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POISSON SUSPENSIONS AND SUSHIS

 É JANVRESSE, E ROY  T DE LA RUE

A. – In this paper, we prove that ergodic point processes with moments of all orders,
driven by particular infinite measure preserving transformations, have to be a superposition of shifted
Poisson processes. This rigidity result has a lot of implications in terms of joining and disjointness for
the corresponding Poisson suspension. In particular, we prove that its ergodic self-joinings are Poisson
joinings, which provides an analog, in the Poissonian context, of the GAG property for Gaussian
dynamical systems.

R. – Dans cet article, nous démontrons qu’un processus ponctuel ergodique avec des mo-
ments de tous ordres, dirigé par une transformation préservant une mesure infinie qui vérifie certaines
propriétés, est nécessairement une superposition de processus de Poisson décalés. Ce résultat de rigidité
a de nombreuses implications en termes de couplages et de disjonction pour la suspension de Poisson
associée. En particulier, nous démontrons que ses autocouplages ergodiques sont des couplages pois-
soniens, obtenant ainsi un analogue, dans le contexte poissonien, de la propriété GAG des systèmes
dynamiques gaussiens.

1. Introduction

Central to probability theory are Gaussian and Poisson distributions. In ergodic theory,
they both play a particular role through canonical constructions we briefly recall:

– Starting from a positive and finite symmetric Borel measure � on T, there exists a
unique centered stationary real-valued Gaussian process fXngn2Z whose coordinates
admit � as spectral measure, that is

E ŒX0Xn� Db� .n/ :
Research partially supported by French research group GeoSto (CNRS-GDR3477).
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1302 É. JANVRESSE, E. ROY AND T. DE LA RUE

– Starting from a � -finite dynamical system .X; A ; �; T /, we can build the Poisson
suspension

�
X�; A �

; ��; T�
�
, which is the canonical space

�
X�; A �

; ��
�

of the
Poisson point process of intensity �, enriched by the transformation

T� .�/ WD � ı T
�1

(see below for a precise definition).

A striking theorem due to Foias, and Strătilă (see [9]) states that some measures � on T, if
appearing as spectral measure of some ergodic stationary process, force the process to be
Gaussian. This was considerably developed later (see [18] in particular) and lead to some
remarkable results.

In this paper, we obtain a Poisson counterpart of Foias,-Strătilă theorem. We prove that
some ergodic infinite measure preserving transformation, taken as base system of an ergodic
invariant point process with moments of all orders, force the latter to be a superposition of
shifted Poisson point processes.

Notations. – For any set J , we denote by #J the cardinality of J . If ' is any measurable
map from .X; A / to .Y; B/, and if m is a measure on .X; A /, we denote by '�.m/ the
pushforward measure of m by '.

1.1. Random measures and point processes

Let X be a complete separable metric space and A be its Borel � -algebra. Define eX
to be the space of boundedly finite measures on .X; A /, that is to say measures giving
finite mass to any bounded Borel subset of X . We refer to [4] for the topological properties
of eX . In particular, eX can be turned into a complete separable metric space, and its Borel
� -algebra fA is generated by the maps eX 3 � 7! �.A/ 2 RC [ fC1g for bounded A 2 A .

Let X� � eX be the subspace of simple counting measures, i.e., whose elements are of the
form

� D
X
i2I

ıxi
;

where I is at most countable, and xi ¤ xj whenever i ¤ j . Because we restrict ourselves
to boundedly finite measures, any bounded subset A � X contains finitely many points of
the family fxigi . Conversely, any countable family of points satisfying this property defines
a measure � 2 X� by the above formula. We define A � as the restriction to X� of fA .

In the paper, we consider a boundedly finite measure� onX and an invertible transforma-
tion T onX preserving �. We assume that �.X/ D1 and that .X; A ; �; T / is conservative
and ergodic. This implies in particular that � is continuous.

Given the map T , for any � -finite measure �, we define T�.�/ as the pushforward measure
of � by T . In particular, if � D

P
i2I ıxi

,

T� .�/ D
X
i2I

ıT .xi /:

Observe that, even if � 2 X�, T�.�/ is not necessarily in X� (the property of bounded
finiteness may be lost by the action of T ). Nevertheless, one can consider the smaller
space

T
n2Z T

�n
� X�, on which T� is a bijective transformation. If m is a probability

measure on X� which is concentrated on this smaller space, then it makes sense to say

4 e SÉRIE – TOME 50 – 2017 – No 6



POISSON SUSPENSIONS AND SUSHIS 1303

that m is invariant by T�. If m is such a T�-invariant probability measure, then T�.�/ 2 X�

for m-almost all � 2 X�, and .X�; A �
; m; T�/ is an invertible, probability preserving

dynamical system. (The same remark holds if we replace X� by eX .)
We call point process on X any random variable N defined on some probability space

.�;F ;P/ taking values in
�
X�; A �

�
. In this case, for ! 2 �, N.!/ can be viewed as a

(random) set of points inX , and “x 2 N.!/” meansN.!/.fxg/ D 1. As usual in probability
theory, we will often omit ! in the formulas.

D 1.1. – Let .�;F ;P/ be a probability space, endowed with a measure
preserving invertible transformation S . A T -point process defined on .�;F ;P; S/ is a point
process N W �! X�, such that

– for any set A 2 A , N.!/ .A/ D 0 for P-almost all ! whenever � .A/ D 0;
– for P-almost all !, for any set A 2 A , N.S!/ .A/ D N.!/

�
T �1A

�
.

Thus, a T -point process N implements a factor relationship between the dynamical
systems .�;F ;P; S/ and

�
X�; A �

; m; T�
�

wherem is the pushforward measure of P by N .
Observe that the formula A 2 A 7! E ŒN .A/� defines a T -invariant measure which is

absolutely continuous with respect to �. It is called the intensity of N and as soon as it is
� -finite, by ergodicity of .X; A ; �; T /, it is a multiple of �:

E ŒN .�/� D ˛� .�/

for some ˛ > 0. In this case, we will say that N is integrable. More generally, setting

Af WD fA 2 A ; 0 < � .A/ < C1g ;

we have:

D 1.2. – A T -point processN on .�;F ;P; S/ is said to have moments of order
n � 1 if, for all A 2 Af , E

�
.N .A//n

�
< C1. In this case, for k � n, the formula

MN
k .A1 � � � � � Ak/ WD E ŒN .A1/ � � � � �N .Ak/�

defines a boundedly finite T �� � ��T -invariant measureMN
k

on
�
Xk ; A˝k

�
called the k-order

moment measure.
A T -point process with moments of order 2 is said to be square integrable.

1.2. Poisson point process and SuShis

The most important T -point processes are Poisson point processes, let us recall their
definition.

D 1.3. – A random variable N with values in .X�; A �
/ is a Poisson point

process of intensity � if for any k � 1, for any mutually disjoint sets A1; : : : ; Ak 2 Af , the
random variables N .A1/ ; : : : ; N .Ak/ are independent and Poisson distributed with respective
parameters � .A1/ ; : : : ; � .Ak/.

Such a process always exists, and its distribution �� on X� is uniquely determined by the
preceding conditions. Since T preserves �, one easily checks that T� preserves ��.

D 1.4. – The probability-preserving dynamical system
�
X�; A �

; ��; T�
�

is
called the Poisson suspension over the base .X; A ; �; T /.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1304 É. JANVRESSE, E. ROY AND T. DE LA RUE

The basic result (see e.g., [23]) about Poisson suspensions states that
�
X�; A �

; ��; T�
�

is
ergodic (and then weakly mixing) if and only if there is no T -invariant set in Af . In
particular this is the case if .X; A ; �; T / is ergodic and � infinite.

Defining N on the probability space
�
X�; A �

; ��
�

as the identity map provides an
example of a T -point process, the underlying measure-preserving transformation being
S D T� in this case.

More generally, we can define a class of T -point processes which are constructed from
independent Poisson point processes.

D 1.5. – Let .Ni /i2I be a countable family of independent Poisson T -point
processes of respective intensities ˛i�, defined on the same probability space .�;F ;P/. For
each i 2 I , consider a finite subset Ji � Z, withX

i2I

˛i#Ji <1:

Then, the process N defined by

N.!/ WD
X
i2I

X
j2Ji

T j� .Ni .!//

is a particular integrable T -point process called Superposition of Shifted Poisson Processes,
which we abbreviate in SuShi.

Note that the aperiodicity of T ensures that the realizationsN.!/ of the SuShi are indeed
in X� (the supports of the T j� .Ni .!// are pairwise disjoint).

It is easy to see that a SuShi always admits a canonical decomposition, in which the
subsets Ji are distinct, contained in ZC, and 0 2 Ji for all i : indeed, consider mi WD minJi ,
and if mi ¤ 0, replace Ni by Tmi

� Ni and Ji by Ji �mi . Then join together all Poisson point
processes Ni sharing the same finite set Ji .

In general, a SuShi does not have moments of all orders (with arguments similar to those
used at the end of the proof of Proposition 2.1, one can show that, if

P
i2I ˛i .#Ji /

2 D 1,
then there exists A 2 Af whith E

�
N.A/2

�
D 1). However, if the numbers #Ji , i 2 I are

uniformly bounded, then moments of all orders exist for the SuShi.

1.3. Roadmap of the paper

The paper is organized as follows. Section 2 is devoted to general results about T -point
processes, and their behavior regarding T -orbits. In Section 2.1, we consider the following
question: can a T -point process assign infinite mass to T -orbits? We show in Proposition 2.1
that, if a T -point process is square-integrable, then it almost surely gives finite mass to any
T -orbit. We also explain how to construct a (non-square-integrable) T -point process which
almost surely assigns mass 0 or 1 to any T -orbit (Proposition 2.2). In Section 2.2, we
describe a canonical decomposition of a T -point process assigning finite mass to T -orbits
(Proposition 2.5), which is naturally related to the form taken by SuShis. In Section 2.3, we
first provide a useful criterion to detect whether several T -point processes, defined on the
same probability space, charge points in the same T -orbits (Lemma 2.6). Then we prove in
Proposition 2.7 that any T -point process whose 2-order moment measure coincides with the

4 e SÉRIE – TOME 50 – 2017 – No 6



POISSON SUSPENSIONS AND SUSHIS 1305

one of a Poisson process is T -free, that is to say it almost surely charges at most one point in
any T -orbit.

Section 3 presents the key rigidity results of the paper. At the beginning of this section,
we introduce two additional properties of the infinite measure preserving dynamical system
.X; A ; �; T /, denoted by (P1) and (P2). The former simply says that any direct product of a
finite number of copies of this system remains ergodic, and the latter is a strong restriction on
the set of T �n-invariant measures on Xn. As proved in [13], there exists an infinite measure
preserving version of the Chacon transformation satisfying these properties. Then we show
that, under assumptions (P1) and (P2), T -point processes with moments of all orders are
SuShis (Theorem 3.4). An important step for the proof of this result is the particular case
where the T -point process is T -free: in this situation we prove that it has to be a Poisson
process (Theorem 3.2). We also need a result ensuring the independence of Poisson T -point
processes which do not charge the same T -orbits, provided by Proposition 3.3.

