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SMALL GAPS IN THE SPECTRUM OF THE
RECTANGULAR BILLIARD

 V BLOMER, J BOURGAIN, M

RADZIWIŁŁ  Z RUDNICK

A. – We study the size of the minimal gap between the firstN eigenvalues of the Laplacian
on a rectangular billiard having irrational squared aspect ratio ˛, in comparison to the corresponding
quantity for a Poissonian sequence. If ˛ is a quadratic irrationality of certain type, such as the square
root of a rational number, we show that the minimal gap is roughly of size 1=N , which is essentially
consistent with Poisson statistics. We also give related results for a set of ˛’s of full measure. However,
on a fine scale we show that Poisson statistics is violated for all ˛. The proofs use a variety of ideas of
an arithmetical nature, involving Diophantine approximation, the theory of continued fractions, and
results in analytic number theory.

R. – On étudie l’écart minimal dans les N premières valeurs propres du Laplacien d’un
billard rectangulaire dont le rapport des côtés est égal à 1=

p
˛. On compare nos résultats avec l’écart

minimal des points provenant d’une suite aléatoire poissonienne. Pour ˛ un irrationnel quadratique
d’un certain type, par exemple la racine d’un nombre rationnel, nous démontrons que l’écart minimal
est approximativement de taille 1=N . Cela est en accord avec les statistiques poissoniennes. Nous dé-
montrons aussi un phénomène semblable pour presque tout ˛ au sens de la mesure de Lebesgue. Cepen-
dant, à une échelle fine, de taille 1=N , nous démontrons que l’écart minimal entre les valeurs propres et
celui d’une suite poissonienne ont un comportement différent. Les démonstrations utilisent plusieurs
résultats d’origine arithmétique, tels que l’approximation diophantienne, la théorie des fractions conti-
nues, et des résultats provenant de la théorie analytique des nombres.
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1. Introduction

The local statistics of the energy levels of several integrable systems are believed to
follow Poisson statistics [2]. In this note we examine a variant of these statistics, the size
of the minimal gap between levels, for the energy levels of a particularly simple system, a
rectangular billiard. If the rectangle has width �=

p
˛ and height � , with aspect ratio

p
˛,

then the energy levels, meaning the eigenvalues of the Dirichlet Laplacian, consist of the
numbers ˛m2 C n2 with integers m; n � 1.

The case of rational ˛ is special: The eigenvalues lie in a lattice, in particular the nonzero
gaps are bounded away from zero, and there are arbitrarily large multiplicities. We exclude
this case from our discussion. If ˛ is irrational, we get a simple spectrum 0 < �1 < �2 < � � � ,
with growth (Weyl’s law)

#fj W �j � Xg D #f.m; n/ W m; n � 1; ˛m2 C n2 � Xg �
�

4
p
˛
X

asX !1. In this setting, the pair correlation function has been shown to be Poissonian [8]
for Diophantine ˛, see also [21] for a related problem.

We wish to study the size of the minimal gap function of the spectrum, defined as

ı
.˛/
min.N / D min.�iC1 � �i W 1 � i < N/:

To set expectations, it is worth comparing with the size of the analogous quantity for
some random sequences, when measured on the scale of the mean spacing between the
levels in the sequence, which in our case is constant (equal to 4

p
˛=�). For a Poissonian

sequence of N uncorrelated levels with unit mean spacing, the smallest gap is almost surely
of size � 1=N [15]. In comparison, the smallest gap between the eigenphases of a random
N � N unitary matrix is, on the scale of the mean spacing, almost surely of size � N�1=3

[22, 1], in particular much larger than the Poisson case. The same behavior persists for the
eigenvalues of random N �N Hermitian matrices (the Gaussian Unitary Ensemble) [22, 1].
For the Gaussian Orthogonal Ensemble of random symmetric matrices, is expected (though
as of now not proved) that the minimal gap is of size N�1=2. We note that the local statistics
of the eigenvalues of the Laplacian for generic chaotic systems, such as non-arithmetic
surfaces of negative curvature, are expected to follow the Gaussian Orthogonal Ensemble
[3], while the local statistics of the zeros of the Riemann zeta function are expected to follow
the Gaussian Unitary Ensemble [16, 20].

1.1. Order of growth of ı.˛/min.N /

Returning to our rectangular billiard, it is not hard to obtain lower bounds for ı.˛/min.N /,
see § 2.1. In the case of quadratic irrationalities, the gap function cannot shrink faster
than 1=N : for each quadratic irrationality ˛, there is some c.˛/ > 0 so that

(1.1) ı
.˛/
min.N / �

c.˛/

N
:

More generally, both for algebraic irrationalities and for almost every ˛ (in the measure
theoretic sense) the same argument shows

(1.2) ı
.˛/
min.N /� 1=N 1C"
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SMALL GAPS IN THE SPECTRUM OF THE RECTANGULAR BILLIARD 1285

for any " > 0, see Proposition 2.1 below. Both (1.1) and (1.2) depend on general results in
diophantine approximation.

