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THE CLASSIFICATION
OF POLYNOMIAL BASINS OF INFINITY

 L DEMARCO  K PILGRIM

A. – We consider the problem of classifying the dynamics of complex polynomials
f W C! C restricted to the basins of infinity X.f /. We synthesize existing combinatorial tools—
tableaux, trees, and laminations—into a new invariant of basin dynamics we call the pictograph. For
polynomials with all critical points escaping to infinity, we obtain a complete description of the set of
topological conjugacy classes with given pictograph. For arbitrary polynomials, we compute the total
number of topological conjugacy classes of basins .f;X.f // with a given pictograph. We also define
abstract pictographs and prove that every abstract pictograph is realized by a polynomial. Extra details
are given in degree 3, and we provide examples that show the pictograph is a finer invariant than both
the tableau of [5] and the tree of [10].

R. – Nous étudions la question de la classification de la dynamique des polynômes com-
plexes f W C! C restreints à leur bassin de l’infini. Nous faisons la synthèse d’outils de combinatoire
— tableaux, arbres, laminations — en un nouvel invariant du bassin dynamique que nous appelons pic-
togramme. Pour les polynômes dont tous les points critiques s’échappent vers l’infini, nous obtenons
une description complète de l’ensemble des classes de conjugaison topologiques ayant un pictogramme
donné. Plus généralement, pour tout polynôme, nous calculons le nombre de classes de conjugaison
topologiques du bassin .f;X.f // à pictogramme donné. Nous définissons les pictogrammes de façon
abstraite et prouvons que chacun d’eux est réalisable par un polynôme. Nous donnons plus de détails
en degré 3 et donnons des exemples montrant que le pictogramme est un invariant plus fin que les ta-
bleaux de [5] et que les arbres de [10].

1. Introduction

This article continues a study of the moduli space of complex polynomials f W C ! C,
in each degree d � 2, in terms of the dynamics of polynomials on their basins of infinity
[4, 5, 10, 8, 7]. Our main goal is to classify the topological conjugacy classes of a polynomial f
restricted to its basin

X.f / D fz 2 C W f n.z/!1g:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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800 L. DEMACRO AND K. PILGRIM

The basin X.f / is an open, connected subset of C. In degree d D 2, there are only
two topological conjugacy classes of basins .f;X.f //, distinguished by the Julia set being
connected or disconnected; see, for example, [19, Theorem 10.1]. In every degree d > 2,
there are infinitely many topological conjugacy classes of basins, even among the structurally
stable polynomials in the shift locus. The main objective of this article is the development of
combinatorial methods that allow us to distinguish and enumerate these conjugacy classes
in all degrees.

By definition, a polynomial f of degree d is in the shift locus if all of its d � 1 critical
points are in X.f /. In this case, the basin X.f / is a rigid Riemann surface, admitting up
to Möbius transformations a unique embedding into the Riemann sphere ([18, §2.8], [1,
§IV.4]). In this case, the restriction f W X.f / ! X.f / uniquely determines the conformal
conjugacy class of f W C ! C. Thus, our results on basin dynamical systems .f;X.f //—
given as Theorems 1.1, 1.2, 1.3, and 1.4 below—also provide a combinatorial classification
of topological conjugacy classes of polynomials in the shift locus.

In the theory of dynamical systems, the study of a system like .f;X.f // is somewhat
nonstandard. On the one hand, since all points tend to 1 under iteration, the system is
transient. On the other hand, the structure of .f;X.f //, with an induced dynamical system
on its Cantor set of ends as a topological space, carries enough information to recover the
full entropy of the polynomial .f;C/; see [10, Theorem 1.1]. Our methods and perspective are
inspired by the two foundational articles of Branner and Hubbard on polynomial dynamics
which lay the groundwork and treat the case of cubic polynomials in detail [4, 5].

1.1. The pictograph, informally described

We begin with a rough description of the pictograph D.f / associated to a polynomial
basin dynamics .f;X.f //. A formal presentation is given in §2.2 (for cubic polynomials) and
Section 10 (in arbitrary degree).

Global setup. – The basin dynamics f W X.f / ! X.f / fits naturally into a sequence of
dynamical systems related by semiconjugacies. These are organized in the diagram below,
and are explained in the following paragraphs.

(1.1) X .f /

F

�� gf
// X.f /

f

�� �f
//

Gf

44
T .f /

F

�� hf
// .0;1/:

�d

��

The map Gf is the harmonic Green’s function; its values we call heights or sometimes
escape rates. The grand orbits (under multiplication by d ) of heights of critical points
are called nongeneric heights. We endow .0;1/ with a simplicial structure in which the
nongeneric heights are vertices. The map �f collapses connected components of level sets
of Gf to points; its image is the DeMarco-McMullen tree T .f /, and f induces a self-map
F W T .f /! T .f /. By construction, the factor hf W T .f /! .0;1/ is simplicial.

4 e SÉRIE – TOME 50 – 2017 – No 4
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hf (v)v
⇡f hf

Lv Tv(f)Xv(f) (a, b)

LXv

F 1.1. The local features of the quotient maps in (1.1) at a vertex v of T .f /
and the associated lamination Lv .

Local features. – See Figure 1.1. Every vertex v of T .f / has a nongeneric height hf .v/; and
for each vertex, there is a maximal interval .a; b/ � .0;1/ containing hf .v/ for which all
heights t 2 .a; b/ � fhf .v/g are generic. The connected component Xv.f / of G�1

f
.a; b/

containing ��1
f
.v/ is a planar Riemann surface that we call a local model surface. The

intersectionLXv
WD Xv.f /\�

�1
f
.v/ is called the central leaf ofXv.f /. The central leafLXv

is
a connected component of a fiber ofGf , is homeomorphic to the underlying space of a finite
planar graph, and is the boundary of the unbounded component of its complement. This
implies it is naturally the quotient of the unit circle by a certain kind of equivalence relation,
a finite lamination, denotedLv. The laminationLv is encoded by a simple picture in a disk, a
lamination diagram. The lamination diagram is not endowed with coordinates—rotating the
picture does not change it—but the circle is equipped with a metric induced by the 1-form
j@Gf j. For example: if two critical points c1; c2 belong to the same central leaf LXv

, their
relative angles in Lv are determined by the metric.

The pictograph. – The pictograph D.f / is a diagram consisting of a collection of lamina-
tionsLv, associated to vertices in the convex hull of the critical points of .F; T .f //, together
with labels that mark the orbits of the critical points. For illustration, Figure 1.2 shows a
pictograph associated to a polynomial of degree 4 in the shift locus. The markings on each
lamination indicate which iterate of a critical point lands on a central leaf or is seen through
the “pant leg” of the local model surface. We emphasize two things.

1. The pictograph contains both combinatorial and metric information. For example, if
the iterates of two critical points, say f i .c1/ and f j .c2/, both lie on a central leafLXv

,
then the lamination Lv is labeled by symbols i1 and j2, placed on the unit circle at a
distance recording the metric information of how these points are deployed in LXv

.
2. The pictograph is a static object. It does not, by definition, include a self-map of an

object. However, it allows for reconstruction of dynamics, as described in the main
results presented below.

The next paragraph describes what the pictograph captures.

The tree of local models. – The tree of local models is the disjoint union X .f / WD
F
v Xv.f /,

indexed by the vertices v of the tree T .f /. It is equipped with a holomorphic self-map F

induced by f . The collection of inclusions fXv.f / ,! X.f /gv2T.f / induces a (generically
two-to-one) gluing quotient map gf W X .f / ! X.f /, which is not part of the data of the
tree of local models.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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12      02  03
            13

        02     03
                13          

03

  03

13

23

33

22

02

01

01   
02  12  22

03  13  23  33

1132

43

F 1.2. A degree 4 pictograph, with critical escape rates .M;M=42;M=43/ for
some M > 0.

As we shall see, if we are given the heights of the critical points, then the pictograph D.f /

determines F W X .f /! X .f / up to holomorphic conjugacy. But a gluing map is required
to determine the conformal conjugacy class of a basin .f;X.f //, and there can be many
polynomials with the same pictograph.

1.2. Relation with other invariants: a quick summary

The pictograph synthesizes the pattern and tableau of Branner and Hubbard, the metric
tree equipped with dynamics of DeMarco and McMullen, and the laminations of Thurston.
For cubic polynomials, we will give a more detailed account of the relationships between
the pictograph and other invariants in Section 3. Here, we confine ourselves to some brief
remarks for experts.

Suppose f is a cubic polynomial. The Branner-Hubbard tableau �.f / records the first-
return map along the “critical nest”. The critical nest is a nested sequence P1 � P2 �

4 e SÉRIE – TOME 50 – 2017 – No 4



THE CLASSIFICATION OF POLYNOMIAL BASINS OF INFINITY 803

P3 � � � � where for each n, the puzzle piece Pn contains a critical point and is a bounded
component of the complement of some LXvn

. The tableau data has an equivalent form, the
Yoccoz � -sequence. The DeMarco-McMullen tree F W T .f / ! T .f / records a first-return
map along a “decorated critical nest”, and so is a finer invariant than the tableau �.f /.
The pictograph D.f / records the first return to a “decorated critical nest together with an
embedding into the plane,” and so is finer than both the DeMarco-McMullen tree and the
tableau. Our methods are inspired also by techniques in [2], [16], [22], [23], and [25].

1.3. Main results: realization and counting

If all critical points of f have bounded orbits, then .f;X.f // is conformally conjugate
to .zd ; fjzj > 1g/. We therefore restrict our attention to the case where at least one critical
point of f lies in X.f /.

Branner-Hubbard and DeMarco-McMullen formulated axioms for classes of abstract
tableaux and abstract trees, respectively, and they used these axioms to characterize those
tableaux and trees arising from polynomials. Similarly, we introduce an abstract notion of
the pictograph, and we prove:

T 1.1. – Every abstract pictograph arises for some polynomial.

Next, we study the problem of determining when two polynomials have the same picto-
graph.

T 1.2. – The pictograph is a topological-conjugacy invariant. For any given picto-
graph D, the number of topological conjugacy classes Top.D/ of basins .f;X.f // with picto-
graph D is algorithmically computable from the data of D.

There is a unique topological conjugacy class of quadratic polynomials with disconnected
Julia set; accordingly, there is a unique quadratic pictograph D, and Top.D/ D 1. For
degrees d � 3, the computation of Top.D/ is achieved by an analysis of the quasicon-
formal twist deformations on the basin of infinity, as introduced in [4] and [19], and of the
symmetries of the pictograph D that we carry out in Section 8. The algorithmic computa-
tion of Top.D/ has the simplest formulation in degree 3, where the symmetries are easy to
analyze; the count is given explicitly in Theorems 4.1 and 4.2.

As mentioned in §1.2, the pictograph is a strictly finer invariant than both the tableau
of [5] defined for cubic polynomials and the tree of [10] defined for polynomials of all degrees.
Nevertheless, there exist examples with Top.D/ > 1 in every degree d > 2; see Figure 3.3
and §12.9. Though the pictograph is not a complete invariant of topological conjugacy of
basins .f;X.f //, Theorem 1.2 implies that it “knows” its failure. Furthermore, the algo-
rithms for counting Top.D/ for a given pictograph D can be augmented to also count all
possible pictographs, subject to given combinatorial constraints. Indeed, this algorithm is
completed and implemented in degree d D 3 in [9] and [6]. As an application, the algorithm
is used in [6] to compute the Euler characteristic of the algebraic curves

Sp D
˚
.a; v/ 2 C2jf .z/ D z3 � 3a2z C .2a3 C v/ has a periodic critical point of period p

	
;

introduced in [22].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



804 L. DEMACRO AND K. PILGRIM

1.4. Main results: the structure of moduli space

In [8] we studied the moduli space Bd of basin dynamical systems .f;X.f // for polyno-
mials f of degree d � 2. Here we prove that, once the pictograph and critical escape rates
are fixed, the locus in Bd with this data admits the following description. See §2.1 for a more
thorough discussion of the notion of critical heights mentioned in the statement.

T 1.3. – Fix a pictograph D with N D N.D/ grand orbits of nongeneric heights
and a corresponding list ofN compatible critical heights. Then the locus in the space Bd of basin
dynamical systems with this data is a compact locally trivial fiber bundle Bd .D/ ! .S1/N

over a torus with totally disconnected fibers. The total space is foliated byN -manifolds, and the
leaves are in bijective correspondence with topological conjugacy classes of basins with the given
pictograph.

The twisting deformation of [19] induces the local holonomy of the fiber bundle. The counting
of these topological conjugacy classes in Theorem 1.2 is done via an analysis of the mono-
dromy of this bundle.

The main result of [8] is that the projection � W M d ! Bd , from conformal conju-
gacy classes of polynomials .f;C/ to conformal conjugacy classes of basins .f;X.f //, has
compact and connected fibers. Moreover, � W M d ! Bd is a homeomorphism on the
shift locus. Thus, the description in Theorem 1.3 pulls back to M d , at least where the fibers
of � are points. In fact, the conformal class of .f;X.f // uniquely determines the conformal
class of .f;C/ unless there is a critical point in a periodic end ofX.f /; see [26], [5]. The fibers
of � W M d ! Bd over basins with periodic critical ends contain continua. For example, in
the case of cubics, these fibers contain small copies of the Mandelbrot set coming from renor-
malizations around periodic components of the filled-in Julia set. Combining these facts, we
have the following result about M d , similar to Theorem 1.3:

T 1.4. – Fix a pictograph D with N D N.D/ grand orbits of nongeneric heights
and a corresponding list ofN compatible critical heights. Then the locus in the moduli space M d

of polynomials with this data is a compact locally trivial fiber bundle M d .D/! .S1/N over
a torus. The fibers are totally disconnected if and only if D has no periodic critical ends. In this
case, the total space is foliated by N -manifolds, and the leaves are in bijective correspondence
with topological conjugacy classes of polynomials with the given pictograph.

The structure of the bundle when D has periodic critical ends is delicate. A pictograph D

has a periodic critical end if and only if any polynomial f with this pictograph has a
periodic component of its Julia set containing a critical point. A result of [24, 17] (and [5]
in degree 3) states that this occurs if and only if the Julia set of f has connected components
that are not points. As observed in [8], one might expect that each non-singleton fiber of
� W M d ! Bd is a homeomorphic copy of a product of connectedness loci

Q
i Cdi

�Q
i M di

for some integers di � 2 with
P
i .di � 1/ � d � 1. Indeed, the straightening

theorem of Douady and Hubbard gives a map from any non-singleton fiber ��1.x/ to such
a product, where di is the degree of a polynomial-like restriction [11]. But the discontinuity
of straightening suggests that this expectation may fail; see [14]. In degree d D 3, it is
known each fiber ��1.x/ is either a point or a homeomorphic copy of the Mandelbrot set [5,
Theorem 9.1]; while in degree 2, each fiber of � is either a point or the Mandelbrot set itself.

4 e SÉRIE – TOME 50 – 2017 – No 4
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1.5. Structure of the article

The article is divided into five parts:

Part I. Cubic pictographs. – (Sections 2, 3, 4) We begin in Section 2 with a description of
our main object, the pictograph, in the simplest yet nontrivial setting of cubic polynomials.
(The simplest case is that of degree d D 2, where all polynomials with disconnected Julia
set are topologically conjugate.) In fact, we do not give the full definition of the pictograph
in these sections, but a simplified though equivalent version. In Section 3, we provide a
comparison of our simplified pictograph and the known invariants for cubic polynomials,
the tableau of [5] (or, equivalently, the � -sequence) and the tree of [10]. We give explicit
examples illustrating that the pictograph is a strictly finer invariant than the tree, which is
itself a strictly finer invariant than the tableau and � -sequence. Section 4 contains a precise
version of Theorem 1.2, appearing as Theorems 4.1 and 4.2. Proofs will be given in Part V.

Part II. Local structure and laminations. – (Section 5) In this part, we begin the formal
analysis needed to define and study pictographs in all degrees. Our focus is on local model
maps: restrictions f W Xv.f / ! XF.v/.f /, where f is a polynomial, and Xv.f / is a local
model surface as described in §1.1. In [8], we introduced local model surfaces and local model
maps. Here, we prove that the conformal structure of a local model surface is recorded by a
finite lamination. We also prove that the local model map, up to symmetries and variation
of heights, can be recovered from the static data consisting of the domain lamination and
its degree. This is the central ingredient allowing for the recovery of local model maps up to
symmetries from purely static data. The main result is stated as Theorem 5.1.

Part III. The tree of local models. – (Sections 6, 7, 8) Throughout Part III, we fix a polynomial
f W C ! C of degree d � 2, such that at least one critical point of f lies in X.f /. In
Section 6 we provide a review of the polynomial tree .F; T .f //, defined in [10]. There we
also introduce a key concept—the spine of the tree .F; T .f //. This is defined as the convex
hull of the critical vertices, and it plays a crucial role for us. In Section 7 we define formally
the tree of local models .F ; X .f // associated to f that was introduced in §1.1. The spine
of the tree of local models is the analogous collection of local models over the convex hull
of the critical vertices. We show (Proposition 7.2) that the dynamical system .F ; X .f // is
determined by the first-return map .R ; S / on its spine. We study the symmetries of a tree
of local models in Section 8. There are local symmetries, for a local model at a vertex, and
global symmetries in the underlying tree. The analysis of this symmetry is a crucial ingredient
in the algorithmic count of Top.D/ in Theorem 1.2.

Both trees and trees of local models can be defined abstractly, from a list of axioms.
Following the proof of the realization theorem for trees [10, Theorem 1.2], we prove the
analogous realization theorem (Theorem 7.1): every abstract tree of local models comes from
a polynomial.

Part IV. The moduli space and topological conjugacy. – In Part IV (Section 9), we study our
dynamical systems in families. We begin by recalling facts about the quasiconformal defor-
mation theory of polynomials from [19], specifically the wringing, twisting, and stretching
deformations on the basin of infinity. These quasiconformal conjugacies parametrize the

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



806 L. DEMACRO AND K. PILGRIM

topological conjugacy classes of basins. We show (Theorem 9.1) that the tree of local models
is a twist-conjugacy invariant.

Fixing a tree of local models .F ; X /, we examine the structure of the subset Bd .F ; X /

in the moduli space Bd of basins .f;X.f // with a given tree of local models .F ; X /. This
is the core of the proof of Theorem 1.3.

Part V. Combinatorics and counting. – (Sections 10, 11, 12) In Part V, we formally define
the pictograph for polynomials of arbitrary degree. We prove that the pictograph is a
topological-conjugacy invariant of polynomials (Theorem 10.1). We also prove that a tree
of local models can be reconstructed from its pictograph and the list of critical escape rates
(Proposition 10.2), thus completing the proof of Theorem 1.3 when combined with the work
of Part IV. We define an abstract pictograph as the pictograph associated to an abstract tree
of local models and give the proof of Theorem 1.1.

We complete the proof of Theorem 1.2 in Section 12, providing the arguments for
counting topological conjugacy classes associated to each pictograph. We treat the case of
cubic polynomials first and in greatest detail, giving the proofs of Theorems 4.1 and 4.2 in
Section 11.

1.6. Acknowledgements

We thank Jan Kiwi, Curt McMullen, and Tan Lei for helpful discussions. We also thank
the anonymous referees for numerous thoughtful suggestions. Our research was supported
by the National Science Foundation and the Simons Foundation.

2. Basic definitions and the cubic pictograph

In this section, we give some key definitions needed throughout the article. We introduce
the pictograph in the simplest, yet nontrivial, setting of cubic polynomials. In fact, we intro-
duce a simpler version that exists only for cubic polynomials, the simplified pictograph (also
called a truncated spine in [9, 6]) which is equivalent to the pictograph in this setting. Because
we go to great length to give formal definitions later, we err on the side of informality here,
in order to provide a working definition as quickly as possible.

2.1. Basic definitions

We recall some basic facts from [21]. Fix a polynomial f of any degree d � 2. The basin
of infinity of f is

X.f / D fz 2 C W f n.z/!1 as n!1g:

The escape-rate (or Green’s ) function of f is

Gf .z/ D lim
n!1

1

dn
logC jf n.z/j:

It is continuous on C and harmonic on X.f /, with Gf .z/ > 0 if and only if z 2 X.f /. Since
Gf .f .z// D dGf .z/, we see that Gf induces a semiconjugacy between f W X.f / ! X.f /

and multiplication by d in the real interval .0;1/.
The critical escape rates of f are the elements of fGf .c/ W f 0.c/ D 0g. We define

N D N.f / to be the maximal number of positive, independent critical escape rates, where
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THE CLASSIFICATION OF POLYNOMIAL BASINS OF INFINITY 807

two rates x and y are dependent if x D dny for some n 2 Z. In other words, it is the number
of grand orbits of positive critical escape rates fGf .c/ W f 0.c/ D 0 and c 2 X.f /g under
multiplication by d on .0;1/.

The maximal critical escape rate is the value

M.f / D maxfGf .c/ W f
0.c/ D 0g:

It is zero if and only if f has connected Julia set, and if and only if .f;X.f // is conformally
conjugate to .zd ; fjzj > 1g/.

The basin X.f / is naturally equipped with a holomorphic 1-form

!f D 2i @Gf :

It follows that j!f j gives a locally Euclidean metric on X.f / away from its zeros, which
are the critical points in X.f / and their iterated preimages. The functional equation
Gf .f .z// D d Gf .z/ implies that

1

d
f �! D !

and hence away from zeros of !, with respect to the metric j!j, the map f is locally a
homothety with constant expansion factor d . Since Gf .z/ � log jzj C O.1/ (see [21, §9])
as z !1, each level curve fz 2 X.f / W Gf .z/ D cg has length 2� in the metric j!j.

2.2. The cubic pictograph, simplified form

Now assume that f is a polynomial of degree 3 with maximal critical escape rate
M.f / > 0. Label the critical points of f as c1 and c2 so that Gf .c1/ � Gf .c2/. The
length L.f / of the polynomial f is the least integer l so that

Gf .f
l .c2// � Gf .c1/:

If no such integer exists, then we set L.f / D 1; this occurs if and only if the orbit of c2 is
bounded.

