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WILD RAMIFICATION DETERMINES
THE CHARACTERISTIC CYCLE

 T SAITO  Y YATAGAWA

A. – Constructible complexes have the same characteristic cycle if they have the same
wild ramification, even if the characteristics of the coefficients fields are different.

R. – Des complexes constructibles ont le même cycle caractéristique s’ils ont la même
ramification sauvage, même si les caracteristiques des corps de coefficients sont différentes.

The characteristic cycle CC F of a constructible complex F on a smooth varietyX over
a perfect field k is defined in [8], as a cycle on the cotangent bundle T �X supported on the
singular support SS F defined by Beilinson in [1]. The characteristic cycle is characterized
by the Milnor formula recalled in Theorem 1.3 computing the total dimension of the space
of vanishing cycles.

We show that constructible complexes have the same characteristic cycle if they have the
same wild ramification. This terminology will be defined in Definition 5.1 in the text.

T 0.1. – LetX be a smooth scheme over a perfect field k and letƒ andƒ0 be finite
fields of characteristic invertible in k. Let F and F 0 be constructible complexes ofƒ-modules
and of ƒ0-modules on X respectively. If F and F 0 have the same wild ramification, we have

(0.1) CC F D CC F 0:

A special case where ƒ D ƒ0 is proved in the thesis of the second named author [11,
Theorem 7.25]. Theorem 0.1 is a refinement of and is deduced from the following equality of
Euler characteristic.

P 0.2 (cf. [5, Théorème 2.1]). – LetX be a separated scheme of finite type over
an algebraically closed field k and let ƒ and ƒ0 be finite fields of characteristic invertible in k.
Let F and F 0 be constructible complexes ofƒ-modules and ofƒ0-modules on X respectively.
If F and F 0 have the same wild ramification, we have

(0.2) �c.X; F / D �c.X; F 0/:
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1066 T. SAITO AND Y. YATAGAWA

A special case where ƒ D ƒ0 is proved in [5, Théorème 2.1].
To deduce Theorem 0.1 from Proposition 0.2, we take a morphism to a curve and use

the Grothendieck-Ogg-Shafarevich formula to recover the total dimension of the space of
vanishing cycles appearing in the characterization of characteristic cycle from the Euler-
Poincaré characteristic.

We briefly recall the definition and properties of singular support and characteristic cycle
in Section 1. As preliminaries of proof of Theorem 0.1, we prove the existence of a good pencil
in Section 2. We show that the characteristic cycle of a sheaf is determined by the Euler-
Poincaré characteristics of its pull-backs using the existence of a good pencil in Section 3.
Finally, we prove Theorem 0.1 after defining the condition for constructible complexes to
have the same wild ramification in Section 4.

The authors thank Alexander Beilinson for suggesting weakening the assumption in
the main result and also for an interpretation of the equality (5.1) in Definition 5.1 using
connected components of the center of a group algebra. The research was partially supported
by JSPS Grants-in-Aid for Scientific Research (A) 26247002, JSPS KAKENHI Grant
Number 15J03851, and the Program for Leading Graduate Schools, MEXT, Japan. A part
of this article is written during the stay of one of the authors (T. S.) at IHÉS. He thanks
Ahmed Abbes for the hospitality.

1. Characteristic cycle

We briefly recall the definition of characteristic cycle. We refer to [8] for more detail. For
a smooth schemeX over a field k, let T �X D SpecS��1_X be the cotangent bundle ofX and
let T �XX denote the zero section. A morphism f WX ! Y of smooth schemes over k induces a
linear mapping df WX�Y T �Y ! T �X of vector bundles onX . We say that a closed subsetC
of a vector bundle is conical if C is stable under the action by the multiplicative group.

D 1.1 ([1, 1.2]). – Let X be a smooth scheme over a field k and let C � T �X
be a closed conical subset.

1. Let hWW ! X be a morphism of smooth schemes over k. We say that h isC -transversal
if we have

dh�1.T �WW / \ h
�C � W �X T

�
XX;

where h�C D W �X C .
For a C -transversal morphism hWW ! X , we define a closed conical subset hıC � T �W

to be the image of h�C � W �X T �X by the morphism dhWW �X T
�X ! T �W .

2. Let f WX ! Y be a morphism of smooth schemes over k. We say that f isC -transversal
if we have

df �1.C / � X �Y T
�
Y Y:

3. Let hWW ! X and f WW ! Y be morphisms of smooth schemes over k. We say that
the pair .h; f / is C -transversal if h is C -transversal and if f is hıC -transversal.

4. Let j WU ! X be an étale morphism, f WU ! Y a morphism over k to a smooth curve
over k, and u 2 U a closed point. We say that u is an isolated characteristic point with respect
to C if the pair .j; f / is not C -transversal and its restriction to U fug is C -transversal.