In (1.2) and elsewhere in the paper, we use Vinogradov’s notation f .N /� g.N / to mean
that there are c > 0 and N0 � 1 so that jf .N /j � cjg.N /j for all N > N0; and the notation
f .N / � g.N / to mean both f .N / � g.N / and g.N / � f .N /. Implied constants may
always depend on ˛ and " where applicable.

Much more work needs to be done to obtain good upper bounds for ı.˛/min.N /, i.e., to
explicitly construct small gaps.

We show in Proposition 2.2 below that for any irrational ˛, we have

(1.3) ı
.˛/
min.N /� N�1=2

for allN . By the same argument, we can also display ˛ where ı.˛/min.N /� N�A for anyA > 0
by taking ˛ to be suitable Liouville numbers. However these form a measure zero set and are
atypical.

For certain quadratic irrationalities we show that the minimal gap can be almost as small
as 1=N :

T 1.1. – If the squared aspect ratio is a quadratic irrationality of the form˛ D
p
r ,

with r rational, then

ı
.˛/
min.N /�

1

N 1�"

for every " > 0 and all N .

We can also deal with other quadratic irrationalities, such as the golden mean. We refer
to Section 6 for more general results. In particular, we show in this section that there exist
quadratic irrationalities ˛ such that the stronger result

(1.4) ı
.˛/
min.N /� 1=N

holds for all N . An explicit example is the square of the golden mean ˛ D .3C
p
5/=2:

Moving away from quadratic irrationalities, where our results are deterministic, we turn
to generic in measure ˛.

T 1.2. – For almost all ˛ > 0 (in the sense of Lebesgue measure) we have

(1.5) ı
.˛/
min.N /�

1

N 1�"

for any " > 0 and all N .

We summarize the preceding results by stating that the order of growth of ı.˛/min.N / � 1=N

is consistent with Poisson statistics for certain special and also generic in measure ˛.
However, as we now explain, finer details of Poisson statistics are always violated.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1286 V. BLOMER, J. BOURGAIN, M. RADZIWIŁŁ AND Z. RUDNICK

1.2. Deviations from Poisson statistics

Given a sequence of points, let ımin;k.N / be the k-th smallest gap (k � 1) among the first
N points in the sequence, so that in particular ımin;1.N / D ımin.N /. For a Poisson sequence
with unit mean spacing (by which we mean N points picked independently and uniformly
in Œ0; N �), Devroye [6] showed that for any fixed k � 1 and any sequence fung of positive
numbers such that un=n2 is decreasing we have

(1.6) Prob
�
Nımin;k.N / � uN infinitely often

�
D

(
1;

P
n u

k
n=n D1;

0;
P
n u

k
n=n <1:

Choosing for instance un D 1= logn for k D 1, one has

(1.7) ımin.N / �
1

N logN
infinitely often

almost surely, while choosing un D 1=.logn/2=3 for k D 2 one has

(1.8) ımin;2.N / �
1

N.logN/2=3
for all sufficiently large N

almost surely. Similarly, it is shown in [6, Theorem 4.2] that

(1.9) ımin.N / �
log logN

N
infinitely often

almost surely, but by [6, Theorem 4.1] we have

(1.10) Prob
�
ımin.N / �

.log logN/2

N
infinitely often

�
D 0:

For our sequence f˛m2C n2g, we infer from (1.1) that in the case of quadratic irrational-
ities (1.7) is violated. The following result shows that (1.10) is violated for almost all ˛:

T 1.3. – For almost all ˛ > 0 (in the sense of Lebesgue measure) we have

(1.11) ı
.˛/
min.N /�

.logN/c

N
infinitely often

where c D 1 � log.e log2/
log2 D 0:086 : : :.

In fact, for all ˛ we show

T 1.4. – For any ˛ > 0, at least one of the conditions (1.7) or (1.8) is violated.

It is also of interest to study the distribution of the largest gap. One does expect arbitrarily
large gaps, and it is a challenging problem to prove this for Diophantine ˛.

4 e SÉRIE – TOME 50 – 2017 – No 5
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1.3. About the proofs

The proofs draw from a variety of methods. We show in Section 3 (see Lemma 3.1) that
the size of ı.˛/min.N / depends on the existence of good rational approximants p=q to ˛, where
both p and q are evenly divisible, by which we mean integers n having a divisor d j n roughly
of size square root:

min.d; n=d/� n1=2�"

for any " > 0. We will see that the concept of evenly divisible numbers comes up naturally in
the context of finding small gaps, although we have not seen it in other number theoretical
applications.

To find such approximants for certain quadratic irrationalities, for instance ˛ D
p
D as in

Theorem 1.1, for integer D > 1 not a perfect square, we use the theory of Pell’s equation to
show that there are many approximants pn=qn for which both of the sequences fpng and fqng
satisfy a “strong divisibility” condition of the form

gcd.am; an/ D agcd.m;n/; m; n odd:

This condition can be used to produce “good” divisors.
Theorem 1.2 uses a second moment approach to obtain a result valid for almost all ˛. The

corresponding counting problem that produces evenly divisible approximants is analyzed
by exponential sums, and becomes naturally a problem in 4 variables, so that the second
moment produces an eighth moment of the Riemann zeta-function. In absence of the
Lindelöf hypothesis, we introduce artificially a bilinear structure, separating the 4 variables
into 4 short ones and 4 long ones; we obtain an unconditional saving on the short variables
using strong bounds for the Riemann zeta function �.s/ near the line Re.s/ D 1 based on
Vinogradov’s method, and handle the contribution of the long variables using a mean-value
theorem. The general scheme of this method has already found further applications in
connection with the Oppenheim conjecture for ternary quadratic forms [4, 5].

