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OUTER AUTOMORPHISMS OF
CLASSICAL ALGEBRAIC GROUPS

BY ANNE QUEGUINER-MATHIEU AND JEAN-PIERRE TIGNOL

ABSTRACT. — The so-called Tits class associated to an adjoint absolutely almost simple algebraic
group provides a cohomological obstruction for this group to admit an outer automorphism. If the
group has inner type, this obstruction is the only one. In this paper, we prove this is not the case for
classical groups of outer type, except for groups of type 2A,, with n even, or n = 5. More precisely, we
prove a descent theorem for exponent 2 and degree 6 algebras with unitary involution, which shows that
their automorphism groups have outer automorphisms. In all other relevant classical types, namely 2A,,
withn odd, n > 3 and 2D,,, we provide explicit examples where the Tits class obstruction vanishes, and
yet the group does not have outer automorphisms. As a crucial tool, we use “generic” sums of algebras
with involution.

RESUME. — A tout groupe algébrique absolument presque simple de type adjoint est associée une
classe de cohomologie connue sous le nom de «classe de Tits» qui donne une obstruction a ’existence
d’automorphismes extérieurs. Si le groupe est de type intérieur, il n’y a pas d’autre obstruction. Dans
ce travail, nous montrons qu’il n’en va pas de méme pour les groupes classiques de type extérieur, sauf
pour les groupes de type 2A,, avec n pair oun = 5. Plus précisément, nous établissons pour les algébres
a involution unitaire de degré 6 et d’exposant 2 un théoréme de descente qui montre que les groupes
d’automorphismes de ces algébres ont des automorphismes extérieurs. Pour les types 2A,, avec n impair,
n > 3, et les types 2Dy, nous construisons des exemples explicites ot I'obstruction donnée par la classe
de Tits est nulle alors que le groupe ne posseéde pas d’automorphisme extérieur. Un outil crucial de nos
constructions est la somme «générique» d’algebres a involution.

1. Introduction

Every automorphism of an absolutely almost simple algebraic group scheme G of adjoint
type over an arbitrary field F induces an automorphism of its Dynkin diagram A. Inner
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114 A. QUEGUINER-MATHIEU AND J.-P. TIGNOL

automorphisms of G act trivially on A, and there is an exact sequence of algebraic group
schemes

(1) 1 > G — Aut(G) — Aut(A) — 1,

see [2, exp. XX1V, 1.3, 3.6]. If G is split, the corresponding sequence of groups of rational
points is exact and split, see [6, (25.16)], [11, §16.3]. Therefore, a split adjoint group G admits
outer automorphisms if and only if its Dynkin diagram admits automorphismes, i.e., if G has
type A, with n > 2, D, with n > 3 or E¢. Moreover, in all three cases, Aut(A)(F) lifts to
an isomorphic subgroup in Aut(G)(F). This property does not hold generally for nonsplit
groups. For instance, if G is the connected component of the identity in the group scheme
of automorphisms of a central simple F-algebra with quadratic pair (4, o, f), then G has
no outer automorphisms if A is not split by the quadratic étale F-algebra defined by the
discriminant of the quadratic pair, see §2.2 below. More generally, Garibaldi identified in
[4, §2] a cohomological obstruction to the existence of outer automorphisms of an arbitrary
absolutely almost simple algebraic group scheme G: the group Aut(A)(F) actson H2(F, C),
where C is the center of the simply connected group scheme isogenous to G, and the Tits class
t¢ € H?(F,C) isinvariant under the action of the image of Aut(G)(F) in Aut(A)(F). There-
fore, automorphisms of A that do not leave ¢ invariant do not lift to outer automorphisms
of G. For adjoint or simply connected groups of inner type, Garibaldi showed in [4, §2] that
this is the only obstruction to the lifting of automorphisms of A. As he explainsin [4, Thm 11]
this has interesting consequences in Galois cohomology. In a subsequent paper, Garibaldi-
Petersson [5, Conjecture 1.1.2] conjectured that this Tits class obstruction is the only obstruc-
tion, also for adjoint or simply connected groups of outer type.

In this paper, we provide a complete answer to the question raised by Garibaldi and
Petersson for groups of outer type A and D, leaving aside trialitarian groups (see the
Appendix). Thus, in all the cases we consider, Aut(A)(F) has order 2. Our main goal is to
compare the following three conditions, listed from weaker to stronger:

(Out 1): The Tits class #g is fixed under Aut(A)(F);
(Out 2): G admits an outer automorphism defined over F;
(Out 3): G admits an outer automorphism of order 2 defined over F.

Under condition (Out 2), the sequence
1 > G(F) - Aut(G)(F) — Aut(A)(F) —> 1

is exact, and under condition (Out 3), it is split. In [4], Garibaldi proves that all three
conditions are equivalent if G has inner type A or D (see Remarks 2.3 and 2.7). This is not
the case for groups of outer type, and our main result is the following:

THEOREM 1.1. — Let G be an absolutely almost simple adjoint or simply connected alge-
braic group scheme of type 2A,, withn > 2, or 2D,,, withn > 3.
(1) If G has type 2A,, with n even, or ?As, then conditions (Out 1), (Out 2) and (Out 3)
are equivalent.
(2) In all the other types, there are examples of groups for which (Out 1) holds and (Out 2)
does not hold, and examples of groups for which (Out 2) holds and (Out 3) does not
hold.
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OUTER AUTOMORPHISMS OF CLASSICAL ALGEBRAIC GROUPS 115

In other words, assertion (2) says there are examples where the condition on the Tits
class is satisfied, and yet G does not have any outer automorphism, and examples where
G has an outer automorphism, but no outer automorphism of order 2. In particular, this
disproves Conjecture 1.1.2 in [5], and provides examples of simply connected absolutely
simple algebraic group schemes G for which the Galois cohomology sequence

HYF,C)— HY(F,G) - H!(F,Aut(G))
from [4, Thm 11(b)] (where C is the center of G) is not exact.

Every absolutely almost simple algebraic group scheme of adjoint type 2A, over F is
isomorphic to PGU(B, t) = Autg (B, t) for some central simple algebra B of degree n + 1
over a separable quadratic field extension K of F with a K/F-unitary involution 7. As
explained below in §2.1, condition (Out 1) holds for the group PGU(B, 1) if and only if
B has exponent at most 2, and condition (Out 3) holds if and only if (B, t) has a descent,
ie, (B,t) = (Bo,t0) ®F (K,t) for some central simple F-algebra with F-linear involu-
tion (By, tp). For n even, Theorem 1.1(1) can be reformulated in a more precise form:

THEOREM 1.2. — Let (B, t) be a central simple algebra with unitary involution. If deg B is
odd, then conditions (Out 1), (Out 2), and (Out 3) for PGU(B, t) are equivalent and hold if
and only if B is split.

The proof is easy: see Corollary 2.4.

Now, assume G = PGU(B, ) has type ?As, i.e., B has degree 6. If the exponent of B is at
most 2, then its index is at most 2. Therefore, Theorem 1.1(1) for such groups follows from
the following descent theorem for algebras with unitary involution, proved in §4.1:

THEOREM 1.3. — Let (B, 1) be a central simple algebra of degree at most 6 and index at
most 2, with a K/ F-unitary involution. There exists a central simple algebra with orthogonal
involution (By, tg) over F, of the same index as B, such that (B, t) = (Bo, 70) ® (K, t), where
L is the unique nontrivial F-automorphism of K.

It also follows from this theorem that assertion (1) does hold for groups of type 2Az when
the underlying algebra B has index at most 2; but this does not apply to all groups of type 2As,
since a degree 4 central simple algebra of exponent 2 can be of index 4. An example of a
degree 4 and exponent 2 algebra with unitary involution that does not have a descent will be
provided in § 3.3.2 below (see Remark 3.14).

As usual for classical groups, we use as a crucial tool their explicit description in terms
of algebras with involution or quadratic pair. How conditions (Out 1), (Out 2) and (Out 3)
translate into conditions on these algebraic structures is explained in § 2. Section 3 studies
in more details the 2D,, case. In particular, we introduce our main tool for proving asser-
tion (2) of Theorem 1.1, namely “generic” orthogonal sums of hermitian forms or involu-
tions. In §4, using the same kind of strategy, we prove Theorem 1.3, and complete the proof
of Theorem 1.1 by producing examples of outer type 2A,,.

We refer the reader to [6] for definitions and basic facts on central simple algebras, involu-
tions, and quadratic pairs. Recall that if char F' # 2, then for any quadratic pair (o, f), o isan
involution of orthogonal type, and f is the map defined on the set Sym(A4, o) of o-symmetric
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116 A. QUEGUINER-MATHIEU AND J.-P. TIGNOL

elements by f(s) = % Trd4(s). Hence the quadratic pair is uniquely determined by the invo-
lution, and we usually write (A4, o) for (A, o, f) in this case.

Notation

If 2 is a structure (such as an algebra with involution or an algebraic group scheme)
defined over a field F, we write Aut(2l) for the algebraic group scheme of automorphisms
of 2 and Aut(l) for its (abstract) group of rational points:

Aut(®) = Aut()(F).

We use a similar convention for classical groups; thus for instance if (B, t) is a central
simple algebra with unitary involution over a separable quadratic field extension K of F,
then

PGU(B, 1) = Autg (B, 1) and PGU(B, 1) = PGU(B, 1)(F).

Note that an absolutely almost simple simply connected algebraic group scheme and its
isogenous adjoint group have the same automorphism group, hence it is enough to consider
adjoint groups. For isogenous groups that are neither adjoint nor simply connected, obstruc-
tion to the existence of an outer automorphism can arise from the fundamental group.

2. Groups of type A and D, and associated algebras with involution

The main purpose of this section is to point out how conditions (Out 1), (Out 2) and
(Out 3) can be translated in terms of the corresponding algebra with involution or quadratic
pair. Part of Theorem 1.1 follows immediately, as we will show. Throughout this section, F'is
an arbitrary field.

2.1. Type A

Let K be an étale quadratic F-algebra, and ¢ be the nontrivial F-automorphism of K.
Consider a central simple K-algebra with K/F-unitary involution (B, t). We denote
by (‘B,‘'t) the conjugate algebra with involution defined by ‘B = {‘'x | x € B} with the
operations

+ly="(x+y). xy="xy). Ax='@x) and ‘r(x) ="(r(x))

forx,y € Band A € K.
The following propositions were proven by Garibaldi-Petersson [5]:

ProrosiTION 2.1. — Let G = PGU(B, 7), with deg B > 3.

