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VARIATIONS ALONG THE FUCHSIAN LOCUS

 F LABOURIE  R WENTWORTH

A. – The main result is an explicit expression for the Pressure Metric on the Hitchin
component of surface group representations into PSL.n;R/ along the Fuchsian locus. The expression
is in terms of a parametrization of the tangent space by holomorphic differentials, and it gives a
precise relationship with the Petersson pairing. Along the way, variational formulas are established
that generalize results from classical Teichmüller theory, such as Gardiner’s formula, the relationship
between length functions and Fenchel-Nielsen deformations, and variations of cross ratios.

R. – Notre résultat principal est une expression explicite de la métrique de pression sur
la composante de Hitchin de l’espace des représentations du groupe fondamental d’une surface
dans PSL.n;R/ le long du lieu fuchsien. Cette formule utilise une paramétrisation de l’espace tangent
à la composante de Hitchin en terme de différentielles holomorphes, et elle s’exprime explicitement
en fonction du produit de Petersson. Au passage, nous établissons des relations qui généralisent les
résultats classiques de la théorie de Teichmüller, tels que la formule de Gardiner, le rapport entre
fonctions de longueur et déformations de Fenchel-Nielsen et les variations des birapports.

1. Introduction

Classical Teichmüller theory provides links between complex analytic and dynamical
quantities defined on Riemann surfaces with conformal hyperbolic metrics. More precisely,
properties of the geodesic flow of a hyperbolic structure are related to holomorphic objects
on the underlying Riemann surface. The Selberg trace formula is an instance of this corre-
spondence. The goal of this paper is to extend this relationship in the context of higher rank
Teichmüller theory. Specifically, in the case of Hitchin representations we find analogs to the
fundamental results of Wolpert—as well as those of Hejhal and Gardiner—that compute

F.L.’s research leading to these results has received funding from the European Research Council under the
European Community’s seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no FP7-246918.
R.W. was supported in part by NSF grant DMS-1406513. The authors also acknowledge support from NSF grants
DMS-1107452, -1107263, -1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR
Network).
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488 F. LABOURIE AND R. WENTWORTH

variations of dynamical quantities for deformations of the complex structure parametrized
by holomorphic differentials. In particular, we refer here to Gardiner’s formula [15] which
computes the variation of the length of a geodesic in terms of Hejhal’s periods of quadratic
differentials; the relation between the Thurston and Weil-Petersson metrics [43]; the compu-
tation of the variation of the cross ratio on the boundary at infinity of surface groups and
the study of Fenchel-Nielsen twists [42].

Let us be more concrete. Let X be a closed Riemann surface of genus at least two, and †
the underlying oriented differentiable manifold. Let ıX be the monodromy of the unique
conformal hyperbolic metric on X . Let �n be the irreducible representation of PSL.2;R/
in PSL.n;R/. The Fuchsian point is the representation

ıX;n D �n ı ıX W �1.†/! PSL.n;R/:

A Hitchin representation is a homomorphism ı W �1.†/ ! PSL.n;R/ that can be contin-
uously deformed to the Fuchsian point. We call the set H .†; n/ of conjugacy classes of
Hitchin representations the Hitchin component. The Fuchsian locus is the subset of H .†; n/

consisting of Fuchsian points obtained by varying the complex structure on X . By an
abuse of terminology, we shall refer to these Fuchsian points as Fuchsian representations
�1.†/ ! PSL.n;R/. Furthermore, throughout this paper we can and will assume a lift of
Hitchin representations from PSL.n;R/ to SL.n;R/.

Hitchin [22] proves that H .†; n/ can be globally parametrized by the Hitchin base:
Q.X; n/ D

Ln
kD2H

0.X;Kk/, where K is the canonical bundle of X . Thus, the tangent
space of the Fuchsian point of the Hitchin component can also be described as Q.X; n/.
This infinitesimal parametrization, which will be crucial for our calculations, depends on
some choices, and it is natural to normalize so that the restriction to the Fuchsian locus
corresponds to classical deformations in Teichmüller space. In fact, in this paper we shall
use two natural families of deformations (that is vectors in TıX;n H .†; n/ associated to a
point q 2 Q.X; n/) which are related by a constant depending only on n and k:

1. The standard deformation  0.q/, for which the result of the computations is easier to
state.

2. The normalized deformation  .q/, for which the Atiyah-Bott-Goldman symplectic
structure of the Hitchin components coincides along the Fuchsian locus with the
symplectic structure inherited from the L2-metric on the Hitchin base (see Corol-
lary 5.1.2).

Recall that the moduli space of representations �1.†/ ! SL.n;C/ is a hyperkähler
variety [21]. This structure is reflected in three algebraically distinct descriptions: the
Dolbeault (Higgs bundle) moduli space, the de Rham moduli space of flat connections, and
the Betti moduli space of representations. We exhibit isomorphisms of the tangent space to
the Fuchsian point in each of these manifestations as Q.X; n/ ˚ Q.X; n/. We furthermore
show that the different points of view actually give rise to the same parametrization of the
tangent space at the Fuchsian point. A key point is that the first variation of the harmonic
metric for certain variations of Higgs bundles vanishes (see Theorem 3.5.1). This result
may be viewed as a generalization of Ahlfors’ lemma on variations of the hyperbolic metric
under quasiconformal deformations by harmonic Beltrami differentials [1]. All this occupies
Section 3.
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VARIATIONS ALONG THE FUCHSIAN LOCUS 489

The discussion above is the complex analytic side of the Hitchin component, and we
now wish to relate it to the dynamical side. In [26], the first author shows that if ı is a
Hitchin representation and 
 a nontrivial element in �1.†/, then ı.
/ has n-distinct positive
eigenvalues. The underlying idea is to associate to a Hitchin representation a geodesic flow
(see also [19] and [8]), thus giving a dynamical characterization of the Hitchin component.

This leads to the main motivation for this paper. In [8], Bridgeman, Canary, Sambarino
and the first author constructed a pressure metric on the Hitchin component whose restric-
tion to the Fuchsian locus is the Weil-Petersson metric. In Section 6, we shall prove the
following

T 1.0.1. – Let ı be a Fuchsian representation into SL.n;R/ associated to a
Riemann surface X with a conformal hyperbolic metric. Let q be a holomorphic k-differential
on X , 2 6 k 6 n, and let  0.q/ be the associated standard deformation. Then the pressure
metric is proportional to the L2-metric:

Pı
�
 0.q/;  0.q/

�
D

1

2k�1� j�.X/j

�
.k � 1/Š.n � 1/Š

.n � k/Š

�2 Z
X

kqk2d�:

Moreover, two deformations associated to holomorphic differentials of different degrees are
orthogonal with respect to the pressure metric.

The first ingredient in the proof of this theorem is an extension, Theorem 4.0.1, of
Gardiner’s formula to Hitchin representations. This computes the first variation of the
eigenvalues of ı.
/ as a function of ı under a standard deformation. The result, proven in
Section 4, is a generalization of the classical formula for holomorphic quadratic differen-
tials [15]. We reproduce the statement here for the highest eigenvalue.

T 1.0.2 (Gardiner formula). – For Hitchin representations, the first variation at
the Fuchsian locus of the largest eigenvalue �
 of the holonomy along a simple closed geodesic 

of hyperbolic length `
 along a standard Hitchin deformation given by q 2 H 0.X;Kk/, is

d log�
 . 0.q// D
.�1/k.n � 1/Š

2k�2.n � k/Š

Z `


0

< .q.
; : : : ; 
// dt:

The complete result, Theorem 4.0.1, also gives the variation of the other eigenvalues, and
Corollary 4.0.3 gives the variation of the trace. The proof of Gardiner’s original formula
makes use of the theory of quasiconformal maps. For Hitchin representations, no such tech-
nique is available, and our proof is purely gauge theoretic. Finally, by a formula in Hejhal [20]
(attributed to Petersson) the right hand side of the equation above can be interpreted as the
L2-pairing of q with the relative Poincaré series ‚.k/
 associated to 
 (cf. Section 2.1.3 and
Proposition 2.1.1).

The second component in the proof of Theorem 1.0.1 is a relationship, proved in Section 6,
between the variance and the L2-metrics for holomorphic differentials. The correspondence
with the variance metric in the case of quadratic differentials has been discussed using a
different framework—but belonging to the same circle of ideas—in McMullen [29]. Observe
that the computation of the actual coefficients in Theorem 1.0.1 requires some technical and
careful computations. However, the fact that the two metrics are proportional is a relatively
easier result that is obtained earlier in the proof once the main background has been settled.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



490 F. LABOURIE AND R. WENTWORTH

We conclude with a remark on the family of pressure metrics that one can define on the
Hitchin component.

Let us pause to note an interesting consequence of the dependence on the degree of the
differential in Theorem 1.0.1. We shall see later on that the Atiyah-Bott-Goldman symplectic
form !n on H .†; n/ is also related to the L2-pairing. Given the pressure metric P and the
symplectic form !, one obtains the pressure endomorphism A so that P.u; v/ D !n.A�u; v/.
Observe that A is analytic on the Hitchin component. Our result is the following

C 1.0.3. – The eigenspaces ofA2 along the Fuchsian locus are, after the identifi-
cation of the tangent space with the Hitchin base, precisely the subbundlesH 0.X;Kk/ consisting
of holomorphic differentials of degree k. Moreover, the induced complex structure (by A) on
these eigenspaces coincides with the complex structure on H 0.X;Kk/.

In other words, two objects from the dynamical side, the pressure metric and symplectic
form, detect the decomposition along the Fuchsian locus of the tangent space in sum of
complex bundles of holomorphic differentials, a decomposition coming from the analytic
side. It therefore seems interesting to study the decomposition into eigenspaces of A2 every-
where on the Hitchin component, and not only along the Fuchsian locus. Thus, the fact that
the pressure metric and the symplectic form are certainly not related in a Kähler way—which
may look disappointing at first sight—leads to an interesting and new structure on Hitchin
components.

We further investigate the symplectic geometry of the Hitchin component in Section 5.1.
To a simple closed geodesic 
 and an element h of the Cartan subalgebra of PSL.n;R/ we
associate a higher Fenchel-Nielsen twist �
 .h/, which is a vector field on H .†; n/. In Corol-
lary 5.2.2, we show that these twist deformations are represented by linear combinations
of the relative Poincaré series of 
 (of different degrees). The Hamiltonian vector fields of
the eigenvalues of ı.
/, viewed as functions of the representation ı, are expressed as linear
combinations of the twist deformations about 
 . We also prove the following generalization
of [42, Theorem 2.4].

T 1.0.4 (Reciprocity of the twist deformation). – For all integersk,p, 16p6 n,
2 6 k 6 n, and any simple closed geodesics ˛, ˇ, the following holds at the Fuchsian locus:

d log�.p/˛
�
 0.i �‚

.k/

ˇ
/
�
D �d log�.p/

ˇ

�
 0.i �‚.k/˛ /

�
;

where �.p/
 .ı/ is the p-th-largest eigenvalue of ı.
/.

In Section 7, we compute the variation for the cross ratio under Hitchin deformations,
generalizing [42, Lemma 1.1.]. We give two formulations of this result: Theorem 7.2.1 using
a generalized period that we call a rhombus function, and Theorem 7.0.1 using automorphic
forms. We also comment on the triple ratios for SL.3;R/.

Finally, in Section 8, we provide two applications to large n-asymptotics. First, in
Theorem 8.1.1 we show that (after a further normalization) the pressure metric converges
for large rank to a multiple of the L2-metric. In this situation, it is more natural to consider

the renormalized highest eigenvalue �
 D �
1
n�1

 , and the associated renormalized pressure

4 e SÉRIE – TOME 51 – 2018 – No 2



VARIATIONS ALONG THE FUCHSIAN LOCUS 491

metric. The reason for this choice is so that the highest eigenvalue does not depend on n
along the Fuchsian locus.

We prove the following

T 1.0.5 (Large n-asymptotics). – The large n asymptotics for the renormalized
pressure metric and renormalized deformation  .q/ associated to a holomorphic k-differen-
tial q is given by

P. .q/;  .q// �
.2k � 1/Š

2k�1� 3� j�.X/j

Z
X

kqk2d�:

This theorem provides a link between two large n-asymptotic theories of the Hitchin
component. In [23], Hitchin argues that one can build a Higgs bundle theory for SU.1/,
regarded as the group of symplectic diffeomorphisms of the sphere. The Hitchin base
is
L1
nD2H

0.Kn/, and thus describes a large n-analytic side. On the other hand, in [27]
the first author has shown that there is a Hitchin component H .1;R/ of representations
of �1.†/ in SL.1;R/, where the latter is considered to be (a subgroup) of the group of
Hamiltonian diffeomorphisms of the annulus. In this approach, all Hitchin components
embed in H .1;R/, and all representations in H .1;R/ are associated to geodesic flows
and spectra, thus providing a dynamical side to the story. It is therefore tempting to try to
understand in which way, at least formally, these versions of SL.1/ and SU.1/ have the
same complexification.

The second application is motivated by the question raised at the end of the introduction
of [27], a somewhat simpler version of which was posed to us by Maryam Mirzakhani:
are the geodesic currents arising from Hitchin representations dense in the space of all
geodesic currents? An even simpler test question is the following. Given p conjugacy classes
of pairwise distinct primitive elements 
1; : : : ; 
p in �1.†/, let

ƒ1
E

WD

1[
nD2

˚
.log�
1.ı/; : : : ; log�
p .ı// 2 Rp j ı 2 H .†; n/

	
:

Then what is the closure of ƒ1
E


in .RC/p? We prove in Theorem 8.2.1 that this set has
nonempty interior. This result should be compared with a result of Lawton, Louder and
McReynolds [28] which states that two elements of �1.†/ have different traces for a certain
linear representation.

Acknowledgements. – The authors warmly thank Jørgen Andersen, Marc Burger, Dick
Canary, David Dumas, Maryam Mirzakhani, Andy Sanders, Mike Wolf, Scott Wolpert
and Alex Wright for useful conversations related to the material in this paper. They also
express their appreciation for the hospitality of the Institute for Mathematical Sciences at
the National University of Singapore and the Mathematical Sciences Research Institute in
Berkeley, where much of this work was carried out. Finally, the referee’s careful reading of
the manuscript and helpful suggestions are gratefully acknowledged.
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492 F. LABOURIE AND R. WENTWORTH

2. Preliminaries

In this section we present background material. First, in Section 2.1 we give a review of
holomorphic differentials, introducing periods, relative Poincaré series and the Petersson and
L2-pairings. Section 2.2 is a review of what we shall need from Lie theory. Next, in Section 2.3
we present a summary of Higgs bundles for general complex semisimple Lie groups. Finally,
we give the definition of opers (here only for the case of SL.n;C/) in Section 2.4.

2.1. Holomorphic differentials

2.1.1. The L2-metric. – Let X be a closed Riemann surface of genus > 2. We will always
assume a conformal metric on X is the hyperbolic metric of constant curvature �1. We
denote the area form by d� , and the Hodge operator by �. The metric induces a Hermitian
structure h ; i on K, and hence on Kk . For q1; q2 smooth k-differentials, we define the
L2-metric

hq1; q2iX WD

Z
X

hq1; q2i d�:

In local holomorphic coordinates z D xCiy, and with slight abuse of notation the area form
may be written d� D �.z/dx ^ dy for a locally defined function �.z/. Let h D .hdz; dzi/�1.
Then 2h D � , so that d� D ih.z/dz ^ d Nz. It follows that if qi D qi .z/dzk ,

(1) hq1; q2iX D

Z
X

q1.z/q2.z/h
�k.z/ d�:

Warning. – The definition above differs from the usual Petersson pairing [33]:

hq1; q2iP WD

Z
X

q1.z/q2.z/�
�k.z/ d� D 2�khq1; q2iX :

Let X D �nH2 be the uniformization of X coming from the hyperbolic metric. We will
assume that � has been lifted (once and for all) to a discrete subgroup of SL.2;R/.

2.1.2. Integration along geodesics. – Let � W UX ! X be the unit tangent bundle of X ,
equipped with the Riemannian metric induced from X . Let �t be the geodesic flow and
� the Liouville measure normalized to be a probability measure. In general, if f is a function
on UX , and 
 W Œ0; `
 �! UX a geodesic arc, we shall write

(2)
Z



f ds WD
Z `

0

f .�s.
.0/// ds:

For integers k, a smooth section q of Kk defines a complex valued function Oq W UX ! C
that is homogeneous of degree k with respect to the S1-action on UX . If 
 is a unit speed
geodesic with parameter s in X , we will also use the alternative notationsZ `


0

q.
; : : : ; 
/ ds WD
Z



Oq ds:

In this notation we regard q 2 Kk as a k-C-multilinear form on TX . Then q 2 K
k

is defined
by

q.u1; : : : ; uk/ D q.u1; : : : ; uk/;
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VARIATIONS ALONG THE FUCHSIAN LOCUS 493

so that

(3)
Z `


0

q.
; : : : ; 
/ ds D
Z `


0

q.
; : : : ; 
/ ds:

2.1.3. Relative Poincaré series. – Let q be a holomorphic differential on H2. Let � be a
Fuchsian group; then the following series, when it exists and converges,

‚.q/ D
X
�2�

��.q/;

is called the Poincaré series of q and is � invariant.