The simplified pictograph of f is a column of maxfL.f /; 1g diagrams, each consisting of
the unit circle and a finite collection of hyperbolic geodesics in the unit disk, together with
a collection of non-negative integers; see Figures 2.1–2.3. These integers, or labels, either
label regions in the disk bounded by geodesics, or label particular points on the unit circle.
We emphasize that rotating a diagram leaves it unchanged: our unit circles do not have
coordinates. The diagrams are constructed as follows.

Let L0 be the level set
L0 D fz W Gf .z/ D Gf .c1/g:

For lengthL.f / > 1 and each 0 < i < L.f /, letLi be the connected component of the level
set

fz W Gf .z/ D Gf .c1/=d
i
g

that separates the critical point c2 from1. Each Li inherits a metric from j!f j (or equiva-
lently from external angles) that we normalize by scaling to have total length 2� . Its orienta-
tion in the plane induces an oriented parameterization by arc length of a circle. It is important
to note that we forget the marking by external angles and fix any choice of parametrization by
arc length from S1 D R=2�Z to Li , respecting the orientation.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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               0

            
               0

1

F 2.1. The simplified pictographs for three cubic polynomials of lengths 0
and 1. Left: an example with length 0; i.e., with Gf .c2/ D Gf .c1/. Center:
the simplified pictograph of every cubic polynomial of length 1 and Gf .c1/ >

Gf .c2/ > Gf .c1/=3. Right: an example of a length 1 cubic polynomial with
Gf .c2/ D Gf .c1/=3; as we shall see, the location of the dot on the circle, relative to
the hyperbolic geodesic, distinguishes the topological conjugacy class of f in this

setting.

We represent eachLi independently as a unit circle in the plane. With respect to the chosen
parametrization, we draw hyperbolic geodesics between pairs of points that are identified
in Li . For example, for every cubic polynomial f with length L.f / > 0, the curve L0 is
represented by a disk with a single hyperbolic geodesic partitioning the unit circle into
arcs of length 4�=3 and 2�=3, as in the two right-hand diagrams of Figure 2.1. Because
the parametrization was arbitrary, any rotation of the disk with its drawn-in geodesics is
considered an equivalent presentation of Li .

We refer to this circular diagram of Li , determined uniquely up to rotation, as the finite
lamination of f at level i . The hyperbolic geodesics partition the unit disk into finitely
many connected components. Each open component with boundary of positive length in
the circle is called a gap of the lamination. The gaps correspond to the bounded, connected
components of C n Li in the plane.

It remains to define the labeling of the finite laminations. The symbols introduced will
represent the locations of the points f k.c2/ for each k � L.f /. If L.f / D 0, no labellings
are necessary.

Now assumeL.f / > 0 and fix 0 � i < L.f /. With respect to the chosen parametrization
S1 ! Li , mark a point on the circle S1 with a dot, and label this point by the integer k � 0
if f k.c2/ is equal to that point in Li . Label a gap with the integer k if f k.c2/ lies in that
connected component of C n Li .

We have now constructed maxfL.f /; 1g labeled lamination diagrams. We organize these
labeled lamination diagrams into a column, with L0 at the top and LL.f /�1 at the bottom
(if L.f / < 1). This column of diagrams is called the simplified pictograph of the cubic
polynomial f .

2.3. Examples of simplified pictographs

In Figures 2.1, 2.2, and 2.3, we provide examples of simplified pictographs for cubic
polynomials of lengths L.f / D 0; 1; 2; 3. The pictograph is defined in Section 10; the reader
should then compare Figure 2.3 to the (unsimplified) pictograph of the same polynomial in
Figure 10.2.
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1            0

0         0

           0    1

         0

           0    1

2

1

1            0

0

2

(A) (B) (C) (D)

F 2.2. The simplified pictographs for four cubic polynomials of length 2. (A,
B): Every cubic polynomial with Gf .c1/=3 > Gf .c2/ > Gf .c1/=9 will have one of
these two simplified pictographs. (C, D): Examples for length 2 polynomials with
Gf .c2/ D Gf .c1/=9.

1            0
               2

0

0

2

3

F 2.3. The simplified pictograph for a cubic polynomial of length 3, with
Gf .c2/ D Gf .c1/=27. (Its full pictograph is shown in Figure 10.2.)

3. More examples in degree 3: A comparison of invariants

In this section, we compare the simplified pictographs of §2.2 to the tableaux of [5]
(equivalently, the Yoccoz � -sequences) and the trees of [10]. We show how to compute the
� -sequence and the tree code from the simplified pictograph. (In [10], it was shown that
the � -sequence can be computed from the tree code of a cubic polynomial, and a tree code
uniquely characterizes a cubic tree up to the choice of critical escape rates, which amounts
to fixing a metric on the tree.)
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To illustrate the distinction between the invariants—trees being strictly finer than
tableaux, pictographs being strictly finer than trees—we include examples showing the
existence of cubic polynomials with

1. the same tableau (or � -sequence) but different trees .F; T /,
2. the same tree .F; T / but different pictographs, and
3. the same pictographs but different topological conjugacy classes.

The examples we provide are structurally stable in the shift locus and have minimal length in
the sense of §2.2, and so these provide the simplest possible examples.

In the remainder of this section, we show how the � -function of [5] and tree code of [10]
may be computed from the data of the simplified pictograph. The reader not familiar with
these invariants may take our results as their definition. Later on in §11.5, however, we do give
the definition of the � -sequence of a cubic polynomial as part of our discussion of counting
topological conjugacy classes of cubics. Further results on trees will appear in Section 6.

3.1. From simplified pictographs to trees and tableaux

Fix a cubic polynomial with length L.f /. The � -sequence is a certain sequence of non-
negative integers of length L.f /; see §11.5 (or [5]) for its definition. Here, we give an equiva-
lent version, using the language of simplified pictographs. ForL.f / D 0, the � -sequence is an
empty sequence. We have �.1/ D 0 for every polynomial with lengthL.f / > 0. ForL.f / > 1
and each 0 < n < L.f /, it is immediate from the definitions that

�.n/ D maxfj W lamination at level j is labeled by .n � j /g:

To compute �.L.f //, we consider the set

L D fj W the central gap in lamination at level j is labeled by .L.f / � j � 1/g;

where the central gap of the lamination is the gap containing the symbol 0. We then have

�.L.f // D

(
1Cmaxfj W j 2 Lg if L 6D ;;

0 if L D ;:

As an example, the � -sequence for the simplified pictograph of Figure 2.3 is 0; 0; 1.

The tree code for a cubic polynomial of length L.f / is a certain sequence of pairs .k.i/; t.i//,
where i ranges from 1 to L.f /, defined in [10, §11]. A minimal symbol in a gap of a lamina-
tion in the simplified pictograph of f is the smallest integer in a labeled gap. The lifetime
k.i/ is equal to the number of times the symbol j appears as a minimal symbol in a gap at
level i � j � 1, as j ranges from 0 to i � 1. In particular, k.1/ D 1. The terminus t .i/ is
computed as follows:

1. let j.i/ be the smallest j which appears at level i � j � 1 but is not a minimal symbol.
If such a j does not exist, then let j.i/ D i ;

2. let m.i/ be the minimal symbol at level i � j.i/ � 1 in the gap containing j.i/. When
j.i/ D i , set m.i/ D 0;

3. let t .i/ D i � j.i/Cm.i/.

As an example, the tree code for the simplified pictograph of Figure 2.3 is .1; 0/; .2; 0/; .1; 1/.
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2           0
        1

4           3

0

1          0         3

0

0

2           0
        1

4           3

0

1         0
3

0

0

F 3.1. Simplified pictographs associated to two different trees with the same
� -sequence 0; 1; 0; 1; 0.

3.2. Examples from Figures 3.1, 3.2, and 3.3

Figure 3.1 shows two simplified pictographs. Using the computation of §3.1, we find their
tree codes are

.1; 0/; .1; 1/; .3; 0/; .1; 1/; .2; 3/

for the pictograph on the left, and

.1; 0/; .1; 1/; .3; 0/; .1; 1/; .1; 3/

for the pictograph on the right. These examples are also presented in [10, §11]. Since tree
codes characterize cubic trees [10, Theorem 11.3], this shows their trees are different.
However, the � -sequence for each simplified pictograph is 0; 1; 0; 1; 0.

Figure 3.2 shows two inequivalent simplified pictographs associated to the same tree. The
tree code for these pictographs is

.1; 0/; .1; 1/; .1; 2/; .4; 0/; .1; 1/; .1; 2/; .3; 4/:

The difference in the pictographs is in the relative locations of the first and fourth iterates of
critical point c2 in the lamination at level 2.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



812 L. DEMACRO AND K. PILGRIM

0
  3      1    4
  6      2    5

  2     
0
1
4

               5

            4 

  0           1    

0

0

0

0

0
  3      1    4
  6      2    5

  2     
0
1
4

               5

             

  0           1    

              4

0

0

0

0

F 3.2. Inequivalent simplified pictographs associated to the same tree. The
two pictographs differ in the cyclic ordering of the 1 and 4 at level 2 (the third

lamination).

Figure 3.3 gives an example of a single simplified pictograph determining exactly two
distinct conjugacy classes. The � -sequence for this example is 0; 0; 1; 2; 0. Following the
algorithm presented in Theorem 4.1, we first enumerate the marked levels l0 D 0; l1 D 2;
then compute the sums of relative moduli m0 D 0;m1 D 1; then compute t0 D 1; t1 D 1.
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 1            0
 3            2
 4

0

2               

0
2   

0

0

F 3.3. Simplified pictograph of length 5 determining exactly two topological
conjugacy classes.

The number of conjugacy classes is the maximum of 20=1 and 21=1; therefore there are two
conjugacy classes determined by this pictograph.

It is not hard to show that these examples are the shortest of their type; that is, any
� -sequence giving rise to more than one tree must have length � 5; any two pictographs
giving rise to the same tree must have length � 7; any pictograph giving rise to more
than one conjugacy class must have length � 5. Indeed, one can easily compute by hand
all combinatorial possibilities to length 6. An enumeration of all admissible � -sequences,
simplified pictographs, and (structurally stable) topological conjugacy classes to length 21
is given in [9], implementing an algorithm derived from Theorem 4.1, while an enumeration
of all cubic trees to length 17 was presented in [10].

4. The counting theorems in degree 3

In this section, we give a more precise statement of Theorem 1.2 in the case of cubic
polynomials. It provides the computation of Top.D/, the number of topological conjugacy
classes of basins .f;X.f // with a given simplified pictograph D in degree 3. The proofs are
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given later, in Section 11, after describing the construction of the pictograph in all degrees.
The formulas build upon the expansive treatment of cubic polynomials in [4], [5] and the
encoding of the cubic trees in [10]. (The proofs of the theorems also use arguments of Branner
in [3, Theorem 9.1] and Harris in [12].)

Figure 3.3 shows an example of a simplified pictograph that corresponds to exactly two
topological conjugacy classes. We conclude this section with an example of a pictograph
corresponding to infinitely-many topological conjugacies that organize themselves into
exactly two solenoids in the moduli space M 3 of cubic polynomials.

4.1. Computing the number of topological conjugacy classes in degree 3

To state the two theorems, we need a few more definitions. As in §2.2, we assume that
f is a cubic polynomial with a disconnected Julia set, so at least one critical point lies in
the basin X.f /. We label the two critical points of f by c1 and c2 so that Gf .c1/ � Gf .c2/.
Let L.f / be the length of f , defined as the least integer so that Gf .c2/ � Gf .c1/=3L.f /.
For each integer 0 < l � L.f /, there is a unique connected component Pl of fz 2 X.f /:
Gf .z/ < Gf .c1/=3

l�1g containing c2. Let Bl � Pl be the closed subset where
Gf .z/ � Gf .c1/=3

l . A marked level is an integer 0 < l < L.f / where the orbit of c2 inter-
sects Bl n PlC1. We remark that this concept appears elsewhere under different names:
marked levels are called semi-critical in [20], and are called off-center in [3, Theorem 9.1]
when the polynomials f have infinite length. Marked levels can be read from the pictograph,
and in fact, from the underlying � -sequence; see Lemma 11.4.

Let
A0 D fz W Gf .c1/ < jzj < 3Gf .c1/g

denote the fundamental annulus. For each 0 < n < L.f /, denote by An the annular
component of fGf .c1/=3n < jzj < Gf .c1/=3

n�1g separating the two critical points (these
are not the fundamental subannuli of §9.1). For each 0 � n < L.f /, the relative modulus at
level n is the ratio

m.n/ D mod.An/=mod.A0/:

The valuem.n/ is also completely determined by the � -sequence of f ; in fact,m.n/ D 2�k.n/,
where k.n/ is the number of times the orbit of An surrounds the critical point before landing
on A0.

T 4.1. – Suppose D is a degree 3 simplified pictograph with finitely many marked
levels. The number of topological conjugacy classes of basins .f;X.f // with pictograph D is

Top.D/ D max
j

2j

maxfti W i � j g
;

where

1. the marked levels are indexed as flj gj�1, in increasing order;

2. for each j , we let mj be the sum of the relative moduli
Plj
lD1

m.l/; and
3. tj is the smallest positive integer for which tjmj is integral.

If there are no marked levels, then Top.D/ D 1. The computation of Top.D/ depends only on
the � -sequence of D.
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The hypothesis of Theorem 4.1 is clearly satisfied for all polynomials in the shift locus,
because their pictographs have finite length. Recall that in that case, by rigidity of X.f /, the
holomorphic conjugacy class of a basin .f;X.f // determines the holomorphic conjugacy
class of the polynomial itself.

In [9], an explicit algorithm is developed and implemented using Theorem 4.1 to
enumerate all topological conjugacy classes of a given length in the shift locus of cubic
polynomials. In particular, the algorithm includes an emumeration of all � -sequences of a
given finite length, followed by the enumeration of all possible pictographs (for structurally
stable polynomials) associated to a given � -sequence.

4.2. Solenoids

Branner and Hubbard showed there exist examples where the set of polynomials with a
given tableau and maximal escape rate forms solenoids in the moduli space of cubic polyno-
mials containing infinitely many distinct topological conjugacy classes. They construct the
“Fibonacci solenoid” in [5], based on the combinatorics of the Fibonacci numbers. In [3],
Branner proved that there is exactly one (connected) Fibonacci solenoid in the moduli
space M 3 of cubic polynomials. Here, we explain how to compute the number of solenoids
associated to a given pictograph (from which can be computed the number of solenoids
associated to a given tableau, when combined with [9, Theorem 3.1]). We use the notation
of Theorem 4.1.

T 4.2. – Suppose D is a degree 3 pictograph with infinitely many marked levels.
Then there are infinitely many topological conjugacy classes of cubic polynomials with picto-
graph D. Fixing the maximal critical escape rate M > 0, either

(a) supj tj D1 and the conjugacy classes form

Sol.D/ D sup
j

2j

maxfti W i � j g

solenoids in the moduli space M 3; or
(b) supj tj <1 and each conjugacy class is homeomorphic to a circle.

The computation of supj tj and Sol.D/ depends only on the � -sequence of D.

4.3. Two-solenoid example

This example is similar to the Fibonacci solenoid of [5], but here we provide a � -sequence
that determines a unique pictograph and exactly two solenoids in M 3. Let l0 D 0, l1 D 2,
l2 D 4, and lj D 2lj�1 C 1 for all j > 2. Consider the � -sequence given by

0; 0; 1; 2; 0; 1; 2; 3; 4; 0; 1; 2; : : : ; 9; 0; 1; 2; : : : ; 19; 0; 1; : : : ; l5; 0; 1; : : : ; l6; 0; 1; : : :

More precisely, we have
�.1/ D 0

and
�.n/ D n � 2 � j � .l1 C l2 C � � � C lj /

for jC1Cl1Cl2C� � �Clj < n � jC2Cl1Cl2C� � �CljC1. It can be proved inductively that this
sequence determines a unique pictograph; see [9, Theorem 3.1]. The first five laminations of
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the simplified pictograph (for the truncated � -sequence 0; 0; 1; 2; 0) are shown in Figure 3.3.
The marked levels are given by the sequence flj W j > 0g. Computing inductively, the relative
moduli sums arem1 D 1,m2 D 3=2, andmj D mj�1C1=2Cmj�1=2 for all j > 2. Therefore
t1 D 1, t2 D 2, and tj D 2j�1 for all j . The numbers maxfti W i � j g D 2j�1 are unbounded,
and Theorem 4.2 implies that this � -sequence determines

lim
j!1

2j =2j�1 D 2

solenoids in the moduli space M 3.

5. Local models and finite laminations

In this section, we first recall and then further develop some notions from [8, §4].
A local model surface .X; !/ is a pair consisting of a planar Riemann surface X and

a holomorphic 1-form ! on X that satisfies certain properties. A local model map is a
holomorphic branched cover

.Y; �/! .X; !/

between local model surfaces. Local model maps arise as particular restrictions of a polyno-
mial branched cover f W C ! C. Here, we introduce finite laminations and branched covers
of finite laminations as combinatorial representations of local model maps. The main result
of this section is

T 5.1. – 1. A local model surface .X; !/ is uniquely determined, up to isomor-
phism, by its associated lamination and the heights of its inner and outer annuli.

2. A local model map .Y; �/! .X; !/ is uniquely determined, up to post-composition by an
isomorphism of .X; !/, by the data consisting of the lamination associated to .Y; �/, the
heights of its inner and outer annuli of .Y; �/, and its degree.

5.1. Local models

A local model surface is a pair .X; !/ consisting of a planar Riemann surface X and
holomorphic 1-form ! on X obtained in the following manner. Begin with a slit rectangle
in the plane

R D fx C iy W 0 < x < 2�; hmin < y < hmaxg n†;

where † is a (possibly empty) finite union of vertical slits of the form

†j D fx C iy W x D xj ; hmin < y � c0g

for a distinguished value of c0 2 .hmin; hmax/. We think of R as the interior of a polygon.
Each slit defines a pair of sides of this polygon. On the left-hand vertical side ofR, the vertical
segment joining the two points hmini and c0i on the imaginary axis is a side, as is the vertical
segment joining c0i and hmaxi . Similarly, on the right-hand vertical side of R, the vertical
segment joining 2�Chmini and 2�C c0i is a side, as is the vertical segment joining 2�C c0i
and 2�Chmaxi . Given a collection of horizontal translations that identify sides in pairs, the
corresponding quotient space obtained by gluing sides via these translations is a local model
surface. The 1-form ! is then defined by dz in the coordinates onR. The y-coordinate in the
rectangular representation induces a height function h W X ! R. The central leaf LX of the
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local model surface is the level set fz W h.z/ D c0g containing all (if any) zeros of !; these
are the images of the topmost points of the slits. The complement X nLX is a disjoint union
of the outer annulus given by the quotient of fc0 < y < hmaxg and finitely many inner annuli
given by the quotient of fhmin < y < c0g. For convenience, we often suppress mention of the
1-form and write simply X for .X; !/.

Note that the rectangular coordinates can be recovered up to a translation from the
pair .X; !/ via integration '.z/ D

R z
z0
!, and the height function is given by h.z/ D Im'.z/,

up to the addition of a real constant.

A local model map (or simply a local model) is a branched cover between local model
surfaces

f W .Y; �/! .X; !/

such that

� D
1

degf
f �!

and f sends the central leaf of Y to the central leaf ofX . In [8, Lemma 4.2], we observed that
every local model arises as the restriction of a polynomial branched cover f W .C; �/! .C; !/
for a meromorphic 1-form ! having purely imaginary residue at each of its poles.

An isomorphism of local model surfaces is a degree 1 local model map.

5.2. Finite laminations

Let C be an oriented Riemannian 1-manifold, isometric to R=2�Z with the standard
metric and affine structure. A finite lamination is an equivalence relation L on C such that

1. each equivalence class is finite,
2. all but finitely many classes are trivial (consist only of one element), and
3. classes are unlinked.

The third condition means that if two pairs of equivalent points fa; bg and fc; dg lie in distinct
equivalence classes, then a and b are in the same connected component of C n fc; dg. We
will deal exclusively with finite laminations, so we henceforth drop the adjective “finite”.
More general types of laminations play a crucial role in the classification of the dynamics
of polynomials; cf. [25], [15].

A lamination is conveniently represented by a planar lamination diagram, defined as
follows. Given a lamination on the circle C , choose an orientation-preserving, isometric
identification of C with S1 D fz 2 C W jzj D 1g D @D. For each nontrivial equivalence
class, join pairs of points in this class that are consecutive in the cyclic order on C by the
hyperbolic geodesic ending at those points, as in Figure 5.1. Condition (3) that classes are
unlinked guarantees that the hyperbolic geodesics do not intersect.

Two laminations are equivalent if there exists an orientation-preserving isometry (i.e.,
rotation) of their underlying circles taking one to the other. Thus, there is no distinguished
marking by angles on the circle C .

Clearly, laminations are determined by their lamination diagrams.
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F 5.1. A finite lamination with four non-trivial equivalence classes.

5.3. Laminations and local model surfaces

Let .X; !/ be a local model surface, and let LX be its central leaf. The 1-form ! induces
an orientation and length-function on LX , giving it the structure of the quotient of a circle
by a finite lamination. Therefore, there is a uniquely determined finite lamination associated
to the local model surface .X; !/.

L 5.2. – A finite lamination L determines a local model surface .X; !/, up to the
heights of its inner and outer annuli.

Proof. – As we defined in §5.1, a local model surface is determined by its rectangular
representation. For any values �1 � hmin < c0 < hmax � 1, we can construct a
surface .X; !/ from the rectangle f0 < x < 2�; hmin < y < hmaxg with central leaf
determining the lamination L. Indeed, choose any point on the circle C to represent the
edges fx D 0 D 2�g. For each point on C in a non-trivial equivalence class, place a vertical
slit from the bottom to height y D c0. Vertical edges leading to points in an equivalence class
are paired by horizontal translation if they are joined by a hyperbolic geodesic in the diagram
forL. The unlinked condition in the definition of the finite lamination guarantees thatX is a
planar Riemann surface. The 1-form dz on the rectangle glues up to define the form !. It is
immediate to see that the local model surface .X; !/ is determined up to isomorphism, once
the values of hmin, c0, and hmax have been chosen.