4 e SÉRIE – TOME 50 – 2017 – No 4



WILD RAMIFICATION DETERMINES THE CHARACTERISTIC CYCLE 1067

Letƒ be a finite field of characteristic ` invertible in k. We say that a complex F of étale
sheaves ofƒ-modules onX is constructible if the cohomology sheaf H q

.F / is constructible
for every q and if H q

.F / D 0 except finitely many q.

D 1.2 ([1, 1.3]). – LetX be a smooth scheme over a field k and letƒ be a finite
field of characteristic ` invertible in k. Let F be a constructible complex ofƒ-modules onX .

1. Let C � T �X be a closed conical subset. We say that F is micro-supported on C if for
everyC -transversal pair .h; f / of morphisms hWW ! X and f WW ! Y of smooth schemes
over k, the morphism f is locally acyclic relatively to h� F .

2. The singular support SS F of F is the smallest closed conical subset C of T �X on
which F is micro-supported.

By [1, Theorem 1.3], the singular support exists for every constructible complex of
ƒ-modules. Further, if X is equidimensional of dimension n, the singular support is equidi-
mensional of dimension n.

T 1.3 (Milnor formula, [8, Theorem 5.9, Theorem 5.18])

LetX be a smooth scheme equidimensional of dimension n over a perfect field k and letƒ be
a finite field of characteristic ` invertible in k. Let F be a constructible complex ofƒ-modules
on X and C � T �X a closed conical subset. Assume that F is micro-supported on C and that
every irreducible components Ca of C D

S
a Ca is of dimension n.

Then, there exists a unique Z-linear combination A D
P
amaCa satisfying the following

condition: Let .j; f / be the pair of an étale morphism j WU ! X and a morphism f WU ! Y

over k to a smooth curve over k. Let u 2 U be a closed point such that u is at most an isolated
characteristic point of f with respect to C . Then we have

(1.1) � dimtot�u.j � F ; f / D .j �A; df /T �U;u:

Further A is independent of C on which F is micro-supported.

In (1.1), the left hand side denotes the minus of the total dimension of the stalk �u.j � F ; f /

at u of the complex of vanishing cycles. The total dimension dimtot is defined as the sum
of the dimension and the Swan conductor. The right hand side denotes the intersection
number supported on the fiber of u of the pull-back j �A with the section df defined to be
the pull-back of dt for a local coordinate t of Y at f .u/.

D 1.4 ([8, Definition 5.10]). – LetX be a smooth scheme over a perfect field k
and letƒ be a finite field of characteristic ` invertible in k. Let F be a constructible complex
of ƒ-modules on X . We define the characteristic cycle CC F of F to be A D

P
amaCa in

Theorem 1.3.

For Z`-coefficient or Q`-coefficient, the characteristic cycle is defined by taking the reduc-
tion modulo `. Theorem 1.3 implies the following additivity of characteristic cycles. For a
distinguished triangle! F 0 ! F ! F 00 ! of constructible complexes of ƒ-modules, we
have

(1.2) CC F D CC F 0 C CC F 00:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1068 T. SAITO AND Y. YATAGAWA

2. Existence of good pencil

Let X be a smooth projective scheme over an algebraically closed field k. Let L be a
very ample invertible OX -module and let E � �.X; L / be a sub k-vector space defining a
closed immersion i WX ! P D P.E_/ D Projk S

�E. The dual projective space P_ D P.E/
parametrizes hyperplanes in P. We identify the universal hyperplane Q D f.x;H/ j x 2 H g �
P �k P_ with the covariant projective space bundle P.T �P/ as in the beginning of [8,
Subsection 3.2]. We also identify the universal family of hyperplane sections X �P Q with
P.X �P T

�P/.
For a line L � P_, let AL denote the axis

T
t2LHt of L.

Define pLWXL D f.x;Ht / j x 2 X \Ht ; t 2 Lg ! L by the cartesian diagram

(2.1) XL //

pL

��

X �P Q

��

L // P_:

The projection�LWXL ! X induces an isomorphism on the complementXıL D X X\AL.
Let pıLWX

ı
L ! L be the restriction of pL. We note that if AL meets X transversally then

�LWXL ! X is the blow-up of X along X \ AL and hence XL is smooth over k.
Let C � T �X be a closed conical subset and let eC be the inverse image by the surjection

di WX �P T
�P! T �X . We consider the following conditions.

(E) For every pair .u; v/ of distinct closed points of X , the restriction

E � �.X; L /! Lu=m
2
u Lu ˚ L v=m

2
v L v

is surjective.
(C) For every irreducible component Ca of C , the inverse image eCa � eC of Ca by the

surjection di WX �P T
�P! T �X is not contained in the 0-section X �P T

�
P P.

If every irreducible component of Ca has the same dimension as that ofX , the condition (C)
is satisfied unless X D P. Hence, by [8, Lemma 3.19], after replacing L and E by L

˝n and
the image E.n/ of E˝n ! �.X; L

˝n
/ for n = 3 if necessary, the condition (E) and (C) are

satisfied if every irreducible component Ca of C D
S
a Ca is of dimension dimX . For each

irreducible component Ca of C , we regard the projectivization P.eCa/ of eCa � eC as a closed
subset of P.eC/ � P.X �P T

�P/ D X �P Q.

