ms

mK
e3;(14)

Q3
s .i; j /

def
D
M.s.j � i/CKi/C .K � s/dX .xi ; xj /

1
p

mK
e1 C

M�.i; j /

m
e2 C

M

m
e3;(15)

Q4
s .i; j /

def
D
Mj

m
e1 C

M�.i; j /

m
e2 C

M.K � s/

mK
e3;(16)

Q5
s .i; j /

def
D
Mj

m
e1 C

M.K � s/�.i; j /

mK
e2:(17)

Then Q1
K.i; j / D Q2

0.i; j /, Q
3
K.i; j / D Q4

0.i; j / and Q4
K.i; j / D Q5

0.i; j /, so the total
number of points thus obtained equals 5.K C 1/ � 3 D 5K C 2.

Define B � R3 by setting

B
def
D

[
i;j2f1;:::;ng

i<j

Bij ;(18)

where for every i; j 2 f1; : : : ; ng with i < j we write

Bij
def
D

K[
sD0

˚
Q1
s .i; j /;Q

2
s .i; j /;Q

3
s .i; j /;Q

4
s .i; j /;Q

5
s .i; j /

	
:(19)

Hence jBij j D 5K C 2. We also define C � R3 by

C
def
D B n

�
Mi

m
e1 W i 2 f1; : : : ; ng

�
:(20)

Note that by (13) we have .Mi=m/e1 D Q
1
0.i; j / if i; j 2 f1; : : : ; ng satisfy i < j , and by (17)

we have .Mi=m/e1 D Q5
K.`; i/ if `; i 2 f1; : : : ; ng satisfy ` < i . Thus C corresponds to
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removing from B those points that lie on the x-axis. In what follows, we denoteN D jC jC1.
Finally, for every i 2 f1; : : : ; ng we define Ci � R3 by

(21) Ci
def
D C [

�
Mi

m
e1

�
:

Hence jCi j D N . Our embedding f W X !Pp.R3/ will be given by

(22) 8 j 2 f1; : : : ; ng; f .xj /
def
D

1

N

X
u2Cj

ıu;

where, as usual, ıu is the point mass at u. Thus f .xj / is the uniform probability measure
over Cj . A schematic depiction of the above construction appears in Figure 1 below.

F 1. A schematic depiction of the embedding f W X ! Pp.R3/ for a four-
point metric space .X; dX / D .fx1; x2; x3; x4g; dX /. Here the x-axis is the hori-
zontal direction, the z-axis is the vertical direction and the y-axis is perpendicular
to the page plane. Recall that m and M are defined in (12).

Lemma 15 below estimates the distortion of f , proving Theorem 1.

L 15. – Fix " 2 .0; 1/ and p 2 .1;1/. Let f W X ! Pp.R3/ be the mapping
appearing in (22), considered as a mapping from the snowflaked metric space .X; d1=pX / to the
metric space .Pp.R3/;Wp/. Then, recalling the definitions of m and M in (12), we have

(23) K >

�
5Mpn2p

pmp"

� 1
p�1

H) dist.f / 6 1C ":

Proof. – We shall show that under the assumption on K that appears in (23) we have
(24)

8 i; j 2 f1; : : : ; ng;

�
dX .xi ; xj /

mpN

� 1
p

6 Wp.f .xi /; f .xj // 6 .1C "/

�
dX .xi ; xj /

mpN

� 1
p

;

where we recall that we defined N to be equal to jC j C 1 for C given in (20). Clearly (24)
implies that dist.f / 6 1C ", as required.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



670 A. ANDONI, A. NAOR AND O. NEIMAN

To prove the right hand inequality in (24), suppose that i; j 2 f1; : : : ; ng satisfy i < j and
consider the coupling � 2 ….f .xi /; f .xj // given by

(25) �
def
D

1

N

� 5X
tD1

K�1X
sD0

ı�
Qts.i;j /;Q

t
sC1

.i;j /
� C ı.Q2K .i;j /;Q30.i;j // C

X
u2CnBij

ı.u;u/

�
;

where for (25) recall (19) and (20). The meaning of (25) is simple: the supports of f .xi / and
f .xj / equal Ci and Cj , respectively, where we recall (21). Note that Ci nCj D fQ

1
0.i; j /g and

Cj n Ci D fQ
5
K.i; j /g, where we recall (13) and (17). So, the coupling � in (25) corresponds

to shifting the points in Bij from the support of f .xi / to the support of f .xj /while keeping
the points in C nBij unchanged.

Now, recalling the Definitions (13), (14), (15), (16) and (17),

Wp.f .xi /; f .xj //
p 6

“
R3�R3

kx � yk
p
2d�.x; y/

(26)

D
1

N

5X
tD1

K�1X
sD0

Qt
s.i; j / �Q

t
sC1.i; j /

p
2
C
kQ2

K.i; j / �Q
3
0.i; j /k

p
2

N
:

Note that if s 2 f0; : : : ; K � 1g then by (13), (14), (16), (17) we have

t 2 f1; 5g H)
Qt

s.i; j / �Q
t
sC1.i; j /


2
D
M�.i; j /

mK
6
Mn2

mK
;

t 2 f2; 4g H)
Qt

s.i; j / �Q
t
sC1.i; j /


2
D

M

mK
:

(27)

Also, by (14) and (15) we have

(28)
Q2

K.i; j / �Q
3
0.i; j /


2
D
dX .xi ; xj /

1
p

m
:

Finally, by (15) for every s 2 f0; : : : ; K � 1g we have

(29)
Q3

s .i; j / �Q
3
sC1.i; j /


2
D
M.j � i/

mK
�
dX .xi ; xj /

1
p

mK
6
Mn

mK
;

where in the first step of (29) we used the fact thatM.j � i/�dX .xi ; xj /1=p > 0, which holds
true by the definition of M in (12) because j � i > 1. A substitution of (27), (28) and (29)
into (26) yields the estimate

Wp.f .xi /; f .xj //
p 6

dX .xi ; xj /

mpN
C
5K

N

�
Mn2

mK

�p
D

�
1C

5Mpn2p

Kp�1dX .xi ; xj /

�
dX .xi ; xj /

mpN
6 .1C p"/

dX .xi ; xj /

mpN
;

where we used the fact that by the definition of m in (12) we have mp 6 dX .xi ; xj /, and
the lower bound on K that is assumed in (23). This implies the right hand inequality in (24)
because 1C p" 6 .1C "/p.
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Passing now to the proof of the left hand inequality in (24), we need to prove that for
every i; j 2 f1; : : : ; ng with i < j we have

(30) 8� 2 ….f .xi /; f .xj //;

“
R3�R3

kx � yk
p
2d�.x; y/ >

dX .xi ; xj /

mpN
:

Note that we still did not use the triangle inequality for dX , but this will be used in the proof
of (30). Also, the reason why we are dealing with Pp.R3/ rather than Pp.R2/ will become
clear in the ensuing argument.

Recall that the measures f .xi / and f .xj / are uniformly distributed over sets of the same
size, and their supports Ci and Cj (respectively) satisfy Ci 4 Cj D f.Mi=m/e1; .Mj=m/e1g.
Since the set of all doubly stochastic matrices is the convex hull of the permutation matrices,
and every permutation is a product of disjoint cycles, it follows that it suffices to establish the
validity of (30) when � D 1

N

PL
`D1 ı.u`�1;u`/ for some L 2 f1; : : : ; N g and u1; : : : uL�1 2 C ,

where we set u0 D .Mi=m/e1 and uL D .Mj=m/e1. With this notation, our goal is to show
that

(31)
1

N

LX
`D1

ku` � u`�1k
p
2 >

dX .xi ; xj /

mpN
:

For every a 2 f1; : : : ; ng define Sa � R3 by Sa
def
D S 1

a [S 2
a , where

S 1
a

def
D

n[
bDaC1

K[
sD0

˚
Q1
s .a; b/;Q

2
s .a; b/

	
;(32)

and

S 2
a

def
D

a�1[
cD1

K[
sD0

˚
Q3
s .c; a/;Q

4
s .c; a/;Q

5
s .c; a/

	
:(33)

Thus, recalling (18), the sets S1; : : : ;Sn form a partition of B and a 2 Sa for every
a 2 f1; : : : ; ng. For every ` 2 f0; : : : ; Lg let a.`/ be the unique element of f1; : : : ; ng for
which u` 2 Sa.`/. Then a.0/ D i and a.L/ D j . The left hand side of (31) can be bounded
from below as follows

(34)
1

N

LX
`D1

ku` � u`�1k
p
2 >

1

N

LX
`D1

min
u2Sa.`�1/
v2Sa.`/

ku � vk
p
2 :

We shall show that

(35) 8 a; b 2 f1; : : : ; ng; 8.u; v/ 2 Sa �Sb; ku � vk
p
2 >

dX .xa; xb/

mp
:

The validity of (35) implies the required estimate (31) because, by (34), it follows from (35)
and the triangle inequality for dX that

1

N

LX
`D1

ku` � u`�1k
p
2 >

1

N

LX
`D1

dX
�
xa.`�1/; xa.`/

�
mp

>
dX
�
xi ; xj

�
mpN

:
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It remains to justify (35). Suppose that a; b 2 f1; : : : ; ng satisfy a < b and .u; v/ 2 Sa �Sb .
Write u D Qt

s.c; d/ and v D Q�
� .γ; ı/ for some s; � 2 f0; : : : ; Kg, t; � 2 f1; : : : ; 5g and

c; d; γ; ı 2 f1; : : : ; ng.

We shall check below, via a direct case analysis, that the absolute value of one of the three
coordinates of u�v is either at leastM=m or at least dX .xa; xb/1=p=m. Since by the definition
of M in (12) we have M > dX .xa; xb/

1=p, this assertion will imply (35).

Suppose first that t; � 2 f1; 2; 4; 5g. By comparing (32), (33) with (13), (14), (16), (17)
we see that hu; e1i D Ma=m and hv; e1i D Mb=m. Since b � a > 1, this implies that
hu � v; e1i >M=m, as required.