Section 4 deals with the consequences of the preceding results regarding self-joinings and
factors of the Poisson suspension. We begin by recalling classical results on the L2 structure
of a Poisson suspension (Section 4.1), and presenting the central notions of Poisson factors
and Poisson joinings (Section 4.2). Then we prove that, if T satisfies (P1) and (P2), any
ergodic infinite self-joining of the associated Poisson suspension is realized as a factor of
a universal Poisson suspension (Theorem 4.7). In fact, the result even holds for an ergodic
joining of a countable family of Poisson suspensions which are all of the form T

.˛/
� , where

for each ˛ > 0, T .˛/� denotes the Poisson suspension .X�; A �
; .˛�/�; T�/. As a corollary, we

get in Theorem 4.18 that such a Poisson suspension satisfies the PaP property, which means
that any ergodic self-joining of this system is Poisson. This PaP property turns out to be,
in the Poissonian context, the analog of the so-called GAG property for Gaussian stationary
processes (see [18]). We also present in Section 4.4 some general properties of PaP Poisson
suspensions.

In Section 5.1, we see how the suspensions T .˛/� can be used to obtain a new kind of
counterexample to the famous question of Furstenberg: if two ergodic dynamical systems
are not disjoint, do they share a common factor ? All counterexamples known so far have
the property that one of the two non-disjoint systems shares a common factor with a distal
extension of the other one. In Proposition 5.1, we show that, if ˛ ¤ ˇ, T .˛/� and T .ˇ/� are two
non-disjoint systems which are prime, but neither of them is a factor of a distal extension of
the other one, answering negatively a question asked by Lemańczyk.

In Section 5, we also present disjointness results for the Poisson suspension, still
assuming (P1) and (P2), and a further technical assumption on T which is the existence
of a measurable law of large number. (It is not clear whether, in general, (P1) and (P2) imply
this existence, however these three properties are satisfied for the infinite Chacon trans-
formation.) Under these assumptions, we prove in particular the following key result: if a
dynamical system S is not disjoint from the Poisson suspension .X�; A �

; ��; T�/, then there
exists ˛ > 0 such that T .˛/� appears as a factor of S (Proposition 5.7). Applications of this
result are developed in Section 5.3, where we prove that, under the same assumptions, the
Poisson suspension is disjoint from any locally rank one dynamical system (Theorem 5.10),
and from any standard Gaussian dynamical system (Theorem 5.14).

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1306 É. JANVRESSE, E. ROY AND T. DE LA RUE

2. General results about T -point processes and T -orbits

2.1. Number of points in orbits

P 2.1. – Let N be a square-integrable T -point process with intensity �. Then
N almost surely gives finite measure to any T -orbit.

Proof. – LetN be an integrable T -point process with intensity� defined on .�;F ;P; S/.
We prove the proposition in the following form: assume that, with positive probability, there
exists some x 2 N.!/ with

N.!/
�
fT kx W k 2 Zg

�
D1:

Then, we can find A 2 Af such that

E
�
N 2.A/

�
D1:

The first step is to prove that

(1) 8m;M > 0; there exists A � X with �.A/ D m and E
�
N 2.A/

�
�M�.A/:

The main tool for this proof will be the family of Palm probability measures .Px/x2X
associated with the point process N . For a detailed presentation of Palm measures, we refer
the reader to [5], Chapter 13. Recall that for�-almost each x 2 X ,Px is a probability measure
on X� which can be interpreted as the distribution of N conditioned on x 2 N . For each
measurable U � X�, x 7! Px.U / is measurable, and we have for each measurable A � X

E Œ1U .N /N.A/� D
Z
A

Px.U /d�.x/:

More generally, if g is a positive measurable function on X �X�, and if we denote by Ex Œ � �
the expectation with respect to Px , we have

(2) E
�Z
X

g.x;N /dN.x/

�
D

Z
X

Ex Œg.x; �/� d�.x/:

We claim that, for �-almost all x,

(3) PTx D .T�/�Px :

Indeed, as P is S -invariant, for each measurable U � X� and each measurable A � X , we
can write Z

A

Px.U / d�.x/ D E Œ1U .N /N.A/�

D E Œ.1U .N /N.A// ı S�

D E
h
1T�1
� U .N /N.T

�1A/
i

D

Z
T�1A

Px.T �1� U/ d�.x/:

But on the other hand, using T -invariance of �, we also haveZ
A

Px.U / d�.x/ D
Z
T�1A

PTx.U / d�.x/:

This yields, for each measurable U � X�, PTx.U / D Px.T �1� U/, and (3) follows.

4 e SÉRIE – TOME 50 – 2017 – No 6



POISSON SUSPENSIONS AND SUSHIS 1307

Now, for each x 2 X , let us introduce the map 'x W X� ! f0; 1gZ defined by

8k 2 Z; .'x.�//k WD �
�
T kx

�
:

Observe that

(4) 'Tx ı T� D 'x :

Define also the probability measure �x on f0; 1gZ as the pushforward measure of Px by 'x .
By (3) and (4), we get, for �-almost all x 2 X

�Tx D .'Tx/�.PTx/ D .'Tx ı T�/�.Px/ D .'x/�.Px/ D �x :

By ergodicity of T , it follows that there exists a probability measure � on f0; 1gZ such that
�x D � for �-almost all x 2 X .

Let us consider the following measurable function g defined on X �X�:

g.x; �/ WD

(
1 if

P
k2Z �.T

kx/ D1

0 otherwise.

The hypothesis made on the point process N yields

E
�Z
X

g.x;N /dN.x/

�
> 0:

By (2), we get that for x in a subset of positive measure in X ,

0 < Ex Œg.x; �/�

D Px

 X
k

�.T kx/ D1

!

D Px

 X
k

�
'x.�/

�
k
D1

!

D �

 (
� 2 f0; 1gZ W

X
k2Z

�k D1

)!
:

It follows that Z
f0;1gZ

X
k2Z

�k d�.�/ D1;

and we have Z
f0;1gZ

X
k2ZC

�k d�.�/ D1; or
Z
f0;1gZ

X
k2Z�

�k d�.�/ D1:

Assume without loss of generality that the former case occurs. Then, for a given M > 0,
there exists a large integer kM such thatZ

f0;1gZ

X
0�k�kM

�k d�.�/ � 2M:

By Rokhlin’s tower theorem ([1], Theorem 1.5.9), for any m > 0, there exists B � X ,
�.B/ D m

2kMC1
, such that the sets T kB, �kM � k � kM are pairwise disjoint. Now set

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1308 É. JANVRESSE, E. ROY AND T. DE LA RUE

A WD
F
�kM�k�kM

T kB, so that �.A/ D m, andA� WD
F
�kM�k�0

T kB. Applying (2) with
g.x; �/ D 1A.x/�.A/, we get

E
�
N 2.A/

�
D

Z
A

Ex Œ�.A/� d�.x/ �
Z
A�

Ex Œ�.A/� d�.x/:

But, for x 2 A�, T k.x/ 2 A for each 0 � k � kM , therefore

Ex Œ�.A/� � Ex

24 X
0�k�kM

�.T kx/

35 D Z
f0;1gZ

X
0�k�kM

�k d�.�/ � 2M:

Since �.A�/ � �.A/=2, we get (1).
To conclude the proof of the proposition, for each ` � 1, applying (1), we find A` � X

satisfying �.A`/ D 1=`2 and EŒN 2.A`/� � `
3�.A`/. Set A WD

S
`�1A`. Then A 2 Af , but

for each `, EŒN 2.A/� � EŒN 2.A`/� � `.

Without the finiteness of the second moment, we cannot conclude that theT -point process
assigns finite mass to any T -orbit. Indeed, we have the following proposition.

P 2.2. – For any ergodic conservative dynamical system .X; A ; �; T / with
�.X/ D 1, there exists a T -point process N with intensity � such that, with probability 1,
for any x 2 N.!/,

N.!/
�
fT kx W k 2 Zg

�
D1:

Proof. – According to Corollary 5.3.4 in [1], there exists a conservative ergodic dynamical
system .Y; B; �; R/ such that the direct product .X � Y; A ˝ B; � ˝ �; T � R/ is totally
dissipative. Therefore, there exists a wandering setM � X �Y such that the sets .T �R/iM ,
i 2 Z, are pairwise disjoint, and such that X � Y D

F
i2Z.T �R/

iM .
Let �0 be a Poisson process on M with intensity � ˝ �jM , and consider, for any i 2 Z,

�i WD .T � R/i��0: this is a Poisson process on .T � R/iM with intensity � ˝ �j.T�R/iM .

Then, set � WD
P
i2Z �i , which is a point process on X � Y with intensity � ˝ �. We claim

now that

(5) � and .T � Id/�� have the same law.

Indeed, set QM WD .T � Id/M , and partition this set into subsets QMi WD QM \ .T � R/iM .
Then, for all i 2 Z, considerMi WD .T �R/

�i QMi D .T �R/
�i QM \M . But T � Id commutes

with T �R, therefore the subsets .T �R/�i QM also form a partition ofX �Y . It follows that
the subsets Mi form a partition of M . Moreover, by definition of �,

�j QMi
D .T �R/i��jMi

;

and since the point processes �jMi
are independent Poisson processes, Q�0 WD �j QM

is itself a

Poisson process of intensity �˝ �j QM . Starting from this Poisson process defined on QM , we
can in the same way construct the point process

Q� WD
X
i2Z

.T �R/i� Q�0;

which has the same distribution as .T �Id/��. But on the other hand, we have Q� D �, because
these two point processes coincide on QM and both charge full orbits of T �R. This proves (5).

4 e SÉRIE – TOME 50 – 2017 – No 6
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Finally, let us fix a measurable subset B � Y with �.B/ D 1. Replacing if necessary B
by B \ fy 2 Y W Rny 2 B for infinitely many integers ng, which is still of measure 1, we can
assume that any y 2 B returns infinitely often inB. Consider the point process onX defined
by

� WD .�X /�

�
�jX�B

�
;

where �X W X � Y ! X stands for the projection on the X coordinate. Then, the intensity
of � is �, and by (5), � and T�� have the same law. Now, for any x 2 �, there exists y 2 B
such that .x; y/ 2 �\X �B. Then there exist infinitely many integers n such that Rny 2 B,
hence such that .T nx;Rny/ 2 �\X �B, and then T nx 2 �. We get the announced T -point
process N by considering N WD Id on � WD X�, equipped with the probability measure P
defined as the law of �, which is invariant by S WD T�.

2.2. Separating orbits

The next definition deals with the interactions between T -point processes.