L 2.1. – Assume that the axis AL meets X transversally and that the immersion
Z D X \ AL ! X is C -transversal.

1. The blow-up �LWXL ! X is C -transversal.
2. The intersection XL \ P.eC/ in P.X �P T

�P/ D X �P Q is the smallest closed subset
outside of which the projection pLWXL ! L is �ıLC -transversal.

Proof. – 1. We consider the commutative diagram

D �X T
�X //

��

D �Z T
�Z

��

D �XL
T �XL // T �D

4 e SÉRIE – TOME 50 – 2017 – No 4



WILD RAMIFICATION DETERMINES THE CHARACTERISTIC CYCLE 1069

of morphisms of vector bundles on the exceptional divisorD D Z�XXL. SinceD is smooth
over Z, the right vertical arrow is injective. Hence, the kernel of the left vertical arrow is
a subset of the kernel of the upper horizontal arrow. Thus, if the immersion Z ! X is
C -transversal then � WXL ! X is C -transversal.

2. Since pWX �P Q! X is smooth, the immersion XL ! X �P Q is pıC -transversal by
[8, Lemma 3.4.3]. Hence, by [8, Lemma 3.9.1] applied to the cartesian diagram

X �P Q

p_

��

XLoo

pL

��

P_ Loo

and by [8, Lemma 3.10], the complement XL XL \ P.eC/ is the largest open subset where
pLWXL ! L is �ıLC -transversal.

To show the existence of good pencil, we consider the universal family of pencils. Assume
that X is projective smooth and let E � �.X; L / be a subspace of finite dimension defining
a closed immersion X ! P D P.E_/ as above. We identify the Grassmannian variety
G D Gr.2; E/ parametrizing subspaces of dimension 2 of E with the Grassmannian variety
G D Gr.1;P_/ parametrizing lines in P_. The universal family A � P�G of linear subspace
of codimension 2 of P D P.E_/ consists of pairs .x; L/ of a point x of the axis AL � P of
a line L � P_. Similarly as Q D f.x;H/ 2 P � P_ j x 2 H g is identified with P.T �P/,
the scheme A is identified with the Grassmannian bundle Gr.2; T �P/ parametrizing rank 2
subbundles of T �P by the injection T �P.1/! E�P. The intersectionX�P A D .X�G/\A
is canonically identified with the bundle Gr.2; X �P T

�P/ of Grassmannian varieties.

Let D D f.H;L/ 2 P_�G j H 2 Lg � P_�G be the universal line over G. We canonically
identify the fiber productX �P A�G D with the flag bundle Fl.1; 2;X �PT

�P/ parametrizing
pairs of sub line bundles and rank 2 subbundles of X �P T

�P with inclusions. We consider
the commutative diagram

(2.2) X �P Q

��

X �P A �G Doo

��

// X �P A

��

P_ Doo // G;

defined as

(2.3) Gr.1; X �P T
�P/

��

Fl.1; 2;X �P T
�P/oo

��

// Gr.2; X �P T
�P/

��

Gr.1; E/ Fl.1; 2; E/oo // Gr.2; E/:

The horizontal arrows are forgetful morphisms and the vertical arrows are induced by the
canonical injection �1P.1/! E ˝ OP. The right square is cartesian.

Let C � T �X be a closed conical subset. Define a closed subset

(2.4) R.eC/ � X �P A D Gr.2; X �P T
�P/ � X �G

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1070 T. SAITO AND Y. YATAGAWA

to be the subset consisting of .x; V / such that the intersection V \ .x �X eC/ � T �P is not a
subset of 0. We also define a closed subset

(2.5) Q.eC/ � X �P A �G D

to be the inverse image of P.eC/ � X �P Q by the upper left horizontal arrow in (2.2). The
subset R.eC/ � X�P A is the image of Q.eC/ by the upper right arrowX�P A�G D! X�P A
of (2.2).

L 2.2. – Let C � T �X be a conical closed subset.
1. The complement X �P A R.eC/ is the largest open subset where the pair .p; p0/ of

pWX �P A! X and p0WX �P A! G is C -transversal.
2. For a line L � P_ such that AL meets X transversally, the following conditions are

equivalent:
(1) The immersion Z D X \ AL ! X is C -transversal.
(2) The point of G corresponding to L is not contained in the image of R.eC/ � X �P A

by X �P A! G.
(3) The pair X  XL ! L is C -transversal on a neighborhood of ��1L .Z/ D Z �L � XL.