If t D � D 3 then by (33) we necessarily have d D a and ı D b. Hence .c; d/ ¤ .γ; ı/ and
therefore j�.c; d/ � �.γ; ı/j > 1, since � is a bijection between f1; : : : ; ng � f1; : : : ; ng and
f1; : : : ; n2g. By (15) we therefore have jhu � v; e2ij >M=m, as required.

It remains to treat the case t ¤ � and 3 2 ft; �g. If ft; �g � f1; 3; 5g then by contrasting (15)
with (13) and (17) we see that the third coordinate of one of the vectors u; v vanishes while
the third coordinate of the other vector equals M=m. Therefore jhu � v; e3ij > M=m, as
required. The only remaining case is ft; �g � f2; 3; 4g.

In this case jhu�v; e2ij DM j�.c; d/��.γ; ı/j=m, by (15), (14), (16). So, if .c; d/ ¤ .γ; ı/
then j�.c; d/��.γ; ı/j > 1, and we are done. We may therefore assume that c D γ and d D ı.
Observe that by (33) if ft; �g D f3; 4g then fd; ıg D fa; bg, which contradicts d D ı. So, we
also necessarily have ft; �g D f2; 3g, in which case, since a < b, by (32) and (33) we see that
c D γ D a and d D ı D b. By interchanging the labels s and � if necessary, we may assume
that u D Q2

� .a; b/ and v D Q3
s .a; b/. By (14) and (15) we therefore have

hv � u; e1i D
M.s.b � a/CKa/

mK
C
.K � s/dX .xa; xb/

1
p

mK
�
Ma

m

D
dX .xa; xb/

1
p

m
C
sM.b � a/ � sdX .xa; xb/

1
p

mK
>
dX .xa; xb/

1
p

m
;

where we used the fact that by (12) we have M > dX .xa; xb/
1=p, and that b � a > 1. This

concludes the verification of the remaining case of (35), and hence the proof of Lemma 15 is
complete.

3. Sharpness of Theorem 1

The results of this section rely crucially on K. Ball’s notion [5] of Markov type. We
shall start by briefly recalling the relevant background on this important invariant of metric
spaces, including variants and notation from [68] that will be used below.

Let fZtg1tD0 be a Markov chain on the state space f1; : : : ; ng with transition probabilities
aij D Pr ŒZtC1 D j jZt D i � for every i; j 2 f1; : : : ; ng. fZtg1tD0 is said to be stationary
if �i D Pr ŒZt D i � does not depend on t 2 f1; : : : ; ng and it is said to be reversible if
�iaij D �jaj i for every i; j 2 f1; : : : ; ng.

Let fZ0tg
1
tD0 be the Markov chain that starts at Z0 and then evolves independently

of fZtg1tD0 with the same transition probabilities. ThusZ00 D Z0 and conditioned onZ0 the
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random variables Zt and Z0t are independent and identically distributed. We note for future
use that if fZtg1tD0 as above is stationary and reversible then for every symmetric function
 W f1; : : : ; ng � f1; : : : ; ng ! R and every t 2 N we have

(36) E
�
 .Zt ; Z

0
t /
�
D E

�
 .Z2t ; Z0/

�
:

This is a consequence of the observation that, by stationarity and reversibility, conditioned
on the random variableZt the random variablesZ0 andZ2t are independent and identically
distributed. Denoting A D .aij / 2 Mn.R/, the validity of (36) can be alternatively checked
directly as follows:

E
�
 .Zt ; Z

0
t /
�
D E

�
E
�
 .Zt ; Z

0
t /jZ0

� �
D

nX
iD1

nX
jD1

nX
kD1

�iA
t
ijA

t
ik .j; k/(37)

.?/
D

nX
jD1

nX
kD1

�j

� nX
iD1

Atj iA
t
ik

�
 .j; k/ D

nX
jD1

nX
kD1

�jA
2t
jk .j; k/;

where .?/ uses the reversibility of the Markov chain fZtg1tD0 through the validity of
�iA

t
ij D �jA

t
j i for every i; j 2 f1; : : : ; ng. The final term in (37) equals the right hand

side of (36), as required.

Given p 2 Œ1;1/, a metric space .X; dX / and m 2 N, the Markov type p constant
of .X; dX / at time m, denoted Mp.X; dX Im/ (or simply Mp.X Im/ if the metric is clear from
the context) is defined to be the infimum over those M 2 .0;1/ such that for every n 2 N,
every stationary reversible Markov chain fZtg1tD0 with state space f1; : : : ; ng, and every
f W f1; : : : ; ng ! X we have

E
�
dX .f .Zm/; f .Z0//

p
�
6MpmE

�
dX .f .Z1/; f .Z0//

p
�
:

Observe that by the triangle inequality we always have

Mp.X Im/ 6 m1�
1
p :

As we shall explain below, any estimate of the form Mp.X Im/ .X m� for � < 1 � 1=p is a
nontrivial obstruction to the embeddability of certain metric spaces intoX , but it is especially
important (e.g., for Lipschitz extension theory [5]) to single out the case when Mp.X Im/ .X 1.
Specifically, .X; dX / is said to have Markov type p if

Mp.X; dX /
def
D sup

m2N
Mp.X; dX Im/ <1:

Mp.X; dX / is called the Markov type p constant of .X; dX /, and it is often denoted simply
Mp.X/ if the metric is clear from the context.

The Markov type of many important classes of metric spaces is satisfactorily understood,
though some fundamental questions remain open; see Section 4 of the survey [67] and the
references therein, as well as more recent progress in e.g., [22]. Here we study this notion
in the context of Wasserstein spaces. The link of Markov type to the nonembeddability of
snowflakes is simple, originating in an idea of [51]. This is the content of the following lemma.

L 16. – Fix a metric space .Y; dY /, m 2 N, K;p 2 Œ1;1/ and � 2 Œ0; 1�. Suppose
that

(38) Mp.Y Im/ 6 Km
�.p�1/
p :
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Denote n D 24m. Then there exists an n-point metric space .X; dX / such that

˛ 2

�
1C �.p � 1/

p
; 1

�
H) cY .X; d

˛
X / &

1

K
.logn/˛�

1C�.p�1/
p :

Proof. – Take .X; dX / D .f0; 1g4m; k � k1/, i.e., X is the 4m-dimensional discrete hyper-
cube, equipped with the Hamming metric. Thus jX j D n. Let fZtg1tD0 be the standard
random walk on X , with Z0 distributed uniformly over X . Suppose that f W X ! Y satis-
fies

(39) 8 x; y 2 X; skx � yk˛1 6 dY .f .x/; f .y// 6 Dskx � yk˛1

for some s;D 2 .0;1/. Our goal is to bound D from below. By the definition of Mp.Y Im/,

(40) E
�
dY .f .Zm/; f .Z0//

p
� (38)
6 Kpm1C�.p�1/E

�
dY .f .Z1/; f .Z0//

p
�
:

By the right hand inequality in (39) we have

(41) E
�
dY .f .Z1/; f .Z0//

p
�
6 DpspE

�
kZ1 �Z0k

˛p
1

�
D Dpsp:

At the same time, it is simple to see (and explained explicitly in e.g., [72] or [67, Section 9.4])
that E

�
kZm �Z0k

˛p
1

�
> .�m/˛p for some universal constant � 2 .0; 1/. Hence,

(42) E
�
dY .f .Zm/; f .Z0//

p
� (39)
> spE

�
kZm �Z0k

˛p
1

�
& sp.�m/˛p:

The only way for (41) and (42) to be compatible with (40) is if

D &
1

K
m˛�

1C�.p�1/
p �

1

K
.logn/˛�

1C�.p�1/
p :

R 17. – In Lemma 16 we took the metric space X to be a discrete hypercube, but
similar conclusions apply to snowflakes of expander graphs and graphs with large girth [51],
as well as their subsets [7] and certain discrete groups [4, 69, 70] (see also [67, Section 9.4]).
We shall not attempt to state here the wider implications of the assumption (38) to the
nonembeddability of snowflakes, since the various additional conclusions follow mutatis
mutandis from the same argument as above and Lemma 16 as currently stated suffices for
the proof of Theorem 2.

R 18. – Since the proof of Lemma 16 applied the Markov type p assumption (38)
to the discrete hypercube, it would have sufficed to work here with a classical weaker bi-
Lipschitz invariant due to Enflo [24], called Enflo type. Such an obstruction played a role
in ruling out certain snowflake embeddings in [26] (in a different context), though the fact
that the argument of [26] could be cast in the context of Enflo type was proved only later [77,
Proposition 5.3]. Here we work with Markov type rather than Enflo type because the proof
below for Wasserstein spaces yields this stronger conclusion without any additional effort.

The following lemma is a variant of [77, Lemma 4.1].

L 19. – Fix p 2 Œ1;1/ and � 2 Œ1=p; 1�. Suppose that .X; dX / is a metric space such
that for every two X -valued independent and identically distributed finitely supported random
variables Z;Z0 and every x 2 X we have

(43) E
�
dX .Z;Z

0/p
�
6 2�pE

�
dX .Z; x/

p
�
:
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Then for every k 2 N we have

(44) Mp.X I 2
k/ 6 2

k
�
�� 1p

�
:

Proof. – Fix n 2 N, a stationary reversible Markov chain fZtg1tD0 with state space
f1; : : : ; ng, and f W f1; : : : ; ng ! X . Recalling (36) with  .i; j / D dX .f .i/; f .j //

p, for
every t 2 N we have

E
�
dX .Z2t ; Z0/

p
� (36)
D E

�
dX .Zt ; Z

0
t /
p
� (43)
6 2�pE

�
dX .Zt ; Z0/

p
�

6 2�p�1Mp.X I t /
p
� 2tE

�
dX .Z1; Z0/

p
�
;

(45)

where the last step of (45) uses the definition ofMp.X I t /. By the definition ofMp.X I 2t/, we
have thus proved that

Mp.X I 2t/ 6 2��
1
pMp.X I t /;

so (44) follows by induction on k.