D 2.3. – Two T -point processes N1 and N2 defined on .�;F ;P; S/ are said to
be (T -)dissociated if, for P-almost all !, for all k 2 Z, N1.!/ \N2

�
Sk!

�
D ;.

Of course, a T -point process is never dissociated with itself, however we have the following
situation:

D 2.4. – A T -point process N is called (T -)free if for P-almost all !, for all
k 2 Z�, N.!/ \N

�
Sk!

�
D ;.

P 2.5. – Let N be a T -point process on .�;F ;P; S/, which almost-surely
assigns finite mass to any T -orbit. Then there exist a finite or countable set I , a family fFigi2I
of finite subsets ofZC, and a family

�
NFi

�
i2I

of free T -point processes, measurable with respect
to N and mutually dissociated, such that

N D
X
i2I

0@X
k2Fi

NFi
ı Sk

1A ; P-a.s.

Proof. – For each non-empty subset F � ZC that contains 0, we can form from N a
T -point process NF by keeping, for all ! 2 �, points x 2 N .!/ such that T kx 2 N .!/ for
all k 2 F and T kx … N .!/ for all k 2 Z nF . By construction, NF is a free T -point process,
and NF and NF 0 are dissociated whenever F ¤ F 0. Moreover, by hypothesis,

N D
X

F�ZC; 0<#F<1; 02F

NF ; P-a.s.

Removing all sets F such that NF vanishes P-a.s., we obtain the announced decomposition.
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2.3. Detecting interactions within T -point processes

We have already introduced the moment measures of a point process N by considering
the quantities

E ŒN .A1/ � � �N .An/�

for sets A1; : : : ; An in A .

We also obtain a T �n-invariant measure on Xn by considering possibly different T -point
processesN1; : : : ; Nn defined on the same probability space, and setting, forA1; : : : ; An in A

MN1;:::;Nn.A1 � � � � � An/ WD E ŒN1 .A1/ � � �Nn .An/� :

If the point processes have moments of all orders, this measure is boundedly finite and
captures some valuable information about the interactions between those processes. To
illustrate this, the next lemma roughly says that if this measure contains a non trivial “diag-
onal” part, then it reflects the presence of points on some common orbit for some of the
point processes involved.

L 2.6. – Let N1; : : : ; Nn be n T -point processes defined on the ergodic system
.�;F ;P; S/, having moments of all orders. Assume there exist a real number c > 0, integers
2 � j � n, k2; : : : ; kj , and a T �.n�j /-invariant, � -finite measure � ¤ 0 such that, for any sets
A1; : : : ; An in Af ,

E ŒN1 .A1/ � � �Nn .An/� � c�
�
A1 \ T

�k2A2 \ � � � \ T
�kjAj

�
�
�
AjC1

� � � � � An
�
:

Then, for any A 2 Af ,

P
�
A \N1 \ T

�k2N2 \ � � � \ T
�kjNj ¤ ;

�
> 0:

Proof. – We can apply the ergodic theorem:

1

N

NX
kD1

E
h
N1 .A1/ � � �Nj

�
Aj
� �
NjC1

�
AjC1

�
� � �Nn .An/

�
ı Sk

i
����!
N!1

E
�
N1 .A1/ � � �Nj

�
Aj
��

E
�
NjC1

�
AjC1

�
� � �Nn .An/

�
:

But

E
h
N1 .A1/ � � �Nj

�
Aj
� �
NjC1

�
AjC1

�
� � �Nn .An/

�
ı Sk

i
D E

h
N1 .A1/ � � �Nj

�
Aj
�
NjC1

�
T �kAjC1

�
� � �Nn

�
T �kAn

�i
;

therefore, as � is T �.n�j /-invariant,

E
�
N1 .A1/ � � �Nj

�
Aj
��
E
�
NjC1

�
AjC1

�
� � �Nn .An/

�
� c�

�
A1 \ T

�k2A2 \ � � � \ T
�kjAj

�
�
�
AjC1

� � � � � An
�
:

We claim that there exists some set B 2 Af so that E
�
NjC1 .B/ � � �Nn .B/

�
> 0 and

� .B � � � � � B/ > 0. Indeed, we first observe that, by ergodicity, we have Nk.X/ D 1 a.s.
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for all k. Thus,NjC1 .X/ � � �Nn .X/ D1 a.s. Take some increasing sequence .B`/`�1 in Af

such that X D
S
`�1 B`. Then

E
�
NjC1 .B`/ � � �Nn .B`/

�
����!
`!1

1;

thus E
�
NjC1 .B`/ � � �Nn .B`/

�
> 0 for all large enough `. By the same argument, we also

have �.B` � � � �B`/ > 0 for all large enough `, and we can take B D B` for some large `.

We now set

˛ WD
� .B � � � � � B/

E
�
NjC1 .B/ � � �Nn .B/

� > 0:
Then, we have for any A1; : : : ; Aj in Af ,

(6) E
�
N1 .A1/ � � �Nj

�
Aj
��
� c˛�

�
A1 \ T

�k2A2 \ � � � \ T
�jAj

�
:

Let us consider now a generating sequence
��
An

i

�
1�i�pn

�
n�1

of partitions of A: this means

that this sequence of partitions of A is increasing, and that for any x ¤ y in A, there
exists n.x; y/ such that, for any n � n.x; y/, x and y do not belong to the same atom of
the partition

�
An

i

�
1�i�pn

. Observe that

pnX
iD1

N1
�
An

i

�
N2

�
T k2An

i

�
� � �Nj

�
T kjAn

i

�
����!
n!1

#
n
x 2 N1 \ A W T

k2x 2 N2; : : : ; T
kj x 2 Nj

o
:

Moreover,

pnX
iD1

N1
�
An

i

�
N2

�
T k2An

i

�
� � �Nj

�
T kjAn

i

�
� N1 .A/N2

�
T k2A

�
� � �Nj�1

�
T kj�1A

� pnX
iD1

Nj

�
T kjAn

i

�
D N1 .A/N2

�
T k2A

�
� � �Nj�1

�
T kj�1A

�
Nj

�
T kjA

�
;

which is integrable. So we can apply the dominated convergence theorem to get

E

"
pnX
iD1

N1
�
An

i

�
N2

�
T k2An

i

�
� � �Nj

�
T kjAn

i

�#
����!
n!1

E
h
#
n
x 2 N1 \ A; T

k2x 2 N2; : : : ; T
kj x 2 Nj

oi
:
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On the other hand, we have

E
� pnX
iD1

N1
�
An

i

�
N2

�
T k2An

i

�
� � �Nj

�
T kjAn

i

��
D

pnX
iD1

E
h
N1

�
An

i

�
N2

�
T k2An

i

�
� � �Nj

�
T kjAn

i

�i
�

pnX
iD1

c˛�
�
An

i
\ An

i
\ � � � \ An

i

�
by (6)

D c˛

pnX
iD1

�
�
An

i

�
D c˛� .A/ :

Letting n go to1, we get

E
h
#
n
x 2 N1 \ A; T

k2x 2 N2; : : : ; T
kj x 2 Nj

oi
� c˛� .A/ ;

which concludes the proof.

In the case where N1 D N2 D N , the following proposition shows that some particular
form for MN

2 forces the T -point process to be free.

P 2.7. – Let N be a square integrable T -point process, whose second order
moment measure satisfies

MN
2 .A1 � A2/ D � .A1 \ A2/C � .A1/ � .A2/ :

Then N is a free T -point process. In particular the Poisson process associated to the Poisson
suspension

�
X�; A �

; ��; T�
�

is a free T -point process.

Proof. – Fix k ¤ 0. Take a set A 2 Af such that A\T kA D ; (such a set always exists)

and
��
An

i

�
1�i�pn

�
n�1

a generating sequence of partitions ofA, satisfying �
�
Ani
�
D

�.A/
pn

for

all 1 � i � pn. Then

E

"
pnX
iD1

N
�
An

i

�
N
�
T kAn

i

�#
����!
n!1

E
h
#
n
x 2 N \ A W T kx 2 N

oi
:

But, as A \ T kA D ;,

E

"
pnX
iD1

N
�
An

i

�
N
�
T kAn

i

�#
D

pnX
iD1

MN
2 .A

n
i � T

kAni /

D

pnX
iD1

�.Ani /
2
D
� .A/2

pn
����!
n!1

0:

Therefore #
˚
x 2 N \ A W T kx 2 N

	
D 0 a.s. But this is also true if we replace A by T nA

for any n 2 Z. As T is conservative ergodic, the set A is a sweep out set, which means thatS
n2Z T

nA D X a.e. and we get #
˚
x 2 N; T kx 2 N

	
D 0 a.s.
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3. Getting SuShis

For each n � 1, let us denote by Pn the set of all partitions of f1; : : : ; ng. Given � 2Pn,
and a family � D .ki /1�i�n of integers, we can define a measure m�� on Xn, by setting

m��.A1 � � � � � An/ WD
Y
P2�

�

 \
i2P

T �kiAi

!
:

When � D .0; : : : ; 0/, we simply note m� instead of m.0;:::;0/� . When � is the partition into
points, m�� is the product measure �˝n. When � is the trivial partition with a single atom,
m� corresponds to the n-diagonal measure, concentrated on �n WD f.x; : : : ; x/ 2 Xn W x 2 Xg.

Since � is T -invariant, the measure m�� is T �n-invariant. Moreover, we can always,
without changing the measurem�� , shift the subfamilies .ki /i2P so that ki D 0 whenever i is
the smallest element of the atom P of � : we say in this case that � is �-compatible.

The action of T �n on the measure m�� is isomorphic to�
X#� ; A˝#�

; �˝#� ; T �#�
�
:

From now on, we assume that T satisfies the following properties:

(P1) For each n � 1, the product system .Xn; A˝n
; �˝n; T �n/ is ergodic.

(P2) For each n � 1, if � is a boundedly finite, T �n-invariant measure on Xn, whose
marginals are absolutely continuous with respect to �, then � is conservative, and its
ergodic components are all of the form m�� for some � 2Pn and some �-compatible
family �.

An example of a transformation T satisfying both properties is given by the so-called nearly
finite Chacon transformation [13].

3.1. Free implies Poisson

It is well known that a Poisson distribution is completely determined by its moments,
which follows from the fact that its moment generating function is analytic in a neighborhood
of 0 (see e.g., [6, p. 86]). The following lemma is a kind of generalization of this result to the
distribution of Poisson point processes, which are completely determined by their moment
measures.

L 3.1. – Let N be a Poisson point process onX of intensity�, and assume thatN is
a point process on X with the same moment measures as N . Then N is also a Poisson point
process of intensity �.