1. Condition (Out 1) holds for G if and only if B has exponent at most 2;

2. Condition (Out 2) holds for G if and only if (B, t) admits a -semilinear automorphism,
i.e., (B, 1) is isomorphic to (*B,'7),

3. Condition (Out 3) holds for G if and only if (B, t) admits a i-semilinear automorphism
of order 2.

ProrosiTION 2.2. — Condition (Out 3) holds for PGU(B, t) if and only if (B, t) has a
descent, i.e., there exists a central simple F-algebra with F -linear involution (By, t9) such that
(B, 1) ~ (Bg,10) ® (K, 1).
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OUTER AUTOMORPHISMS OF CLASSICAL ALGEBRAIC GROUPS 117

Proof of Proposition 2.1. — Those assertions are taken from [5, § 9]; for the reader’s conve-
nience, we briefly sketch an argument. One may understand the action of Aut(A)(F) on the
Tits class by looking at the action on the Tits algebras. For groups of type A, the symmetry
of the diagram, together with the description of the Tits algebras given in [6, § 27.B], shows
that tpgu(s,r) 1s invariant under the action of Aut(A)(F) if and only if B is invariant under
the action of the Galois group of K/ F, i.e., if B is isomorphic to its conjugate * B. Since t is a
semilinear involution, it induces an anti-automorphism between B and ‘ B. Therefore, B and
‘B are isomorphic if and only if B is isomorphic to its opposite algebra, i.e., B has exponent
at most 2.

Recall from [6, (26.9)] that there is an equivalence of categories between the groupoid A, (F)
of central simple algebras of degree n + 1 with a unitary involution over some étale quadratic
F-algebra and the groupoid A" (F) of adjoint absolutely almost simple linear algebraic
groups of type A, defined over F, under which (B, t) maps to the adjoint group PGU(B, 7).
Hence, PGU(B, t) and (B, t) have the same automorphisms. More precisely, the auto-
morphisms of PGU(B, t) defined over F coincide with the F-automorphisms of (B, 1),
see [6, (26.10)]. Among those, the inner automorphisms are the K-linear automorphisms
of (B, 1), while outer automorphisms coincide with ¢-semilinear automorphisms of (B, 7).
Therefore, PGU(B, ) admits an outer automorphism if and only if (B, 7) is isomorphic
to (* B,'t). Note that the condition deg B > 3 is crucial here. Indeed, if B = Q is a quater-
nion algebra, PGU(Q, t) has no outer automorphism, while (Q, t) does admit semilinear
automorphisms. O

Proof of Proposition 2.2. — If (B,t) =~ (Bo,7) ® (K.,t), then Idp, ®: is a semilinear
automorphism of B which commutes with t = 19 ® ¢, and has order 2. Therefore, it
induces an outer automorphism of PGU(B, ) of order 2. Conversely, assume (B, t) has a
t-semilinear automorphism ¢ of order 2. The F-algebra of fixed points By = B is a central
simple F-algebra of the same degree as B, hence

B =By ®F K.

Moreover, since ¢ commutes with 7, the restriction of t induces an F-linear involution
of By, and we have (B, t) = (By, 79) ®F (K, ) as required. O

REMARK 2.3. — If G hasinner type 'A,, then K ~ F x F and the corresponding algebra
with involution (B, t) is isomorphic to (E x E°P,¢) for some central simple F-algebra E,
with & the exchange involution (see [6, (2.14)]). If condition (Out 1) holds, then E has
exponent at most 2, hence by a theorem of Albert (see [6, (3.1)]) E carries an F-linear invo-
lution y. Identifying E ® r (F x F') with E x E, one may check that the map (x,y) € EXE
(x,y(»)°P) € Ex E°Pinduces an isomorphism between (E, y)® (Fx F,t) and (EX E°P, ¢).
Therefore (E x E°P,¢) has a descent, provided E has exponent at most 2. This shows
that conditions (Out 1), (Out 2) and (Out 3) are equivalent for groups of inner type 'A,,
as observed by Garibaldi [4, Ex. 17(i)]. Moreover, these conditions hold if and only if
G = PGU(E x E°P ¢g) = PGL(FE) with E of exponent at most 2. If n is even, then E has
odd degree n + 1, and the conditions hold if and only if F is split.

Combining Proposition 2.1 and 2.2 we already get Theorem 1.2. More precisely, we have
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118 A. QUEGUINER-MATHIEU AND J.-P. TIGNOL

COROLLARY 2.4. — Let G = PGU(B, t) withdeg B > 3.

1. If B is split, then G admits outer automorphisms of order 2.
2. If G has type 2A,, with n even, conditions (Out 1), (Out 2) and (Out 3) are equivalent,
and hold if and only if B is split.

Proof. — If B is split, we may assume B = Endg V for some K-vector space V. Then t is
the adjoint involution with respect to some nondegenerate hermitian form 4: V x V — K.
Pick a diagonalization of /4, corresponding to a K-basis (e;)1<i<n of V. For all i, we have
h(ei,e;) € F*, hence h restricts to a nondegenerate symmetric bilinear form » on the
F-vector space Vo = e F + --- + e, F. Therefore, (B, t) = (Endr Vp,adp) ®F (K,t) has a
descent, so (Out 3) holds for PGU(B, 7).

Now, assume that G has type 2A,, for some n > 3, with n even. Then G = PGU(B, 1),
where B has odd degree n + 1. Hence, under condition (Out 1), B is split, so (Out 3) holds
by the first assertion, and this concludes the proof. O

Corollary 2.4 was proved by Garibaldi-Petersson, see [5, Cor 9.1.2].

To prove Theorem 1.1(2), we will give in §3 and §4 examples of algebras with unitary
involutions (B, 7) such that either B has exponent 2 and (B, t) is not isomorphic to its
conjugate (‘B, ‘1), or (B, t) and (*B,'t) are isomorphic, yet (B, t) does not have a descent.
We provide examples of degree 4 and index 4, and examples of degree n + 1 and index 2 for
all odd n > 7; see Remark 3.14 and §4.3.

2.2. Type D

Let A be a central simple F-algebra of even degree, and let (o, /) be a quadratic pair on A.
We write GO(A, o, f) for the (abstract) group of similitudes of (A4, o, f), defined as

GO(A,0, f)={ge A" |o(g)g € F*and f olnt(g) = f}.

The scalar u(g) = o(g)g is called the multiplier of g. Mapping g € GO(A,o0, f)
to Int(g) yields an identification of GO(A,a, f)/F* with the group of rational points
PGO(A, 0, f) = Aut(A4, o, f). Every automorphism of (A4, o, ) induces an automorphism
of the Clifford algebra C(4,0, f). A similitude is said to be proper if the induced auto-
morphism of C(A, o, f) is the identity on the center Z; otherwise it is said to be improper.
The proper similitudes form a subgroup GO™ (4, o, f) which satisfies GO (4, 0, f)/F* =
PGO*1 (4,0, f) for PGO"(A,0, f) the connected component of the identity in
PGO(A,0, f) = Aut(4, 0, f).

If A = Endp V for some F-vector space V, then every quadratic pair (o, f) on A is
adjoint to some nonsingular quadratic form g on V, see [6, (5.11)]. In that case, we write
simply GO(V, ¢), PGO(V, ¢), etc. for GO(A4, o, ), PGO(A, g, f), etc.

PROPOSITION 2.5. — Let G = PGO™ (4,0, f), with degA = 2n > 4, and let
Z be the discriminant quadratic F-algebra of (o, f), i.e.,, Z is the center of the Clifford
algebra C(A, o, f). Assume Z is a field.

1. Condition (Out 1) holds for G if and only if A is split by Z;
2. Condition (Out 2) holds for G if and only if (A, o, f) admits improper similitudes;
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OUTER AUTOMORPHISMS OF CLASSICAL ALGEBRAIC GROUPS 119

3. Condition (Out 3) holds for G if and only if (A, o, f) admits square-central improper
similitudes.

In particular, condition (Out 1) holds if and only if the algebra A4 is Brauer-equivalent to
a quaternion algebra split by Z. This condition is necessary for the existence of an improper
similitude by the generalization of Dieudonné’s theorem on multipliers of similitudes given
in [6, (13.38)].

Proof. — (1): Let ¢ denote the nontrivial F-automorphism of Z, and let C = C(4, 0, f).
The Tits class #¢ is invariant under the action of Aut(A) if and only if C is isomorphic
to its conjugate algebra ‘C, or equivalently C ®z ‘C°P is split. Recall from [6, (9.12)] the
fundamental relations between A and C: if n is even, then C ® z C is split and the corestriction
Corz,F C is Brauer-equivalent to A. After scalar extension to Z, it follows from the latter
relation that the Z-algebra Az is Brauer-equivalent to C ® z *C. If n is odd, then C ® z C is
Brauer-equivalent to Az, while Corz,r C is split, hence C ® z ‘C is split. Thus, in each case
Az is Brauer-equivalent to C ® z ‘C°P, and we get that (Out 1) holds for G if and only if
Az is split.

(2) and (3): If deg A # 8, we may argue along the same lines as for Proposition 2.1, using
the equivalence of categories between the groupoid D, (F) of central simple F-algebras of
degree 2n with quadratic pair and the groupoid D" (F) of adjoint absolutely almost simple
groups of type D,,, which maps the algebra 4 with quadratic pair (o, f) to PGO™ (4,0, f),
see [6, (26.15)]. This line of argument does not apply to the case where deg A = 8, however,
because the description of D4(F) is different (see [6]). Therefore, we give a different proof,
which applies in all cases where deg A = 2n > 4.

We will need the following lemma, which is probably well-known:

LEMMA 2.6. — Let (V, q) be a hyperbolic space of dimension 2n > 4 over an infinite field E .
The map PGO(V, q) — Aut(PGO+(V, q)) which carries gE> to Int(g) is injective.

Proof. — Let b be the polar bilinear form of ¢, and let ey, f1, ..., en, fn be a symplectic
base of (V, q), i.e., a base such that g(e;) = g(f;) = 0 and
b(ei, fi) =1, b(ei,ej) =blei, fj) =b(fi, f;j) =0foralli, j = 1,...,n withi # j.

Since E is infinite, we may find «q,..., @, € E* such that aq, a7 1,..., oy, &' are pairwise
1 n
distinct and moreover, if char E # 2,

{al,afl,...,oen,a,jl} #* {—al,—afl,...,—an,—a,fl}.
Consider the proper isometry a € GO (V, ¢) defined by
alej) = a;e; and a(fi) = oeflf,- fori =1,...,n.

