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OUTER AUTOMORPHISMS OF
CLASSICAL ALGEBRAIC GROUPS

 A QUÉGUINER-MATHIEU  J-P TIGNOL

A. – The so-called Tits class associated to an adjoint absolutely almost simple algebraic
group provides a cohomological obstruction for this group to admit an outer automorphism. If the
group has inner type, this obstruction is the only one. In this paper, we prove this is not the case for
classical groups of outer type, except for groups of type 2An with n even, or n D 5. More precisely, we
prove a descent theorem for exponent 2 and degree 6 algebras with unitary involution, which shows that
their automorphism groups have outer automorphisms. In all other relevant classical types, namely 2An
with n odd, n � 3 and 2Dn, we provide explicit examples where the Tits class obstruction vanishes, and
yet the group does not have outer automorphisms. As a crucial tool, we use “generic” sums of algebras
with involution.

R. – À tout groupe algébrique absolument presque simple de type adjoint est associée une
classe de cohomologie connue sous le nom de «classe de Tits» qui donne une obstruction à l’existence
d’automorphismes extérieurs. Si le groupe est de type intérieur, il n’y a pas d’autre obstruction. Dans
ce travail, nous montrons qu’il n’en va pas de même pour les groupes classiques de type extérieur, sauf
pour les groupes de type 2An avec n pair ou n D 5. Plus précisément, nous établissons pour les algèbres
à involution unitaire de degré 6 et d’exposant 2 un théorème de descente qui montre que les groupes
d’automorphismes de ces algèbres ont des automorphismes extérieurs. Pour les types 2An avec n impair,
n � 3, et les types 2Dn, nous construisons des exemples explicites où l’obstruction donnée par la classe
de Tits est nulle alors que le groupe ne possède pas d’automorphisme extérieur. Un outil crucial de nos
constructions est la somme «générique» d’algèbres à involution.

1. Introduction

Every automorphism of an absolutely almost simple algebraic group schemeG of adjoint
type over an arbitrary field F induces an automorphism of its Dynkin diagram �. Inner
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114 A. QUÉGUINER-MATHIEU AND J.-P. TIGNOL

automorphisms of G act trivially on �, and there is an exact sequence of algebraic group
schemes

(1) 1! G ! Aut.G/! Aut.�/! 1;

see [2, exp. XXIV, 1.3, 3.6]. If G is split, the corresponding sequence of groups of rational
points is exact and split, see [6, (25.16)], [11, §16.3]. Therefore, a split adjoint groupG admits
outer automorphisms if and only if its Dynkin diagram admits automorphisms, i.e., ifG has
type An with n � 2, Dn with n � 3 or E6. Moreover, in all three cases, Aut.�/.F / lifts to
an isomorphic subgroup in Aut.G/.F /. This property does not hold generally for nonsplit
groups. For instance, if G is the connected component of the identity in the group scheme
of automorphisms of a central simple F -algebra with quadratic pair .A; �; f /, then G has
no outer automorphisms if A is not split by the quadratic étale F -algebra defined by the
discriminant of the quadratic pair, see § 2.2 below. More generally, Garibaldi identified in
[4, §2] a cohomological obstruction to the existence of outer automorphisms of an arbitrary
absolutely almost simple algebraic group schemeG: the group Aut.�/.F / acts onH 2.F; C /,
whereC is the center of the simply connected group scheme isogenous toG, and the Tits class
tG 2 H

2.F; C / is invariant under the action of the image of Aut.G/.F / in Aut.�/.F /. There-
fore, automorphisms of� that do not leave tG invariant do not lift to outer automorphisms
of G. For adjoint or simply connected groups of inner type, Garibaldi showed in [4, §2] that
this is the only obstruction to the lifting of automorphisms of�. As he explains in [4, Thm 11]
this has interesting consequences in Galois cohomology. In a subsequent paper, Garibaldi-
Petersson [5, Conjecture 1.1.2] conjectured that this Tits class obstruction is the only obstruc-
tion, also for adjoint or simply connected groups of outer type.

In this paper, we provide a complete answer to the question raised by Garibaldi and
Petersson for groups of outer type A and D, leaving aside trialitarian groups (see the
Appendix). Thus, in all the cases we consider, Aut.�/.F / has order 2. Our main goal is to
compare the following three conditions, listed from weaker to stronger:

(Out 1): The Tits class tG is fixed under Aut.�/.F /;
(Out 2): G admits an outer automorphism defined over F ;
(Out 3): G admits an outer automorphism of order 2 defined over F .

Under condition (Out 2), the sequence

1! G.F /! Aut.G/.F /! Aut.�/.F /! 1

is exact, and under condition (Out 3), it is split. In [4], Garibaldi proves that all three
conditions are equivalent if G has inner type A or D (see Remarks 2.3 and 2.7). This is not
the case for groups of outer type, and our main result is the following:

T 1.1. – Let G be an absolutely almost simple adjoint or simply connected alge-
braic group scheme of type 2An, with n � 2, or 2Dn, with n � 3.

(1) If G has type 2An, with n even, or 2A5, then conditions (Out 1), (Out 2) and (Out 3)
are equivalent.

(2) In all the other types, there are examples of groups for which (Out 1) holds and (Out 2)
does not hold, and examples of groups for which (Out 2) holds and (Out 3) does not
hold.
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OUTER AUTOMORPHISMS OF CLASSICAL ALGEBRAIC GROUPS 115

In other words, assertion (2) says there are examples where the condition on the Tits
class is satisfied, and yet G does not have any outer automorphism, and examples where
G has an outer automorphism, but no outer automorphism of order 2. In particular, this
disproves Conjecture 1.1.2 in [5], and provides examples of simply connected absolutely
simple algebraic group schemes G for which the Galois cohomology sequence

H 1.F; C /! H 1.F;G/! H 1.F;Aut.G//

from [4, Thm 11(b)] (where C is the center of G) is not exact.

Every absolutely almost simple algebraic group scheme of adjoint type 2An over F is
isomorphic to PGU.B; �/ D AutK.B; �/ for some central simple algebra B of degree nC 1
over a separable quadratic field extension K of F with a K=F -unitary involution � . As
explained below in § 2.1, condition (Out 1) holds for the group PGU.B; �/ if and only if
B has exponent at most 2, and condition (Out 3) holds if and only if .B; �/ has a descent,
i.e., .B; �/ D .B0; �0/ ˝F .K; �/ for some central simple F -algebra with F -linear involu-
tion .B0; �0/. For n even, Theorem 1.1(1) can be reformulated in a more precise form:

T 1.2. – Let .B; �/ be a central simple algebra with unitary involution. If degB is
odd, then conditions (Out 1), (Out 2), and (Out 3) for PGU.B; �/ are equivalent and hold if
and only if B is split.

The proof is easy: see Corollary 2.4.

Now, assumeG D PGU.B; �/ has type 2A5, i.e., B has degree 6. If the exponent of B is at
most 2, then its index is at most 2. Therefore, Theorem 1.1(1) for such groups follows from
the following descent theorem for algebras with unitary involution, proved in §4.1:

T 1.3. – Let .B; �/ be a central simple algebra of degree at most 6 and index at
most 2, with a K=F -unitary involution. There exists a central simple algebra with orthogonal
involution .B0; �0/ over F , of the same index as B, such that .B; �/ D .B0; �0/˝ .K; �/, where
� is the unique nontrivial F -automorphism of K.

It also follows from this theorem that assertion (1) does hold for groups of type 2A3 when
the underlying algebraB has index at most 2; but this does not apply to all groups of type 2A3,
since a degree 4 central simple algebra of exponent 2 can be of index 4. An example of a
degree 4 and exponent 2 algebra with unitary involution that does not have a descent will be
provided in § 3.3.2 below (see Remark 3.14).

As usual for classical groups, we use as a crucial tool their explicit description in terms
of algebras with involution or quadratic pair. How conditions (Out 1), (Out 2) and (Out 3)
translate into conditions on these algebraic structures is explained in § 2. Section 3 studies
in more details the 2Dn case. In particular, we introduce our main tool for proving asser-
tion (2) of Theorem 1.1, namely “generic” orthogonal sums of hermitian forms or involu-
tions. In § 4, using the same kind of strategy, we prove Theorem 1.3, and complete the proof
of Theorem 1.1 by producing examples of outer type 2An.

We refer the reader to [6] for definitions and basic facts on central simple algebras, involu-
tions, and quadratic pairs. Recall that if charF 6D 2, then for any quadratic pair .�; f /, � is an
involution of orthogonal type, and f is the map defined on the set Sym.A; �/ of � -symmetric
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116 A. QUÉGUINER-MATHIEU AND J.-P. TIGNOL

elements by f .s/ D 1
2

TrdA.s/. Hence the quadratic pair is uniquely determined by the invo-
lution, and we usually write .A; �/ for .A; �; f / in this case.

Notation

If A is a structure (such as an algebra with involution or an algebraic group scheme)
defined over a field F , we write Aut.A/ for the algebraic group scheme of automorphisms
of A and Aut.A/ for its (abstract) group of rational points:

Aut.A/ D Aut.A/.F /:

We use a similar convention for classical groups; thus for instance if .B; �/ is a central
simple algebra with unitary involution over a separable quadratic field extension K of F ,
then

PGU.B; �/ D AutK.B; �/ and PGU.B; �/ D PGU.B; �/.F /:

Note that an absolutely almost simple simply connected algebraic group scheme and its
isogenous adjoint group have the same automorphism group, hence it is enough to consider
adjoint groups. For isogenous groups that are neither adjoint nor simply connected, obstruc-
tion to the existence of an outer automorphism can arise from the fundamental group.

2. Groups of type A and D, and associated algebras with involution

The main purpose of this section is to point out how conditions (Out 1), (Out 2) and
(Out 3) can be translated in terms of the corresponding algebra with involution or quadratic
pair. Part of Theorem 1.1 follows immediately, as we will show. Throughout this section, F is
an arbitrary field.

2.1. Type A

Let K be an étale quadratic F -algebra, and � be the nontrivial F -automorphism of K.
Consider a central simple K-algebra with K=F -unitary involution .B; �/. We denote
by .�B; ��/ the conjugate algebra with involution defined by �B D f�x j x 2 Bg with the
operations

�x C �y D �.x C y/; �x �y D �.xy/; � �x D �.�.�/x/ and ��.�x/ D �.�.x//

for x, y 2 B and � 2 K.
The following propositions were proven by Garibaldi-Petersson [5]:

P 2.1. – Let G D PGU.B; �/, with degB � 3.

1. Condition (Out 1) holds for G if and only if B has exponent at most 2;
2. Condition (Out 2) holds for G if and only if .B; �/ admits a �-semilinear automorphism,

i.e., .B; �/ is isomorphic to .�B; ��/;
3. Condition (Out 3) holds for G if and only if .B; �/ admits a �-semilinear automorphism

of order 2.