Proof. – For any A 2 Af , N .A/ is a Poisson random variable of intensity � .A/
and as such, its distribution is completely determined by its moments. Since, by hypothesis,
N .A/ has the same moments, it is also a Poisson random variable of parameter � .A/. We
conclude by applying Rényi’s characterization theorem [22] which, in particular, identifies
as a Poisson process on X of intensity �, any point process such that, for any A 2 Af , the
random measure ofA is Poisson distributed with parameter� .A/. (Rényi’s orginal statement
was restricted to Poisson processes on the real line with a non atomic Radon measure but it
can of course be translated on any metric space with a continuous Borel measure.)
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T 3.2. – Assume that properties (P1) and (P2) hold for T . If N is a free T -point
process with moments of all orders defined on an ergodic system .�;F ;P; S/, then it is Poisson.

Proof. – Let N be a free T -point process with moments of all orders. We can assume
that � is the intensity of N . In the first step of the proof, we want to show that the moment
measures of any order ofN coincide with those of a Poisson process of intensity � (we recall
that this latter point process is itself a free, ergodic, T -point process).

The n-order moment measure MN
n satisfies the hypothesis of Property (P2), hence it has

at most countably many ergodic components, of the form m�� for some � 2 Pn and some
�-compatible family �. By Lemma 2.6 applied with N1 D � � � D Nn D N , which is a free
T -point process, we see that the contribution of any m�� , where � ¤ .0; : : : ; 0/, vanishes.
Therefore, the ergodic decomposition of MN

n writes

MN
n D

X
�2Pn

c�m� :

We first point out that for each n � 1, the weight of the n-diagonal measure is 1 (this
is valid for any point process of intensity �). Indeed, using once again a set A 2 Af , and��
A`i
�
1�i�p`

�
`�1

a generating sequence of partitions of A, we get

pX̀
iD1

MN
n

�
A`i � � � � � A

`
i

�
D E

"
pX̀
iD1

N
�
A`i

�
� � �N

�
A`i

�#
����!
`!1

E ŒN .A/� D � .A/ D � .A \ � � � \ A/ :

On the other hand,

pX̀
iD1

MN
n

�
A`i � � � � � A

`
i

�
D MN

n

 
pG̀
iD1

A`i � � � � � A
`
i

!
����!
`!1

MN
n .�n \ A � � � � � A/ :

Therefore MN
n .�n \ A � � � � � A/ D � .A \ � � � \ A/, which implies, as claimed, that the

weight of the n-diagonal measure is 1.

We now want to prove by induction that, for all n � 1,MN
n is the n-order moment measure

of a Poisson process of intensity �. The property is of course satisfied for n D 1. Let us
assume it is satisfied up to some n � 1, and letA1; : : : ; AnC1 be sets in Af . Pick a nonempty
subset K f1; : : : ; nC 1g. By the ergodic theorem, we get

(7)
1

`

X̀
kD1

E

"Y
i2K

N .Ai /

 Y
i2Kc

N .Ai / ı S
k

!#
����!
`!1

E

"Y
i2K

N .Ai /

#
E

" Y
i2Kc

N .Ai /

#

DMN
#K

 Y
i2K

Ai

!
MN
.nC1�#K/

 Y
i2Kc

Ai

!
:
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On the other hand,

1

`

X̀
kD1

E
�Y
i2K

N .Ai /

 Y
i2Kc

N .Ai / ı S
k

!�
D
1

`

X̀
kD1

MN
nC1

�
T ��k.1/A1 � � � � � T

��k.n/An

�(8)

D

X
�2PnC1

c�
1

`

X̀
kD1

m�

�
T ��k.1/A1 � � � � � T

��k.nC1/AnC1

�
where �k .i/ WD k if i 2 K, and �k .i/ WD 0 otherwise. Coming back to the definition of m� ,
we write

m�

�
T ��k.1/A1 � � � � � T

��k.nC1/AnC1

�
D

Y
P2�

�

 \
i2P

T ��k.i/Ai

!
:

Observe that, if K is a union of atoms of � , we have for any 1 � k � `

m�

�
T ��k.1/A1 � � � � � T

��k.nC1/AnC1

�
D m� .A1 � � � � � AnC1/ :

Otherwise, there exists an atom P 2 � containing indices i 2 K and j … K, hence with
�k .i/ D k and �k.j / D 0. We get that for some constant C ,

m�

�
T ��k.1/A1 � � � � � T

��k.nC1/AnC1

�
� C�.Aj \ T

�kAi /:

But, since T is an ergodic infinite-measure-preserving map,

1

`

X̀
kD1

�
�
Aj \ T

�kAi

�
����!
`!1

0:

Defining PK
nC1 as the set of partitions � 2 PnC1 where K is a union of atoms of � , the

above proves that the contribution of all partitions � 2PnC1 nPK
nC1 vanishes, and we get,

using (7) and (8),

MN
#K

 Y
i2K

Ai

!
MN
.nC1�#K/

 Y
i2Kc

Ai

!
D

X
�2PK

nC1

c�m� .A1 � � � � � AnC1/ :

Since ; ¤ K f1; : : : ; nC 1g, the ergodic decompositions of MN
#K and MN

.nC1�#K/ only
involve the coefficients c� , � 2 P1 [ � � � [Pn. Identifying the ergodic decompositions on
both sides of the above equality, we see that all the coefficients c� , � 2PK

nC1 are completely
determined by coefficients corresponding to partitions in P1[� � �[Pn. Moreover, the above
argument is valid in particular when N is the Poisson process of intensity � (which is free
by Proposition 2.7). By letting K run through all strict subsets of f1; : : : ; nC 1g, and using
the induction hypothesis, we identify all but one coefficients of the ergodic decomposition
ofMN

nC1 as those of the Poisson point process of intensity�. The only coefficient that cannot
be determined by this method is the one associated to the trivial partition of f1; : : : ; nC 1g
into a single atom. But this corresponds to the .n C 1/-diagonal measure, and we already
know that this coefficient is 1. Thus we have proved the moment measures of any order ofN
are those of a Poisson point process of intensity �, and we conclude by Lemma 3.1.
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3.2. Dissociation implies independence

P 3.3. – Assume that properties (P1) and (P2) hold for T . Let N1; : : : ; Nk be
Poisson T -point processes, of respective intensity ˛1�; : : : ; ˛k�, defined on the same ergodic
system .�;F ;P; S/. If these processes are mutually dissociated, then they are independent.

Proof. – Let n1; : : : ; nk be positive numbers, n WD n1C� � �Cnk , and let fQ1; : : : ;Qkg be
the partition of f1; : : : ; ng in subsets of consecutive integers of respective size n1; : : : ; nk . For
any fAig1�i�n in Af , set

(9) �.A1 � � � � � An/ WD E

24 kY
jD1

Y
i2Qj

Nj .Ai /

35 :
This defines a T �n-invariant measure � on

�
Xn; A˝n

�
, which satisfies the hypotheses of

Property (P2). Hence � has at most countably many ergodic components, of the formm�� for
some � 2Pn and some �-compatible family �. By Lemma 2.6, as the processes N1; : : : ; Nk
are mutually dissociated, only partitions � refining the partition fQ1; : : : ;Qkg may appear
in the ergodic decomposition of � . Therefore, any ergodic component m�� of � has the form

m��.A1 � � � � � An/ D

kY
jD1

�j

0@Y
i2Qj

Ai

1A ;
where each �j is a T �nj -invariant measure. In particular, any ergodic component of � is
invariant by the transformation .x1; : : : ; xn/ 7! .y1; : : : ; yn/, where yi WD T xi if i 2 Qk ,
and yi WD xi otherwise. It follows that � itself is invariant by this transformation, hence
the expression defining �.A1 � � � � � An/ on the right-hand side of (9) is unchanged if we
replaceNk.Ai / byNk.T �1Ai / for all i 2 Qk simultaneously. Therefore, we can write for any
fAig1�i�n in Af and any L � 1

E

24 kY
jD1

Y
i2Qj

Nj .Ai /

35 D 1

L

X
1�`�L

E

240@k�1Y
jD1

Y
i2Qj

Nj .Ai /

1A Y
i2Qk

Nk.T
�`Ai /

35
D E

240@k�1Y
jD1

Y
i2Qj

Nj .Ai /

1A0@ 1
L

X
1�`�L

Y
i2Qk

Nk ı S
`.Ai /

1A35 :
By the ergodic theorem, this converges as L!1 to

E

24k�1Y
jD1

Y
i2Qj

Nj .Ai /

35E

24 Y
i2Qk

Nk.Ai /

35 :
A straightforward induction on k then yields the equality

E

24 kY
jD1

Y
i2Qj

Nj .Ai /

35 D kY
jD1

E

24 Y
i2Qj

Nj .Ai /

35 ;
and this is sufficient to obtain the independence between the Poisson processes.

Compiling the previous results, we now get the following structure theorem.
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T 3.4. – Assume that properties (P1) and (P2) hold for T . Let N be a T -point
process with moments of all orders defined on an ergodic system .�;F ;P; S/. Then N is a
SuShi.

Proof. – SinceN is square integrable, Proposition 2.1 ensures thatN almost surely gives
a finite measure to any T -orbit. We can therefore apply Proposition 2.5 to write N as

N D
X
i2I

0@X
k2Fi

NFi
ı Sk

1A ; P-a.s.

where I is countable, each Fi is a finite subset of Z, and the T -point processes NFi
are free

and mutually dissociated. Then Theorem 3.2 proves that each NFi
is a Poisson process, and

Proposition 3.3 shows that they are independent.

4. Application to the structure of Poisson joinings

4.1. Notions on the L2 structure of a Poisson suspension

There is a strong relationship between theL2-spaces of the suspension and the underlying
space. Namely, L2 .��/ can be seen as the Fock space of L2 .�/ (see [19]), that is

L2
�
��
�
' Fock

�
L2 .�/

�
WD C˚ L2 .�/˚ L2 .�/ˇ2 ˚ � � � ˚ L2 .�/ˇn ˚ � � � ;

where L2 .�/ˇn stands for the n-order symmetric tensor power of L2 .�/, and the inner
product given on L2 .�/ˇn is given by˝

f ˝n; g˝n
˛
Fock.L2.�// WD

1

nŠ
hf; gin :

This means there is a sequence fHngn�0 of so-called (Poissonian) chaos which are orthog-
onal subspaces inside L2 .��/, such that L2 .��/ D

L
n�0H

n, and where, for each n � 1,
Hn is identified to L2 .�/ˇn through multiple integrals (H 0 corresponds to constant func-
tions, identified to C). In this paper we only need to know what happens in the first chaos:
H 1 is linearly spanned by functions N .A/ � � .A/, for A 2 Af , and N .A/ � � .A/ 2 H 1

corresponds to 1A 2 L
2 .�/. We have the isometry relationD

N .A/ � � .A/ ;N .B/ � � .B/
E
L2.��/

D h1A;1BiL2.�/ :

If ' is a linear operator from L2 .�1/ to L2 .�2/, of norm less than or equal to 1, then
' extends naturally to an operator e', called the exponential of ', from Fock

�
L2 .�1/

�
to Fock

�
L2 .�2/

�
, by e' �f ˝n� WD ' .f /˝ � � � ˝ ' .f / :

In particular, if UT and UT� denote the unitary operators associated to T and T� on their
respective spaces, then, through the identification, we have

UT� D
fUT :
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4.2. Poisson factors and Poisson joinings

There is a distinguished collection of factors within a Poisson suspension
�
X�; A �

; ��; T�
�

that are also Poisson suspensions:

D 4.1 (Poisson factor). – Let Y � X be a T -invariant measurable set, and
let C � A jY be a � -finite sub-� -algebra of A restricted to Y . Then the Poisson suspension�
Y �; C�; ��; T�

�
is a natural factor of

�
X�; A �

; ��; T�
�

via the factor map

� 2 X� 7�! �j C
2 Y �:

Such a factor is called a Poisson factor of the suspension
�
X�; A �

; ��; T�
�
.