For any pair of distinct points u;U 2 @1H2 tH2, let

(4) �u;U .z/ D
. MU � Mu/dz

.z � Mu/.z � MU/
;

where Mu and MU are the endpoints at infinity of the geodesic joining u and U with the obvious
convention. Observe that for any � 2 PSL.2;R/, we have

���u;U D ���1.u/;��1.U /:

Let 
 be a closed geodesic associated to an element (also called 
 ) of�, and u;U the repelling
(resp. attracting) fixed points of 
 in @H2. Observe that 
�‚u;U D ‚u;U . The relative
Poincaré series (of order k) of 
 , is

‚.k/
 WD
X

�2�=h
i

���ku;U :

From the definition, one immediately sees that

‚
.k/


�1
D .�1/k‚.k/
 :(5)

By direct computation (see [20, Eq. (77)]) we find

P 2.1.1. – For any automorphic form q of degree k,Z



Oq ds D rk � hq;‚
.k/

 iX

;(6)

where

rk D
.�1/k2k�2..k � 1/Š/2

.2k � 2/Š�
:(7)

R 2.1.2. – Note that if `
 denotes the length of 
 , then the theta series in [20,
Eq. (56)] isD .2 sinh.`
=2//�k �‚

.k/

 .
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494 F. LABOURIE AND R. WENTWORTH

2.2. Lie theory

2.2.1. Principal sl.2/ subalgebras. – Here we review material from Kostant [24] using
(partly) his convention about the generators. Let G be a complex semisimple Lie group G of
rank l with Lie algebra g. Let .� ; � /g denote the Killing form of g, normalized so that the
squared length of a longest root is 2. Fix generators for sl.2/:

(8) Œa; x� D x; Œa; y� D �y; Œx; y� D �a:

Here we use a different convention for the sign of x from that of Kostant. With this under-
stood, the defining representation is denoted �2 W sl.2/ ' sl.C2/. Notice here that, for the
sake of coherence with [24], we use a (nonalgebraic) convention, which differs from that of
Bourbaki

(9) �2.a/ D

 
1=2 0

0 �1=2

!
; �2.x/ D

 
0 �1=

p
2

0 0

!
; �2.y/ D

 
0 0

1=
p
2 0

!
:

Consider a principal sl.2;C/ embedding �g W sl.2/ ,! g. Then g decomposes into irreducible
representations of the principal sl.2/,

(10) g D

lM
iD1

vi ;

with dimC vi D 2mi C 1. The numbers mi are all distinct and ordered so that

mi < miC1:

They are called the exponents of the group G. The grading by the element a gives the decom-
position

(11) g D

mM̀
mD�m`

gm:

Given a Cartan involution � of g, fixing the principal subalgebra, and such that y D �.x/,
we shall say that a basis fe1; : : : ; elg (resp. ff1; : : : ; flg) of highest (resp. lowest) weight
vectors for the sl.2;C/ action is normalized if

1. fi D �.ei /, and
2. for each k,

�.ek ; fk/g D d.g/;(12)

where d.g/ is the Dynkin index for the principal embedding, which is defined by

d.g/ WD
.�g.a/; �g.a//g

Tr.�2.a/2/
:(13)

Observe that a normalized highest weight vector is uniquely determined up to multiplication
by an element of S1. The justification for the introduction of this normalization will appear
in Section 5.1.

In the case G D SL.n;C/, we can make a more explicit choice of highest weight vectors.
Let �n W sl.2/ ! sl.n/ denote the principal embedding (unique up to conjugation), viewed
as a linear embedding via the defining representation of SL.n;C/. We will use two choices of
highest and lowest weight vectors E0

k
; F 0
k
2 sl.n;C/, for the representation of sl.2/. First,
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let X D �n.x/, Y D �n.y/ D �.X/, where �.M/ D �M � is the standard Cartan involution.
Then define the standard highest and lowest weight vectors

(14) E0k WD
�
�
p
2X
�k
; F 0k WD �.E

0
k/ D �

�p
2Y
�k
:

We now renormalize these highest and lowest weights with respect to the trace to obtain the
normalized vectors:

(15) Ek D �kE
0
k ; Fk D �.Ek/;

where �k is a positive number so thatEk and Fk are normalized in the sense discussed above.
That is,

(16) �2k D �
d.n/

Tr.E0
k
F 0
k
/
;

where the Dynkin index d.n/ of the principal sl.2/ ,! sl.n/ is (cf. [32])

(17) d.n/ D
Tr.�n.a/2/
Tr.�2.a/2/

D

 
nC 1

3

!
:

An explicit calculation of the normalization and the constant �k is given in Corollary A.2 in
the appendix:

(18) �k D
1

kŠ

 
nC 1

3

!1=2
�

 
nC k

2k C 1

!�1=2
:

2.2.2. A useful basis. – We will need the following technical result which is probably well-
known.

L 2.2.1. – Given a choice of highest weight vectors feig`iD1 there is a basis fhj g`jD1
of the centralizer z.X � Y /R, such that .ei ; hj /g D ıij .

We shall call .hi /iD1;:::;` the principal basis of z.X � Y /.

Proof. – Recall the decomposition (10). This is an orthogonal decomposition for the
Killing form. First, observe that since X � Y is conjugate to a multiple of a,

dim z.X � Y / \ vi D dim z.a/ \ vi D 1:

To conclude, we need to prove that the Killing pairing with ei defines a nonzero form
on z.X � Y / \ vi . Recall that vi is generated by ei and its iterated images under ad.X�Y /. In
particular, if w 2 z.X � Y / and .w; ei /g D 0, then for all k, .w; .ad.X � Y //k ei /g D 0 and
thusw D 0. We can therefore find an element hi in vi so that .hi ; ei /g D 1. The result follows.

2.2.3. The involution associated to the real split form. – We briefly recall material from [24],
which is also explained in [22, 3]. The choice of a principal subalgebra with its standard
generators defines a Cartan subalgebra and a (C-antilinear) Cartan involution �. Moreover,
one can define a C-linear involution � characterized by

�.ei / D �ei ; �.Y / D �Y:

Then � and � commute. Furthermore, the real split involution � D � ı � is such that its set
of fixed points is a real split subalgebra g0 of g. The complexification of g0 is g.
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2.3. Higgs bundles

2.3.1. The Hitchin component. – A representation of �1.†/ into the real split form GR
of G is Fuchsian if it is conjugated to a discrete faithful representation taking values in the
principal SL.2;R/. A representation is Hitchin if it can be continuously deformed into a
Fuchsian representation. The Hitchin component is then (a connected component) of the
space whose points are equivalence classes of Hitchin representations up to conjugacy by
an element of GR. We denote the Hitchin component by H .†;GR/.

2.3.2. Higgs bundles and the self duality equations

D 2.3.1. – A G-Higgs bundle is a pair .P;ˆ/, where P is a holomorphic prin-
cipal G-bundle P ! X , GP D P �G g is the associated holomorphic adjoint bundle, and
ˆ 2 H 0.X; GP ˝K/.

Let K � G be a maximal compact subgroup. We will regard a reduction ofP to a principal
K-bundle PK as arising from a smooth family of Cartan involutions on the fibers of GP .
By a slight abuse of notation, we denote such a family by �. A connection on PK induces
a covariant derivative r on the vector bundle GP satisfying r.�/ D 0. Conversely, given �
and a connection onP that is compatible with the holomorphic structure, there is a uniquely
determined connection on PK called the Chern connection. The curvature Fr of such a
connection is a section of �2.X; GPK

/.
With this understood, we introduce Hitchin’s equations

Fr � Œˆ; �.ˆ/� D 0;

r.�/ D 0:
(19)

For a given G-Higgs bundle .P;ˆ/, Eq. (19) may be viewed as equations for �. A solution �
to Eq. (19) will be called a harmonic metric [13, 10, 25]. As a consequence of the Hitchin
equations, the associated connection

D D r Cˆ � �.ˆ/

is flat, and the associated representation of �1.†/ ! G is called the monodromy of the
solution of the self duality equations.

In this paper we will not need the details of the notion of (semi)stability of Higgs bundles,
other than to note the following (cf. [21, 35, 6]).

T 2.3.2 (Hitchin-Kobayashi correspondence). – A stable G-Higgs bundle admits
a harmonic metric, i.e. a solution to (19).

2.3.3. Hitchin sections. – We recall here the construction of the Hitchin section, which
depends on a normalization. First, the Hitchin base is defined as

(20) Q.X; g/ WD

lM
iD1

H 0.X;KmiC1/:

For q D .q1; : : : ; ql / 2 Q.X; g/, we define the normalized Hitchin deformation

�.q/ D

lX
iD1

qi ˝ ei 2 �
1;0.X; G /;(21)
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where feigliD1 are normalized highest weight vectors for the principal sl.2/ ,! g (see Equa-
tion (12)). In the case of SL.n;R/ it is convenient to introduce the standard Hitchin deforma-
tion

�0.q/ D

lX
iD1

qi ˝E
0
i 2 �

1;0.X; G /:(22)

We shall choose our Hitchin section L W Q.X; g/! M Dol.X;G/ to be

(23) L .q1; : : : ; ql / WD . G ; Y C �.q//:

Then by [22] we have

T 2.3.3 (Hitchin section). – For any q, the Higgs bundle L .q/ admits a unique
solution of the self duality Equations (19). If ı.q/ the monodromy of the corresponding solution
modulo conjugacy, then the map q ! ı.q/ is a diffeomorphism from the Hitchin base Q.X; g/
to the Hitchin component H .†;GR/.

2.3.4. The Fuchsian Higgs bundle. – Let us consider the holomorphic vector bundle

G0 D K
�1
˚ O ˚K:

Choosing a spin bundle S on X identifies G0 with the sl.2;C/ bundle of trace free endo-
morphisms of S ˚ S�1. Actually, this identification is independent on the choice of S . The
hyperbolic metric defines a metric on S˚S�1, and hence a Cartan involution on G0. Finally,
the canonical bracket map viewed as a holomorphic section ofK˝K�1 � K˝ G0, defines a
holomorphic section ˆ0 2 �1;0.X; G0/. The hyperbolic metric defines a connection on G0,
and all together r; �;ˆ0 satisfy (19).

2.3.5. The Fuchsian G-Higgs bundle. – Let G be a complex Lie group equipped with a choice
of a principal SL.2;C/ with its canonical generators a;X; Y . We use the grading defined in
Eq. (11) to define a holomorphic bundle G by

(24) G WD

mlM
mD�ml

gm ˝K
m:

Since the complex vector bundle underlying G will later be equipped with another holomor-
phic structure, we will refer to (24) as the split holomorphic structure. Observe that now G0
maps into G by

G0 !
�
g�1 ˝K

�1
�
˚ g0 ˚ .g1 ˝K/ ;

.u; v; w/ 7! .Y ˝ u; a˝ v;W ˝ w0/:

Thus the Higgs field ˆ0 2 �1;0. G0/ defined in the previous paragraph gives rise to a Higgs
field, also denoted by ˆ0 2 �

1;0. G /. By definition, the equivalence class of the Higgs
bundle . G ; ˆ0/ is the Fuchsian point in M Dol.X;G/.

Observe that the family of Cartan involutions on G0 defined in the previous paragraph
extends to a section of Cartan involutions on G (also denoted �). Similarly the hyper-
bolic metric connection extends to a connection. This connection, also denoted r on G , is
compatible with the holomorphic structure and metric: r.�/ D 0. In other words, r is the
unique �-compatible Chern connection on G . Then, altogether the connection .r; ˆ0; �/
solves Hitchin Equations (19).
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In the special case of SL.n;C/, it is useful to consider the vector bundle

(25) E D Symn�1.S ˚ S�/ D

nM
pD1

S2p�n�1;

where S is a spin bundle. Then G will be the (trace free) endomorphism bundle of E .

2.4. Nonslipping connections and opers

In this section, we restrict ourselves to the case G D GL.n;C/ and refer to [4, 5] for
general G (see also: [12], [30], [18] the original reference [14] and the geometric version [34] for
further discussion). Let P ! X be a holomorphic vector bundle. A holomorphic filtration
of P is a family fF pg16p6n of holomorphic subbundles of P such that

– F n D P ,
– F p�1 � F p,
– rank.F p/ D p.

D 2.4.1 (Opers). – A holomorphic connection D on P equipped with a holo-
morphic filtration fF pg16p6n is nonslipping if it satisfies the following conditions

– r F p � F pC1 for all p,
– If p̨ is the projection from F pC1 to F pC1=Fp, then the map

.X; u/! p̨.DX .u//;

considered as a linear map from F p=F p�1 D S
nC1�2p ! K ˝ F pC1=F p D S

nC1�2p, is
the identity.

A nonslipping connection is also called a GL.n;C/-oper.

2.4.1. The Veronese oper and the nonsplit holomorphic structure. – Let S be a spin bundle on
the Riemann surfaceX , so that S2 D K. Let E op WD J

n�1.S1�n/ be the holomorphic rank n
bundle of .n � 1/-jets of holomorphic sections of S1�n. Let F p be the vector subbundle
of G op defined by

F p WD fj
n�1� j j n�p�1� D 0g:

The family fF pg16p6n is a holomorphic filtration of G op: we have F n D E op, F p�1 � F p

and rank.F p/ D p. Observe furthermore that

F p=F p�1 D K
n�p
˝ S1�n D SnC1�2p:

In particular, the graded bundle associated to the filtration is given by E in (25). We let E op

be the same underlying complex vector bundle, but with the holomorphic structure induced
by @D . We will call this the oper holomorphic structure. The Veronese oper or Fuchsian oper
is E op equipped with the above filtration and the Fuchsian holomorphic connection D.
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3. Moduli spaces and the tangent space at the Fuchsian point

By construction, every Riemann surface defines a Hitchin parametrization of the Hitchin
component by the Hitchin base. In particular, the tangent space at the Fuchsian point (the
image of zero under this parametrization) is identified with the Hitchin base.

However, working directly with this description of the tangent space at the Fuchsian point
might not be very handy since, at first sight, it involves solving an elliptic PDE. We rather
describe another approach which will be more helpful in the sequel: roughly speaking we
will describe the tangent space of Hitchin component at the Fuchsian point as the real part
of an oper deformation.

Let us summarize here the construction in the following

P 3.0.1. – Let q 2 Q.X; g/ be an element of the Hitchin base. Let � be the
real split involution,D the flat connection at the G-Fuchsian point, and .q/ D �.q/C�.�.q//
in �1.†; g/. Then,

dD�.q/ D 0; dD .q/ D 0:

Furthermore, passing to cohomology, the map  realizes an isomorphism  W Q.X; g/ ���!

H 1
D.g/, which coincides with the isomorphism coming from the Hitchin parametrization.

In this proposition, we refer to the renormalized Hitchin section, but the same statement
clearly holds for the standard Hitchin section.

By the previous proposition �.q/ can be considered as an element ofH 1
dR
.†; G /. It is the

tangent vector to a one parameter family of flat connections:Dt D DC t�.q/, which we will
call an oper deformation.

In the course of proving Proposition 3.0.1, we will actually describe and relate the Fuch-
sian points in various moduli spaces, parametrize their tangent spaces and spend some time
describing intermediate results of independent interest.

3.1. Moduli spaces

We define the following moduli spaces (see [37, 38]):

1. The Dolbeault moduli space M Dol.X;G/ of S -equivalence classes of semistable
G-Higgs bundles on X ,

2. The de Rham moduli space M dR.†;G/ of gauge equivalence classes of reductive flat
G-connections,

3. The Betti moduli space MB.†;G/ of conjugacy classes of completely reducible repre-
sentations �1.†/! G.

There are homeomorphisms, which are diffeomorphisms in the neighborhood of the Fuch-
sian point

(26) M Dol.X;G/
HK

����! M dR.†;G/
RH

����! MB.†;G/

where HK (resp. RH ) is the Hitchin-Kobayashi (resp. Riemann-Hilbert) correspondence.
We also introduce two distinguished submanifolds of the moduli space:

4. The Hitchin component H .†;GR/ of conjugacy classes of Hitchin representations into
a split real form of G;

5. The oper moduli space Op.X;G/ of gauge equivalence classes of G-opers.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



500 F. LABOURIE AND R. WENTWORTH

This section focuses on the common (smooth) Fuchsian point in the moduli spaces that we
have encountered before: the Fuchsian G-Higgs bundle, the Fuchsian or Veronese oper etc.
The Fuchsian point is a point of transverse intersection of H .†;GR/ and Op.X;G/. The
outcome will be to describe this tangent space in its various guises using the Hitchin base
and the Hitchin section.

More precisely we have several goals in this section.

– In Propositions 3.2.1, 3.3.1 and 3.4.1, we describe, using Hitchin deformations,
the tangent space at the Fuchsian point for the three moduli spaces M Dol.X;G/,
M dR.†;G/, and MB.†;G/. The description is in terms of isomorphisms with
Q.X; g/˚Q.X; g/, whereQ.X; g/ is the Hitchin base (20). The corresponding tangent
vectors are called Dolbeault, Hodge and Betti deformations, respectively.

– Then in Corollary 3.5.2, we show that all these descriptions coincide. In other words,
the isomorphisms with the space of holomorphic differentials commute with the
Riemann-Hilbert and Hitchin-Kobayashi correspondences. This follows from the
vanishing of the first variation of the harmonic metric for Dolbeault deformations.

– Finally, we use this (now unambiguous) description to achieve our main goal:
describing the tangent space of the Fuchsian point in the Hitchin component as
the Hitchin base in Proposition 3.6.1. In particular, we relate this tangent space to the
handy oper deformations.

We remark here that this discussion extends the various isomorphic descriptions of the
cotangent space of Teichmüller space as holomorphic quadratic differentials [42], as well as
the global parametrization via harmonic maps due to Wolf [41]. We also point out the thesis
of Dalakov [11], which also studies the germ of the moduli space at the Fuchsian point.

3.2. Dolbeault deformations for Higgs bundles

Let us first consider the Dolbeault moduli space M Dol.X;G/. The first order deforma-
tions of the Fuchsian point can be described as follows.

The tangent space T. G ;ˆ/ M Dol.X;G/ is given by the first cohomology of a deforma-
tion complex CDol. G ; ˆ/. In the presence of the solution .r; �/ of Hitchin self duality
equation, we may take harmonic representatives for H 1.CDol. G ; ˆ//—and denoting the
corresponding vector space by H1

.CDol. G ; ˆ//. Then (cf. [36] and [31, Sec. 7]),

H1
.CDol. G ; ˆ// D

�
.'; ˇ/ 2 �1;0.X; G /˚�0;1.X; G / W

@r' C Œˆ; ˇ� D 0; @rˇ � Œ�.ˆ/; '� D 0

�
:

Here, we let r D r1;0Cr0;1 be the decomposition of the connection into type, and we have
also introduced the notation: @r WD r1;0, @r WD r0;1.

In the expression of the deformation complex above, ˇ is responsible for the infinitesimal
change in the holomorphic structure of G , whereas ' is the change in the Higgs field ˆ. In
general, the condition of holomorphicity of the Higgs field relates these two variations, but
at the Fuchsian point they decouple, and we have the following simple description (see [40,
Example 2.14] for the case G D SL.n;C/). Let us denote for b 2 Q.X; g/,
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P 3.2.1 (Dolbeault infinitesimal parametrization). – At the Fuchsian point,
let

TDol W Q.X; g/˚Q.X; g/ �! H 1.CDol. G ; ˆ// W .q; b/ 7! .�.q/; ˇ.b//

where, � being the Cartan involution,

(27) ˇ.b/ WD �.�.b//:

Then TDol defines a complex linear isomorphism.

Proof. – Notice that for .'; ˇ/ D .�.q/; ˇ.b// as above, ' is holomorphic and ˇ is
harmonic with respect to @r . Moreover, Œˆ; ˇ.b/� D ŒY; ˇ.b/� D 0, and Œ�.ˆ/; '.q/� D
�ŒX; '.q/� D 0. Hence, .'.q/; ˇ.b// 2 H1

.CDol. G ; ˆ//. This gives an inclusion Q.X; g/˚
Q.X; g/ ,! H1

.CDol. G ; ˆ//, and now the result follows for dimensional reasons.

R 3.2.2. – We could actually use Serre duality, the hyperbolic metric on X and
the Dolbeault isomorphism to identify Q.X; g/ with

Ll
iD1 H0;1

.X;K�mi /, where the script
indicates harmonic forms.