P 2.2. – Condition (Out 3) holds for PGU.B; �/ if and only if .B; �/ has a
descent, i.e., there exists a central simple F -algebra with F -linear involution .B0; �0/ such that
.B; �/ ' .B0; �0/˝ .K; �/.
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OUTER AUTOMORPHISMS OF CLASSICAL ALGEBRAIC GROUPS 117

Proof of Proposition 2.1. – Those assertions are taken from [5, § 9]; for the reader’s conve-
nience, we briefly sketch an argument. One may understand the action of Aut.�/.F / on the
Tits class by looking at the action on the Tits algebras. For groups of type A, the symmetry
of the diagram, together with the description of the Tits algebras given in [6, § 27.B], shows
that tPGU.B;�/ is invariant under the action of Aut.�/.F / if and only if B is invariant under
the action of the Galois group ofK=F , i.e., ifB is isomorphic to its conjugate �B. Since � is a
semilinear involution, it induces an anti-automorphism betweenB and �B. Therefore,B and
�B are isomorphic if and only if B is isomorphic to its opposite algebra, i.e., B has exponent
at most 2.

Recall from [6, (26.9)] that there is an equivalence of categories between the groupoid An.F /

of central simple algebras of degree nC1with a unitary involution over some étale quadratic
F -algebra and the groupoid A

n
.F / of adjoint absolutely almost simple linear algebraic

groups of type An defined over F , under which .B; �/maps to the adjoint group PGU.B; �/.
Hence, PGU.B; �/ and .B; �/ have the same automorphisms. More precisely, the auto-
morphisms of PGU.B; �/ defined over F coincide with the F -automorphisms of .B; �/,
see [6, (26.10)]. Among those, the inner automorphisms are the K-linear automorphisms
of .B; �/, while outer automorphisms coincide with �-semilinear automorphisms of .B; �/.
Therefore, PGU.B; �/ admits an outer automorphism if and only if .B; �/ is isomorphic
to .�B; ��/. Note that the condition degB � 3 is crucial here. Indeed, if B D Q is a quater-
nion algebra, PGU.Q; �/ has no outer automorphism, while .Q; �/ does admit semilinear
automorphisms.

Proof of Proposition 2.2. – If .B; �/ ' .B0; �0/ ˝ .K; �/, then IdB0 ˝� is a semilinear
automorphism of B which commutes with � D �0 ˝ �, and has order 2. Therefore, it
induces an outer automorphism of PGU.B; �/ of order 2. Conversely, assume .B; �/ has a
�-semilinear automorphism ' of order 2. The F -algebra of fixed points B0 D B' is a central
simple F -algebra of the same degree as B, hence

B D B0 ˝F K:

Moreover, since ' commutes with � , the restriction of � induces an F -linear involution �0
of B0, and we have .B; �/ D .B0; �0/˝F .K; �/ as required.

R 2.3. – IfG has inner type 1An, thenK ' F �F and the corresponding algebra
with involution .B; �/ is isomorphic to .E � Eop; "/ for some central simple F -algebra E,
with " the exchange involution (see [6, (2.14)]). If condition (Out 1) holds, then E has
exponent at most 2, hence by a theorem of Albert (see [6, (3.1)]) E carries an F -linear invo-
lution 
 . IdentifyingE˝F .F �F /withE�E, one may check that the map .x; y/ 2 E�E 7!
.x; 
.y/op/ 2 E�Eop induces an isomorphism between .E; 
/˝F .F�F; �/ and .E�Eop; "/.
Therefore .E � Eop; "/ has a descent, provided E has exponent at most 2. This shows
that conditions (Out 1), (Out 2) and (Out 3) are equivalent for groups of inner type 1An,
as observed by Garibaldi [4, Ex. 17(i)]. Moreover, these conditions hold if and only if
G D PGU.E � Eop; "/ D PGL.E/ with E of exponent at most 2. If n is even, then E has
odd degree nC 1, and the conditions hold if and only if E is split.

Combining Proposition 2.1 and 2.2 we already get Theorem 1.2. More precisely, we have
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118 A. QUÉGUINER-MATHIEU AND J.-P. TIGNOL

C 2.4. – Let G D PGU.B; �/ with degB � 3.

1. If B is split, then G admits outer automorphisms of order 2.
2. If G has type 2An, with n even, conditions (Out 1), (Out 2) and (Out 3) are equivalent,

and hold if and only if B is split.

Proof. – IfB is split, we may assumeB D EndK V for someK-vector space V . Then � is
the adjoint involution with respect to some nondegenerate hermitian form hWV � V ! K.
Pick a diagonalization of h, corresponding to a K-basis .ei /1�i�n of V . For all i , we have
h.ei ; ei / 2 F �, hence h restricts to a nondegenerate symmetric bilinear form b on the
F -vector space V0 D e1F C � � � C enF . Therefore, .B; �/ D .EndF V0; adb/˝F .K; �/ has a
descent, so (Out 3) holds for PGU.B; �/.

Now, assume that G has type 2An for some n � 3, with n even. Then G D PGU.B; �/,
where B has odd degree nC 1. Hence, under condition (Out 1), B is split, so (Out 3) holds
by the first assertion, and this concludes the proof.

Corollary 2.4 was proved by Garibaldi-Petersson, see [5, Cor 9.1.2].

To prove Theorem 1.1(2), we will give in § 3 and § 4 examples of algebras with unitary
involutions .B; �/ such that either B has exponent 2 and .B; �/ is not isomorphic to its
conjugate .�B; ��/, or .B; �/ and .�B; ��/ are isomorphic, yet .B; �/ does not have a descent.
We provide examples of degree 4 and index 4, and examples of degree nC 1 and index 2 for
all odd n � 7; see Remark 3.14 and § 4.3.

2.2. Type D

LetA be a central simpleF -algebra of even degree, and let .�; f / be a quadratic pair onA.
We write GO.A; �; f / for the (abstract) group of similitudes of .A; �; f /, defined as

GO.A; �; f / D fg 2 A� j �.g/g 2 F � and f ı Int.g/ D f g:

The scalar �.g/ D �.g/g is called the multiplier of g. Mapping g 2 GO.A; �; f /
to Int.g/ yields an identification of GO.A; �; f /=F � with the group of rational points
PGO.A; �; f / D Aut.A; �; f /. Every automorphism of .A; �; f / induces an automorphism
of the Clifford algebra C.A; �; f /. A similitude is said to be proper if the induced auto-
morphism of C.A; �; f / is the identity on the center Z; otherwise it is said to be improper.
The proper similitudes form a subgroup GOC.A; �; f / which satisfies GOC.A; �; f /=F � D
PGOC.A; �; f / for PGOC.A; �; f / the connected component of the identity in
PGO.A; �; f / D Aut.A; �; f /.

If A D EndF V for some F -vector space V , then every quadratic pair .�; f / on A is
adjoint to some nonsingular quadratic form q on V , see [6, (5.11)]. In that case, we write
simply GO.V; q/, PGO.V; q/, etc. for GO.A; �; f /, PGO.A; �; f /, etc.

P 2.5. – Let G D PGOC.A; �; f /, with degA D 2n � 4, and let
Z be the discriminant quadratic F -algebra of .�; f /, i.e., Z is the center of the Clifford
algebra C.A; �; f /. Assume Z is a field.

1. Condition (Out 1) holds for G if and only if A is split by Z;
2. Condition (Out 2) holds for G if and only if .A; �; f / admits improper similitudes;
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OUTER AUTOMORPHISMS OF CLASSICAL ALGEBRAIC GROUPS 119

3. Condition (Out 3) holds for G if and only if .A; �; f / admits square-central improper
similitudes.

In particular, condition (Out 1) holds if and only if the algebra A is Brauer-equivalent to
a quaternion algebra split byZ. This condition is necessary for the existence of an improper
similitude by the generalization of Dieudonné’s theorem on multipliers of similitudes given
in [6, (13.38)].

Proof. – (1): Let � denote the nontrivial F -automorphism of Z, and let C D C.A; �; f /.
The Tits class tG is invariant under the action of Aut.�/ if and only if C is isomorphic
to its conjugate algebra �C , or equivalently C ˝Z �C op is split. Recall from [6, (9.12)] the
fundamental relations betweenA andC : if n is even, thenC˝ZC is split and the corestriction
CorZ=F C is Brauer-equivalent to A. After scalar extension to Z, it follows from the latter
relation that theZ-algebra AZ is Brauer-equivalent to C ˝Z �C . If n is odd, then C ˝Z C is
Brauer-equivalent to AZ , while CorZ=F C is split, hence C ˝Z �C is split. Thus, in each case
AZ is Brauer-equivalent to C ˝Z �C op, and we get that (Out 1) holds for G if and only if
AZ is split.

(2) and (3): If degA ¤ 8, we may argue along the same lines as for Proposition 2.1, using
the equivalence of categories between the groupoid Dn.F / of central simple F -algebras of
degree 2n with quadratic pair and the groupoid D

n
.F / of adjoint absolutely almost simple

groups of type Dn, which maps the algebra A with quadratic pair .�; f / to PGOC.A; �; f /,
see [6, (26.15)]. This line of argument does not apply to the case where degA D 8, however,
because the description of D4.F / is different (see [6]). Therefore, we give a different proof,
which applies in all cases where degA D 2n � 4.

We will need the following lemma, which is probably well-known:

L 2.6. – Let .V; q/ be a hyperbolic space of dimension 2n � 4 over an infinite fieldE.
The map PGO.V; q/! Aut

�
PGOC.V; q/

�
which carries gE� to Int.g/ is injective.

Proof. – Let b be the polar bilinear form of q, and let e1, f1, . . . , en, fn be a symplectic
base of .V; q/, i.e., a base such that q.ei / D q.fi / D 0 and

b.ei ; fi / D 1; b.ei ; ej / D b.ei ; fj / D b.fi ; fj / D 0 for all i , j D 1,. . . , n with i ¤ j .

Since E is infinite, we may find ˛1,. . . , ˛n 2 E� such that ˛1, ˛�11 ,. . . , ˛n, ˛�1n are pairwise
distinct and moreover, if charE ¤ 2,

f˛1; ˛
�1
1 ; : : : ; ˛n; ˛

�1
n g ¤ f�˛1;�˛

�1
1 ; : : : ;�˛n;�˛

�1
n g:

Consider the proper isometry a 2 GOC.V; q/ defined by

a.ei / D ˛iei and a.fi / D ˛
�1
i fi for i D 1,. . . , n.