To prove the lower bound in Theorem 1.3, we invoke Ford’s quantitative version [9] of
the result first proved by Erdős [7] that a multiplication table of side length X contains
o.X2/ different entries, which gives restrictions on the arithmetic properties of approximants.

Acknowledgement

The authors would like to thank Peter Sarnak for useful comments, and the referee for a
very careful reading of the manuscript.

2. Some general results

2.1. Lower bounds

An irrational ˛ is badly approximable if for all integers .p; q/ with q � 1 we have

(2.1) jq˛ � pj �
1

q
:

It is (strongly) Diophantine if we have the weaker inequality

(2.2) jq˛ � pj �
1

q1C"
for all " > 0:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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We recall [13] that ˛ being badly approximable is equivalent to having bounded partial
quotients in the continued fraction expansion of ˛. Thus quadratic irrationalities are badly
approximable. The set of badly approximable reals has measure zero. However the set of
(strongly) Diophantine numbers has full measure. Roth’s theorem says that all algebraic
irrationalities are (strongly) Diophantine. For a full measure set of ˛, one in fact has a
stronger lower bound [13]: For every " > 0, we have

(2.3) jq˛ � pj �
1

q.log q/1C"
;

for all q � 2.

P 2.1. – Let ˛ > 0.

i) Suppose ˛ 2 RnQ is badly approximable. Then for all N we have

ı
.˛/
min.N /�

1

N
:

ii) If ˛ 2 RnQ is (strongly) Diophantine, then for all " > 0 and all N we have

ı
.˛/
min.N /�

1

N 1C"
:

iii) For Lebesgue almost all ˛, for all " > 0 and all N we have

ı
.˛/
min.N /�

1

N.logN/1C"
:

Proof. – Indeed if ˛ is badly approximable then for any two distinct eigenvalues
� WD ˛m2 C n2 and �0 WD ˛m02 C n02 with max.�; �0/ � N we obtain

j� � �0j D j.m2 �m02/˛ � .n02 � n2/j �
1

jm2 �m02j
�

1

max.�; �0/
�
1

N

using (2.1). The same argument with (2.2) and (2.3) in place of (2.1) proves ii) and iii).

2.2. A general upper bound

P 2.2. – For any irrational ˛ > 0, we have

ı
.˛/
min.N /� N�1=2;

for all N .

Proof. – LetQ � 1 be sufficiently large. By Dirichlet’s approximation theorem there exist
integers a 2 Z, 1 � q � Q such that 0 < ja � q˛j � 1=Q, and since ˛ > 0 we must have
a � 1. Withm D 2qC1,m0 D 2q�1, n D 2a�1, n0 D 2aC1we have 1 � m;m0; n; n0 � Q

and

j˛m2 C n2 � .˛m0
2
� n0

2
/j D 8j˛q � aj �

8

Q
:

Choosing Q to be of exact order N 1=2 gives the desired bound.
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3. The general strategy

From now on, we deal with getting a bound of the form ı
.˛/
min.N / � N�1C". We will

frequently use the relation �i � i for i � 1.

We recall the notion of “evenly divisible”, introduced in Section 1.3.

D 1. – We call an integer n is evenly divisible if there is a divisor d j n, such
that min.d; n=d/ � n1=2�" for all " > 0. We call n strongly evenly divisible if there is a
divisor d j n, such that min.d; n=d/� n1=2.

So primes are not evenly divisible, but perfect squares are, even strongly so. Suppose we
have found a good rational approximation

(3.1) j˛q � pj �
1

q

with p, q both evenly divisible, say d j q, q1=2�" � d �
p
q, and e j p, p1=2�" � e �

p
p

(note that p � q since p=q is an approximation to ˛). It is useful to observe that we may
assume without loss of generality that neither p nor q is a perfect square. Indeed, at least
one of the pairs .p; q/, .2p; 2q/, .3p; 3q/ contains two non-squares, and so we can simply
replace .p; q/ with .2p; 2q/ or .3p; 3q/ in (3.1) if necessary.