5.4. Branched covers of laminations

See Figure 5.2. If L1 and L2 are finite laminations, a branched covering ı W L1 ! L2 is an
orientation-preserving covering map ı W C1 ! C2 on their underlying circles such that

1. ı is affine; i.e., ı.t/ D ..deg ı/ t C c/mod 2� where each Ci ' R=2�Z;
2. for each equivalence class A of L1, the image ı.A/ is equal to an (entire) equivalence

class of L2; and
3. ı is consecutive-preserving.

Consecutive-preserving means that for each equivalence class A of L1, either the image
class ı.A/ is trivial, or consecutive points x; y 2 A (with respect to the cyclic ordering on A)
are sent to consecutive points ı.x/; ı.y/ in ı.A/.
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F 5.2. A degree 3 branched cover of laminations. The three marked points
on the left are sent to the marked point on the right.

L 5.3. – A branched cover of laminations is determined by its domain and degree, up
to symmetries. More precisely, given branched covers ı W L1 ! L2 and � W M1 ! M2 of the
same degree, and given an isometry s1 W L1 !M1, there exists a unique isometry s2 W L2 !M2

such that the diagram

L1
s1 //

ı

��

M1

�

��

L2 s2
// M2

commutes.

Proof. – The lamination diagram of L2 is determined by L1 and the degree; indeed, the
rules for a branched covering determine the equivalence classes ofL2, as the images of those
of L1. By hypothesis, there exists an isometry s1 W L1 ! M1 taking equivalence classes to
equivalence classes, and ı and � have the same degree. Therefore, there exists an isometry
r2 W L2 !M2.

Note that any branched coverL1 ! L2 of degree d is determined by the image of a single
point; this is because, in suitable coordinates, the covering is given by t 7! d t . Now, suppose
there exists an equivalence class x in L1 such that r2 ı ı.x/ 6D � ı s1.x/ in M2. Combining
the above facts, there is a uniquely determined symmetry s W M2 ! M2 sending r2 ı ı.x/
to � ı s1.x/. We conclude that s ı r2 ı ı D � ı s1. Set s2 D s ı r2.

In the proof of Theorem 1.2, we will need to compute orders of rotation symmetry
of certain lamination diagrams and record how these symmetry orders transform under
branched covers.

L 5.4. – Let ı W L1 ! L2 be a branched cover of laminations of degree d . If L1 has
a rotational symmetry of order k, then L2 has a rotational symmetry of order k= gcd.k; d/.

Proof. – Suppose s1 W L1 ! L1 is a symmetry of order k, so it rotates the circle under-
lying L1 by 2�=k. By Lemma 5.3, there exists a unique rotational symmetry s2 W L2 ! L2
so the diagram

L1
s1 //

ı

��

L1

ı

��

L2 s2
// L2
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commutes. Fix coordinates on L1 and L2 so ı.t/ D d t mod 2� . As s1 is a translation
by 2�=k, it follows that s2 is a translation by 2�d=kmod 2� . Therefore, s2 is a symmetry
of order k= gcd.k; d/.

5.5. Gaps and local degrees

Suppose L is a finite lamination. For each equivalence class of L, its hyperbolic convex
hull is either empty (if the class consists of a single point), a hyperbolic geodesic (if the class
consists of two points), or an ideal polygon in the disk. Let OL denote the union of these
hyperbolic convex hulls. A gap of L is a connected component G � D of the complement
of OL. We remark that our terminology conflicts with that of [25]; when an equivalence class
consists of three or more points, we do not consider the ideal polygon it bounds in the disk
as a gap. The ideal boundary @G of a gap G is the interior of G \ S1 in S1. Thus, the ideal
boundary @G is a maximal open subset of the circle such that any pair of points in it is
unlinked with any pair of points that are equivalent under the relation defined byL. GivenL,
it is clear that a gap G is determined by its ideal boundary @G, and conversely.

The following lemmas are immediate from the definitions.

L 5.5. – Suppose ı W L1 ! L2 is a branched cover of laminations and G1 is a gap
of L1. Then there is a unique gap G2 of L2 with @G2 D ı.@G1/. In other words, ı takes the
closure of the ideal boundary of a gap surjectively to the closure of the ideal boundary of a gap.

Note that ı need not take the ideal boundary of a gap onto the ideal boundary of a gap.
An example is shown in Figure 5.2.

Lemma 5.5 shows that a branched cover ı W L1 ! L2 induces a function from ideal
boundaries of gaps of L1 to ideal boundaries of gaps of L2. Since gaps are determined by
their boundaries, ı induces a function from gaps of L1 to gaps of L2. If G is a gap of L1,
we denote the gap of L2 to which it corresponds under ı by ıG. We call ıG the image of G
under ı—even though we have not extended ı over D. Below, by topological degree of a map,
we mean the maximum cardinality of a fiber.

L 5.6 (and definition). – Suppose ı W L1 ! L2 is a branched cover of laminations,
and G is a gap of L1. The local degree of ı at G is defined as

deg.ı; G/ D
deg.ı/jGj
jıGj

;

where jGj is the length of @G. The quantity deg.ı; G/ is a positive integer which coincides with
the topological degree of the restriction ı j @G.

L 5.7 (and definition). – Suppose ı W L1 ! L2 is a branched cover of laminations,
and A is an equivalence class of L1. The local degree of ı at A is defined as

deg.ı; A/ D
#A

#ı.A/
:

The quantity deg.ı; A/ is a positive integer and coincides with the topological degree of the
restriction ıjA.
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5.6. Critical points of a lamination branched cover

Suppose ı W L1 ! L2 is a branched cover of laminations. A gap G of L1 we call critical
if deg.ı; G/ > 1. Similarly, an equivalence class A of L1 we call critical if deg.ı; A/ > 1.
Abusing terminology, we refer to critical gaps and critical equivalence classes as critical points
of ı.

L 5.8. – The total number of critical points of a branched cover ı, computed byX
classes A

.deg.ı; A/ � 1/C
X

gaps G

.deg.ı; G/ � 1/;

is equal to deg ı � 1.

Proof. – By collapsing equivalence classes to points, a lamination determines, and is
determined by, a planar, tree-like 1-complex with a length metric of total length 2� . Tree-
like means that it is the boundary of the unique unbounded component of its complement.
A branched covering determines, and is determined up to equivalence by, a locally isometric
branched covering map between such complexes which extends to a planar branched
covering in a neighborhood. This lemma therefore follows from the usual Riemann-Hurwitz
formula.

5.7. Branched covers of laminations and local models

Let f W .Y; �/ ! .X; !/ be a local model map. Let LY and LX denote the finite
laminations associated to the central leaves of Y andX . It is immediate to see that f induces
a branched cover of laminations LY ! LX .

Conversely, we have:

L 5.9. – A branched cover of finite laminations ı W L1 ! L2 determines a local
model map, up to the heights of the inner and outer annuli of the local model surfaces.

Proof. – Let ı W L1 ! L2 be a branched cover of laminations of degree k. By Lemma 5.2,
we may construct, for each i D 1; 2, a local model surface .Xi ; !i / so that its central
leaf is identified with the lamination Li ; we may choose the heights of the inner and outer
annuli to be hmin D �1 and hmax D C1 for i D 1; 2. Because the height function is
fixed, up to an additive constant, the surface .Xi ; !i / is uniquely determined. By choosing
both hmin and hmax to be infinite, each inner annulus .Xi ; !i / is isomorphic to the punctured
disk f0 < jzj < 1g equipped with the 1-form ri dz=z, where r > 0 is the length of the
corresponding gap in Li , while the outer annulus of .Xi ; !i / is isomorphic to the punctured
disk f1 < jzj <1g equipped with the 1-form i dz=z.

In these punctured-disk local coordinates, we extend ı by zk , sending the outer annulus
of X1 to that of X2. For each gap G of L1, we extend ı by zdeg.ı;G/ in its punctured-
disk coordinates. The local degree deg.ı; G/ is well-defined by Lemma 5.6, and the
extension is well-defined by Lemma 5.5. By construction, we obtain a branched cover
f W .X1; !1/! .X2; !2/ of degree k such that f �!2 D k !1 and f induces the lamination
branched cover ı W L1 ! L2.

Note that finite choices of heights hmin and hmax give rise to local model maps that
are restrictions of the constructed f . In this case, there is a compatibility condition on
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the heights: if an annulus has finite modulus m, then any degree k cover is an annulus
of modulus m=k. If the domain surface .X1; !1/ has central leaf at height h0 2 R, and
hmin D h�1 and hmax D h1, then the image surface .X2; !2/will have outer annulus of height
k.h1 � h0/ and inner annuli of height k.h0 � h�1/.

Proof of Theorem 5.1. – The first conclusion is the content of Lemma 5.3. More functo-
rially, an isometry between local model surfaces is determined by its restriction to the corre-
sponding central leaves, so in particular the group of isometric symmetries of a local model
surface is faithfully represented by the group of symmetries of its lamination. More gener-
ally, since a branched cover .Y; �/! .X; !/ in local Euclidean coordinates has differential a
multiple of the identity, it is also determined by its restriction to the associated central leaves.
The second conclusion then follows from Lemma 5.9.

6. Polynomial trees

Suppose f is a polynomial and X.f / its basin of infinity. By collapsing components of
level sets of the Green’s function Gf W X.f / ! .0;1/ to points, we obtain a quotient map
X.f / ! T .f / from X.f / onto T .f / that yields a semiconjugacy from the holomorphic
map f W X.f /! X.f / to a map F W T .f /! T .f / . The tree T .f / inherits both a length
metric structure and a simplicial structure. Metrically, F expands each edge of T .f / by the
constant factor d . Combinatorially, F is simplicial, i.e., maps edges homeomorphically to
edges.

Abstract simplicial tree-maps .F; T / were defined in [10], and those arising from polyno-
mials were characterized. In this section, we first recall these results in more detail, and then
develop them further. We introduce the spine S.T / of .F; T /, which is a certain subtree of T .
The portion of the spine of .F; T / below the maximal escape-rate is a finite subtree if and
only if the corresponding polynomial lies in the shift locus.

The main result, Proposition 6.2, asserts that a polynomial tree .F; T / is determined by
a much simpler piece of data that we call spine star return data. Roughly (but not exactly),
this data takes the form of the first-return map of a unit neighborhood of the spine to itself.
The precise statement is given in §6.6. The concepts of spines and related return maps will
be used twice more: in the discussion of trees of local models in §7.4, and in the definition of
the pictograph in §10.1.

6.1. The metrized polynomial tree

Fix a polynomial f W C! C of degree d � 2. Assume that at least one critical point of f
lies in the basin of infinityX.f /, so that its filled Julia setK.f / D CnX.f / is not connected.
Recall that the escape-rate function is defined by

(6.1) Gf .z/ D lim
n!1

1

dn
logC jf n.z/jI

it is positive and harmonic on the basinX.f /. The treeT .f / is the quotient ofX.f / obtained
by collapsing each connected component of a level set of Gf to a point.
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There is a unique locally-finite simplicial structure on T .f / such that the set of vertices
of T .f / coincides under the projection �f W X.f /! T .f /with the set of grand orbits of the
critical points of f in X.f /. The polynomial f then induces a simplicial branched covering

F W T .f /! T .f /

of degree d .
The function Gf descends to the height function

hf W T .f /! RC:

The height function induces a height metric on T .f /. This is a length metric, and it is
determined by the following property: given adjacent vertices v and w, the length of the
unique edge joining them is jhf .v/ � hf .w/j.

Let E.f / be the set of edges in T .f / and V.f / the set of vertices in T .f /. Under the
projection �f W X.f / ! T .f /, the preimage of each open edge e is an open annulus Ae,
and the preimage of each vertex v, denoted Lv, is homeomorphic to the underlying space of
a finite graph. The topological degree (defined here as the maximum cardinality of a point
in a fiber) of the restriction of f to Ae and to Lv defines the degree function

degf W E.f / [ V.f /! N

of the tree .F; T .f //. The degree of any vertex v is then the degree of the unique edge incident
to and above v, and is also equal to the sum of the degrees of the edges incident to and
below v.

6.2. Fundamental edges and vertices

In this paragraph, we introduce some terminology and notation that will be employed
throughout the paper. Let v0 denote the highest vertex of valence > 2, and let
v1; v2; : : : ; vN WD F.v0/ be the consecutive vertices above v0 in increasing height; we
refer to v0; : : : ; vN�1 as the fundamental vertices and the edges ei joining vi�1 and vi ,
i D 1; : : : ; N , as fundamental edges. Note that the union of the fundamental edges and
fundamental vertices is a fundamental domain for the action of F on T .f /.

The number N of fundamental edges coincides with the number N.f / of independent
critical escape rates of a polynomial f , appearing in the statement of Theorems 1.3 and 1.4.
The definition of N.f / was given in §2.1.

6.3. The Julia set and weights

Being a non-compact topological space, T .f / has ends, and is compactified by its
end-point compactification which adds a point for each end. One end, determined by the
loci fhf > tg for t ! 1, is isolated and corresponds to the point at infinity in the dynam-
ical plane of f . The other ends correspond to connected components of the filled-in Julia
set K.f / of f . The Julia set J.F / of the tree .F; T .f // is the set of ends at height 0; equiv-
alently, it is the metric boundary of the incomplete length metric space determined by hf as
in the previous subsection. We let T .f / D T .f / [ J.F /. The quotient map X.f /! T .f /

extends continuously to C ! T .f /, collapsing each connected component of K.f / to a
point of J.F /. In [10], a probability measure �F on the Julia set of F is constructed which
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coincides with the pushforward of the measure of maximal entropy for a polynomial under
the natural projection K.f /! J.F /.

As in §6.2, let v0 be the highest branching vertex in T .f /. Suppose v is a vertex below v0.
The level l.v/ of v is the least integer l � 0 so that h.F l .v// � h.v0/; this implies that
F l.v/.v/ D vj is a fundamental vertex for some j 2 f0; : : : ; N � 1g. There is a unique
connected component of the locus fhf � hf .v/g containing v; it is a subtree of T .F /, the
subtree below v. The ends of this subtree (equivalently, its metric completion) is the Julia set
below v, denoted Jv.F /.

The measure �F is constructed by setting

(6.2) �F .Jv.F // D
deg.v/ deg.F.v// � � � deg.F l.v/�1.v//

d l.v/
:

We refer to this quantity �F .Jv.F // as the weight of the vertex v; it will be used in §7 in the
construction of the tree of local models.

The numerator in (6.2) admits the following interpretation which will be used later. For
any edge e below v0, letAe be the annulus inX.f / over e. If e is the edge above and adjacent
to vertex v, then the ratio of moduli

(6.3) mod.Ae/=mod.Aej /

is the reciprocal of the numerator in (6.2), where ej is the unique fundamental edge in the
orbit of e. This ratio in (6.3) is called the relative modulus of the annulus Ae.

6.4. Example: degree 2

Trees in degree 2 are very simple to describe; up to scaling of the height metric, there is
only one possibility. Let fc.z/ D z2 C c, and assume that c is not in the Mandelbrot set,
so the Julia set J.fc/ is a Cantor set. The level sets of the escape-rate function Gc break
the plane into a dyadic tree. That is, for each h > Gc.0/, the level curve fGc D hg is a
smooth topological circle, mapping by fc as a degree 2 covering to its image curve fGc D 2hg;
the level set fGc D Gc.0/g is a “Figure 8”, with the crossing point at 0. Each bounded
complementary component of the Figure 8 maps homeomorphically by fc to its image;
there are thus copies of the Figure 8 nested in each bounded component. Consequently,
level curves fGc D Gc.0/=2

ng are unions of Figure 8’s for all positive integers n; all other
connected components of level curves in X.fc/ are topological circles. See Figure 6.1.

The tree T .fc/ has a unique highest branch point v0; its height is h.v0/ D Gc.0/, and all
vertices below v0 have valence 3. The action of F W T .fc/! T .fc/ is uniquely determined,
up to conjugacy, by the condition that h.F.v// D 2h.v/ for every vertex v and that F takes
open sets to open sets. Thus, the pair .F; T .fc// is completely determined by the height of
the highest branch point, Gc.0/.

6.5. Polynomial type trees

In [10], it is established that these polynomial tree systems .F; T .f // are characterized
by a certain collection of axioms, and may be endowed with some additional natural metric
structures.
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2

2

3

2

F 6.1. Critical level sets of the Green’s functionGf and part of the tree T .f /
associated to a quadratic polynomial f with disconnected Julia set (from [10,

Figure 1]).

Axioms. – By a treeT , we mean a locally finite, connected, 1-dimensional simplicial complex
without cycles. Denote the set of edges of T by E and the set of vertices by V . For a given
vertex v 2 V , let Ev denote the set of edges adjacent to v. Given a tree T and a simplicial
map F W T ! T , we say .F; T / is of polynomial type if the following conditions hold.

1. T has no endpoints (vertices of valence 1),
2. T has a unique isolated end (in the end-point compactification of T ),
3. F is proper, open, and continuous,
4. the grand orbit of any vertex includes a vertex of valence� 3, where x; y 2 T lie in the

same grand orbit if Fm.x/ D F n.y/ for some positive integers m; n, and
5. there exists a local degree function deg W E [ V ! N for F , satisfying the following

conditions:
(a) for each vertex v,

(6.4) 2 deg.v/ � 2 �
X
e2Ev

.deg.e/ � 1/;

and
(b) for each vertex v and each edge e0 adjacent to v,

deg.v/ D
X

e2Ev ; F .e/DF.e0/

deg.e/:

Condition (4) implies that the simplicial structure on T is determined by the dynamics:
without this, one could add “artifical” vertices by e.g., subdividing every edge into two pieces.
It follows from the axioms that the topological degree of F is well defined and finite, and it
satisfies

degF D max
v2V

deg v:

Further, it is proved in [10] that the degree function for .F; T / is unique.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



826 L. DEMACRO AND K. PILGRIM

Stars. – Given a vertex v 2 V , its star, Tv, is the union of half-open edges Œv; w/ with
w incident to v. Thus Tv is the open unit neighborhood of v in T when T is equipped with a
length-metric giving each edge length 1. We denote by T v the closed star; it thus consists of
the union of closed edges Œv; w� with w incident to v.

Critical points and critical ends. – A vertex v is a critical point of .F; T / if we have strict
inequality in the relation (6.4). An end of T is critical if it there exists a sequence of vertices
of degree > 1 exiting via (and thus converging to) this end. There are at most d � 1 critical
points and ends, counted with multiplicity, and there is at least one critical point in the grand
orbit of every vertex. Note that if T D T .f /, a vertex is critical if and only if it is the image
under the projection �f W X.f /! T .f / of a critical point of f ; an end is critical if and only
if there is a critical point of f in the corresponding component of the filled-in Julia set of f .

Realization. – Theorem 7.1 of [10] states that if .F; T / is of polynomial type, then there exists
a polynomial f of degree degF and a monotone map X.f / ! T giving a semiconjugacy
from f W X.f /! X.f / toF W T ! T . Each critical vertex of .F; T / is the image of a critical
point of f . We sketch the proof of this realization theorem below in §6.8. A polynomial f
lies in the shift locus if and only if .F; T / has no critical ends.

Henceforth, we consider only tree-dynamics .F; T / of polynomial type.

Height metrics. – Any tree of polynomial type .F; T / can be endowed with a height
metric dh. This is a length metric, and is determined by the following property. Each edge e is
isometric to a Euclidean interval; we denote by jej its length. We require jej D jF.e/j=.degF /.
There is a finite-dimensional space of possible height metrics, parameterized by the lengths
of fundamental edges. Each height metric induces a height function

h W T ! RC
where h.x/ is the distance from x to the set of non-isolated ends (the Julia set ofF ); it satisfies
h.F.x// D .degF /h.x/. The distance function can be recovered from h by dh.v; w/ D
jh.v/ � h.w/j on adjacent vertices. When equipped with a height metric, we refer to the
triple .F; T; h/ as a metrized polynomial tree. The realization theorem of [10] states further
that every metrized polynomial tree .F; T; h/ arises from a polynomial f W C! C of degree
degF with h as the height function hf induced by Gf .

Compatible critical heights. – Set d D deg.F /. A height function is uniquely deter-
mined by either one of two pieces of data: (i) assigning positive lengths to the funda-
mental edges e1; : : : ; eN , and then propagating to other edges via the functional equation
jej D jF.e/j=d , or (ii) by a list of d �1 compatible critical heights h1 � h2 � � � � � hd�1 � 0.
Recall that a critical point c of T is either a critical vertex or a critical end, and that there
are d � 1 critical points, c1; : : : ; cd�1, counted with multiplicity. The height of a critical end
is defined to be zero. The highest branching vertex v0 is a critical vertex; by definition, h1 is
its height. If ci ; cj are critical points with heights hi ; hj > 0, and ci ; cj are in the same grand
orbit, so that F l.ci / D F l.cj / D vk for some fundamental vertex vk , k 2 f0; : : : ; N �1g, then
the heights hi ; hj must satisfy d l.ci /hi D d l.cj /hj in order to be compatible. This common
value will be the height of the fundamental vertex vk . Thus from compatible critical heights
one recovers the heights of fundamental vertices, hence lengths of fundamental edges, and
hence the height function h W T ! .0;1/. We have shown
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P 6.1. – Suppose T has N � 1 fundamental edges. The set of compatible
critical heights .h1; : : : ; hd�1/ 2 Œ0;1/d�1, with h1 � � � � � hd�1, is homeomorphic to an
open N -dimensional simplex.