Corollary 20 below follows from Lemma 16 and Lemma 19. Specifically, under the
assumptions and notation of Lemma 19, use Lemma 16 with m replaced by 2k and �

replaced by .�p � 1/=.p � 1/.

C 20. – Fix p 2 Œ1;1/ and � 2 Œ1=p; 1�. Suppose that .X; dX / is a metric space
that satisfies the assumptions of Lemma 19. Then for arbitrarily large n 2 N there exists an
n-point metric space .Y; dY / such that for every ˛ 2 Œ�; 1� we have

cX
�
Y; d˛Y

�
& .logn/˛�� :

The link between the above discussion and embeddings of snowflakes of metrics into
Wasserstein spaces is explained in the following lemma, which is a variant of [91, Proposi-
tion 2.10].

L 21. – Fix p 2 Œ1;1/ and � 2 Œ1=p; 1�. Suppose that .X; dX / is a metric space that
satisfies the assumptions of Lemma 19, i.e., inequality (43) holds true for X -valued random
variables. Then the same inequality holds true in the metric space .Pp.X/;Wp/ as well, i.e., for
every two Pp.X/-valued and identically distributed finitely supported random variablesM;M0

and every � 2Pp.X/,

E
�
Wp.M;M

0/p
�
6 2�pE

�
Wp.M; �/

p
�
:

Proof. – Suppose that the distribution ofM equals
Pn
iD1 qiı�i for some �1; : : : ; �n 2Pp.X/

and q1; : : : ; qn 2 Œ0; 1� with
Pn
iD1 qi D 1. Our goal is to show that

(46)
nX
iD1

nX
jD1

qiqjWp.�i ; �j /
p 6 2�p

nX
iD1

qiWp.�i ; �/
p:

The finitely supported probability measures are dense in .Pp.X/;Wp/ (see [84, 96]), so it
suffices to prove (46) when there exists N 2 N and points xik ; xk 2 X for every .i; k/ 2
f1; : : : ; ng � f1; : : : ; N g such that we have � D 1

N

PN
kD1 ıxk and �i D 1

N

PN
kD1 ıxik for
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every i 2 f1; : : : ; ng. Let f�igniD1 � SN be permutations of f1; : : : ; N g that induce optimal
couplings of the pairs .�; �i /, i.e.,

(47) 8 i 2 f1; : : : ; ng; Wp.�i ; �/
p
D

1

N

NX
kD1

dX .xi�i .k/; xk/
p:

Since the measure 1
N

PN
kD1 ı.xi�i .k/;xj�j .k//

is a coupling of .�i ; �j /,

(48) 8 i; j 2 f1; : : : ; ng; Wp.�i ; �j /
p 6

1

N

NX
kD1

dX .xi�i .k/; xj�j .k//
p:

Consequently,
nX
iD1

nX
jD1

qiqjWp.�i ; �j /
p

(48)
6

1

N

NX
kD1

nX
iD1

nX
jD1

qiqjdX .xi�i .k/; xj�j .k//
p

(43)
6

2�p

N

NX
kD1

nX
iD1

nX
jD1

qiqjdX .xi�i .k/; xk/
p

(47)
D 2�p

nX
iD1

qiWp.�i ; �/
p:

Proof of Theorem 2. – Let .�;�/ be a probability space.

For p 2 Œ1;1� define T W Lp.�/! Lp.� � �/ by Tf .x; y/ D f .x/ � f .y/. Then clearly
kT kLp.�/!Lp.���/ 6 2 for p 2 f1;1g and

8f 2 L2.�/; kTf k2L2.���/ D 2kf k
2
L2.�/

� 2
� Z

�

f d�
�2

6 2kf k2L2.�/:

Or kT kL2.�/!L2.���/ 6
p
2. So, by the Riesz-Thorin theorem (e.g., [27]),

(49) p 2 Œ1; 2� H) kT kLp.�/!Lp.���/ 6 2
1
p ;

and

(50) p 2 Œ2;1� H) kT kLp.�/!Lp.���/ 6 21�
1
p :

Switching to probabilistic terminology, the estimates (49) and (50) say that if Z;Z0 are i.i.d.
random variables then E

�
jZ � Z0jp

�
6 2E

�
jZjp

�
when p 2 Œ1; 2� and E

�
jZ � Z0jp

�
6

2p�1E
�
jZjp

�
when p 2 Œ2;1/. By applying this to the random variables Z � a;Z0 � a for

every a 2 R, we deduce that the real line (with its usual metric) satisfies (43) with

(51) � D �p
def
D max

�
1

p
; 1 �

1

p

�
:

Invoking this statement coordinate-wise shows that `3p D .R3; k � kp/ satisfies (43) with
� D �p. Lemma 21 therefore implies that .Pp.`

3
p/;Wp/ also satisfies (43) with � D �p. Hence,

by Corollary 20 for arbitrarily large n 2 N there exists an n-point metric space .Y; dY / such
that for every ˛ 2 .�p; 1�,

c.Pp.`
3
p/;Wp/

.Y; d˛Y / & .logn/˛��p D

(
.logn/˛�

1
p if p 2 .1; 2�;

.logn/˛C
1
p�1 if p 2 .2;1/:
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Since the p̀ norm on R3 is
p
3-equivalent to the `2 norm on R3,

c.Pp.`
3
p/;Wp/

.Y; d˛Y / � c.Pp.`
3
2
/;Wp/

.Y; d˛Y /;

thus completing the proof of Theorem 2.

R 22. – In the proof of Theorem 2 we chose to check the validity of (43) with
� D �p given in (51) using an interpolation argument since it is very short. But, there are
different proofs of this fact: when p 2 Œ1; 2/ one could start from the trivial case p D 2,
and then pass to general p 2 Œ1; 2/ by invoking the classical fact [88] that the metric
space .R; jx � yjp=2/ admits an isometric embedding into Hilbert space. Alternatively,
in [65, Lemma 3] this is proved via a direct computation.

Q 23. – As discussed in the Introduction, it seems plausible that Theorem 1 and
Theorem 2 are not sharp when p 2 .2;1/. Specifically, we conjecture that there exists
Dp 2 Œ1;1/ such that for every finite metric space .X; dX / we have

(52) cPp.R3/

�
X;
p
dX

�
6 Dp:

Perhaps (52) even holds true with Dp D 1. As discussed in Remark 11, since L2 admits
an isometric embedding into Lp (see e.g., [98]), the perceived analogy between Wasserstein
p spaces and Lp spaces makes it natural to ask whether or not .P2.R3/;W2/ admits a bi-
Lipschitz embedding into .Pp.R3/;Wp/. If the answer to this question was positive then (52)
would hold true by virtue of the case p D 2 of Theorem 1. We also conjecture that the lower
bound of Theorem 2 could be improved when p > 2 to state that for arbitrarily large n 2 N
there exists an n-point metric space .Y; dY / such that for every ˛ 2 .1=2; 1�,

(53) c.Pp.R3/;Wp/.Y; d
˛
Y / &p .logn/˛�

1
2 :

It was shown in [71] that Lp has Markov type 2 for every p 2 .2;1/. We therefore ask
whether or not .Pp.R3/;Wp/ has Markov type 2 for every p 2 .2;1/. A positive answer to
this question would imply that the lower bound (53) is indeed achievable. For this purpose it
would also suffice to show that for every p 2 .2;1/ and k 2 N we have

(54) Mp..Pp.R3/;Wp/I 2
k/ .p 2

k
�
1
2�

1
p

�
:

Proving (54) may be easier than proving that M2.Pp.R3/;Wp/ < 1, since the former
involves arguing about the pth powers of Wasserstein p distances while the latter involves
arguing about Wassersteinp distances squared. Note thatMp.LpIm/ .

p
pm1=2�1=p by [71]

(see also [68, Theorem 4.3]), so the Lp-version of (54) is indeed valid.

We end this section by showing how Lemma 19 implies bounds on the Markov type p
constant Mp.X I t / for any time t 2 N, and not only when t D 2k for some k 2 N as in (44).
For the purpose of proving Theorem 1, Lemma 19 suffices as stated, so the ensuing discussion
is included for completeness, and could be skipped by those who are interested only in the
proof of Theorem 2.

The case p D 2 and � D 1=2 of Lemma 19 corresponds to proving that metric spaces that
are nonnegatively curved in the sense of Alexandrov have Markov type 2: this was established
by Ohta in [77], whose work inspired the arguments that were presented above. Specifically,
Ohta showed in [77] how to pass from (44) with p D 2 and � D 1=2 (i.e., M2.X; 2

k/ 6 1
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for every k 2 N) to M2.X/ 6
p
6 D 2:449 : : : , and he also included in [77] an argument

of Naor and Peres that improves this to M2.X/ 6 1 C
p
2 D 2:414 : : : Below we further

refine the latter argument, yielding the best known estimate on the Markov type 2 constant
of Alexandrov spaces of nonnegative curvature; see (57) below. This constant is of interest
since it was shown in [78] that if .X; dX / is a geodesic metric space withM2.X/ D 1 thenX is
nonnegatively curved in the sense of Alexandrov. It is plausible that, conversely,M2.X/ D 1

if X is nonnegatively curved in the sense of Alexandrov, but, as noted in [78], this seems to
be unknown even for the circle X D S1.

For every � 2 .0; 1� define �� W Œ0; 1�! R by

(55) 8 s 2 Œ0; 1�; �� .s/
def
D s� � .1 � s/� :

Then �� .Œ0; 1�/ D Œ�1; 1� and since �0
�
.s/ D �s��1C�.1� s/��1 > 0, the inverse ��1

�
is well-

defined and increasing on Œ�1; 1�. The following elementary numerical lemma will be used
later.