Let
�
Yi ; Y i ; �i ; Ri

�
, i 2 I , be a finite or countable family of dynamical systems. We recall

that a joining of these dynamical systems is a measure on
Q
i Yi , invariant by the product

transformation
Q
i Ri W .yi /i2I 7! .Riyi /i2I , and whose marginal on each coordinate i is �i .

Observe that this definition is not restricted to probability measure preserving systems, but
extends to the case where measures are � -finite. However it is worth to note that the product
measure is not a joining in the infinite measure case (its marginals are not � -finite).

To a joining m of two systems
�
Yi ; Y i ; �i ; Ri

�
, i D 1; 2, corresponds a Markov operator

' W L2.�1/! L2.�2/, defined by

8A 2 Y 1; B 2 Y 2 with finite measure, m.A � B/ WD

Z
B

'.1A/ d�2:

A self-joining of order n is a joining of n identical copies of the same system.

The structure of Poisson suspensions allows one to define a natural family of joinings
which plays a central role in this work.

D 4.2 (Poisson joining). – Let
�
X�i ; A �

i ; �
�
i ; .Ti /�

�
, i 2 I be a finite or count-

able family of Poisson suspensions. Assume that .Z�; Z
�
; m�; R�/ is some other Poisson suspen-

sion, that .Zi /i2I is a family of R-invariant subsets of Z, and that for each i 2 I we are given
a measurable map �i W Zi ! Xi such that

� .�i /�.mjZi
/ D �i ,

� �i ıR D Ti ı �i .

Let N be a Poisson R-point process of distribution m�. Then the distribution of
�
.�i /�.N jZi

/
�
i2I

is a joining of the Poisson suspensions
�
X�i ; A �

i ; �
�
i ; .Ti /�

�
, which we call a Poisson joining.

Let us recall the probabilistic notion of infinite divisibility, which is useful for the study of
Poisson joinings. The addition of � -finite measures on .X; A / is measurable and well defined

and so is the convolution of distributions on
�eX;fA�

: m1 �m2 is the pushforward measure

of m1 ˝m2 by the application�eX � eX;fA ˝fA�
!

�eX;fA�
.�1; �2/ 7! �1 C �2:
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D 4.3 (Infinite divisibility). – A probability measurem on
�eX;fA�

is said to be
infinitely divisible if, for every k � 2, there exists a probability measure mk such that

m D .mk/
�k
WD mk � � � � �mk :

The distribution of a Poisson point process is easily seen to be infinitely divisible, as we
have

�� D

��
1

k
�

����k
;

which is the formula capturing the fact that the independent superposition of k Poisson point
processes of intensities 1

k
� is a Poisson point process of intensity �.

Observe that a pair of measures .�1; �2/ 2 QX1 � QX2 is naturally identified with a measure
on the disjoint union X1 t X2. Therefore, a distribution on QX1 � QX2 is itself identified to

a distribution on ˜.X1 tX2/, and we use this identification to define infinite divisibility of a
joining of Poisson suspensions.

Poisson joinings of two Poisson suspensions were defined independently using Markov
operators in [8], and infinite divisibility in [24], where both definitions were proved to be
equivalent. Combining the results of these two papers, we get the following proposition.

P 4.4. – Let  be a joining of two Poisson suspensions. The following properties
are equivalent:

1.  is a Poisson joining.
2.  is infinitely divisible.
3. The Markov operator associated to  is the exponential of a sub-Markov operator defined

between the L2 spaces of the bases.

In [8] and [24], Poisson joinings of two Poisson suspensions
�
X�i ; A �

i ; �
�
i ; .Ti /�

�
, i D 1; 2,

are in fact characterized by the following structure, which is easily seen to fit our Defini-
tion 4.2. Let us first fix two measures 1 � �1 and 2 � �2, respectively invariant by T1
and T2. Then consider a joining .X1 �X2; A 1 ˝ A 2; m; T1 � T2/ of .X1; A 1; 1; T1/ and
.X2; A 2; 2; T2/, and form the Poisson suspension�

.X1 �X2/
� ; .A 1 ˝ A 2/

�
; m�; .T1 � T2/�

�
:

Now we project the points of the Poisson process onX1�X2 of intensitym on both axesX1
and X2, getting two Poisson processes with intensities 1 and 2. This defines a factor map

� 2 .X1 �X2/
�
7!

�
� .� �X2/ ; � .X1 � �/

�
2 X�1 �X

�
2 ;

and the factor we obtain is a joining
�
X�1 �X

�
2 ; A �

1 ˝ A �

2 ; em; .T1/� � .T2/�� of the two
Poisson suspensions

�
X�1 ; A �

1 ; 
�
1 ; .T1/�

�
and

�
X�2 ; A �

2 ; 
�
2 ; .T2/�

�
. In order to adjust inten-

sities when i < �i , we superpose on each side an independent Poisson process of intensity
�i � i , i D 1; 2. Formally, we consider the direct product of the three
systems

�
X�1 ; A �

1 ; .�1 � 1/
� ; .T1/�

�
,

�
X�1 �X

�
2 ; A �

1 ˝ A �

2 ; em; .T1/� � .T2/�� and�
X�2 ; A �

2 ; .�2 � 2/
� ; .T2/�

�
, and form�

X�1 �X
�
2 ; A �

1 ˝ A �

2 ; bm; .T1/� � .T2/��
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through the factor map from
�
X�1 �

�
X�1 �X

�
2

�
�X�2

�
to
�
X�1 �X

�
2

�
defined by

.e�1; .�1; �2/ ;e�2/ 7! .e�1 C �1; �2 Ce�2/ :
Then bm is a Poisson joining of the two Poisson suspensions

�
X�i ; A �

i ; �
�
i ; .Ti /�

�
, i D 1; 2.

The sub-Markov operator mentioned in Proposition 4.4 corresponds to the joining m
in the above description, which can also be seen as a sub-joining of .X1; A 1; �1; T1/ and
.X2; A 2; �2; T2/.

E 4.5. – The main situation that occurs in this paper is a Poisson self-joining of
order 2 of

�
X�; A �

; ��; T�
�

where

m WD
X
k2Z

ak�T k

with ak � 0 and
P
k2Z ak � 1. If ak D 1 for some k, the corresponding Poisson joining bm is

the graph joining �.T�/k . If
P
k2Z ak D 0, then bm is the product joining. In the other cases, we

get a combination of both.

4.3. Embedding joinings in a universal suspension

L 4.6. – Assume that properties (P1) and (P2) hold for T . Let fNigi2I and N be
Poisson T -point processes defined on the ergodic dynamical system .�;F ;P; S/, where I is at
most countable and the fNigi2I are independent.

Then there exists a collection of (eventually vanishing) independent Poisson T -point
processes

�
N1;

˚
Ni;k

	
i2I; k2Z[1

�
, also defined on .�;F ;P/, measurable with respect

to � .N; fNigi2I /, such that

Ni D Ni;1 C
X
k2Z

Ni;k ;

and

N D N1 C
X
i2I

X
k2Z

Ni;k ı S
k :

Proof. – For each i , we consider the pair .N;Ni /. For every k 2 Z, the points x 2 Ni .!/
such that T kx 2 N .!/ define a point process Ni;k . By Proposition 2.7, N and the Ni are
free. Hence, we obtain X

k2Z

Ni;k � Ni

and X
i2I

X
k2Z

Ni;k ı S
k
� N:

We define also Ni;1 WD Ni �
P
k2ZNi;k and N1 WD N �

P
i2I

P
k2ZNi;k ı S

k . Then
the processes

˚
Ni;k

	
i2I; k2Z[1 and N1 are free and mutually dissociated T -point processes

defined on the ergodic dynamical system .�;F ;P; S/. They are therefore independent
Poisson T -point processes by Theorem 3.2 and Proposition 3.3.
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T 4.7. – Assume that properties (P1) and (P2) hold for T . Let .˛1; ˛2; : : :/ be a
finite or countable family of positive real numbers. Then any ergodic joining of the family of
Poisson suspensions

�
X�; A �

; .˛i�/
�; T�

�
is a Poisson joining, which can be obtained as a

factor of the ergodic Poisson suspension�
.X � RC/� ;

�
A ˝ B

��
; .�˝ �/� ; .T � Id/�

�
;

where B and � denote the Borel � -algebra and the Lebesgue measure on RC respectively.

Proof. – We only consider the case of a joining of a countably infinite family, the case
of a finite family being covered by the same proof up to obvious changes in notations.

Let .�;F ;P; S/ WD
�
X�N;

�
A �

�˝N
; m; .T�/

˝N
�

be an ergodic joining of the countable

family of Poisson suspensions
�
X�; A �

; .˛i�/
�; T�

�
, i 2 N. For each j � 1, we define on

this space the Poisson T -point processes of intensity j̨�

Nj .�1; �2; : : :/ WD �j :

Let N be the Poisson point process with intensity �˝ � on X � RC. Observe first that,
if J � RC is an interval of length ˇ, the random measure N .� � J / is a Poisson T -point
process of intensityˇ� (here the underlying transformation is .T �Id/�). Moreover, if we take
disjoint subintervals of RC, the corresponding Poisson T -point processes obtained in this
way are independent. In particular, QN1 WD N .� � Œ0; ˛1// has the same distribution as N1.
Observe also that QN1 can be written as ��.N jZ1

/, where Z1 WD X � Œ0; ˛1/ and � is the
projection on X .