6.6. The spine of the tree

Suppose .F; T / is of polynomial type. Here, we need only the simplicial structure of T .
The spine S.T / of a tree .F; T / is the convex hull of its critical points and critical ends
(including1). In other words, it is the connected subtree consisting of all edges and vertices
with degree larger than 1. For example, in degree 2, S.T / includes the highest branching
vertex and the ray leading to infinity. In Figure 6.1, this is the upward-pointing ray starting
at the segment labeled “2”. We denote by S1.T / the closed unit simplicial neighborhood of
the spine, regarded as a subtree of T . Thus S1.T / consists of all edges with at least one vertex
in the spine.

For a vertex v in the spine S.T /, its first return-time is r.v/ WD minfi > 0 W F i .v/ 2 S.T /g.
The first-return map of the spine is R W S.T /! S.T / is defined by R.v/ WD F r.v/.v/.

P 6.2. – A polynomial tree .F; T / is determined by the triple consisting of: the
subtree S1.T /, the return-map R W S.T /! S.T /, and the spine star return data

(6.5)
n
Rv WD .F

r.v/
W T v ! T R.v// j v 2 S.T /

o
:

In other words, the tree T and the self-map F W T ! T may be reconstructed from a priori
a much smaller amount of information.

The proof of Proposition 6.2 is by induction on descending height. The spirit of this
argument will be used to establish Propositions 7.2, Proposition 7.3, Lemma 8.4, and
Proposition 10.2. Proposition 6.2 in the case of degree 3 polynomial trees is covered by [10,
Theorem 11.3].

Proof of Proposition 6.2. – Suppose we are given the spine star return data (6.5). We first
observe that we can reconstruct the following invariants.

1. The end corresponding to 1. To see this: note first that sequences of the form
limn!1R

n.v/ all converge to a unique end of S.T /, which we denote by1.
2. A partial order, <. We say v < w if w separates v from1.
3. The fundamental vertices, v0; v1; : : : ; vN . The vertex v0 is the unique smallest vertex

(with respect to the partial order <) separating every other vertex of valence at least 3
from1. Let N be the combinatorial distance in S.T / between v0 and vN WD R.v0/.
Then proceeding from v0 up to vN we encounter v0; v1; : : : ; vN .

4. A simplicial depth function depth on S.T /. Let d be the combinatorial distance in the
simplicial complex S.T /. For v < v0, we set depth.v/ WD �d.v; v0/; for v > v0, we
set depth.v/ WD d.v0; v/. Thus depth.v0/ D 0, depth.vi / D i for i D 1; : : : ; N , and
depth.v/ D �1 for each vertex v 2 S1.T / immediately below v0.

5. The first-return times, r.v/, for vertices v 2 S.T /. To see this, note that given v 2 S.T /
we have r.v/ D .depth.R.v// � depth.v//=N .
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It suffices to show that the tree T and map F can be reconstructed from the given data,
since the local degree function is uniquely determined by the pair .F; T / [10, Theorem 2.9].

On the infinite vertical ray Œv0;1/ � S.T /, we have F D R, so the spine star return data
determines F on the forward-invariant ray Œ0;1/.

We now argue by induction on descending n WD depth.v/. We will inductively construct
the tree T and the map F W T ! T . At the inductive step, we are in the following setup.

– We have a vertex v of the tree T with n D depth.v/.
– We have determined the imagew D F.v/ (indeed, we have determinedF on the infinite

vertical ray above v).
– Since depth.v/ < depth.w/, by the inductive hypothesis, we know the star T w .
– We must construct the portion of the star T v below v, and must extend F over this

portion to complete the definition of the restriction Fv W T v ! T w .

There are two cases.

1. If v 62 S.T /, we define T v to be a homeomorphic copy of T w , and we extend arbitrarily
so that Fv W T v ! T w is a simplicial homeomorphism.

2. If v 2 S.T /, put y WD R.v/. By assumption, we are given the data of the map
Rv W T v ! T y . If r.v/ D 1 then we are done. Otherwise: by the inductive hypothesis,
we know the map F r.v/�1 W T w ! T y . Since R is a first-return map, we know
F r.v/�1 W T w ! T y is a homeomorphism. We define F W T v ! T w by .F r.v/�1/�1 ıRv.

We use the above construction to extend F to all vertices v with depth.v/ D �n. We then
proceed to vertices v for which depth.v/ D �.nC1/. Induction on n completes the proof.

6.7. Remark: cubic polynomials and the spine

A polynomial tree dynamical system .F; T /, is not determined by the first-return map on
the spine S.T / alone. In fact, in the case of cubic polynomial trees, the data of the first return
toS.T / is equivalent to the data of the Branner-Hubbard tableau (or the Yoccoz � -sequence).
Examples of distinct cubic trees with the same tableau were presented in [10] and here in
Section 3, Figure 3.1.

6.8. Realization of trees, a review

In this subsection, we give an overview of the proof of [10, Theorem 1.2], the realization
theorem for trees. This construction motivated the definition of trees of local models, which
will be introduced in Section 7.

Suppose .F; T / is of polynomial-type of degree d . We first assume .F; T / has no critical
ends; we will produce a corresponding polynomial in the shift locus. As in §6.5, choose a
height metric for .T; F / and let h be the corresponding height function. The absence of crit-
ical ends implies that the heights of critical vertices are uniformly bounded below away from
zero. In particular, on the portion of the tree below some positive height, F is a local home-
omorphism. A polynomial in the shift locus with metrized tree .F; T; h/ is then constructed
as follows. Recall from §6.2 the definition of the fundamental vertices v0; : : : ; vN�1, where
v0 is the highest vertex of valence at least 3.
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1. Inflate the vertices above v0. At each vertex v1; v2; v3 : : : above v0, let .Xvi
; !vi

/ be
a local model surface “modeled on” the vertex vi in T . As each such vertex has
valence 2, the surface Xvi

is an annulus, and the moduli of its inner and outer annuli
are determined by the height function h.

2. Local realization. Inductively on descending height we choose, for each vertex v with
h.v/ � h.v0/, a local model map

.Xv; !v/! .XF.v/; !F.v//

“modeled on” F at v. The condition (5) on local degrees in §6.5 guarantees the exis-
tence of such a local model. The result of this step is a collection of local model maps,
indexed by the vertices of T ; the domain Xv of each is equipped with a natural projec-
tion to the open star Tv.

3. Glue. Over each edge ofT , say joining v to v0 above it, glue the outer annulus ofXv with
the corresponding inner annulus of v0 so that the local model maps extend holomor-
phically (we do this more formally in §7.5 below). After gluing over all edges, we obtain
a proper degree d holomorphic map f W X ! X from a planar Riemann surface X
to itself, d � 1 critical points of f in X (counted with multiplicity), and height map
h W X ! .0;1/ with h.f .x// D dh.x/.

By uniformization, X lies in the Riemann sphere. The assumption that F W T ! T has no
critical ends implies that each end of X is surrounded by a concentric sequence of annuli for
which the sum of the moduli diverges. It follows that X is rigid as a Riemann surface ([18,
§2.8], [1, §IV.4]). Hence f extends uniquely to a polynomial whose basin dynamics .f;X.f //
is isomorphic to .f;X/. By construction, the metric tree dynamics .F; T .f /; hf / of the
polynomial f is isomorphic to that of the given metric tree .F; T; h/.

A general metrized polynomial tree is realized by a compactness and continuity argument.
There is a dynamical Gromov-Hausdorff topology on the set of metric trees: .F1; T1; h1/ is
close to .F2; T2; h2/ if there is a relation between T1; T2 which is close to an isometry
and close to a conjugacy on a very large compact subset. With this topology, the map
f 7! .F; T .f /; hf / is continuous, and the image of the shift locus—namely, trees without
critical ends in its Julia set—is dense. The locus of maps f for which the critical heights
are less than some given constant is known to be compact. Given an arbitrary .F; T; h/, we
approximate it by trees corresponding to the shift locus .Fn; Tn; hn/ ! .F; T; h/, and we
construct realizations fn of .Fn; Tn; hn/. An accumulation point f of .fn/n realizes .F; T; h/.

7. The tree of local models

Suppose f is a polynomial. Recall from §1.1 that the basin dynamics f W X.f /! X.f /

fits naturally into a sequence of dynamical systems

X .f /

F

�� gf
// X.f /

f

�� �f
//

Gf

44
T .f /

F

�� hf
// .0;1/;

�d

��
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where the gluing quotient map gf depends on f . In this section, we introduce more formally
the tree of local models .F ; X .f //. We axiomatize its properties, introduce abstract trees of
local models, and show:

T 7.1. – Every abstract tree of local models .F ; X / arises from a polynomial
basin .f;X.f //.

The proof is similar to the realization of abstract polynomial trees in [10], outlined in §6.8.
As with polynomial trees (Proposition 6.2), we define the spine .R ; S / of the tree of local
models .F ; X / and prove:

P 7.2. – A tree of local models .F ; X / is uniquely determined by its first-
return map on its spine .R ; S /.

P 7.3. – A tree of local models .F ; X / and a gluing along its spine .R ; S /

determines uniquely a basin dynamical system .f;X.f //.

While the basin dynamical system .f;X.f // in Proposition 7.3 is unique up to conformal
conjugacy, the polynomial f is not, due to e.g., renormalizations associated to periodic filled
Julia components.

7.1. The tree of local models associated to a polynomial

Let f be a polynomial of degree d with disconnected Julia set,Gf its escape-rate function,
and ! its holomorphic 1-form. Recall from §2.1 that each level curve fz 2 X.f / W Gf .z/ D cg
has length 2� in the metric j!j. In particular, the metric j!f j, when restricted to connected
components of level sets of Gf , coincides with the length function induced by external
angles.

Form the metrized polynomial tree .F; T .f /; hf / as in §6.1. Consider the projection
�f W X.f / ! T .f / from the basin of infinity to the tree. For each vertex v 2 T .f /, let
Xv be the preimage in X.f / of the open star Tv, and set

!v D
1

�F .Jv.F //
! D

2i d l.v/

deg.f l.v/jXv/
@Gf ;

where the weight �F .Jv.F // was defined in equation (6.2). Then the pair .Xv; !v/ forms a
local model surface, where each horizontal leaf of !v is the fiber over a point in Tv, and the
central leaf is the fiber over v. The scale factor normalization of !v is chosen so that the
central leaf and boundary of outer annulus of Xv have length 2� in the metric j!vj.

The restriction of the polynomial f jXv defines a local model map

fv W .Xv; !v/! .XF.v/; !F.v//:

Indeed, the level l.v/ satisfies l.F.v// D l.v/ � 1 whenever l.v/ > 0, so

!v D
d l.v/

deg.f l.v/ j Xv/
1

d
f �! D

d l.F .v//

deg.f j Xv/ deg.f l.F .v// j XF.v//
f �!

D
1

deg.f j Xv/
f �!F.v/;
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as required for a local model map. For each v, the restriction �v WD �f jXv W Xv ! Tv � T .f /

gives a projection to the open star Tv of v in T .f /; it collapses the horizontal leaves of the
foliation on Xv to points.

Now let
X .f / WD

G
v2V

.Xv; !v/

be the disjoint union of the Xv’s equipped with the 1-forms !v, and define

F .f / W X .f /! X .f /

by setting F jXv WD fv. Thus F W X .f / ! X .f / defines a holomorphic dynamical
system on a disconnected complex 1-manifold with countably infinitely many components,
equipped with a holomorphic 1-form. Metrically, F locally expands lengths on Xv by
the factor deg.v/. The collection of projections f�v W Xv ! Tvgv2V then determine a
projection � W X .f /! T .f / that gives a semiconjugacy from F W X .f / ! X .f /

to F W T .f /! T .f /. The composition hf ı � W X .f / ! Œ0;1/ gives a height function
on X .f /. The inclusion Xv ,! X.f / induces a holomorphic, generically two-to-one gluing
quotient map

gf W X .f /! X.f /:

In summary: we obtain the following diagram of semiconjugacies:

X .f /

F

�� gf
// X.f /

f

�� �f
//

Gf

44
T .f /

F

�� hf
// .0;1/:

�d

��

The tree of local models associated tof is described globally simply by forgetting the gluing
quotient map gf in the above diagram. That is, we record the data

X .f /

F

��
� // T .f /

F

�� hf
// .0;1/:

�d

��

More formally and locally described: the tree of local models associated to f is the data
consisting of (i) the tree .F; T .f /; hf /, and (ii) the collection of triples ffv; .Xv; !v/; �vgv2V .

7.2. The tree of local models, defined abstractly

We now consider abstract trees of local models. Let .F; T; h/ be an abstract metrized
polynomial tree. For a vertex v, let Tv denote the open star of v. A tree of local models
over .F; T; h/ is (i) the metrized tree .F; T; h/, and (ii) a collection of triples f.fv; .Xv; !v/; �v/:
v 2 V g, indexed by the vertices v of T , such that for each vertex v,

1. the pair .Xv; !v/ is a local model surface which is “modeled on” the open star Tv.
Specifically, there exists a marking homeomorphism

�v W T .Xv; !v/! Tv

from the quotient tree of .Xv; !v/, obtained by collapsing the leaves of the horizontal
foliation of !v to points, to the open star Tv. We require further that �v is an isometry
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from the induced metric �F .Jv.F // j!vj on T .Xv; !v/ to the height metric on Tv,
where �F .Jv.F // is the weight of v, defined in equation (6.2);

2. the map
fv W .Xv; !v/! .XF.v/; !F.v//

is a local model map which is “modeled on” F at v. Specifically, via the marking
homeomorphisms �v and �F.v/, the restriction F W Tv ! TF.v/ is the quotient of fv,
and the local degree function on Tv coincides with the degree of fv on leaves.

By condition (1), the heights of the inner and outer annuli inXv are controlled by the metric
on .F; T; h/. By condition (2), the widths of these annuli are also controlled, and therefore
the moduli are determined. In fact, the moduli coincide with the lengths of edges of .F; T; h/
in the modulus metric of [10].

Suppose f.fv; .Xv; !v/; �v/ W v 2 V g is a tree of local models over a polynomial
tree .F; T; h/. As in §7.1 we let

X WD
G
v2V

.Xv; !v/

be the disjoint union of the Xv’s and define

F W X ! X

by setting F jXv WD fv. Thus F W X ! X defines a holomorphic dynamical system on a
disconnected complex 1-manifold with countably infinitely many components. The 1-forms
!v define a conformal metric j!vj on eachXv (with singularities at the zeros of !v). On each
local model surfaceXv, the holomorphic map F scales this metric by the factor deg.v/. The
collection of projections �v W Xv ! Tv � T then determine a projection � W X ! T . In
summary, a tree of local models over a polynomial tree .F; T; h/ is defined globally by the
data of

X

F

��
� // T

F

��
h // .0;1/:

�d

��

7.3. Equivalence and automorphisms of trees of local models

A tree of local models F 1 W X1 ! X1 is equivalent to the tree of local models F 2 W

X2 ! X2 if there exists a holomorphic isometry

i W X1 ! X2

which induces a conjugacy
F 2 ı i D i ı F 1

while respecting the underlying tree structure. That is, the isometry i projects, via the marking
homeomorphisms, to an isometry of polynomial trees,

i W T1 ! T2

which conjugates the tree dynamics of F1 to that of F2.
In particular, an automorphism of a tree of local models F W X ! X is a holomorphic

isometry X ! X which induces an isometry of the underlying tree T ! T and commutes
with F .
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7.4. The spine of the tree of local models

Fix a tree of local models .F ; X /, and let .F; T / be the underlying polynomial tree.
Recall that the spine S.T / of .F; T / is the convex hull of all critical points and critical ends
(including1) in T . The spine S of X is the subset of X lying over the spine S.T / of the
tree. We let R W S ! S denote the first-return map to the spine S of .F ; X /; for each
vertex v 2 S.T /, it is defined by R jXv

D F r.v/
W Xv ! XF r.v/ where r.v/ D minfi > 0 W

F i .v/ 2 S.T /g as defined in §6.6. Unlike the first-return map we consider for .F; T /, defined
in §6.6, we do not thicken the spine to the unit simplicial-neighborhood S1.T /. Note now
that R W S ! S is a holomorphic dynamical system; in particular, it is continuous and, in
the natural Euclidean coordinates from the 1-form, is a homothety with scaling factor deg.v/
away from singular points.

We now prove that .F ; X / is uniquely determined by the first-return map .R ; S /. The
proof proceeds along exactly the same lines as the proof of Proposition 6.2.

Proof of Proposition 7.2. – The first observation is that the underlying metrized-tree
dynamics .F; T; h/ can be recovered from the first-return map .R ; S /. Indeed, the local
model surface over any vertex v 2 S.T / collapses to the star of v (and determines the metric,
locally). Thus, the spine S of X determines the unit simplicial-neighborhood S1.T /, and
the first-return map R W S ! S determines a return map R1 W S1.T / ! S1.T /. Strictly
speaking, R1 is not the first return on S1.T / defined in §6.6, but rather, the first return from
the spine to itself, together with the action on stars. Applying the proof of Proposition 6.2,
we are able to recover the full tree dynamical system .F; T /.

As in the proof of Proposition 6.2, we reconstruct .F ; X / from .R ; S / inductively on
descending height. We begin with vertices v in the spine and use R to reconstruct F on the
local model surface over v. All other vertices have degree 1, so the map F and surface X

are uniquely determined.

7.5. The gluing quotient map

Suppose f is a polynomial and .f;X.f // is its basin dynamical system. For each vertex
v 2 T .f /, there is an inclusion Xv.f / ,! X.f /. The totality of these inclusions define a
canonical semiconjugacy .F ; X .f // ! .f;X.f // between the dynamics F on the tree of
local models X .f / induced by f and that of f on its basin X.f /. If v and v0 are incident,
with v0 above v, the inclusions Xv.f / ,! X.f / and Xv0.f / ,! X.f / have the property that
the image of the outer annulus of Xv.f / coincides with that of the inner annulus of Xv0.f /.
The composition of the first with the inverse of the second gives a conformal isomorphism
between these annuli.

We conclude that a polynomial determines

1. a gluing: a collection
�f D f�fe ge2E

of conformal isomorphisms �fe from the outer annulus of Xv.f / to the corresponding
inner annulus of v0 commuting with F .f /, one for each edge e of the tree T .f /, and

2. a corresponding gluing quotient map

gf W X .f /! X.f /:
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Note that an isomorphism .f;X.f //! .g;X.g// lifts under the gluing quotient maps to an
isomorphism .F .f /; X .f //! .F .g/; X .g//.

Conversely, given an abstract tree of local models .F ; X /, one may consider abstract
gluings as well. An (abstract) gluing is a collection � D f�ege2E of conformal isomorphisms �e
from the outer annulus of Xv to the corresponding inner annulus of v0 commuting with F ,
where v and v0 are joined by an edge e. An abstract gluing � defines a gluing quotient map
X ! X=� D X � to an abstract planar Riemann surface to which the dynamics of F

descends to yield a proper degree d holomorphic self-map f � W X � ! X �. In this way, a
gluing � defines a holomorphic semiconjugacy .F ; X /! .f �; X �/.

Recall the definition of the fundamental edges and vertices, from §6.2. The choice of
gluings along the N fundamental edges determines the gluings at all vertices above v0. As
with the tree of local models, a gluing can also be reconstructed from its action on the spine
of .F ; X /.

Proof of Proposition 7.3. – Fix a tree of local models .F ; X / D f.fv; .Xv; !v/; �v/ W v 2 V g

over a metric polynomial tree .F; T; h/ and let .R ; S / be the first-return map to its spine.
Suppose we are given the data consisting of the gluings �e; e 2 S.T /, along the spine.

Note that the gluings at all edges above vN are determined by those at the fundamental
edges e1; : : : ; eN . We proceed inductively on descending height. Let n � 0 and suppose
�e is defined along all edges joining vertices with simplicial distance � n from the highest
branching vertex v0. Let v be a vertex at distance n C 1, joined by edge e above it to
vertex v0. If v lies in the spine, then �e has already been defined. If v is not in the spine, then
deg.fv W Xv ! XF.v// D 1 and fv0 has degree 1 on the inner annulus corresponding to e.
Setting �e WD f �1v0 ı �F.e/ ı fv gives the unique extension of the gluing along e so that the
needed functional equation is satisfied.

The previous paragraph shows that gluings along the spine determine gluings on the
whole tree of local models, yielding a holomorphic degree d branched covering map f

of an abstract planar Riemann surface X to itself. The proof of the realization theorem
(Theorem 7.1 below) shows that the abstract basin dynamics .f;X/ is holomorphically
conjugate to that of some polynomial.

7.6. Realization theorem

We now prove Theorem 7.1. It may be useful to review the proof sketch of the tree
realization theorem, given in §6.8. The final step in the proof is a continuity argument; to
make the continuity argument go through in the setting of trees of local models, we rely on
some observations from [8], in particular the proof of Lemma 3.2 there.

Proof of Theorem 7.1. – Let .F ; X / D f.fv; .Xv; !v/; �v/ W v 2 V g be a tree of local
models over the metrized tree .F; T; h/. When the tree .F; T; h/ lies in the shift locus, so that
all critical points have positive height, the realization goes through as for trees. The first two
steps of tree realization (as described above in §6.8) are already achieved by the given data.
That is, over every vertex we have local model surfaces “modeled on” the vertices of T , and
for every pair of vertices v and F.v/ we have local model maps “modeled on” the action
of F . We glue the local models, first over the fundamental edges (which uniquely determines
gluing so that map extends holomorphically above v0), and choose gluings inductively on
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descending height below v0 so the resulting map on the glued surface is holomorphic. We
appeal to the uniformization theorem and extendability of the dynamics on the glued surface
to all of C, and conclude the existence of a polynomial in the shift locus realizing the given
tree of local models.

Now suppose the tree .F; T; h/ has critical points in its Julia set (i.e., of height 0). By [10,
Theorem 5.7], we can approximate .F; T; h/ by a sequence of metrized trees .Fk ; Tk ; hk/ so
that .Fk ; Tk ; hk/ is isometrically conjugate to .F; T; h/ at all heights � 1=k, and further,
all critical points of .Fk ; Tk ; hk/ have height � 1=k. We may construct trees of local
models .F k ; Xk/ over each .Fk ; Tk ; hk/, so that when restricted to heights above 1=k, the
dynamics of F k is holomorphically conjugate to that of F .