Proof. – 1. By [8, Lemma 3.6.9], the largest open subset U � X �P A where the
pair .p; p0/ is C -transversal equals the largest open subset where .p; p0/WX �P A! X �G is
C � T �G-transversal. The kernel Ker

�
.X�P A/�X T �X˚.X�P A/�GT

�G! T �.X�P A/
�

is canonically identified with the conormal bundle T �X�PA.X � G/ and further with the
restriction of the universal sub vector bundle of rank 2 of T �P on A D Gr.2; T �P/. Hence,
U is the complement of R.eC/.

2. (1), (2): Since pWX �P A ! X is smooth, the condition (1) is equivalent to that the
immersion Z ! X �P A is pıC -transversal by [8, Lemma 3.4.1] and [8, Lemma 3.4.3]. We
consider the cartesian diagram

(2.6) X �P A

��

Zoo

��

G fLg:oo

Since the right vertical arrowZ ! fLg in (2.6) is smooth by the assumption that the axisAL
meets X transversely, it is further equivalent to that the left vertical arrow X �P A ! G is
pıC -transversal on a neighborhood of Z by [8, Lemma 3.6.1] and [8, Lemma 3.9.1]. Thus
the assertion follows from 1.

(2), (3): The condition (2) means that Z � L � XL does not meet XL \ P.eC/. This is
equivalent to the condition (3) by Lemma 2.1.2.

L 2.3. – Let X be a smooth projective scheme equidimensional of dimension n over
an algebraically closed field k. Let C � T �X be a closed conical subset equidimensional of
dimension n. Let L be a very ample invertible OX -module and E � �.X; L / a sub k-vector
space satisfying the condition (E) and (C). Let G D Gr.1;P_/ be the Grassmannian variety
parameterizing lines in P_. Then, there exists a dense open subset U � G consisting of lines
L � P_ satisfying the following conditions (1) (7):

(1) The axis AL meets X transversally and the immersion X \ AL ! X is C -transversal.

4 e SÉRIE – TOME 50 – 2017 – No 4



WILD RAMIFICATION DETERMINES THE CHARACTERISTIC CYCLE 1071

(2) The blow-up �LWXL ! X is C -transversal.
(3) The morphism pLWXL ! L has at most isolated characteristic points with respect

to �ıLC .
(4) For every closed point y of L, there exists at most one point x on the fiberXL;y at y that

is an isolated characteristic point of pLWXL ! L.
(5) No isolated characteristic point of pL is contained in the inverse image by �LWXL ! X

of the intersection X \ AL.
(6) For every irreducible component Ca of C , the intersection XL \ P.eCa/ is non-empty.
(7) For every pair of irreducible components Ca ¤ Cb of C , the intersection XL \ P.eCa/ \ P.eCb/

is empty.

Proof. – By Bertini, the linesL � P_ such that the axisAL � P intersectsX transversely
form a dense open subsetU0 � G. We show that the image of R.eC/ by p0WX�P A! G is not
dense. Since P.eC/ � X �P Q is of codimension n, its inverse image Q.eC/ � X �P Q �G D
is also of codimension n. Since D is a P1-bundle over G the subset R.eC/ � X �P A is of
codimension = n�1. Since dimX �P A D dim GCn�2, the image of R.eC/ byX �P A! G
is not dense, as claimed.

Let L be a line corresponding to a point of U1 D U0 .U0 \ p0.R.eC/// � G.
Then, the condition (1) is satisfied by Lemma 2.2.2 (2))(1). Hence the condition (2) is
satisfied by Lemma 2.1.1. By Lemma 2.1.2, the condition (3) is satisfied if and only if the
intersection XL \ P.eC/ is finite. Further the condition (4) is satisfied if and only if the
restriction XL \ P.eC/! L of pL is an injection.

Let � D
S
a�a denote the image of P.eC/ DSa P.eCa/ by the projection X �P Q! P_.

By [8, Corollary 3.21], there exists a closed subset �0 � � such that �0 � P_ is of codimen-
sion = 2 and that P.eC/ ! � is finite radicial outside of �0. Further, the image �a � P_

of P.eCa/ is a divisor for each irreducible component Ca of C and �a \ �b � �0 for every
pair of irreducible components Ca ¤ Cb of C . Hence, the lines L � P_ satisfying the
conditions (3) and (4) form a dense open subset U2 � U0 � G.

We set U D U1 \ U2. Let L � P_ be a line in U . As we have seen, the line L satisfies
the conditions (1)–(4) above. The line L also satisfies the condition (5) by Lemma 2.2.2
(2)) (3). For each irreducible component Ca of C , since the image�a � P_ is a divisor, the
intersection�a\L is non-empty. Since�a\L is the image ofXL\P.eCa/, the condition (6) is
satisfied. Since�0 does not meetL by the construction ofU , the condition (7) is satisfied.

3. Euler-Poincaré characteristics determine the characteristic cycle

We give a sufficient condition for constructible complexes to have the same characteristic
cycles. This will be used in the proof of Theorem 0.1 in the next section.