3.3. Hodge parametrization in the de Rham picture

Recall that M dR.†;G/ is the moduli space of reductive flat G-connections. By Corlette’s
theorem [10, 13, 25], for any reductive flat connection D and conformal structure X on †,
there exists a unique harmonic metric �. This completes the Hitchin-Kobayashi correspon-
dence. Fixing a metric �, we can take harmonic representatives for the first cohomology of
deformation complex at a flat connection D, and write:

(28) TD M dR.†;G/ ' H1
.CdR.D// D

˚
B 2 �1.X; G / W DB D D�B D 0

	
;

where D� is the formal adjoint of D for the metric

A;B 7!

Z
†

.A; �.B ı J //g;

so that D� D �.D ı J /. Here, J is the Hodge star operator on 1-forms defined by the
conformal structure on †. Then at the Fuchsian point we have the following identification

P 3.3.1 (Hodge infinitesimal parametrization). – At the Fuchsian point ŒD�,
the map

(29) TdR W Q.X; g/˚Q.X; g/ �! H1
.CdR.D// W .q; b/ 7! �.q/��.�.q//Cˇ.b/C�.ˇ.b//

defines a real linear isomorphism.

Proof. – Let us decompose:D D D0CD00, whereD0 D @r � �.ˆ/,D00 D @r Cˆ. Then
D� D i � .D00 �D0/. Hence, harmonicity of

B D �.q/ � �.�.q//C ˇ.b/C �.ˇ.b//

is equivalent to: D00B D D0B D 0. Breaking into type, the first of these equations is

D00B D @rB C Œˆ;B�

D @r.�.q/C �.ˇ.b///C Œˆ;��.�.q//C ˇ.b/�

D @r�.q/C �.@rˇ.b// � �Œ�.ˆ/; �.q//�C Œˆ; ˇ.b/�
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D @r�.q/C �.@rˇ.b// � �ŒX; �.q//�C �ŒY; ˇ.b/�(30)

D 0;

since the first two terms on the right of Eq. (30) vanish because the qk (resp. bk) are
holomorphic (resp. harmonic), and the last two terms vanish because the ek (resp. fk) are
highest (resp. lowest) weight vectors, and �.Y / D X . The second equation follows similarly.
Note that we have used the fact that � is parallel with respect to r. The fact that the map is
an isomorphism follows from dimensional reasons.

3.4. Oper parametrization in the Betti picture

Let V be the local system determined by the holomorphic connection D on G op. By
Weil [39], the Zariski tangent space TD MB.†;G/ is given by H 1.V/.

Now there is an exact sequence of sheaves of C-modules, where C is the locally constant
sheaf

0 �! V �! G op
D
�! G op ˝K �! 0:

By Serre duality and the fact that�ıD D Dı�, we see thatH 1. G /! H 1. G˝K/ is surjective
if and only if H 0. G /! H 0. G ˝K/ is injective. The latter holds since D is irreducible, and
hence H 0.V/ D f0g. This gives an exact sequence in cohomology:
(31)
0 �! H 0. G op/ �! H 0. G op ˝K/ �! H 1.V/ �! H 1. G op/ �! H 1. G op ˝K/ �! 0:

The full tangent space to MB.†;G/ at the Veronese oper will be described by the next
lemma.

L 3.4.1. – We have the following

1. The inclusion: Q.X; g/ ,! H 0. G op ˝K/ W q 7! �.q/ induces an isomorphism with the
cokernel of the map H 0. G op/! H 0. G op ˝K/.

2. The inclusion: Q.X; g/ ,! H 1. G op/ W b 7! �.�. Nb// induces an isomorphism with the
kernel of H 1. G op/! H 1. G op ˝K/.

Proof. – As in the proof of Proposition 3.3.1, Q.X; g/ � kerD�, and hence Q.X; g/ is
orthogonal to the image of D. Now by the Riemann-Roch formula,

dimCH
0. G op ˝K/ � dimCH

0. G op/ D dimCQ.X; g/:

This implies the first statement, and the second statement is proven similarly.

By the lemma, the exact sequence (31) becomes a short exact sequence

0 �! Q.X; g/ �! H 1.V/ �! Q.X; g/ �! 0:

This in turn splits as follows.

P 3.4.2 (Betti infinitesimal parametrization). – At the Veronese oper, the
mapping

TB W Q.X I g/˚Q.X; g/ �! H 1.V/ W .q; b/ 7! �.q/C �.�.q//C �.b/ � �.�.b//

defines a real linear isomorphism.
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3.5. Identification of the different infinitesimal parametrizations

Our main result here is Corollary 3.5.2, which states that the three descriptions of the
tangent space to the moduli space at the Fuchsian point given in the previous section are
compatible with the Hitchin-Kobayashi and Riemann-Hilbert correspondences (26). This
relies on the following theorem, which may be regarded as a generalization of the classic
result of Ahlfors [1, Lemma 2].

3.5.1. Variation of the harmonic metric. – In this section we prove

T 3.5.1. – The first variation of the harmonic metric at the Fuchsian point vanishes
for the Dolbeault deformations in Proposition 3.2.1.

Proof. – Fix .q; b/ 2 Q.X; g/ ˚ Q.X; g/. Let
�
� denote the first variation of the Cartan

involution for the Dolbeault deformation .�.q/; ˇ.b//. Then �
�
� is a family of derivations,

and since G is semisimple there is a smooth sectionZ of G such that �
�
� D adZ . Then for any

other one parameter family of sections U of G ,

(32)
�

�̆.U / D �.
�

U/C Œ�.Z/; �.U /�:

For convenience, set
�

k D ��.Z/. To begin, we claim that the first variation of the connection
satisfies:

(33) .
�

r/1;0 D @r
�

k C �.ˇ.b//:

Indeed, since r is the Chern connection for �, for any fixed U 2 �. G / independent of the
variational parameter, r.�.U // D �.rU/. Hence differentiating, using Eq. (32), we have

Œ
�

r; �.U /�CrŒ�.Z/; �.U /� D Œ�.Z/; �.rU/�C �Œ
�

r; U �:

Thus

Œ
�

r; �.U /� � Œr.
�

k/; �.U /� � Œ
�

k;r.�.U //� D �Œ
�

k; �.rU/�C Œ�.
�

r/; �.U /�;

Œ
�

r � r.
�

k/; �.U /� D Œ�.
�

r/; �.U /�;

�

r D r.
�

k/C �.
�

r/(34)

since U was arbitrary. Now by definition, .
�

r/0;1 D ˇ.b/, so (33) follows by taking
the .1; 0/-part of (34). Notice that from (33),

�

F r D dr.
�

r/ D @r.
�

r/1;0 C @r.
�

r/0;1

D @r.@r
�

k C �.ˇ.b///C @rˇ.b/

D @r@r
�

k:

Differentiating (19), we then get

@r@r
�

k � Œ�.q/; �.ˆ/� � Œˆ; �.�.q//�C Œˆ; Œ
�

k; �.ˆ/�� D 0
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@r@r
�

k � Œ�.q/; X�C �Œ�.q/; X�C Œˆ; Œ
�

k; �.ˆ/�� D 0:

However, as in the proof of Proposition 3.3.1, since �.q/ is a combination of highest weight
vectors,

Œ�.q/; X� D �Œ�.q/; X� D 0:

We therefore obtain

(35) @r@r
�

k C Œˆ; Œ
�

k; �.ˆ/�� D 0:

Let hU; V ig D �.U; �.V //g. Using (35) and integration by parts yields successivelyZ
X

�
@r@r

�

k; �.
�

k/
�
g
C

Z
X

�
Œˆ; Œ

�

k; �.ˆ/��; �.
�

k/
�
g
D 0;Z

X

�
@r
�

k; �.@r
�

k/
�
g
C

Z
X

�
Œ
�

k; �.ˆ/�; Œˆ; �.
�

k/�
�
g
D 0;

i

Z
X

h@r
�

k; @r
�

kig C i

Z
X

hŒˆ; �.
�

k/�; Œˆ; �.
�

k/�ig D 0:(36)

Both terms on the left hand side of (36) are nonnegative; hence, both vanish. Vanishing of

the second term implies that �.
�

k/ is a linear combination of lowest weight vectors, so
�

k is a
linear combination of highest weight vectors. Sincemj > 1, the metric has constant positive
curvature, i � Fr > 0, on the highest weight components gmj ˝K

mj of G . By the Bochner
formula

@�r@r D @
�

r@r C i � Fr ;

this implies that ker @r D f0g on these components. Hence, the vanishing of the first term

on the left hand side of (36) implies
�

k � 0.

3.5.2. All parametrizations coincide

C 3.5.2. – The Dolbeault, Hodge, and oper parametrizations coincide. More
precisely, the following diagram commutes:

Q˚Q

TDol

vv

TdR
��

TB

&&

H1
.CDol. G ; ˆ//

.HK/�
// H1

.CdR.D//
.RH/�

// H 1.V/;

where the vertical isomorphisms are those described in Section 3.1, and .HK/�, .RH/� are the
derivatives of the Hitchin-Kobayashi and Riemann-Hilbert maps.

Proof. – The commutativity of the identification of de Rham and oper deformations
follows from the following simple remark. By construction, we have �.�.q// D ��.q/

where � is the involution defined in Section 2.2.3; thus �.�.q// D ��.�.q//. The content of
the lemma is therefore in the Hitchin-Kobayashi correspondence. For simplicity, abbreviate
the notation � D �.q/, ˇ D ˇ.b/, etc. We need to show that:

(37) .HK/�.�; ˇ/ D ˇ � �.ˇ/C � C �.�/:
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Because the Fuchsian point is a smooth point of the moduli space, deformations are un-
obstructed. We may therefore find a family of Higgs bundles .r0;1" ; ˆ"/, passing through the
Fuchsian point at " D 0, and satisfying

.
�

r/0;1 D ˇ;
�

ˆ D �:

Moreover, the Fuchsian bundle is stable, which is an open condition, so we may assume the
Higgs bundles .r0;1" ; ˆ"/ are stable for " sufficiently small. Let �" be a family of harmonic
metrics, whose existence is guaranteed by Theorem 2.3.2. Then:

HK.r0;1" ; ˆ"/ D r" Cˆ" � �".ˆ"/:

By Theorem 3.5.1, the first variation of the harmonic metrics
�
� vanishes. We therefore

conclude that

.HK/�.�; ˇ/ D
�

r C � � �.�/

D ˇ C �.ˇ/C � � �.�/

D ˇ � �.ˇ/C � C �.�/;

which verifies (37). The result follows.

3.6. The tangent spaces to opers and the Hitchin component

We explain in this section our main technical tool, which we state in the de Rham picture:

P 3.6.1. – At the Fuchsian point D,

1. The map � (regarded as taking values in TD M dR.†;G/) defines an isomorphism
of Q.X; g/ with the tangent space TD Op.X;G/.

2. The map�C�.�/ defines an isomorphism ofQ.X; g/with the tangent space of the Hitchin
component TD H .†;GR/, which coincides with the infinitesimal version of the Hitchin
parametrization.

Proof. – The first point follows from the fact that the tangent space of opers is the set
of variations of flat connections fixing the holomorphic structure G op. Now the variation
Nb D q (i.e. �.2q/) in Proposition 3.3.1 defines such a variation, and for dimensional reasons
�.Q.X; g// is then identified with TD Op.X;G/.

The second point follows at once from Corollary 3.5.2. Indeed, the Hitchin infinitesimal
parametrization is interpreted in the Dolbeault parametrization as the map q ! �.q/, but
by Corollary 3.5.2, .HK/�.�.q// D �.q/C �.�.q//.

4. First variation of holonomy

The main result of this section is a Gardiner type formula for the variation of the eigen-
values of the holonomy under deformations of the Fuchsian point. Although the approach
can be generalized to linear representations for all split groups we shall concentrate here on
the case of SL.n;R/. Then, if 
 is a closed geodesic of length `
 , the largest eigenvalue �

(resp. p-th largest �.p/
 ) at the Fuchsian point is

(38) �
 D e
.n�1/`
=2 (resp. �.p/
 D e

.nC1�2p/`
=2):
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Recall that in this context, we have associated to an element q D .q2; : : : ; qn/ 2 Q.X; n/:

– the standard oper deformation �0.q/ D
Pn
kD2 qk ˝E

0
k�1

,
– the normalized oper deformation �.q/ D

Pn
kD2 qk ˝Ek�1,

– the standard Hitchin deformation  0.q/ D �0.q/C �.�0.q//,
– the normalized Hitchin deformation  .q/ D �.q/C �.�.q//.

Our main results in this section are the following.

T 4.0.1 (Gardiner formula). – Along the Fuchsian locus, the first variation of the
largest eigenvalue �
 of the holonomy along a simple closed geodesic 
 of length `
 along a
standard Hitchin deformation given by qk 2 H 0.X;Kk/, is

d log�
 . 0.qk// D
.�1/k.n � 1/Š

2k�2.n � k/Š

Z `


0

< .qk.
; : : : ; 
// ds:

More generally, the first variation of the p-th-largest eigenvalue is

d log�.p/
 . .qk// D c
.p/

n;k

Z `


0

< .qk.
; : : : ; 
// ds;

where

(39) c
.p/

n;k
D
.p � 1/Š.n � p/Š

2k�2.n � k/Š

min.k;p/X
jDmax.1;kCp�n/

 
n � k

p � j

! 
k � 1

j � 1

!2
.�1/jCkC1:

In particular, for k D n,

(40) d log�.p/
 . .qn// D .�1/
pCnC1 .n � 1/Š

2n�2

 
n � 1

p � 1

!Z `


0

< .qn.
; : : : ; 
// ds:

R 4.0.2. – For the special case of deforming in the direction of quadratic differ-
entials, notice that c.p/n;2 D nC 1� 2p, and by (7), r2 D 1=2� . It follows from Theorem 4.0.1,
Proposition 2.1.1, and Eq. (38), that if q 2 H 0.X;K2/,

d`
 . .q// D
1

�
<hq;‚.2/
 i D

2

�
<

Z
X

�.z/�‚.2/
 .z/ dxdy;

where �.z/ D q.z/.h.z//�1 is the harmonic Beltrami differential associated to q. This is the
formula in [15, Theorem 2]. Hence, Theorem 4.0.1 is indeed a higher rank generalization of
Gardiner’s formula.

Summing over in the index p in (40), and using (38), we have the following

C 4.0.3 (Variation of the trace). – For a standard Hitchin deformation given by
an element qn 2 H 0.X;Kn/, the first variation of the trace of the holonomy along a closed
geodesic 
 of length `
 at the Fuchsian locus is

dTr.ı.
//. 0.qn// D 2.�1/n.n � 1/Š
�
sinh.`
=2/

�n�1 Z `


0

< .qn.
; : : : ; 
// ds:

As another corollary, one gets
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C 4.0.4 (Variation of consecutive eigenvalues). – Using the notation of Theo-
rem 4.0.1, we have

d log
�
.p/



�
.pC1/



. .qk// D A.p; k; n/

Z `


0

< .qk.
; : : : ; 
// ds;

where A.p; n; k/ only depends on the integers .p; n; k/ and is nonzero.

Finally, we also have

T 4.0.5 (Oper deformations). – The first variation of the p-th-largest eigenvalue
of the holonomy along a closed geodesic 
 of length `
 along a standard oper deformation given
by an element qk 2 H 0.X;Kk/, is

d log�.p/

�
�0.qk/

�
D
c
.p/

n;k

2

Z `


0

qk.
; : : : ; 
/ ds;

where c.p/
n;k

is defined in (39).

In order to prove these results, in Section 4.1 we first recall a general formula computing
the variation of eigenvalues by the variation of parameters method. In Section 4.2, we give
an explicit description of the Fuchsian bundle along a geodesic and in Section 4.3 prove our
results.

4.1. A general formula

Consider a connectionr and a closed curved 
 in† so that the holonomy ofr along 
 has
an eigenvalue �
 of multiplicity 1. We denote by L
 the corresponding eigenline along 
 ,
byH
 the supplementary hyperplane stable by the holonomy, and by � the projection onL

along H
 . In the sequel, let us use the general notation,

�

f D
d
dt

ˇ̌̌̌
tD0

f .t/:

Then we have

L 4.1.1. – Letrt be a smooth one parameter family of connections. Then there exists
(for t small enough) a unique smooth function �
 .t/ such that

– �
 .0/ D �
 ,
– �
 .t/ is an eigenvalue of the holonomy of rt of multiplicity 1.

Moreover,

(41)
�

�
 D ��
 �

Z `


0

Tr
� �
r.s/��

�
ds:

Proof. – The first part of the lemma is classical. Observe now that the left hand side
of Eq. (41) is invariant under gauge transform of the family rt . For the right hand side,

let rt0 D A
�
t r

t , where A0 D Id. Then
�

r0 D
�

r C r
�

A. In particular,Z `


0

Tr
� �
r0.s/��

�
ds D

Z `


0

Tr
� �
r.s/��

�
ds C

Z `


0

Tr
�
r.
�

A/.s/��
�

ds:
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But, since � is r-parallel,Z `


0

Tr
�
r.
�

A/.s/��
�

ds D
Z `


0

d
ds

Tr
� �
A.s/��

�
ds

D

h
Tr
� �
A.s/��

�i`

0

D 0:

Thus, the right hand side of (41) is also invariant under gauge transform.

We may now use a gauge transform so that the eigenline Lt
 and the transverse parallel
hyperplaneH t


 are constant. Let e be a nowhere vanishing section ofL
 (after possibly taking
an irrelevant double cover of 
 ), let f be a section of H?
 � E �. Then for all t

log�t
 D �
Z `


0

hf .s/ j rte.s/i

hf .s/ j e.s/i
ds;

where the bracket denotes the duality. Then a standard derivation yields

�

�
 D ��
 �

Z `


0

hf .s/ j
�

re.s/i

hf .s/ j e.s/i
ds D ��
 �

Z `


0

Tr
� �
r.s/��

�
ds:

We have completed the proof of Formula (41).

4.2. The Fuchsian bundle along a geodesic

Consider the case of the principal SL.2/ in SL.n;C/. Let S ! X be a choice of spin
structure onX , so that S˝2 D K. Then we can describe the associated bundle to the defining
representation of SL.n;C/ by (25). Let 
 be a geodesic in X , we then have the following
structure on E along 
 .

1. A harmonic metric: Ifˆ0 is defined as in Section 2.3.4, then the hyperbolic metric onX
induces a (split) Hermitian structure on E which solves Hitchin’s Equations (19).