Now find m > m0 � 1, n0 > n � 1 solving

m �m0 D 2d; mCm0 D 2
q

d
; n � n0 D 2e; nC n0 D 2

p

e
;

namely

m D
q

d
C d; m0 D

q

d
� d; n D

p

e
� e; n0 D

p

e
C e:

Notice that all variables are non-zero by our assumption that neither p nor q is a perfect
square. Clearly

m2 �m02 D 4q; n02 � n2 D 4p

and moreover by our assumptions on the size of d and e, we have

q1=2 � m; n0 and m;m0; n; n0 � q1=2C":

Hence the corresponding eigenvalues

� WD ˛m2 C n2; �0 WD ˛m02 C n02

satisfy (maybe with a different value of ")

q � �; �0 � q1C"

and give a gap in the spectrum of size at most

j� � �0j D j˛.m2 �m02/ � .n02 � n2/j D 4j˛q � pj �
1

q
�

1

max.�; �0/1�"
;

where we used (3.1) in the penultimate step. We conclude

ı
.˛/
min.N /�

1

N 1�"

for N � max.�; �0/. This argument shows the following:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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L 3.1. – If ˛ > 0 has infinitely many good rational approximations pn=qn with
q1 < q2 < � � � as in (3.1) with both p and q evenly divisible (resp. strongly evenly divisible),
then ı.˛/min.N /� N�1C" for all " > 0 (resp. ı.˛/min.N /� N�1) infinitely often.

If in addition qn � cqnC1, for some constant c > 0 (possibly depending on ˛, but not on n),
then these inequalities hold for all N .

For later purposes we record the following variation. If we replace (3.1) with the weaker
condition

(3.2)
ˇ̌̌
˛ �

p

q

ˇ̌̌
�

1

T

for some T � q2, we obtain the following:

L 3.2. – If ˛ > 0 has infinitely many good rational approximations pn=qn with
q1 < q2 < � � � as in (3.2) with both p and q evenly divisible and qn � cqnC1 for some constant
c > 0 and all n � 1, then

ı
.˛/
min.N /� N 1C"T �1

for all N and all " > 0.

4. Interlude: Strong divisibility sequences and Chebyshev polynomials

A sequence of integers fang is a divisibility sequence if m j n implies that am j an. It is a
strong divisibility sequence if

gcd.am; an/ D agcd.m;n/:

A classical example is the sequence of Fibonacci numbers (see [14, Section 1.2.8]), and it is
known that second order recurrence sequences with constant coefficients of the form

(4.1) anC1 D ban C dan�1; .b; d/ D 1; a0 D 0; a1 D 1

satisfy this property, see e.g., [11, Proposition 2.2].
One can generate families of such sequences with Chebyshev polynomials. We recall that

the Chebyshev polynomials of the first and second kind Tn and Un are defined as (see
e.g., [19])

Tn.x/ D
1

2

�
.x C

p

x2 � 1/n C .x �
p

x2 � 1/n
�

and

Un.x/ D
.x C

p
x2 � 1/nC1 � .x �

p
x2 � 1/nC1

2
p
x2 � 1

:

They satisfy the second order recurrence relation

(4.2) TnC1.x/ D 2xTn.x/ � Tn�1.x/; UnC1.x/ D 2xUn.x/ � Un�1.x/;

and they are solutions of a polynomial Pell equation

(4.3) Tn.x/
2
� .x2 � 1/Un�1.x/

2
D 1:

Also useful is the formula

(4.4) TnCm.x/ D 2Tn.x/Tm.x/ � Tn�m.x/; n � m � 0;

4 e SÉRIE – TOME 50 – 2017 – No 5
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which can be easily verified from the definition of Tn. One checks by induction using (4.2)
that

(4.5) Un.x=2/; 2Tn.x=2/ 2 Z for x 2 Z:

Any half-integral specialization of shifted Chebyshev polynomials of the second kind forms
a strong divisibility sequence:

(4.6) .Un�1.x=2/; Um�1.x=2// D U.n;m/�1.x=2/

for all n;m; x 2 N. This follows, for instance, from noting that the sequence an D Un�1.x=2/
satisfies (4.1) with d D �1, b D x, see also [17].

A little less known is a slightly weaker corresponding statement for Chebyshev polyno-
mials of the first kind: we have

(4.7) .2Tn.x=2/; 2Tm.x=2// D 2T.n;m/.x=2/

for all x 2 N and all odd positive integers n;m. A variation of this is proved in [17,
Theorem 2], but for convenience we give a proof of this fact:

Let x 2 Z, and let an D 2Tn.x=2/. We write y D 1
2
.x C

p
x2 � 4/, so that 2Tn.x=2/ D

ynCy�n. Clearly y is a quadratic algebraic integer of norm 1, since it is the root of a monic
integral quadratic polynomial. Let m be odd. Then clearly

2Tnm.x=2/ D 2Tn.x=2/

m�1X
jD0

.�1/jyn.2j�.m�1//;

and by basic Galois theory, the second factor is rational and an algebraic integer, hence
integral. This shows an j anm for every odd m. Next suppose that n;m are both odd. We
know already a.n;m/ j .an; am/, and we want to show equality here. Write

2.n;m/ D rn � sm

with odd positive integers r; s. Then

.an; am/ j .arn; asm/ D .asmC2.n;m/; asm/:

Applying (4.4) recursively with .sm � 2j.n;m/; .n;m//, j D 0; 1; : : :, in place of .n;m/ we
see that

.asmC2.n;m/; asm/ j .asm; asm�2.n;m// j � � � j .a3.n;m/; a.n;m// D a.n;m/;

as desired.