Choose arbitrarily a gluing � for .F ; X /. For each k, via the identification from the above
conjugacies, we transport the gluing � to a partially defined gluing for .F k ; Xk/, and we
choose an extension arbitrarily to obtain a gluing �k for .F k ; Xk/. By the first paragraph,
these determine polynomials fk which we may assume are monic and centered. Each of the
polynomials fk has the same maximal critical escape rate, so by passing to a subsequence,
we may assume the fk converge locally uniformly on C to a polynomial f .

As in the proof of [8, Lemma 3.2], the local uniform convergence fk ! f on C implies
that for any t > 0 the restrictions to ft � Gk.z/ � 1=tg converge uniformly to f

on ft � Gf .z/ � 1=tg and the 1-forms !k D @Gk converge on this subset to ! D @Gf ;
indeed, the escape-rate functions are harmonic where positive, so the uniform convergence
implies the derivatives also converge. We therefore conclude that the tree of local models
associated to f is isomorphic to .F ; X /.

8. Symmetries in the tree of local models

A tree of local models may admit many nontrivial automorphisms. The group of such
symmetries, unsurprisingly, will play an important role in the problem of counting topolog-
ical conjugacy classes.

8.1. The automorphism group

Let Aut.F ; X / be the conformal automorphism group of the tree of local models .F ; X /,
as defined in §7.3. While any basin of infinity in degree d has only a finite group of
automorphisms, which is necessarily a subgroup of the cyclic group of order d � 1, the
group Aut.F ; X / can be large and complicated. Consider the following examples.

For any degree 2 tree of local models, we have Aut.F ; X / ' Z=2Z. The unique nontrivial
automorphism is generated by an order-two rotation of the local model surface containing
the critical point. It acts trivially on all local models above the critical point. The action on
all vertices below the critical point is uniquely determined by the dynamics, because every
such vertex is mapped with degree 1 to its image.

By contrast, consider the tree of local models for the cubic polynomial f .z/ D z2 C "z3

for any small ". This polynomial has one fixed critical point at the origin and one escaping
critical point c; let M be the escape rate of c. While the basin .f;X.f // has no nontrivial
automorphisms, the tree of local models has an automorphism of infinite order, acting by a
rotation of order 2 at the vertex v of the spine for which the corresponding central leaf Lv
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contains a preimage of c. The rotation of order 2 at heightM=3 induces an order 2n rotation
at the vertex in the spine of height M=3n. The action on the local model surface at each
vertex of local degree 1 is uniquely determined; similarly for the vertices at heights greater
than M . In fact, for this example, Aut.F ; X / is isomorphic to the profinite group Z2, the
2-adic integers under addition; this follows from Lemma 8.4 below.

8.2. Local symmetry at a vertex

Denote by S1 the quotient group of R by the subgroup 2�Z. The group of orientation-
preserving isometries of a Euclidean circle of circumference 2� is then canonically isomor-
phic to S1 via the map which measures the displacement between a point and its image.

Let .F ; X / be a tree of local models with underlying tree .F; T /. Let v be any vertex
of T . The outer annulus of Xv is metrically the product of an oriented Euclidean circle C of
circumference 2� with an interval. Let Stabv.F ; X / denote the stabilizer of v in Aut.F ; X /,
i.e., all ' 2 Aut.F ; X /with '.Xv/ D Xv. Any element of this stabilizer induces a conformal
automorphism of Xv. Because this automorphism must preserve the outer annulus of Xv, it
is necessarily a rotation. Consequently, there is a well-defined homomorphism

Stabv.F ; X /! Aut.Xv; !v/ ,! IsomC.C / D S1:

L 8.1. – For every vertex v, the image of Stabv.F ; X / in S1 is a finite cyclic
group Z=k.v/Z.

Proof. – Because elements of Aut.F ; X /must commute with the dynamics, the points of
the critical grand orbits are permuted, preserving heights; every local model surface .Xv; !v/
contains at least one and finitely many such points. Therefore the image of Stabv.F ; X / in
the group of rotations is finite.

The order k.v/ is called the local symmetry of .F ; X / at vertex v.

8.3. Profinite structure

Fix a height t > 0. Consider the automorphism group, similarly defined, of the
restriction .F t ; X t / of the dynamics of .F ; X / to the local models over vertices with
height > t . Restriction gives a map Aut.F ; X / ! Aut.F t ; X t /; denote its image
by Aut.F ;X/.F t ; X t /. If 0 < s < t then restriction gives a compatible natural surjec-
tion

Aut.F ;X/.F s; X s/! Aut.F ;X/.F t ; X t /:

The structure of Aut.F ;X/.F t ; X t / for large positive values of t is easy to compute. Recall
the definition of the fundamental vertices from §6.2.

L 8.2. – Let .F ; X / be a tree of local models over .F; T / with N fundamental
vertices v0; : : : ; vN�1. Fix j 2 f0; : : : ; N � 1g and let tj be the height of vj in T .F /. Then

Aut.F ;X/.F tj
; X tj / '

jCN�1Y
iDj

Z=k.vi /Z

where k.vi / is the local symmetry of .F ; X / at vi .
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Proof. – The automorphism group Aut.F ; X / stabilizes all vertices vj with j � 0,
and the cyclic group Z=k.vi /Z is the stabilizer of vi . The action of any automorphism at
vertex vi uniquely determines its action at all vertices in its forward orbit, by Lemma 5.3.
The fundamental vertices are in distinct grand orbits, so the automorphism group is a direct
product.

L 8.3. – For any tree of local models, Aut.F ; X / is a profinite group, the limit of the
collection of finite groups Aut.F ;X/.F t ; X t /.

Proof. – It remains to show that the groups Aut.F ;X/.F t ; X t / are finite for each
t > 0. The group Aut.F ;X/.F t ; X t / is finite by Lemma 8.2 for all t large enough. From
Lemma 5.3, the action of an automorphism ' 2 Aut.F ; X / at any vertex v determines
uniquely its action at the image vertex F.v/. The vertices of a given height must be permuted
by an automorphism, so we may apply Lemma 8.1 to conclude that Aut.F t ; X t / is finite for
any t > 0. The restriction maps allow us to view the full automorphism group Aut.F ; X /

as an inverse limit.

8.4. The spine and its automorphism group

Now suppose .F ; X / is a tree of local models with first-return map .R ; S / on its spine.
Since .R ; S / is again a dynamical system, it too has an automorphism group Aut.R ; S /

which is naturally a profinite group. It follows that Aut.R ; S / is inductively computable;
the base case is covered by Lemma 8.2 at height t D h.v0/. Furthermore, in the shift locus,
the subtree of S below v0 is finite, and Aut.R ; S / is a finite group which is inductively
computable in finite time.

The restriction of any automorphism ' 2 Aut.F ; X / to the spine S is an automorphism
of .R ; S /. Indeed, ' preserves local degree, and the spine consists of all vertices with local
degree > 1. The following lemma then implies that Aut.F ; X / is inductively computable
from the data of .R ; S /.

L 8.4. – The map

Aut.F ; X /! Aut.R ; S /;

which sends an automorphism to its restriction to the spine, is an isomorphism.

Proof. – Suppose 2 Aut.R ; S / is given. We use the usual inductive argument to show
 D 'jS for a unique ' 2 Aut.F ; X /. Define ' by ' D  on the local model surfaces at
and above the vertex v0. For the induction step, suppose ' has been constructed at all vertices
with simplicial distance at most n from v0, and suppose ' commutes with F . Let v0 be a
vertex at simplicial distance exactly n from v0 and suppose v is just below v0. If v 2 S we
set 'v D  v on the surface Xv. If v 62 S then by induction ' has already been defined on v0

and on w D F.v/. Let Ow D '.w/, Ov0 D '.v0/, and denote the image of v under ', yet to be
defined, by Ov.

The restriction 'v0 toXv0 uniquely determines Ov, because an automorphism must preserve
the tree structure. In addition, ' commutes with the local model maps at each vertex, so
f Ov0 ı'v0 D 'F.v0/ıfv0 , and we deduce that Ow D F. Ov/. Since v 62 S , neither is Ov, and the local
model maps fv W Xv ! Xw and f Ov W X Ov ! X Ow are isomorphisms. So the automorphism '
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must send Xv to X Ov via the composition .f Ow/�1 ı 'w ı fv; this composition defines the
extension 'v. In this way, we have extended ' uniquely from simplicial distancen to simplicial
distance nC 1, completing the proof.

8.5. Symmetries in degree 3

We will use the following lemma in our computations for cubic polynomials in Section 11.
Recall once more the definition of the fundamental vertices from §6.2.

L 8.5. – Suppose f is a cubic polynomial with critical points c1; c2 and escape
rate Gf , and let .F ; X / be its tree of local models.

1. If c1 D c2, then k.v0/ D 3; k.v1/ D 1, and Aut.F ; X / is cyclic of order 3.
2. If Gf .c1/ D Gf .c2/ with c1 ¤ c2, then either

(a). k.v0/ D k.v1/ D 1 and Aut.F ; X / is trivial, or
(b). k.v0/ D k.v1/ D 2 and Aut.F ; X / is cyclic of order 2.

3. In all other cases, the order of local symmetry of each fundamental vertex is equal to 1.

Case (1) occurs when f is affine conjugate to f .z/ D z3 C c with c outside the connect-
edness locus; case 2(b) when f admits an automorphism, i.e., is affine conjugate to an odd
map.

Proof. – In case (1), the number of fundamental vertices is N D 1, the local model
map fv0

has a deck group of order 3, and its rangeXv1
has a distinguished point, the unique

critical value. Case (2) is similar. If f has an automorphism, then there are symmetries of
order 2 at v0 and v1 commuting with fv0

; thus k.v0/ D k.v1/ D 2. If f fails to have an
automorphism but c1 6D c2, there are no symmetries at v0 and consequently no symmetries
at v1, so k.v0/ D k.v1/ D 1. The conclusions about the automorphism groups then follow
immediately from Lemma 8.4.

To prove the last statement, suppose that the two critical points have distinct escape
rates. Then the local model map from Xv0

to its image is a degree 3 branched cover with
a unique critical point (of multiplicity 1) in the surface Xv0

. Such a branched cover has no
symmetries, so k.v0/ D k.F.v0// D 1. Further, if the two critical points are in distinct
foliated equivalence classes, then the local model surface Xv1

has a unique marked point on
its central leaf (its intersection with the orbit of critical point c2) that must be preserved by
any automorphism; therefore, the local symmetry at v1 will be 1.

9. Topological conjugacy

In this section, we remind the reader of the quasiconformal deformation theory of poly-
nomials, following [19]. We show that the tree of local models is invariant under topological
conjugacies that preserve critical escape rates. In other words:

T 9.1. – The tree of local models is a twist-conjugacy invariant.
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We recall the topology on Bd , the moduli space of basins .f;X.f // introduced in [8], and
we study the locus Bd .F ; X / � Bd of basins with a given tree of local models .F ; X /.
Since a gluing of .F ; X / determines a basin dynamical system (Proposition 7.3), we refer to
elements of Bd .F ; X / as gluing configurations.

Recall the notion of fundamental edges of a tree, from §6.2. If � is the reciprocal of a
positive integer, we denote by �S1 the quotient group R=2��Z of S1 by the group generated
by a rotation of order ��1. Carefully accounting for symmetries in .F ; X /, we show:

T 9.2. – Let .F ; X / be a tree of local models withN fundamental edges. Given a
base point .f;X.f // 2 Bd .F ; X /, there is a continuous projection

Bd .F ; X /! .�S1/N

for some positive integer ��1, giving Bd .F ; X / the structure of a compact, locally trivial fiber
bundle over anN -torus whose fibers are totally disconnected. The twisting action is the lift of the
holonomy induced by rotations in each coordinate, and the orbits form the leaves of a foliation
of Bd .F ; X / by N -dimensional manifolds. The leaves are in bijective correspondence with
topological conjugacy classes within the space Bd .F ; X /. For .F ; X / in the shift locus, the
fibers are finite.

The value of � depends only on the local symmetries at the fundamental vertices, defined in
§8.2; a formula for � is given in equation (9.1) below.

From Theorem 9.2, the problem of classifying basin dynamics up to topological conju-
gacy amounts to computing the monodromy action of twisting in the bundle Bd .F ; X /.
Leading to the proof of Theorem 1.2, we observe:

C 9.3. – Under the hypotheses of Theorem 9.2, let � 2 .�S1/N be any point
in the base torus. Then the set of topological conjugacy classes in Bd .F ; X / is in bijective
correspondence with the orbits of the monodromy action of ZN D �1..�S1/N ; �/ on the fiber
above the base point � .

9.1. Fundamental subannuli

Fix a polynomial representative f W C! C of its conjugacy class, and letGf be its escape-
rate function. The foliated equivalence class of a point z in the basin X.f / is the closure of
its grand orbit

fw 2 X.f / W 9 n;m 2 Z; f n.w/ D f m.z/g
in X.f /. Let N be the number of distinct foliated equivalence classes containing critical
points of f . Note that N D 0 if and only if the Julia set of f is connected, if and only if the
maximal critical escape rateM.f / D 0. is zero. ForN > 0, these critical foliated equivalence
classes subdivide the fundamental annulus

A.f / D fz 2 X.f / WM.f / < Gf .z/ < d M.f /g

into N fundamental subannuli A1; : : : ; AN linearly ordered by increasing escape rate.
The number N coincides with the number of fundamental edges of the tree .F; T .f //,

as defined in §6.2, and the number of independent critical escape rates, defined in §2.1. For
each i D 1; : : : ; N , the annulus Ai lies over the fundamental edge ei .
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9.2. Quasiconformal deformations of the basin

For each conformal conjugacy class of polynomial f 2 M d , there is a canonical space
of marked quasiconformal deformations of f supported on the basin of infinity. The general
theory, developed in [19], shows that this space admits the following description; see also [7].
The wring motion of [4] is a special case.

One can define quasiconformal stretching and twisting deformations on each of the
subannuli Aj independently so that the resulting deformation of the basin X.f / is contin-
uous and well-defined and an isometry on each horizontal leaf. We will parametrize
the deformations of each subannulus by a parameter t C is in the upper half-plane
H D ft C is W s > 0g, acting by the linear transformation 

1 t

0 s

!
on a rectangular representative of the annulus in R2, of width 1 and height equal to the
modulus modAj , with vertical edges identified. Extending the deformation to the full basin
of infinity by the dynamics of f , the deformation thus defines an analytic map

HN ! M d ;

sending point .i; i; : : : ; i / to f . By construction, the twisting deformations (where s D 1

in each factor) preserve escape rates, while stretching (with t D 0 in each factor) preserves
external angles. Both stretching and twisting send horizontal leaves isometrically to hori-
zontal leaves.

An important idea of [19] in this context is that any two polynomial basins .f;X.f //
and .g;X.g// which are topologically conjugate are in fact quasiconformally conjugate
by a homeomorphism of the above type: it has a decomposition into N stretching and
twisting factors, each factor determined by its effect on the N fundamental subannuli.
Moreover, if the forward orbits of two critical points meet a common level set in the
closure fM.f / � Gf � d �M.f /g of the fundamental annulus, the arc length (angular
difference) between these points is preserved under any topological conjugacy. (See §5
of [19].)

9.3. Normalization of twisting

For the proofs of Theorems 12.1, 4.1, and 4.2, it will be convenient to work with the
following normalization for the twisting action. Fix f 2 M d and consider the real analytic
map

Twistf W RN ! M d

which parametrizes the twisting deformations in theN fundamental subannuli of f , sending
the origin to f . We normalize the parameterization Twistf so that the basis vector

ej D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 RN

induces a full twist in the j -th fundamental subannulus. That is, if modAj is the modulus of
the j -th subannulus of f , then Twistf .t ej / corresponds to the action of 1Ci t=modAj 2 H
in the coordinates described in §9.2.
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9.4. Twisting and the tree of local models

We now prove that the tree of local models is invariant under the twisting deformation.
More precisely, a twisting deformation induces, via restriction to central leaves and extension
by isometries, an isomorphism between trees of local models.

Proof of Theorem 9.1. – Fix a tree of local models associated to a polynomial f 2 M d

and suppose a twisting deformation conjugates .f;X.f // to .g;X.g// by a quasicon-
formal map h. Then h induces an isomorphism H W .F; T .f // ! .G; T .g//, and
so for each v 2 T .f / the restriction of h gives an affine map of local model surfaces
hv W .Xv.f /; !v/! .XH.v/.g/; !H.v//. Since hv is an isometry on the corresponding
central leaves, it extends to an isometry 'v W Xv.f / ! XH.v/.g/. The dynamics of f
and of g is locally a constant scaling, so ' D f'vg yields an isomorphism .F .f /; X .f //!

.F .g/; X .g//.

9.5. The space of basins Bd

We begin by recalling results from [8]. The set Bd of conformal conjugacy classes of
basins .f;X.f // inherits a natural Gromov-Hausdorff topology: two basins .f;X.f //; .g;X.g//
are "-close if there is a relation � on the product f" < Gf < 1="g � f" < Gg < 1="g which
is "-close to the graph of an isometric conjugacy. The natural projection � W M d ! Bd is
continuous, proper, and monotone (i.e., has connected fibers). Both spaces are naturally
stratified by the number N of fundamental subannuli and the projection respects this strat-
ification. While discontinuous on M d , twisting is continuous on each stratum B

N
d , by [7,

Lemma 5.2].

9.6. The bundle of gluing configurations

Fix a tree of local models .F ; X /. Recall from §7.5 that an abstract gluing � defines a
quotient map X ! X=� D X � to an abstract planar Riemann surface to which the dynamics
of F descends to yield a proper degree d holomorphic self-map f � W X � ! X �. In this
way, a gluing � defines a holomorphic semiconjugacy .F ; X /! .f �; X �/. The holomorphic
conjugacy class of .f �; X �/ we call the associated gluing configuration. Given an abstract
tree of local models .F ; X /, we let Bd .F ; X / � Bd be the collection of all gluing
configurations. Theorem 7.1 implies this is nonempty.

We begin with an identification of Bd .F ; X / as a set.
The automorphism group Aut.F ; X / acts naturally on the set of gluings as follows.

Given an automorphism ' 2 Aut.F ; X / and a gluing � D f�ege2E , the gluing ':� is the
collection of isomorphisms f.':�/ege2E defined as follows. Suppose edge e 2 E joins v to the
vertex v0 above it; set Ov D '�1.v/ and Oe D '�1.e/ and define

.':�/e WD ' Ov0 ı � Oe ı '
�1
v :

Put another way: a gluing � defines an equivalence relation ��, which is a subset of X � X ;
the gluing ':� corresponds to the equivalence relation given by .' � '/.��/ � X � X .

P 9.4. – The natural map � 7! .f �; X �/ descends to a bijection between
Aut.F ; X /-orbits of gluings and gluing configurations.
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Proof. – In one direction, an automorphism sending one gluing to another, by definition,
descends to holomorphic map conjugating the two gluing configurations. In the other, a
conjugacy between two gluing configurations lifts to an automorphism sending the first
corresponding gluing to the second.

With respect to the topology on the space of basins Bd , we now prove that the set of all
gluing configurations forms a compact fiber bundle over a torus.

The main idea in the proof of Theorem 9.2 is the following. Suppose .F ; X / is a tree of
local models. Gluing over the N fundamental edges gives a continuous set of choices; there
should be one circle’s worth for each such edge. The product of theseN circles should give the
torus that is the base of our bundle. However, the possible presence of symmetries of .F ; X /

that act nontrivially at the local model surfaces corresponding to fundamental vertices means
that we need to pass to a finite quotient of this torus. This is again a torus, and now this is
the base of our bundle. Gluing at the fundamental edges determines the gluing at all higher
edges. Now suppose gluings over the fundamental edges have been chosen, and consider the
possibilities for gluing over the remaining, lower edges. Fix a distance n below v0 as in §6.6,
and consider the gluings of edges at this distance. For fixed choice of fundamental gluings,
this is a finite set. Again, the possible presence of symmetries of .F ; X / among local model
surfaces Xv at vertices of distance n means that two distinct such gluing choices might yield
the same result. Considering inductively distances n D 1; 2; 3; : : :, we see that the totality of
all such gluing choices is naturally either finite, or a Cantor set. Twisting deformations—that
is, altering continuously the gluing choices along the fundamental edges—gives an action
of RN on the set of gluings at distance n, and the orbits are the leaves of our bundle.

Proof of Theorem 9.2. – Let v0; : : : ; vN�1 denote the fundamental vertices of the under-
lying polynomial tree and vN D F.v0/. Recall the definition of the local symmetry k.v/
of .F ; X / at a vertex v, given in §8.2. We set

(9.1) � D
1

lcmfk.v0/; k.v1/; : : : ; k.vN /g
:

We first define the continuous projection

Bd .F ; X /! .�S1/N

which will define the fiber bundle structure. Fix any base point .f;X.f // in Bd .F ; X /. Let
� be an angular coordinate in R=Z on the fundamental annulus Af WD fMf < Gf .z/ < dMf g;
it is defined up to an additive constant. Now suppose g 2 Bd .F ; X /. By assumption there
exists a (not necessarily unique) isomorphism '.g/ W .F .f /; X .f // ! .F .g/; X .g//

which restricts to isomorphisms

'i .g/ W Xi .f /! Xi .g/; i D 0; : : : ; N

between the local model surfaces over vertices v0; v1; : : : ; vN for f and g. Note that the
'i .g/’s must respect the markings by the orbits of critical points, as in §8. There are choices
for the 'i .g/’s: they are unique only up to pre-composition by the restriction to Xi .f / of
an element of Aut.F .f /; X .f //. For each i D 0; : : : ; N � 1, the outer annulus of Xi .f /
coincides with the inner annulus of XiC1.f /, and so 'iC1.g/�1 ı 'i .g/ is well-defined on
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the outer annulus of Xi .f /. Suppose x is an arbitrary point in the outer annulus of Xi .f /.
Define

�i .g/ WD �.'iC1.g/
�1
ı 'i .g/.x// � �.x/ 2 �S1:

This depends only on g: changing the angular coordinate or the base point x changes each
term in the difference by the same additive constant, and the ambiguity in the choice of
isomorphisms 'i .g/ is annihilated by recording the difference in �S1 instead of in just S1.
The projection Bd .F ; X /! .�S1/N is then well-defined by the formula

g 7! .�i .g//
N�1
iD0 :

Local triviality and continuity of the projection can be seen from the twisting action. We
proved in [8, Lemma 5.2] that the twisting action of RN is well-defined on the stratum B

N
d of

polynomial basins withN fundamental subannuli. It is continuous and locally injective. The
space Bd .F ; X / is invariant under twisting by Theorem 9.1. The definitions of the twisting
action and of the projection imply that twisting by t in the i th fundamental subannulus
translates the i th coordinate of the image under projection to the base by t mod 2��. It
follows that twisting defines a local holonomy map between fibers in the bundle of gluing
configurations and the space of gluing configurations is foliated byN -manifolds whose leaves
are the orbits under the twisting action.