Let g 2 GO.V; q/ be such that Int.g/ is the identity on PGOC.V; q/. Then g�1ag D �a for
some � 2 E�. Because g�1ag and a are isometries, we must have � D ˙1. Moreover, by
evaluating ag D �ga on e1, . . . , fn, we obtain

ag.ei / D �˛ig.ei / and ag.fi / D �˛
�1
i g.fi / for i D 1,. . . , n.
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Thus, g.ei / (resp. g.fi /) is an eigenvector of a with eigenvalue �˛i (resp. �˛�1i ). But the
eigenvalues of a are ˛1, ˛�11 ,. . . , ˛n, ˛�1n , hence

f�˛1; �˛
�1
1 ; : : : ; �˛n; �˛

�1
n g D f˛1; ˛

�1
1 ; : : : ; ˛n; ˛

�1
n g

with � D ˙1. By the choice of ˛1,. . . , ˛n we must have � D 1, hence g.ei / must be a scalar
multiple of ei and g.fi / a scalar multiple of fi . Therefore, there exist 
1,. . . , 
n 2 E� such
that, letting � D �.g/ be the multiplier of g,

g.ei / D 
iei and g.fi / D �

�1
i fi :

Thus, the matrix of g with respect to the base e1,. . . , fn is diagonal. Using [6, (12.24)] if
charE ¤ 2 and [6, (12.12)] if charE D 2, it is then easy to check that g is a proper similitude.
Since the map of algebraic group schemes PGOC.V; q/ ! Aut.PGOC.V; q// is injective
(cf. (1)), it follows that the homomorphism PGOC.V; q/ ! Aut.PGOC.V; q// is injective,
hence g 2 E�.

Proof of Proposition 2.5(2) and (3). – The map g 7! Int.g/ induces a map of algebraic
group schemes ˆ which fits in the following commutative diagram with exact rows:

1 // PGOC.A; �; f / // PGO.A; �; f / //

ˆ

��

AutF .Z/

‰

��

// 1

1 // PGOC.A; �; f / // Aut.PGOC.A; �; f // // Aut.�/ // 1:

The differential dˆ is injective, since the restriction of ˆ to the connected component of
the identity PGOC.A; �; f / is the identity map. Moreover, Lemma 2.6 shows that over an
algebraic closure Falg the map

ˆalgWPGO.A; �; f /.Falg/! Aut.PGOC.A; �; f //.Falg/

is injective. It follows by [6, (22.2)] that ˆ is injective, and likewise ‰ is injective. We have
Aut.�/ ' AutF .Z/ if n ¤ 4, and Aut.�/ ' AutF .F � Z/ if n D 4. Since Z is assumed to
be a field, in each case the group of F -rational points is

Aut.�/ ' Z=2Z ' AutF .Z/:

Therefore, the diagram above yields the following diagram with exact rows:

1 // PGOC.A; �; f / // PGO.A; �; f / //

ˆF
��

Z=2Z

1 // PGOC.A; �; f / // Aut.PGOC.A; �; f // // Z=2Z:

It follows that ˆF is an isomorphism, which proves (2) and (3) of Proposition 2.5.

R 2.7. – (i) If the algebra A is split, which means that PGOC.A; �; f / D

PGOC.V; q/ for some quadratic space .V; q/, then (Out 3) holds, since each quadratic
space admits improper isometries of order 2.

(ii) The arguments in the proof of Proposition 2.5 also apply in the case whereZ ' F �F .
It follows that in this case (Out 1), (Out 2), and (Out 3) are equivalent, and hold if and only
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if A is split. Thus, adjoint groups of inner type Dn admit outer automorphisms of order 2
whenever the Tits class obstruction vanishes, as pointed out by Garibaldi [4].

In the outer case, condition (Out 3) induces additional restrictions on the algebra A when
its degree is divisible by 4, as we now proceed to show:

L 2.8. – LetG D PGOC.A; �; f / for some F -algebra with quadratic pair .A; �; f /,
such that degA � 0 mod 4, soG has type Dn with n even. IfG admits an outer automorphism
of order 2, then A is split.

Proof. – In view of Remark 2.7, it suffices to consider the case where the center Z of
the Clifford algebra C D C.A; �; f / is a field. By Proposition 2.5, if G admits an outer
automorphism of order 2, then .A; �; f / admits a square-central improper similitude g. As
explained in [6, § 13.A], g induces an automorphism C.g/ of order 2 of C , which commutes
with the canonical involution � . Moreover, since g is improper, C.g/ acts non trivially onZ.
Therefore, the fixed pointsCC.g/ form anF -algebraC0 of the same degree asC , and we have
C ' C0˝F Z. SinceC.g/ commutes with the canonical involution � of the Clifford algebra,
� restricts to an F -linear involution on C0, so C0 has exponent at most 2. In view of the
fundamental relations [6, (9.12)], we get thatA is Brauer-equivalent to CorZ=F .C0˝F Z/ '
C0 ˝ C0 � 0, hence A is split, as required.

To prove Theorem 1.1, we will construct in § 3.3 below examples of algebras with quadratic
pairs such that either A is split by the discriminant quadratic extension, yet .A; �; f / does
not admit improper similitudes, or .A; �; f / admits improper similitudes, but no improper
similitudes of order 2. We provide examples of degree 2n for arbitrary n � 3. The index
of A is 2, as required by condition (Out 1).

3. Outer automorphisms and similitudes: the orthogonal case

Throughout this section, we assume that the base field F has characteristic different
from 2. Hence, we consider orthogonal involutions instead of quadratic pairs. Our goal is to
produce examples of groups of type 2Dn, for all n � 3, for which (Out 1) holds and (Out 2)
fails, or (Out 2) holds and (Out 3) fails. Before describing the explicit examples, we first recall
a few well-known facts on similitudes of hermitian forms, and we introduce our main tool in
this section, namely “generic” sums of hermitian forms.

By Proposition 2.5(1), if PGOC.A; �/ satisfies (Out 1), then A is split by the discriminant
quadratic algebra Z. In particular, A has index at most 2. Moreover, Remark 2.7 shows that
we may assume A is not split. Hence, our main case of interest is when A D Mn.Q/ for
some quaternion division algebraQ overF . However, our discussion of generic sums is more
general, because we think this tool could be useful in various other contexts.
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3.1. Similitudes of hermitian forms

Let D be a central division F -algebra. Assume D carries an F -linear involution �, and
let ı D ˙1. Let .V; h/ be a ı-hermitian space over .D; �/. By definition, an element g 2
EndD V is a similitude of .V; h/ with multiplier �.g/ D � if

h
�
g.x/; g.y/

�
D �h.x; y/ for all x, y 2 V .

We write Sim.V; h/ or Sim.h/ for the group of similitudes of .V; h/, which is also the group
of similitudes of EndD V for the adjoint involution adh. Depending on ı and the type of the
reference involution �, this group is a form of an orthogonal or a symplectic group:

Sim.V; h/ D

(
GO.EndD V; adh/ if adh is orthogonal;

GSp.EndD V; adh/ if adh is symplectic.

For the rest of this subsection, let A D EndD V and degA D 2n, and suppose adh is
orthogonal; this case occurs if and only if ı D 1 and � is orthogonal, or ı D �1 and � is
symplectic, see [6, (4.2)]. Since charF ¤ 2, we may distinguish as follows between proper
and improper similitudes: for g 2 Sim.V; h/, taking the reduced norm of each side of the
equation �.g/ D �.g/g, we see that �.g/2n D NrdA.g/2, hence NrdA.g/ D ˙�.g/n. The
similitude g is proper if NrdA.g/ D �.g/n, and improper if NrdA.g/ D ��.g/n (see [6,
(12.24)]).

Suppose now V D V1 ? � � � ? Vr for some subspaces V1,. . . , Vr � V , hence h restricts
to a nonsingular ı-hermitian form hi on each Vi . For i D 1,. . . , r , let Ai D EndD Vi , pick
gi 2 Ai , and let g D g1 ˚ � � � ˚ gr 2 A be the map defined by

g.x1 C � � � C xr / D g1.x1/C � � � C gr .xr / for x1 2 V1,. . . , xr 2 Vr .

L 3.1. – With the notation above, g is a similitude of h with multiplier � if and only
if each gi is a similitude of hi with multiplier �. When this condition holds, the similitude g is
proper if and only if the number of improper similitudes among g1,. . . , gr is even.

Proof. – The first part is clear since h
�
g.x/; g.y/

�
D �h.x; y/ for all x, y 2 V if and

only if hi
�
gi .x/; gi .y/

�
D �hi .x; y/ for all i , and all x, y 2 Vi . To prove the second part,

let degAi D 2ni for i D 1,. . . , r , hence n D n1 C � � � C nr , and suppose NrdAi .gi / D "i�
ni

with "i D ˙1. We then have

NrdA.g/ D
rY
iD1

NrdAi .gi / D
� rY
iD1

"i
�
�n1C���Cnr :

We next consider the particular case where D is a quaternion division algebra Q

and � is the canonical involution , hence ı D �1. The generalization of Dieudonné’s
theorem on multipliers of similitudes [6, (13.38)] then allows to distinguish between proper
and improper similitudes as follows: a similitude g of .V; h/ is proper if the quaternion
algebra

�
Z;�.g/

�
F

is split (we write simply
�
Z;�.g/

�
F
D 0 in this case), and improper if it

is isomorphic to Q. For 1-dimensional skew-hermitian forms, we have the following more
precise result:
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L 3.2. – Let q be a nonzero pure quaternion in a quaternion division algebra Q, and
let a D q2 2 F �. Define

GC.a/ D f� 2 F
�
j .a; �/F D 0g and G�.a/ D f� 2 F

�
j .a; �/F D Qg:

Then GC.a/ is the group of multipliers of proper similitudes of the skew-hermitian form hqi,
and G�.a/ is the coset of multipliers of improper similitudes of hqi. Moreover, the improper
similitudes of hqi are all square-central.

Proof. – The lemma follows from the explicit description of similitudes of hqi given in
[6, (12.18)]: the proper similitudes form the multiplicative group F.q/� � Q�, while the
improper similitudes are the elements u 2 Q� such that uq D �qu.

In the case where each Vi is 1-dimensional, Lemma 3.1 yields:

L 3.3. – Let q1,. . . , qn be pure quaternions inQ, consider the skew-hermitian form h

over .Q; / defined by h D hq1; : : : ; qni, and let ai D q2i 2 F �. If � 2 F � satisfies
.�; ai /F 2 f0;Qg for all i , then .V; h/ admits a similitude with multiplier �. Moreover, this
similitude is proper if and only if the number of pure quaternions among q1,. . . , qn satisfying
.�; ai /F D Q is even.

Proof. – From the condition on �, it follows by Lemma 3.2 that each hqi i admits a
similitude gi with multiplier �. Then g D g1˚� � �˚gn is a similitude of h with multiplier �.
Lemma 3.1 shows that this similitude is proper if and only if the number of indices i such
that .�; ai /F D Q is even.

Of course, most similitudes do not act diagonally, and the multipliers of similitudes
of .V; h/ need not satisfy the condition given in the lemma; nevertheless, as we explain in
the next section, this condition actually characterizes multipliers of similitudes for some
particular involutions, which we call “generic sums of orthogonal involutions”.

3.2. Generic sums

Let D be a central division algebra over an arbitrary field F of characteristic different
from 2. Assume D carries an involution � of the first kind, let ı D ˙1, and let .V1; h1/, . . . ,
.Vn; hn/ be ı-hermitian spaces over .D; �/. Consider the field of iterated Laurent series in n
indeterminates bF D F..t1// : : : ..tn//;
and let bD D D ˝F bF and bVi D Vi ˝F bF for i D 1,. . . , n.