5. Rational approximants of
p
D

In this section we prove Theorem 1.1. Let ˛ D
p
r 62 Q, r 2 Q>0, be given. By Lemma 3.1

it suffices to find a sequence pn=qn, q1 < q2 < � � � , of approximations j˛ � pn=qnj � 1=q2n
such that pn and qn are simultaneously evenly divisible, and qn � qnC1. To simplify things,
we observe that we can restrict r to be an integer divisible by 4, say r D 4D with D 2 N
not a perfect square, since fixed rational factors can be distributed among the pn and qn
without changing the notion of evenly divisible, nor the quality of the approximation, nor
the inequality qn � qnC1.
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By the theory of Pell’s equation there exists a non-trivial solution .x; y/ 2 N � N to the
diophantine equation

x2 �Dy2 D 1:

Consider the sequences
xn WD Tn.x/; yn WD yUn�1.x/:

By (4.3), these are also (obviously pairwise different) solutions of the Pell equation, since

x2n �Dy
2
n D Tn.x/

2
�Dy2Un�1.x/

2
D 1:

Therefore ˇ̌̌̌
p
4D �

2xn

yn

ˇ̌̌̌
�

2
p
Dy2n

�
1

y2n
:

It is clear from the definition of the Chebyshev polynomials that

(5.1) log xn; logyn D n log.x C
p

x2 � 1/CO.1/

for n!1:

Now given 0 < " < 1=2, we can find distinct odd primes 2 < `1 < � � � < `J coprime to y
so that

(5.2)
1

2
� " < 1 �

JY
jD1

�
1 �

1

j̀

�
<
1

2
:

This is because f1=` W ` primeg is a zero sequence whose sum is divergent (this is a form of
the Riemann rearrangement theorem). For instance, take `1 D 3, `2 D 5, `3 D 17, `4 D 257
with

1 �

4Y
jD1

�
1 �

1

j̀

�
� 0:499992:

From now on we consider indices n of the form

(5.3) n WD `1 � `2 � � � � � `J � P;

where P is any odd large positive integer coprime to `1 � � � � � `J (note that such n’s are odd).
Put pn D 2xn, qn D yn. By (4.6) and (4.7), qn= j̀ j qn and pn= j̀ j pn for each j . Therefore
setting

Q WD lcm.qn=`1 ; : : : ; qn=`J /; P WD lcm.pn=`1 ; : : : ; pn=`J /;

we get divisors Q j qn and P j pn.

(5.4)
�
1

2
� "

�
log qn CO.1/ � logQ �

�
1

2
C "

�
log qn CO.1/:

To this end we recall the inclusion-exclusion formula for the least common multiple

lcm.a1; : : : ; ar / D
Y

S�f1;:::J g
jS j�1

gcd.faj j j 2 Sg/.�1/
jSj�1

;

D

Y
1�j�J

aj
Y

1�i<j�J

gcd.ai ; aj /�1
Y

1�i<j<k�J

gcd.ai ; aj ; ak/ � � � ;
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so that by (4.6) we obtain

logQ D
X

1�j�J

log qn= j̀ �
X

1�i<j�J

log qgcd.n=`i ;n= j̀ / C � � �

D

X
1�j�J

log qn= j̀ �
X

1�i<j�J

log qn=.`i j̀ / C � � � ;

where in the second step we used that `1; : : : ; `J are pairwise coprime divisors of n and hence

gcd.fn= j̀ j j 2 Sg/ D
nQ

j2S j̀

:

By (5.1) this equals

log
�
x C
p

x2 � 1
�� X
1�j�J

n

j̀

�

X
1�i<j�J

n

`i j̀
C � � �

�
CO.1/

D log
�
x C
p

x2 � 1
�
n

 
1 �

JY
jD1

�
1 �

1

j̀

�!
CO.1/

D log qn

 
1 �

JY
jD1

�
1 �

1

j̀

�!
CO.1/;

which gives (5.4).
Likewise, logP � 1

2
logpn, so that pn is evenly divisible.

Finally we observe that the admissible indices n as in (5.3) is an integer sequence with
bounded gaps (e.g., by .`1 � � � � � `J /

2), and it follows directly from the definition of
qn D yUn�1.x/ that qn � qnC1. This completes the proof of Theorem 1.1. �

6. Some other quadratic irrationalities

We can leverage our results about irrationalities of the form
p
D to obtain the same result

on ı.˛/min.N / for other quadratic irrationalities.

T 6.1. – For all positive real quadratic irrationalities of the form

(6.1) ˛ D ˛.xI a; b; "; r/ D r �

 
x C
p
x2 C 4"

2

!a
�

�p
x2 C 4"

�b
with

a 2 Z; b D 0; 1; x 2 Znf0g; " D ˙1; r 2 Q�;
we have ı.˛/min.N /� N�1C" infinitely often.

In order to have ˛ 2 RnQ we need .a; b/ 6D 0, and in addition x 62 f0;˙1;˙2g if " D �1.
We can also assume x > 0, since ˛.�x; a; b; "; r/ D ˛.x;�a; b; "; .�1/"ar/.