Recall from §9.2 that two polynomial basins are topologically conjugate and have the same
critical escape rates if and only if they are equivalent by a twisting deformation. Thus, the
topological conjugacy classes within the space of gluing configurations are easily seen to be
in one-to-one correspondence with the twisting orbits, i.e., leaves.

We now show that the fibers are totally disconnected. Recall the gluing construction
used in the proof of Theorem 7.1. First, fix a point b in the base torus of the projection.
This corresponds to choosing one from among finitely many choices of gluings over the
fundamental edges joining v0; : : : ; vN ; this determines all gluings at vertices above v0. The
collection of gluing choices is now made sequentially by descending height. At the inductive
stage, we have a vertex v joined up to a vertex v0 along an edge e of degree k; there are
k choices for the gluing isomorphism over e. After a choice is made at every vertex in
the tree, we obtain a holomorphic self-map f W X ! X which is conformally conjugate
to f W X.f /! X.f / for some polynomial f , by Theorem 7.1. All basins in Bd .F ; X /

over the base point b are obtained in this way. By the discreteness of gluing choices at
each vertex and the definition of the Gromov-Hausdorff topology on Bd , for any fixed
simplicial distance n from v0, the set of gluing configurations which can be produced using
the continuous choices corresponding to the base point b and to a fixed set of choices at the
finite set of vertices v below and at distance at most n from v0 is an open set in Bd .F ; X /.
In this way, we see that each gluing configuration over the base point b is in its own connected
component and the fibers are finite if .F ; X / lies in the shift locus.

It remains to show that the bundle of gluing configurations is compact. By properness of
the critical escape rate map f 7! fGf .c/ W f 0.c/ D 0g on the space of basins Bd [7], the
bundle must lie in a compact subset of Bd . Let .fn; X.fn// be any sequence in the bundle
converging to a basin .f;X.f //. Exactly as in the proof of Theorem 7.1, we may deduce
that .f;X.f // has the same tree of local models, and is therefore in the bundle of gluing
configurations; see also [8, Lemma 3.2].
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L 9.5. – Let .F ; X / be a tree of local models. If the fibers in the bundle of gluing
configurations have infinite cardinality, then they are homeomorphic to Cantor sets.

Proof. – The fibers are compact and totally disconnected by the previous lemma. By
Brouwer’s topological characterization of the Cantor set [13, Thm. 2-97], we need only show
the fiber is perfect. From the inductive construction of basins from the tree of local models,
we see that the fiber of the bundle of gluing configurations has infinite cardinality if and only
if there are conformally inequivalent gluing choices at an infinite collection of heights tending
to 0. By the definition of the Gromov-Hausdorff topology on the space of basins Bd ,
basins are close if they are “almost” conformally conjugate above some small height t > 0.
Consequently, any basin in the bundle of gluing configurations can be approximated by a
sequence where a different gluing choice has been made at heights! 0.

9.7. The bundle of gluing configurations, in degree 2

We can give a complete picture of the bundle of gluing configurations in degree two. Let
.F ; X / be a tree of local models in degree 2. In the notation of the proof of Theorem 9.2,
we haveN D 1, k.v0/ D 2, and k.v1/ D 1, so � D 1=2. Since every edge below v0 has degree
one, once the base point b 2 .1=2/S1 corresponding to the gluing along the fundamental
edge e joining v0 and v1 has been chosen, the remaining gluings are uniquely determined.
Hence the projection map Bd .F ; X / ! .1=2/S1 is 1-to-1 and the bundle of gluing
configurations B2.F ; X / � B2 is homeomorphic to a circle. In more familiar language:
it is the image of an equipotential curve around the Mandelbrot set in the moduli space M 2

via the homeomorphism from the shift locus in M 2 to that of B2. A full loop around
the Mandelbrot set corresponds to an external angle displacement running from 0 to 2�=2.
In fact, this is the same as the loop in Blanchard-Devaney-Keen inducing the generating
automorphism of the shift [2]; the two lobes of the central leaf at v0 are interchanged under
the monodromy generator.

9.8. The bundle of gluing configurations in degree 3

In degree three, we can give a complete succinct picture of the bundle of gluing configu-
rations in a few special cases. The remaining ones are handled by Theorems 4.1 and 4.2.

Suppose f is a cubic polynomial with an automorphism and disconnected Julia set.
Then both critical points escape at the same rate, the automorphism has order 2, and it
interchanges the two critical points and their distinct critical values. It is easy to see that
there is a unique branched cover of laminations of degree 3 with this symmetry. It follows
that, for a given critical escape rate, there is a unique tree of local models .F ; X / with this
configuration. By Lemma 8.5, k.v0/ D k.v1/ D 2, so � D 1=2. Like in the quadratic
case, a basin of infinity is uniquely determined by the gluing of the local models along the
fundamental edge, because all edges below v0 have local degree 1. But it now takes two turns
around the base (= one full twist in the fundamental annulus) to return to a given basin,
because the angle displacement between a critical point and its critical value is an invariant
of conformal conjugacy. Thus the projection B3.F ; X /! .1=2/S1 is 2-to-1 and the bundle
of gluing configurations B3.F ; X / is homeomorphic to a circle.
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Suppose f is a cubic polynomial where the two critical points coincide and escape to
infinity, so it has a monic and centered representation as f .z/ D z3 C c, with c not in the
connectedness locus. Let .F ; X / be its tree of local models. By Lemma 8.5, k.v0/ D 3,
k.v1/ D 1, and Aut.F ; X / is cyclic of order 3. The bundle B3.F ; X / therefore projects
to the circle .1=3/S1. Again, since all edges below v0 map by degree 1, the gluing at the
fundamental edge determines the basin. Going around this base circle of length 1=3 forms a
closed loop in B3.F ; X /, because a basin of infinity is uniquely determined by the gluing
along the fundamental edge; the bundle is homeomorphic to a circle. Note that lifting this
path to the family fz3C c W c 2 Cg induces only a half-loop around the connectedness locus,
since z 7! �z conjugates z3 C c to z3 � c.

Suppose .F ; X / is a tree of local models for a cubic polynomial in the shift locus with
N D 2 fundamental edges. (Recall the definition of fundamental edges from §6.2.) By
Lemma 8.5, there are no symmetries over v0; v1; v2, so � D 1. The base of the fiber bundle
is S1 �S1. For polynomials in the shift locus, there exists a height t > 0 such that all vertices
below height t have local degree 1, so all fibers of the fiber bundle must be finite. In fact, the
bundle of gluing configurations B3.F ; X / is homeomorphic to a finite union of smooth
2-tori; compare [7, Theorem 1.2]. The question of how many tori comprise this finite union
is answered by Theorem 4.1; each torus corresponds to a distinct topological conjugacy class
of polynomials.

Finally, let .f;X.f // be any other basin in the space B3, so it has N D 1 fundamental
edge and there are no symmetries at the fundamental vertices by Lemma 8.5. Therefore,
� D 1 and the base of the fiber bundle is the circle S1. The fibers are necessarily finite if f lies
in the shift locus, but the fibers can be finite or infinite in the case where one critical point lies
in the filled Julia set. The number of connected components in the bundle B3.F ; X / (and
their topological structure) is given in Theorems 4.1 and 4.2.

10. The pictograph

Suppose f is a polynomial of degree d � 2, with disconnected Julia set, and with
N independent critical escape rates; equivalently, N fundamental subannuli. In this section,
we define the pictograph D.f /. Using Theorem 9.1, we will first show

T 10.1. – The pictograph is a topological-conjugacy invariant.

The pictograph is defined in terms of the tree of local models .F ; X .f // of the poly-
nomial f . Formally speaking, the pictograph is a static object; there is no map. We show
nevertheless that

T 10.2. – A tree of local models .F ; X / is determined up to holomorphic conju-
gacy by its pictograph D and either

(i) the heights of the critical points, or
(ii) the lengths of the fundamental edges e1; : : : ; eN in the height metric on the tree.
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It follows from Theorem 10.2 that the pictograph encodes the symmetry group Aut.F ; X /

of the tree of local models. It also determines the number of fundamental vertices of the
underlying tree. Theorems 10.2 and 9.2 immediately imply Theorem 1.3.

An abstract pictograph D is defined as the pictograph associated to an abstract tree of
local models, as defined in §7.2. Recall that the notion of compatible critical heights was
defined in §6.5. Proposition 6.1 implies:

P 10.3. – For each abstract pictograph of degree d with N fundamental
vertices, the set of compatible critical heights .h1; : : : ; hd�1/ 2 Œ0;1/d�1, with h1 � � � � � hd�1,
is homeomorphic to an open N -dimensional simplex.

10.1. Pictographs

Fix a polynomial f of degree d with disconnected Julia set and N fundamental suban-
nuli (defined in §9.1). Let .F ; X / be the tree of local models associated to f , and let
.F; T / D .F; T .f // be its simplicial polynomial tree. Recall that the spine S.T / of the
tree is the convex hull of its critical points and critical ends; equivalently, it is the set
of edges and vertices mapping by degree > 1. The fundamental edges e1; : : : ; eN�1 and
vertices v0; : : : ; vN�1 of T were defined in §6.2. The pictograph is a collection of labeled
lamination diagrams, one for each vertex in S.T / at and below vertex vN D F.v0/, where
each diagram labeled by its intersection with the critical orbits. It is defined as follows.

Recall that v0 denotes the highest branching vertex of T .f / and vN D F.v0/. We consider
the vertices v 2 S.T / which are at and below the height of vN . This gives us a simplicial
subtree of the spine that we denote by S�N .T /. For each vertex v 2 S�N .T /, record
the lamination diagram for the central leaf of the local model surface Xv.f /. To record
simultaneously the tree structure of S�N .T /, we join these lamination diagrams by an edge
if the corresponding vertices are joined by an edge in S.T /. This forms a spine of lamination
diagrams.

To define the labels, we first choose an indexing of the critical points of f so that
Gf .c1/ � � � � � Gf .cd�1/. Given a vertex v, we label the corresponding lamination diagram
as follows. Given an index i 2 f1; : : : ; d �1g and an integer k � 0, consider the point f k.ci /
and how this point is located relative to Xv.f /.

– If f k.ci / lies in one of the bounded complementary components of Xv.f /, we label
the corresponding gap in the lamination diagram for Xv.f / with the symbol ki .

– If f k.ci / lands on the central leaf of Xv.f /, we label the corresponding equivalence
class in the lamination diagram for Xv.f / by the symbol ki . When indicated by a
drawing, we label only one representative point in the equivalence class.

– Otherwise, the label ki does not appear in the lamination diagram forXv.f /; note that
the point f k.ci / lies neither in the outer annulus nor in an inner annulus of Xf .f /.

Thus, the data in the pictograph is the same as the static data of the collection, for the
above vertices v in the spine, of the local model surfacesXv.f / labeled in the above fashion,
with the map forgotten.

Suppose now f and g are two polynomials. We say f and g have equivalent pictographs if,
after applying some permutation of the set of indices i D 1; : : : ; d � 1 for the critical points,
there exists
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– a simplicial isomorphism ' W S�N .T .f // ! S�N .T .g// between their spines of
lamination diagrams, such that:

– for each vertex v 2 S�N .T .f //, there is a rotation of the closed unit disk sending the
lamination diagram for f at v to the lamination diagram for g at '.v/ and preserving
the labels. In other words: a rotation makes the two labeled lamination diagrams
coincide.

An abstract tree of local models .F ; X / determines a pictograph as well. Counting both
critical points in X and those critical ends in J.F / with multiplicity, there are again d � 1
critical points. Given a vertex vwith local model surface .Xv; !v/, we regard a critical point ci
below v (in the tree) as “lying in” the gap of Xv corresponding to the edge leading to ci .

10.2. Examples of pictographs

The degree 2 pictographs are the easiest to describe: in fact, there is only one possibility.
For quadratic polynomials z2C c with disconnected Julia set, the spine of the tree is the ray
from the unique critical vertex v0 heading to1. The lamination diagram over the vertex v0
is a circle cut by a diameter, representing the Figure 8 level set fz 2 C W Gc.z/ D Gc.0/g,
with arc length measured by external angle. The pictograph includes the data of this single
diagram together with the image lamination (the trivial equivalence relation corresponding
to level set fGc D Gc.c/g), labeled by the symbol 0 to mark the critical point and 1 to
mark the critical value. See Figure 10.1. Because there is a unique critical point, we have
dropped the subscript indexing. Because angles are not marked on lamination diagrams, the
pictographs are equivalent for all c outside the Mandelbrot set. (Recall that the tree of local
models, and therefore the pictograph, is not defined for polynomials with connected Julia
set.)

For degree 3, Figure 10.2 shows a pictograph for a cubic polynomial with critical escape
rates Gf .c1/ D M and Gf .c2/ D M=33 for some M > 0. The spine of its tree is the linear
subtree containing the four edges between critical point c2 and critical value f .c1/. For the
pictograph, we include five lamination diagrams at heightsM=3i , i D �1; 0; 1; 2; 3. The two
critical points are labeled by 01 and 02. Note that every spine in degree 3 will be a linear
subtree of T .f /, because there are only two critical points.

In degree 4, Figure 1.2 of the Introduction shows a pictograph for a quartic polynomial
with critical escape rates G.c1/ DM , G.c2/ DM=42, and G.c3/ DM=43; the tree structure
of the spine is now non-linear.

In each of these examples, there is only one fundamental edge:N D 1. Figure 12.1 shows
a cubic example with two fundamental edges.

Figure 12.3 shows a pictograph that admits a self-equivalence, i.e., an automorphism; the
involution of indices 3 $ 4 and swapping the left- and right-hand branches realizes the
equivalence.

Proof of Theorem 10.1. – Suppose f and g are topologically conjugate. Then there
exists a quasiconformal conjugacy between basins .f;X.f // and .g;X.g//. By applying the
stretching deformations from §9.2, we may assume the heights of the fundamental subannuli
are the same, and that .f;X.f // and .g;X.g// are conjugate via a twisting deformation.
By Theorem 9.1, the trees of local models .Ff ; X .f // and .F g ; X .g// are isomorphic
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0

1

F 10.1. The pictograph for every quadratic polynomial with disconnected
Julia set.

12            02

               22
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12  22   32

42

11

F 10.2. A cubic pictograph, with critical escape rates .M;M=33/ for some
M > 0.

via a holomorphic conjugacy '. Choose arbitrarily an indexing of the critical orbits for f .
This indexing can be transported via ' to an indexing of those for g, so f and g will have
equivalent pictographs.
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10.3. Reconstructing the tree of local models

We can now prove that a pictograph plus the list of critical escape rates determines the
full tree of local models over a metrized polynomial tree. The strategy is the following. The
critical orbit labels allow us to first reconstruct the first-return map .R; S.T // on the spine
of the underlying tree .F; T /. Then we use the lamination diagrams (and Theorem 5.1) to
reconstruct the local model maps and thus the first-return map .R ; S / on the tree of local
models. The heights of the local model surfaces and the metric on the underlying tree are
determined by the given compatible critical heights.

Proof of Theorem 10.2. – Suppose we are given the pictograph D for a polynomial f
of degree d and the list of compatible critical heights h1 � h2 � � � � � hd�1 � 0. By
Theorem 7.2, it suffices to reconstruct the spine S of the tree of local models and its first-
return map. We begin with the reconstruction of the first-return map .R; S.T // on the spine
of the underlying tree.

Let N be the number of independent critical heights. Denote by v0 the vertex asso-
ciated to the highest non-trivial lamination in D. There are exactly N trivial laminations
above v0 in the pictograph, each marked by points of the critical orbits. Denote these vertices
by v1; v2; : : : ; vN , in ascending order. The spine S.T / is part of the data of the pictograph,
after adjoining the ray from v0 to1. As usual, to reconstruct the action of R we proceed
inductively on descending height. Above v0, we have R D F , acting as translation by
simplicial distance N . Each vertex of S.T / below v0 at simplicial distance j from v0, with
0 < j � N , is sent by F to the vertex vN�j .

Now suppose we have computed the action of R on S.T / for all vertices at simplicial
distance� n from v0, and assume n � N . Let v be a vertex inS.T / at simplicial distance nC1
from v0, and let v0 be the adjacent vertex above it. Suppose w0 D R.v0/. From the simplicial
distance between w0 and v0, we can determine the iterate k for which w0 D F k.v0/. Namely,
if there are n0 edges on the path fromw0 to v0, then necessarily we have n�n0 D kN for some
positive integer k. Then w0 D F k.v0/.

Choose any index j so that the symbol 0j appears in the lamination diagram of v; since
v belongs to the spine, such j exists. Then the symbol 0j must also appear in the lamination
diagram of v0, and the symbol kj must appear in the lamination diagramLw0 ofw0. If kj lies
in a gap ofLw0 together with a symbol 0` for some index `, then necessarily kj must appear in
the lamination diagram beloww0 also containing 0`. This vertex v.`/ is uniquely determined
by `, and we may conclude that R.v/ D v.`/.

If kj lies in a gap of Lw0 containing no symbols of the form 0`, then F k.v/ is not in the
spine. We must pass to a further iterate. For each iterate Rm, define k.m/ by Rm.v0/ D F k.m/.v0/.
Choose the smallest positive integer m so that the symbol k.m/j lies in a gap together with
a symbol of the form 0` for some index ` in the lamination over Rm.v0/. Such an integer
always exists because some iterate of R must send v0 to one of the vertices fv1; : : : ; vN g. For
this integerm, we choose the vertex v.`/ belowRm.v0/ containing 0`, and we setR.v/ D v.`/.
In this way, we reconstruct .R; S.T // to all vertices at simplicial distance n C 1 from v0,
completing the induction argument.

Our next step is to reconstruct the height function h on the spine S.T /. It suffices to
determine the height of the fundamental vertices vi , for i D 0; 1; : : : ; N � 1, because of
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the relation h.F.v// D d h.v/ on vertices. We are given that h.v0/ D h1, the height of
the highest critical point. For each i > 0, the lamination diagram over vi must contain
at least one marked point, labeled by the symbol kj for some positive integer k and index
j 2 f2; : : : ; d � 1g. It follows that h.vi / D dk hj .

At this point, we observe that we could have taken our initial data to be the lengths
of the N fundamental edges, rather than the heights of the critical points. Indeed, if li is
the length of fundamental edge ei , then the height function h is determined as follows. Set
l D l1 C � � � C lN . Then h.v0/ D

P1
kD1 l=d

k , the distance from v0 to the Julia set J.F /.
Then h.vi / D h.v0/C l1 C � � � C li for each i D 1; : : : ; N . The height of all other vertices is
determined by the relation h.F.v// D d h.v/.

We now apply Theorem 5.1(1) to reconstruct the local model surfaces Xv over each
vertex v in S.T /. Setting the length of the central leaf to 2� , the heights of the inner and
outer annuli coincide with the length of the underlying edges of the trees, scaled by a certain
factor cv > 0. The factor cv is the reciprocal of the weight �F .J.F; v// defined in (6.2);
the weight of v is computable from the first-return map .R; S.T // because all vertices with
degree > 1 are contained in the spine.

By Theorem 5.1(2), the local model maps over the vertices in S.T / can be reconstructed
from the lamination diagrams. Indeed, the degree is obtained by counting the number of
symbols of the form 0j and adding 1. Recall, however, that we are able to so reconstruct a
local model map only up to pre- and post-composition with rotational symmetries.

Since such symmetries consist entirely of rotations and must preserve all labels, the
only configurations of labeled lamination diagrams which are symmetric are those for
which all labels lie in a central gap which is fixed by this rotational symmetry. So suppose
R.v/ D w D Fm.w/, and consider the labeled lamination diagrams forXv andXw . We now
consider several cases.

1. Suppose neitherXv norXw admit label-preserving symmetries. Then there is a unique
map Xv ! Xw sending a label ki in Xv to the corresponding label .k Cm/i in Xw .

2. SupposeXv admits label-preserving symmetries butXw does not. Then all labels forXv
lie in a common central gap and the covering Xv ! Xw is cyclic. Up to isomorphism
there is a unique such covering; we choose a representative arbitrarily. Note that any
two such choices differ by precomposition by an isometry which is a symmetry of the
labeled diagram for Xv, yielding a holomorphic conjugacy between the two different
extensions of the dynamics to Xv which is the identity on Xw .

3. Suppose both Xv and Xw admit label-preserving symmetries. Again, all labels for Xv
and forXw must lie in central gaps fixed by the rotational symmetries, and the covering
Xv ! Xw is cyclic. By elementary covering space theory, given any fixed covering
R v W Xv ! Xw and any rotation ˇ W Xw ! Xw , there exists a lift ˛ W Xv ! Xv of ˇ
under R v. This lift ˛ again yields a holomorphic conjugacy between the two different
extensions R v and ˇ ı R v of the dynamics to Xv which is the identity on Xw .