Let g € GO(V, ¢) be such that Int(g) is the identity on PGO™ (V, ). Then g"'ag = Aa for
some A € E*. Because g~ 'ag and a are isometries, we must have A = +1. Moreover, by
evaluatingag = Aga oney, ..., f, We obtain

ag(e;) = Aaig(e;) and ag(f) = re;'g(fi) fori =1,...,n.
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120 A. QUEGUINER-MATHIEU AND J.-P. TIGNOL

Thus, g(e;) (resp. g(f;)) is an eigenvector of a with eigenvalue Ac; (resp. Ao, 1. But the
eigenvalues of a are a1, oy L,..., oy, @, !, hence

{Aal,lafl,...,kan,kagl} = {ozl,otl_l,...,an,otn_l}

with A = +1. By the choice of «y,..., @, we must have A = 1, hence g(e;) must be a scalar
multiple of e; and g(f;) a scalar multiple of f;. Therefore, there exist y1,..., y» € E* such
that, letting u = u(g) be the multiplier of g,

gle) =vie  and  g(fi) = py ' fie
Thus, the matrix of g with respect to the base ey,..., f, is diagonal. Using [6, (12.24)] if
char E # 2and [6, (12.12)]if char E = 2, it is then easy to check that g is a proper similitude.
Since the map of algebraic group schemes PGO™ (V,q) — Aut(PGO™(V,q)) is injective

(cf. (1)), it follows that the homomorphism PGO™ (V,q) — Aut(PGO™(V, q)) is injective,
hence g € E*. O

Proof of Proposition 2.5(2) and (3). — The map g — Int(g) induces a map of algebraic
group schemes ® which fits in the following commutative diagram with exact rows:

1 —— PGO' (4,0, f) ——— PGO(4,0, f) —— Autp(Z) —— 1
| ‘| |
1 —— PGO' (4,0, f) —— Aut(PGO™" (4,0, f)) —— Aut(A) —— 1.

The differential d® is injective, since the restriction of ® to the connected component of
the identity PGO™ (4, 0, f) is the identity map. Moreover, Lemma 2.6 shows that over an
algebraic closure Fjj, the map

®a10: PGO(A, 0, f)(Falg) — Aut(PGO™ (4,0, f))(Faig)

is injective. It follows by [6, (22.2)] that ® is injective, and likewise W is injective. We have
Aut(A) >~ Autp(Z) if n # 4, and Aut(A) >~ Autp (F x Z) if n = 4. Since Z is assumed to
be a field, in each case the group of F-rational points is

Aut(A) >~ Z/27 ~ Autp (Z).
Therefore, the diagram above yields the following diagram with exact rows:

1 —— PGO™ (4,0, f) ——— PGO(A, 0, f) ——— Z/2Z

| -] |

1 —— PGO™ (4,0, f) —— Aut(PGO™ (4,0, f)) —— Z/27.

It follows that ® ¢ is an isomorphism, which proves (2) and (3) of Proposition 2.5. O

REMARK 2.7. — (i) If the algebra A is split, which means that PGO™ (4,0, f) =
PGO™(V,q) for some quadratic space (V,q), then (Out 3) holds, since each quadratic
space admits improper isometries of order 2.

(i1) The arguments in the proof of Proposition 2.5 also apply in the case where Z ~ F x F.
It follows that in this case (Out 1), (Out 2), and (Out 3) are equivalent, and hold if and only
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if A is split. Thus, adjoint groups of inner type D, admit outer automorphisms of order 2
whenever the Tits class obstruction vanishes, as pointed out by Garibaldi [4].

In the outer case, condition (Out 3) induces additional restrictions on the algebra 4 when
its degree is divisible by 4, as we now proceed to show:

LeEMMA 2.8. — Let G = PGO™ (A, 0, f) for some F-algebra with quadratic pair (A, o, f),
such thatdeg A = 0 mod 4, so G has type D,, with n even. If G admits an outer automorphism
of order 2, then A is split.

Proof. — In view of Remark 2.7, it suffices to consider the case where the center Z of
the Clifford algebra C = C(A4,0, f) is a field. By Proposition 2.5, if G admits an outer
automorphism of order 2, then (4, o, ) admits a square-central improper similitude g. As
explained in [6, § 13.A], g induces an automorphism C(g) of order 2 of C, which commutes
with the canonical involution ¢. Moreover, since g is improper, C(g) acts non trivially on Z.
Therefore, the fixed points C €®) form an F-algebra Cy of the same degree as C, and we have
C ~ Cy®F Z.Since C(g) commutes with the canonical involution ¢ of the Clifford algebra,
o restricts to an F-linear involution on Cy, so Cy has exponent at most 2. In view of the
fundamental relations [6, (9.12)], we get that A is Brauer-equivalent to Corz,r(Co @ Z) ~
Co ® Cy ~ 0, hence A is split, as required. O

To prove Theorem 1.1, we will construct in § 3.3 below examples of algebras with quadratic
pairs such that either A is split by the discriminant quadratic extension, yet (4, o, f) does
not admit improper similitudes, or (A4, o, f) admits improper similitudes, but no improper
similitudes of order 2. We provide examples of degree 2n for arbitrary n > 3. The index
of A is 2, as required by condition (Out 1).

3. Outer automorphisms and similitudes: the orthogonal case

Throughout this section, we assume that the base field F has characteristic different
from 2. Hence, we consider orthogonal involutions instead of quadratic pairs. Our goal is to
produce examples of groups of type 2D, for all n > 3, for which (Out 1) holds and (Out 2)
fails, or (Out 2) holds and (Out 3) fails. Before describing the explicit examples, we first recall
a few well-known facts on similitudes of hermitian forms, and we introduce our main tool in
this section, namely “generic” sums of hermitian forms.

By Proposition 2.5(1), if PGO™ (4, o) satisfies (Out 1), then A4 is split by the discriminant
quadratic algebra Z. In particular, A has index at most 2. Moreover, Remark 2.7 shows that
we may assume A is not split. Hence, our main case of interest is when A = M, (Q) for
some quaternion division algebra Q over F. However, our discussion of generic sums is more
general, because we think this tool could be useful in various other contexts.
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3.1. Similitudes of hermitian forms

Let D be a central division F-algebra. Assume D carries an F-linear involution p, and
let § = =£1. Let (V,h) be a §-hermitian space over (D, p). By definition, an element g €
Endp V is a similitude of (V, k) with multiplier u(g) = w if

h(g(x).g(y)) = wh(x,y)  forallx,yeV.

We write Sim(V, k) or Sim(h) for the group of similitudes of (V, &), which is also the group
of similitudes of Endp V for the adjoint involution ad;. Depending on § and the type of the
reference involution p, this group is a form of an orthogonal or a symplectic group:

GO(Endp V,ady) if ady is orthogonal,

Sim(V, h) = . . .
GSp(Endp V,ady) if ady, is symplectic.

For the rest of this subsection, let A = Endp V and degA = 2n, and suppose ady, is
orthogonal; this case occurs if and only if § = 1 and p is orthogonal, or § = —1 and p is
symplectic, see [6, (4.2)]. Since char F' # 2, we may distinguish as follows between proper
and improper similitudes: for g € Sim(V, &), taking the reduced norm of each side of the
equation u(g) = o(g)g, we see that 11(g)*" = Nrd4(g)?, hence Nrd4(g) = £u(g)". The

similitude g is proper if Nrd4(g) = wu(g)", and improper if Nrd4(g) = —u(g)"* (see [6,
(12.24)).

Suppose now V = Vi L --- L V, for some subspaces V1,..., V;, C V, hence h restricts
to a nonsingular §-hermitian form 4; on each V;. Fori = 1,..., r,let A; = Endp V;, pick

gi € Aj,andletg =g, @ --- @ g, € A be the map defined by

gxir+--+x)=g1(x1) + -+ gr(xy) forx; € V1,..., x, € V.

LemMa 3.1. — With the notation above, g is a similitude of h with multiplier  if and only
if each g; is a similitude of h; with multiplier . When this condition holds, the similitude g is
proper if and only if the number of improper similitudes among g1,..., g, is even.

Proof. — The first part is clear since i(g(x),g(y)) = wh(x,y) forallx, y € V if and
only if h;(gi(x). gi(y)) = whi(x,y) foralli, and all x, y € V;. To prove the second part,
letdegA; = 2n; fori =1,...,r,hencen = ny + --- + n,, and suppose Nrdy; (g;) = &;u™
with &; = £1. We then have

r

Nrdg(g) = HNI‘dA[. (gi) = (l_[ gi)llnl+"'+nr. 0

i=1 i=1

We next consider the particular case where D is a quaternion division algebra Q
and p is the canonical involution —, hence § = —1. The generalization of Dieudonné’s
theorem on multipliers of similitudes [6, (13.38)] then allows to distinguish between proper
and improper similitudes as follows: a similitude g of (V, h) is proper if the quaternion
algebra (Z, ju(g)) - is split (we write simply (Z, pu(g)) . = 0 in this case), and improper if it
is isomorphic to Q. For 1-dimensional skew-hermitian forms, we have the following more
precise result:
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LEmMA 3.2. — Let g be a nonzero pure quaternion in a quaternion division algebra Q, and
leta = q> € F*. Define

Gi@)={neF*|(a.w)r =0} and G_(a)={neF*|(@pnr =0}

Then G4 (a) is the group of multipliers of proper similitudes of the skew-hermitian form (q),
and G_(a) is the coset of multipliers of improper similitudes of (q). Moreover, the improper
similitudes of (q) are all square-central.

Proof. — The lemma follows from the explicit description of similitudes of (¢) given in
[6, (12.18)]: the proper similitudes form the multiplicative group F(g)* C QX, while the
improper similitudes are the elements v € Q* such that ug = —qu. O

In the case where each V; is 1-dimensional, Lemma 3.1 yields:

LemMaA 3.3. — Letqy,..., gn be pure quaternions in Q, consider the skew-hermitian form h
over (Q.7) defined by h = (q1.....qn), and let a; = q} € F*. If u € F* satisfies
(n,a;))r € {0, 0} for all i, then (V, h) admits a similitude with multiplier . Moreover, this
similitude is proper if and only if the number of pure quaternions among q1,..., 4, satisfying
(n,a;))F = Q is even.