Note that we can display any irrationality of the form
p
D, with integral D > 1 not

a perfect square, as such ˛: Indeed, let z2 � Dw2 D 1 be a nontrivial solution to the
corresponding Pell equation. Choosing

r D 1=.2w/; a D 0; b D 1; x D 2z; " D �1
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gives
p
D D ˛.2z; 0; 1;�1; 1=.2w//. In particular, Theorem 1.1 is a special case of

Theorem 6.1. The golden ratio .1C
p
5/=2 is obtained by taking r D 1, a D 1, b D 0, x D 1,

" D 1. There are many other examples, but we do not know how to cover all quadratic
irrationalities.

Proof. – Good rational approximants for ˛ are obtained from the relations

˛
�
x; a; 0;�1;

c

d

�
D
cUnCa.x=2/

dUn.x=2/
CO

� 1

Un.x=2/2

�
;

˛
�
x; a; 0;C1;

c

d

�
D
ci�n�aUnCa.ix=2/

d i�nUn.ix=2/
CO

� 1

jUn.ix=2/j2

�
;

˛
�
x; a; 1;�1;

c

d

�
D
c2TnCa.x=2/

dUn�1.x=2/
CO

� 1

Un�1.x=2/2

�
;

˛
�
x; a; 1;C1;

c

d

�
D
c2i�n�aTnCa.ix=2/

d i1�nUn�1.ix=2/
CO

� 1

jUn�1.ix=2/j2

�
;

(6.2)

which follow immediately from the definition of the Chebyshev polynomials. By the above
remarks, this covers all ˛ considered in Theorem 6. Notice that numerators and denomina-
tors are integers in each case. We now proceed similarly as in the previous section. We choose
odd primes 2 < `1 < � � � < `r , with `i D 1 mod 4, so that

1

2
� " < 1 �

rY
jD1

�
1 �

1

j̀

�
<
1

2

and we choose another set of distinct odd primes 2 < `01 < � � � < `
0
s , with `0j D 3 mod 4, so

that
1

2
� " < 1 �

sY
jD1

 
1 �

1

`0j

!
<
1

2
:

Put

L D

rY
jD1

j̀ ; L0 D

rY
jD1

`0j :

By construction .L;L0/ D 1. We put n C a D Lm; moreover, in the first two cases of (6.2)
we put n C 1 D L0m0, in the last two cases of (6.2) we put n D L0m0 with Lm odd and
.L;m/ D .L0; m0/ D 1. Then by the argument of the previous section, numerators and
denominators of the approximations are evenly divisible. It remains to show that we can pick
infinitely many such pairs .m;m0/. To this end we put

m0 D �0L0 C 1; m D 2�LC 1;

so that .L;m/ D .L0; m0/ D 1 and mL is odd, and the linear diophantine equation

Lm � L0m0 D 2L2� � �0.L0/2 C .L � L0/ D b

has, for any b 2 Z, infinitely many pairs of solutions .�; �0/, since .2L2; .L0/2/ D 1.

In certain cases we can do a little better, and we conclude this section with a proof of (1.4)
for all ˛.x; a; 0;˙1; c=d/with a even. In this case we are dealing exclusively with Chebyshev
polynomials of the second kind, for which slightly better divisibility conditions hold. In
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particular, restricting the first two cases of (6.2) to odd n and assuming that a is even, the
indices in numerator and denominator are odd, and it follows from (4.6) that

U.nCa�1/=2.x=2/ j UnCa.x=2/; U.n�1/=2.x=2/ j Un.x=2/;

so that every second approximant of ˛ has numerator and denominator that are strongly
evenly divisible.

7. Almost all ˛, lower bound: Proof of Theorem 1.3

Without loss of generality we will prove Theorem 1.3 for almost all ˛ 2 Œ1; 2�. Of course
the same argument works for any other interval. For N;X � 1 and q 2 N let

SX;N D f˛ 2 Œ1; 2� j ı
.˛/
min.N / � 1=Xg

and

S
.q/
X D f˛ 2 Œ1; 2� j k˛qk � 1=Xg;

where as usual k:k denotes the distance to the nearest integer. Clearly

�
�
S
.q/
X

�
D

2

X
:

Then ˛ 2 SX;N implies that there exist m;m0; n; n0 � N 1=2 such that

j˛.m2 �m02/ � .n02 � n2/j � 1=X

and in particular there exist u D m �m0, v D mCm0 with u; v � N 1=2 such that

˛ 2 S
.uv/
X :

We conclude that
SX;N �

[
u;v�CN1=2

S
.uv/
X

for a suitable constant C > 0 (depending on ˛). Note that the sets S .uv/X are indexed by the
integers which are products u � v with u; v � CN 1=2. These are just the distinct elements in
a multiplication table of side length CN 1=2. Erdős showed [7] that a multiplication table of
side lengthX contains o.X2/ different entries. We now invoke Ford’s quantitative version [9,
Corollary 3], which shows that the union is over� N.logN/�c.log logN/�2=3 pairs with
c D 1 � log.e log2/

log2 D 0:086 : : :. We obtain

�.SX;N /�
N

.logN/c.log logN/2=3
�
1

X
:

Now let

S WD
˚
˛ 2 Œ1; 2� j ı

.˛/
min.N / � .logN/c=N for all sufficiently large N

	
:

Then
S D lim inf

N!1
SN=.logN/c ;N ;

and since

�.SN=.logN/c ;N /�
1

.log logN/2=3
! 0;

it is clear that �.S/ D 0.
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8. Almost all ˛: bounds for all N

In this section we prove Theorem 1.2 for almost all ˛ 2 J (without loss of generality),
where J � .0;1/ is some fixed compact interval. In the following, all implied constants
may depend on J .