The involution � extends to an involution b� D � ˝ Id bF on bD. We also extend hi to a

ı-hermitian form bhi on bVi , and we let

.bV ;bh/ D .bV1 ˚ � � � ˚ bVn; ht1ibh1 ? � � � ? htnibhn/:
The adjoint involution adbh is an orthogonal sum, in the sense of Dejaiffe [1], of the invo-

lutions adbhi ; we call it a “generic orthogonal sum” since each bhi is extended from an invo-
lution hi defined over F , and scaled by some indeterminate ti . We assume throughout that
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h1,. . . , hn are anisotropic, hencebh is anisotropic. Our goal is to relate the multipliers of simil-
itudes of .bV ;bh/ to the multipliers of similitudes of .V1; h1/,. . . , .Vn; hn/, with the help of a
norm on the vector space bV , i.e., a valuation-like map for which bV contains a splitting base
(see [9, §2]). More precisely, we prove:

T 3.4. – Let .bV ;bh/ be a “generic sum” of ı-hermitian spaces .Vi ; hi / for 1 � i � n,
as defined above.

1. If n � 3, every similitude g 2 Sim.bV ;bh/ has the form g D �g0 for some � 2 bF � and
some similitude g0 with multiplier in F �.

2. For every similitude g 2 Sim.bV ;bh/ such that �.g/ 2 F � � bF �, there exist similitudes
gi 2 Sim.Vi ; hi / for i D 1,. . . , n with �.g/ D �.g1/ D � � � D �.gn/.

Proof. – The field bF carries the .t1; : : : ; tn/-adic valuation v with value group Zn ordered
lexicographically from right to left. This valuation is Henselian; it extends in a unique way
to a valuation on bD with value group Zn. We write again v for this valuation on bD. Becausebh is anisotropic and v is Henselian, we may define a norm � on bV by the following formula
(see [10, Prop. 3.1], [9, Cor. 3.6, Th. 4.6, Prop. 4.2]):

�.x/ D 1
2
v
�bh.x; x/� for x 2 bV .

To describe the value set of this norm, let "i D .0; : : : ; 1; : : : ; 0/ D v.ti / be the i -th element
in the standard base of Zn. For ˛ D .˛1; : : : ; ˛n/ 2 Zn we write t˛ D t˛11 : : : t

˛n
n 2

bF . Every
nonzero vector xi 2 bVi can be written as a series xi D

P
˛ xi˛t

˛ with xi˛ 2 Vi , where the
support f˛ j xi˛ ¤ 0g is a well-ordered subset of Zn. If ˛0 is the minimal element in this
support, then since bh.xi˛0 ; xi˛0/ D tibhi .xi˛0 ; xi˛0/ ¤ 0 we have v

�bh.xi ; xi /� D 2˛0 C "i .
Thus,

�.bVi n f0g/ D 1
2
"i C Zn � .1

2
Z/n:

It follows that �.bVi /\ �.bVj / D f1g for i ¤ j . Therefore, for x D x1C � � � C xn with xi 2 bVi
for all i , we have

(2) �.x/ D min
�
�.x1/; : : : ; �.xn/

�
:

Thus, the value set of bV , for which we use the notation �bV , is

�bV D f�.x/ j x 2 bV n f0gg D n[
iD1

.1
2
"i C Zn/ � .1

2
Z/n:

We also need to consider the graded structures associated to norms and valuations.
For ˛ 2 Zn we letbF�˛ D fa 2 F j v.a/ � ˛g; bF>˛ D fa 2 F j v.a/ > ˛g; and bF˛ D bF�˛=bF>˛:
Thus, bF˛ is a 1-dimensional vector space over F , spanned by the image of t˛. We let

gr.bF / D M
˛2Zn

bF˛:
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For each nonzero a 2 bF , letea D aCbF>v.a/ 2 gr.bF /. We also lete0 D 0 2 gr.bF /, and note that
the multiplication in bF induces a multiplication on gr.bF /, which turns this F -vector space
into a commutative graded ring in which every nonzero homogeneous element is invertible:

gr.bF / D F Œet1;et�11 ; : : : ;etn;et�1n �:

The same construction can be applied to bD, yielding the graded ring gr.bD/ D D˝F gr.bF /,
and also to bV , yielding the graded module gr.bV / over gr.bD/. From (2) it follows that

gr.bV / D gr.bV1/˚ � � � ˚ gr.bVn/;
see [9, Remark 2.6]. For each i , we have gr.bVi / D Vi˝F gr.bF /, with a grading shifted by 1

2
"i .

Note that the grade sets of gr.bV1/, . . . , gr.bVn/, which are the value sets of bV1, . . . , bVn, are
pairwise disjoint, hence every homogeneous component of gr.bV / lies in exactly one gr.bVi /.

Lete� D �˝Idgr.F / be the involution of the first kind on gr.bD/ extending �. By [9, Th. 4.6,
Prop. 4.2], we have v.bh.x; y// � �.x/ C �.y/ for all x, y 2 bV . Therefore, the ı-hermitian
form bh induces a ı-hermitian form eh on gr.bV /, defined on homogeneous elements by

eh.ex;ey/ D
8<:b̃h.x; y/ if v.bh.x; y// D �.x/C �.y/,
0 if v.bh.x; y// > �.x/C �.y/;

and extended by bilinearity to gr.bV /. Lettingehi denote the restriction ofeh to gr.bVi /, we have

.gr.bV /;eh/ D .gr.bV1/;eh1/ ? � � � ? .gr.bVn/;ehn/:
As observed above, we have gr.bVi / D Vi ˝F gr.bF /. The ı-hermitian form ehi is given byehi .x; y/ D hi .x; y/˝eti for x, y 2 Vi .

Now, suppose gW bV ! bV is a similitude of .bV ;bh/, with multiplier �.g/ 2 bF �. For x 2 bV
we have bh.g.x/; g.x// D �.g/bh.x; x/, hence

�
�
g.x/

�
D �.x/C 1

2
v
�
�.g/

�
for all x 2 bV .

As a result, g induces a homomorphism of gr.bD/-modules egW gr.bV / ! gr.bV /, defined on
homogeneous elements by eg.ex/ D gg.x/ for x 2 bV .

This homomorphism is a similitude of .gr.bV /;eh/ with multiplier �̃.g/, and it shifts the
grading by 1

2
v
�
�.g/

�
. It follows that the value set �bV , which is the grade set of gr.V /, is stable

under translation by 1
2
v
�
�.g/

�
2 .1

2
Z/n. We must therefore have for all i D 1,. . . , n

1
2
"i C

1
2
v
�
�.g/

�
2

n[
`D1

.1
2
"` C Zn/:

Suppose i , j are such that 1
2
"i C

1
2
v
�
�.g/

�
2
1
2
"j C Zn, and i ¤ j . For k ¤ i , j we then

have
1
2
"k C

1
2
v
�
�.g/

�
2
1
2
"k C

1
2
"j �

1
2
"i C Zn 6�

n[
`D1

.1
2
"` C Zn/:

This contradiction implies that 1
2
"i C

1
2
v
�
�.g/

�
2
1
2
"i C Zn for all i , hence v

�
�.g/

�
2 2Zn.

Let v
�
�.g/

�
D 2v.�0/ for some �0 2 bF �, hence v

�
�.��10 g/

�
D 0. Consider the residue

�.��10 g/ D a 2 F
�. We have�.��10 g/ D a.1Cm/ for somem 2 bF with v.m/ > 0. Since bF is
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Henselian and the characteristic of the residue fieldF is different from 2, we may find �1 2 bF
with �21 D 1Cm. Then�.��11 �

�1
0 g/ D a, so we may write g D �g0 with � D �0�1 2 bF � and

g0 D ��1g. Then g0 2 Sim.bV ;bh/ and �.g0/ D a 2 F �. The first assertion of the theorem is
thus proved.

Now, we prove the second assertion. Consider a similitude g 2 Sim.bV ;bh/ and assume
its multiplier �.g/ is in F � � bF �. Since v

�
�.g/

�
D 0, the similitude eg 2 Sim.gr.bV /;eh/

preserves the grading. We may therefore consider its restriction gi to the homogeneous
component of degree 1

2
"i , which is Vi . Becauseeg is a similitude with multiplier �̃.g/ D �.g/

and eh.x; y/ D hi .x; y/eti for x, y 2 Vi ,

it follows that gi is a similitude of .Vi ; hi / with multiplier �.g/.

The last part of the proof above establishes the following result:

L 3.5. – For every similitude g 2 Sim.bV ;bh/ such that �.g/ 2 F � � bF �, the
similitudeeg 2 Sim.gr.bV /;eh/ has the formeg D .g1 ˝ Idgr. bF //˚ � � � ˚ .gn ˝ Idgr. bF //
for some similitudes gi 2 Sim.Vi ; hi / with �.g/ D �.g1/ D � � � D �.gn/.

Abusing notation, we write g1˚� � �˚gn for .g1˝Idgr. bF //˚� � �˚.gn˝Idgr. bF //. Note that
conversely, given similitudes gi 2 Sim.Vi ; hi / for i D 1,. . . , n such that �.g1/ D � � � D �.gn/,
we may define a similitude g 2 Sim.bV ;bh/ such thateg D g1˚� � �˚gn and�.g/ D �.g1/ 2 F �

by

g D .g1 ˝ Id bF /˚ � � � ˚ .gn ˝ Id bF /:
Now, let us apply these results to the setting of a generic orthogonal sum of 1-dimensional

skew-hermitian forms over a quaternion division algebra Q over F . The following proposi-
tion is a key tool for the examples we produce below.

P 3.6. – Let Q be a quaternion division algebra over F , and consider pure
quaternions q1,. . . , qn, with respective squares a1,. . . , an 2 F �. Let bF be the field of iterated
Laurent series in n indeterminates t1,. . . , tn over F , let bQ D Q ˝F bF , and consider the
involution � onA DMn.bQ/ adjoint to the skew-hermitian formbh D ht1q1; : : : ; tnqni. If n � 3,
then

1. The involution � has discriminant disc � D a1 : : : an � bF �2I
2. The involution � admits improper similitudes if and only if there exist "1,. . . , "n 2 f˙1g

such that "1 : : : "n D �1 and

G"1.a1/ \ � � � \G"n.an/ ¤ ;:

3. The involution � admits square-central improper similitudes if and only if n is odd and

G�.a1/ \ � � � \G�.an/ ¤ ;:
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Proof. – The discriminant of � is the product of the discriminants of the involutions
adjoint to htiqi i for all i . Since the discriminant of the adjoint involution of hqi, for any
nonzero pure quaternion q, is the square class of q2, we get assertion (1).