2. A trivialization: We have a canonical trivialization (up to sign) of S given by a section �
along 
 so that �2.
 0/ D 1. We also have an identification of S� with S using the metric
and denote by N� the dual section of S� corresponding to � . Both give a trivialization
of E along 
 by the frame

f Owp WD �
p�1
N�n�pgpD1;:::;n; Owp 2 S

2p�n�1:

3. A real structure: We have a real structure on E characterized by Owp 7! Owp WD OwnC1�p.

Observe that if
A.w/ D B.w/C B.w/; C.w/ D C.w/;

then

(42) Tr.A�C/ D 2< .Tr.B �C// :

With respect to the Chern connection r on E , the frame fwpg described above is parallel.
The flat connection D D r Cˆ0 � �.ˆ0/ along the geodesic 
 may now be expressed


�D D 
�r C .Y �X/˝
ds
p
2
;
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where Y and X are endomorphisms satisfying

.�X/. Owp/ D cp � OwpC1;

Y. Owp/ D cp�1� Owp�1;

where cp D .p.n � p/=2/1=2 (see [24, p. 978]). The factor of 1=
p
2 is due to the fact that the

hyperbolic metric is twice the real part of the Hermitian metric on K�1. If we change to a
new r-parallel frame defined by

wp D f.p � 1/Š.n � p/Šg
1=2
� Owp(43)

then

.�X/.wp/ D
1p
2
.n � p/�wpC1;(44)

Y.wp/ D
1p
2
.p � 1/�wp�1:(45)

Let

(46) up WD
in�p

2n�1

p�1X
rD0

n�pX
sD0

.�1/s

 
p � 1

r

! 
n � p

s

!
wrCsC1:

We then observe that the system fupgpD1;:::;n is a r-parallel frame for the real sections of E ,
and by a direct calculation using Eqs. (44) and (45), we see that each up is an eigensection
of .Y �X/=

p
2, with eigenvalue .2p � n � 1/=2. In particular,

(47) D
 0up D
2p � n � 1

2
�up:

Furthermore, if 
 is a closed geodesic of length `
 , the p-th largest eigenvalue for the
holonomy of D is given by (38).

The lines Lp generated by up form a parallel frame along any geodesic for both r andD.
Let �p be the projection on the eigenline Lp orthogonal to

L
j 6Dp Lj . For k D 1; : : : ; n � 1,

let E0
k
D .�

p
2X/k , F 0

k
D �.E0

k
/ D �.

p
2Y /k . The proof of the following proposition is in

the appendix (see Proposition A.3).

P 4.2.1. – For all k; p, we have Tr.F 0
k
�p/ D �Tr.E0

k
�p/. Moreover,

Tr.E0k ��1/ D
.�1/k.n � 1/Š

2k.n � k � 1/Š
:(48)

Tr.E0k ��p/ D
.p � 1/Š.n � p/Š

2k.n � k � 1/Š

min.k;p�1/X
jDmax.0;kCp�n/

 
n � k � 1

p � j � 1

! 
k

j

!2
.�1/jCk :(49)

It is interesting to remark that Tr.E0
k
��1/ 6D 0 for all k and n. On the other hand, for p D

n � 1, k 6 n � 2 the second equation yields

Tr.E0k ��p/ D
.n � 2/Š

2k.n � k � 1/Š

kX
jDk�1

 
n � k � 1

n � j � 2

! 
k

j

!2
.�1/jCk

D
.n � 2/Š

2k.n � k � 1/Š

0@ n � k � 1
n � k � 2

!
�

 
k

k � 1

!21A
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D
.n � 2/Š

2k.n � k � 1/Š

�
n � k2 � k � 1

�
;

which vanishes for n D k2 C k C 1 (e.g. n D 3, k D 1).

4.3. Proof of Theorems 4.0.1 and 4.0.5

We now have the following consequence of the calculations in the previous section. For
the standard Hitchin variation  0.qk/, the corresponding variation of flat connection is

�

D D qk ˝E
0
k�1 � �

�
qk ˝E

0
k�1

�
:

In particular, for any endomorphism B commuting with the real involution, as a function
on UX ,

(50)
Z `


0

Tr
�
�

D�B

�
ds D

Z `


0

2< .qk/Tr.E0k�1�B/ ds:

The theorem now follows from Proposition 4.2.1 and Eqs. (50) and (41).
We note that the same argument applies to oper deformations at the Veronese oper, where

now
�

D D qk ˝E
0
k�1

. In particular, we immediately obtain 4.0.5.

5. The symplectic structure and twist deformations

The purpose of this section is to investigate some relations between the Hitchin parametriza-
tion along the Fuchsian locus and the “symplectic nature of the fundamental group of a
surface,” to paraphrase Goldman [16].

1. In Corollary 5.1.2, we show that via the (normalized) Hitchin parametrization the
symplectic structure of the L2-pairing coincides with (a multiple of) the Atiyah-Bott-
Goldman symplectic structure.

2. In Section 5.2, we relate the twist or bending deformations to relative Poincaré series,
in Section 5.2 we prove the Reciprocity Theorem 5.3.1.

3. In Theorem 5.4.1 we study the Hamiltonian flow of the length functions in term of
twists and the relative Poincaré series.

5.1. Symplectic structure

Recall [2, 16] that the de Rham moduli space M dR.†;G/ carries the Atiyah-Bott-
Goldman symplectic form !0G given by:

!0G.A;B/ D

Z
†

.A ^̂̂B/g:(51)

It will also be convenient to consider the normalized symplectic form

!G.A;B/ D
1

d.g/
!0G.A;B/;(52)

where d.g/ is the Dynkin index of a principal sl.2/ ,! sl.n/ subalgebra (see (13)). Then
restricting to the Fuchsian locus one has !G D !2, where !2 is the standard Weil-Petersson
symplectic form on Teichmüller space. In general, when G D SL.n;C/, we denote the Atiyah-
Bott-Goldman symplectic form by !0n and the normalized one by !n.
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As will become clear from the computations below, the Hitchin space H .†;GR/ a
symplectic submanifold of M dR.†;G/, and the oper moduli space Op.X;G/ is Lagrangian.
To illustrate, let us evaluate !0G on real de Rham deformations.

L 5.1.1. – Let q1; q2 be differentials of weightmi C1 andmj C1, respectively. Then

!G. .q1/;  .q2// D

(
�2=hq1; q2i if i D j ;

0 if i 6D j .

Proof. – Observe first that if a D ˛˝A and b D ˇ˝B, then .a^ b/g D ˛ ^ ˇ� .A;B/g.
Thus if v 2 KmiC1 and w 2 KmjC1

..v ˝E0i / ^ .�.w ˝ ej ///g D iıijd.g/ hv;wi d�;
..v ˝E0i / ^ .w ˝ ej //g D 0:(53)

It then follows that

!0G. .q1/;  .q2// D

Z
X

��
.q1 ˝E

0
i � �.q1 ˝ ei /

�
^
�
q2 ˝ ej � �.q2 ˝ ej /

��
g

D �

Z
X

..q1 ˝E
0
i / ^ �.q2 ˝ ej //g �

Z
X

.�.q1 ˝E
0
i / ^ .q2 ˝ ej //g

D i � ıij � d.g/

�
�

Z
X

hq1; q2i d� C
Z
X

hq2; q1i d�
�

D �ıij � d.g/� 2= hq1; q2iX :

As an immediate consequence of this lemma we have the following corollary, which
explains the normalization that we have chosen.

C 5.1.2. – At the origin in the Hitchin base, the pull-back of the normalized
Atiyah-Bott-Goldman symplectic form !G on H .†;GR/ by the normalized Hitchin section
coincides with the symplectic form on Q.X; g/ associated to the L2-metric.

5.2. Twist deformations

Let D be a flat connection on a principal G-bundle P over †. Let 
 be a closed simple
curve, whose holonomy is g, and let finally h be an element in the Lie algebra z.g/ of the
centralizer of g. We can then construct an element �
 .h/ in H 1

D.†; ad.P // by the following
construction. Choose a tubular neighborhood U D S1��0; 1Œ of 
 , let f be a function
on U which is constant equal to 1 on a neighborhood of S1 � f1g and 0 on a neighborhood
of S1�f0g. Observe finally that the parallel sections Qh of ad.P / restricted to U are identified
canonically to elements h 2 z.g/. Then we define

(54) �
 .h/ WD df � Qh D D.f � Qh/ 2 �1.U; ad.P //;

and observe that �
 .h/ extends (by zero) to all of † (see Goldman [17]).
For Hitchin representations, the monodromy is regular [26] and so using the previous

notation, z.g/ is identified with a Cartan subalgebra h. Thus the previous construction
associates to every element h 2 h a vector field �
 .h/, called the twist vector field, on the
Hitchin component.

At the Fuchsian locus we furthermore have an identification z.g/ D z.X � Y /R. This leads to
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P 5.2.1. – For any B 2 TD M dR.†;G/ we have

!0G.B; �
 .h// D

Z



.B; h/g:

In particular, if qk is a k-holomorphic differential, k D mi C 1 for some i , then

(55) !G. .qk/; �
 .h// D
�2rk � .h; ei /g

d.g/
� =hqk ; i �‚

.k/

 i;

where rk is given in (7).

Proof. – The first assertion follows from Eqs. (51) and (54) from integration by parts
(recall that DB D 0). For the second, since �.h/ D h, and using Proposition 2.1.1,

!0G. .qk/; �
 .h// D

Z



.h; .qk ˝ ek�1 � �.qk ˝ ek�1//g

D .h; ei /g

�Z



qk C

Z



qk

�
D .h; ei /grk �

�
hqk ; ‚

.k/

 i C hqk ; ‚

.k/

 i

�
D �2.h; ei /grk � =hqk ; i �‚

.k/

 i:

The statement now follows from (52).

Recall Lemma 2.2.1 and the notion of a principal basis.

C 5.2.2. – The space of twist deformations at a simple geodesic 
 is the R-span
of the relative k-Poincaré series of 
 , for degrees k D m1 C 1; : : : ; ml C 1. More precisely,
if .hi /i21;:::l is the principal basis of z.X � Y /R, then

�
 .hi / D
rmiC1

d.g/
� 
�
i �‚.miC1/


�
:

Proof. – Write

�
 .h/ D

lX
iD1

 .Qi /;

whereQi 2 H 0.X;KmiC1/ (as a real vector space), and let qk be an arbitrary k-differential,
k D mi C 1 for some i . Then using Lemma 5.1.1 and Eq. (55), we find

!G. .qk/; �
 .h// D �2=hqk ;Qi i D
�2rk � .h; ei /g

d.g/
� =hqk ; i �‚

.k/

 i;

and,

!G. .iqk/; �
 .h// D �2<hqk ;Qi i D
�2rk � .h; ei /g

d.g/
� <hqk ; i �‚

.k/

 i;

from which

hqk ;Qi i D
rk � .h; ei /g

d.g/

D
qk ; i �‚

.k/



E
:

Since k and qk were arbitrary, the result follows immediately.
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5.3. Reciprocity: twists and lengths

By Corollary 5.2.2, it follows that each relative Poincaré series i �‚.k/
 corresponds to a
unique twist deformation  .i �‚.k/
 /. Recall that �.p/
 denotes the p-th largest eigenvalue for
the holonomy about 
 .

T 5.3.1 (Reciprocity of the twist deformation). – For any k, p, and any simple
closed geodesics ˛, ˇ, then at the Fuchsian locus,

d log�.p/˛
�
 .i �‚

.k/

ˇ
/
�
D �d log�.p/

ˇ

�
 .i �‚.k/˛ /

�
:

Proof. – From Theorem 4.0.1 and Eq. (6),

d log�.p/˛
�
 0.i �‚

.k/

ˇ
/
�
D c

.p/

n;k
<

Z
˛

i �‚
.k/

ˇ
D �c

.p/

n;k
rk � =hi �‚

.k/

ˇ
; i �‚.k/˛ i

D Cc
.p/

n;k
rk � =hi �‚

.k/
˛ ; i �‚

.k/

ˇ
i

D �d log�.p/
ˇ

�
 0.i �‚.k/˛ /

�
:

5.4. Hamiltonian functions and twists

Recall that the Hamiltonian vector field Hf of a C 1 function f on a symplectic mani-
fold .M;!/ is defined by

df .V / D !.V;Hf /;

for any tangent vector field V on M .

T 5.4.1. – Fix a simple closed curve 
 . Then along the Fuchsian locus the Hamil-
tonian vector field of the function

log�.p/
 W H .†; n/ �! R

with respect to the normalized Atiyah-Bott-Goldman symplectic form !n is given by

(56) Hlog�.p/

D

nX
kD2

c
.p/

n;k
rk � �k�1

2
 .i �‚.k/
 /;

where c.p/
n;k

is defined in (39), rk in (7), and �k�1 in (18).

Proof. – Let qk be a k-differential. From Theorem 4.0.1 and Proposition 2.1.1,

d log�.p/
 . .qk// D c
.p/

n;k
� �k�1� <

Z



qk D �c
.p/

n;k
rk � �k�1� =hqk ; i �‚

.k/

 i:

On the other hand, from Lemma 5.1.1,

!n. .qk/;  .i �‚
.k/

 // D �2=hqk ; i �‚

.k/

 i:

Since k and qk are arbitrary, the result follows.

R 5.4.2. – We point out that for the highest eigenvalue �
 (i.e. p D 1), the
coefficients in the expression (56) are nonzero for all 2 6 k 6 n (see Theorem 4.0.1).
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6. The variance and the pressure metrics

6.1. The pressure metric

In the following paragraphs we shall recall some of the results of [8], where the authors
introduced the pressure metric P on the Hitchin component. We will prove the following

T 6.1.1 (Pressure metric for standard deformations). – Let ı be a Fuchsian
representation into SL.n;R/ associated to a Riemann surface X with conformal hyperbolic
metric. Let q be a holomorphic differential of degree k on X , and let  0.q/ be the associated
standard deformation, then

Pı
�
 0.q/;  0.q/

�
D

1

2k�1�j�.X/j

�
.k � 1/Š.n � 1/Š

.n � k/Š

�2
hq; qiX :

Moreover two deformations associated to holomorphic differentials of different degrees are
orthogonal with respect to the pressure metric.

The pressure metric for normalized deformations  .q/ D �k�1� 
0.q/, when q has

degree k now follows:

C 6.1.2 (Pressure metric for normalized deformations)

Let ı be a Fuchsian representation into SL.n;R/ associated to a Riemann surface X with
conformal hyperbolic metric. Let q be a holomorphic differential of degree k on X , and
let  .q/ be the associated normalized deformation, then

Pı . .q/;  .q// D
Œ.n � 1/Š�2

2k�1�j�.X/j

 
nC 1

3

!
.2k � 1/Š

.nC k � 1/Š.n � k/Š
hq; qiX :

Moreover two deformations associated to holomorphic differentials of different degrees are
orthogonal with respect to the pressure metric.

Corollary 1.0.3, stated in the introduction, follows at once from Corollary 6.1.2 and
Corollary 5.1.2.

The proof of the theorem and the structure of this section fall into several parts. First,
we recall the definition of the pressure metric for projective Anosov representation in
Section 6.2. More importantly, we shall introduce the notion of variation of paramatriza-
tion for a deformation of representation in Section 6.2.1 and state Eq. 57 which relates the
pressure metric and the variation of reparametrization. In Section 6.2.2, we identify the vari-
ation of reparametrization associated to the standard variation  0.q/ for q a holomorphic
differential, and we deduce Eq. (58), which identifies the pressure metric as a multiple of
the variance metric. The rest of the section is devoted to the proof of Theorem 6.3.1, which
computes the variance metric for holomorphic differentials in terms of the L2-metric. In
a concluding Section 6.7, we sketch how one might extend these results to other pressure
metrics.

The pressure metric has been discussed in the quasi-Fuchsian context in [29, 9, 7], and the
construction of the pressure metric in [29] ties in Wolpert’s approach of the identification of
the Thurston metric with the Weil-Petersson metric [43].
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6.2. Projective Anosov representations

Introduced in [26] and studied further in [19] and [8], a projective Anosov representation ı
of a hyperbolic group � in SL.n;R/ is characterized by the following features:

– A spectrum that is a map which associates to every nontrivial element 
 of �, the
number `
 .ı/ WD log j�
 .ı/j, where �
 .ı/ is the highest eigenvalue (in modulus)
of ı.
/.

– An entropy defined as

h.ı/ WD lim
T!1

1

T
log .]Lı.T // ;

where Lı.T / WD fŒ
� j `
 .ı/ 6 T g, where Œ
� denotes a conjugacy class in �.
– Moreover, one can define the intersection of two projective Anosov representations ı1

and ı2 as

I.ı1; ı2/ WD lim
T!1

1

]Lı1.T /

X

2Lı1 .T /

`
 .ı2/

`
 .ı1/

and the renormalized intersection J.ı1; ı2/ WD
h.ı2/
h.ı1/

I.ı1; ı2/.

As proved by the first author, Hitchin representations are examples of projective Anosov
representations, and indeed they were the initial motivation for the definition [26]. The
article [8] introduces entropy and intersections. The pressure metric P, which by definition
is the Hessian at a representation ı0 of the function ı 7! J.ı0; ı/, is a consequence.

6.2.1. Variation of reparametrization. – In [8], an explicit formula for the pressure metric
was given as follows. To simplify the exposition, we work in the context of deformations
of Fuchsian representations. Let fıtgt2.�";"/ be a family of deformations of a Fuchsian
representation ı0, associated to a hyperbolic surface X . A Hölder function f on UX is a
variation of reparametrization associated to ı0 if for every 
 in �1.†/,Z




f ds D
d
dt

ˇ̌̌̌
tD0

`
 .ıt /:

Then the pressure metric is given by the variance of f , that is

(57) Pı

�
�

ı;
�

ı

�
D Var.f / WD lim

r!1

1

r

Z
UX

�Z r

0

f .�s.x// ds
�2

d�.x/;

where �, �s are as in Section 2.1.2.

6.2.2. A consequence of Gardiner formula. – From the Gardiner formula, Theorem 4.0.1,
and the definition of variation of reparametrization in Section 6.2.1, we immediately obtain
that for q be a holomorphic k-differential, Oq the associated complex valued function on UX

and Mq D <. Oq/, the function
.�1/k.n � 1/Š

2k�2.n � k/Š
� Mq

is the variation of parametrization associated to the standard deformation  0.q/. Thus it
follows from (57), that

(58) P. 0.q/;  0.q// D
�

.n � 1/Š

2k�2.n � k/Š

�2
�Var.q/;
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where by a slight abuse of notation we write Var.q/ WD Var. Mq/. We note again that Curt
McMullen has treated the case of quadratic differentials in [29].

6.3. Variance and the L2-metric

The goal of this section is to prove

T 6.3.1. – We have

Var.q/ D
2k�2Œ.k � 1/Š�2

2�j�.X/j
hq; qiX :

Moreover, if two holomorphic forms have different degrees, then they are orthogonal for the
bilinear form underlying the quadratic form Var.

This theorem, together with Eq. (58), concludes the proof of Theorem 6.1.1.