For ˛ 2 J , real M � 1 and M 3 � T �M 4, let

(8.1) S .M; T; ˛/ WD #
n
n1; n2; n3; n4 �M W

ˇ̌̌n1n2
n3n4

� ˛
ˇ̌̌
�

1

T

o
:

We are interested in a lower bound for this quantity for almost all ˛ and T as large as possible
in terms of M . We will prove the following

P 8.1. – For any � > 0 sufficiently small, we have S.M;M 4��; ˛/ � 1 for
all sufficiently large M � M0.˛/, and all ˛ 2 J n T M , where T M is an exceptional set of
measure �.T M /�M�� with � > 0 depending only on � > 0.

Taking Proposition 8.1 for granted, we specialize M D 2� , � 2 N, so thatX
MD2�

�.T M / <1:

By the Borel-Cantelli lemma we conclude S.M;M 4��; ˛/ � 1 for almost all ˛, all sufficiently
large M D 2� �M0.˛/ and � as in Proposition 8.1. It follows from Lemma 3.2 that

(8.2) ı
.˛/
min.N /� N 1� 4��2 C" D N�1C�=2C"

for all sufficiently large integers N � N0.˛/. Since we allow the implied constant to depend
on ˛, (8.2) holds in fact for all N , and the bound (1.5) in Theorem 1.2 follows.

The remainder of this section is devoted to the proof of Proposition 8.1. To prepare for
the upcoming Fourier analysis, let w1; w2 be two non-negative smooth functions bounded
by 1. We assume that w1 takes the value 1 on some sufficiently large interval Œa1; b1� with
constants 0 < a1 < b1 depending on J and the value 0 outside Œ1

2
a1; 2b1�, and that w2

takes the value 1 on Œ�1; 1� and the value 0 outside Œ�2; 2�. Note that the Fourier transformbw2.y/ WD R1�1w2.x/e�2�ixydx � 0 is rapidly decreasing.

Fix some small � > 0, and let as usual " > 0 denote an arbitrarily small constant, not
necessarily the same at each occurrence. The first key observation is that by the standard
divisor bound we have

S.M; T; ˛/�M�"eS.M; T; ˛/;
where

eS.M; T; ˛/ WD #
n
ni �M

�=4; mi �M
1��=4

W

ˇ̌̌n1m1n2m2
n3m3n4m4

� ˛
ˇ̌̌
�

1

T

o
:
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Denoting ˇ D log˛, we see that eS.M; T; ˛/ is bounded from below byX
n1;n2;n3;n4
m1;m2;m3;m4

w2

�
T
�

log
n1m1n2m2

n3m3n4m4
� ˇ

�� 4Y
jD1

w1

� nj

M �=4

�
w1

� mj

M 1��=4

�
D
1

T

Z 1
�1

cw2.y=T /e�2�iyˇ ˇ̌̌X
n

w1

� n

M �=4

�
n2�iy

ˇ̌̌4 ˇ̌̌X
m

w1

� m

M 1��=4

�
m2�iy

ˇ̌̌4
dy

DW I1.ˇ/C I2.ˇ/

say, where I1.ˇ/ is the integral restricted to jyj � M " for some very small fixed " > 0, and
I2.ˇ/ is the rest.

Let

Lw1.s/ WD

Z 1
0

w1.x/x
s dx

x

denote the Mellin transform of w1. Then

(8.3) †.N; y/ WD
X
n

w1

� n
N

�
n2�iy D

Z
.2/

Lw1.s/N
s�.s � 2�iy/

ds

2�i
:

To analyze I1.ˇ/ we shift the contour in (8.3) to Re s D 0, say, and using the rapid decay
of Lw1 along vertical lines, we see that for jyj � M " and N D M c (c D �=4 or 1 � �=4) we
have

(8.4) †.N; y/ D Lw1.1C 2�iy/N
1C2�iy

CO.N "/:

From (8.4) we conclude (using also Taylor’s theorem in the second step)

I1.ˇ/ D
M 4

T

Z M"

�M"

bw2 � y
T

�
e�2�iyˇ j Lw1.1C 2�iy/j

8dy CO

 
M 4� �4C"

T

!