D 3.1. – LetX be a scheme of finite type over a field k and let Nk be an algebraic
closure of k. Let ƒ and ƒ0 be finite fields of characteristics different from that of k and
let F and F 0 be constructible complexes of ƒ-modules and of ƒ0-modules respectively.
We say that F and F 0 have universally the same Euler-Poincaré characteristics if for every
separated scheme Z of finite type over k and for every morphism gWZ ! X over k, we have
�c.Z Nk ; g

� F / D �c.Z Nk ; g
� F 0/.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



1072 T. SAITO AND Y. YATAGAWA

If k is of characteristic 0, the condition is equivalent to that dim F Nx D dim F 0Nx for every
geometric point Nx of X .

L 3.2. – Let X be a scheme of finite type over a field k. Let ƒ and ƒ0 be finite
fields of characteristics different from that of k and let F and F 0 be constructible complexes
of ƒ-modules and of ƒ0-modules respectively with universally the same Euler-Poincaré char-
acteristics.

1. Let hWW ! X be a morphism of schemes of finite type over k. Then h� F and h� F 0 have
universally the same Euler-Poincaré characteristics.

2. Let f WX ! Y be a separated morphism of schemes of finite type over k. Then, RfŠ F
and RfŠ F

0 have universally the same Euler-Poincaré characteristics.

Proof. – We may assume k is algebraically closed. Let Z be a separated scheme of finite
type over k.

1. Let gWZ ! W be a morphism over k. Then, we have �c.Z; g�h� F / D �c.Z; g
�h� F 0/

and the assertion follows.

2. Let gWZ ! Y be a morphism over k and let g0WZ0 ! X be the base change. Since
the proper base change theorem implies the equalities �c.Z; g�RfŠ F / D �c.Z

0; g0� F / D

�c.Z
0; g0� F 0/ D �c.Z; g

�RfŠ F
0
/, the assertion follows.

We recall the definition of the relative Grothendieck groupK0.VX / [7, 2]. Let VX denote
the category consisting of morphisms gWZ ! X of schemes over k where Z is a separated
scheme of finite type over k. The Grothendieck groupK0.VX / is the quotient of free abelian
group generated by isomorphism classes ŒgWZ ! X� of objects of VX , divided by the
relations ŒgWZ ! X� � ŒgV WV ! X� D ŒgW WW ! X� for closed subschemes V � Z

and the complement W D Z V where gV and gW denote the restrictions of g.

Let eF .X/ D Hom.K0.VX /;Z/ denote the dual abelian group. For a morphism
hWW ! X of schemes of finite type over k, the functor h�W VW ! VX sending ŒgWZ ! W �

to Œh ı gWZ ! X� induces a morphism h�WK0.VW /! K0.VX / and its dual h�W eF .X/! eF .W /.
For a separated morphism f WX ! Y of schemes of finite type over k, the functor
f �W VY ! VX sending ŒgWZ ! Y � to Œg0WZ �Y X ! X� induces a morphism
f �WK0.VY /! K0.VX / and its dual fŠW eF .X/! eF .Y /.

LetK.X;ƒ/ denote the Grothendieck group of constructible sheaves ofƒ-modules onX .
Then, the pairing K.X;ƒ/ � K0.VX / ! Z defined by .F ; ŒgWZ ! X�/ 7! �c.Z Nk ; g

� F /

induces a morphism

(3.1) K.X;ƒ/! eF .X/:
The proof of Lemma 3.2.1 shows that, for a morphism hWW ! X of schemes of finite type
over k, we have a commutative diagram

(3.2) K.X;ƒ/ //

h�

��

eF .X/
h�

��

K.W;ƒ/ // eF .W /:
4 e SÉRIE – TOME 50 – 2017 – No 4
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The proof of Lemma 3.2.2 also shows that, for a separated morphism f WX ! Y of schemes
of finite type over k, we have a commutative diagram

(3.3) K.X;ƒ/ //

fŠ

��

eF .X/
fŠ

��

K.Y;ƒ/ // eF .Y /:
Let C be a connected smooth curve over a perfect field k and F be a constructible

complex ofƒ-modules onC . Let rank F denote the alternating sum
P
q.�1/

qrank Hq F jU
on a dense open subscheme U � C where the restrictions H q F jU of cohomology sheaves
are locally constant. For a closed point v 2 C , the Artin conductor is defined by

(3.4) av F D rank F � dim F Nv C Swv F

where Nv denotes a geometric point above v and Swv denotes the alternating sum of the Swan
conductor.

L 3.3. – Let X be a scheme of finite type over a perfect field k. Let ƒ and ƒ0 be
finite fields of characteristics different from that of k and let F and F 0 be constructible
complexes of ƒ-modules and of ƒ0-modules respectively with universally the same Euler-
Poincaré characteristics.

Let NC be a proper smooth curve over k, let j WC ! NC be the open immersion of a dense open
subscheme and gWC ! X be a morphism over k. Then, for a closed point v 2 NC , we have an
equality of the Artin conductors

(3.5) avjŠg
� F D avjŠg

� F 0:

Proof. – We may assume k is algebraically closed. Since the dimensions of fibers
of jŠg� F and jŠg

� F 0 at each points are equal, it suffices to show the equality of the
Swan conductors: Swvg� F D Swvg� F 0. We may further assume X D C by Lemma 3.2,
v … X and that F and F 0 are locally constant.