Suppose that the hermitian form bh admits improper similitudes. Since it is a generic
orthogonal sum, as defined above, of the 1-dimensional skew-hermitian forms hi D hqi i, we
may apply Theorem 3.4 and Lemma 3.5. Therefore, since n � 3, we may find an improper
similitude g of bh with multiplier � D �.g/ 2 F � � bF �. By Lemma 3.5 we haveeg D g1 ˚ � � � ˚ gn with gi 2 Sim.hi / and �.gi / D � for i D 1,. . . , n. Because g and eg
are improper, the same computation as in Lemma 3.1 shows that the number of improper
similitudes among g1,. . . , gn is odd. Letting "i D C1 if gi is proper and "i D �1 if gi is
improper, we thus have

� 2 G"1.a1/ \ � � � \G"n.an/ and "1 � � � "n D �1:

Assume in addition g is square-central. From �.g/g D �, we get g2 D "� for some
" 2 f˙1g. Hence we also have eg2 D "e� D "�. By Lemma 3.5, this occurs if and only if
g2i D "� for i D 1,. . . , n. Since g is improper, there is at least one i for which gi is improper.
From the description of similitudes recalled in the proof of Lemma 3.2, we get that gi is a
pure quaternion that anticommutes with qi . Therefore

� D �.gi / D �.gi /gi D q
�1
i giqigi D g

2
i :

It follows that " D 1. Now assume for the sake of contradiction that gj is proper for some j .
Then gj is a quaternion that commutes with qj , i.e., gj 2 F.qj /, and it is square-central,
hence it belongs to F �[F �qj . The first case leads to � D �.gj / 2 F �2, which is impossible
sinceQ D .�; ai /F is a division algebra. The second case leads to � D �.gj / D �g2j , which
is impossible since " D 1. Therefore, gj is improper for all j , that is "1 D � � � D "n D �1.
Since g is improper, this implies n is odd.

We have thus proved the “only if” parts of (2) and (3). The converse statements are easy
consequences of Lemma 3.1 and Lemma 3.3.

3.3. Examples of groups of type 2Dn

With Proposition 3.6 in hand, we can now produce explicit examples of groups of type Dn,
proving that conditions (Out 1), (Out 2), and (Out 3) are not equivalent.

In our examples, the algebra has the form A D Mn.Q/ for some integer n � 3, and
some quaternion division algebra Q over F . As a preliminary observation concerning
condition (Out 1), note that the set of discriminants of orthogonal involutions on A is
.�1/n NrdQ.Q�/. This follows easily from the fact that any quaternion can be written
as a product of two pure quaternions. On the other hand, a quadratic extension F.

p
ı/

of F is a splitting field of Q if and only if Q contains a pure quaternion q such that
ı D q2 D �NrdQ.q/. Hence, if n is odd, for any splitting field F.

p
ı/, A does admit orthog-

onal involutions � with discriminant ı, and (Out 1) holds for the corresponding group. As
opposed to this, it is not always true that A admits an involution � for which (Out 1) holds
if n is even, as we now proceed to show.
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128 A. QUÉGUINER-MATHIEU AND J.-P. TIGNOL

3.3.1. Type 2Dn with n even. – In this subsection, we assume A D Mn.Q/ with n D 2m

even, m � 2. We first prove:

P 3.7. – AssumeA DMn.Q/withn even. The algebraA admits an orthogonal
involution � such that A is split by the discriminant quadratic algebra Z of � if and only if
�1 2 NrdQ.Q�/.

Proof. – If A is split by the discriminant algebra Z D F.
p
ı/ of some orthogonal

involution � , then ı D q2 D �NrdQ.q/ for some pure quaternion q, and ı D NrdA.x/
for some � skew-symmetric x 2 A, so that ı 2 NrdQ.Q�/. Hence, ı and �ı are reduced
norms, and we get �1 2 NrdQ.Q�/.

Assume conversely that �1 2 NrdQ.Q�/, and pick an arbitrary quadratic field
Z D F.

p
ı/ that splits Q. There exists a pure quaternion q 2 Q0 such that ı D q2 D

�NrdQ.q/. Since �1 2 NrdQ.Q�/, we get ı 2 NrdQ.Q�/, and since n is even, it follows
that there exists an orthogonal involution � of discriminant ı.

In view of Proposition 2.5, the following result provides examples of groups PGOC.A; �/
of type 2Dn, with n even and n � 3, which admit outer automorphisms but no outer
automorphisms of order 2.

P 3.8. – Let Q be a quaternion division algebra such that �1 2 NrdQ.Q�/,
and let Z be a quadratic splitting field for Q. For every even integer n � 2 there exists
an orthogonal involution � of Mn.Q/ with discriminant Z such that .A; �/ admits improper
similitudes. Moreover, .A; �/ does not have square-central improper similitudes.

Proof. – Since Z is a quadratic splitting field for Q, there exists ı, � 2 F � such that
Z D F.

p
ı/ and Q D .ı; �/F . Moreover, since the norm form of Q represents �1, the

quadratic form h1;��;�ı; �ı; 1i is isotropic. After scaling, we get that h��; 1; ı�;�ı;��i
also is isotropic, hence h1;��i and hı; �;�ı�i represent a common value. This means there
exists a pure quaternion q 2 Q0 such that a D q2 is a norm for the quadratic field extension
F.
p
�/=F , or equivalently .a; �/F D 0. So we have Q D .ı; �/F D .aı; �/F . Let q0 be a

pure quaternion with square aı, and let � be the adjoint involution with respect to the skew-
hermitian form h D hq0; q; q; : : : ; qi. Since n is even, � has discriminant ı. Moreover, by
Lemma 3.3, � admits an improper similitude with multiplier �. SinceQ is a division algebra,
the last assertion follows from Lemma 2.8.

To produce examples of groups satisfying (Out 1) but with no outer automorphisms, we
use the “orthogonal generic sums” defined above. More precisely, we consider the following:

P 3.9. – Let Q be a quaternion division algebra. Assume Q contains pure
quaternions q1, q2, q3 with respective squares a1, a2, and a3 such that

1. Q is split by F.
p
a1a2/;

2. Q is not split by F.
p
a1a3/ nor by F.

p
a2a3/.

Then the involution � on A D Mn.bQ/, with n even, n � 3, defined as in Proposition 3.6 with
q1, q2, q3 as above and q4 D � � � D qn D q3, admits no improper similitudes, yet Q is split by
the discriminant quadratic extension Z=F .
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Proof. – Since n is even, � has discriminant a1a2, hence the first condition guarantees
that Q is split by Z. It remains to prove that Q has no improper similitudes. By Proposi-
tion 3.6, this means we have to prove

G"1.a1/ \ � � � \G"n.an/ D ;;

for all "1,. . . , "n 2 f˙1g such that "1 : : : "n D �1. Recall that � 2 GC.ai / (respectively
G�.ai /) if and only if .�; ai /F D 0 (respectively .�; ai /F D Q). SinceQ is a division algebra,
it follows that GC.a3/ \ G�.a3/ D ;. Thus, if the intersection above is nonempty, then
"3 D � � � D "n. Since n is even, we have "3 : : : "n D "n�23 D 1. Therefore, it is enough to
prove that the following intersections are empty:

(i) GC.a1/ \G�.a2/ \GC.a3/ D ;; (ii) G�.a1/ \GC.a2/ \GC.a3/ D ;;

(iii) GC.a1/ \G�.a2/ \G�.a3/ D ;; (iv) G�.a1/ \GC.a2/ \G�.a3/ D ;:

Assume that some � 2 F � belongs to the intersection (i) (respectively (iv)). The two quater-
nion algebras .�; a1/F D .�; a3/F are split (respectively equal to Q), while the third one
is .�; a2/F D Q (respectively is split). In each case, we get that Q D .�; a2a3/F . This is
impossible, since we assumed that F.

p
a2a3/ does not split Q. Similarly, if � belongs to the

intersection (ii) or (iii), we get Q D .�; a1a3/F , which again is impossible.

The following example provides an explicit quaternion algebraQ satisfying the conditions
of Proposition 3.9, hence examples of groups PGOC.A; �/ of type 2Dn with n even, n � 3,
for which (Out 1) holds but not (Out 2).

E 3.10. – Consider a field k of characteristic ¤ 2 such that �1 2 k�2. Assume
k is the center of a quaternion division algebra .a1; a2/k , and let F D k.r; s; t/ where r , s,
and t are independent indeterminates. Let Q D .a1; a2/F and a3 D a1r2 C a2s2 C a1a2t2 2 F �.
Clearly, Q is a quaternion division algebra containing pure quaternions q1, q2, q3 with
q2i D ai for i D 1, 2, 3. Since �1 2 F �2, the algebra Q D .a1; a2/F D .a1; a1a2/F is split
by F.

p
a1a2/. If Q is split by F.

p
a1a3/, then a1a3 is represented over F by the quadratic

form ha1; a2; a1a2i, hence (after scaling by a1) a3 is represented by h1; a2; a1a2i over F .
Because r , s, t are indeterminates, Pfister’s subform theorem [8, Th. IX.2.8] shows that this
condition implies that ha1; a2; a1a2i ' h1; a2; a1a2i over k, hence (by Witt’s cancellation
theorem or by comparing discriminants) a1 2 k�2. This is impossible since .a1; a2/k is a divi-
sion algebra. Similarly, if Q is split by F.

p
a2a3/, then a2a3 is represented by ha1; a2; a1a2i

over F , hence a3 is represented by h1; a1; a1a2i over F , and ha1; a2; a1a2i ' h1; a1; a1a2i
over k, a contradiction since a2 … k�2. Hence, the quaternion algebra Q satisfies the
conditions of Proposition 3.9.

3.3.2. Type 2Dn, with n odd. – We again use the orthogonal generic sums defined in §3.2.
More precisely, we have the following:

P 3.11. – Let Q be a quaternion division algebra. Assume Q contains pure
quaternions q1, q2, q3 with respective squares a1, a2, and a3 such that

1. Q is split by F.
p
a1a2a3/;

2. There is no � 2 F � such that Q D .a1; �/F D .a2; �/F D .a3; �/F .
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Consider the involution � ofA DMn.bQ/, with n odd, n � 3, defined as in Proposition 3.6, with
q1, q2, q3 as above and q4 D � � � D qn D q3. This involution admits no square-central improper
similitudes, yetQ is split by the discriminant quadratic extensionZ=F . Moreover, if in addition
�1 … NrdQ.Q�/, then � has no improper similitudes.

Proof. – Since n is odd, � has discriminant a1a2a3. Therefore condition (1) guarantees
that Q is split by the discriminant quadratic algebra Z. Moreover, arguing as in the proof
of Proposition 3.9, and taking into account the fact that n is now odd, we get that � has
improper similitudes if and only if one of the following intersections is nonempty:

(i) GC.a1/ \GC.a2/ \G�.a3/; (ii) GC.a1/ \G�.a2/ \GC.a3/;

(iii) G�.a1/ \GC.a2/ \GC.a3/; (iv) G�.a1/ \G�.a2/ \G�.a3/:

In addition, we know by Proposition 3.6 that � has a square-central improper similitude if
and only if the fourth intersection is nonempty, or equivalently, if there exists � 2 F � such
that Q D .�; ai /F for i D 1, 2, 3. This is impossible by condition (2).