D c.ˇ/
M 4

T
CO

 
M 4� �4C"

T
C
M 4

T 2

!
;

where c.ˇ/ D bw2.0/ R1�1 e�2�iyˇ j Lw1.1C 2�iy/j8dy: If we define v.t/ WD w1.e
t /et , again a

non-negative compactly supported function, then Lw1.1C 2�iy/ Dbv.�y/, so that

c.ˇ/ D bw2.0/ Z
R7
v.t1/v.t2/ � � � v.t7/v.�ˇ C t1 C t2 C t3 C t4 � t5 � t6 � t7/dt1 � � � dt7:

If the support of w1 is sufficiently large, then c.ˇ/ is bounded away from 0, uniformly for all
eˇ 2 J , so that

I1.ˇ/�
M 4

T
uniformly in ˇ.

It remains to show that for almost all ˇ the contribution I2.ˇ/ of the large frequencies
jyj > M " is of lower order of magnitude. Let

I WD
�Z

log J

jI2.ˇ/j
2dˇ

�1=2
:

Suppose we can show

(8.5) I �M 4��T �1
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for T DM 4�� and � > 0 possibly depending on �. Then we conclude I 2.ˇ/�M 4��=2T �1

for all ˇ except for a small set T M of measure�M��, so that for all ˛ 2 J n T M ,

S.M;M 4��; ˛/�M�" � eS.M;M 4��; ˛/�M�" �
�M 4

T
CO

�M 4��

T

��
�

M 4�"

T
� 1

and the proof of Proposition 8.1 is complete.
To bound I , we note that I2.ˇ/ D bF .ˇ/ is the Fourier transform of

F.y/ WD 1.jyj > M "/
1

T
bw2 � y

T

� ˇ̌
†.M

�
4 ; y/†.M 1� �4 ; y/

ˇ̌4
:

Therefore

I 2
�

Z 1
�1

jI2.ˇ/j
2dˇ D

Z 1
�1

jF.y/j2dy

by Plancherel, that is

(8.6) I 2
�

1

T 2

Z
jyj>M"

ˇ̌̌cw2 � y
T

� ˇ̌̌2 ˇ̌̌
†.M

�
4 ; y/

ˇ̌̌8 ˇ̌̌
†.M 1� �4 ; y/

ˇ̌̌8
dy:

Since jyj �M ", we may bound†.M
�
4 ; y/ by shifting the contour in (8.3) to Re s D 1��4;

now the pole at s D 1C2�iy is negligible due to the rapid decay of Lw1, and hence we obtain
the upper bound

†.M
�
4 ; y/�M .1��4/�=4

Z 1
�1

j�.1 � �4 � 2�iy C i t/j

1C jt j10
dt:

The crucial input is now a bound of the type

j�.� C i t/j � jt jA.1��/
3=2C"; 1=2 � � � 1; jt j � 2

where both A and the implied constant are absolute. A first result of this type was proved by
Richert [18] with A D 100; recently Heath-Brown [10] obtained A D 1=2. We conclude thatˇ̌̌

†.M
�
4 ; y/

ˇ̌̌
�M .1��4/�=4

� jyjA�
6C";

so that (8.6) is bounded by

�M 2.1��4/�
�
1

T 2

Z
R

ˇ̌̌cw2� y
T

�ˇ̌̌2
jyj8A�

6C"
ˇ̌̌
†.M 1� �4 ; y/

ˇ̌̌8
dy

�M 2.1��4/�
�
1

T 2
� T 8A�

6C"
�

Z
jyj�T 1C"

ˇ̌̌ X
n�M4��

a.n/n2�iy
ˇ̌̌2
dy;

where a.n/ D
P
n1� ��� �n4Dn

w1

�
n1

M
1�
�
4

�
� � � � � w1

�
n4

M
1�
�
4

�
� n": Using the standard mean

value theorem [12, Theorem 9.1]Z X

0

ˇ̌̌X
n�N

ann
it
ˇ̌̌2
dt � .X CN/

X
n�N

janj
2;

we obtain for T DM 4�� that

I 2
�M 2.1��4/�C"

�
1

T 2
� T 8A�

6

�

�
T CM 4��

�
�M 4��

�
M 8�2�5C32A�6C"

T 2
�

M 8��5

T 2

for all sufficiently small � > 0. This shows (8.5) with � D 1
2
�5 and completes the proof of

Proposition 8.1. Moreover Heath-Brown’s result [10] allows us to pick A D 1
2

in which case
any 0 < � < 1=16 is admissible.
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9. Proof of Theorem 1.4

One simple reason why the sequence of eigenvalues is non-generic as far as the behavior of
minimal gaps is concerned, is that it is closed under multiplication by perfect squares, hence
one small gap propagates. Indeed, let ˛ > 0 be arbitrary, and suppose (1.7) holds, that is
ı
.˛/
min.N / �

1
N logN infinitely often. Let �0; �0 � N be two eigenvalues with

0 < � � �0 �
1

N logN
:

Then obviously Q� WD 4�, Q�0 WD 4�0 are eigenvalues with

0 < Q� � Q�0 �
4

N logN
; so that ı

.˛/
min;2.cN / �

4

N logN
infinitely often

for some suitable constant c, violating (1.8).
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