Proof. — From the condition on u, it follows by Lemma 3.2 that each (g;) admits a
similitude g; with multiplier u. Then g = g1 & --- ® g, is a similitude of & with multiplier pu.
Lemma 3.1 shows that this similitude is proper if and only if the number of indices i such
that (u,a;)F = Q is even. O

Of course, most similitudes do not act diagonally, and the multipliers of similitudes
of (V, h) need not satisfy the condition given in the lemma; nevertheless, as we explain in
the next section, this condition actually characterizes multipliers of similitudes for some
particular involutions, which we call “generic sums of orthogonal involutions”.

3.2. Generic sums

Let D be a central division algebra over an arbitrary field F' of characteristic different
from 2. Assume D carries an involution p of the first kind, let § = +1, and let (V1, k1), ...,
(Vau, hy) be §-hermitian spaces over (D, p). Consider the field of iterated Laurent series in n
indeterminates

F=F((t) ... ().
and let
5=D®F F and I’/\, =V, ®F Ffori = 1,...,n.
The involution p extends to an involution p = p ® Idz on D. We also extend h; to a
5-hermitian form E on 17,-, and we let
V=& &, (tlm\l Lol (tn)ﬁn)

The adjoint involution ad; is an orthogonal sum, in the sense of Dejaiffe [1], of the invo-
lutions ad; ; we call it a “generic orthogonal sum” since each }/z\, is extended from an invo-
lution k; defined over F, and scaled by some indeterminate ¢;. We assume throughout that
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hi,..., hy are anisotropic, hence his anisotropic. Our goal is to relate the multipliers of simil-
itudes of (I’/\, ﬁ) to the multipliers of similitudes of (V1, h1),..., (Vy, hy), with the help of a
norm on the vector space V, ie., a valuation-like map for which V contains a splitting base
(see [9, §2]). More precisely, we prove:

THEOREM 3.4. — Let (ﬁ, ﬁ) be a “generic sum” of §-hermitian spaces (V;, h;) for1 <i <n,
as defined above.

1. If n > 3, every similitude g € Sim(f/\,iz\) has the form g = Ag’ for some A € F* and

some similitude g' with multiplier in F*.
2. For every similitude g € Sim(V, h) such that u(g) € F* C F*, there exist similitudes

gi € Sim(Vj, hi) fori = 1,..., n with u(g) = pn(g1) = -+ = 1(gn).

Proof. — The field F carries the (t1,...,ty)-adic valuation v with value group Z" ordered
lexicographically from right to left. This valuation is Henselian; it extends in a unique way
to a valuation on D with value group Z". We write again v for this valuation on D. Because
his anisotropic and v is Henselian, we may define a norm v on v by the following formula
(see [10, Prop. 3.1], [9, Cor. 3.6, Th. 4.6, Prop. 4.2]):

v(x) = %v(i{(x,x)) forx e V.

To describe the value set of this norm, let e; = (0,...,1,...,0) = v(¢;) be the i-th element
in the standard base of Z". For & = (a1, ...,0,) € Z" we write t* =] ...1," € F. Every
nonzero vector x; € I//\, can be written as a series x; = Y, X;ot® With x;4 € V;, where the
support {& | xjq F# O} is a well-ordered subset of Z". If « is the minimal element in this
support, then since h(x,ao,xmo) = t,h (Xiags Xiap) 7# 0 we have v(h(x,,x,)) = 200 + &;.
Thus,

vV \{0) = Le; + 72" c A2)".

It follows that v(17i) N v(17j) = {oo} fori # j.Therefore, forx = x; +---+ x, with x; € v
for all i, we have

2) v(x) = min(v(xl),...,v(xn)).
Thus, the value set of ?, for which we use the notation I'y, is
n
Ty ={w) [ x e V\{0} = JGea +2") c G2)".
i=1

We also need to consider the graded structures associated to norms and valuations.
For o € Z" we let

fza ={a € F|v(a) > a}, f’;a ={a € F|v(a)>a}, and I?a = I?Z(x/l:";a.

Thus, F, is a 1-dimensional vector space over F', spanned by the image of r%. We let

gr(f) = @ Fy.

aeZn
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Foreachnonzeroa € f, leta = a+ I*iv(a) € gr(l?). Wealsolet0 =0 € gr(I?), and note that
the multiplication in F induces a multiplication on gr(F), which turns this F-vector space
into a commutative graded ring in which every nonzero homogeneous element is invertible:

gr(F) = FIL. 5" 5 21,
The same construction can be applied to D, yielding the graded ring gr(ﬁ) =D Q®rF gr(l? ),
and also to V, yielding the graded module gr(V') over gr(D). From (2) it follows that

g (V) =gr(1) @ - @ gr(V).
see [9, Remark 2.6]. For each i, we have gr(IZ) =Vi®F gr(f), with a grading shifted by %ei.
Note that the grade sets of gr(f/\l), e gr(l//\,,), which are the value sets of I//\l, s I//\n, are
pairwise disjoint, hence every homogeneous component of gr(V) lies in exactly one gr(1;).

Let p = p®Idg(F) be the involution of the first kind on gr(D) extending p. By [9, Th. 4.6,

Prop. 4.2], we have v(h(x y) = vx) + v(y) for all x, y € V. Therefore, the §-hermitian
form % induces a §-hermitian form 7 on gr(V) defined on homogeneous elements by

R ) = | RED) o) = v + ).
0 if v(h(x, y)) > v(x) + v(y),

and extended by bilinearity to gr(I//\). Letting 7[, denote the restriction of 7 to gr(l//\i), we have
(er(V). 1) = (gr(V1). 1) L -+ L (gr(Va). F).
As observed above, we have gr(f/\,-) =V ®F gr(ﬁ ). The §-hermitian form E is given by
’hv~(x y)=hi(x,y)®% forx,y e V.

Now, suppose g: V>TVis a similitude of (V h) with multiplier u(g) € F*.Forx eV
we have h(g(x) gx)) = ;L(g)h(x x), hence

v(g(x)) = v(x) + tv(u(g))  forallx e V.

As a result, g induces a homomorphism of gr(ﬁ)—modules g gr(f/\) — gr(l7), defined on
homogeneous elements by

T®) =g(x) forxeV.
This homomorphism is a similitude of (gr(l’/\)j{) with multiplier /7(;5, and it shifts the
grading by %v (1(g)). It follows that the value set I'y;, which is the grade set of gr(V), is stable
under translation by %v(,u(g)) € (%Z)”. We must therefore have for alli = 1,...,n

n

36+ 3v((9)) € U (ec +127).
=

Suppose i, j are such that 1e; + Jv(u(g)) € 3&; + Z", and i # j. Fork # i, j we then
have ,
%ek + %v(u(g)) € %sk + %8_,‘ — %si +7" ¢ U(%el + 7).
=1
This contradiction implies that 1&; + %v’(\,u(g)) € 1e; + 7" for all i, hence v(u(g)) € 2Z".
Let v(i(g)) = 2v(Ag) for some Ao € F*, hence v(u(Ay'g)) = 0. Consider the residue
u(ryle) = a € F*. Wehave u(Ay'g) = a(1+m) forsomem € F with v(m) > 0. Since Fis
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Henselian and the characteristic of the residue field F is different from 2, we may find )kl eF
with A2 = 14m. Then w(A] 1/\0 g) = a,so wemay write g = Ag’ with A = Ao, € F* and
¢’ = A~'g. Then g’ € Sim(V, h) and u(g’) = a € F*. The first assertion of the theorem is
thus proved.

Now, we prove the second assertion. Consider a similitude g € Sim(f/\, iz\) and assume
its multiplier 11(g) is in F* < F*. Since v(u(g)) = 0, the similitude ¥ € Sim(gr(V), h)
preserves the grading. We may therefore consider its restriction g; to the homogeneous
component of degree %8,‘, which is V;. Because ¢ is a similitude with multiplier ;Zg/) = u(g)
and

h(x.y) = hi(e, )i forx,y € Vi,

it follows that g; is a similitude of (V;, h;) with multiplier u(g). O
The last part of the proof above establishes the following result:

LEMMA 3.5. — For every similitude g € Sim(f;jz\) such that u(g) € F* C F*, the
similitude g € Sim(gr(V), h) has the form

g=(E1® Idg,(f)) D (gn ® Idgr(ﬁ))

Jfor some similitudes g; € Sim(V;, h;) with u(g) = u(g1) = --- = u(gn).

Abusing notation, we write g; ®---® g, for (g1 ® Idgr(f)) D D(gn® Idgr(ﬁ)). Note that
conversely, given similitudes g; € Sim(V;, k;) fori = 1,...,n such that u(g;) =--- = u(gn),
we may define a similitude ¢ € Sim(V, k) suchthatg = g1 ®---®g, and u(g) = u(g1) € F*
by

g=(& ®Idﬁ)@"'@(8n®ldﬁ).

Now, let us apply these results to the setting of a generic orthogonal sum of 1-dimensional
skew-hermitian forms over a quaternion division algebra Q over F. The following proposi-
tion is a key tool for the examples we produce below.

PROPOSITION 3.6. — Let Q be a quaternion division algebra over F, and consider pure
quaternions qu,..., qn, with respective squares ay,..., a, € F*. Let F be lheﬁeld of iterated
Laurent series in n indeterminates ty,..., t, over F let Q 0 ®F F, and consider the
involutiono on A = M, (Q) adjoint to the skew-hermitian form h= (t191, ..., taqn). If n > 3,
then

1. The involution o has discriminant disco = ay ...a, - I?XZ;
2. The involution o admits improper similitudes if and only if there exist e1,..., e, € {1}
such that €1 . = —1and

Gsl (al) n---N Gsn (an) 7& 9.
3. The involution o admits square-central improper similitudes if and only if n is odd and

G_(ay) NN G_(ay) # 0.
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Proof. — The discriminant of ¢ is the product of the discriminants of the involutions
adjoint to (t;¢;) for all i. Since the discriminant of the adjoint involution of (g}, for any
nonzero pure quaternion g, is the square class of g2, we get assertion (1).

Suppose that the hermitian form 7 admits improper similitudes. Since it is a generic
orthogonal sum, as defined above, of the 1-dimensional skew-hermitian forms #; = (g;), w
may apply Theorem 3.4 and Lemma 3.5. Therefore, since n > 3, we may find an improper
similitude g of h with multiplier 4 = u(g) € F* C F*. By Lemma 3.5 we have
g =g D D g, with g; € Sim(h;) and pu(g;) = pufori = 1,...,n. Because g and g
are improper, the same computation as in Lemma 3.1 shows that the number of improper
similitudes among g1,..., g, is odd. Letting &; = +1if g; is proper and ¢; = —1if g; is
improper, we thus have

neGg(a)N---NGg,(a,) and g1---g, = —1.