L 24. – For all � 2 .0; 1� there is a unique c.�/ 2 .1;1/ satisfying

(56) c.�/ D
c.�/��1

�

�
2��1
c.�/

��
C 1�

��1
�

�
2��1
c.�/

�
C 1

�� :
Proof. – The identity (56) is equivalent to h� .c.�// D 1, where for every s > 0 and

c 2 Œ1;1/ we set

 � .s/
def
D .s C 1/� � s� and h� .c/

def
D c �

 
��1�

 
2� � 1

c

!!
:

Observe that because � 2 .0; 1� we have  � .s/ < 1 for every s > 0. Hence h� .c/ < c for
every c 2 .0;1/, and in particular h� .1/ < 1. Moreover, ��1

�
.0/ D 1=2, so that

lim
c!1

 �

 
��1�

 
2� � 1

c

!!
D  �

�
1

2

�
D
3�

2�
�
1

2�
> 0:

Hence limc!1 h� .c/ D 1. It follows by continuity that there exists c 2 .0;1/ such that
h� .c/ D 1. To prove the uniqueness of such c > 1, it suffices to show that h� is increasing
on .0;1/. Now,

h0� .c/ D  �

 
��1�

 
2� � 1

c

!!
�
2� � 1

c
�

 0
�

�
��1
�

�
2��1
c

��
�0
�

�
��1
�

�
2��1
c

�� D �0
�
.y/ � .y/ � �� .y/ 

0
�
.y/

�0
�
.y/

;

where we write y D ��1
�
..2� � 1/=c/. Since �� is increasing, it therefore suffices to show that

�0
�
.y/ � .y/ � �� .y/ 

0
�
.y/ > 0 for all y 2 .0; 1/. One directly computes that

�0� .y/ � .y/ � �� .y/ 
0
� .y/ D � �

2y1�� C .1 � y/1�� � .1C y/1��

y1�� .1 � y2/1��
:

It remains to note that by the subadditivity of t 7! t1�� we have

.1C y/1�� 6 .1 � y/1�� C .2y/1�� 6 .1 � y/1�� C 2y1�� :
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L 25. – Fix p 2 Œ1;1/ and � 2 Œ1=p; 1�. Suppose that .X; dX / is a metric space that
satisfies the assumptions of Lemma 19, i.e., inequality (43) holds true for X -valued random
variables. Then

8 t 2 N; Mp.X I t / 6 c.�/t��
1
p ;

where c.�/ is from Lemma 24. Thus, if � D 1=p then X has Markov type p with Mp.X/ 6 c.1=p/.

Because, by the Lang-Schroeder-Sturm inequality (6), Alexandrov spaces of nonneg-
ative curvature satisfy the assumption of Lemma 19 with p D 2 and � D 1=2, we have
the following corollary. Note that c.1=2/ can be computed explicitly by solving the Equa-
tion (56).

C 26. – Suppose that .X; dX / is nonnegatively curved in the sense of Alexandrov.
Then the Markov type 2 constant of X satisfies

(57) M2.X/ 6 c

�
1

2

�
D

r
1C
p
2C

q
4
p
2 � 1 D 2:08 : : :

Proof of Lemma 25. – We claim that the number c.�/ of Lemma 24 satisfies

(58) sup
s2Œ0;1�

min
˚
1C c.�/s� ; 2� C c.�/.1 � s/�

	
.1C s/�

D c.�/:

Indeed, observe that the function s 7! .1 C c.�/s� /=.1 C s/� is increasing on Œ0; 1�

because one directly computes that its derivative equals �.c.�/ � s1�� /=.s1�� .1 C s/1C� /,
and by Lemma 24 we have c.�/ > 1 (recall also that 0 < � 6 1). Since the function
s 7! .2� C c.�/.1 � s/� /=.1C s/� is decreasing on Œ0; 1�, it follows that the supremum that
appears in the left hand side of (58) is attained when 1 C c.�/s� D 2� C c.�/.1 � s/� , or
equivalently when �� .s/ D .2� �1/=c.�/, where we recall (55). Thus s D ��1

�
..2� �1/=c.�//

and therefore (58) is equivalent to (56).

Fix n 2 N, a stationary reversible Markov chain fZtg1tD0 on f1; : : : ; ng, and f W f1; : : : ; ng ! X .
For simplicity of notation write Ut D f .Zt /. We shall prove by induction on t 2 N that

(59) E
�
dX .Ut ; U0/

p
�
6 c.�/pt�pE

�
dX .U1; U0/

p
�
:

Lemma 19 shows that (59) holds true if t D 2k for some k 2 N [ f0g (since c.�/ > 1).
So, suppose that t D .1C s/2k for some s 2 .0; 1/ and k 2 N [ f0g. The triangle inequality
in Lp, combined with the stationarity of the Markov chain, implies that�

E
�
dX .Ut ; U0/

p
�� 1
p 6

�
E
�
dX .Ut ; U2k /

p
�� 1
p C

�
E
�
dX .U2k ; U0/

p
�� 1
p

D
�
E
�
dX .Us2k ; U0/

p
�� 1
p C

�
E
�
dX .U2k ; U0/

p
�� 1
p ;(60)

and �
E
�
dX .Ut ; U0/

p
�� 1
p 6

�
E
�
dX .Ut ; U2kC1/

p
�� 1
p C

�
E
�
dX .U2kC1 ; U0/

p
�� 1
p

D
�
E
�
dX .U.1�s/2k ; U0/

p
�� 1
p C

�
E
�
dX .U2kC1 ; U0/

p
�� 1
p :(61)
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By combining (60) and (61) with Lemma 19 and the inductive Hypothesis (59), we see that�
E
�
dX .Ut ; U0/

p
�� 1
p�

E
�
dX .U1; U0/p

�� 1
p

6 2k� min
n
c.�/s� C 1; c.�/.1 � s/� C 2�

o
(58)
6 2k�c.�/.1C s/� D c.�/t� :

4. Proof of Proposition 3

Here we justify the validity of Proposition 3 that was stated in the Introduction, thus
explaining why we are focusing on quadratic inequalities in the context of the quest for
intrinsic characterizations of those metric spaces that admit a bi-Lipschitz embedding into
some Alexandrov space that is either nonnegatively or nonpositively curved. The argument
below is inspired by the proof of Proposition 15.5.2 in [54].

Proof of Proposition 3. – If cY .X/ 6 D for some .Y; dY / 2 F then it follows immedi-
ately that ifA;B 2Mn.R/ have nonnegative entries and .Y; dY / satisfies the .A;B/-quadratic
metric inequality then .X; dX / satisfies the .A;D2B/-quadratic metric inequality. The
nontrivial direction here is the converse, i.e., suppose that .X; dX / satisfies the
.A;D2B/-quadratic metric inequality for every two n by n matrices A;B 2Mn.R/ with
nonnegative entries such that every .Z; dZ/ 2 F satisfies the .A;B/-quadratic metric
inequality. The goal is to deduce from this that there exists .Y; dY / 2 F for which cY .X/ 6 D.

Let K � Mn.R/ be the set of all n by n matrices C D .cij / for which there exists
.Z; dZ/ 2 F and z1; : : : ; zn 2 Z such that cij D dZ.zi ; zj /2 for every i; j 2 f1; : : : ; ng. Since
F is closed under dilation, we have Œ0;1/K � K . Since F is closed under Pythagorean
sums, we have K CK � K . Thus K is a convex cone.

Write X D fx1; : : : ; xng. Fix " 2 .0; 1/ and suppose for the sake of obtaining a contra-
diction that there does not exist an embedding of X into any member of F with distortion
less than D C ". Let L � Mn.R/ be the set of all n by n symmetric matrices C D .cij / for
which there exists s 2 .0;1/ such that sdX .i; j /2 6 cij 6 .D C "/2sdX .i; j /

2 for every
i; j 2 f1; : : : ; ng. Our contrapositive assumption means that K \ L D ;. Since K and
L [ f0g are both cones, the separation theorem now implies that there exists a symmetric
matrix H D .hij / 2Mn.R/, not all of whose off-diagonal entries vanish, such that

(62) inf
C2L

nX
iD1

nX
jD1

hij cij > 0 > sup
C2K

nX
iD1

nX
jD1

hij cij :

Define A;B 2Mn.R/ by setting for every i; j 2 f1; : : : ; ng,

aij
def
D

(
hij if hij > 0;

0 if hij < 0;
and bij

def
D

(
jhij j if hij < 0;

0 if hij > 0:

The right hand inequality in (62), combined with the definition of K , implies that every
.Y; dY / 2 F satisfies the .A;B/-quadratic metric inequality. By our assumption on X , this

4 e SÉRIE – TOME 51 – 2018 – No 3



SNOWFLAKE UNIVERSALITY OF WASSERSTEIN SPACES 681

implies that

(63)
nX
iD1

nX
jD1

aijdX .xi ; xj /
2 6 D2

nX
iD1

nX
jD1

bijdX .xi ; xj /
2 < .DC "/2

nX
iD1

nX
jD1

bijdX .xi ; xj /
2;

where we used the fact that not all the off-diagonal entries of H vanish, so all the sums
appearing (63) are positive. Consequently, if we set

8 i; j 2 f1; : : : ; ng; cij
def
D

(
.D C "/2dX .xi ; xj /

2 if hij < 0

dX .xi ; xj /
2 if hij > 0;

then C D .cij / 2 L and by (63) we have
Pn
iD1

Pn
jD1 hij cij < 0. This contradicts the left

hand inequality in (62).

5. Subsets of Hadamard spaces

As we discussed in the introduction, it is a major open problem to characterize those finite
metric spaces that admit a bi-Lipschitz (or even isometric) embedding into some Hadamard
space. By Proposition 3, this amounts to understanding those quadratic metric inequalities
that hold true in any Hadamard space. In this section we shall derive potential families of
such inequalities.

An equivalent characterization of when a metric space .X; dX / is a Hadamard space is the
requirement that there exists a mapping B that assigns a point B.�/ 2 X to every finitely
supported probability measure � on X with the property that B.ıx/ D x for every x 2 X
(i.e.,B is a barycenter map) and every finitely supported probability measure� onX satisfies
the following inequality for every x 2 X .

(64) dX .x;B.�//
2
C

Z
X

dX .B.�/; y/
2d�.y/ 6

Z
X

dX .x; y/
2d�.y/:

For the proof that .X; dX / is a Hadamard space if and only if it satisfies (64), see e.g.,
Lemma 4.4. and Theorem 4.9 in [90]. One could extend the validity of (64) to probability
measures that are not necessarily finitely supported, but this will be irrelevant for our
purposes.