Let NX be a smooth compactification of X . By approximation, there exists a finite
morphism NZ ! NX of proper smooth curves étale at v such that the pull-backs of F and F 0

onZ D X� NX NZ are unramified along NZ . NZ� NX .X[fvg//. Then, by the Grothendieck-Ogg-
Shafarevich formula [4, Théorème 7.1], we have ŒZ W X��Swv F D rank F ��c.Z/��c.Z; F /

and similarly for F 0. Thus the assertion follows.

P 3.4. – Let X be a smooth scheme over a perfect field k and let Nk be an
algebraic closure of k. Let ƒ and ƒ0 be finite fields of characteristics different from that of k
and let F and F 0 be constructible complexes of ƒ-modules and of ƒ0-modules respectively.

If F and F 0 have universally the same Euler-Poincaré characteristics, we have

(3.6) CC F D CC F 0:

Proof. – We may assume that k is algebraically closed. Since the question is local, we may
assume X is affine. We take an immersion i WX ! An � Pn. Since RiŠ F and RiŠ F

0 have
universally the same Euler-Poincaré characteristics by Lemma 3.2.2, we may assume X is
projective.
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We take an immersionX ! P such that the pull-back L of O.1/ satisfies the conditions (E)
and (C). Let C D SS F [ SS F 0 be the union of the singular supports. Let Ca be an
irreducible component and we show that the coefficients ma and m0a of Ca in CC F and
CC F 0 are equal.

Let �LWXL ! X and pLWXL ! L be morphisms satisfying the conditions (1)–(7) in
Lemma 2.3. Let x 2 XL \ P.eCa/ be an isolated characteristic point of pLWXL ! L and
y D pL.x/ be the image. By the Milnor formula, we have

�ayRpL��
�
L F D � dim tot�x.��L F ; pL/ D .CC F ; dpL/T �X;x D ma � .Ca; dpL/T �X;x

and similarly for F 0. Since ayRpL���L F D ayRpL��
�
L F 0 by Lemma 3.2 and Lemma 3.3,

we have ma � .Ca; dpL/T �X;x D m0a � .Ca; dpL/T �X;x . Since .Ca; dpL/T �X;x ¤ 0, we obtain
ma D m

0
a as required.

Let X be a scheme of finite type over k. Assume that there exists a closed immersion
X ! M to a smooth scheme over k and let ccX WK0.X;ƒ/ ! CH�.X/ denote the
morphism defined by characteristic classes [8, Definition 6.7]. Let K0.X;ƒ/0 � K0.X;ƒ/

denote the kernel of the morphism (3.1). Then, Proposition 3.4 implies that the morphism
ccX WK0.X;ƒ/! CH�.X/ factors through the quotient K0.X;ƒ/=K0.X;ƒ/0.

4. Brauer traces and representations of p-groups

We briefly recall the definition of the Brauer trace of a semi-simple automorphism of a
vector space over a finite field. Letƒ be a finite field of characteristic ` andE D W.ƒ/Œ1

`
� be

the fraction field of the ring of Witt vectors. LetM be aƒ-vector space of finite dimension n
and let � be an automorphism of M of order prime to `. Decompose the characteristic
polynomial ˆ.T / D det.T � � W M/ as ˆ.T / D

Qn
iD1.T � ai / and let Qai be the unique

lifting of ai as a root of 1 of order prime to ` in a finite unramified extension ofE. Then, the
Brauer trace TrBr .�;M/ 2 E is defined by

(4.1) TrBr .�;M/ D

nX
iD1

Qai :

L 4.1. – Letƒ be a finite field,M be aƒ-vector space of finite dimension and let � be
an automorphism of M of order a power of prime p invertible in ƒ. Then, for a subfield E of
the fraction field of W.ƒ/ of finite degree over Q containing TrBr .�;M/, we have

(4.2)
1

ŒE W Q�
TrE=QTrBr .�;M/ D

1

p � 1
.p � dimM �

� dimM �p

/:

Proof. – By devissage, we may assume M is of dimension 1 and E is generated by the
lifting of the eigenvalue � of � . If � D 1, the equality (4.2) is 1 D 1

p�1
.p � 1/. If � is of

order p, it is 1
p�1

.�1/ D 1
p�1

.0 � 1/. If otherwise, it is 0 D 0.

We study representations of a p-group. Let p be a prime number, G be a finite p-group
of order pn and ƒ be a finite field of characteristic different from p. Let K.G;ƒ/ (resp.
K.G;Q/) be the Grothendieck group of ƒ-representations (resp. Q-representations) of G.
The subfieldE of the fraction field of the ring of Witt vectorsW.ƒ/ generated over Q by the
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values of Brauer traces TrBr .� W M/ for � 2 G and ƒ-representations M of G is a subfield
of Q.�pn/.