The fact that the variance and L2-metrics are proportional is relatively easier to obtain,
even resorting to the intuition explained by McMullen in [29]. We give a rough idea in the
next paragraph.

6.4. A rough idea of the proof

Any point in UX gives an identification of ‹X with the Poincaré unit disk D. Thus given a
holomorphic differential q, we obtain functions an on UX , which are the Fourier coefficients
of q seen as a holomorphic function on D. Let then An be the L2-norm of an on UX .

Now we have the key steps which are actually easy to work out.

– The L2-norm of q onX is easily interpreted as the L2-norm of F D kLqk on UX . Then
a computation in Fourier coefficients yields that for all s,Z

UX

F ı �s.x/d�.x/ D
1X
nD0

Anfn.s/;

where fn.s/ are some explicit functions of s independent of q. This is detailed in
Proposition 6.5.4.

– Then, using the invariance of the Liouville form by the flow, one gets that the An are
all proportional to theL2-norm of q, just from the fact the right hand side of the above
equation does not depend on s.

– A similar analysis using Fourier coefficients yields that

Var.q/ D lim
s!1

1X
nD0

Angn.s/;

where again gn do not depend on q (see Proposition 6.5.6).

The proportionality of the two metrics follows immediately. However, obtaining the actual
coefficients requires some gruesome effort.
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6.5. Preliminary computations

6.5.1. Hypergeometric integrals. – For nonnegative integers m and d , and R 2 Œ0; 1�, the
following incomplete Beta functions will play a technical role in the sequel:

Im;d .R/ WD

Z R

0

Sm.1 � S2/d � dS:

We postpone the proof of the following result to the appendix.

T 6.5.1. – We have

lim
R!1

 
1

j log .1 �R/j
�

1X
nD0

 
nC 2p � 1

n

!
I 2n;p�1.R/

!
D 22p�2Œ.p � 1/Š�2:

6.5.2. In the Poincaré disk model. – Let us define the function

(59) r.R/ WD
1

2
log

�
1CR

1 �R

�
:

We recall that if dH is the hyperbolic distance in the Poincaré disk model, then

dH .0; Re
i� / D r.R/:

Let

q.z/ D dzk
1X
nD0

an� z
n

be a holomorphic k-differential on the Poincaré disk. Let us also consider the real valued
function

Qq.z/ WD <

 
q .z/

�
@

@r
; : : : ;

@

@r

�
„ ƒ‚ …

k

!
where

@

@r
D .1 �R2/

@

@R
:

If furthermore q and q0 are two holomorphic forms of degree k and k0, respectively, we will
consider the complex valued function

(60) q ˇ q0.z/ D q .z/

�
@

@r
; : : : ;

@

@r

�
„ ƒ‚ …

k

q0 .z/

�
@

@r
; : : : ;

@

@r

�
„ ƒ‚ …

k0

:

The main result in this section computes integrals related to the holomorphic differentials q
and q0.

P 6.5.2. – We have

1

2�

Z 2�

0

Z R

0

kq.Sei� /k2
dSd�
1 � S2

D 2k
X
n2N

anan� I2n;2k�1.R/;(61)

1

2�

Z 2�

0

 Z R

0

Qq.Sei� /
dS

1 � S2

!2
d� D

1

2

1X
nD0

anan� I
2
n;k�1.R/:(62)
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Moreover, if q0 D .dz/k0
P1
nD0 bnz

n, then

(63)
1

2�

Z 2�

0

 Z R

0

Qq.Sei� /
dS

1 � S2

! Z R

0

Qq0.Sei� /
dS

1 � S2

!
d�

D
1

2

1X
nDmax.0;k0�k/

<.bnCk�k0an/� In;k�1.R/InCk�k0;k0�1.R/:

Finally,
(64)
1

2�

Z 2�

0

 Z R

0

q ˇ q0.Sei� /
dS

1 � S2

!
d� D

1X
nDmax.0;k0�k/

bnCk�k0an� I2nCk�k0;kCk0�1.R/:

Proof. – We first prove

(65) kq.Rei� /k2 D 2k.1 �R2/2k

0@X
n2N

anan�R
2n
C

X
m;n2N ;m¤n

anam�R
nCm
� ei.n�m/�

1A :
The hyperbolic metric of the Poincaré disk model is

� D
1

.1 �R2/2

�
dx2 C dy2

�
:

Thus kdzk2 D 2.1 � R2/2 (recall our conventions from Section 2.1.1). It follows that
kf .z/dzkk2 D jf .z/j22k.1�R2/2k , and hence (65). Now (61) is an immediate consequence
of (65).

Let us now move to the proof of (62) and (63). By (59), we have that

dz
�
@

@r

�ˇ̌̌̌
Rei�
D .1 �R2/� dz

�
@

@R

�ˇ̌̌̌
Rei�
D .1 �R2/ei� :

Thus

Qq.Rei� / D <

 
1X
nD0

anR
n.1 �R2/kei.nCk/�

!
:

It follows thatZ R

0

Qq.Sei� /
dS

1 � S2
D <

 
1X
nD0

ane
i.nCk/�

Z R

0

Sn.1 � S2/k�1dS

!
D
1

2

1X
nD0

In;k�1.R/
�
ane

i.nCk/�
C ane

�i.nCk/�
�
:

After taking the square and integrating over � , we obtain that

1

2�

Z 2�

0

 Z R

0

Qq.Sei� /
dS

1 � S2

!2
d� D

1

2

1X
nD0

anan� I
2
n;k�1.R/:
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Moreover, if q is of degree k, and q0 of degree k0 > k, then the same argument yields

1

2�

Z 2�

0

 Z R

0

Qq.Sei� /
dS

1 � S2

! Z R

0

Qq0.Sei� /
dS

1 � S2

!
d�

D
1

2

1X
nDmax.0;k0�k/

<.bnCk�k0an/� In;k�1.R/InCk�k0;k0�1.R/:

Let us move to (64). We have that

q ˇ q0.Rei� / D

 
1X
nD0

anR
n.1 �R2/kei.nCk/�

! 
1X
mD0

bmRm.1 �R2/k0ei.mCk0/�

!
:

Thus again, integrating over the circle yields

1

2�

Z 2�

0

q ˇ q0.Rei� /d� D
1X
nD0

anbnCk�k0R
2nCk�k0.1 �R2/kCk0 :

Further integration now gives

1

2�

Z 2�

0

Z R

0

q ˇ q0.Sei� /
dSd�
1 � S2

D

1X
nDmax.0;k0�k/

anbnCk�k0

Z R

0

S2nCk�k0.1 � S2/kCk0�1dS

D

1X
nDmax.0;k0�k/

anbnCk�k0I2nCk�k0;kCk0�1.R/:

6.5.3. Functions on the unit tangent bundle. – Observe that any x in UX gives an identifica-
tion of ‹X the universal cover of X with D the Poincaré disk model: the identification sends
�.x/ to 0 and x to .1; 0/. We can then write the analytic expansion of a k-differential q in
these coordinates:

(66) qx.z/ D dzk
1X
nD1

an.x/z
n:

In particular, in this way we obtain complex valued functions an on UX . The functions an
contain all the information about q with some redundancy. We can use the family of holo-
morphic forms qx to describe the functions that we wish to study on UX . As we have done
previously, we also view q as a function Oq on UX , homogeneous of degree k. Let us further-
more recall that the circle acts on both UX and the Poincaré disk model (hence on holomor-
phic forms). With this understood, we have the following

P 6.5.3. – We have

k Oq.�r .e
i�x//k2 D kqx.Re

i� /k2;(67)

Mq.�r .e
i�x// D Qqx.Re

i� /;(68)

q ˇ q0.�r .e
i�x// D qx ˇ q

0
x.Re

i� /:(69)
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Proof. – By construction,

qei�x D .e
i� /�qx :

Therefore,

kqei�x.z/k
2
D kqx.e

i�z/k2;

Qqei�x.z/ D Qqx.e
i�z/;

qei�x ˇ q
0
ei�x

.z/ D qx ˇ q
0
x.e

i�z/:

We now describe the action of the geodesic flow. We have

k Oq.�r .x//k
2
D kqx.R/k

2;

Mq.�r .x// D Qqx.R/;

q ˇ q0.�r .x// D qx ˇ q
0
x.R/:

Combining the two actions, one gets the proposition.

6.5.4. The Hilbert norm and the analytic expansion. – Let

(70) An WD

Z
UX

an.x/an.x/d�.x/:

We now prove

P 6.5.4. – For any 1 > R > 0,

(71)
1

2�j�.X/j
� kqk2X D

2kC1

log 1CR
1�R

 
1X
nD0

An� I2n;2k�1.R/

!
:

Moreover, if q0 is a holomorphic k0-differential onX with associated functions bn on UX , then
for any 1 > R > 0,
(72)Z

UX

q ˇ q0 d� D
2

log 1CR
1�R

0@ 1X
nDmax.0;k0�k/

I2nCk�k0;kCk0�1.R/�

Z
UX

an.x/bnCk�k0.x/� d�.x/

1A :
As a corollary, we obtain

C 6.5.5. – The following hold:

An D
2�k

2�j�.X/j

 
nC 2k � 1

n

!
� kqk2X I(73)

and for k0 ¤ k,

0 D

Z
UX

an.x/bnCk�k0.x/� d�.x/:(74)

We can now proceed to the
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Proof of Proposition 6.5.4. – We view kqk as a function on UX . Then, by the normaliza-
tion of the Liouville measure,

kqk2X D

Z
X

kqk2d� D 2�j�.X/j
Z

UX

kq.x/k2d�.x/:

Since the Liouville measure is invariant by the geodesic flow, we have for all r ,

kqk2X D
2�j�.X/j

r
�

Z
UX

Z r

0

kq.�s.x//k
2ds� d�.x/:

Let us further use the action of the circle on UX and the invariance of the Liouville measure
to get

(75) kqk2X D
j�.X/j

r
�

Z
UX

Z 2�

0

Z r

0

kq.�s.e
i�x//k2ds� d� � d�.x/:

Using the notation defined in Eq. (66), we have by Eq. (67) that if s D r.S/,

kq.�s.e
i�x//k2 D kqx.Se

i� /k2:(76)

By (61) and using that ds D dS
1�S2

,

1

2�

Z 2�

0

Z R

0

kqx.Se
i� /k2

dSd�
1 � S2

D 2k
X
n2N

an.x/an.x/� I2n;2k�1.R/:

Combining Eqs. (75) and (76) with a further integration over UX , Eq. (71) follows. Eq. (72)
follows from the same ideas using Eqs. (69) and (64).

Proof of Corollary 6.5.5. – NearR D 0, Im;d .R/ � RmC1. Taking the limit whenR! 0

of (71) therefore leads to

(77) 2�j�.X/j� 2kA0 D kqk
2
X :

Thus, we can rewrite (71) as

r.R/�A0 D

1X
nD0

An

Z R

0

S2n.1 � S2/2k�1dS:

Taking the derivative with respect to R leads to

.1 �R2/�1�A0 D

1X
nD0

An�R
2n.1 �R2/2k�1:

Taking L D R2, we get
1X
nD0

AnL
n
D

A0

.1 � L/2k
:

From the asymptotic expansion

1

.1 � L/N
D

1X
mD0

 
mCN � 1

m

!
�Lm(78)

(which follows inductively by differentiation), we obtain that

An D

 
nC 2k � 1

n

!
�A0:
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Eq. (73) now follows from (77). We note that q ˇ q0.e
i�x/ D ei.k�k0/�q ˇ q0.x/. Thus,

for k0 ¤ k, Z
UX

q ˇ q0� d� D 0:

Then (72) yields

0 D

1X
nDmax.0;k0�k/

I2nCk�k0;kCk0�1.R/�

Z
UX

an.x/bnCk�k0.x/� d�.x/:

Taking the derivatives as a function of R we get

0 D

1X
nDmax.0;k0�k/

R2nCk�k0.1 �R2/kCk0�1�

Z
UX

an.x/bnCk�k0.x/� d�.x/:

Thus,

0 D

1X
nDmax.0;k0�k/

R2n�

Z
UX

an.x/bnCk�k0.x/� d�.x/;

and this last assertion concludes the proof of the corollary.

6.5.5. The variance and the analytic expansion. – We perform a similar analysis for the
variance to get

P 6.5.6. – We have

Var.q/ D lim
R!1

1

j log.1 �R/j
�

1X
nD0

AnI
2
n;k�1.R/:

Proof. – Recall (59). Then by the invariance of the Liouville measure,

Var.q/ D lim
r!1

1

r

Z
UX

�Z r

0

Mq.�s.x//ds
�2

d�.x/

D lim
r!1

1

r

Z
UX

1

2�

Z 2�

0

�Z r

0

Mq.�s.e
i�x//ds

�2
d�d�.x/

D lim
R!1

2

log 1CR
1�R

Z
UX

1

2�

Z 2�

0

 Z R

0

Qq.Sei� /
dS

1 � S2

!2
d�d�.x/; by (68)

D lim
R!1

1

log 1CR
1�R

Z
UX

1X
nD0

ananI
2
n;k�1.R/d�.x/; by (62)

D lim
R!1

1

j log.1 �R/j

1X
nD0

AnI
2
n;k�1.R/; by (70)

where in the last line we have used the fact that as R! 1,

log
.1CR/

.1 �R/
� j log.1 �R/j:
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6.5.6. The bilinear part of the variance and the asymptotic expansion. – We have

P 6.5.7. – If q and q0 are holomorphic forms with different degrees, then

lim
r!1

1

r

Z
UX

�Z r

0

Mq.�s.x//ds
��Z r

0

Mq0.�s.x//ds
�

d�.x/ D 0:

Proof. – We use the invariance by the action of the circle to get that

B WD

Z
UX

�Z r

0

Mq.�s.x//ds
��Z r

0

Mq0.�s.x//ds
�

d�.x/

D
1

2�

Z
UX

Z 2�

0

�Z r

0

Mq.�s.e
i�x//ds

��Z r

0

Mq0.�s.e
i�x//ds

�
d�.x/d�:

Using the identification (68), and r D r.R/, s D r.S/, we get that

B D
1

2�

Z
UX

Z 2�

0

 Z R

0

Qqx.Se
i� //

dS
1 � S2

! Z R

0

Qq0x.Se
i� //

dS
1 � S2

!
d�.x/d�:

We now use (63) to get that

B D
1

2

1X
nDmax.0;k0�k/

<

�Z
UX

bnCk�k0.x/an.x/d�.x/
�
In;k�1.R/InCk�k0;k0�1.R/:

But from (74), B D 0. This concludes the proof of the result.

6.6. Proof of Theorem 6.3.1

From Proposition 6.5.6, we get that

Var.q/ D lim
R!1

1

j log.1 �R/j
�

1X
nD0

AnI
2
n;k�1.R/:

By Corollary 6.5.5,

Var.q/ D
2�k

2�j�.X/j
kqk2X �

 
lim
R!1

1

j log.1 �R/j
�

1X
nD0

 
nC 2k � 1

n

!
I 2n;k�1.R/

!
:

Thus the first part of the theorem follows from Theorem 6.5.1. The second part follows from
Proposition 6.5.7.

6.7. A family of pressure metrics

The pressure metric (which may sometimes be degenerate) was defined in [8] for projective
Anosov representations using the logarithm of the highest eigenvalue as an initial input for
“length”. The spectrum of a representation is defined as the indexed collection of lengths.
Then, from this data, the intersection and pressure metric are defined. In the context of
Hitchin representations, one has many choices for lengths. For instance, one could take
the quotient of two consecutive eigenvalues, or any polynomial in these. Via the Gardiner
formula that we have obtained, we can in principle compute all the associated pressure
metrics at the Fuchsian locus. Jörgen Andersen and Scott Wolpert have suggested to us that
for one of these lengths the pressure metric should actually be the L2-metric. A count of
parameters is consistent with this idea. Starting form the work presented here, a somewhat
tedious calculation might verify this conjecture.
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7. First variation of cross ratios

We recall that one can associate a cross ratio to a Hitchin representation: that is, a function
on 4 points on the boundary at infinity (see [27]). More precisely a cross ratio is a function b
on

@1�1.†/
4�
WD f.x; y; z; w/ 2 @1�1.†/

4
j x 6D y 6D z 6D wg

satisfying some functional rules. Conversely, the cross ratio determines the representation.
Moreover, one can characterize those cross ratios which arise from Hitchin representa-
tions [27, Theorem 1.1]. For example, the cross ratio for a Fuchsian representation is the
cross ratio that comes from the identification of @1�1.†/ with P1.R/ associated to the
hyperbolic structure.

More generally, a cross ratio is associated to projective Anosov representations. Since the
construction only depends on the limit curve of the Anosov representation, the value of the
cross ratio at four given points .x; y; z; w/ depends analytically on the representation (cf. [8,
Theorem 6.1]).

The purpose of this section is to describe the variation of the cross ratio under oper and
Hitchin deformations associated to a holomorphic differential of degree k. This is achieved
in two theorems: Theorem 7.2.1 and Theorem 7.2.2 stated in Section 7.2. The first theorem
interprets the variation as a “generalized period” which we call a rhombus function. This
requires further definition. The second theorem gives a description in terms of automorphic
forms, and we can state it right now. This result is a generalization of [42, Lemma 1.1]. The
latter uses techniques of quasiconformal maps which are not available in this context.

T 7.0.1. – Let ıt be a family of Hitchin representations coming from the standard
deformation associated to a �1.†/-invariant holomorphic differential q of degree k. Let bHt be
the corresponding family of cross ratios. For .x1; x2; X1; X2/ 2 @1�1.†/4�,

d
dt

ˇ̌̌̌
tD0

log bHt .x1; x2; X1; X2/

D

 
.�1/k

2k�2
.n � 1/Š

.n � k/Š

!
� rk �

Z
H2
<

*
q.z/;

X
i;j2f1;2g

.�1/iCj
�
�xi ;Xj

�k+
d�.z/;

where rk is defined in (7).

After a preliminary definition of the rhombus function, we state our two main results.
Then we proceed through the proof. It is enough to study oper variations, since Hitchin
variations are twice the “real part” of oper variations. The idea is to first study the variation
of cross ratios for points inside H2 mapped into CP.E/ and CP.E�/ by the associated Frenet
immersion (see Section 7). Once this is done we extend this variational formula to points in
the boundary at infinity in Section 7.4. Finally in Section 7.4 we relate the rhombus function
to automorphic forms.
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7.1. Preliminary: the rhombus function

We recall the following obvious and classical lemma which follows from the fact that
geodesics ending at the same point at infinity in H2 approach each other exponentially fast.

L 7.1.1. – Let f be a Hölder function on UH2. Let 
1 and 
2 be two geodesics in H2

so that 
1.C1/ D 
2.C1/. Then

t !

Z t

0

f .
1.s// ds �
Z t

0

f .
2.s// ds

admits a limit when t goes toC1.