Lemma 27 below yields a general recipe for producing quadratic metric inequalities that
hold true in any Hadamard space.

L 27. – Fix n 2 N and p1; : : : ; pn; q1; : : : ; qn 2 .0; 1/ such that
Pn
iD1 pi DPn

jD1 qj D 1. Suppose that A D .aij /; B D .bij / 2 Mn.R/ are n by n matrices with
nonnegative entries that satisfy

(65) 8 i; j 2 f1; : : : ; ng;

nX
kD1

aik C

nX
kD1

bkj D pi C qj :

If .X; dX / is a Hadamard space then for every x1; : : : ; xn 2 X we have

(66)
nX
iD1

nX
jD1

aij bij

aij C bij
dX .xi ; xj /

2 6
nX
iD1

nX
jD1

piqjdX .xi ; xj /
2:
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Proof. – Writing z D B
�Pn

iD1 piıxi

�
, by (64) for every j 2 f1; : : : ; ng we have

(67) dX .xj ; z/
2
C

nX
iD1

pidX .xi ; z/
2 6

nX
iD1

pidX .xi ; xj /
2:

By multiplying (67) by qj and summing over j 2 f1; : : : ; ng we get

(68)
nX

jD1

qjdX .xj ; z/
2
C

nX
iD1

pidX .xi ; z/
2 6

nX
iD1

nX
jD1

piqjdX .xi ; xj /
2:

Hence,
nX

jD1

qjdX .xj ; z/
2
C

nX
iD1

pidX .xi ; z/
2
D

nX
iD1

nX
jD1

�
aijdX .xi ; z/

2
C bijdX .xj ; z/

2
�

(69)

>
nX
iD1

nX
jD1

aij bij

aij C bij
dX .xi ; xj /

2;(70)

where in (69) we used (65), and (70) holds true because dX .xi ; z/ C dX .xj ; z/ > dX .xi ; xj /

for every i; j 2 f1; : : : ; ng, and for every s; t; γ 2 Œ0;1/ we have (by e.g., Cauchy-Schwarz),

(71) min
˛;ˇ2Œ0;1/
˛Cˇ>γ

�
s˛2 C tˇ2

�
D
stγ2

s C t
:

The desired estimate (66) is a combination of (68) and (70).

The proof of Lemma 27 is a systematic way to exploit the existence of barycenters in
order to deduce quadratic metric inequalities, under the crucial constraint that the final
inequality is allowed to involve only distances within the subset fx1; : : : ; xng � X . The
barycentric inequality (64) is used in (67), but one must then remove all reference to the
auxiliary point z since it needs not be part of the given subset fx1; : : : ; xng. It is natural to
do so by incorporating the triangle inequality dX .xi ; z/ C dX .xj ; z/ > dX .xi ; xj / for some
i; j 2 f1; : : : ; ng. This inequality is distributed among the possible pairs i; j 2 f1; : : : ; ng
through a general choice of re-weighting matricesA;B, with the final step in (70) being sharp
due to (71). A more general scheme along these lines will be described in Section 5.2 below,
but (an iterative applications of) the above simple scheme is already powerful, and in fact we
do not know whether or not it yields a characterization of subsets of Hadamard spaces; see
Question 31 below.

A notable special case of Lemma 27 is when .p1; : : : ; pn/ D .q1; : : : ; qn/ and there exists
a permutation � 2 Sn such that ai�.i/ D b��1.i/i D pi for every i 2 f1; : : : ; ng, while all the
other entries of the matrices A and B vanish. In this case one arrives at the following useful
inequality.

C 28. – Suppose that .X; dX / is a Hadamard space. Then for every n 2 N, every
x1; : : : ; xn, every p1; : : : ; pn 2 Œ0; 1� with

Pn
jD1 pj D 1 and every permutation � 2 Sn we have

(72)
nX
iD1

pip�.i/

pi C p�.i/
dX .xi ; x�.i//

2 6
nX
iD1

nX
jD1

pipjdX .xi ; xj /
2:
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When n D 4 and � D .1; 3/.2; 4/, Corollary 28 becomes

C 29. – Suppose that .X; dX / be a Hadamard space and fix x1; x2; x3; x4 2 X .
Then for every p1; p2; p3; p4 2 Œ0;1/ we have

(73) p1p2dX .x1; x2/
2
C p2p3dX .x2; x3/

2
C p3p4dX .x3; x4/

2
C p4p1dX .x4; x1/

2

>
p1p3.p2 C p4/

p1 C p3
dX .x1; x3/

2
C
p2p4.p1 C p3/

p2 C p4
dX .x2; x4/

2:

To pass from (72) to (73) note that (73) is homogeneous of order 2 in .p1; p2; p3; p4/, so
we may assume that p1 C p2 C p3 C p4 D 1. Now (73) is a direct application of (72) with
the above specific choice of permutation � , while subtracting from both sides of (72) those
multiples of dX .x1; x3/2 and dX .x2; x4/2 that appear in the right hand side of (72).

When p1 C p3 D p2 C p4 D 1, Corollary 29 becomes Sturm’s weighted quadruple
inequality [90], which asserts that for every Hadamard space .X; dX /, every x1; x2; x3; x4 2 X ,
and every s; t 2 Œ0; 1�,

(74) s.1 � s/dX .x1; x3/
2
C t .1 � t /dX .x2; x4/

2

6 stdX .x1; x2/
2
C .1 � s/tdX .x2; x3/

2

C .1 � s/.1 � t /dX .x3; x4/
2
C s.1 � t /dX .x4; x1/

2:

As explained in [90, Proposition 2.4], by choosing the parameters s; t appropriately
in (74) one obtains an important quadruple comparison inequality of Reshetnyak [85]
(see also [36] or [44, Lemma 2.1]), asserting that for every Hadamard space .X; dX / and
every x1; x2; x3; x4 2 X ,

(75) dX .x1; x3/
2
C dX .x2; x4/

2 6 dX .x1; x2/
2
C dX .x2; x3/

2
C 2dX .x3; x4/dX .x4; x1/:

The coefficients in (73) have 3 degrees of freedom while in (74) they have 2 degrees of
freedom. This additional flexibility yields a proof of the validity of the Ptolemy inequality (4)
in Hadamard spaces. The fact that the Ptolemy inequality holds true in Hadamard spaces
was proved in [37, 25], and an alternative proof was given in [17]. Both of these proofs rely
on comparisons with ideal configurations in the Euclidean plane (see [15, §II.1]), combined
with the classical Ptolemy theorem in Euclidean geometry. Corollary 30 below shows how
the Ptolemy inequality is a direct consequence of (73), thus yielding an intrinsic proof that
does not proceed through an embedding argument.

C 30. – Let .X; dX / be a Hadamard space and x1; x2; x3; x4 2 X .

Write dij D dX .xi ; xj / for every i; j 2 f1; : : : ; ng. Then

(76) d12d34C d23d41 � d13d24 >

�
.d12d23 C d34d41/ d13 � .d12d41 C d23d34/ d24

�2
2 .d12d41 C d23d34/ .d12d23 C d34d41/

> 0:
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Proof. – The proof of (76) is nothing more than an application of Corollary 29 with the
following specific choices of p1; p2; p3; p4 2 Œ0;1/.

p1
def
D
d34

d41
�
d23 C d41

d12 C d34
; p2

def
D
d41

d12
�
d12 C d34

d23 C d41
;

p3
def
D
d12

d23
�
d23 C d41

d12 C d34
; p4

def
D
d23

d34
�
d12 C d34

d23 C d41
:

A substitution of these values into (73) yields

2d12d34 C 2d23d41 >
d12d23 C d34d41

d12d41 C d23d34
d213 C

d12d41 C d23d34

d12d23 C d34d41
d224

D 2d13d24 C
..d12d23 C d34d41/ d13 � .d12d41 C d23d34/ d24/

2

.d12d41 C d23d34/ .d12d23 C d34d41/
:

5.1. Iterative applications of Lemma 27

The case s D t D 1=2 of (73) becomes the roundness 2 inequality (3), i.e., for every
Hadamard space .X; dX / and every x1; x2; x3; x4 2 X we have

(77) dX .x1; x3/2 C dX .x2; x4/2 6 dX .x1; x2/
2
C dX .x2; x3/

2
C dX .x3; x4/

2
C dX .x4; x1/

2:

In [24], Enflo iterated (77) (while exploiting cancelations) so as to yield the following
inequality, which holds for every Hadamard space .X; dX /, every n 2 N and every
f W f�1; 1gn ! X .
(78)X
x2f�1;1gn

dX .f .x/; f .�x//
2 6

nX
iD1

X
x2f�1;1gn

dX .f .x/; f .x1; : : : ; xi�1;�xi ; xiC1; : : : ; xn//
2 :

In today’s terminology (78) says that every Hadamard space has Enflo type 2with constant 1
(see also [78]). The argument in [49] yields a different iterative application of (77) (again,
exploiting cancelations via a telescoping argument), showing that mappings from the iter-
ated diamond graph (see [75]) into any Hadamard space satisfy a certain quadratic metric
inequality. Similar reasoning (as in [48]) yields a quadratic metric inequality for Hadamard
space-valued mappings on the Laakso graphs (see [41, 45]). The value of the above iterative
applications of (77) is that they yield inequalities on metric spaces of unbounded cardinality
(hypercubes, diamond graphs, Laakso graphs) that serve as obstructions to bi-Lipschitz
embeddings of these spaces into any Hadamard space: these inequalities imply that any
such embedding must incur distortion that tends to 1 as the size of the underlying space
tends to1 (in fact, these inequalities yield sharp bounds).