Assume in addition g is square-central. From o(g)g = u, we get g2 = eu for some
e € {#£1}. Hence we also have > = &li = eu. By Lemma 3.5, this occurs if and only if
g7 = eufori = 1...., n. Since g is improper, there is at least one i for which g; is improper.
From the description of similitudes recalled in the proof of Lemma 3.2, we get that g; is a

pure quaternion that anticommutes with ¢;. Therefore

p=u(g) =o0(g)g =q; ' giqigi = &

It follows that ¢ = 1. Now assume for the sake of contradiction that g; is proper for some .
Then g; is a quaternion that commutes with ¢;, i.e., g; € F(g;), and it is square-central,
hence it belongs to F* U F*g;. The first case leads to o = u(g;) € F*2, which is impossible
since Q = (u,a;)F is a division algebra. The second case leads to u = /L(gj) = gj , which
is impossible since ¢ = 1. Therefore, g; is improper for all j, thatise; = --- =&, = —1.
Since g is improper, this implies 7 is odd.

We have thus proved the “only if” parts of (2) and (3). The converse statements are easy
consequences of Lemma 3.1 and Lemma 3.3. O

3.3. Examples of groups of type 2D,

With Proposition 3.6 in hand, we can now produce explicit examples of groups of type D,,,
proving that conditions (Out 1), (Out 2), and (Out 3) are not equivalent.

In our examples, the algebra has the form A = M, (Q) for some integer n > 3, and
some quaternion division algebra Q over F. As a preliminary observation concerning
condition (Out 1), note that the set of discriminants of orthogonal involutions on A is
(—1)" Nrdg (Q™). This follows easily from the fact that any quaternion can be written
as a product of two pure quaternions. On the other hand, a quadratic extension F(+/§)
of F is a splitting field of Q if and only if Q contains a pure quaternion ¢ such that
§ = g> = —Nrdg(q). Hence, if n is odd, for any splitting field F(+/8), A does admit orthog-
onal involutions ¢ with discriminant §, and (Out 1) holds for the corresponding group. As
opposed to this, it is not always true that A admits an involution ¢ for which (Out 1) holds
if n is even, as we now proceed to show.
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3.3.1. Type 2D, with n even. — In this subsection, we assume A = M, (Q) withn = 2m
even, m > 2. We first prove:

ProrosITION 3.7. — Assume A = M, (Q) withn even. The algebra A admits an orthogonal
involution o such that A is split by the discriminant quadratic algebra Z of o if and only if
—1 € Nrdo(Q™).

Proof. — If A is split by the discriminant algebra Z = F(+/§) of some orthogonal
involution o, then § = ¢?> = —Nrdg(g) for some pure quaternion ¢, and § = Nrd4(x)
for some o skew-symmetric x € A, so that § € Nrdg(Q™). Hence, § and —§ are reduced
norms, and we get —1 € Nrdo (Q™).

Assume conversely that —1 € Nrdp(Q*), and pick an arbitrary quadratic field
Z = F(~/$) that splits Q. There exists a pure quaternion ¢ € Q° such that § = ¢2 =
—Nrdg(g). Since —1 € Nrdp(Q*), we get § € Nrdp(Q*), and since # is even, it follows
that there exists an orthogonal involution ¢ of discriminant §. O

In view of Proposition 2.5, the following result provides examples of groups PGO™ (4, o)
of type 2D,,, with n even and n > 3, which admit outer automorphisms but no outer
automorphisms of order 2.

PROPOSITION 3.8. — Let Q be a quaternion division algebra such that —1 € Nrdg(Q™),
and let Z be a quadratic splitting field for Q. For every even integer n > 2 there exists
an orthogonal involution o of M, (Q) with discriminant Z such that (A, o) admits improper
similitudes. Moreover, (A, o) does not have square-central improper similitudes.

Proof. — Since Z is a quadratic splitting field for Q, there exists 6, v € F* such that
Z = F(+/§) and Q = (6,v)Fr. Moreover, since the norm form of Q represents —1, the
quadratic form (1, —v, —§, vd, 1) is isotropic. After scaling, we get that (—v, 1, 8v, —§, —v)
also is isotropic, hence (1, —v) and (3, v, —8v) represent a common value. This means there
exists a pure quaternion ¢ € Q° such that a = g2 is a norm for the quadratic field extension
F(/V)/F, or equivalently (a,v)F = 0. So we have Q = (§,v)F = (a8,v)r. Letq bea
pure quaternion with square a8, and let ¢ be the adjoint involution with respect to the skew-
hermitian form 2 = (¢’,q.q....,q). Since n is even, o has discriminant §. Moreover, by
Lemma 3.3, o admits an improper similitude with multiplier v. Since Q is a division algebra,
the last assertion follows from Lemma 2.8. O

To produce examples of groups satisfying (Out 1) but with no outer automorphisms, we
use the “orthogonal generic sums” defined above. More precisely, we consider the following:

PROPOSITION 3.9. — Let Q be a quaternion division algebra. Assume Q contains pure
quaternions qy, ¢, g3 with respective squares ay, a,, and as such that

1. Q issplit by F(Jaiaz),
2. Q is not split by F(/ayaz) nor by F(\/aza3).
Then the involution o on A = M, (Q), with n even, n > 3, defined as in Proposition 3.6 with

q1, 42, q3 as above and q4 = --- = qn = q3, admits no improper similitudes, yet Q is split by
the discriminant quadratic extension Z / F .
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Proof. — Since n is even, ¢ has discriminant a;a,, hence the first condition guarantees
that Q is split by Z. It remains to prove that Q has no improper similitudes. By Proposi-
tion 3.6, this means we have to prove

Ge, (@) NN Gg,(ay) =9,

for all ey,..., &, € {£1}such thate;...e, = —1. Recall that u € G4 (a;) (respectively
G_(a;))ifand only if (i, a;) F = 0 (respectively (i, a;)r = Q). Since Q is a division algebra,
it follows that G4 (a3) N G_-(a3) = @. Thus, if the intersection above is nonempty, then
€3 = --+ = &,. Since n is even, we have e3...6, = &3 2 = 1. Therefore, it is enough to
prove that the following intersections are empty:

(1) G4(a1)NG-(a2) NG4(az) =0, (i) G-(a1) NG4(az) N Gi(az) =0,
(i) G4(a1) NG-(az) NG_(a3) =0, (iv) G_(a1) NG1(az) N G_(a3z) = 0.

Assume that some pu € F* belongs to the intersection (i) (respectively (iv)). The two quater-
nion algebras (u,a1)r = (u,as)F are split (respectively equal to @), while the third one
is (u,az)F = Q (respectively is split). In each case, we get that Q = (u,aza3)F. This is
impossible, since we assumed that F(,/a»az) does not split Q. Similarly, if u belongs to the
intersection (ii) or (iii), we get Q@ = (u, a1az)F, which again is impossible. O

The following example provides an explicit quaternion algebra Q satisfying the conditions
of Proposition 3.9, hence examples of groups PGO™ (4, o) of type 2D,, with n even, n > 3,
for which (Out 1) holds but not (Out 2).

ExaMPLE 3.10. — Consider a field k of characteristic # 2 such that —1 € k*2. Assume
k is the center of a quaternion division algebra (ay,a)g, and let F = k(r,s,t) where r, s,
and ¢ are independent indeterminates. Let Q = (a;,a,)r and a3 = ar? + a>s? + ajat* € F*.
Clearly, Q is a quaternion division algebra containing pure quaternions ¢, ¢2, g3 with
q? = a; fori = 1,2,3.Since —1 € F*2, the algebra Q = (a1,a2)F = (a1,a1a2)F is split
by F(\/aiaz). If Q is split by F(,/aias), then ajas is represented over F by the quadratic
form (ai,as,aias), hence (after scaling by ay) as is represented by (1,a,,aia;) over F.
Because r, s, t are indeterminates, Pfister’s subform theorem [8, Th. IX.2.8] shows that this
condition implies that (ay,a»,a1a2) ~ (1,az,a1a3) over k, hence (by Witt’s cancellation
theorem or by comparing discriminants) a; € k*2. This is impossible since (a1, a2)x is a divi-
sion algebra. Similarly, if Q is split by F(\/a2a3), then aas is represented by (a1, a»,a1az)
over F, hence a3 is represented by (1,ay,aya;) over F, and (a1, az,a1a2) ~ (1,ay,a1a3)
over k, a contradiction since a, ¢ k*2. Hence, the quaternion algebra Q satisfies the
conditions of Proposition 3.9.

3.3.2. Type 2D, with n odd. — We again use the orthogonal generic sums defined in §3.2.
More precisely, we have the following:

ProrosITION 3.11. — Let Q be a quaternion division algebra. Assume Q contains pure
quaternions q1, 42, 43 with respective squares ay, a, and as such that

1. Q is split by F(Jaiazaz),
2. Thereisno € F* such that Q = (a1, )F = (a2, W)r = (a3, W) F.
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Consider the involution o of A = M, (Q), withn odd, n > 3, defined as in Proposition 3.6, with
q1, 92, q3 as above and q4 = - -- = q, = q3. This involution admits no square-central improper
similitudes, yet Q is split by the discriminant quadratic extension Z | F. Moreover, if in addition
—1 ¢ Nrdo (Q™), then o has no improper similitudes.

Proof. — Since n is odd, o has discriminant ajasa3. Therefore condition (1) guarantees
that Q is split by the discriminant quadratic algebra Z. Moreover, arguing as in the proof
of Proposition 3.9, and taking into account the fact that n is now odd, we get that o has
improper similitudes if and only if one of the following intersections is nonempty:

() Gi(a) N Gi(az) N G_(as), (i) G+(@1) N G_(az) N G (as),
(i) G-(a1) N G4(az) N G4 (az), (iv) G—(a1) N G-(az) N G_(a3).
In addition, we know by Proposition 3.6 that o has a square-central improper similitude if
and only if the fourth intersection is nonempty, or equivalently, if there exists u € F* such
that Q = (u,a;)F fori =1, 2, 3. This is impossible by condition (2).