The previous lemma allows us to make the following definition. Given four points
x; y;X; Y 2 @1H2, let hx ; hy ; hX ; hY be corresponding Busemann functions. Let 
z;Z be
the geodesic going from z to Z. For any a 2 fx; yg, A 2 fX; Y g and c 2 fa;Ag, choose tca;A
so that

hc
�

a;A.t

c
a;A/

�
D t:

For a Hölder function f , we define the rhombus function by

Rh.x; y;X; Y If /

WD lim
t!1

(Z tX
x;X

tx
x;X

f .
x;X / ds �
Z tX

y;X

t
y
y;X

f .
y;X / ds �
Z tY

x;Y

tx
x;Y

f .
x;Y / ds �
Z tY

y;Y

t
y
y;Y

f .
y;Y / ds

)
:

Intuitively speaking, Rh.x; y;X; Y If / is the alternating sum of integrals along geodesics
that pairwise meet at points at infinity. See Figure 1.

y

x X

Y

F 1. Integrating over a rhombus

The following proposition is a consequence of hyperbolicity.

P 7.1.2. – Let f be a Hölder function on UH2. Let x1; x2; X1; X2 be pairwise
distinct points in @1H2. Let fxni;j gn2N and fXni;j gn2N be points in H2, i; j 2 f1; 2g. Assume that

– limn!1.x
n
i;j / D xi .

– limn!1.X
n
i;j / D Xj .

– limn!1 d.x
n
i;j ; x

n
i;k
/ D 0.

– limn!1 d.X
n
i;j ; X

n
k;j
/ D 0.
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Then

Rh.x1; x2; X1; X2If / D lim
n!1

X
i;j2f1;2g

.�1/iCj
Z Xn

i;j

xn
i;j

f
�
�ni;j

�
ds;

where we consider the geodesics �ni;j joining xni;j to Xni;j as curves in UH2.

Proof. – We may as well assume that

hxi
�
xni;j

�
D hxi

�
xni;k

�
DW tni ;

and

hXj
�
Xni;j

�
D hXj

�
Xnk;j

�
DW T nj :

Let then zni;j and Zni;j be the points in the geodesic 
i;j WD 
xi ;Xj so that

hXj
�
Zni;j

�
DW T nj ; hxj

�
zni;j /

�
DW tni :

Elementary hyperbolic geometry implies that the sequences fd.zni;j ; x
n
i;j /gn2N and

fd.Zni;j ; X
n
i;j /gn2N all converge to zero. For a positive number ˛, there exists a positive "

such that if d.x; z/ 6 " and d.X;Z/ 6 ", thenˇ̌̌̌
ˇZ X

x

f .
x;X / ds �
Z Z

z

f .
z;Z/ ds

ˇ̌̌̌
ˇ 6 ˛:

It follows that

lim
n!1

ˇ̌̌̌
ˇZ Xn

i;j

xn
i;j

f
�
�ni;j

�
ds �

Z Zn
i;j

zn
i;j

f
�

ni;j

�
ds

ˇ̌̌̌
ˇ D 0:

The proposition follows from this last assertion.

7.2. Statement of the results

We can now state our two main results on the rhombus function.

7.2.1. The period formulation for variations of cross ratio. – The following will be proved in
Section 7.4.

T 7.2.1. – Let .x; y;X; Y / 2 @1�1.†/
4�. Let ı0 be a Fuchsian representation

giving rise to a hyperbolic structure on †, and let ıt be a smooth family of representations
of �1.†/ ! SL.2;C/ so that the tangent vector at ı0 is a standard oper variation given by
a holomorphic k-differential q. Let bOt be the corresponding family of cross ratios on @1�1.†/.
Then

d
dt

ˇ̌̌̌
tD0

log bOt .x; y;X; Y / D

 
.�1/k

2k�1
.n � 1/Š

.n � k/Š

!
�Rh.x; y;X; Y I Oq/;

where Oq is the function defined in Section 2.1.2.
Similarly, assume that the tangent vector at ı0 is a standard Hitchin variation given by a

holomorphic k differential q. Let bHt be the corresponding family of cross ratios on @1�1.†/.
Then

d
dt

ˇ̌̌̌
tD0

log bHt .x; y;X; Y / D

 
.�1/k

2k�2
.n � 1/Š

.n � k/Š

!
� < .Rh.x; y;X; Y I Oq// :
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7.2.2. The automorphic form formulation. – An alternative formula for the rhombus func-
tion, and hence for the variation of cross ratios, is given in the following result. We prove this
theorem in Section 7.5.

T 7.2.2. – Let q be a �1.†/-automorphic holomorphic k-differential on H2, and
let x; y;X; Y 2 H2 be pairwise distinct points. Then

Rh.x1; x2; X1; X2I Oq/ D rk �
Z
H2

*
q.z/;

X
i;j2f1;2g

.�1/iCj
�

.Xj � xi / dz
.z � xi /.z �Xj /

�k+
d�.z/ ;

where rk is defined in (7).

7.3. Opers, Frenet immersions and cross ratios

Let D be a nonslipping connection on P equipped with the flag structure
F 1 � F p � � � � � F n D P . Let D be the universal cover of X . Let ı be the holonomy
of this connection. Then F 1, viewed as a line subbundle over D, defines a ı-equivariant
holomorphic map D ! CP.P/. Moreover, this map is a Frenet immersion: for every k, the
derivatives up to order k generate a k-plane (called the kth-osculating plane of F ) which is
actually identified to the projective subspace generated by F k . Conversely, any such Frenet
immersion uniquely defines an oper, and we have thus described an isomorphism between
opers up to gauge equivalence, and Frenet immersions up to precomposition by projective
transformations.

To an oper we can also associate a cross ratio, which in this case is a function of four
generic points of D. The construction goes as follows: let x; y;X; Y be four points on D. We
trivializeP overD asD�E and consider F 1 DW � and F n�1 DW �

� as maps fromD toCP.E/
and CP.E�/, respectively. Then by definition the cross ratio of four generic points is

bO.x; y;X; Y / D
hO�.x/ j O��.X/i h O�.y/ j O��.Y /i

h O�.x/ j O��.Y /i h O�.y/ j O��.X/i
;

where O�.z/, O��.z/ is a nonzero vector in �.z/ and ��.z/, respectively. The generic condition
is that F 1.x/ 6� F 0

n�1.Y / and F 1.y/ 6� F 0
n�1.X/. For the Veronese oper, this condition

is always satisfied provided x 6D Y and y 6D X . Thus given x; y;X; Y , there exists an open
set of opers for which the cross ratio is defined at x; y;X; Y .

It then makes sense to compute the variation of bO.x; y;X; Y / along an oper deformation.
The main result of this section is an explicit formula for this variation (for points inside the
disk D) at the Veronese oper. More precisely, we shall prove

P 7.3.1. – Let fxn1 ; x
n
2 ; X

n
1 ; X

n
2 gn2N be a sequence of quadruples in D

converging to x1; x2; X1; X2 in @D. Then along an oper deformation associated to a holo-
morphic k-differential q,

lim
n!1

�

bO.xn1 ; x
n
2 ; X

n
3 ; Y

n
3 /

bO.xn1 ; x
n
2 ; X

n
1 ; Y

n
2 /
D A.k; n/�Rh.x1; x2; X1; X2I Oq/:

where A.k; n/ D .�1/k

2k�1
.n�1/Š
.n�k/Š

.

We will prove this proposition in Section 7.3.3.
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7.3.1. Lifting and elementary functions. – Let us choose points z and Z in D and a path

 W Œ0; 1� ! D so that 
.0/ D z and 
.1/ D Z. Let �0 2 �.z/ and ��1 2 �

�.Z/ be nonzero
vectors and covectors. Consider the elementary function Gz;Z on the space of connections
on E defined by

Gx;Z.r/ D h�
�
1 ; �1.r/i ;

where t ! �t .r/ is the r-parallel section along 
 starting at �0. Let also t ! ��t .r/ be the r
parallel section so that ��1 .r/ D ��1 . From the definition of the cross ratio we immediately
get

P 7.3.2. – For x1; x2; X1; X2 in D, and an oper variation associated to a
k-holomorphic differential q, one has

�

bO.x1; x2; X1; X2/

bO.x1; x2; X1; X2/
D

X
.i;j /2f1;2g

.�1/iCj
drGxi ;Xj .

�

r/

Gxi ;Xj .r/
:

Observe that, fixing z and Z, Gz;Z is well defined up to a multiplicative constant. Then
let

pz;Z.s/ D
��s ˝ �s.r/

h��s j �s.r/i
;

be the projection on the r-parallel line Lz generated by �s , along the r-parallel hyperplane
PZ D ker.��s /. Then the variation of parameters method gives

P 7.3.3. – We have

drGz;Z.
�

r/

Gz;Z.r/
D

Z 1

0

Tr
�
pz;Z.
/�

�

r

�
ds:

Proof. – Let rs be a 1-parameter family of connections so that d
ds

ˇ̌
sD0
rs D

�

r. Let ˇ be

the section of End.P/ along 
 so that ˇ.
.0// D 0 andr�

.t/
ˇ D

�

r

�
�


�

. LetGs be the family

of sections of End.P/ along 
 so that Gs.z/ D Id and .Gs/�r D rs . Then by construction

d
ds

ˇ̌̌̌
sD0

Gs D ˇ:

Moreover,

Gz;Z.r
s/ D h��1 .r/ j G

s .�1.r//i:

It follows that

drGz;Z.
�

r/ D h��1 .r/ j ˇ .�1.r//i :

Let now

f .s/ D h��s .r/ j ˇ .�s.r///i ;

so that

drGz;Z.
�

r/ D f .1/ � f .0/

D

Z 1

0

df
ds

ds

4 e SÉRIE – TOME 51 – 2018 – No 2



VARIATIONS ALONG THE FUCHSIAN LOCUS 529

D

Z 1

0

h��s .r/ j
�

r .�s.r///i ds:

Since Gz;Z.
�

r/ D Tr.��s .r/˝ �s.r//, this completes the proof of the proposition.

7.3.2. The Fuchsian bundle along a geodesic again. – Let 
 be a geodesic, we need the
following

L 7.3.4. – There exist positive number ˛ and t0 only depending on n, so that for
any k 2 f2; : : : ; ng, for any s; t > t0ˇ̌

Tr
�
E0k�1�p
.�s/;
.u/

�
� A.k; n/

ˇ̌
6 e�˛u C e�˛s :

Proof. – We use the notation of Section 4.2. Let 
 be a geodesic and let us consider
the bundle E in (25). As noted previously, this bundle inherits a (split) connection r from
the hyperbolic structure, as well as a (nonsplit) connection D from the flat connection.
From the description of the Veronese oper in Section 2.4.1 we have �.z/ D Sn�1 and
��.z/ D S1�n ˚ : : : Sn�1�2. Finally we have a r-parallel frame fupg defined in Eq. (46) and
which satisfies by Eq. (47)

D
 0up D p̨:up;

where ˛n > : : : p̨ > p̨�1 > ˛1 > 0. Then Lp is the (parallel) complex line generated by up
and let �p be the orthogonal projection on Lp for all p.

By construction, �1.�.z// is always nonzero. Then, since �.z/ is r parallel, it follows that
there exist positive ˛, K and t0 so that for s > t0

d.�.
.s//; L1/ 6 K� e�˛s;

where d is the metric on CP. E / inherited from the metric on E . It then follows (using a
similar argument on E) that we have a constant K so that for s; u > t0

d.�1; p
.�s/;
.u// 6 K.e�˛s C e�˛u/:

The result now follows from Eq. (93).

As a corollary of Proposition 7.3.3 and Lemma 7.3.4 we get

C 7.3.5. – There exist positive number ˛ and t0 only depending on n, so that for
any k 2 f2; : : : ; ng, for any s; u > t0ˇ̌̌̌

ˇ̌drG
.�s/;
.u/. �r/G
.�s/;
.u/.r/
� A.k; n/�

Z u

�s

q.
; : : : ; 
„ ƒ‚ …
k

/ ds

ˇ̌̌̌
ˇ̌ 6 e�˛s C e�˛u:

Proof. – Indeed, for a standard oper deformation associated to a holomophic differential
of degree k, we have

Tr
�
pz;Z.
/�

�

r

�
D q.
; : : : ; 
/Tr.E0k�1�pz;Z/:

The corollary now follows.
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7.3.3. Proof of Proposition 7.3.1. – Let fxn1 ; x
n
2 ; X

n
1 ; X

n
2 gn2N be a sequence of quadruples

in D converging to x1; x2; X1; X2 2 @D. Let 
ni;j be the geodesics joining xni to Xnj . Since
x1; x2; X1; X2 are all pairwise distinct, we may choose a parametrization so that 
ni;j .0/ stays
in a compact region. Thus let 
ni;j .s

n
i;j / D xi and 
ni;j .s

n
i;j / D Xj .

From Corollary 7.3.5 and Proposition 7.3.2, it follows thatˇ̌̌̌
ˇ̌̌ �bO.xn1 ; xn2 ; Xn3 ; Y n3 /
bO.xn1 ; x

n
2 ; X

n
1 ; Y

n
2 /
� A.k; n/�

0@ X
i;j2f1;2g

.�1/iCj
Z

n
i;j

Oq ds

1A
ˇ̌̌̌
ˇ̌̌ 6X

i;j

e
�˛sn

i;j C e
�˛Sn

i;j :

The result now follows from Proposition 7.1.2.

7.4. Extension to the boundary at infinity

We can now prove our first result on variation of cross ratios: Theorem 7.2.1. The state-
ment consists of two assertions. The second assertion is an immediate consequence of the
first one using the description of the tangent space to the Fuchsian point of Section 3.1.

The proof of the theorem therefore follows from Proposition 7.3.1 and the following
result, whose proof occupies the rest of this section

P 7.4.1. – Assume that the function defined for every quadruple of pairwise
distinct points in D by

.x; y;X; Y / 7!
d
dt

ˇ̌̌̌
tD0

bO.x; y;X; Y /;

extends continuously to a function f defined on quadruple of pairwise distinct points of @D.
Then, for every .x; y;X; Y / pairwise distinct in @D,

f .x; y;X; Y / D
d
dt

ˇ̌̌̌
tD0

bO.x; y;X; Y /:

7.4.1. Opers and the boundary at infinity. – For the moment we prove the following result.
Let us first notice that, by the openness property of Anosov representations there exists
a neighborhood U0 of the Veronese oper, so that if an oper O belongs to U0 its mono-
dromy is also Anosov. In particular, one can associate to O a cross ratio on @D (identified
with @1�1.†/), which will also be denoted by bO .

Although it is quite likely that on a smaller neighborhood, the cross ratio is actually
defined for all quadruple of distinct points and extends continuously to the boundary at
infinity, we content ourselves with a weaker and easier result.

In this section and the next one, �O , ��O are the Frenet immersions from D to CP.E/
andCP.E�/, respectively, associated to the operO, and �, �� those associated to the Veronese
oper as in Section 7.3. Let also denote by ıO (and similarly ı) the monodromy of the
operO and the Veronese oper, respectively. Finally the contragredient of a representation � is
denoted by ��.

P 7.4.2. – Let x be a point in D, let ˛1, ˛2, ˛3 and ˛4 be four nontrivial
elements of �1.†/. Let ˛Ci be the attracting point of ˛i in @D. Assume that ˛C1 , ˛C2 , ˛C3
and ˛C4 are all pairwise distinct. Then there exist n0 and a neighborhood U of the Veronese
oper, such that if O 2 U , then

– First, for n > n0, bO.˛n1 .x/; ˛
n
2 .x/; ˛

n
3 .x/; ˛

n
4 .x// is well defined,
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– Moreover, limn!1 b
O.˛n1 .x/; ˛

n
2 .x/; ˛

n
3 .x/; ˛

n
4 .x// D bO.˛C1 ; ˛

C
2 ; ˛

C
3 ; ˛

C
4 /, and the

limit is uniform in O.

Proof. – Observe that �.x/ and ��.x/ both lie in the basin of attraction of the unique
fixed point of ı.˛i / in either CP.E/ or CP.E�/. By continuity the same holds for �O an ��O
for an oper O close enough to the Veronese oper. It then follows that �O.˛ni .x// converges
to the attracting fixed point of ıO.˛i /, and similarly ��O.˛

n
i .x// converges to the attracting

fixed point of ı�O.˛i /. The results follow immediately, and the uniform convergence in O is
similarly obtained.

7.4.2. Analyticity. – We note the following

P 7.4.3. – Let x; y;X; Y in D (or all in @D). Then the function O 7! bO.x; y;X; Y /

is complex analytic in a neighborhood of the Veronese oper.

Proof. – For points in @D, this follows from [8, Theorem 6.1]. For points in D this follows
from the fact that for a differential equation whose parameters vary complex analytically, the
solution also varies complex analytically.

7.4.3. Proof of Proposition 7.4.1. – We remark that by continuity it is enough to prove that
on a dense set of points in @D,

f .x; y;X; Y / D
�

bO.x; y;X; Y /:

We thus will only prove this proposition when x; y;X; Y are the attracting points of
elements ˛i in �1.†/. But by Proposition 7.4.2, there exist sequences fxngi2N, fyngi2N,
fXngi2N and fYngi2N converging respectively to x, y, X and Y so that the function

O 7! bO.xn; yn; Xn; Yn/;

converges uniformly to O 7! bO.x; y;X; Y /. Since all the functions involved are analytic
inO by Proposition 7.4.3, it follows that their derivatives inO also converge. This is what we
needed to prove, and the proof of Proposition 7.4.1 is now complete.

7.5. The rhombus function and automorphic forms

In this section, we prove Theorem 7.2.2 to give an alternative formula for the rhombus
function, and hence also for the variation of cross ratios.

7.5.1. Slabs and cusps. – For u and v in H2, let c be the geodesic arc between u and v. The
slab S.u; v/ defined by u and v is the region bounded by the two orthogonal geodesics ccx
and cy to c at u and v, respectively. We extend the notion of slabs to u and being possibly at
infinity.

We need the following two propositions, proved in the next two sections, and their corol-
laries. Our first proposition and corollary deal with integration over slabs. Recall (4).

P 7.5.1 (Integration over slabs). – There exists a constant K, such that for
any bounded k-differential q, and u; v 2 H2, we haveˇ̌̌̌Z

S.u;v/

hq; �ku;vi d�

ˇ̌̌̌
6 K� kqk1� d.u; v/:
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Proof. – We can work in the upper half plane model and assume that u and v belong to
the imaginary axis so that

�u;v D �
dz
z
:

Then the slab S.u; v/ is defined in polar coordinates as

S.u; v/ D f.r; �/j� 2 Œ�
�

2
;
�

2
�; juj 6 r jvjg:

Then

d� D
1

r sin.�/2
drd�; k�ku;vk D sink.�/:

Thus the result follows from a simple integration with K D
R �
2

��2
sink�2.�/d� .