If the involution � has an improper similitude, then one of the intersections (i), (ii) or
(iii) is nonempty. So assume for instance there exists � 2 F � such that Q D .�; a3/F and
.�; a1/F D .�; a2/F D 0. The first equation shows that there exists a pure quaternion z
such that � D z2 D �NrdQ.z/. On the other hand, since .�; a1/F D 0, there exists a
quaternion z0 2 F.q1/ such that � D NF.q1/=F .z

0/ D NrdQ.z0/. Therefore, both � and
�� are reduced norms, and it follows �1 also is a reduced norm. This concludes the proof
of the proposition.

Adapting a construction from [3] (see also [12, §10.2.2]), we now describe an explicit
example of a quaternion algebra satisfying the conditions of Proposition 3.11, and we use
it to give examples of groups of type 2Dn, with n odd, satisfying (Out 1) and not (Out 2), or
(Out 2) and not (Out 3).

E 3.12. – Let k be an arbitrary field of characteristic 0, and let F D k.a1; a2/,
where a1 and a2 are independent indeterminates. Consider the quaternion division algebra
Q D .a1; a2/F , and let

(3) a3 D a1
�
.1 � a1/

2.1C a2/
2
� 4.1 � a1/a2

�
:

The algebra Q satisfies the conditions (1) and (2) of Proposition 3.11.

Proof. – It is clear that Q contains pure quaternions q1, q2 with q21 D a1 and q22 D a2.
Computation yields

.1 � a1/
2.1C a2/

2
� a�11 a3 D 4.1 � a1/a2;

hence the quaternion algebra .a�11 a3; .1 � a1/a2/F is split. Therefore,

.a3; .1 � a1/a2/F ' .a1; .1 � a1/a2/F ' Q;

and it follows that Q contains a pure quaternion q3 with q23 D a3.

Another computation yields

.1 � a1/
2.1 � a2/

2
� a�11 a3 D 4a1.1 � a1/a2;
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hence the quaternion algebra .a�11 a3; a1.1�a1/a2/F is split. Since we already observed that
.a�11 a3; .1 � a1/a2/F is split, it follows that .a�11 a3; a1/F is split, hence

(4) .a1; a3/F ' .a1; a1/F ' .a1;�1/F :

We thus see that .a1;�a3/F is split, hence

Q ' .a1;�a2a3/F ' .a1; a1a2a3/F :

Therefore, Q is split by F.
p
a1a2a3/.

Suppose now that there exists some � 2 F � such that

(5) Q D .a1; �/F D .a2; �/F D .a3; �/F :

To obtain a contradiction, we use valuation theory as in [12, §10.2.2]: since char k D 0, we
may find on k a dyadic valuation v0, with value group some ordered group � and residue
field k of characteristic 2. Consider the Gaussian extension v1 of v0 to F , with value group �
and residue field k.a1; a2/, and let v be the valuation on F obtained by composing v1 with
the .1 � a1/-adic valuation on k.a1; a2/. The value group of v is Z � � with the right-to-
left lexicographic ordering, and the residue field is k.a2/. It is clear that v extends uniquely
toF.

p
a2/, and this extension is unramified with a purely inseparable residue field extension.

In [12, p. 509], it is shown that v also extends uniquely to F.
p
a1/ and F.

p
a1a3/, and that

these extensions are totally ramified.

Now, sinceQ ' .a2;�a1a2/F and (5) holds, we see that�a1a2� is a norm from F.
p
a2/.

Because F.
p
a2/ is an unramified extension of F , it follows that v.�a1a2�/ 2 2v.F �/.

Scaling � by the square of an element in F �, we may assume v.�a1a2�/ D 0 and take
the residue �a1a2� D a2� 2 k.a2/. (We can omit the sign, since k has characteristic 2.)
Since Q ' .a1;�a1a2/F , we also derive from (5) that �a1a2� is a norm from F.

p
a1/.

As F.
p
a1/ is totally ramified over F , it follows that �a1a2� 2 F

�2
, hence a2� 2 k

2
.a22/.

But (5) also shows that .a1a3; �/F is split, hence � is a norm from the totally ramified exten-

sion F.
p
a1a3/, and therefore � 2 k

2
.a22/. We thus reach the conclusion that a2 2 k

2
.a22/, a

contradiction.

C 3.13. – LetQ be the quaternion algebra of Example 3.12 and q1, q2, q3 2 Q
be pure quaternions satisfying q2i D ai for i D 1, 2, 3. Fix an odd integer n � 3 and consider
as in Proposition 3.6bF D F..t1// : : : ..tn//; bQ D Q˝F bF ; A DMn.bQ/;
and � the involution on A adjoint to the skew-hermitian form bh D ht1q1; : : : ; tnqni with
q4 D � � � D qn D q3. The group PGOC.A; �/ satisfies (Out 1) but not (Out 3), and it satisfies
(Out 2) if and only if �1 2 k�2.

Therefore, depending on the base field k we started with, we get the required examples.

Proof. – Proposition 3.11, together with Proposition 2.5, already shows that the group
PGOC.A; �/ satisfies (Out 1) and not (Out 3), and that it does not satisfy (Out 2) if �1 …
NrdQ.Q�/. Therefore, it only remains to show that �1 is not a reduced norm of Q if
�1 … k�2, and that � admits improper similitudes if �1 2 k�2.
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The first part is clear: the reduced norm of Q is the quadratic form

nQ ' h1;�a1;�a2; a1a2i

over F D k.a1; a2/. Since a1 and a2 are indeterminates, this quadratic form represents �1 if
and only if �1 2 k�2.

Now, assume that �1 2 k�2. Since Q D .a1; a2/F , we have a1 2 G�.a2/. Moreover,
because �1 2 k�2 the quaternion algebras .a1; a1/F and .a1; a3/F are split (see (4)), so
a1 2 GC.a1/ \GC.a3/. Therefore,

a1 2 GC.a1/ \G�.a2/ \GC.a3/:

Proposition 3.6 then shows that � admits improper similitudes.

R 3.14. – As shown in [6, §15.D], the Clifford algebra construction defines an
equivalence of categories from the groupoid D3.F / to the groupoid A3.F /. For any central
simple algebra A of degree 6 with orthogonal involution � over a field of characteristic
different from 2, the Clifford algebra C.A; �/ has degree 4 and carries a canonical unitary
involution � , and we have canonical isomorphisms (see [6, (15.26), (15.27)])

Spin.A; �/ ' SU.C.A; �/; �/; PGOC.A; �/ ' PGU.C.A; �/; �/:

Therefore, Corollary 3.13 with n D 3 readily yields examples of groups of type 2A3 that
satisfy (Out 1) but not (Out 2), or (Out 2) but not (Out 3). In particular, by Proposition 2.2,
it also provides examples of unitary involutions that do not have a descent. In view of
Theorem 1.3, we know that the algebra C.A; �/ in these examples is a division algebra of
degree 4.

For use in §4.3, we still make a few observations on the square-central similitudes of the
skew-hermitian form of Corollary 3.13 in the particular case where n D 3, i.e.,bh D ht1q1; t2q2; t3q3i
with q1, q2, q3 as in Example 3.12.

L 3.15. – Assume �1 2 k�2. Every square-central similitude g of bh is proper and
satisfies

g2 D �.g/ 2 bF �2:
Proof. – Let g2 D � 2 bF �. We have �2 D �.g2/ D �.g/2, hence � D ˙�.g/. Scaling g,

we may assume by Theorem 3.4 that �.g/ 2 F �, hence also � 2 F �. By Proposition 3.5 we
then have eg D g1 ˚ g2 ˚ g3
for some gi 2 Sim.hi / with �.g/ D �.g1/ D �.g2/ D �.g3/ and � D eg2 D g21 D g22 D g23 .
By Example 3.12 and Proposition 3.11 the similitude g must be proper since it is square-
central. Therefore, the number of improper similitudes among g1, g2, g3 is even, so at least
one of g1, g2, g3 is a proper similitude. If gi is proper, then gi 2 F.qi /�. Since gi is square-
central, it follows that gi 2 F � [ qiF �, hence g2i 2 F

�2 [ aiF
�2 and �.gi / D NrdQ.gi / 2

F �2[.�ai /F
�2. If gi is improper, then

�
ai ; �.gi /

�
F
' Q: see Lemma 3.2. We now consider

the various possibilities:
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(1) If g1 is proper and g2, g3 are improper: then �.g/ 2 F �2 [ .�a1/F
�2 and�

a2; �.g/
�
F
'
�
a3; �.g/

�
F
' Q. Since �1 2 k�2, the quaternion algebra .a3;�a1/F

is split (see (4)) whereas Q is not split, so this case is impossible.
(2) If g2 is proper and g1, g3 are improper: then �.g/ 2 F �2 [ .�a2/F

�2 and�
a1; �.g/

�
F
'

�
a3; �.g/

�
F
' Q. Since Q is not split, we must have �.g/ 2

.�a2/F
�2 D a2F

�2, and we get .a1; a2/F D .a3; a2/F , hence .a1a3; a2/F is split. By
definition of a3 (see (3)), this means that the quaternion algebra�

.1 � a1/..1 � a1/.1C a2/
2
� 4a2/; a2

�
F

is split. This is a contradiction, since this quaternion algebra is ramified for the
.1 � a1/-adic valuation.

(3) If g3 is proper and g1, g2 are improper: this case is excluded just like the previous two,
because the quaternion algebra .a1; a3/F is split.

The only remaining case is when g1, g2, and g3 are proper, hence�.gi / 2 F �2[.�ai /F �2

for each i . Since a1, a2, and a3 are in different square classes and �.g1/ D �.g2/ D �.g3/,
it follows that �.gi / 2 F �2, hence gi 2 F � for all i . Then � D g2i D �.gi / for all i , hence
g2 D �.g/ 2 F �2.

4. Outer automorphisms and similitudes: the unitary case

We now turn to the results concerning unitary groups. We already gave in Remark 3.14
examples of groups of type 2A3 satisfying (Out 1) but not (Out 2), or satisfying (Out 2) but
not (Out 3). The other examples we will provide are of the form PGU.B; �/withB of index 2.
Unitary involutions on algebras of index 2 are examined in detail in §4.1, and the examples
are given in §4.3. They are based on a generic construction of hermitian forms of unitary type
which is discussed for division algebras of arbitrary index in §4.2.

The characteristic is arbitrary in §4.1; it is assumed to be different from 2 in §4.2 and §4.3.

4.1. Similitudes for unitary hermitian forms over a quaternion algebra

LetQ be a quaternion division algebra over a fieldK of arbitrary characteristic, which is
a quadratic separable extension of some subfield F . We write � for the nontrivial automor-
phism ofK over F . Let .B; �/ be an algebra with unitary involution Brauer-equivalent toQ.
We have seen in § 2.1 that outer automorphisms of PGU.B; �/ are given by �-semilinear auto-
morphisms of .B; �/. In this section, we describe them explicitly in terms of the underlying
hermitian space.