We therefore see that by applying Lemma 27 multiple times one could obtain quadratic
metric inequalities that yield severe restrictions on those metric spaces that admit a bi-
Lipschits embedding into some Hadamard space. Specifically, one could apply Lemma 27
to several configurations of points and several choices of weights, and consider a weighted
average of the resulting inequalities. This yields the estimate

(79)
nX
iD1

nX
jD1

mX
kD1

cka
k
ij b

k
ij

akij C b
k
ij

dX .xi ; xj /
2 6

nX
iD1

nX
jD1

mX
kD1

ckp
k
i q
k
j dX .xi ; xj /

2;
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which is valid for every Hadamard space .X; dX /, every m; n 2 N, every x1; : : : ; xn 2 X ,
every fckgmkD1 � .0;1/, every

˚
pki ; q

k
i W i 2 f1; : : : ; ng; k 2 f1; : : : ; mg

	
� .0;1/ with

(80)
nX
iD1

pki D

nX
jD1

qkj D 1;

and every choice of n by n matrices fAk D .akij /g
m
kD1

; fBk D .bkij /g
m
kD1

� Mn.R/ with
nonnegative entries, such that for every i; j 2 f1; : : : ; ng and k 2 f1; : : : ; mg,

(81)
nX
sD1

akis C

nX
sD1

bksj D p
k
i C q

k
j :

By collecting terms in (79) so that for every i; j 2 f1; : : : ; ng no multiple of dX .xi ; xj /2

appears in both sides of the inequality, as was done in e.g., (78), one arrives at the following
estimate.

(82)
X

i;j2f1;:::;ngPm
kD1 ck

� ak
ij
bk
ij

ak
ij
Cbk
ij

�pk
i
qk
j

�
>0

mX
kD1

ck

�
akij b

k
ij

akij C b
k
ij

� pki q
k
j

�
dX .xi ; xj /

2

6
X

i;j2f1;:::;ngPm
kD1 ck

� ak
ij
bk
ij

ak
ij
Cbk
ij

�pk
i
qk
j

�
<0

mX
kD1

ck

�
pki q

k
j �

akij b
k
ij

akij C b
k
ij

�
dX .xi ; xj /

2:

To the best of our knowledge, all of the previously used quadratic metric inequalities on
general Hadamard spaces are of the form (82). We therefore ask whether the inequalities
of the form (82) capture the totality of those quadratic metric inequalities that are valid in
Hadamard spaces.

Q 31. – Is it true that for everyD 2 Œ1;1/ there exists some c.D/ 2 Œ1;1/ such
that a metric space .X; dX / embeds with distortion at most c.D/ into some Hadamard space
provided X

i;j2f1;:::;ngPm
kD1 ck

� ak
ij
bk
ij

ak
ij
Cbk
ij

�pk
i
qk
j

�
>0

mX
kD1

ck

�
akij b

k
ij

akij C b
k
ij

� pki q
k
j

�
dX .xi ; xj /

2

6 D2
�

X
i;j2f1;:::;ngPm

kD1 ck

� ak
ij
bk
ij

ak
ij
Cbk
ij

�pk
i
qk
j

�
<0

mX
kD1

ck

�
pki q

k
j �

akij b
k
ij

akij C b
k
ij

�
dX .xi ; xj /

2;

for all m; n 2 N, all ck ; pki ; q
k
i ; a

k
ij ; b

k
ij 2 Œ0;1/ satisfying (80) and (81), and all x1; : : : ; xn 2 X?

Recall that there are useful metric inequalities, which are not quadratic metric inequalities,
that hold true in any Hadamard space, such as Reshetnyak’s inequality (75) or the Ptolemy
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inequality (4). However, we already know through Proposition 3 that quadratic metric
inequalities fully characterize subsets of Hadamard spaces. And, in the case of Reshetnyak’s
inequality or the Ptolemy inequality, we have seen above how to deduce them explicitly from
a quadratic metric inequality (the key point to note here is that the various coefficients that
appear in (82) can be optimized so as to depend on the distances fdX .xi ; xj /gi;j2f1;:::;ng).

A negative answer to Question 31 would be very interesting, as it would yield a new
family of metric spaces that fail to admit a bi-Lipschitz embedding into any Hadamard space,
and correspondingly a new family of quadratic metric inequalities which hold true in any
Hadamard space yet do not follow from the above procedure for obtaining such inequalities.

As discussed in the Introduction, it is not known whether or not for every metric
space .X; dX / there exists a Hadamard space .Y; dY / with cY .X;

p
dX / < 1. If this were

true then Question 32 below would have a positive answer. Conversely, a positive answer to
both Question 31 and Question 32 would imply that the 1/2-snowflake of any metric space
admits a bi-Lipschitz embedding into some Hadamard space.

Q 32. – Is it true that every metric space .X; dX / satisfiesX
i;j2f1;:::;ngPm

kD1 ck

� ak
ij
bk
ij

ak
ij
Cbk
ij

�pk
i
qk
j

�
>0

mX
kD1

ck

�
akij b

k
ij

akij C b
k
ij

� pki q
k
j

�
dX .xi ; xj /

.
X

i;j2f1;:::;ngPm
kD1 ck

� ak
ij
bk
ij

ak
ij
Cbk
ij

�pk
i
qk
j

�
<0

mX
kD1

ck

�
pki q

k
j �

akij b
k
ij

akij C b
k
ij

�
dX .xi ; xj /;

for all m; n 2 N, all ck ; pki ; q
k
i ; a

k
ij ; b

k
ij 2 Œ0;1/ satisfying (80) and (81), and all x1; : : : ; xn 2 X?

Question 32 seems tractable, but at present we do not know whether or not its answer
is positive. A negative answer to Question 32 would yield for the first time a metric
space .X; dX / such that .X;

p
dX / fails to admit a bi-Lipschitz embedding into any

Hadamard space, in sharp contrast to the case of embeddings into Alexandrov spaces
of nonnegative curvature. In the same vein, a proof that every Hadamard space admits a
sequence of bounded degree expanders would resolve Question 32 negatively. It is true that
inequality (73) is not an obstruction to the validity of Question 32, i.e., for every metric
space .X; dX /, every p1; p2; p3; p4 2 Œ0;1/ and every x1; x2; x3; x4 2 X we have

(83) p1p2dX .x1; x2/C p2p3dX .x2; x3/C p3p4dX .x3; x4/C p4p1dX .x4; x1/

>
p1p3.p2 C p4/

p1 C p3
dX .x1; x3/C

p2p4.p1 C p3/

p2 C p4
dX .x2; x4/:

Also (actually, as a consequence of (83)), Reshetnyak’s inequality and the Ptolemy inequality
hold true in any square root of a metric space, i.e., for every metric space .X; dX / and
x1; x2; x3; x4 2 X ,

dX .x1; x3/C dX .x2; x4/ 6 dX .x1; x2/C dX .x2; x3/C 2
p
dX .x3; x4/dX .x4; x1/;
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and p
dX .x1; x3/dX .x2; x4/ 6

p
dX .x1; x2/dX .x3; x4/C

p
dX .x2; x3/dX .x4; x1/:

It is possible (and instructive) to prove these inequalities while using only the triangle
inequality, but this seems to require a somewhat tedious case analysis. Alternatively, one
could verify (83) by using the fact that the square root of any four-point metric space admits
an isometric embedding into a Hilbert space; see e.g., [20, Proposition 2.6.2].

Lemma 33 below asserts that the conclusion of Lemma 27 holds true in any square-root
of a metric space, with a loss of a constant factor. This is a special case of Question 32 that
falls sort of a positive answer in general due to the fact that we want to iterate the resulting
inequality, in which case the constant factor loss could accumulate.

L 33. – Fix n 2 N and p1; : : : ; pn; q1; : : : ; qn 2 .0; 1/ such that
Pn
iD1 pi DPn

jD1 qj D 1. Suppose that A D .aij /; B D .bij / 2 Mn.R/ are n by n matrices
with nonnegative entries that satisfy (65). Then for every metric space .X; dX / and every
x1; : : : ; xn 2 X we have

nX
iD1

nX
jD1

aij bij

aij C bij
dX .xi ; xj / 6 3

nX
iD1

nX
jD1

piqjdX .xi ; xj /:

Proof. – Let F W fx1; : : : ; xng ! `1 be any isometric embedding of the metric space
.fx1; : : : ; xng; dX / into `1. By convexity we have

nX
iD1

pi

F.xi / � nX
jD1

qjF.xj /

1
D

nX
iD1

pi

 nX
jD1

qj .F.xi / � F.xj //

1

6
nX
iD1

nX
jD1

piqj kF.xi / � F.xj /k1 D

nX
iD1

nX
jD1

piqjdX .xi ; xj /;

and similarly,
nX
iD1

qi

F.xi / � nX
jD1

qjF.xj /

1

6
nX
iD1

qi

F.xi / � nX
jD1

pjF.xj /

1
C

 nX
iD1

nX
jD1

piqj .F.xi / � F.xj //

1

6 2

nX
iD1

nX
jD1

piqj kF.xi / � F.xj /k1 D 2

nX
iD1

nX
jD1

piqjdX .xi ; xj /:

So, if we denote z
def
D
Pn
kD1 qkF.xk/ then

3

nX
iD1

nX
jD1

piqjdX .xi ; xj / >
nX
iD1

pikF.xi / � zk1 C

nX
jD1

qj kF.xj / � zk1

(65)
D

nX
iD1

nX
jD1

�
aij kF.xi / � zk1 C bij kF.xj / � zk1

�
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>
nX
iD1

nX
jD1

minfaij ; bij g
�
kF.xi / � zk1 C kF.xj / � zk1

�
>

nX
iD1

nX
jD1

aij bij

aij C bij
kF.xi / � F.xj /k1

D

nX
iD1

nX
jD1

aij bij

aij C bij
dX .xi ; xj /:

5.2. A hierarchy of quadratic metric inequalities

The quadratic metric inequalities of Section 5.1 are part of a first level of a hierarchy of
quadratic metric inequalities that hold true in any Hadamard space. We shall now describe
these inequalities, which quickly become quite complicated and unwieldy. We conjecture that
the entire hierarchy of inequalities thus obtained characterizes subsets of Hadamard spaces;
see Question 34 below. Due to the generality of these inequalities, this conjecture could be
quite tractable. But, even if it has a positive answer then it would yield a complicated, and
therefore perhaps less useful, characterization of subsets of Hadamard spaces, and it would
still be very interesting to find a smaller family of inequalities that characterizes subsets of
Hadamard spaces, in the spirit of Question 31.