Given any fixed covering R v W Xv ! Xw and any label-preserving symmetry
˛ W Xv ! Xv, rotation by ˛�1 W Xv ! Xv yields a holomorphic conjugacy between the
two different extensions R v and R v ı ˛ of the dynamics to Xv which is the identity
on Xw .
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The previous two paragraphs cover all sources of ambiguity in the extension of the
dynamics.

Thus as the induction proceeds, we see that at the inductive stage, we make choices for
the extension of the dynamics, but that different choices are holomorphically conjugate by a
map which affects only the surface over which the extension is made.

It follows that any two different collections of choices will yield holomorphically conju-
gate dynamics R W S ! S on the spine of the tree of local models.

The dynamical system .R ; S / determines the full tree of local models by Theorem 7.2.

10.4. Abstract pictographs and Theorem 1.1.

We defined the abstract tree of local models in §7.2, and we proved in Theorem 7.1 that
every abstract tree of local models arises for a polynomial. An abstract pictograph is defined
to be the pictograph associated to an abstract tree of local models. Therefore, Theorem 1.1
is an immediate corollary of Theorem 7.1.

Proof of Proposition 10.3. – Let .F ; X / be an abstract tree of local models, and let D be
its pictograph. Fix any M > 0 to be the height of the highest critical vertex v0 in D, and
set h.c1/ D M . Denote the vertices above v0 in ascending order by v1; v2; : : : ; vN so the
lamination of vN contains the symbol 11 on its central leaf. We may choose any sequence
of heights M < h.v1/ < h.v2/ < � � � < h.vN / D dM for these vertices. For each
i D 2; : : : ; d � 1, there is at most one j 2 f1; : : : ; N g for which a symbol ki lies on the
central leaf over vj . If such a j exists, then we set

h.ci / D h.vj /=d
k :

If no such j exists, then we set h.ci / D 0.
From Theorem 10.2, the pictograph with the data of critical escape rates uniquely deter-

mines the full tree of local models.

11. Counting topological conjugacy classes in degree 3

In this section, we provide the proofs of Theorems 4.1 and 4.2. These proofs are inspired
by the arguments of Branner in [3, Theorem 9.1] and Harris in [12]. We conclude the section
by comparing our constructions in the case of degree 3 to those appearing in [4], [5], and [3].

11.1. The space of cubic polynomials

Let P3 ' C2 denote the space of monic and centered cubic polynomials. It is a degree 2
branched cover of M 3. Explicitly, a polynomial f .z/ D z3CazCb is conformally conjugate
to g.z/ D z3 C a0z C b0 if and only if they are conjugate by z 7! �z; consequently
a D a0 and b D �b0. Therefore, M 3 has the structure of a complex orbifold with underlying
manifold C2; the projection P3 ! M 3 is given by .a; b/ 7! .a; b2/, and its branch
locus fb D 0g is precisely the set of polynomials with a nontrivial automorphism (necessarily
of the form z 7! �z). Observe that the critical points for cubic polynomials with a nontrivial
automorphism are interchanged by the automorphism; they therefore escape at the same
rate.
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11.2. The length of a cubic polynomial

Fix a cubic polynomial f with disconnected Julia set. Denote its critical points by c1
and c2, so that Gf .c1/ � Gf .c2/. Recall from §2.1 that the length of f is the least integer
L D L.f / such that Gf .c2/ � Gf .c1/=3

L. If no such integer exists, we set L.f / D 1.
Thus, L.f / D1 if and only if c2 lies in the filled Julia set of f ; and L.f / D 0 if and only if
Gf .c1/ D Gf .c2/ > 0.

L 11.1. – Let D be a pictograph for a cubic polynomial of length L.f / D 0. There
is a unique topological conjugacy class of polynomials in M 3 with pictograph D.

Proof. – Any length 0 cubic polynomial f has Gf .c1/ D Gf .c2/ DM for some M > 0.
Fix M > 0 and let .F ; X / be the unique tree of local models with pictograph D and
critical height M . The underlying tree .F; T / has a unique fundamental edge. Let v0 denote
the vertex at height M , and set v1 D F.v0/. To construct any polynomial f with tree of
local models .F ; X /, we first glue the outer annulus of the local model surface .Xv0

; !v0
/

to the unique inner annulus of the local model surface .Xv1
; !v1

/. The choice of gluing along
the fundamental edge uniquely determines the gluing choices of all local models above v0,
because the local model maps must extend holomorphically. Because L.f / D 0, the local
degree at all vertices below v0 is 1, and therefore the choice of gluing along the fundamental
edge also determines the gluing along every edge below v0. In other words, the gluing at
the fundamental edge determines the conformal conjugacy class of an entire basin. By
uniformization, we may conclude that this gluing choice determines a unique point in M 3;
see e.g., [8, Lemma 3.4, Proposition 5.1].

Finally, it is easy to see from the definition of the twisting deformation that all choices of
gluing Xv0

to Xv1
can be obtained by twisting. Therefore, all polynomials in M 3 with tree

of local models .F ; X / are twist-conjugate. Combined with Theorem 10.3, it follows that
all polynomials in M 3 with pictograph D are topologically conjugate.

11.3. Reducing to the case of 1 fundamental edge

The main idea of the proofs of Theorems 4.1 and 4.2 is the following. We begin with a
tree of local models .F ; X / with the given pictograph, and we fix a point in the base torus
of the bundle of gluing configurations B3.F ; X /. In the absence of symmetry, the basepoint
corresponds to a unique choice of gluing along the fundamental edges of .F ; X /. That is,
the conformal structure of the basin at and above the highest critical point is fixed.

As usual, we let v0 denote the highest branching vertex of the tree, so the local model
surface at v0 contains a critical point. Inductively on descending height, we glue the local
models along the spine of .F ; X / below the vertex v0. Each local model map below v0 has
degree 2, and there are exactly two ways to glue the local model surface so that the map
extends holomorphically. At each stage we determine which gluing choices are conformally
conjugate and which gluing choices are topologically (twist) conjugate.

It turns out that the only choices that contribute to our count of topological conjugacy
classes are those made at the vertices of the spine that map to v0. Suppose the given tree has
two fundamental edges, and let v be a vertex in the spine that does not lie in the grand orbit
of v0. Let e be the edge above v. If the forward orbit of the lower critical point does not
contain v, then the two gluing choices along e are easily seen to be conformally conjugate.
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If the orbit of the lower critical point does contain v, then the distinct gluing choices for the
local model at v will always be topologically conjugate, as the following lemma shows.

L 11.2. – Fix a tree of local models for a cubic polynomial with two fundamental
edges. Let v be a vertex in the spine, below v0 and in the forward orbit of the lower critical point.
Suppose we have glued all local models in the spine above vertex v. Then the two gluing choices
of .Xv; !v/ are topologically conjugate, via a conjugacy that preserves the orbit of the lower
critical point and leaves the conformal structure above v unchanged.

Proof. – Let f be any cubic polynomial with the given tree of local models .F ; X /.
As .F ; X / has two fundamental edges, f lies in the shift locus and the two critical points
have distinct escape rates; let c1; c2 denote the critical points so that Gf .c1/ > Gf .c2/. Let
L D L.f / be the length of f . The fundamental annulus is decomposed into two subannuli,

A20 D fGf .f
L.c2// < jzj < 3Gf .c1/g

and

A10 D fGf .c1/ < jzj < Gf .f
L.c2//g;

which can be twisted independently.

For each 0 < n < L.f /, denote by An the annular component of fGf .c1/=3n < jzj <
Gf .c1/=3

n�1g separating the two critical points. Let 0 < n1 < � � � < nm < L.f / index the
values of n for which the orbit of c2 intersects An. The vertex v corresponds to a level curve
of Gf in the annulus Ani

for some i 2 f1; : : : ; mg. We proceed inductively on i .

For i D 1, a full twist in A10 followed by a full twist in the opposite direction in A20
induces the opposite gluing choice for the local model surface .Xv; !v/ without affecting the
conformal class of the basin above v. This is because the annulus An1

maps with degree 2
by f n1 to the annulus A0; a full twist in A0 induces a half-twist in An1

.

Similarly for each i : the annulus Ani
is mapped with degree 2i by f ni to A0. Therefore,

2i�1 full twists in A10 followed by �2i�1 full twists in A20 will induce a half twist at the level
of v while preserving the conformal structure of the basin above v.

11.4. Simplified pictographs

The simplified pictograph of a cubic polynomial, defined in §2.2, is a subset of its picto-
graph: it consists of the laminations at vertices of height Gf .c1/=3n for all 0 � n < L.f /,
where L.f / is the length of f , or of only the lamination at heightGf .c1/ for L.f / D 0. The
lamination at level n (height G.c1/=3n) is labeled by integer 0 � k � L.f / � n, if f k.c2/
lies in one of its gaps or on the level curve. Figure 2.3 shows the simplified pictograph for the
example of Figure 10.2. Figure 11.1 contains pictographs for two cubic polynomials with
length L.f / D 1 and the simplified pictographs for each of them.

For drawing diagrams, it is more convenient to use the simplified pictograph rather than
the full pictograph. The next lemma shows that we do not lose any information by doing so.

L 11.3. – The pictograph can be recovered from the simplified pictograph.
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F 11.1. Length 1 cubics: (a) a pictograph, with critical heights .M;M=3/;
(b) the simplified pictograph for the pictograph of (a); (c) the generic pictograph at
level 1, with critical heights .M;M 0/ where M=3 < M 0 < M ; (d) the simplified
pictograph for the pictograph of (c).

Proof. – For any polynomial f , the lamination at height 3Gf .c1/with its marked points
is uniquely determined by the marked lamination at height Gf .c1/ (see Lemma 5.3). For
length L.f / D 0, this shows that the simplified pictograph determines the pictograph.
Similarly for length L.f / D1.

Assume f is a cubic polynomial with finite length L.f / > 0. Observe that there are
marked points on the lamination at height Gf .c1/ (not just in the gaps) if and only if
f has one fundamental edge, meaning that Gf .c2/ D Gf .c1/=3

L.f /. In this case, the
simplified pictograph is almost the complete pictograph. The lamination diagram containing
the critical point c2 is also uniquely determined: it is a degree 2 branched cover of the
lamination at level n, where n is the greatest integer such that the symbol L.f / � n marks
the lamination at height Gf .c1/=3n, branched over the marked point.

In the case of two fundamental edges, it is easy to see how to fill in the pictograph. We
first add the subscript “2” to each of the labels in the simplified pictograph, and we mark
the unique non-trivial equivalence class at the height of c1 with the symbol 01. We next
include the trivial lamination (a circle) to the column of lamination diagrams above each
lamination of the simplified pictograph. These laminations correspond to vertices in the
spine intersecting the grand orbit of the second critical point c2, except at the height of c2
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itself. The lamination at the height Gf .c2/ will be the “Figure 8”: it is a circle cut by a
diameter; the diameter is marked with the symbol 02. Finally, at each heightGf .c1/=3n where
the symbol .L.f / � n � 1/2 appears in the same component as the symbol 02, we mark
the trivial lamination below it with the symbol .L.f / � n � 1/2, in one of two ways: (1) if
.L.f / � n � 1/2 also appears at height Gf .c1/=3nC1 then we place .L.f / � n � 1/2 in the
gap, and (2) otherwise, we place the symbol on the lamination circle.

From the definition of the pictograph, we see that this is the complete diagram.

11.5. Marked levels and the � sequence

Fix a cubic polynomial f with a disconnected Julia set; let L.f / be its length, so
Gf .c2/ D Gf .c1/=3

L.f /. For each 0 � n � L.f /, the level n puzzle piece Pn is the connected
component of fG < G.c1/=3

n�1g containing c2. Note that P0 contains both critical points
and f n.Pn/ D P0 for all n. The Yoccoz � -function associated to f ,

�f W f1; 2; 3; : : : ; L.f /g ! N;

is defined by the following: let k.n/ D minfk > 0 W c2 2 f k.Pn/g; then f k.n/.Pn/ D P�f .n/.
In particular, �f .1/ D 0 and �f .i C 1/ � �f .i/C 1 for all i and every f with L.f / > 0. The
data of �f is equivalent to the information in the tableau (or marked grid) of f defined in [5].
In §3.1, we showed how to read the � -sequence off from the simplified pictograph of f .

We defined the notion of marked levels in §4.1, but we recall the definition here. For
each n � 0, let Bn be the closed subset of the level n puzzle piece Pn where Gf .z/ � Gf .c1/=3n.
A marked level is an integer n > 0 where the orbit of c2 intersects Bn n PnC1.

L 11.4. – A level n > 0 is marked if and only if at least one of the following holds:

1. there exists i < L.f / so that �.i/ D n and �.i C 1/ � n;
2. Gf .c2/ D Gf .c1/=3L.f / and n D �k.L.f // for some k > 0.

The proof is immediate from the definitions. From this lemma, we see that a marked level
coincides with the “semi-critical” levels of [20] and with the “off-center” levels n0; n1; : : : ; nj
of f of [3, Theorem 9.1] when L.f / D1.

In terms of the simplified pictograph and symmetries, we may characterize the marked
levels as follows.

L 11.5. – The marked levels coincide with the degree 2 vertices of the simplified
pictograph where the order of rotational symmetry is 1.

Again the proof is immediate from the definitions. The marking of a level n means that the
symmetry is broken at that level.
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11.6. Counting topological conjugacy classes

We begin by defining relative moduli and twist periods, quantities involved in the compu-
tations of Theorems 4.1 and 4.2. Relative moduli were first defined in §4.1.

Let .F ; X / be a tree of local models with a given pictograph D. Let S be the spine
of .F ; X / and suppose we have chosen a gluing of all the local models along S . From
Proposition 7.3, the gluing choices along S , together with its first-return map, uniquely
determine a complete basin of infinity .f;X.f //. Let c1 and c2 denote the critical points of f
so that Gf .c1/ � Gf .c2/. Let L.f / be the length. Let

A0 D fz W Gf .c1/ < jzj < 3Gf .c1/g

denote the fundamental annulus. For each 0 < n < L.f /, denote by An the annular
component of fGf .c1/=3n < jzj < Gf .c1/=3n�1g separating the two critical points.

For each 0 � n < L.f /, the relative modulus at level n is the ratio

m.n/ D mod.An/=mod.A0/:

Note thatm.n/ is completely determined by the � -sequence �f . In fact,m.n/ D 2�k.n/, where
k.n/ is the least integer such that �k.n/.n/ D 0. That is, k.n/ counts the number of times the
orbit of An intersects the set fA0; : : : ; An�1g.

Note also that a full twist inA0 induces am.n/-twist in the annulusAn. For eachn < L.f /,
the twist period of the basin .f;X.f // at level n is the minimum number of twists Tn > 0
in the fundamental annulus A0 that returns all marked levels � n to their original gluing
configuration. This means that the induced twist, summing along the annuli from A0 down
to each marked level j � n, must be integral.

We shall see in the proof of Theorem 4.1 that these twist periods can be computed from
the � -sequence and are independent of the choice of gluing configuration.

Proof of Theorem 4.1. – Let D be a pictograph with finitely many marked levels. Fix
M > 0, and let .F ; X / be any tree of local models with pictograph D and maximal
critical height M . Let L.f / denote the length of any cubic polynomial basin with tree of
local models .F ; X /. If both critical points have the same height, the length is L.f / D 0,
there are no marked levels, and we are done by Lemma 11.1. We may assume that the critical
points have distinct heights.

Fix a point in the base torus for the bundle B3.F ; X /. By Lemma 8.5, there are no
symmetries at the fundamental vertices; it follows that the base torus parametrizes the gluing
choices in the fundamental edges. From the structure of the bundle of gluing configurations,
it follows that each point in the fiber corresponds to a unique conformal conjugacy class of
basins (with the chosen gluing configuration above height M ); the topological conjugacy
classes are in one-to-one correspondence with their orbits under twisting. As described
in §11.3, we will proceed inductively, on descending height, to glue the local models along
the spine. By Lemma 11.2, we may disregard the gluing choices at the “intermediate levels,”
corresponding to vertices in the grand orbit of the lower critical point, when there are two
fundamental edges. At each vertex of height M=3n, for integers 0 < n < L.f /, we will
compute the number of distinct topological conjugacy classes arising from the two gluing
choices.
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First assume that .F ; X / has no marked levels. Then for every n, the two gluing choices
of the local model at height M=3n are conformally equivalent. If there are two fundamental
edges, we conclude from Lemma 11.2 that there is a unique topological conjugacy class. If
there is only one fundamental edge, then in fact there is a unique point in any fiber of the
bundle B3.F ; X /, so clearly Top.D/ D 1. Note that the absence of marked levels can be
discerned from the � -sequence of D, by Lemma 11.4.

Suppose now that .F ; X / has k > 0 marked levels, and let

0 < l1 < l2 < � � � < lk < L.f /

denote the marked levels. Let mj be the sum of relative moduli to level lj :

mj D

ljX
nD1

m.n/:

Let tj be the smallest positive integer so that tjmj is integral; it is always a power of 2, because
the vertices of the spine (below v0) are mapped with degree 2 to their images. Then the twist
period at level lj is easily seen to be the maximum

Tlj D maxfti W i � j g:

L 11.6. – We have Tlj 2 fTlj�1
; 2Tlj�1

g for all j .

Proof. – Suppose it takes t full twists to return to a given configuration at marked level l ,
and suppose the next marked level is l 0 > l . The level �.l 0/ must also be a marked, so
�.l 0/ � l . Thus, after t twists, the gluing at level �.l 0/ is in its original configuration; therefore
l 0 must be either in its original configuration or twisted halfway around. Therefore, at most
2t twists are needed to return to the original configuration at level l 0.

Lemma 11.6 says that the twist period between marked levels can increase at most by
a factor of two. It follows that twisting reaches all possible gluing configurations if and
only if Tlk D 2k . Or, more precisely, the number of distinct topological conjugacy classes
associated to the given tree of local models is the ratio 2k=Tlk . This completes the proof of
the theorem.

Proof of Theorem 4.2. – Suppose D is a pictograph with infinitely many marked levels.
For any fixed value M > 0, there is a unique tree of local models .F ; X / with the given
pictograph D and critical point at height M . Note that the infinitely many marked levels
implies, in particular, that one critical point lies in the filled Julia set.

As in the proof of Theorem 4.1, we begin by fixing a point in the base torus of B3.F ; X /.
Note that the base torus is a circle in this case. At each marked level of the pictograph, the
two gluing choices produce conformally inequivalent basins in B3.F ; X /; it follows that
there are infinitely many points in any fiber of B3.F ; X /. From Lemma 9.5, the fiber is then
homeomorphic to a Cantor set; in particular, there are uncountably many points in the fiber.
On the other hand, two basins in a fiber are topologically conjugate if and only if they lie in
the same twist orbit; thus, there can only be countably many topologically conjugate points in
a fiber. Therefore, there are infinitely many topological conjugacy classes within B3.F ; X /.

As proved in [5] and discussed further in [3] and [12], the topological conjugacy classes
in the cubic moduli space M 3 organize themselves into solenoids or a union of circles,
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depending on the twist periods. In the notation of the proof of Theorem 4.1, the twist period
of a complete basin with tree .F ; X / is the value

T D lim
j!1

Tlj :

If T is infinite, then necessarily the bundle of gluing configurations is a union of

Sol.D/ WD lim
j!1

2j

Tlj

solenoids. Note that the limit Sol.D/ exists and lies in the set f1; 2; 22; 23; : : : ;1g, because
2j =Tlj defines a non-decreasing sequence of powers of 2. For T < 1, the bundle of gluing
configurations forms an infinite union of closed loops.

11.7. The Branner-Hubbard description

Branner and Hubbard showed that there are two important dynamically-defined fibra-
tions in the space of monic and centered cubic polynomials P3. Let C3 denote the connect-
edness locus, the set of polynomials in P3 with connected Julia set. First, the maximal crit-
ical escape rate

M W P3 n C3 ! .0;1/

defined by
M.f / D maxfGf .c/ W f

0.c/ D 0g

is a trivial fibration with fibers homeomorphic to the 3-sphere [3, Theorem 6.1] (which
follows from [4, Theorem 11.1, Corollary 14.6]). Branner and Hubbard analyzed the quotient
of a fiber of M in M 3; it follows from [4, Cor 14.9] that the induced map

M W M 3 n C3 ! .0;1/

is also trivial fibration with fibers homeomorphic to the 3-sphere. The trivialization is given
by the stretching deformation; see §9.2.

For each r > 0, let Hr � M�1.r/ � P3 be the locus of polynomials with G.c2/ <
G.c1/ D r . Let c01 denote the cocritical point of c1, so that f �1.f .c1// D fc1; c01g, and let
�.c01/ 2 R=2�Z be its external angle. Then

ˆr W Hr ! S1

defined by ˆr .f / D �.c01/ is a trivial fibration with fibers homeomorphic to the unit disk D
[3, Theorem 6.2]. The fiber of ˆr over � will be denoted Fr .�/. Note that every polynomial
in Fr .�/ is conjugate by z 7! �z to a unique polynomial in Fr .�C�/. (It is worth observing
that the polynomials with nontrivial automorphism cannot be in Hr ; the automorphism
interchanges the two critical points, so they must escape at the same rate.)

The turning deformation of [4] induces a monodromy action on a fiberFr .�/; its first entry
into Fr .� C�/ determines the hemidromy action. Alternatively, the hemidromy action is the
monodromy of the induced fibration on the quotient of Hr in M 3:

ˆr W ŒHr �! S1

given by ˆr .f / D 2�.c01/mod 2� which is well-defined on the conjugacy class of f . The
fibers of ˆr in M 3 are again topological disks.
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F 11.2. A fiber of ˆr showing critical level sets of f 7! Gf .c2/, from [5, Figure 9.3].