Let U be a finite-dimensional rightQ-vector space such that B D EndQ U . By a theorem
of Albert [6, (2.22)], unitary involutions on B exist only if Q has a descent to F . We fix a
quaternion F -subalgebra Q0 � Q and identify Q D Q0 ˝F K. Let also U0 � U be a
Q0-subspace of U such that U D U0 ˝F K. Thus, Q0 and U0 are the fixed F -algebra and
Q0-subspace of the following �-semilinear automorphisms of Q and U :

�Q D IdQ0 ˝�; �U D IdU0 ˝�:
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Similarly, EndQ0 U0 is the F -algebra fixed under the �-semilinear automorphism of EndQ U
that maps f 2 EndQ U to the endomorphism f � defined by

f �.x/ D �U
�
f .�U .x//

�
for all x 2 U .

The canonical involution on Q commutes with �Q because for x 2 Q

�Q.x/ D �Q.TrdQ.x/ � x/ D TrdQ.�Q.x// � �Q.x/ D �Q.x/:

Let � D ı �Q, a unitary involution onQ which restricts to the canonical involution onQ0.
The unitary involution � on B D EndQ U is the adjoint involution � D adh for some
nondegenerate hermitian form hWU � U ! Q with respect to � .

A conjugate hermitian form h� is defined on U by

h�.x; y/ D �Q
�
h.�U .x/; �U .y//

�
for x, y 2 U .

It is readily verified that the adjoint involutions of h and h� are related as follows:

(6) adh�.f /
�
D adh.f

�/ for all f 2 EndQ U .

We define a map g 2 EndQ U to be a similitude .U; h/! .U; h�/ if there exists � 2 F � such
that

h�
�
g.x/; g.y/

�
D �h.x; y/ for all x, y 2 U .

The factor � is said to be the multiplier of g. We write �.g/ for the multiplier of g, and
Sim.U; h; h�/ or Sim.h; h�/ for the set of similitudes .U; h/! .U; h�/.

P 4.1. – Every �-semilinear automorphism ' of the algebra with unitary invo-
lution .B; �/ has the form 'Wf 7! g�1f �g for some g 2 Sim.U; h; h�/. This automorphism
' has order 2 if and only if g�g 2 F �.

Proof. – It follows from the Skolem-Noether theorem that every �-semilinear automor-
phism ' of EndQ U has the form 'Wf 7! g�1f �g for some g 2 EndQ U . Equation (6) shows
that ' commutes with adh if and only if Int.g�1/ ı adh� D adh ı Int.g�1/. But Int.g�1/ ı
adh� ı Int.g/ is the adjoint involution of the form .x; y/ 7! h�.g.x/; g.y//, so ' commutes
with � if and only if g is a similitude .U; h/! .U; h�/. The last assertion follows by a straight-
forward computation.

R 4.2. – For g 2 Sim.U; h; h�/ we have g� 2 Sim.U; h�; h/ with �.g�/ D �.g/,
hence for all x, y 2 U

h
�
g�g.x/; g�g.y/

�
D �.g/h�

�
g.x/; g.y/

�
D �.g/2h.x; y/:

Therefore, if g�g D � 2 F �, then �2 D �.g/2, hence � D ˙�.g/.

Of course, in the discussion above the choice of Q0 is arbitrary, and h is defined up to a
scalar factor. Multiplying h by some nonzero central element ˛ such that �.˛/ D �˛, we may
assume h is skew-hermitian instead of hermitian. More generally, for any q 2 Q� such that
�.q/ D �q, we may consider � 0 D Int.q/ ı � and set

h0.x; y/ D q h.x; y/ for x, y 2 U .

Then h0 is a nondegenerate skew-hermitian form with respect to � 0, and clearly adh0 D adh.
Let also �0Q D Int.q/ı�Q. The condition �Q.q/ D �q yields �Q.q/ D �q, hence q�Q.q/ 2 F �
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and therefore �0Q is a �-semilinear automorphism of Q of order 2. Letting Q00 denote the
F -subalgebra of Q fixed under �0Q, we have

Q D Q00 ˝F K and � 0 D ı �0Q D �
0
Q ı :

Here is one case where an appropriate choice of q may lead to a substantial simplification:

P 4.3. – Let e1,. . . , en be an orthogonal Q-base of .U; h/, and let

h D hq1; : : : ; qni

be the corresponding diagonalization of h. If the K-span of the quaternions q1,. . . , qn has
dimension at most 3, then there is a quaternion q 2 Q� such that the skew-hermitian form
h0 D qh over .Q; � 0/ has a diagonalization

h0 D hqq1; : : : ; qqni

with qqi 2 Q00 for i D 1,. . . , n. The skew-hermitian form h0 then restricts to a nondegenerate
skew-hermitian form h00 (over .Q00; /) on the Q00-span U 00 of e1,. . . , en, and we have

.B; �/ D .EndQ U; adh/ D .EndQ0
0
U 00; adh0

0
/˝F .K; �/:

Proof. – Let S � Q be the K-span of q1,. . . , qn, and let S? � Q be the orthogonal of S
for the norm form on Q. Since NrdQ.q/ D qq D qq for every q 2 Q, we have

S? D fs 2 Q j sqi C qis D 0 for all ig D fs 2 Q j sqi C qis D 0 for all ig:

The K-space S? is stable under � because �.qi / D qi for all i and � commutes with . If
dimS � 3, then dimS? � 1, hence we may find q 2 Q� such that q�1 2 S? and �.q/ D �q.
(Take q D .s � �.s//�1 for any s 2 S? such that �.s/ ¤ s; if no such s exists we must have
S? D f0g because � is �-semilinear.) Since �.qi / D qi and �.q/ D �q we have qi D �Q.qi /

and q D ��Q.q/, hence

�Q.qi /q
�1
D qiq

�1
D �q�1qi D �Q.q/

�1qi for i D 1,. . . , n:

Therefore,

�0Q.qqi / D q�Q.q/�.qi /q
�1
D qqi for i D 1,. . . , n.

We have thus shown qqi 2 Q00 for i D 1,. . . , n; the other assertions readily follow.

The condition on the dimension of the K-span of q1, . . . , qn is automatically satisfied if
n � 3. Therefore, Theorem 1.3 forB of index 2 follows from Proposition 4.3. The case where
B is split was already considered in Corollary 2.4.

Note that the proof does not require any hypothesis on the characteristic. (Of course,
skew-hermitian forms are hermitian in characteristic 2.)
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4.2. Generic construction of hermitian forms of unitary type

In this section, we fix a central division algebra with involution of the first kind .D; �/ over
an arbitrary field F of characteristic different from 2. Adjoining to F an indeterminate t , we
consider the fields of Laurent seriesbK D F..t// and bF D F..t2// � bK:
We let � denote the nontrivial bF -automorphism of bK and

.bD;b�/ D .D; �/˝F .bK; �/:
Thus, .bD;b�/ is a central division algebra over bK with unitary involution. Over this division
algebra, we construct hermitian forms of a particular type, as follows: let .V1; h1/ be a
hermitian space over .D; �/ and let .V2; h2/ be a skew-hermitian space over .D; �/. Extending
scalars, we obtain a hermitian form bh1 on bV1 D V1 ˝F bK and a skew-hermitian form bh2
on bV2 D V2 ˝F bK (over .bD;b�/). We then set

.bU ;bh/ D .bV1 ˚ bV2;bh1 ? htibh2/:
Since �.t/ D �t andbh2 is skew-hermitian, the form htibh2 is hermitian, hencebh is a hermitian
form on bU over .bD;b�/. Set bD0 D D˝F bF ; we have bD D bD0˝ bF bK; hence, the algebra bD has
a descent. Define �bD D IdD˝� D IdbD0 ˝�, and bU0 D .V1˚ V2/˝F bF , �bU D IdbU0 ˝�. Every

vector x 2 bU has a unique expression as a series x D
P
i xi ˝ t

i with xi 2 V1 ˚ V2 for all i ,
and �bU .x/ DPi xi ˝ .�t /

i . The conjugate hermitian form bh� is

(7) bh� D bh1 ? h�tibh2:
For the rest of this section, we assume h1 and h2 are anisotropic, hence bh is anisotropic.

As in §3.2, we use the t -adic valuation to obtain information on the set of similitudes
Sim.bU ;bh;bh�/. More precisely, we prove:

P 4.4. – Let .bU ;bh/ be defined as above by bh D bh1 ? htibh2, where h1
(respectively h2) is an anisotropic hermitian (respectively skew-hermitian) form over .D; �/.
Every similitude g 2 Sim.bU ;bh;bh�/ has the form g D �g0 for some � 2 bK� and some similitude
g0 2 Sim.bU ;bh;bh�/ with �.g0/ 2 F �. Moreover, on the graded module gr.bU/ associated to a
suitable norm on bU , the map g0 induces a mapeg0 of the formeg0 D g1˚g2 for some similitudes
g1 2 Sim.V1; h1/, g2 2 Sim.V2; h2/ with

�.g0/ D �.g1/ D ��.g2/:

Proof. – Let v be the t -adic valuation on bK. We write again v for its extension to bD and
define a v-norm on bU by

�.x/ D 1
2
v
�bh.x; x/� for x 2 bU .

Thus, we have �.x1/ 2 Z for x1 2 bV1, �.x2/ 2 1
2
C Z for x2 2 bV2, and

�.x1 C x2/ D min
�
�.x1/; �.x2/

�
2
1
2
Z for x1 2 bV1 and x2 2 bV2.

In view of (7) it follows that v
�bh.x; x/� D v�bh�.x; x/�, hence

(8) �.x/ D 1
2
v
�bh�.x; x/� for x 2 bU .
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The graded module gr.bU/ is defined as in §3.2. It carries a hermitian form eh and we have

.gr.bU/;eh/ D .gr.bV1/;eh1/ ? .gr.bV2/;eh2/; .gr.bU/;eh�/ D .gr.bV1/;eh1/ ? .gr.bV2/;�eh2/
where the hermitian forms eh1, eh2 are given byeh1.x1; y1/ D h1.x1; y1/ and eh2.x2; y2/ Det h2.x2; y2/
for x1, y1 2 V1 and x2, y2 2 V2.

Now, suppose gW .bU ;bh/ ! .bU ;bh�/ is a similitude. From bh��g.x/; g.x/� D �.g/bh.x; x/ it
follows by (8) that

�
�
g.x/

�
D �.x/C 1

2
v
�
�.g/

�
for x 2 bU .

Therefore, g induces a similitude egW .gr.bU/;eh/ ! .gr.bU/;eh�/, which shifts the grading
by 1

2
v
�
�.g/

�
. Note that 1

2
v
�
�.g/

�
2 Z because �.g/ 2 bF � bK. Therefore, gr.bV1/ and gr.bV2/

are invariant undereg. If�.g/ 2 F �, the restriction ofeg to V1 � gr.bV1/ (resp. to V2 � gr.bV2/)
is a similitude g1 2 Sim.V1; h1/ (resp. g2 2 Sim.V2; h2/), and we write (with a slight abuse
of notation)eg D g1 ˚ g2.