SetM1 WD N1, and QM1 WD QN1. Now assume that, for some n � 1, we have found a finite or
countable family .Mi /i2I of independent Poisson T -point processes, measurable with respect
to .N1; : : : ; Nn/, such that for 1 � j � n,

(10) Nj D
X
i2Ij

Mi ı S
k.i;j /;

where Ij � I and k.i; j / 2 Z. Let ˇi � 0 be such that Mi has intensity ˇi�. Assume also
that we have a family .Ji /i2I of disjoint subintervals of RC of respective length ˇi . Then, the
family of T -point processes QMi WD N .� � Ji / has the same distribution as .Mi /i2I , and the
formula

QNj WD
X
i2Ij

QMi ı ..T � Id/�/k.i;j /

yields a family . QN1; : : : ; QNn/ of T -point processes defined on�
.X � RC/� ;

�
A ˝ B

��
; .�˝ �/� ; .T � Id/�

�
;

which has the same distribution as .N1; : : : ; Nn/. Moreover, each QNj , 1 � j � n can be

written as .�j /�.N jZj
/, where Zj WD X �

�S
i2Ij

Ji

�
, and �j is T k.i;j / ı � on X � Ji .

By Lemma 4.6 applied to the collection .Mi / and NnC1, we obtain a countable family
of independent Poisson T -point processes

˚
Mi;k

	
i2I;k2Z[f1g and NnC1;1, such that for

each i 2 I ,
Mi D

X
k2Z[f1g

Mi;k ;
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and
NnC1 D NnC1;1 C

X
i2I

X
k2Z

Mi;k ı S
k :

In particular, anyNj , 1 � j � nC 1 can be reconstructed from the familyMi;k andNnC1;1
with a formula similar to (10). Each Mi;k has intensity ˇi;k� for some ˇi;k � 0, and

ˇi D
X

k2Z[f1g

ˇi;k :

We can therefore partition Ji into disjoint subintervals Ji;k of respective length ˇi;k . Let
ˇ � 0 be such that NnC1;1 has intensity ˇ�. We can then find an extra subinterval of RC,
disjoint from

S
i2I Ji , of length ˇ. From this family of disjoint subintervals of RC we can

construct a family of independent Poisson T -point processes
�
QMi;k

�
and QNnC1;1. Then,

setting
QNnC1 WD QNnC1;1 C

X
i2I

X
k2Z

QMi;k ı ..T � Id/�/k ;

we get a family . QN1; : : : ; QNn; QNnC1/ of T -point processes which has the same distribution
as .N1; : : : ; Nn; NnC1/.

By induction we get a family . QN1; QN2; : : :/, defined on�
.X � RC/� ;

�
A ˝ B

��
; .�˝ �/� ; .T � Id/�

�
;

which has the same distribution as .N1; N2 : : :/. Moreover, each QNj can be written as
.�j /�.N jZj

/, where Zj is a T � Id-invariant subset of X � RC, and �j W Zj ! X satisfies

the requirements of Definition 4.2. This ends the proof of the theorem.

4.4. The PaP property

In [21], the natural question of the existence of Poisson suspensions with Poisson joinings
as only ergodic self-joinings was addressed. This lead to the following definition:

D 4.8. – A Poisson suspension whose all ergodic self-joinings of order n (resp.
countable ergodic self-joinings) are Poisson is said to be PaP.n/ (resp. PaP.1/ (from the
French “Poisson à autocouplages Poissons”). PaP.2/ will be shortened as PaP .

This notion is inspired by, and therefore closely related to, the so-called GAG property for
Gaussian stationary processes (see [18]). Indeed GAG Gaussian stationary processes are the
processes whose ergodic self-joinings remain Gaussian.

We first present some consequences of the PaP property.

P 4.9. – A Poisson suspension with the PaP.1/ property has the so-called
PID property (i.e., for any n, any self-joining of order n with pairwise independent coordinates
is the product measure).

Proof. – Consider an n-order self-joining of a PaP.1/ suspension with pairwise inde-
pendence. With the notation of Definition 4.2, we obtain that any two coordinates of the
self-joining are associated to pairwise disjoint sets Zi � Z. But by elementary properties of
Poisson point processes recalled in Definition 1.3, we obtain global independence.
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Recall that the centralizer of an invertible measure preserving transformation S is the set,
denoted by C.S/, of all invertible measure preserving transformations on the same space
which commute with S .

P 4.10. – Let
�
X�; A �

; ��; T�
�

be a PaP suspension and let R 2 C .T�/.
Then there exists S 2 C .T / such that R D S�. In particular C .T�/ ' C .T /.

Proof. – R induces an ergodic self-joining of the suspension which is Poisson thanks to
the PaP property. Therefore the associated Markov operator has the form e' for some sub-
Markov operator ' on L2 .�/ that commutes with T . But as e' is an isometry, ' is also
an isometry and is therefore induced by a measure preserving map S of .X; A ; �/ that
commutes with T , i.e., an element of C .T /. By identification, R D S�.

The next proposition is very similar to Theorem 2 in [20].

P 4.11. – Let
�
X�; A �

; ��; T�
�

be a PaP suspension and K � A � a non-
trivial factor. Then there exists a non-trivial Poisson factor contained in K , that is, there exists
a T -invariant set of positive measure Y � X and a T -invariant � -finite � -algebra C � A jY

such that C� � K .

Proof. – Letˆ be the conditional expectation corresponding to K , which is the Markov
operator associated to the relatively independent self-joining over K . The ergodic decompo-
sition of this joining allows one to writeˆ as an integral of indecomposable operators corre-
sponding to ergodic self-joinings. By the PaP property, these operators are of exponential
form, i.e., we have:

ˆ D

Z
W

e‰w � .dw/
for some probability space

�
W; B; �

�
. As each e‰w preserves the first chaos, so does ˆ.

Moreover, if ˆ vanishes on the first chaos, so does e‰w for �-almost every w 2 W. But the
only Markov operator of exponential form that vanishes on the first chaos is the projection
on the constants. This means that ˆ is also this projection, which corresponds to the condi-
tional expectation on the trivial factor, yielding a contradiction. Thus ˆ does not vanish on
the first chaos and we can apply Proposition 1 in [20]: ˆ induces on L2.�/ a sub-Markov
operator ', and there exists a T -invariant set Y � X such that ' restricted to L2.�jY / is a
conditional expectation on a � -finite factor C � A jY , and ' vanishes onL2.�jY c

/. Coming
back to L2.��/, ˆ coincides with the exponential operator e' on the first chaos. Therefore
its image contains all the vectors of the form N.A/��.A/, A 2 C \ Af . These vectors are
therefore K -measurable, thus C� � K .

C 4.12. – Let
�
X�; A �

; ��; T�
�

be a PaP suspension. If T is ergodic and has
no non-trivial factor, then T� is prime.

P 4.13. – Let
�
X�; A �

; ��; T�
�

be a PaP suspension and K � A � a
factor, then T� is relatively weakly mixing over K if and only if K is a Poisson factor.
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Proof. – The fact that T� is relatively weakly mixing over K if it is a Poisson factor was
remarked in [24]. To prove the converse, assume T� is relatively weakly mixing over K , this
means that the relatively independent joining over K is ergodic and therefore a Poisson
joining thanks to the PaP property. Then K is Poisson thanks to Proposition 4.7 in [24].

The notion of semi-simplicity was introduced in [7]:

D 4.14. – The probability preserving dynamical system .�; F ;P; S/ is semi-
simple if any ergodic self-joining .� ��; F ˝ F ; m; S � S/, is a relatively weakly mixing
extension over .�; F ;P; S/ through the projection map.

As an easy consequence of the preceding result, we get:

C 4.15. – A PaP suspension is semi-simple.

P 4.16. – Let
�
X�; A �

; ��; T�
�

be a PaP suspension and a factor K gener-
ated by random variables of the form N .Ai /, Ai 2 Af , i 2 I . Then K is a Poisson factor.

Proof. – If ˆ is the conditional expectation corresponding to K , then as in the proof of
Proposition 4.11, it coincides on the first chaos with e' for some conditional expectation on
a � -finite factor C � A jY , where Y is a T -invariant subset of X and C� � K . Therefore,
the random variables N .Ai / � � .Ai / are in the image of both ˆ and e', and as such are
C�-measurable. This implies that K � C� and therefore K D C�.

P 4.17. – A Poisson factor of a PaP suspension is also PaP .

Proof. – Let
�
Y �; B

�
; ��; S�

�
be a Poisson factor of a PaP suspension

�
X�; A �

; ��; T�
�
.

An ergodic self-joining of the former can be embedded into an ergodic self-joining of the
latter, which is Poisson by hypothesis. Therefore, by definition of Poisson joinings, we get
another suspension .Z�; Z

�
; ��; R�/ in which the two copies of X� are seen as Poisson

factors. Since Poisson factors of Poisson factors are still Poisson factors, the two copies
of Y � are Poisson factors of Z�, and we get the result.

T 4.18. – Assume that properties (P1) and (P2) hold for T . Then the Poisson
suspension

�
X�; A �

; ��; T�
�

is PaP.1/, prime, mildly mixing and its centralizer is reduced
to the powers of T�.

Proof. – By Theorem 4.7, the suspension is PaP.1/. Primeness comes from Corol-
lary 4.12, and the fact that properties (P1) and (P2) imply that T has no non-trivial factor
(see [12], Section 4). The triviality of the centralizer of T follows also from properties (P1)
and (P2) (see again [12]), then applying Proposition 4.10, we get that T� commutes only
with its powers. At last, a transformation is mildly mixing if it has no non-trivial rigid
factor, which in the situation of a prime transformation reduces to the property that T� is
not rigid. This is the case, since a rigid transformation has an uncountable centralizer (see
e.g., [14]).
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We know that properties (P1) and (P2) imply the triviality of the centralizer of T . Hence,
for n � 2, T n never satisfies (P1) and (P2), even if T does. We can nevertheless obtain the
PaP property for T n� when T satisfies properties (P1) and (P2). This is a direct application
of a lemma we borrow from [18].

L 4.19. – Let R and S be two commuting ergodic automorphisms of the probability
space .�; F ;P/. Let J e2 .R/ (resp. J e2 .S/) be the set of ergodic self-joinings of R (resp. S)
and letF D hRi (resp.G D hR; Si) be the closure of the group generated byR (resp.R and S)
inside Aut .�; F ;P/. If G=F is compact and J e2 .S/ � J

e
2 .R/, then J e2 .S/ D J

e
2 .R/.

C 4.20. – If .X; A ; �; T / satisfies properties (P1) and (P2) then for any n � 2,
T n� has the same ergodic self-joinings as T�. In particular, T n� is PaP .

Proof. – First observe that T n� is an ergodic Poisson suspension. Indeed, T n is a conser-
vative infinite measure preserving automorphism of .X; A ; �/ without T n-invariant set of
finite measure: otherwise, if A satisfied T nA D A with � .A/ < C1, then

Sn
kD1 T

kA would
be a T -invariant set of finite measure, which is impossible.

As C .T�/ is reduced to the powers of T�, hT n� i D
˚
T kn� ; k 2 Z

	
and hT�; T n� i D˚

T k� ; k 2 Z
	
, hence the quotient is finite.