It will be useful to note the following

C 7.5.2. – Let q be a boundedk-differential. Then there exist constantsK and "0
such that if " < "0 and d.u0; v0/C d.u1; v1/ 6 " and d.u0; u1/ > K thenˇ̌̌̌Z

S.u0;u1/

hq; �ku0;u1i d� �
Z
S.v0;v1/

hq; �kv0;v1i d�

ˇ̌̌̌
6 K� ":

Proof. – Let 
 be the geodesic passing through u0 and u1 so that 
.0/ D u0 and

.`
 / D u1. Then, by continuity and elementary hyperbolic geometry, there exist constantsA
and "0 such that if " < "0 and d.u0; v0/C d.u1; v1/ 6 " and d.u0; u1/ > K then, writing
u˙0 D 
.˙A"/ and u˙1 D 
.A.`
 ˙ "//, we have

S.uC0 ; u
�
1 / � S.v0; v1/ � S.u

�
0 ; u

C
1 /:

Now let � be the characteristic function of S.v0; v1/. Then using the previous proposition
twice yieldsˇ̌̌̌Z

S.u0;u1/

hq; �ku0;u1i d� �
Z
S.v0;v1/

hq; �kv0;v1i d�

ˇ̌̌̌
6 2AK� "kqk1 C

ˇ̌̌̌
ˇZS.u�

0
;u
C

1
/

hq; �ku0;u1i d� �
Z
S.v0;v1/

hq; �kv0;v1i d�

ˇ̌̌̌
ˇ

6 2AK� "kqk1 C

ˇ̌̌̌
ˇZS.u�

0
;u
C

1
/

h.1 � �/q; �ku0;u1i d�

ˇ̌̌̌
ˇ

6 2AK� "kqk1 C

ˇ̌̌̌
ˇZS.u�

0
;u
C

0
/

h.1 � �/q; �ku0;u1i d�

ˇ̌̌̌
ˇC

ˇ̌̌̌
ˇZS.u�

1
;u
C

1
/

h.1 � �/q; �ku0;u1i d�

ˇ̌̌̌
ˇ

6 6AK� "kqk1:

The result follows from this last inequality.

P 7.5.3. – Let q be a Lipschitz differential. Let 
 be a geodesic from x to X
in @1H2. Let � be a parabolic transformation fixing X then

lim
t!C1

Z
S.
.t/;X/

hq � ��q; �k

�;
C

i D 0:
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Proof. – We use the upper half plane model and the geodesic joining 0 to1. Let also

� W z 7!
˛z

z C ˛
:

Let �t be the indicatrix of the set S.
.t/; X/. We want to prove that

hq � ��q;

�
dz
z

�k
i ��t

L1

��! 0;

where the convergence in L1.H2; �/. Observe that since q is Lipschitz, there exists a
constant K so that

kq � ��qkz 6 K� d.z; �.z//:

Moreover, there exists a constantK2, so that dH2.z; �.z// 6 K2=.z/. It follows that we have
a constant K3 so that, using polar coordinates,ˇ̌̌̌

ˇhq � ��q;
�

dz
z

�k
i

ˇ̌̌̌
ˇ 6 K3

=.z/kC1

jzkj
D K3� r sinkC1.�/:

Integrating along the area form of the hyperbolic space

d� D
drd�

r sin.�/2
;

we get ˇ̌̌̌
ˇhq � ��q;

�
dz
z

�k
i

ˇ̌̌̌
ˇ d� 6 K3 sink�1.�/drd�:

The result follows.

As a corollary of Proposition 7.5.3, we have

C 7.5.4. – Let x;X1; X2 2 @1H2. Let h be a Busemann function associated
to x, so that h.�1/ D x. Let 
i be geodesics from x to Xi for i 2 f1; 2g. We parametrise
the geodesics so that h ı 
i .t/ D t . Then for any sequence fsngn2N, ftngn2N going to C1 so
that tn > sn, for any automorphic form q, we have

lim
n!1

0@ X
i2f1;2g

.�1/i
Z
S.
i .sn/;
i .tn//

hq; �kx;Xi i d�

1A D 0:
7.5.2. Conclusion of the proof of Theorem 7.2.2. – Let � be the set of those points in @1H2

which are end points of geodesics whose projection on UX has a dense !-limit set. Observe
then that any geodesic ending on � satisfies the latter property. By ergodicity and Poincaré
recurrence, � is nonempty, and hence, by �1.†/ invariance, dense.

By density, it is enough to prove the result when .x1; x2; X1; X2/ belongs to �. Let 
ij be
the geodesic joining xi to Xj . Then by hypothesis, for all i; j 2 f1; 2g, there exist sequences
of points funi;j gn2N and fvni;j gn2N of 
i;j converging to xi and Xj , respectively, as well as
elements �ni;j in �1.†/ so that for all i; j; k 2 f1; 2g ,

d.uni;j ; u
n
i;k/

n!1
����! 0;

d.vnj;i ; v
n
k;i /

n!1
����! 0;
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d.uni;j ; �
n
i;j .v

n
i;j //

n!1
����! 0:(79)

Applying the closing lemma, we deduce from (79) that there exist Ouni;j and Ovni;j on the axes
of �ni;j with �ni;j . Ou

n
i;j / D Ov

n
i;j so that

d.uni;j ; Ou
n
i;j /

n!1
����! 0;(80)

d.vni;j ; Ov
n
i;j /

n!1
����! 0:(81)

Let us denote by �.u; v/ the characteristic function of S.u; v/. By Corollary 7.5.4, as n!1,X
i;j

.�1/iCj�.uni;j ; v
n
i;j /�

k
xi ;Xj

�
�!

X
i;j

.�1/iCj �kxi ;Xj ;

where � denotes the convergence in the dual of the space C 0;1.H2/ of Lipschitz function
on H2. Then by (80) and (81), as well as Corollary 7.5.2, we obtain,

(82)
X
i;j

.�1/iCj�. Ouni;j ; Ov
n
i;j /�

k
Oun
i;j
; Ovn
i;j

�
�!

X
i;j

.�1/iCj �kxi ;Xj :

As in Proposition 2.1.1, since Ovni;j D �
n
i;j . Ou

n
i;j /, for any automorphic form q,

rk �

Z
S. Oun

i;j
; Ovn
i;j
/

hq; �k
Oun
i;j
; Ovn
i;j
i d� D

Z
Œ Oun
i;j
; Ovn
i;j
�

Oq ds;

where Œu; v� denotes the geodesic between u and v. Observe now that

d. Ouni;j ; Ou
n
i;k/

n!1
����! 0;

d. Ovnj;i ; Ov
n
k;i /

n!1
����! 0:

Thus we get from Proposition 7.1.2, that

rk �
X

i;j2f1;2g

.�1/iCj
Z
S. Oun

i;j
; Ovn
i;j
/

hq; �k
Oun
i;j
; Ovn
i;j
i d�

n!1
����! Rh.x1; x1; X1; X2I Mq/:

Combining this last equation with (82) concludes the proof of the theorem.

7.6. A remark on triple ratios for SL.3;R/

For representations into SL.3;R/, the triple ratio of three points is defined as

T .x; y;w/ D bH .x; y;w;m/� bH .w; x; y;m/� bH .y; w; x;m/;

for all auxiliary points m. It follows from the formulae in Theorem 7.2.2 that the variation
of the triple ratio along a cubic differential q is given by

d
dt

ˇ̌̌̌
tD0

log.Tt .x1; x2; x3// D r3

Z
H2
hq.z/;

X
i 6Dj

�3xi ;xj i d�.z/:

For SL.n;R/ there are .n�1/.n�2/
2

cross ratios, and similar formulas give only a small fraction
of all triple ratios.
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8. Large n asymptotics and applications

In this section, we describe two phenomena related to the large n asymptotics of our
formula. In particular, we shall see that asymptotically the relation between the pressure and
L2-metrics becomes remarkably simpler, once we perform a natural renormalization.

8.1. Large n asymptotics of the pressure metric

For large n asymptotics, it is more natural to consider the renormalized highest eigenvalue

�
 D .�
 /
1
n�1 :

and the associated renormalized pressure metric. The reason for this normalization is that
then, by (38), the highest eigenvalue does not depend on n along the Fuchsian locus.

We prove the following asymptotics

T 8.1.1 (Large n-asymptotics). – We have the large n-asymptotics for the renor-
malized highest eigenvalue given by

�
�
 � �
 �

.�1/k

2k�2.k � 1/Š

�
.2k � 1/Š

3

�1=2
�

Z



<.qk.
; : : : ; 
/ ds:

Finally, the large n asymptotics for the renormalized pressure metric for the renormalized
deformation  .q/ associated to a holomorphic k-differential q is given by

P. .q/;  .q// �
.2k � 1/Š

2k�1� 3��j�.X/j

Z
X

kqk2d�:

We need the following consequence of Lemma A.1.

L 8.1.2. – As n!1 we have the asymptotic expression,

�Tr
�
E0kF

0
k

�
� n2kC1�

.kŠ/2

.2k C 1/Š
:

Proof of Theorem 8.1.1. – Since qkE0k�1 D qk�k�1Ek�1, where �k�1 is as in (16), we
apply Theorem 4.0.1 to qk�k�1 to get

�
�


�

D

1

n � 1

�

�


�

D .�1/k

�k�1

2k�2
.n � 2/Š

.n � k/Š

Z `


0

< .qk.
; : : : ; 
// ds:

We have d.n/ � n3=6. Using (16), and combining with Lemma 8.1.2, this implies

�k�1 �
1

nk�2.k � 1/Š

�
.2k � 1/Š

6

�1=2
:

The result then follows from the fact that

.n � 2/Š

.n � k/Š
� nk�2:
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8.2. Asymptotic freedom of eigenvalues

Fix p 2 N. As previously, let �
 denote the largest eigenvalue. Let E
 D .
1; : : : ; 
p/ be
pairwise distinct conjugacy classes of primitive elements of �1.†/. We can then construct a
map

ƒ
.n/

E

W H .†; n/ �! Rp;

ı 7!
�
�
1.ı/; : : : ; �
p .ı/

�
:

We then have

T 8.2.1. – For n sufficiently large (depending on E
) the image ofƒ.n/
E


contains an
open set.

This theorem will be an easy consequence of the following, which is of independent
interest:

P 8.2.2. – Let C be the set of conjugacy classes of primitive elements of�1.†/.
Let k0 > 2 be some integer. Let R C be the real vector space freely spanned by elements of C .
Then the real linear map defined by

R C
!

1M
kDk0

H 0.X;Kk/;


 7! .‚.k0/
 : : : ; ‚.k/
 ; : : :/(83)

is injective.

8.2.1. Proof of Proposition 8.2.2. – The proof relies on the following

L 8.2.3. – Let ffi W i 2 Ng be nonzero holomorphic functions defined on the unit
disk D, and f˛i I i 2 Ng be a bounded infinite sequence of complex numbers. Assume that:

1. the real analytic functions jfi j2 are all pairwise distinct;
2. the series

P1
iD1 fi .z/ is pointwise absolutely convergent for every z 2 D;

3. there exists a sequence fNmgm2N, Nm !1, such that for all m and all z 2 D,
1X
iD1

j̨ � f
Nm
i .z/ D 0:

Then, for all i , ˛i D 0,

Proof. – Since
P1
iD1 fi .z/ is pointwise absolutely convergent, it follows that given

z0 2 D, there exist:

– an integer i0;
– a finite set I0 � N containing I0;
– a neighborhood U0 of z0;
– a real number K0 > 1,
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such that

.�/

(
jfi .z0/j D jfi0.z0/j for all i 2 J0
jfi0.z/j > K0jfi .z/j for all i 62 I0; and all z 2 U0:

If ] I0 > 1, then using the fact that the functions jfi j are distinct one can find z1 near z0,
satisfying conditions .�/ for z1; I1; U1; K1 (instead of .z0; I0; U0; K0/) where

] I1 < ] I0:

In other words, by induction, we may as well assume that I0 D fi0g.

We now proceed by contradiction. Suppose some ˛i ¤ 0. Then after relabeling, we may
assume that all ˛i ¤ 0. Applying the previous argument we may find z0, K0 > 1, and i0, j0,
so that

jfi0.z0/j > K0jfi .z0/j(84)

for all i ¤ i0.Then, the equation
1X
iD1

˛i � f
Nm
i .z0/ D 0;

yields

˛i0 D �
X
i 6Di0

˛i

�
fi .z0/

fi0.z0/

�Nm
;

where the right end term converges. Then sinceˇ̌̌̌
ˇ˛i

�
fi .z0/

fi0.z0/

�Nm ˇ̌̌̌ˇ 6
ˇ̌̌̌�
fi .z0/

fi0.z0/

�ˇ̌̌̌
6 A� jfi .z0/j ;

where A D jfi0.z0/j
�1 supi2N j˛i j, Lebesgue dominated convergence theorem yields that

lim
m!1

X
i 6Di0

˛i

�
fi .z0/

fi0.z0/

�Nm
D 0:

Thus ˛i0 D 0; a contradiction.

We can now pass to the proof of Proposition 8.2.2. Let 
1; : : : ; 
p be different conjugacy
classes. We may as well assume that we have an involution � of f1; : : : ; pg so that 
i D 
�1�.i/.
Assume that there exist ˛1; : : : ; p̨ real numbers so that for all k,

pX
iD1

˛i �‚
.k/

i
D 0:

Let .xi ; Xi / be the end points at infinity of 
i , then we can write

0 D

pX
iD1

˛i �‚
.k/

i

D

0@ pX
iD1

˛i
X

�2�1.†/=h
i i

�

�
��

dz
.z � xi /.z �Xi /

�k1A :(85)
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Defining gi;� by

gi;�.z/� dz D ��
�

dz
.z � xi /.z �Xi /

�
;

we get

0 D

pX
iD1

X
�2�1.†/=h
i i

˛i �
�
gi;�.z/

�k
:

Hence, for all even k,

0 D

pX
iD1

X
�2�1.†/=h
i i

�
˛i C ˛�.i/

�
�
�
gi;�.z/

�k
:(86)

Similarly, for all odd k,

0 D

pX
iD1

X
�2�1.†/=h
i i

�
˛i � ˛�.i/

�
�
�
gi;�.z/

�k
:(87)

Next we observe that if for all z, jgi;�.z/j D jgj;� .z/j, then � D �, and i D j or i D �.j /.
Recall that g�.i/;� D �gi;�. Therefore, applying Lemma 8.2.3 to the sequence of even
integers, we get from (86), that ˛i C ˛�.i/ D 0 for all i . Similarly, applying Lemma 8.2.3 to
the sequence of odd integers, we get from (87), that ˛i�˛�.i/ D 0 for all i . As a consequence,
˛i vanishes for all i . This concludes the proof of the proposition.

8.2.2. Proof of Theorem 8.2.1. – The proof is an immediate consequence of the following

P 8.2.4. – Let ı be a Fuchsian representation. For n large enough, ƒ.n/
E


is a
submersion at ı.

Proof. – Let ı be a Fuchsian representation with values in SL.n;R/, 
 be a nontrivial
element of �1.†/, let �
 .ı/ be the highest eigenvalue ı.
/. Then by Theorem 5.4.1, the
Hamiltonian vector field H
 of log�
 at ı is given by

(88) H
 D

nX
kD2

C.n; k/� 
�
i �‚.k/


�
;

whereC.n; k/ are all nonzero (see Remark 5.4.2), and are independent of 
 . Now if 
1; : : : ; 
p
are primitive elements of �1.†/, the proof of the proposition will be complete if we can show
that the set of vector fields fH
i g

p
iD1 is linearly independent. LetW be the finite dimensional

subspace of R C spanned by the 
i , i D 1; : : : ; p. Then from the finite dimensionality of W
and Proposition 8.2.2, there exists some k1 so that the map

�W W W !

k1X
kD2

H 0.X;Kk/;


 7! .‚.2/
 ; : : : ; ‚.k1/
 /;

is injective. Suppose that we have ˛i 2 R, so that
pX
iD1

˛i �H
i D 0:
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Since the  
�
i �‚

.k/

i

�
are orthogonal for different values of k, from (88) we obtain that

C.n; k/

pX
iD1

˛i � 
�
i �‚.k/
i

�
D 0;

for all k 2 f2; : : : ; k1g. Since C.n; k/ 6D 0, and  is real linear and injective, we find
pX
iD1

˛i �‚
.k/

i
D 0;

and thus

�W

 
pX
iD1

˛i � 
i

!
D 0:

Finally, by the injectivity of �W , we conclude that ˛i D 0 for all i . This shows that fH
i g
p
iD1 is

linearly independent and finishes the proof.

Appendices

A. Computation of traces

For the irreducible embedding �n W sl.2/ ! sl.n/, set X D �n.x/, Y D �n.y/ (see (9)).
In the basis fwpg from (43), X and Y act by Eqs. (44) and (45). The action of X and Y is
then identified with that of first order differential operators on homogeneous polynomials of
degree n�1 in the variables z D xC iy and Nz D x� iy. Namely, identifyingwp D zp�1 Nzn�p

we have

(89) �
p
2X D z

@

@ Nz
;

p
2Y D Nz

@

@z
:

For k D 1; : : : ; n � 1, let E0
k
D .�

p
2X/k , F 0

k
D �.

p
2Y /k .

We first compute the following

L A.1. – We have

�Tr
�
E0kF

0
k

�
D .kŠ/2

 
nC k

2k C 1

!
:

In particular,

�Tr
�
E0n�1F

0
n�1

�
D ..n � 1/Š/2;(90)

and

�Tr
�
E01F

0
1

�
D d.n/;(91)

for all n (see (17)).

C A.2. – Recall the Definition (18). Then,

�k D
1

kŠ

 
nC 1

3

!1=2
�

 
nC k

2k C 1

!�1=2
:
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Proof of Lemma A.1. – From (44) and (45),

E0k

�
wp

.n � p/Š

�
D

wpCk

.n � p � k/Š
;

F 0k

�
wp

.p � 1/Š

�
D �

wp�k

.p � k � 1/Š
:

Hence, for p > k C 1,

�E0kF
0
kwp D E

0
k

.p � 1/Š

.p � k � 1/Š
wp�k D

.p � 1/Š

.p � k � 1/Š

.n � p C k/Š

.n � p/Š
wp:

By summing over p, we get

�Tr.E0kF
0
k / D .kŠ/

2

nX
pDkC1

 
p � 1

k

! 
n � p C k

k

!
:

We claim that

(92)
nX

pDkC1

 
p � 1

k

! 
n � p C k

k

!
D

 
nC k

2k C 1

!
:

This is actually clear from the combinatorial interpretation. Alternatively, define a generating
function

fk.x/ WD

1X
mDk

xm

 
m

k

!
:

Then the left hand side of (92) is coefficient of xnCk�1 in f 2
k
.x/. On the other hand, by (78),

fk.x/ D
xk

.1 � x/kC1
;

from which xf 2
k
.x/ D f2kC1.x/. Hence, the coefficient of xnCk�1 in f 2

k
.x/ is the coefficient

of xnCk in f2kC1.x/, which is the right hand side of (92). This proves (92) and hence also the
lemma.