Let Cent.G;E/ (resp. Cent.G;Q/) denote the space of central functions. Then, the
Brauer traces define an injection TrBr WK.G;ƒ/ ! Cent.G;E/. The image of the injec-
tion TrWK.G;Q/ ˝ Q ! Cent.G;Q/ consists of central functions f WG ! Q satisfying
f .�/ D f .�/ for �; � 2 G satisfying h�i D h�i by [9, 13.1 Théorème 30].

LetA be the center of the group algebra ZŒG�. Since QŒG� is semi-simple, we have a canon-
ical isomorphism K.G;Q/ ! �.Spec A ˝ Q;Z/. Further, the center A=`A is reduced for
every prime ` ¤ p since F`ŒG� is semi-simple and the ringAŒ 1

p
� is finite étale over ZŒ 1

p
�. Hence

the restriction�.SpecAŒ 1
p
�;Z/! �.SpecA˝Q;Z/ is an isomorphism. LetAŒ 1

p
� D

Q
i2I Ai

be the decomposition into product of integral domains and ei 2 AŒ 1p � � ZŒG�Œ 1
p
� be the

corresponding idempotents. Let Vi be an irreducible Q-representation of G satisfying
eiVi D Vi and let �i WG ! Z be the character. Then, the characters �i form an orthogonal
basis of the image of K.G;Q/ ˝ Q ! Cent.G;Q/ with respect to the inner product [9, 2.2
Remarque]. The authors learned the following fact from Beilinson.

L 4.2. – Let p be a prime number and G be a finite group of order pn. Let ƒ be a
finite field of characteristic¤ p and we consider morphisms

(4.3) K.G;ƒ/
TrBr
// Cent.G;E/

1
ŒEWQ�

TrE=Q

��

K.G;Q/ Tr // Cent.G;Q/

in the notation above. Let M be a ƒ-representation of G and for � 2 G, let M � denote the
� -fixed part.

1. The image sM 2 Cent.G;Q/ of the class ŒM � 2 K.G;ƒ/ lies in the image of the injection
TrWK.G;Q/˝Q! Cent.G;Q/ and is given by

(4.4) sM .�/ D
1

p � 1
.p � dimM �

� dimM �p

/:

2. Let A be the center of the group algebra ZŒG�. Then, we have

(4.5) sM D
X
i

dimƒ eiM

dimVi
�i

where ei 2 AŒ 1p � runs through primitive idempotents. In other words, under the identification
�.Spec AŒ 1

p
�;Q/ D K.G;Q/˝ Q � Cent.G;Q/, the locally constant function on Spec AŒ 1

p
�

corresponding to sM takes values dimƒ eiM= dimVi on the components Spec AŒ 1
p
�ei .

Proof. – 1. By Lemma 4.1, the function sM WG ! Q is given by (4.4). By [9, 13.1
Théorème 30] and (4.4), the function sM lies in the image of K.G;Q/˝Q.

2. We may assume M D eiM . Then sM is orthogonal to �j for j ¤ i and hence sM is a
multiple of �i . Since sM .1/ D dimM and �i .1/ D dimVi , the assertion follows.
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5. Same wild ramification

Let X be a normal scheme of finite type over a field k and X � X be a dense open
subscheme. Let G be a finite group and W ! X be a G-torsor. The normalization W ! X

in W carries a natural action of G. For a geometric point Nx of X , the stabilizer I � G of a
geometric point Nw of W above Nx is called an inertia subgroup at Nx.

D 5.1. – Let X be a scheme of finite type over a field k. Letƒ andƒ0 be finite
fields of characteristic invertible in k. Let p = 1 denote the characteristic of k if k is of
characteristic¤ 0 and set p D 1 if k is of characteristic 0.

1. Assume thatX is normal and separated. Let F and F 0 be locally constant constructible
sheaves ofƒ-modules and ofƒ0-modules onX respectively. We say that F and F 0 have the
same wild ramification if the following condition is satisfied:

There exists a proper normal scheme X over k containing X as a dense open subscheme
such that for every geometric point Nx of X , the following condition is satisfied:

(W) Let G be a finite quotient group of the inertia group I Nx D �1.X . Nx/ �X X; Nt / with
respect to a base point Nt such that the pull-backs to X . Nx/ �X X of F and F 0 correspond
to G-modules M and M 0 respectively. Then, for every element � 2 G of p-power order, we
have an equality of the dimensions of the � -fixed parts:

(5.1) dimM �
D dimM 0� :

2. Let F and F 0 be constructible complexes of ƒ-modules and of ƒ0-modules on X
respectively. We say that F and F 0 have the same wild ramification if the following condition
is satisfied:

There exists a finite partition X D
`
i2I Xi by locally closed normal and separated

subschemes such that for every q and for every i , the restrictions H q
.F /jXi

and Hq
.F 0/jXi

are locally constant constructible and have the same wild ramification in the sense defined
in 1.