Since �.g/ 2 bF � we have v
�
�.g/

�
2 2Z hence there exists �0 2 bK� such that v

�
�.g/

�
D

2v.�0/. Then v
�
�.��10 g/

�
D 0 and we may find a 2 F �, m 2 bF � with �.��10 g/ D a.1Cm/

and v.m/ > 0. Arguing as in the proof of the first assertion of Theorem 3.4, we find �1 2 bF �
such that �21 D 1 C m, and set � D �0�1. Then g0 D ��1g 2 Sim.bU ;bh;bh�/ and
�.g0/ D a 2 F �. The equationeh��g0.x/; g0.y/� D aeh.x; y/ for x, y 2 gr.bU/
yields in particular

h1
�
g0.x1/; g

0.y1/
�
D a h1.x1; y1/ for x1, y1 2 V1

and
�et h2�g0.x2/; g0.y2/� D aet h2.x2; y2/ for x2, y2 2 V2.

Therefore, the restriction g1 ofeg to V1 is a similitude with �.g1/ D a, and the restriction g2
ofeg to V2 is a similitude with �.g2/ D �a.

R 4.5. – It is readily verified that �̃bU .x/ D ex for all x 2 V1˚V2. Therefore,eg� D eg
if �.g/ 2 F �.

4.3. Examples of groups of type 2An

In this section, we use Example 3.12 together with the generic construction of §4.2 to build
examples of unitary groups for which (Out 1) holds and (Out 2) fails, or (Out 2) holds and
(Out 3) fails.

Let n � 7 be an odd integer. Write n D 5 C 2m, where m � 1. We construct groups
of type 2An as unitary groups of hermitian forms of dimension 3 C m over a quaternion
division algebra with unitary involution. Since the index of the endomorphism algebra is 2,
these groups satisfy (Out 1).

Adjoining independent indeterminates to an arbitrary field k of characteristic 0, we form
the field

F D k.a1; a2; x1; : : : ; xm/..t1//..t2//..t3//
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and the quaternion algebra
Q D .a1; a2/F

with its conjugation involution . Let a3 2 F be defined by Equation (3). Recall from
Example 3.12 that Q contains pure quaternions q1, q2, q3 with q2i D ai for i D 1, 2, 3.
Adjoining to F another indeterminate t , formbK D F..t//; bF D F..t2// � bK; bQ D Q˝F bK:
Let � be the nontrivial bF -automorphism of bK. Consider the unitary involution b� D ˝ �

on bQ and the following hermitian form over .bQ;b�/:bh D hx1; : : : ; xmi ? htiht1q1; t2q2; t3q3i:
Let � D adbh be its adjoint involution on B DMmC3.bQ/.

P 4.6. – The algebra with involution .B; �/ does not admit any �-semilinear
automorphism of order 2. It admits �-semilinear automorphisms if and only if �1 2 k�2.

In view of Proposition 2.1, this provides a group PGU.B; �/which does not satisfy (Out 3),
and satisfies (Out 2) if and only if �1 2 k�2.

Proof. – Proposition 4.1 translates the conditions on semilinear automorphisms of .B; �/
into conditions on similitudes of bh. Thus, we have to show that there are no similitudes
g 2 Sim.bh;bh�/ such that g�g 2 bF �, and that Sim.bh;bh�/ is nonempty if and only if �1 2 k�2.

Note that the formbh is obtained by the generic construction of §4.2, with .D; �/ D .Q; /

and
h1 D hx1; : : : ; xmi; h2 D ht1q1; t2q2; t3q3i:

Suppose first �1 … k�2 and g 2 Sim.bh;bh�/. By Proposition 4.4 we may assume
�.g/ 2 F �, hence eg D g1 ˚ g2 for some similitudes g1 2 Sim.h1/, g2 2 Sim.h2/ with
�.g1/ D ��.g2/. Since by Corollary 3.13 h2 does not admit improper similitudes, the
similitude g2 must be proper, hence by [6, (13.38)] �.g2/ is a norm from the discriminant
extension, which is F.

p
a1a2a3/. As this extension splitsQ, it follows that�.g2/ is a reduced

norm of Q, hence

(9) h�.g2/ih1;�a1;�a2; a1a2i ' h1;�a1;�a2; a1a2i:

On the other hand, since g1 is a similitude of h1 with multiplier ��.g2/, we have

h��.g2/ih1 ' h1:

It follows that ��.g2/ is also the multiplier of a similitude of the “trace” quadratic form
'.x/ D h1.x; x/, which is

' ' h1;�a1;�a2; a1a2ihx1; : : : ; xmi:

Taking into account (9), we see that

h�1ih1;�a1;�a2; a1a2ihx1; : : : ; xmi ' h1;�a1;�a2; a1a2ihx1; : : : ; xmi:

This is impossible because �1 … k�2 and a1, a2, x1,. . . , xm are indeterminates. Therefore,
Sim.bh;bh�/ D ; if �1 … k�2.

Suppose next �1 2 k�2. Then bh D bh1 ? htibh2 is clearly isometric to bh� D bh1 ? h�tibh2,
hence Sim.bh;bh�/ is not empty. Assume g 2 Sim.bh;bh�/ satisfies g�g D � 2 bF �. As above, we
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may scale g and assume �.g/ 2 F �, hence also � 2 F � since � D ˙�.g/ by Remark 4.2.
By Proposition 4.4 we have eg D g1 ˚ g2
for some g1 2 Sim.h1/, g2 2 Sim.h2/ with �.g/ D �.g1/ D ��.g2/. By Remark 4.5, the
equation g�g D � yields eg2 D �, hence we also have g21 D g22 D �. Now, by Lemma 3.15
the similitude g2 must be proper and satisfy g22 D �.g2/ 2 F

�2 since it is square-central.
Scaling again, we may assume

�.g/ D �.g1/ D ��.g2/ D �1 and eg2 D g21 D g22 D 1:
The following lemma shows that h1 does not have any similitude g1 such that g21 D ��.g1/ D 1,
hence the existence of g leads to a contradiction and the proof of Proposition 4.6 is complete:

L 4.7. – There is no similitude g 2 Sim.h1/ such that g2 D ��.g/ D 1.

Proof. – Extending scalars to k.a1; a2/..x1// : : : ..xm//..t1//..t2//..t3//, we may regard h1
as a generic orthogonal sum of m times the hermitian form h1i over the quaternion algebra
H D .a1; a2/k.a1;a2/, and use the results of §3.2. If g 2 Sim.h1/ is such that g2 D ��.g/ D 1,
then by Lemma 3.5 we have eg D g1 ˚ � � � ˚ gm
for some gi 2 Sim.h1i/ D Sim.H; / with g2i D ��.gi / D 1. Each gi is a pure quaternion
because g2i D ��.gi /, and H does not contain any pure quaternion with square 1 because
it is not split. We thus obtain a contradiction.

Appendix: Trialitarian groups

Let G be an algebraic group scheme of adjoint type D4 over an arbitrary field F . Via the
�-action of the absolute Galois group of F on the Dynkin diagram � of G (see [11, §15.5])
we may associate to G a cubic étale F -algebra L such that

Aut.�/ D AutF .L/:

If g is the index of the kernel of the Galois action, the type of G is denoted by gD4.
Thus, if G is of type 6D4, then L is a noncyclic separable cubic field extension of F , so
AutF .L/ D fIdg and G does not have any outer automorphism defined over F . If G is of
type 2D4, then L ' F � Z for some separable quadratic field extension Z of F , and
G ' PGOC.A; �; f / for some quadratic pair .�; f / with discriminant Z over a central
simple F -algebra A of degree 8: see [11, §17.3.13]. This case has been discussed in §3. For
the rest of this appendix, we focus on types 1D4 and 3D4.

Type 1D4

In this case L ' F � F � F , hence Aut.�/ is the symmetric group S3, and G may have
outer automorphisms of order 2 or 3.

P 4.8. – Let G be an algebraic group scheme of adjoint type 1D4. For every
nontrivial subgroup H � Aut.�/, the following conditions are equivalent:

(1) every element in H fixes the Tits class tG;
(2) H is contained in the image of the canonical map Aut.G/! Aut.�/;
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(3) there is a subgroup H 0 � Aut.G/ isomorphic to H under the canonical map
Aut.G/! Aut.�/.

When jH j D 2 the conditions above hold if and only if G D PGOC.q/ for some 8-dimensional
quadratic form q with trivial discriminant. When jH j D 3 or 6, they hold if and only if
G D PGOC.q/ for some 3-fold quadratic Pfister form q.

Note that the conditions (1), (2), (3) are analogues of (Out 1), (Out 2), and (Out 3)
respectively.

Proof. – The implications (3)) (2)) (1) are clear, hence it suffices to prove (1)) (3).
Choose a representation G ' PGOC.A; �; f / for some central simple algebra A of degree 8
with a quadratic pair .�; f / of trivial discriminant. If H contains an element ˛ of order 2,
we may choose the representation of G in such a way that the action of ˛ on the Tits
algebras interchanges the two components C˙.A; �; f / of C.A; �; f /, see [6, (42.3)]. Then
(1) implies CC.A; �; f / ' C�.A; �; f /. Similarly, any element of order 3 in H permutes A,
CC.A; �; f /, and C�.A; �; f /. Thus, in each case we have CC.A; �; f / ' C�.A; �; f / if (1)
holds. Using the fundamental relations between A and C.A; �; f / in [6, (9.12)], we get that
A is split if (1) holds for any nontrivial H , and we may then represent G as PGOC.q/ for
some 8-dimensional quadratic form q of trivial discriminant. Since every quadratic space
admits square-central improper isometries, as pointed out in Remark 2.7, condition (3) holds
if jH j D 2. The proof is thus complete in this case.

If jH j D 3 or 6, the preceding arguments show that CC.A; �; f / and C�.A; �; f / are
isomorphic toAwhen (1) holds, hence they are also split; this means that by scaling q we may
assume q is a 3-fold Pfister form. Now, for any 3-fold Pfister form q we may choose a para-
Cayley algebra with norm form q, and use the multiplication in the algebra to define outer
automorphisms of PGOC.q/ of order 3, see [6, (35.9)]. Using in addition the conjugation in
the para-Cayley algebra, we may also define a subgroup of Aut.G/.F / isomorphic to S3, see
[6, (35.15)].

Type 3D4

In this case L is a cyclic cubic field extension of F , hence AutF .L/ ' Z=3Z. We may
then again consider the conditions (Out 1), (Out 2), and (Out 3), with the following slight
modification: in (Out 3), the outer automorphism has order 3 instead of 2. If charF ¤ 2,
the groupG can be represented in the formG D PGOC.T / for some trialitarian algebra (1) T ,
see [6, (44.8)]. The Allen invariant of G is a central simple L-algebra of degree 8.

P 4.9. – For G D PGOC.T / of type 3D4, conditions (Out 1) and (Out 2)
are equivalent; they hold if and only if the Allen invariant of T is split. Condition (Out 3) holds
if and only if T is the endomorphism algebra of a cyclic composition induced by a symmetric
composition over F .

(1) Trialitarian algebras are not defined in characteristic 2.
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The first assertion is the main Theorem A in Garibaldi-Petersson [5]. The second assertion
is proved in [7, Theorem 4.3].

As a result of this proposition, it is easy to find examples of groups of type 3D4 for which
(Out 1) and (Out 2) hold while (Out 3) fails: see [7, Remark 2.1].
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