If the involution ¢ has an improper similitude, then one of the intersections (i), (ii) or
(iii) is nonempty. So assume for instance there exists u € F* such that Q = (u,a3)F and
(w,a1)F = (u,az)F = 0. The first equation shows that there exists a pure quaternion z
such that © = z2 = —Nrdg(z). On the other hand, since (u,a1)F = 0, there exists a
quaternion z’ € F(g;) such that u = Np(,,)/r(z’) = Nrdg(z'). Therefore, both u and

—p are reduced norms, and it follows —1 also is a reduced norm. This concludes the proof
of the proposition. O

Adapting a construction from [3] (see also [12, §10.2.2]), we now describe an explicit
example of a quaternion algebra satisfying the conditions of Proposition 3.11, and we use
it to give examples of groups of type 2D,,, with n odd, satisfying (Out 1) and not (Out 2), or
(Out 2) and not (Out 3).

ExaMmPLE 3.12. — Let k be an arbitrary field of characteristic 0, and let F = k(ay, az),
where a; and a; are independent indeterminates. Consider the quaternion division algebra
0 = (ai,az)F, and let

() az = ai1((1 —a1)*(1 + a2)* —4(1 —ay)az).
The algebra Q satisfies the conditions (1) and (2) of Proposition 3.11.

Proof. — It is clear that Q contains pure quaternions g1, g with g7 = a; and ¢3 = a».
Computation yields
(1 —a)*(1 +a2)* —ay'as = 4(1 —ar)az,
hence the quaternion algebra (a7 'as, (1 — ay)az)F is split. Therefore,
(a3, (1 —ayaz)r >~ (a1, (1 —ay)az)r ~ Q,

and it follows that Q contains a pure quaternion g3 with g3 = as.
Another computation yields

(1 —a1)2(1 —ay)? —al_la3 =4a;(1 —ay)as,
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hence the quaternion algebra (al_la3, a1 (1 —ay)ay)F is split. Since we already observed that
(ay'as, (1 —ay)az)F is split, it follows that (aj a3, a1)F is split, hence

4) (ay,a3)F ~ (ar,a1)r ~ (a1, —1)F.
We thus see that (a1, —as3) F is split, hence
0 ~ (a1,—aza3)r =~ (ai1,a1a2a3)F.

Therefore, Q is split by F( /aiazas).
Suppose now that there exists some u € F* such that

®) 0 = (ay,w)r = (az, W)r = (as, n)r.

To obtain a contradiction, we use valuation theory as in [12, §10.2.2]: since chark = 0, we
may find on k a dyadic valuation vy, with value group some ordered group I' and residue
field k of characteristic 2. Consider the Gaussian extension v; of vg to F, with value group T
and residue field k(a;,a2), and let v be the valuation on F obtained by composing v; with
the (1 — ay)-adic valuation on k(ay,a»). The value group of v is Z x I" with the right-to-
left lexicographic ordering, and the residue field is k (a»). It is clear that v extends uniquely
to F'(/az), and this extension is unramified with a purely inseparable residue field extension.
In [12, p. 509], it is shown that v also extends uniquely to F(,/a) and F(,/aias), and that
these extensions are totally ramified.

Now, since Q =~ (az, —ajaz)r and (5) holds, we see that —aja,p is a norm from F(/az).
Because F(,/az) is an unramified extension of F, it follows that v(—aia,pu) € 2v(F™).
Scaling u by the square of an element in F*, we may assume v(—ajapu) = 0 and take
the residue =ajazjt = axfi € k(az). (We can omit the sign, since k has characteristic 2.)
Since Q =~ (a1,—ajaz)r, we also derive from (5) that —aja,p is a norm from F(./ay).
As F(,/ay) is totally ramified over F, it follows that —aja; it € sz) hence art € K (a3).
But (5) also shows that (ajas, i) F is split, hence p is a norm from the totally ramified exten-
sion F(,/aias), and therefore [x € Ez (a%). We thus reach the conclusion that a, € Ez (a3),a
contradiction. O

COROLLARY 3.13. — Let Q be the quaternion algebra of Example 3.12 and q1, q2, q3 € O
be pure quaternions satisfying g? = a; fori =1, 2, 3. Fix an odd integer n > 3 and consider
as in Proposition 3.6

F=F(n)...(tn)), 0=0®rF, A=M(0),

and o the involution on A adjoint to the skew-hermitian form ho= (t1q1,....thqn) with
Ga =+ = qn = q3. The group PGO™ (A, o) satisfies (Out 1) but not (Out 3), and it satisfies
(Out 2) if and only if —1 € k2.

Therefore, depending on the base field & we started with, we get the required examples.

Proof. — Proposition 3.11, together with Proposition 2.5, already shows that the group
PGO™ (4, o) satisfies (Out 1) and not (Out 3), and that it does not satisfy (Out 2) if —1 ¢
Nrdg (Q*). Therefore, it only remains to show that —1 is not a reduced norm of Q if
—1 ¢ k*2, and that o admits improper similitudes if —1 € k*2.
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The first part is clear: the reduced norm of Q is the quadratic form
ng ~(1,—ai,—as,aias)

over F = k(ai,as). Since a; and a, are indeterminates, this quadratic form represents —1 if
and only if —1 € k*2.

Now, assume that —1 € k*2. Since Q = (a;.as)r, we have a; € G_(ay). Moreover,
because —1 € k*? the quaternion algebras (a1,a1)r and (a;,as)F are split (see (4)), so
ay € Gy(ay) N Gy(as). Therefore,

ai € Gy(a1) N G_(a2) N Gy (az).

Proposition 3.6 then shows that o admits improper similitudes. O

REMARK 3.14. — As shown in [6, §15.D], the Clifford algebra construction defines an
equivalence of categories from the groupoid D3 (F) to the groupoid A3 (F). For any central
simple algebra A of degree 6 with orthogonal involution ¢ over a field of characteristic
different from 2, the Clifford algebra C(A, o) has degree 4 and carries a canonical unitary
involution ¢, and we have canonical isomorphisms (see [6, (15.26), (15.27)])

Spin(4, o) ~ SU(C(A,0),0). PGO™(4,0) ~ PGU(C(4,0),0).

Therefore, Corollary 3.13 with n = 3 readily yields examples of groups of type Az that
satisfy (Out 1) but not (Out 2), or (Out 2) but not (Out 3). In particular, by Proposition 2.2,
it also provides examples of unitary involutions that do not have a descent. In view of
Theorem 1.3, we know that the algebra C(4, o) in these examples is a division algebra of
degree 4.

For use in §4.3, we still make a few observations on the square-central similitudes of the
skew-hermitian form of Corollary 3.13 in the particular case where n = 3, i.e.,

b= (1191, 1292, 1393)
with g1, ¢2, g3 as in Example 3.12.

LEMMA 3.15. — Assume —1 € k*?. Every square-central similitude g oflll\ is proper and
satisfies
g =g € F*2

Proof. — Let g2 = A € F*. We have A2 = u(g2) = u(g)?, hence A = +u(g). Scaling g,
we may assume by Theorem 3.4 that u(g) € F*, hence also A € F*. By Proposition 3.5 we
then have

£=8198 D¢

for some g; € Sim(h;) with pu(g) = p(g1) = u(g2) = pu(gs) and A = 22 = g7 = g3 = g3.
By Example 3.12 and Proposition 3.11 the similitude g must be proper since it is square-
central. Therefore, the number of improper similitudes among g1, g», g3 is even, so at least
one of g1, g2, g3 is a proper similitude. If g; is proper, then g; € F(g;)*. Since g; is square-
central, it follows that g; € F* U ¢; F*, hence g € F*? U a; F*? and ju(g;) = Nrdg(g:) €
F*2U(—a;) F**.1f g; is improper, then (a;, j1(g;)) » =~ Q:see Lemma 3.2. We now consider
the various possibilities:
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(1) If g, is proper and g,, g3 are improper: then u(g) € F*?>U (—a;)F*? and
(az.11(8)) p =~ (a3.;(g)) r ~ Q. Since —1 € k*2, the quaternion algebra (a3, —a1)r
is split (see (4)) whereas Q is not split, so this case is impossible.

(2) If g, is proper and g;, g3 are improper: then u(g) € F*?> U (—ay)F*? and
(a1.11(8))r =~ (az.p(g))y =~ Q. Since Q is not split, we must have u(g) €
(—a2) F*? = a, F*2, and we get (a1,a2)r = (az,a2)r, hence (a1as, az)r is split. By
definition of a3 (see (3)), this means that the quaternion algebra

(1 =a)(( —a))(1 +az)* —4a), az)

is split. This is a contradiction, since this quaternion algebra is ramified for the
(1 — ay)-adic valuation.

(3) If g5 is proper and g1, g, are improper: this case is excluded just like the previous two,
because the quaternion algebra (ay, a3)F is split.

The only remaining case is when g1, g2, and g3 are proper, hence u(g;) € F*?U(—a;) F*?
for each i. Since ay, a;, and a3 are in different square classes and u(g1) = u(g2) = un(gs),
it follows that (g;) € F*2, hence g; € F* foralli. Then A = g? = u(g;) for all i, hence
g% = u(g) € F*2. O

4. Outer automorphisms and similitudes: the unitary case

We now turn to the results concerning unitary groups. We already gave in Remark 3.14
examples of groups of type 2As satisfying (Out 1) but not (Out 2), or satisfying (Out 2) but
not (Out 3). The other examples we will provide are of the form PGU(B, 7) with B of index 2.
Unitary involutions on algebras of index 2 are examined in detail in §4.1, and the examples
are given in §4.3. They are based on a generic construction of hermitian forms of unitary type
which is discussed for division algebras of arbitrary index in §4.2.

The characteristic is arbitrary in §4.1; it is assumed to be different from 2 in §4.2 and §4.3.

4.1. Similitudes for unitary hermitian forms over a quaternion algebra

Let Q be a quaternion division algebra over a field K of arbitrary characteristic, which is
a quadratic separable extension of some subfield F. We write ¢ for the nontrivial automor-
phism of K over F. Let (B, 7) be an algebra with unitary involution Brauer-equivalent to Q.
We have seen in § 2.1 that outer automorphisms of PGU(B, 1) are given by t-semilinear auto-
morphisms of (B, 7). In this section, we describe them explicitly in terms of the underlying
hermitian space.