Note thatƒ andƒ0 are allowed to have the same characteristic. Since the function sM (4.4)
is determined by the function � 7! dimM � and vice versa, the equality (5.1) is equivalent to

(5.2) dim eiM D dim eiM
0

for every primitive idempotent ei of the center AŒ 1
p
� of the group algebra ZŒP �Œ 1

p
� of a

p-Sylow subgroup P of G by Lemma 4.2.

L 5.2. – Let X be a scheme of finite type over a field k. Let ƒ and ƒ0 be finite fields
of characteristic invertible in k. Let F and F 0 be constructible complexes of ƒ-modules and
of ƒ0-modules on X . Let hWW ! X be a morphism of schemes of finite type over k.

If F and F 0 have the same wild ramification, then the pull-backs h� F and h� F 0 also have
the same wild ramification.

Proof. – By devissage, we may assume that X is normal and separated and that F and
F 0 are locally constant constructible sheaves satisfying the condition in Definition 5.1.1.
Let NX be a proper normal scheme containing X as a dense open subscheme satisfying the
condition in Definition 5.1.1. Further by devissage, we may assume W is normal and affine.
Let W 0 be a projective normal scheme over k containing W as a dense open subscheme. Let
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NW be the normalization of the closure of the image of W in W 0 � NX . Then, h� F and h� F 0

satisfy the condition in Definition 5.1.1.

We will deduce Proposition 0.2 from the following lemma.

L 5.3 (cf. [5, Théorème 2.1]). – Let NX be a proper normal scheme over an alge-
braically closed field k of characteristic p > 0 and let X � NX be a dense open subscheme.
Let G a finite group and W ! X be a G-torsor.

1. ([2, 3.3]) The trace Tr.� W H�c .W;Z`// is an integer independent of ` ¤ p.

2. Let ƒ be a finite fields of characteristic invertible in k and let F be a locally constant
constructible sheaf ofƒ-modules onX such that the pull-back toW of F is constant. LetM be
the G-module corresponding to F . Let S � G be the subset consisting of elements of p-power
order contained in the inertia groups at a geometric point of X . Then, we have

(5.3) �c.X; F / D
1

jGj

X
�2S

Tr.� W H�c .W;Z`// �
1

p � 1
.p � dimM �

� dimM �p

/:

Proof. – The proof is based on that of [5, Théorème 2.1]. By the proof of [5, Lemme 2.5],
we have Tr.� W H�c .W;Z`// D 0 for � … S � G and we have

�c.X; F / D
1

jGj

X
�2S

Tr.� W H�c .W;Z`// � TrBr .�;M/:

Since �c.X; F / is an integer and Tr.� W H�c .W;Z`// are integers for � 2 G, by taking
a subfield E of the fraction field of W.ƒ/ of finite degree over Q containing TrBr .�;M/

for � 2 S and applying Lemma 4.1, we obtain (5.3).

Proof of Proposition 0.2. – We may assume that k is algebraically closed. By Lemma 5.2
and devissage, we may assume that X is normal and affine and that F and F 0 are locally
constant constructible sheaves satisfying the condition in Definition 5.1.1. If k is of charac-
teristic 0, we have�c.X Nk ; F / D rank F ��c.X Nk ; ƒ/ by [5, Théorème 2.1] and similarly for F 0

and the assertion follows.

Assume k is of characteristic p > 0 and let NX be a proper normal scheme containingX as
a dense open subscheme and satisfying the condition in loc. cit. Then, Lemma 5.3.2 implies
�c.X Nk ; F / D �c.X Nk ; F 0/.

C 5.4. – Let X be a scheme of finite type over a field k. Let ƒ and ƒ0 be finite
fields of characteristic invertible in k. Let F and F 0 be constructible complexes ofƒ-modules
and ofƒ0-modules onX with the same wild ramification. Then, F and F 0 have universally the
same Euler-Poincaré characteristics.

Proof. – By Lemma 5.2, it follows from Proposition 0.2.

Proof of Theorem 0.1. – By Corollary 5.4, it follows from Proposition 3.4.
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The definition of the property having the same wild ramification is different from that
studied in [10, Definition 2.3.1]. It may be also interesting to consider a generalization to
algebraic spaces as in [6, Section 5].

In this note, we formulated the independence of ` in terms of wild inertia. At least if k is
finite, one can replace this by the condition on the traces of Frobenius as in [3], [12] by using
the Chebotarev density theorem. W. Zheng further suggested to consider the subgroup of
the Grothendieck group ofE-compatible systems of constructible complexes [12, Définition
1.14] consisting of classes of virtually trivial wild ramification as in [10, Definition 2.3.1] and
extend the results of [10] to this framework. L. Illusie suggested that one can also prove a
statement analogous to Theorem 0.1 for the singular support. The authors thank them for
the remarks.
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