To apply Lemma 4.19, it only remains to check that J e2 .T�/ � J e2 .T
n
� /. Of course, an

ergodic self-joining of T� is a self-joining of T n� , but we have to prove it is ergodic. By the
PaP property for T�, an ergodic self-joining of T� is Poisson, and thus it is a Poisson
self-joining of T n� . But a Poisson self-joining of an ergodic suspension is itself ergodic, and
therefore we have the desired inclusion J e2 .T�/ � J

e
2

�
T n�
�
.

P 4.21. – Assume that properties (P1) and (P2) hold for T . Then the Poisson
suspension �

.X � RC/� ;
�

A ˝ B
��
; .�˝ �/� ; .T � Id/�

�
is PaP .

Proof. – We denote by N the Poisson process of intensity�˝� onX�RC. We approach
this process by a sequence of Poisson processes discretized on the second coordinate. For each
n � 1, we consider the application �n defined on X � RC by

�n.x; t/ WD .x; b2
ntc2�n/ :

Then, we set Nn WD .�n/�.N /, which is a Poisson process on X � RC, with intensity

� ˝
�P

j�0 2
�nıj2�n

�
. It is therefore concentrated on a countable union of disjoint copies

of X , which are the sets X � fj 2�ng, j � 0.
Now observe that the following convergence holds everywhere on .X � RC/�: for any

continuous function f W X � RC ! R, vanishing outside a bounded set,Z
f d Nn ����!

n!1

Z
f d N :

By the dominated convergence theorem,

E
�

exp
�
�

Z
f d Nn

��
����!
n!1

E
�

exp
�
�

Z
f d N

��
:
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This is enough to prove the weak convergence of the distribution of Nn to the distribution
of N (see [5], Proposition 11.1.VIII).

Now consider an ergodic self-joining  of�
.X � RC/� ;

�
A ˝ B

��
; .�˝ �/� ; .T � Id/�

�
;

and denote by N and N the corresponding Poisson processes, with joint distribution  . We
set Nn as above, and Nn WD .�n/�.N /. By the same arguments as above, we prove that the
joint distribution n of .Nn; Nn/ converges weakly to  . Note that n is a self-joining of

order 2 of the Poisson suspension of intensity �˝
�P

j�0 2
�nıj2�n

�
, but it can also be inter-

preted as an infinite ergodic self-joining of the Poisson suspension
�
X�; A �

; .2�n�/�; T�
�
.

As such, by Theorem 4.7, it is a Poisson joining. Then by Proposition 4.4, n is infinitely
divisible. By Proposition 11.2.II in [5], infinite divisibility is closed under weak convergence
of distributions, hence  is also infinitely divisible. We conclude by Proposition 4.4 that  is
a Poisson joining.

R 4.22. – In fact it is possible to strengthen the above proposition by proving that
the considered Poisson suspension is PaP.1/, and moreover that all its finite or countable
ergodic self-joinings are factors of itself.

Applying Propositions 4.16 and 4.17, we get the following result.

C 4.23. – The factors corresponding to countable self-joinings in Theorem 4.7
are actually PaP Poisson factors.

5. Disjointness results

5.1. Non-disjointness, factors and distal extension

Furstenberg, when introducing joinings and disjointness in [10], asked whether two non-
disjoint systems always possess a non-trivial common factor. In [25], this was shown to be
false by Rudolph. However, all counterexamples to Furstenberg’s question known so far
have the property that one of the two non-disjoint system is a factor of a distal extension
of the other one. (For definition and properties of distal extensions, we refer e.g., to [11],
Chapter 10.) This led Lemańczyk to ask whether the latter property always holds for two
non-disjoint systems [16]. Actually, our Poisson suspensions provide a new counterexample
to Furstenberg’s question, which also answer Lemańczyk’s question negatively. Recall that,
for any ˛ > 0, we denote by T .˛/� the Poisson suspension

�
X�; A �

; .˛�/� ; T�
�
.

P 5.1. – Assume that properties (P1) and (P2) hold for T . Then for any ˛ ¤ ˇ,
T
.˛/
� and T .ˇ/� are prime and not disjoint. However, T .˛/� is never a factor of a distal extension

of T .ˇ/� .

L 5.2. – If ˛ ¤ ˇ, T .˛/� and T .ˇ/� are not isomorphic.
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Proof. – Assume that T .˛/� and T .ˇ/� are isomorphic. Then there exists an ergodic joining
of these systems which is supported on the graph of an isomorphism. In this joining, we can
find two Poisson T -point processes N˛ and Nˇ , of respective intensity ˛� and ˇ�, each of
them generating the whole � -algebra. Then, by Lemma 4.6, there exist independent Poisson
T -point processes N1˛ , N1

ˇ
and N k

˛ , k 2 Z, which are all measurable with respect to Nˇ
(and also with respect to N˛), such that

N˛ D N
1
˛ C

X
k2Z

N k
˛ ;

and
Nˇ D N

1
ˇ C

X
k2Z

T k�

�
N k
˛

�
:

Then N1˛ is both measurable with respect to Nˇ , and independent of it because it is inde-
pendent of the family .N1

ˇ
; N k

˛ ; k 2 Z/. It follows that N1˛ D 0 a.s. For the same reason,
N1
ˇ
D 0 a.s., and we get that the intensities of N˛ and Nˇ coincide, i.e., ˛ D ˇ.

Proof of Proposition 5.1. – We already know from Theorem 4.18 that the Poisson suspen-
sions T .˛/� and T .ˇ/� are prime. Let us see why they are not disjoint. Assume without loss of
generality that 0 < ˛ < ˇ. In the direct product of T .˛/� and T .ˇ�˛/� , we have two indepen-
dent Poisson T -point processesN˛ andNˇ�˛, of respective intensities ˛� and .ˇ�˛/�. Then
N˛ C Nˇ�˛ is a Poisson T -point process of intensity ˇ�, which is not independent of N˛.
Hence the distribution of .N˛; N˛ C Nˇ�˛/ is a joining of T .˛/� and T .ˇ/� which is not the
product measure.

Now, we release the assumption ˛ < ˇ, and we assume there exists an ergodic map S such
that S ! T

.ˇ/
� is a distal extension and T .˛/� is a factor of S . Then T .ˇ/� _T

.˛/
� appears as an

ergodic joining and a factor of S . By Proposition 4.23, the joining is also a PaP suspension.
Then T .ˇ/� is a Poisson factor of T .ˇ/� _ T

.˛/
� and as such the extension T .ˇ/� _ T

.˛/
� ! T

.ˇ/
�

is relatively weakly mixing by Proposition 4.13. Therefore we have the following sequence of
extensions

S ! T .ˇ/� _ T .˛/� ! T .ˇ/� :

But, as the extension S ! T
.ˇ/
� is distal, T .ˇ/� _ T

.˛/
� ! T

.ˇ/
� cannot be relatively

weakly mixing unless it is an isomorphism (see Proposition 10.14 in [11]). Then this implies
that T .˛/� is a factor of T .ˇ/� . Since the latter is prime by Theorem 4.18, T .˛/� and T .ˇ/� are
isomorphic. But by Lemma 5.2, this happens only if ˛ D ˇ.

5.2. General results

D 5.3. – A measurable law of large numbers for a conservative, ergodic,
measure preserving dynamical system .X; A ; �; T / is a measurable function L W f0; 1gN ! Œ0;1�

such that for all B 2 A , for �-almost every x 2 X ,

L .1B.x/;1B.T x/; : : :/ D �.B/:

L 5.4. – Let .X; A ; �; T / be a conservative, ergodic, measure preserving dynamical
system, and assume that it admits a measurable law of large numbers. Let L be a � -finite factor
of the product dynamical system

.X � RC; A ˝ B; �˝ �; T � Id/:
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Then there exists C � RC with 0 < �.C / <1, such that X � C 2 L .

Proof. – Since L is � -finite, there exists B 2 L such that 0 < �˝ �.B/ < 1. For each
t 2 RC, let us consider

Bt WD fx 2 X W .x; t/ 2 Bg:

Denote by L a measurable law of large numbers for .X; A ; �; T /. Then, for � ˝ �-almost
every .x; t/ 2 X � RC, we have

L
��
1B.T

kx; t/
�
k�0

�
D �.Bt /:

This ensures that the map .x; t/ 7! �.Bt / is L -measurable. In particular, for any " > 0, the
set f.x; t/ W �.Bt / � "g is L -measurable. This set is of the form X �C for C � RC. We have

1 > �˝ �.B/ D

Z
RC
�.Bt / d�.t/ � "�.C /;

and choosing " small enough, we have �.C / > 0.

D 5.5. – A conservative, ergodic, measure preserving dynamical system
.X; A ; �; T / is rationally ergodic if there exists a set B 2 A , 0 < �.B/ < 1, and a
constant M > 0 such that, for any n � 1,Z

B

0@ X
0�j�n�1

1B.T
kx/

1A2 d�.x/ �M 0@Z
B

X
0�j�n�1

1B.T
jx/ d�.x/

1A2 :
According to Theorem 3.3.1 in [1], a measurable law of large numbers exists for T as

soon as T is rationally ergodic, which is the case of Chacon infinite transformation (see [3]).
Observe however that properties (P1) and (P2) alone imply the existence of a law of large
numbers, but it happens that the question of its measurability remains open without rational
ergodicity.

The following proposition applies therefore to the case of the Poisson suspension over
Chacon infinite transformation.

P 5.6. – Assume that properties (P1) and (P2) hold for T , and that T admits
a measurable law of large numbers. If a system

�
Y; B; �; S

�
is not disjoint from some n-order

ergodic self-joining of
�
X�; A �

; ��; T�
�
, then it possesses

�
X�; A �

; .˛�/� ; T�
�

as a factor,
for some ˛ > 0.

Proof. – From a result of [18], if
�
Y; Y ; �; S

�
is not disjoint from an ergodic n-order

self-joining of
�
X�; A �

; ��; T�
�
, then it possesses a common non trivial factor with a

countably infinite self-joining of it. However, an ergodic countably infinite self-joining
of this n-order self-joining is nothing else than an ergodic countably infinite self-joining
of
�
X�; A �

; ��; T�
�
. This common factor is therefore a factor of�
.X � RC/� ;

�
A ˝ B

��
; .�˝ �/� ; .T � Id/�

�
by Theorem 4.7. Since the latter suspension is PaP by Proposition 4.21, this factor itself
contains a Poisson factor of

�
A ˝ B

��
by Proposition 4.11. Therefore there exists a
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.T � Id/-invariant subset L � X � RC and a � -finite factor L of the restricted system such
that we have the following factor relationship:�

Y; Y ; �; S
�

#�
L�; L

�
; .�˝ �/�jL ; .T � Id/�

�
:

Using Lemma 5.4, we get the existence of C � RC, with 0 < �.C / < 1, such that
X � C 2 L . Passing if necessary to another factor, we can therefore assume that L is of
the form X � C , with 0 < �.C / <1.