Let .X; dX / be a Hadamard space. The barycentric inequality (64) has the following
counterpart as a formal consequence, which is an inequality that allows one to control the
distance between barycenters of two probability measures. Let �; � be finitely supported
probability measures on X . By applying (64) twice we see that

dX .B.�/;B.�//
2
C

Z
X

dX .B.�/; x/
2d�.x/ 6

Z
X

dX .B.�/; x/
2d�.x/

6
Z
X

�Z
X

dX .x; y/
2d�.y/ �

Z
X

dX .B.�/; y/
2d�.y/

�
d�.x/:

Thus

(84) dX .B.�/;B.�//
2
C

Z
X

dX .B.�/; x/
2d�.x/C

Z
X

dX .B.�/; y/
2d�.y/

6
“
X�X

dX .x; y/
2d�.x/d�.y/:

Both (64) and (84) will be used repeatedly in what follows.

5.2.1. An inductive construction. – Fix n 2 N and x1; : : : ; xn 2 X . Fix also a sequence of
integers fmsg1sD0 � N with m0 D n. Suppose that we are given �kC1;bs;a 2 Œ0;1/ for every
k 2 N [ f0g, s 2 f0; : : : ; kg, a 2 f1; : : : ; msg and b 2 f1; : : : ; mkC1g, such that

8 b 2 f1; : : : ; mkC1g;

kX
sD0

msX
aD1

�kC1;bs;a D 1:

We shall now proceed to define by induction on k 2 N [ f0g auxiliary points xsa 2 X
for every s 2 f0; : : : ; kg and a 2 f1; : : : ; msg. Our construction will also yield for every
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i; j 2 f1; : : : ; ng, s; t; �; � 2 f0; : : : ; kg, a 2 f1; : : : ; msg, ˛ 2 f1; : : : ; m�g, b 2 f1; : : : ; mtg and
ˇ 2 f1; : : : ; m�g nonnegative weights U s;t;a;b

�;�;˛;ˇ
; V

s;t;a;b
i;j 2 Œ0;1/ that satisfy the inequality

(85) dX .x
s
a; x

t
b/
2
C

kX
�D0

kX
�D0

m�X
˛D1

m�X
ˇD1

U
s;t;a;b
�;�;˛;ˇ

dX .x
�
˛ ; x

�
ˇ /
2 6

nX
iD1

nX
jD1

V
s;t;a;b
i;j dX .xi ; xj /

2:

The induction starts by setting x0a D xa for a 2 f1; : : : ; ng.

Also, for every a; b; ˛; ˇ 2 f1; : : : ; ng set U 0;0;a;b
0;0;˛;ˇ

D 0 and V 0;0;a;b
˛;ˇ

D 1f.˛;ˇ/D.a;b/g, thus
satisfying (85) vacuously.

Suppose now that we have defined xsa 2 X for every s 2 f0; : : : ; kg and a 2 f1; : : : ; msg.
Consider the probability measures

8 b 2 f1; : : : ; mkC1g; �kC1;b
def
D

kX
sD0

msX
aD1

�kC1;bs;a ıxsa ;

and define

8 b 2 f1; : : : ; mkC1g; xkC1
b

def
D B

�
�kC1;b

�
:

Suppose that s 2 f0; : : : ; kg, a 2 f1; : : : ; msg and b 2 f1; : : : ; mkC1g. Then by (64) we have

dX .x
s
a; x

kC1
b

/2 C

kX
�D0

m�X
ˇD1

�
kC1;b
�;ˇ

dX .x
kC1
b

; x�ˇ /
2 6

kX
tD0

mtX
cD1

�
kC1;b
t;c dX .x

s
a; x

t
c/
2:

In combination with the inductive Hypothesis (85), this implies that the desired estimate (85)
would also hold true when jfs; tg \ fk C 1gj D 1 once we introduce the following inductive
definitions.

U
kC1;s;b;a
�;�;ˇ;˛

D U
s;kC1;a;b
�;�;˛;ˇ

def
D 1f.�;˛;�/2fkC1g�fbg�f0;:::;kgg�

kC1;b
�;ˇ

C 1ff�;�g�f0;:::;kgg
kX
tD0

mtX
cD1

�
kC1;b
t;c U

s;t;a;c
�;�;˛;ˇ

;

and

V
s;kC1;a;b
i;j

def
D

kX
tD0

mtX
cD1

�
kC1;b
t;c V

s;t;a;c
i;j :

It remains to ensure the validity of (85) when s D t D k C 1. So, fix a; b 2 f1; : : : ; k C 1g
and apply (84) so as to obtain the estimate

dX .x
kC1
a ; xkC1

b
/2 C

kX
�D0

m�X
ˇD1

�
kC1;a
�;ˇ

dX .x
kC1
a ; x�ˇ /

2
C

kX
�D0

m�X
ˇD1

�
kC1;b
�;ˇ

dX .x
kC1
b

; x�ˇ /
2

6
kX
tD0

kX
�D0

mtX
pD1

m�X
qD1

�
kC1;a
t;p �

kC1;b
�;q

dX .x
t
p; x

�
q /
2:
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In combination with the inductive Hypothesis (85), this implies that the desired estimate (85)
would also hold true when s D t D k C 1 once we introduce the following inductive defini-
tions.

U
kC1;kC1;a;b
�;�;˛;ˇ

def
D 1f.�;˛;�/2fkC1g�fa;bg�f0;:::;kgg�

kC1;˛
�;ˇ

C 1ff�;�g�f0;:::;kgg
kX
tD0

kX
�D0

mtX
pD1

m�X
qD1

�
kC1;a
t;p �

kC1;b
�;q

U
t;�;p;q

�;�;˛;ˇ
;

and

V
kC1;kC1;a;b
i;j D

kX
tD0

kX
�D0

mtX
pD1

m�X
qD1

�
kC1;a
t;p �

kC1;b
�;q

V
t;�;p;q
i;j :

This concludes our inductive construction of auxiliary points, which satisfy the inequa-
lity (85). We shall now show how to remove the auxiliary points so as to obtain bona fide
quadratic metric inequalities that involve only points from the subset fx1; : : : ; xng � X .

5.2.2. Deriving quadratic metric inequalities. – Suppose that for every s; t 2 f0; : : : ; kg,
a 2 f0; : : : ; msg and b 2 f0; : : : ; mtg we are given a nonnegative weight �s;t

a;b
2 Œ0;1/. By

multiplying (85) by �s;t
a;b

and summing the resulting inequalities, we obtain the estimate

kX
sD0

kX
tD0

msX
aD1

mtX
bD1

E
s;t
a;b
dX .x

s
a; x

t
b/
2 6

nX
iD1

nX
jD1

Fi;jdX .xi ; xj /
2;(86)

where

E
s;t
a;b

def
D �

s;t
a;b
C

kX
�D0

kX
�D0

m�X
˛D1

m�X
ˇD1

�
�;�
˛;ˇ
U
�;�;˛;ˇ

s;t;a;b
;

and

Fi;j
def
D

kX
sD0

kX
tD0

msX
aD1

mtX
bD1

�
s;t
a;b
V
s;t;a;b
ij :

Denote

Sk
def
D
˚
xsa W s 2 f0; : : : ; kg and a 2 f1; : : : ; msg

	
� X:

Any � 2
S1
`D1 S`

k
will be called below a path in Sk . If � D .�0; : : : ; �`/ for some ` 2 N then

we write `.�/ D `. The points �0; �`.�/ are called the endpoints of the path �. The path � is
called non-repetitive if the points �0; : : : ; �`.�/ are distinct. The finite set of all non-repetitive
paths � in Sk whose endpoints satisfy f�0; �`.�/g � fx1; : : : ; xng will be denoted below by Pk .
Suppose that for every path � 2 Pk we are given c1.�/; : : : ; c`.�/.�/ 2 .0;1/ such that for
every s; t 2 f0; : : : ; kg, a 2 f1; : : : ; msg and b 2 f1; : : : ; mtg we have

X
�2Pk

`.�/X
rD1

cr .�/1f.�r�1;�r /D.xsa;xtb/g D E
s;t
a;b
:
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Then the inequality (86) can be rewritten as follows.

(87)
X
�2Pk

`.�/X
rD1

cr .�/dX .�r�1; �r /
2 6

nX
iD1

nX
jD1

Fi;jdX .xi ; xj /
2:

By the triangle inequality and Cauchy-Schwarz, every � 2 Pk satisfies
(88)

dX .�0; �`.�//
2 6

� `.�/X
rD1

1p
cr .�/

�
p
cr .�/dX .�r�1; �r /

�2
6

� `.�/X
rD1

1

cr .�/

� `.�/X
rD1

cr .�/dX .�r�1; �r /
2:

By combining (87) and (88) we therefore see that

(89)
X
�2Pk

dX .�0; �`.�//
2P`.�/

rD1
1

cr .�/

6
nX
iD1

nX
jD1

Fi;jdX .xi ; xj /
2:

Recall that by the definition of Pk , the endpoints �0; �`.�/ of any path � 2 Pk are in fx1; : : : ; xng.
It therefore follows from (89) that if we define for every i; j 2 f1; : : : ; ng

(90) Gi;j
def
D

X
�2Pk

.�0;�`.�//D.xi ;xj /

1

`.�/X
rD1

1

cr .�/

;

then the following quadratic metric inequality, which generalizes (82), holds true in every
Hadamard space .X; dX /.X

i;j2f1;:::;ng
Gi;j>Fi;j

.Gi;j � Fi;j /dX .xi ; xj /
2 6

X
i;j2f1;:::;ng
Fi;j>Gi;j

.Fi;j �Gi;j /dX .xi ; xj /
2:

Q 34. – Is it true that for every D 2 Œ1;1/ there exists some C.D/ 2 Œ1;1/
such that a metric space .X; dX / embeds with distortion at most C.D/ into some Hadamard
space providedX

i;j2f1;:::;ng
Gi;j>Fi;j

.Gi;j � Fi;j /dX .xi ; xj /
2 6 D2

X
i;j2f1;:::;ng
Fi;j>Gi;j

.Fi;j �Gi;j /dX .xi ; xj /
2;

for every n 2 N, every x1; : : : ; xn 2 X and every fFi;j ; Gi;j gi;j2f1;:::;ng as in (90)? Here we
are considering all those fFi;j ; Gi;j gi;j2f1;:::;ng that are obtained from the construction that
is described in Section 5.2.1 and Section 5.2.2, i.e., ranging over all the possible choices of
weights �kC1;bs;a ; �

s;t
a;b
; cr .�/ that were introduced in the course of this construction.