The sections up from (46) correspond to xp�1yn�p. Let �p denote the orthogonal projec-
tion to the 1-dimensional space spanned by up. Note that by the hermiticity mentioned
above, Tr.F 0

k
�p/ D �Tr.E0

k
�p/. We then have the following proposition

P A.3. –

Tr.E0k ��1/ D
.�1/k.n � 1/Š

2k.n � k � 1/Š
;(93)

Tr.E0k ��p/ D
.p � 1/Š.n � p/Š

2k.n � k � 1/Š

min.k;p�1/X
jDmax.0;kCp�n/

 
n � k � 1

p � j � 1

! 
k

j

!2
.�1/jCk :(94)

Proof. – Set an;p D 21�p.2i/p�n, so that up D an;p.zC Nz/p�1.z� Nz/n�p. As a warmup,
consider the easy case when p D 1 and prove (93). Then using (89),

E0k �u1 D an;1

�
z
@

@ Nz

�k
.z � Nz/n�1
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D .�1/kan;1z
k .n � 1/Š

.n � 1 � k/Š
.z � Nz/n�k�1

D
an;1

.�2/k
.n � 1/Š

.n � 1 � k/Š
.z � Nz/n�1�k ..z C Nz/C .z � Nz//k

D
an;1

.�2/k
.n � 1/Š

.n � 1 � k/Š
.z � Nz/n�1 C

nX
iD2

Ai �ui

D .�2/�k
.n � 1/Š

.n � 1 � k/Š
u1 C

nX
iD2

Ai �ui ;(95)

where Ai are some complex numbers. Eq. (93) follows. Let us move to the general case and
prove (94).

E0k �up D an;pz
k @

k

@ Nzk

�
.z C Nz/p�1.z � Nz/n�p

�
D an;pz

k

kX
jD0

 
k

j

!�
@j

@ Nzj
.z C Nz/p�1

� 
@k�j

@ Nzk�j
.z � Nz/n�p

!

D an;pz
k

min.k;p�1/X
jDmax.0;kCp�n/

.�1/jCk

 
k

j

!�
.p � 1/Š

.p � 1 � j /Š
.z C Nz/p�j�1

�
�

.n � p/Š

.nC j � k � p/Š
.z � Nz/n�p�kCj

�
D an;p

min.k;p�1/X
jDmax.0;kCp�n/

.�1/jCk
kŠ.p � 1/Š.n � p/Š

j Š.k � j /Š.p � j � 1/Š.nC j � k � p/Š

zk.z C Nz/p�j�1.z � Nz/nCj�p�k

D kŠan;p

min.k;p�1/X
jDmax.0;kCp�n/

.�1/jCk

 
p � 1

j

! 
n � p

k � j

!
.z C Nz/p�j�1.z � Nz/nCj�p�kzk

D
kŠan;p

2k

min.k;p�1/X
jDmax.0;kCp�n/

.�1/jCk

 
p � 1

j

! 
n � p

k � j

!
.z C Nz/p�j�1.z � Nz/nCj�p�k..z C Nz/C .z � Nz//k

D
kŠan;p

2k

min.k;p�1/X
jDmax.0;kCp�n/

kX
lD0

.�1/jCk

 
p � 1

j

! 
n � p

k � j

! 
k

l

!
.z C Nz/p�jCl�1.z � Nz/nCj�p�l

D
kŠ

2k

min.k;p�1/X
jDmax.0;kCn�p/

 
p � 1

j

! 
n � p

k � j

! 
k

j

!
.�1/jCkup C

X
j 6Dp

Aj �uj ;

for some coefficients Ai that we do not need to make explicit. Thus

Tr.E0k ��p/ D
kŠ

2k

min.k;p�1/X
jDmax.0;kCp�n/

 
p � 1

j

! 
n � p

k � j

! 
k

j

!
.�1/jCk
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D
.p � 1/Š.n � p/Š

2k

min.k;p�1/X
jDmax.0;kCp�n/

1

.p � j � 1/Š.n � p � k C j /Š

 
k

j

!2
.�1/jCk

D
.p � 1/Š.n � p/Š

2k.n � k � 1/Š

min.k;p�1/X
jDmax.0;kCp�n/

 
n � k � 1

p � j � 1

! 
k

j

!2
.�1/jCk :

This concludes the proof of the proposition.

B. Proof of Theorem 6.5.1

B.1. Closed formula for the integrals. – We shall need the technical formula. Recall that
mŠŠ D m.m � 2/ � � � 2 for m even, mŠŠ D m.m � 2/ � � � 1 for m odd.

P B.1. – We have

Im;d .R/ D

dX
kD0

RmC2kC1.1 �R2/d�k �
.2d/ŠŠ.m � 1/ŠŠ

.2.d � k//ŠŠ.mC 2k C 1/ŠŠ
:(96)

Proof. – An integration by parts leads to the recursion relation

(97) Im;d .R/ D
2d

mC 1
ImC2;d�1.R/C

1

mC 1
RmC1.1 �R2/d :

Indeed,

Im;d .R/ D

Z R

0

Sm.1 � S2/d � dS

D
2d

mC 1

Z R

0

SmC2.1 � S2/d�1� dS C
1

mC 1

h
SmC1.1 � S2/d

iR
0

D
2d

mC 1
ImC2;d�1.R/C

1

mC 1
RmC1.1 �R2/d :

Observe that

Im;0.R/ D
1

mC 1
RmC1;

satisfies Equation (96). Moreover, the right hand side of Equation (96) satisfies the recursion
formula.

B.2. Asymptotic series. – If Gm and Hm are positive functions on Œ0; 1�, we write

Gm.R/ � Hm.R/;

if �
Gm.R/

Hm.R/

�
m2N

C0

����!
m!1

f .R/; where lim
R!1

f .R/ D 1:

We will also use the nonstandard convention that 
n � 1

n

!
D
1

n
;

which is coherent with  
nC k

n

!
� nk ;
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for all k > �1. Let also

F.k; p/ WD
X

iCjDk;i;j6p�1

.2p � 2/ŠŠ2

.2.p � 1 � i//ŠŠ.2.p � 1 � j //ŠŠ
:(98)

In particular

F.2p � 2; p/ D .2p � 2/ŠŠ2 D 22p�2.p � 1/Š2:

We now prove

P B.2. – We have
(99) 

mC 2p � 1

m

!
I 2m;p�1 � R

2m
�

2p�2X
kD0

R2kC2.1 �R2/2p�2�k �

 
mC 2p � 3 � k

m

!
�F.k; p/:

Proof. – From Equation (96), we get

I 2m;d .R/ D

2dX
kD0

 
R2.mCkC1/.1 �R2/2d�k

�

X
iCjDk;i;j6d

.2d/ŠŠ2.m � 1/ŠŠ2

.2.d � i//ŠŠ.2.d � j //ŠŠ.mC 2i C 1/ŠŠ.mC 2j C 1/ŠŠ

!
:

Since .mC 2i C 1/ŠŠ.mC 2j C 1/ŠŠ � mkC2.m � 1/ŠŠ2, we obtain

I 2m;p�1.R/ �

2p�2X
kD0

R2.mCkC1/

 
.1 �R2/2p�2�k �

1

mkC2

�

X
iCjDk;i;j6p�1

.2p � 2/ŠŠ2

.2.p � 1 � i//ŠŠ.2.p � j � 1//ŠŠ

!
:

Recall that

bm D

 
mC 2p � 1

m

!
� m2p�1:

Then by (98)

bm� I
2
m;p�1.R/ �

2p�2X
kD0

R2.mCkC1/
�
.1 �R2/2p�2�k �m2p�3�k �F.k; p/

�
�

2p�2X
kD0

R2.mCkC1/

 
.1 �R2/2p�2�k �

 
mC 2p � 3 � k

m

!
�F.k; p/

!
:

This finishes the proof of the proposition.
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B.3. A preliminary lemma. – We need an easy lemma.

L B.3. – Assume that the positive functions Gm.R/ and Hm.R/ satisfy

Gm.R/ � Hm.R/;

8m; lim
R!1

Hm.R/ D lim
R!1

Gm.R/ D 0;

lim
R!1

1X
mD0

Hm.R/ D D <1:(100)

Then

lim
R!1

1X
mD0

Gm.R/ D lim
R!1

1X
mD0

Hm.R/:

Proof. – Let " > 0, from the Hypothesis (100), there exist 0 < ˛ < 1 and k0 such that for
all m > k0 and ˛ < R < 1 ˇ̌̌̌

1 �
Gm.R/

Hm.R/

ˇ̌̌̌
6 ":

Thus

(101)

ˇ̌̌̌
ˇ̌ 1X
mDk0

.Gm.R/ �Hm.R//

ˇ̌̌̌
ˇ̌ 6 2"�D:

Using (100), we now choose ˛ so that for all m 6 k0 and all R > ˛,

(102)

ˇ̌̌̌
ˇ̌ k0X
mD0

.Gm.R/ �Hm.R//

ˇ̌̌̌
ˇ̌ 6 ":

Combining Equations (101) and (102) one gets that for all R > ˛, one hasˇ̌̌̌
ˇ 1X
mD0

.Gm.R/ �Hm.R//

ˇ̌̌̌
ˇ 6 "� .2D C 1/:

This last assertion concludes the proof of the lemma.

B.4. Proof of Theorem 6.5.1. – We now prove the theorem.

Proof. – Let

Gm.R/ WD �

 
mC 2p � 1

m

!
I 2m;p�1

log.1 �R/

Hm.R/ WD �
R2m

log.1 �R/
�

2p�2X
kD0

R2kC2.1 �R2/2p�2�k �

 
mC 2p � 3 � k

m

!
�F.k; p/:

From Proposition B.2, one gets that

Gm.R/ � Hm.R/:
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Using the asymptotic expansion, for 0 6 k 6 2p � 3,

.1 �R2/2p�2�kF.k; p/�
1X
mD0

R2m:

 
mC 2p � 3 � k

m

!
D .1 �R2/2p�2�k

F.k; p/
.1 �R2/2p�2�k

D F.k; p/:

Similarly for k D 2p � 2, we get that

.1 �R2/2p�2�kF.2p � 2; p/�
1X
mD1

R2m:

 
m � 1

m

!
D F.2p � 2; p/

1X
mD1

R2m

m

D F.2p � 2; p/.1 � log.1 �R//:

It follows that (with the convention that H0.R/ WD 0)
1X
mD0

Hm.R/ D R
2kC2
�

 
F.2p � 2; p/ �

2p�2X
kD0

F.k; p/
log.1 �R/

!
:

In particular

lim
R!1

1X
mD0

Hm.R/ D F.2p � 2; p/ D 22p�2.p � 1/Š2:

We now observe thatHm.R/ andGm.R/ satisfy the Hypothesis (100) of the previous lemma,
thus

(103) lim
R!1

1X
mD0

Gm.R/ D 2
2p�2.p � 1/Š2:

Thus we obtain Theorem 6.5.1 as a consequence of (103).

BIBLIOGRAPHY

[1] L. V. A, Some remarks on Teichmüller’s space of Riemann surfaces, Ann. of
Math. 74 (1961), 171–191.

[2] M. F. A, R. B, The Yang-Mills equations over Riemann surfaces, Philos.
Trans. Roy. Soc. London Ser. A 308 (1983), 523–615.

[3] D. B, Cyclic Higgs bundles and the affine Toda equations, Geom. Dedicata
174 (2015), 25–42.

[4] M. F. B, V. D, Opers, preprint arXiv:math/0501398.
[5] D. B-Z, E. F, Spectral curves, opers and integrable systems, Publ. Math.

IHÉS 94 (2001), 87–159.
[6] S. B. B, O. G-P, P. B. G, Surface group representations

and U.p; q/-Higgs bundles, J. Differential Geom. 64 (2003), 111–170.
[7] M. B, Hausdorff dimension and the Weil-Petersson extension to quasi-

fuchsian space, Geom. Topol. 14 (2010), 799–831.
[8] M. B, R. C, F. L, A. S, The pressure metric for

Anosov representations, Geom. Funct. Anal. 25 (2015), 1089–1179.
[9] M. J. B, E. C. T, An extension of the Weil-Petersson metric to

quasi-Fuchsian space, Math. Ann. 341 (2008), 927–943.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#1
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#2
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#3
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#4
http://arxiv.org/abs/math/0501398
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#5
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#6
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#7
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#8
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#9


546 F. LABOURIE AND R. WENTWORTH

[10] K. C, Flat G-bundles with canonical metrics, J. Differential Geom. 28 (1988),
361–382.

[11] P. D, Higgs bundles and opers, Ph.D. Thesis, University of Pennsylvania, 2008.
[12] L. D, Lectures on classical W -algebras, Acta Applicandae Mathematicae 47

(1997), 243–321.
[13] S. K. D, Twisted harmonic maps and the self-duality equations, Proc.

London Math. Soc. 55 (1987), 127–131.
[14] V. D, V. V. S, Equations of Korteweg-de Vries type, and simple Lie

algebras, Dokl. Akad. Nauk SSSR 258 (1981), 11–16.
[15] F. P. G, Schiffer’s interior variation and quasiconformal mapping, Duke

Math. J. 42 (1975), 371–380.
[16] W. M. G, The symplectic nature of fundamental groups of surfaces, Adv. in

Math. 54 (1984), 200–225.
[17] W. M. G, Invariant functions on Lie groups and Hamiltonian flows of surface

group representations, Invent. math. 85 (1986), 263–302.
[18] P. G, Euler-Poincaré flows on sln opers and integrability, Acta Appl. Math. 95

(2007), 1–30.
[19] O. G, A. W, Anosov representations: domains of discontinuity and

applications, Invent. math. 190 (2012), 357–438.
[20] D. A. H, Monodromy groups and Poincaré series, Bull. Amer. Math. Soc. 84

(1978), 339–376.
[21] N. J. H, The self-duality equations on a Riemann surface, Proc. London Math.

Soc. 55 (1987), 59–126.
[22] N. J. H, Lie groups and Teichmüller space, Topology 31 (1992), 449–473.
[23] N. H, Higgs bundles and diffeomorphism groups, in Surveys in differential

geometry 2016. Advances in geometry and mathematical physics, Surv. Differ. Geom.
21, Int. Press, Somerville, MA, 2016, 139–163.

[24] B. K, The principal three-dimensional subgroup and the Betti numbers of a
complex simple Lie group, Amer. J. Math. 81 (1959), 973–1032.

[25] F. L, Existence d’applications harmoniques tordues à valeurs dans les variétés
à courbure négative, Proc. Amer. Math. Soc. 111 (1991), 877–882.

[26] F. L, Anosov flows, surface groups and curves in projective space, Invent.
math. 165 (2006), 51–114.

[27] F. L, Cross ratios, surface groups, PSL.n;R/ and diffeomorphisms of the
circle, Publ. Math. IHÉS 106 (2007), 139–213.

[28] S. L, L. L, D. B. MR, Decision problems, complexity,
traces, and representations, Groups Geom. Dyn. 11 (2017), 165–188.

[29] C. T. MM, Thermodynamics, dimension and the Weil-Petersson metric,
Invent. math. 173 (2008), 365–425.

[30] P.  M, Algèbres W et équations non linéaires, Séminaire Bourbaki,
vol. 1997/1998, exposé no 839, Astérisque 252 (1998), 105–129.

[31] N. N, Moduli space of semistable pairs on a curve, Proc. London Math. Soc. 62
(1991), 275–300.

4 e SÉRIE – TOME 51 – 2018 – No 2

http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#10
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#11
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#12
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#13
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#14
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#15
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#16
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#17
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#18
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#19
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#20
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#21
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#22
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#23
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#24
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#25
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#26
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#27
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#28
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#29
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#30
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#31


VARIATIONS ALONG THE FUCHSIAN LOCUS 547

[32] D. I. P, The Dynkin index and sl2-subalgebras of simple Lie algebras,
J. Algebra 430 (2015), 15–25.

[33] H. P, Konstruktion der sämtlichen Lösungen einer Riemannschen Funk-
tionalgleichung durch Dirichletreihen mit Eulerscher Produktentwicklung I, Math.
Ann. 116 (1939), 401–412.

[34] G. S, The geometry of the KdV equation, Internat. J. Modern Phys. A 6 (1991),
2859–2869, Topological methods in quantum field theory (Trieste, 1990).

[35] C. T. S, Constructing variations of Hodge structure using Yang-Mills theory
and applications to uniformization, J. Amer. Math. Soc. 1 (1988), 867–918.

[36] C. T. S, Higgs bundles and local systems, Publ. Math. IHÉS 75 (1992), 5–95.
[37] C. T. S, Moduli of representations of the fundamental group of a smooth

projective variety. I, Publ. Math. IHÉS 79 (1994), 47–129.
[38] C. T. S, Moduli of representations of the fundamental group of a smooth

projective variety. II, Publ. Math. IHÉS 80 (1994), 5–79.
[39] A. W, Remarks on the cohomology of groups, Ann. of Math. 80 (1964), 149–157.
[40] R. A. W, Higgs bundles and local systems on Riemann surfaces, in Geom-

etry and quantization of moduli spaces, Adv. Courses Math. CRM Barcelona, Birk-
häuser, 2016, 165–219.

[41] M. W, The Teichmüller theory of harmonic maps, J. Differential Geom. 29 (1989),
449–479.

[42] S. W, On the symplectic geometry of deformations of a hyperbolic surface,
Ann. of Math. 117 (1983), 207–234.

[43] S. A. W, Thurston’s Riemannian metric for Teichmüller space, J. Differential
Geom. 23 (1986), 143–174.

(Manuscrit reçu le 13 juillet 2015 ;
accepté, après révision, le 12 décembre 2016.)

François L

Université Nice Sophia-Antipolis
Laboratoire Jean Dieudonné

Parc Valrose
06108 Nice Cedex 2, France

E-mail: francois.labourie@math.unice.fr

Richard W

Department of Mathematics
University of Maryland

College Park, MD 20742, USA
E-mail: raw@umd.edu

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE

http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#32
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#33
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#34
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#35
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#36
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#37
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#38
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#39
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#40
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#41
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#42
http://smf.emath.fr/Publications/AnnalesENS/4_51/html/ens_ann-sc_51_2.html#43



	1. Introduction
	2. Preliminaries
	3. Moduli spaces and the tangent space at the Fuchsian point
	4. First variation of holonomy
	5. The symplectic structure and twist deformations
	6. The variance and the pressure metrics
	7. First variation of cross ratios
	8. Large n asymptotics and applications
	Appendices
	Bibliography