Observe now that the dynamical system .L; A ˝ BjC ; � ˝ �jC
; T � Id/ admits both

systems .L; L ; � ˝ �jC
; T � Id/ and .X; A ; �.C /�; T / as factors. It therefore defines a

joining of these systems, and by Proposition 4.5 in [12], .X; A ; �.C /�; T / is a factor of
.L; L ; �˝ �jC ; T � Id/.

Passing to Poisson suspensions and going up the chain of factors up to
�
Y; Y ; �; S

�
, we

obtain our result.

P 5.7. – Assume that properties (P1) and (P2) hold for T , and that T admits
a measurable law of large numbers. If a system

�
Y; Y ; �; S

�
is disjoint from

�
X�; A �

; ��; T�
�
,

then it is disjoint from
�
X�; A �

; .˛�/� ; T�
�

for any ˛ > 0.

Proof. – Assume
�
Y; Y ; �; S

�
is disjoint from

�
X�; A �

; ��; T�
�
, but that there exists

˛ > 0 such that it is not disjoint from
�
X�; A �

; .˛�/� ; T�
�
. Thanks to Proposition 5.6,

there exists ˇ > 0 such that
�
X�; A �

; .ˇ�/� ; T�
�

is a factor of
�
Y; Y ; �; S

�
(and ˇ ¤ 1

by assumption). This means that there exists a Poisson T -point process N1 of intensity ˇ�
defined on

�
Y; Y ; �; S

�
.

If ˇ < 1, let us consider the direct product�
Y �X�; Y ˝ A �

; � ˝ ..1 � ˇ/�/� ; S � T�
�
:

In this product, there exists a Poisson T -point process N2 of intensity .1 � ˇ/� inde-
pendent of the whole system

�
Y; Y ; �; S

�
. In particular, N1 and N2 are independent,

thus N1 CN2 defines a Poisson T -point process of intensity �, which is independent
of
�
Y; Y ; �; S

�
by disjointness. This is absurd, as this would imply that N1 and N1 CN2 are

independent. This is obviously false, since N1 � N1 CN2.

If ˇ > 1, observe that
�
X�; A �

; .ˇ�/� ; T�
�

is both a factor of
�
Y; Y ; �; S

�
and of the

direct product �
X� �X�; A �

˝ A �
; �� ˝ ..ˇ � 1/�/� ; T� � T�

�
:

In this product, we have two Poisson T -point processesN3 andN4 of respective intensities �
and .ˇ � 1/�, such that N3 C N4 is a Poisson T -point process of intensity ˇ� that corre-
sponds to the factor

�
X�; A �

; .ˇ�/� ; T�
�
. We can then form the relatively independent

joining of
�
Y; Y ; �; S

�
and this direct product over

�
X�; A �

; .ˇ�/� ; T�
�
. In this scheme,

we have N1 D N3 C N4 almost surely, hence N3 C N4 is measurable with respect to the
� -algebra Y . But N3 is independent of Y by disjointness, leading to the same contradiction
that N3 is independent of N3 CN4.
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P 5.8. – Assume that properties (P1) and (P2) hold for T , and that T admits
a measurable law of large numbers. If a system

�
Y; Y ; �; S

�
is disjoint from

�
X�; A �

; ��; T�
�
,

then it is disjoint from any self-joining (of any order) of this Poisson suspension.

Proof. – If there exists a self-joining of
�
X�; A �

; ��; T�
�

not disjoint from
�
Y; Y ; �; S

�
,

then, by Proposition 5.6,
�
Y; Y ; �; S

�
possesses

�
X�; A �

; .˛�/� ; T�
�

as a factor, for some
˛ > 0. However, by Proposition 5.7, this implies that

�
Y; Y ; �; S

�
is not disjoint from�

X�; A �
; ��; T�

�
.

C 5.9. – Assume that properties (P1) and (P2) hold for T , and that T admits a
measurable law of large numbers. A system

�
Y; Y ; �; S

�
is disjoint from

�
X�; A �

; ��; T�
�

if
and only if it is disjoint from

..X � RC/� ;
�

A ˝ B
��
; .�˝ �/� ; .T � Id/�/:

Proof. – First observe that we can view ..X � RC/� ;
�

A ˝ B
��
; .�˝ �/� ; .T � Id/�/

as the inverse limit of the direct products

..X�/2
2n

;
�

A �
�˝22n

;
��

1
2n�

���˝22n

; .T�/
�22n

/

as n tends to infinity. Assume that
�
Y; Y ; �; S

�
is disjoint from

�
X�; A �

; ��; T�
�
. Then by

Proposition 5.7, it is disjoint from
�
X�; A �

;
�
1
2n�

��
; T�

�
, and by Proposition 5.8, it is also

disjoint from any self-joining of this system. Then, passing to the inverse limit, we conclude
that it is also disjoint from ..X � RC/� ;

�
A ˝ B

��
; .�˝ �/� ; .T � Id/�/: The converse is

obvious since the above system admits
�
X�; A �

; ��; T�
�

as a factor.

5.3. Disjointness from classical classes of dynamical systems

There already exist general disjointness results that concern Poisson suspensions: it is
proved in [17] that Poisson suspensions are disjoint from transformations that enjoy the
joining primeness property, such as distally simple transformations. We can nevertheless
obtain stronger disjointness results for the suspensions we are interested in.

T 5.10. – If T satisfies properties (P1) and (P2), and admits a measurable law of
large numbers, then

�
X�; A �

; ��; T�
�

is disjoint from any rank one transformation.

Proof. – If a rank one transformation is not disjoint from
�
X�; A �

; ��; T�
�
, then by

Proposition 5.6 it possesses
�
X�; A �

; .˛�/� ; T�
�

as a factor for some ˛ > 0. But a factor of
a rank one transformation is also of rank one.

On the other hand,
�
X�; A �

; .˛�/� ; T�
�

is mildly mixing thanks to Theorem 4.18, and we
know from Proposition 11 in [20] that a non-rigid Poisson suspension is not of rank one.

R 5.11. – According to Ryzhikov [26], a non-rigid Poisson suspension is in fact not
even of local rank one. Thus the above theorem extends to local rank one transformations.
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We now turn to disjointness from Gaussian dynamical system, about which we first recall
a few facts. A dynamical system .�; F ;P; S/ is said to be standard Gaussian if there exists
some measurable function f of zero mean defined on � such that Xn WD f ı Sn defines
a Gaussian stationary process that generates F . Up to measurable isomorphism, such a
dynamical system is completely identified by the spectral measure � of f on T:

hX0; XniL2.P/ Db� .n/ :
As in the Poisson case, L2 .P/ admits a Fock space representation

L2 .P/ ' C˚ L2 .�/˚ L2 .�/ˇ2 ˚ � � � ˚ L2 .�/ˇn ˚ � � � :

Therefore, L2 .P/ admits a decomposition into (Gaussian) chaos fCngn�0 and the maximal
spectral type of US on Cn is ��n. (For a detailed presentation of the spectral analysis of
Gaussian dynamical systems, we refer e.g., to [2], Chapter 14.)

A particularly interesting situation for us arises when a Gaussian system (or a Poisson
suspension) has simple spectrum. Indeed, it then enjoys the following property, presented in
the form of a proposition which can be found in a more general form in [15]:

P 5.12. – If a standard Gaussian dynamical system (resp. a Poisson suspen-
sion) has simple spectrum, then for any pair m1, m2 of continuous measures on T, the spectral
measure � of the Gaussian process (resp. the maximal spectral type of the base of the suspen-
sion) satisfies � ? m1 �m2.

As an application, we get the following result which will be useful for our purposes:

P 5.13. – A Poisson suspension is never a factor of a standard Gaussian
dynamical system with simple spectrum.

Proof. – Assume that
�
Y; B; �; S

�
is a standard Gaussian with simple spectrum, and that

it admits the Poisson suspension .Z�; C�; ��; R�/ as a factor. Let � be the spectral measure
of the generating Gaussian process, and let � be the maximal spectral type of .Z; C ; �; R/,
which is also the maximal spectral type of the action of UR� on the first Poissonian chaos of
the suspension. Since R� has simple spectrum (as a factor of the simple spectrum system S )
Proposition 5.12 applies to � . Now, take f ¤ 0 in the first Poissonian chaos of the suspen-
sion: its spectral measure is absolutely continuous with respect to � , and by Proposition 5.12,
it is singular with respect to ��n for any n � 2. Identifying L2.��/ with a subspace of L2.�/,
we conclude that f has to be in the first Gaussian chaos of L2.�/. But this is impossible,
because the first Gaussian chaos contains exclusively (complex) Gaussian random variables,
whereas the first Poissonian chaos of a suspension contains no such variables, the zero vector
aside (see e.g., [24]).

Now we can state and prove the following result on disjointness between our Poisson
suspensions and standard Gaussian dynamical systems:

T 5.14. – If T satisfies properties (P1) and (P2), and admits a measurable law of
large numbers, then

�
X�; A �

; ��; T�
�

is disjoint from any standard Gaussian system.
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Proof. – Let
�
Y; B; �; S

�
a standard Gaussian, and assume it is not disjoint from�

X; A �
; ��; T�

�
. Applying Proposition 5.6, we get the existence of a factor sub-� -algebra

C � B such that the action of S on C is isomorphic to
�
X�; A �

; .˛�/� ; T�
�

for some
˛ > 0. As in the proof of Proposition 17 in [18], there exists S 0 2 C .S/ which is a standard
Gaussian system with simple spectrum. Set C 0 WD _n2ZS

0�n C , then C 0 is a factor � -algebra
of S 0. Observe that for any n 2 Z, S 0�n C is also a factor � -algebra of S , and that the action
of S on S 0�n C is also isomorphic to

�
X�; A �

; .˛�/� ; T�
�
. It follows that the action of S

on _n2ZS 0�n C defines an ergodic countable self-joining of
�
X�; A �

; .˛�/� ; T�
�

and, as
such, is isomorphic to a PaP suspension

�
Z�; Z

�
; ��; T1�

�
by Corollary 4.23. It follows

that S 0
j C 0

can be considered as an element of C
�
T1�

�
, but since the suspension is PaP , from

Proposition 4.10, S 0
j C 0
D R� for some automorphism R of

�
Z; Z ; �

�
commuting with T1.

Then we get the Poisson suspension R� as a factor of the standard Gaussian dynamical
system S 0 which has simple spectrum, and this contradicts Proposition 5.13.

6. Conclusion

Our work raises several questions, among which a natural one is the following: is it
possible to obtain the same results, assuming only moments of order 2 for the point process?
We can also ask ourselves whether we could obtain similar results with the base transfor-
mation T having uncountably many ergodic self-joinings (for example with an uncountable
centralizer)? This would require very different techniques, as our proofs strongly rely on the
fact that T possesses a countable set of ergodic self-joinings. More generally, it would be
interesting to know if the PaP property is widespread among Poisson suspensions, or if it
is a rare feature.
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