We conjecture that the answer to Question 34 is positive. It may even be the case that one
could take C.D/ D D in Question 34. A negative answer here would be of great interest,
since it would require finding a family of quadratic metric inequalities that does not follow
(even up to a constant factor) from the above hierarchy of inequalities.
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6. Remarks on Question 14

Focusing for concreteness on the case p D 2 of Question 14, recall that we are asking
whether every n-point metric space .X; dX / satisfies

(91) cP2.R3/.X/ .
p

logn:

The conclusion of Theorem 1, i.e., the fact that the 1=2-snowflake of every finite metric
space embeds with O.1/ distortion into P2.R3/, does not on its own imply (91). Indeed,
let
p
`1 denote the 1=2-snowflake of `1. Then the 1=2-snowflake of every finite metric

space embeds isometrically into
p
`1. However, it is standard to check that if for n 2 N

we let Pn denote the set f1; : : : ; ng � R, equipped with the metric inherited from R, then
cp`1.Pn/ &

p
n. Thus, despite the fact that

p
`1 is 1=2-snowflake universal, the distortion

of n-point metric spaces in
p
`1 can grow much faster than the rate of

p
logn that we desire

in (91). Nevertheless,
p
`1 is not an especially convincing example in our context, since

it does not contain rectifiable curves (which is essentially the reason for the lower bound
cp`1.Pn/ &

p
n), while P2.R3/ is an Alexandrov space of nonnegative curvature.

Note that cP2.R3/.X/ . logn for every n-point metric space .X; dX /, so P2.R3/ certainly
does not exhibit the bad behavior that we described above for embeddings into

p
`1.

This logarithmic upper bound follows from the fact that cP2.Œ0;1�/.X/ . logn, so in fact
cPp.Y /.X/ . logn for every metric space .Y; dY / that contains a geodesic segment and
every n-point metric space .X; dX /. The bound cP2.Œ0;1�/.X/ . logn is a consequence of
Bourgain’s embedding theorem [12] combined with the easy fact that every finite subset of `2
embeds with distortion 1 into P2.Œ0; 1�/. To check the latter assertion, take any X � `2 of
cardinality n. We may assume without loss of generality that X � Rn. Denoting

M
def
D 1Cmax

x2X
max

j2f1;:::;n�1g
jxjC1 � xj j;

define f W X !P2.R/ by f .x/
def
D

Pn
jD1 ıxjCMj : The choice of M ensures that the

sequence fxj C Mj gnjD1 is strictly increasing, so for x; y 2 X the optimal transportation
between f .x/ and f .y/ assigns the point mass at xj C Mj to the point mass at yj CMj
for every j 2 f1; : : : ; ng. This shows that W2.f .x/; f .y// D kx � yk2. Since all the
measures ff .x/gx2X are supported on a bounded interval, by rescaling we obtain a distor-
tion 1 embedding of X into P2.Œ0; 1�/.

An example that is more interesting in our context than
p
`1, though still some-

what artificial, is the space .`2 ˚
p
`1/2. This space is 1=2-snowflake universal (since it

contains an isometric copy of
p
`1) and also every n-point metric space .X; dX / satis-

fies c.`2˚
p
`1/2

.X/ . logn (by Bourgain’s theorem [12], since .`2 ˚
p
`1/2 contains an

isometric copy of `2). However, we shall prove below the following lemma which shows that
the conclusion of Question 14 fails for .`2 ˚

p
`1/2.

L 35. – For arbitrarily large n 2 N there exists an n-point metric space .Xn; dXn/
that satisfies

c.`2˚
p
`1/2

.Xn/ & logn:
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Of course, .`2 ˚
p
`1/2 is still more pathological than P2.R3/ (in particular, not every

pair of points in .`2 ˚
p
`1/2 can be joined by a rectifiable curve), and we lowered here the

asymptotic growth rate of the largest possible distortion of an n-point metric space from
the O.

p
n/ of

p
`1 to the O.logn/ of .`2 ˚

p
`1/2 by artificially inserting a copy of `2.

Nevertheless, the proof of Lemma 35 below illuminates the fact that in order to prove that
Question 14 has a positive answer, one would need to use properties of the Alexandrov
space P2.R3/ that go beyond those that we isolated so far, and in particular it provides a
concrete sequence of finite metric spaces for which the conclusion of Question 14 is at present
unknown; see Question 36 below.

Before proving Lemma 35, we set some notation.

For a finite connected graph G D .VG ; EG/, the shortest-path metric that G induces
on VG is denoted by dG . For k 2 N, denote the k-fold subdivision of G by †k.G/ D
.V†k.G/; E†k.G//, i.e., †k.G/ is obtained from G by replacing each edge e 2 EG by a path
consisting of k edges joining the endpoints of e (the interiors of these paths are disjoint for
distinct e; e0 2 EG). Thus jV†k.G/j D jVG j C .k � 1/jEG j. Note that the metric induced
on VG � V†k.G/ by the shortest-path metric d†k.G/ of†k.G/ is a rescaling of dG by a factor
of k, i.e.,

(92) 8 x; y 2 VG � V†k.G/; d†k.G/.x; y/ D kdG.x; y/:

Suppose thatG is d -regular for some d 2 N. The normalized adjacency matrix ofG, i.e., the
VG � VG matrix whose entry at u; v 2 VG equals 1=d if fu; vg 2 EG and equals 0 otherwise,
is denoted AG . The largest eigenvalue of the symmetric stochastic matrix AG equals 1, and
the second largest eigenvalue of AG is denoted �2.G/.

Proof of Lemma 35. – Fix d; n 2 N. We shall show that if G D .VG ; EG/ is an n-vertex
d -regular graph then

(93) c.`2˚
p
`1/2

.†k.G// & min

(s
k logn
log d

;
p
1 � �2.G/ �

logn
log d

)
:

In particular, for, say, d D 3 and �2.G/ 6 99=100, if k � logn then

c.`2˚
p
`1/2

.†k.G// � logn � log jV†k.G/j:

This implies the validity of Lemma 35 because arbitrarily large graphs with the above require-
ments are well-known to exist (see e.g., [35]).

To prove (93), take f W V†k.G/ ! .`2˚
p
`1/2 and suppose that there exist s;D 2 .0;1/

such that for every x; y 2 V†k.G/ we have

sd†k.G/.x; y/ 6 d.`2˚
p
`1/2

.f .x/; f .y// 6 Dsd†k.G/.x; y/:

Our goal is to bound D from below. Writing f .x/ D .g.x/; h.x// for every x 2 V†k.G/, our
assumption is that for every distinct x; y 2 V†k.G/,

(94) 1 6
kg.x/ � g.y/k22 C kh.x/ � h.y/k1

s2d†k.G/.x; y/
2

6 D2:
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For x; y 2 V†k.G/ with fx; yg 2 E†k.G/ by (94) we have kh.x/ � h.y/k1 6 s2D2 D

s2D2d†k.G/.x; y/. Thus h W V†k.G/ ! `1 is s2D2-Lipschitz, and therefore

1

n2

X
x;y2VG

kh.x/ � h.y/k1 6
s2D2

n2

X
x;y2VG

d†k.G/.x; y/

(92)
D

ks2D2

n2

X
x;y2VG

dG.x; y/

6 ks2D2

�
1

n2

X
x;y2VG

dG.x; y/
2

� 1
2

:

(95)

Consequently, by (94) once more we have

1

n2

X
x;y2VG

kg.x/ � g.y/k22
(94)
>

s2

n2

X
x;y2VG

d†k.G/.x; y/
2
�
1

n2

X
x;y2VG

kh.x/ � h.y/k1

(95)
>

k2s2

n2

X
x;y2VG

dG.x; y/
2
� ks2D2

�
1

n2

X
x;y2VG

dG.x; y/
2

� 1
2

:(96)

At the same time, by the equivalent formulation of spectral gap in terms of a Poincaré
inequality (see e.g., [29, Section 9.1] or [53, 61]),

1

n2

X
x;y2VG

kg.x/ � g.y/k22 6
1

1 � �2.G/
�
2

jEG j

X
x;y2VG
fx;yg2EG

kg.x/ � g.y/k22

(94)
6

s2D2

1 � �2.G/
�
2

jEG j

X
x;y2VG
fx;yg2EG

d†k.G/.x; y/
2

(92)
D

2s2k2D2

1 � �2.G/
:

(97)

By contrasting (96) with (97) we deduce that

D & min

8<:
�
1 � �2.G/

n2

X
x;y2VG

dG.x; y/
2

� 1
2

;

�
k2

n2

X
x;y2VG

dG.x; y/
2

� 1
4

9=; :
This lower bound on D implies the desired estimate (93) since by a standard (and simple)
counting argument (see e.g., [53, page 193]) the fact that G has n vertices and is d -regular
implies that �

1

n2

X
x;y2VG

dG.x; y/
2

� 1
2

&
logn
log d

:

Q 36. – Suppose that G is an n-vertex 3-regular graph with �2.G/ 6 99=100.
What is the asymptotic growth rate of

cP2.R3/
�
†dlogne.G/

�
‹

At present, the best known upper bound on this quantity is O.logn/, while Question 14
predicts that it isO.

p
logn/. Obtaining any o.logn/ upper bound would be interesting here.
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