Let U be a finite-dimensional right Q-vector space such that B = Endp U. By a theorem
of Albert [6, (2.22)], unitary involutions on B exist only if Q has a descent to F'. We fix a
quaternion F-subalgebra Q¢ C @ and identify 0 = Qo ®F K. Letalso Uy C U be a
Qo-subspace of U such that U = Uy ® p K. Thus, Q¢ and Uj are the fixed F-algebra and
Q-subspace of the following (-semilinear automorphisms of Q and U':

lg = IdQO X, ly = IdUo X

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



134 A. QUEGUINER-MATHIEU AND J.-P. TIGNOL

Similarly, Endg,, Uj is the F-algebra fixed under the (-semilinear automorphism of Endg U
that maps f € Endg U to the endomorphism f* defined by

fHx) = w(f(wx) forallx € U.

The canonical involution — on Q commutes with (o because for x € O

to(x) = 19(Trdg(x) —x) = Trdg (tg(x)) —to(x) = 1o (x).
Let & = ~otp, a unitary involution on Q which restricts to the canonical involution on Qp.
The unitary involution 7 on B = Endp U is the adjoint involution t = adj for some
nondegenerate hermitian form 4: U x U — Q with respect to 6.
A conjugate hermitian form 4* is defined on U by

1 y) = 10 (h(w(x).w () forx,y e U.
It is readily verified that the adjoint involutions of & and &' are related as follows:
(6) adp (f)' = adj(fY) forall f € Endp U.
We define a map g € Endg U to be a similitude (U, h) — (U, h') if there exists u € F* such
that
h'(g(x),g(y)) = wh(x,y)  forallx,yeU.

The factor p is said to be the multiplier of g. We write u(g) for the multiplier of g, and
Sim(U, h, h') or Sim(h, k') for the set of similitudes (U, h) — (U, h').

PROPOSITION 4.1. — Every t-semilinear automorphism ¢ of the algebra with unitary invo-
lution (B, t) has the form ¢: f + g~ ! f'g for some g € Sim(U, h,h*). This automorphism
@ has order 2 if and only if g'g € F*.

Proof. — It follows from the Skolem-Noether theorem that every ¢(-semilinear automor-
phism ¢ of Endp U has the form ¢: f + g~! f'g for some g € Endg U. Equation (6) shows
that ¢ commutes with ady if and only if Int(g™') o ady: = adj o Int(g™!). But Int(g™!) o
adj: o Int(g) is the adjoint involution of the form (x, y) — h'(g(x), g(y)), so ¢ commutes
with 7 if and only if g is a similitude (U, h) — (U, h'). The last assertion follows by a straight-
forward computation. O

REMARK 4.2. — For g € Sim(U, h, h') we have g* € Sim(U, h*, h) with u(g') = u(g),
hence for all x, y € U
h(g'g(x).8'g() = n(@h' (g(x). g(»)) = p(g)*h(x, y).
Therefore, if g'g = A € F*, then A2 = u(g)?, hence A = +u(g).
Of course, in the discussion above the choice of Qy is arbitrary, and 4 is defined up to a
scalar factor. Multiplying 4 by some nonzero central element « such that ((«) = —«, we may

assume / is skew-hermitian instead of hermitian. More generally, for any ¢ € Q* such that
0(q) = —q, we may consider 6’ = Int(g) o 6 and set

R(x,y) =qh(x,y) forx,yeU.

Then /' is a nondegenerate skew-hermitian form with respect to ', and clearly ad;, = ady.
Let also L/Q = Int(g) otp. The condition fp (q) = —q yieldstg(q) = —q, hence qip(q) € F*
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and therefore L’Q is a (-semilinear automorphism of Q of order 2. Letting Qy denote the
F-subalgebra of Q fixed under L’Q, we have

0=0,®FK and 0 ="olp=1po".
Here is one case where an appropriate choice of ¢ may lead to a substantial simplification:

PRrROPOSITION 4.3. — Let ey,..., ey be an orthogonal Q-base of (U, h), and let

h= <CI17-~~7Qn>

be the corresponding diagonalization of h. If the K-span of the quaternions qy,..., qn has
dimension at most 3, then there is a quaternion ¢ € Q such that the skew-hermitian form
W = gqh over (Q,0') has a diagonalization

h = {qq1.....99n)

with qq; € Qy fori = 1,..., n. The skew-hermitian form h' then restricts to a nondegenerate
skew-hermitian form hy (over (Qy, ™)) on the Qg-span U} of eq,..., en, and we have

(B.7) = (Endg U.ady) = (Endg; Up.ady,) ®r (K.1).

Proof. — Let S C Q be the K-span of ¢1,..., gn, and let S+ C Q be the orthogonal of S
for the norm form on Q. Since Nrdg (q) = gq = qq for every g € Q, we have

St={seQ|sqg+qgis=0foralli}={se Q|5¢ +gis =0foralli}.

The K-space S+ is stable under 0 because 0(g;) = g; for all i and # commutes with —. If
dim S < 3, then dim S+ > 1, hence we may find ¢ € 0> such thatg~! € S+ and 6(q) = —q.
(Take ¢ = (s — 6(s))~" for any s € S+ such that 6(s) # s; if no such s exists we must have
S+ = {0} because 0 is t-semilinear.) Since 6(¢;) = ¢; and 6(q) = —q we have §; = 1o(qi)
and g = —tp(q), hence

togg ™ =g =g 'qi = 10(9)7'qi fori=1,..,n.
Therefore,
lp(qqi) = qio(@ilgg™" =qqi  fori=1,..n.
We have thus shown ggq; € Qg fori = 1,..., n; the other assertions readily follow. O
The condition on the dimension of the K-span of ¢4, ..., g, is automatically satisfied if

n < 3. Therefore, Theorem 1.3 for B of index 2 follows from Proposition 4.3. The case where
B is split was already considered in Corollary 2.4.

Note that the proof does not require any hypothesis on the characteristic. (Of course,
skew-hermitian forms are hermitian in characteristic 2.)
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4.2. Generic construction of hermitian forms of unitary type

In this section, we fix a central division algebra with involution of the first kind (D, p) over
an arbitrary field F of characteristic different from 2. Adjoining to F' an indeterminate ¢, we
consider the fields of Laurent series

K=F() and F=F((@*)cCKk.

We let « denote the nontrivial F- -automorphism of K and

(D,p) = (D, p) ®F (K,0).

Thus, (5 , p) is a central division algebra over K with unitary involution. Over this division
algebra, we construct hermitian forms of a particular type, as follows: let (V1,h1) be a
hermitian space over (D, p) and let (Vz, hy) be a skew-hermitian space over (D, p). Extendmg
scalars, we obtain a hermitian form h1 on V1 =V QF K and a skew-hermitian form h2
on Vz =1L Q®F K (over (D, 0)). We then set

(T.h) = (Vi ® Va. iy L {t)h2).
Since L(t) = —t and l?z is skew-hermitian, the form (¢ ( )h2 is hermitian, hence 7 is a hermitian
form on U over (D 0). Set Do = D®pF F;wehave D = D, ®p K; hence, the algebra D has
a descent. Define 15 = Idp ®1 = IdD0 ®t, and Uo =TV RF F, g = IdU0 ®t. Every

vector x € U has a unique expression as a seriesx = ), x; ® t' withx; € V, @ V, for all i,

~

and (5(x) =), xi ® (—1)*. The conjugate hermitian form h* is
(7 W=y L (~1)h,.

For the rest of this section, we assume 47 and A, are anisotropic, hence his anisotropic.
As in §3.2, we use the r-adic valuation to obtain information on the set of similitudes
Sim(U, h, h*). More precisely, we prove:

PrOPOSITION 4.4, — Let (l’]\,iz\) be defined as above by h = h L (t)iz\z, where hy
(respectively hy ) is an anisotropic hermitian (respectively skew-hermitian) form over (D, p).
Every similitude g € Sim(ﬁ, h, iz\‘) has the form g = Ag’ for some A € K> and some similitude
g € Sim(ﬁ, iz\ iz\‘) with (1(g') € F*. Moreover, on the graded module gr(l//\) associated to a
suitable norm on U, the map g’ induces amap g’ of the form'g’ = g1 @ g, for some similitudes
g1 € Sim(Vq, hy), g2 € Sim(V,, hy) with

n(g) = n(g1) = —p(g2).

Proof. — Let v be the r-adic valuation on K. We write again v for its extension to D and
define a v-norm on U by

v(x) = %v(iz\(x,x)) forxeU.
Thus, we have v(x;) € Z for x; € Vy, v(x2) € 3+ Zforx; € V5, and
v(x1 + x2) = min(v(xy). v(x2)) € 3Z forx; € 7, and x, € V5.
In view of (7) it follows that v(iz\(x, x)) = v(iz\‘ (x.x)), hence
®) v(x) = %v(il\‘(x,x)) forx e U.
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The graded module gr(ﬁ ) is defined as in §3.2. It carries a hermitian form 1 and we have
(gr(0),h) = (gr(V1),h1) L (gr(V2). /), (gr(0),h") = (gr(V1), ) L (gr(V2), —h2)
where the hermitian forms ﬁl, ﬁz are given by

h(x1, 1) = hi(xi,31)  and  ha(xa, y2) = Tha(xa, y2)

for x1, y1 € Vi and x5, y, € V5.

Now, suppose g: (U, h) — (U, k') is a similitude. From iz\L(g(x), gx)) = w(g)h(x, x) it

follows by (8) that

v(g(x) = v(x) + tu(u(g)  forx eU.
Therefore, g induces a similitude g: (gr(ﬁ ),ﬁ) — (gr(fj ),’i?), which shifts the grading
by 1v(1(g)). Note that Lv(u(g)) € Z because u(g) € F C K. Therefore, gr(V;) and gr(V>)
are invariant under g. If u(g) € F*, the restriction of gto V; C gr(l//\l) (resp.to V5 C gr(f/\z))
is a similitude g; € Sim(Vy, hy) (resp. g2 € Sim(V3, h3)), and we write (with a slight abuse
of notation) g = g1 @ g».

Since u(g) € F* we have v(u(g)) € 27Z hence there exists Ao € K* such that v(u(g)) =
2u(Ao). Then v(pn(A5'g)) = 0 and we may find a € F*, m € F* with u(A5'g) = a(l +m)
and v(m) > 0. Arguing as in the proof of the first assertion of Theorem 3.4, we find A; € Fx
such that A2 = 1 4 m, and set A = AgA;. Then g’ = A~'g € Sim(U.h.h') and
u(g’) = a € F*. The equation

R (g'(x),g'(»)) =ah(x,y)  forx,y e gr(U)

yields in particular

hi(g'(x1).8'(y1)) = ahi(x1,y1)  forxy, y1 €V
and
—Tha(g'(x2), ' (y2)) = at ha(x2, y2) for x5, y2 € Vs.

Therefore, the restriction g; of g to V; is a similitude with ©(g1) = a, and the restriction g,
of g to V5 is a similitude with u(gz) = —a. O

REMARK 4.5. — Itisreadily verified that&x/) =Xforallx € V1 @®V,. Therefore,g* =g
if u(g) € F*.

4.3. Examples of groups of type %A,

In this section, we use Example 3.12 together with the generic construction of §4.2 to build
examples of unitary groups for which (Out 1) holds and (Out 2) fails, or (Out 2) holds and
(Out 3) fails.

Let n > 7 be an odd integer. Write n = 5 4 2m, where m > 1. We construct groups
of type 2A,, as unitary groups of hermitian forms of dimension 3 + m over a quaternion
division algebra with unitary involution. Since the index of the endomorphism algebra is 2,
these groups satisfy (Out 1).

Adjoining independent indeterminates to an arbitrary field k of characteristic 0, we form
the field

F =k(ai,az,x1, ... xm)((11))((22)) ((13))
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and the quaternion algebra
0 = (ar.a2)F
with its conjugation involution —. Let a3 € F be defined by Equation (3). Recall from
Example 3.12 that Q contains pure quaternions ¢1, g2, g3 with ¢ = a; fori = 1,2, 3.
Adjoining to F another indeterminate ¢, form
K=F(t), F=F@)cK  0=08rK.

Let ¢ be the nontrivial F- -automorphism of K. Consider the unitary involution p = ~— ® ¢
on Q and the following hermitian form over (Q, p):

ZI (xl,... ,xm) 1 (l)(llql,lzqz,lg;q;}).

Let © = ad;, be its adjoint involution on B = Mm+3(Q).

PROPOSITION 4.6. — The algebra with involution (B, t) does not admit any t-semilinear
automorphism of order 2. It admits 1-semilinear automorphisms if and only if —1 € k*2.

In view of Proposition 2.1, this provides a group PGU(B, 7) which does not satisfy (Out 3),
and satisfies (Out 2) if and only if —1 € k*2.

Proof. — Proposition 4.1 translates the conditions on semilinear automorphisms of (B, t)
into conditions on similitudes of 7. Thus, we have to show that there are no similitudes
g e Sim(i[, ﬁ‘) such that g'g € F*, and that Sim(ﬁ, ﬁ‘) is nonempty if and only if —1 € k*2.

Note that the form 7 is obtained by the generic construction of §4.2, with (D, p) = (Q,7)
and

hy = (xl,...,xm), hy, = (l]Q],[zQz,[3q3>.

Suppose first —1 ¢ k*? and g € Sim(iz\,l?). By Proposition 4.4 we may assume
u(g) € F*, hence g = g1 ® g for some similitudes g; € Sim(hy), go € Sim(hy) with
u(g1) = —u(g2). Since by Corollary 3.13 h, does not admit improper similitudes, the
similitude g, must be proper, hence by [6, (13.38)] (g2) is a norm from the discriminant
extension, which is F'(,/aiazas). As this extension splits Q, it follows that 1(g2) is a reduced
norm of Q, hence

9) (u(g2))(1,—ay, —az,araz) >~ (1,—ay, —as,a1az).
On the other hand, since g; is a similitude of /; with multiplier —u(g2), we have
(—p(g2))h1 =~ hy.
It follows that —u(g») is also the multiplier of a similitude of the “trace” quadratic form
¢(x) = hy(x, x), which is
o ~(1,—ay,—az,a1az){x1,..., Xm).

Taking into account (9), we see that

(—1)(1, —ay, —az,ara2){x1, ..., xm) = (1, —ay, —az,a1a2){x1, ..., xXm).

This is impossible because —1 ¢ k*? and a;, a,, Xi...., Xp, are indeterminates. Therefore,
Sim(h, ht) = @if —1 ¢ k2.

Suppose next —1 € k*2. Then h= iz\l L (t)ﬁz is clearly isometric to nt = iz\l L (—t)iz\z,
hence Sim(l? , ﬁ‘) is not empty. Assume g € Sim(iz\, ﬁ‘) satisfies g'g = A € F*. As above, we
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may scale g and assume pu(g) € F*, hence also A € F* since A = £u(g) by Remark 4.2.
By Proposition 4.4 we have

§=819%
for some g; € Sim(h;), g2 € Sim(h,) with u(g) = u(g1) = —u(g2). By Remark 4.5, the
equation g'g = A yields g> = A, hence we also have g7 = g2 = A. Now, by Lemma 3.15
the similitude g, must be proper and satisfy g2 = (g2) € F*? since it is square-central.
Scaling again, we may assume

n(g) = u(g) =—u(g)=—1 and g=gi=g3=1

The following lemma shows that /; does not have any similitude g; such that g2 = —u(g1) = 1,
hence the existence of g leads to a contradiction and the proof of Proposition 4.6 is complete:

LeEMMA 4.7. — There is no similitude g € Sim(hy) such that g* = —u(g) = 1.

Proof. — Extendingscalarstok(ay,az)((x1)) ... ((xm))((t1))((£2))((t3)), we may regard /1,
as a generic orthogonal sum of m times the hermitian form (1) over the quaternion algebra
H = (a1,a2)k(a, ay)» and use the results of §3.2. If g € Sim(h;) is such that g2 = —u(g) = 1,
then by Lemma 3.5 we have

g=61D - Dgnm
for some g; € Sim((1)) = Sim(H, ™) with gi2 = —u(g;) = 1. Each g; is a pure quaternion
because g7 = —u(g;i), and H does not contain any pure quaternion with square 1 because
it is not split. We thus obtain a contradiction. O

Appendix: Trialitarian groups

Let G be an algebraic group scheme of adjoint type D4 over an arbitrary field F. Via the
x-action of the absolute Galois group of F on the Dynkin diagram A of G (see [11, §15.5])
we may associate to G a cubic étale F-algebra L such that

Aut(A) = Autg (L).

If g is the index of the kernel of the Galois action, the type of G is denoted by &Dy.
Thus, if G is of type °Dy, then L is a noncyclic separable cubic field extension of F, so
Autp (L) = {Id} and G does not have any outer automorphism defined over F. If G is of
type 2Dy, then L ~ F x Z for some separable quadratic field extension Z of F, and
G =~ PGO™ (4,0, f) for some quadratic pair (o, f) with discriminant Z over a central
simple F-algebra A of degree 8: see [11, §17.3.13]. This case has been discussed in §3. For
the rest of this appendix, we focus on types !D4 and 3D.

Type 'Dy4
In thiscase L ~ F x F x F, hence Aut(A) is the symmetric group &3, and G may have

outer automorphisms of order 2 or 3.

PROPOSITION 4.8. — Let G be an algebraic group scheme of adjoint type 'Dy4. For every
nontrivial subgroup H C Aut(A), the following conditions are equivalent:

(1) every element in H fixes the Tits class tg,
(2) H is contained in the image of the canonical map Aut(G) — Aut(A);
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(3) there is a subgroup H' C Aut(G) isomorphic to H under the canonical map
Aut(G) — Aut(A).

When |H| = 2 the conditions above hold if and only if G = PGO™ (¢) for some 8-dimensional
quadratic form q with trivial discriminant. When |H| = 3 or 6, they hold if and only if
G = PGO™(q) for some 3-fold quadratic Pfister form q.

Note that the conditions (1), (2), (3) are analogues of (Out 1), (Out 2), and (Out 3)
respectively.

Proof. — The implications (3) = (2) = (1) are clear, hence it suffices to prove (1) = (3).
Choose a representation G ~ PGO™ (4, o, f) for some central simple algebra A of degree 8
with a quadratic pair (o, f) of trivial discriminant. If H contains an element « of order 2,
we may choose the representation of G in such a way that the action of a on the Tits
algebras interchanges the two components C1 (4,0, f) of C(A,0, f), see [6, (42.3)]. Then
(1) implies C4+ (A, 0, f) >~ C_(A, o, f). Similarly, any element of order 3 in H permutes A,
Ci(A,0, f),and C_(A4,0, f). Thus, in each case we have C1 (4,0, f) ~ C_(A4, 0, f)if (1)
holds. Using the fundamental relations between A and C(4, o, f) in [6, (9.12)], we get that
A is split if (1) holds for any nontrivial H, and we may then represent G as PGO™ (¢) for
some 8-dimensional quadratic form ¢ of trivial discriminant. Since every quadratic space
admits square-central improper isometries, as pointed out in Remark 2.7, condition (3) holds
if |[H| = 2. The proof is thus complete in this case.

If |[H| = 3 or 6, the preceding arguments show that C4 (4,0, f) and C_(4,0, f) are
isomorphic to A when (1) holds, hence they are also split; this means that by scaling ¢ we may
assume ¢ is a 3-fold Pfister form. Now, for any 3-fold Pfister form ¢ we may choose a para-
Cayley algebra with norm form ¢, and use the multiplication in the algebra to define outer
automorphisms of PGO™ (¢) of order 3, see [6, (35.9)]. Using in addition the conjugation in
the para-Cayley algebra, we may also define a subgroup of Aut(G)(F') isomorphic to S, see
[6, (35.19)]. O

Type 3Dy

In this case L is a cyclic cubic field extension of F, hence Autr(L) ~ 7Z/37Z. We may
then again consider the conditions (Out 1), (Out 2), and (Out 3), with the following slight
modification: in (Out 3), the outer automorphism has order 3 instead of 2. If char F # 2,
the group G can be represented in the form G = PGO™ (T') for some trialitarian algebra ® T,
see [0, (44.8)]. The Allen invariant of G is a central simple L-algebra of degree 8.

PROPOSITION 4.9. — For G = PGO™(T) of type 3Dy, conditions (Out 1) and (Out 2)
are equivalent, they hold if and only if the Allen invariant of T is split. Condition (Out 3) holds

if and only if T is the endomorphism algebra of a cyclic composition induced by a symmetric
composition over F.

() Trialitarian algebras are not defined in characteristic 2.
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The first assertion is the main Theorem A in Garibaldi-Petersson [5]. The second assertion
is proved in [7, Theorem 4.3].

As a result of this proposition, it is easy to find examples of groups of type 3D4 for which
(Out 1) and (Out 2) hold while (Out 3) fails: see [7, Remark 2.1].
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