Let us fix � D 0 and consider the fiber ŒFr .0/� in M 3. The hemidromy action on this fiber
will be denoted

Tr W ŒFr .0/�! ŒFr .0/�:

It corresponds to a full twist in the fundamental annulus; compare §9.2. The escape rate of the
second critical point further decomposes ŒFr .0/�. The critical level sets ofG.c2/ are precisely
the levels r=3n for integers n > 0. The connected components of fG.c2/ < r=3ng are called
the level n disks. The hemidromy action permutes these disks. The period of a level n disk D
is the least number of iterates p > 0 such that T pr .D/ D D. Branner-Hubbard showed that
these periods are always powers of 2. The period of the level n disk coincides with the twist
period Tn (defined in §11.6) for any cubic polynomial in that disk.

Suppose .F ; X / is a cubic tree of local models with both critical heights positive. If there
is only one fundamental edge, then the Branner-Hubbard turning curves through any poly-
nomial f with tree .F ; X / constitute the connected components of the bundle B3.F ; X /.
In fact, twisting coincides with the turning deformation, up to the normalization of the
parametrization. For a cubic tree .F ; X / with two fundamental edges, the base torus
of B3.F ; X / is two-dimensional. Intersecting with a fiber of the Branner-Hubbard
bundle ˆr , the bundle B3.F ; X / consists of finitely many connected components of a
level set of f 7! Gf .c2/. In this case, a full turn around the base of ˆr W ŒHr � ! S1

corresponds to a twist by
m1

m1 Cm2
e1 C

m2

m1 Cm2
e2

where mi is the modulus of the fundamental annulus Ai , so that m1 Cm2 D 2r .
Among the polynomials f with length L.f / D 1, there are two types of connected

components in the Branner-Hubbard slice Fr .0/. They showed that the Mandelbrot sets in
their picture correspond to cubic polynomials where the connected component of the filled
Julia set containing the critical point is periodic. Equivalently, the tableau is periodic. The
twist periods of these Mandelbrot sets are always finite; there are only finitely many marked
levels in the corresponding pictograph. In this case, the bundle B3.F ; X / is a finite union
of circles. Branner and Hubbard proved that all other cubic polynomials with infinite length
correspond to points in their slice. For these polynomials, the bundle B3.F ; X / may be a
union of circles or a union of solenoids.
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12. Counting argument, all degrees

In this final section, we give the proof of Theorem 1.2. We apply the algorithm to two
examples in degree 5 (§12.7 and §12.8) to illustrate the role of the symmetry calculations. We
provide an example of a pictograph associated to multiple topological conjugacy classes in
any degree d > 2 (§12.9).

Towards Theorem 1.2, we have already established the topological-conjugacy invariance
of the pictograph (Theorem 10.1). Here, we show:

T 12.1. – Let D be a pictograph. The number Top.D/ of topological conjugacy
classes of basins .f;X.f // with pictograph D is inductively computable from the discrete
data of D. Specifically, the computation depends only on the first-return map along the
spine .R; S.T // of the underlying tree and the automorphism group of the full tree of local
models.

It is useful to compare this statement to those of Theorems 4.1 and 4.2 containing the
degree 3 computation. In degree 3, the data of .R; S.T // is equivalent to the Branner-
Hubbard tableau and Yoccoz � -sequence; see §6.7. Also in degree 3, the symmetries of
the tree of local models are easy to describe. Recall that the automorphism group is itself
inductively computable from a pictograph in all degrees; see Section 8.

For the general degree case, we introduce the restricted basin of infinity for a polynomial,
with a notion of equivalence that carries information from the full tree of local models. This
allows us to define an analog of the “marked levels” in degree 3 (see §11.5). We introduce
the lattice of twist periods to generalize the sequence of twist periods used to compute the
number of conjugacy classes in degree 3. In higher degrees, the markings and symmetries
are significantly more complicated, so computing the number of twists needed to return to a
given gluing configuration involves more ingredients.

12.1. Restricted basins, conformal equivalence

Let .f;X.f // be a basin of infinity. Fix any real number t > 0. LetGf denote the escape-
rate function on X.f /, and set

Xt .f / D fz 2 X.f / W Gf .z/ > tg:

We refer to the pair .f;Xt .f // as a restricted basin. We define in the obvious way restricted
trees and restricted trees of local models. However, here we introduce a special, and un-
obvious, notion of equivalence of restricted basins that will be useful in the proof of
Theorem 12.1.

Let .F 1; X .f1// and .F 2; X .f2// denote the trees of local models for the basins
.f1; X.f1// and .f2; X.f2//, respectively. By construction, there are gluing quotient maps

gi W .F i ; X .fi //! .fi ; X.fi //

that are conformal isomorphisms from each local model surface to its image, inducing
conjugacies between the restrictions of F i and fi .
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We say the restricted basins .f1; Xt .f1// and .f2; Xt .f2// are conformally equivalent
over .F ; X / if their unrestricted trees of local models are both isomorphic to .F ; X /, and
there exists a conformal isomorphism

 W Xt .f1/! Xt .f2/

inducing a conjugacy between the restrictions f1jXt .f1/ and f2jXt .f2/ that extends to the
full tree of local models. Specifically, there is an isomorphism between trees of local models

' W .F 1; X .f1//! .F 2; X .f2//

which restricts to the induced isomorphism Q on the restricted trees, at heights > t , defined
by lifting  via the gluing quotient maps gi :

.F 1; X t .f1//
Q 
//

g1

��

.F 2; X t .f2//

g2

��

.f1; Xt .f1//
 
// .f1; Xt .f2//:

Similarly, we define Aut.F ;X/.f;Xt .f // to be the group of conformal automorphisms of
the restricted basin .f;Xt .f // that extend to automorphisms of the tree .F ; X /. Denoting
by Aut.f;X.f // and Aut.f;Xt .f // the groups of conformal isomorphisms (of X.f / and
Xt .f /, respectively) commuting with f , we find:

L 12.2. – For any basin of infinity .f;X.f // of degree d � 2, and any t > 0, we
have a chain of subgroups

Aut.f;X.f // � Aut.F ;X/.f;Xt .f // � Aut.f;Xt .f // � Cd�1;

where Cd�1 is the cyclic group of order d �1, acting by rotation in the uniformizing coordinates
near1.

Proof. – The first two inclusions follow easily from the definitions. Indeed, any auto-
morphism of a basin .f;X.f // induces an automorphism of the tree of local models and
of any restricted basin. The last inclusion follows because an automorphism of .f;Xt .f //
must commute with f near infinity, where it is conformally conjugate to zd .

12.2. Restricted basins, topological equivalence

As for conformal equivalence of restricted basins, defined in §12.1, we say restricted
basins .f1; Xt .f1// and .f2; Xt .f2// are topologically equivalent over .F ; X / if there exists
a topological conjugacy

 W Xt .f1/! Xt .f2/

that extends to an isomorphism of the full tree of local models.
It is important to observe that topologically conjugate restricted basins are also quasi-

conformally conjugate; the proof is identical to the one for full basins of infinity. Further,
if the restricted basins come from basins with the same critical escape rates, the quasicon-
formal conjugacy can be taken to be a twist deformation. On each level set of Gf , the twist
deformation acts by isometries (in the j@Gf jmetric), and therefore it preserves the conformal
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structure of the local models in the tree of local models (compare the proof of Theorem 9.1).
This proves:

L 12.3. – A topological conjugacy between restricted basins .f1; Xt .f1// and
.f2; Xt .f2// with the same critical escape rates induces, via the gluing quotient maps, an
isomorphism of restricted trees of local models .F 1; X t .f1// and .F 2; X t .f2//.

In the definition of topological equivalence of restricted basins, then, we are requiring that
this induced isomorphism of restricted trees of local models can be extended to an isomor-
phism on the full tree of local models.

12.3. Twist periods

As described in §9.2, a quasiconformal deformation of a basin of infinity has a canon-
ical decomposition into its twisting and stretching factors. Fix f 2 M d and consider the
analytic map of §9.3,

Twistf W RN ! M d ;

which parametrizes the twisting deformations in theN fundamental subannuli of f , sending
the origin to f . Recall that the basis vector

ej D .0; : : : ; 0; 1; 0; : : : ; 0/ 2 RN

induces a full twist in the j -th fundamental subannulus.

A twist period of f is any vector � 2 RN which preserves the conformal conjugacy class
of .f;X.f //; that is, Twistf .�/ D Twistf .0/. When f is in the shift locus, the set of twist
periods forms a lattice in RN [7, Lemma 5.2]. In general, the set of twist periods forms a
discrete subgroup (though possibly not a lattice),

TP.f / � RN ;

that we will refer to as the lattice of twist periods. As we shall see in the proof of Theorem 12.1,
polynomials with equivalent pictographs can have different lattices of twist periods; this
can happen when one gluing configuration has automorphisms while another does not.
Nevertheless, we will see that the possibilities for TP.f / can still be computed from the data
of the pictograph.

For each t > 0, we define TPt .f / � TP.f / to be the set of vectors � 2 RN that
preserve the conformal equivalence class of the restricted basin .f;Xt .f // over .F ; X .f //;
the equivalence of restricted basins was defined in §12.1.

L 12.4. – For any t1 > t2 > 0 and any f with N fundamental subannuli, each
group TPti .f / forms a lattice in RN , with index ŒTPt1.f / W TPt2.f /� <1 and

TP.f / D
\
t>0

TPt .f /:

Proof. – The argument is similar to the proof of [7, Lemma 5.2]. Let Xt .f / D fGf > tg
� X.f /. For each fundamental subannulus Aj , there are only finitely many connected
components Bj of preimages of Aj inside Xt .f / under any iterate of f . A full twist in the
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annulus Aj induces a 1=k-twist in a preimage Bj , where k is the degree of the iterate f n

sending Bj to Aj . Let
dj D lcmfk W k D deg.f njBj ! Aj /g

over all such components Bj � Xt .f /. Then the subgroup TPt .f / of RN must contain the
vector

dj ej D .0; : : : ; 0; dj ; 0; : : : ; 0/

for each j ; indeed, this vector induces an automorphism of .f;Xt .f // that extends to
the identity automorphism on the full tree of local models. Because TPt .f / is a discrete
subgroup of RN , we see that it must be a lattice. The same argument also shows that
ŒTPt1.f / W TPt2.f /� <1.

Finally, if � 2 TP.f /, then � must induce an equivalence of the restricted basin .f;Xt .f //
over .F ; X .f // for every t > 0, because a conjugacy between basins induces an equivalence
on trees of local models. Therefore,

TP.f / �
\
t>0

TPt .f /:

Conversely, we observe that if � � .f;Xt .f // is conformally equivalent to .f;Xt .f // for all
t > 0, then there is a conformal conjugacy between the basins � � .f;X.f // and .f;X.f //,
so � 2 TP.f /. We conclude that TP.f / D

T
t>0 TPt .f /.

12.4. Twist periods in degree 3

We remark that the definition of twist period given here differs from that given in §11.6
for degree 3 maps. They coincide in the case of one fundamental annulus, in the sense that
the twist periods fTng form a sequence of generators for the one-dimensional twist lattices
TPtn.f / � R for heights tn just below level n.

A cubic polynomial f with two fundamental subannuli is necessarily in the shift locus
(and structurally stable) with finite length L.f / > 0. We describe here how to recover the
sequence of twist periods Tn at levels 0 � n < L.f / from the lattices of twist periods TPt .f /.

For a cubic polynomial f with two fundamental subannuli, let .F; T .f // denote its tree,
let v0 be the highest branching vertex of T .f /, and let h W T .f /! R be the height function.
Choose a sequence of descending heights

(12.1) t0 > t1 > t2 > � � �

so that tn is a height “just below” a vertex of simplicial distance n from v0. That is,
t0 D h.v0/ � " for any sufficiently small " > 0, and there is a unique vertex in each connected
component of h�1.tnC1; tn/.

From the definitions, and the absence of symmetries at v0, we have T0 D 1 and

TPt0 D he1; e2i D Z2 � R2

for every such polynomial.

Let S.T / be the spine of the tree .F; T .f //. Denote by w the lowest vertex in the spine
(the lower critical point). For each positive integer n < L.f /, set

J.n/ D #fL.f / � n � j < L.f / W F j .w/ 2 S.T /g;
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the number of times the critical orbit intersects the spine, above level n and below v0. From
the proof of Theorem 12.1 given below, an inductive argument shows that

(12.2) Tn D
ŒTPt0 W TPt2n

�

2J.n/
:

12.5. A cubic example

Because the computation of the twist period lattices is crucial in the proof of Theorem 12.1,
we illustrate with an example in degree 3.

Consider the cubic pictograph shown in Figure 12.1. It is the unique pictograph associated
to the � -sequence .0; 1; 2; 3/ with two fundamental edges. Any associated polynomial has
length L.f / D 4. There are no marked levels, in the sense defined in §11.5. Consequently,
T0 D T1 D T2 D T3 D 1. From Theorem 4.1, there is a unique topological conjugacy class
of cubic polynomials with this pictograph.

Now let ftng be a descending sequence of escape rates, as defined in (12.1). Every polyno-
mial f with this pictograph has the following lattices of twist periods:

TPt0 D he1; e2i

TPt1 D TPt2 D he1; 2e2i

TPt3 D TPt4 D h2e1; e1 C 2e2i

TPtn D h4e1; 3e1 C 2e2i for all n � 5.

These lattices are computed inductively with n, with the base case TPt0 D he1; e2i. To
determine TPtn from TPtn�1

, we compute the induced twisting at each vertex of the spine,
down to height tn, for elements of TPtn�1

. Specifically, let v be the lowest vertex in the spine
above height tn, and fix � D �1e1 C �2e2 2 TPtn�1

. We compute (1) the relative modulus
of mod.e/ of each edge e in the spine (as the reciprocal of the degree by which e maps to a
fundamental edge) down to the vertex v, and (2) the sum

R� .v/ D
X
e

�j.e/ mod.e/

where j.e/ is the index of the fundamental edge in the orbit of e. If the lamination diagram
at vertex v is invariant under rotation by the amountR� .v/ (leaving also all labels invariant),
then � 2 TPtn . If not, we consider integer multiples of � .

Finally, TP.f / D h4e1; 3e1 C 2e2i by Lemma 12.4. Observing that J.n/ D n for each
n D 1; 2; 3, we also see that equation (12.2) holds.

12.6. Proof of Theorem 12.1

Fix a pictograph D. We aim to show that the number Top.D/ of topological conjugacy
classes of basins .f;X.f //with pictograph D can be inductively computed from the discrete
data of D.

For any M > 0, there exists a vector of compatible critical heights with maximal critical
heightM . Let .F ; X / be the tree of local models with pictograph D and the chosen vector
of critical heights given by Proposition 10.2. Let .F; T / be the underlying polynomial tree
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F 12.1. A cubic pictograph with � sequence .0; 1; 2; 3/. Its twist periods are
computed in §12.5.
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with height function h W T ! .0;1/, so that h.v0/ DM for the highest branching vertex v0
and h.F.x// D d � h.x/ for all x 2 T . Choose a descending sequence of real numbers

t�1 > M > t0 > t1 > t2 > � � � > 0

so that

– the points of h�1.ti / are not vertices of T for any i � 0, and
– there is a unique vertex of T in each connected component of h�1Œti ; ti�1� for all i � 0.

For each i � 0, we will inductively compute the number Top.D; i/ of topological
conjugacy classes of restricted basins

f W Xti .f /! Xti .f /

over .F ; X /; the equivalence was defined in §12.2.
The number Top.D/ is not simply the limit of these numbers Top.D; i/ as i ! 1, as

we shall see, but it can be determined from the sequence fTop.D; i/gi and the data used to
compute it.

Let i D 0. The conformal equivalence class of the restricted basin .f;Xt0.f // over .F ; X /

depends only on the gluing along each of the fundamental subannuli. It is easy to see, from
the definition of twisting, that all gluing choices within the fundamental annulus are equiv-
alent under twisting. We conclude that

Top.D; 0/ D 1

for any pictograph D.
For the induction argument, we need to compute the lattice of twist periods TPt0.f / and

the automorphism group Aut.F ;X/.f;Xt0.f // for any choice of restricted basin .f;Xt0.f //
from the discrete data of D at and above the vertex v0 and automorphism group Aut.F ; X /.
Recall that the automorphism group of the full tree of local models is isomorphic to the
automorphism group of the first-return map .R ; S / on the spine (Lemma 8.4), so any
information we need about Aut.F ; X / is determined by D.

Suppose D has N fundamental edges (so any basin with pictograph D has N funda-
mental subannuli). As usual, we label the ascending consecutive vertices v0; v1; : : :,
vN D F.v0/; vNC1; : : : in the tree .F; T /, where v0 is the highest branching vertex. In §8.2,
we defined the order of local symmetry of the tree .F ; X / at the vertex vj ; we denote this
order by kj .

L 12.5. – For each j � 0, the orders of symmetry at vj and vjCN satisfy

kjCN D kj = gcd.kj ; d /:

Proof. – The local degree of F at each vertex vj is d . From Lemma 5.4, we know that
kj = gcd.kj ; d /must divide kjCN . On the other hand, by the definition of the local symmetry
order (coming from an automorphism of .F ; X /), any symmetry at vjCN must lift to the
domain vj . Therefore, we have equality.

L 12.6. – The automorphism group Aut.F ;X/.f;Xt0.f // is cyclic of order equal to

˛ D gcdfk0; k1; : : : ; kN�1; d � 1g:
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Proof. – From Lemma 12.5, the value ˛ will divide the orders of local symmetry at every
vertex vj , j � 0. Further, a rotation by 2�=˛ at any vertex vj in the tree .F ; X / will
induce a rotation by 2�d=˛ � 2�=˛mod 2� at its image, because ˛j.d � 1/. Therefore,
rotation by 2�=˛ can act on any gluing of .F ; X / to form a restricted basin .f;Xt0.f //.
The automorphism must extend to the full tree of local models, by the definition of the
orders kj . It follows that the order of Aut.F ;X/.f;Xt0.f // is at least ˛. On the other hand,
the order of any element in Aut.F ;X/.f;Xt0.f // must divide ˛, combining the definitions
with Lemma 5.4.

Fix a conformal equivalence class of restricted basin .f;Xt0.f // over .F ; X /. To
compute TPt0.f /, note first that each of the basis vectors

ej D .0; : : : ; 0; 1; 0; : : : ; 0/

for j D 1; : : : ; N , are contained in TPt0.f /, by construction. Indeed, a full twist in any
subannulus induces the identity automorphism on the tree of local models .F ; X /.

We claim that for each 0 < j < N , the twist vector

�j D
1

kj
.ejC1 � ej /

is also contained in TPt0.f /. This vector �j twists by 1=kj in the fundamental suban-
nulusAjC1 and by�1=kj inAj . It therefore twists by the order of symmetry at the vertex vj ,
and it induces a twist by d=kj in the image of AjC1 and by �d=kj in the image of Aj . By
Lemma 12.5, these twists commute with the action of f . The restricted basins .f;Xt0.f //
and �j � .f;Xt0.f // are conformally conjugate; for kj > 1, the isomorphism extends to a
non-trivial isomorphism of the underlying tree of local models where the action on .F ; X /

rotates vertices in the grand orbit of vj .
Finally, we treat the symmetry at v0. Set

�0 D
1

k0
.e1 � d eN /:

As for �j , j > 0, the twist vector �0 induces the symmetry at v0. The term .d=k0/ eN is
subtracted off so that the correct order of symmetry is induced at the image vN , as in
Lemma 12.5. Putting the pieces together, we find that TPt0.f / is generated by all twist vectors
of the form

� D .a1; : : : ; aN /;

where 0 � aj � 1,
PN
jDj0

aj is an integer multiple of 1=kj0�1 for each j0 > 1, and
PN
jD1 aj is

an integer multiple of .1�d/=k0 mod 1. Observe that this computation is independent of the
initial choice of restricted basin .f;Xt0.f //.

Now fix i � 0 and a restricted basin .f;Xt0.f //. Let Bi .D/ denote the set of conformal
equivalence classes of restricted basins .f;Xti .f // over .F ; X / that extend the restricted
basin .f;Xt0.f //. Suppose we have computed

1. the number of conformal equivalence classes jBi .D/j;
2. the order of the automorphism group Aut.F ;X/.f;Xti .f // for each element of Bi .D/;

and
3. the lattice of twist periods TPti .f / for each element of Bi .D/.
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As explained above, the conformal classes in Bi .D/ are topologically equivalent if and only
if they are equivalent by twisting, via a conjugacy that extends to an isomorphism of the full
tree of local models, so we need only compute the number of classes in each twist orbit to
obtain Top.D; i/ from this data. That is,

(12.3) Top.D; i/ D
X

.f;Xti
.f //2 Bi .D/

1

ŒTPt0.f / W TPti .f /�
:

Now we pass to i C 1. Let f.Xv; !v/g be the set of local models in the spine of .F ; X /

with vertex v in the height interval .tiC1; ti /. Let dv be the degree of the local model map with
domain .Xv; !v/. Let kv be the order of local symmetry of .F ; X / at v.

Fix a conformal class .f;Xti .f // 2 Bi .D/, and assume that Aut.F ;X/.f;Xti .f // is the
trivial group. Then the number of classes in BiC1.D/ that extend .f;Xti .f // is given byY

v

dv

gcd.kv; dv/
;

where the product is taken over all vertices v of the spine in the height interval .tiC1; ti /.
Indeed, the extension to height tiC1 along any edge of degree 1 is uniquely determined.
We need only compute how many distinct ways we may glue each local model .Xv; !v/ of
degree dv > 1 along the edge above v so that f extends holomorphically. The absence
of automorphisms shows that the local symmetry (fixing v) and local degree are the only
contributing factors. It is easy to see that each extension will also have a trivial automorphism
group.

Now suppose .f;Xti .f // 2 Bi .D/ has automorphism group Aut.F ;X/.f;Xti .f // of
order m > 1. By Lemma 12.2, the automorphism group is cyclic, acting by rotation in the
uniformizing coordinates near infinity. By construction, every such automorphism extends
to the full tree of local models, so there is a certain amount of symmetry among the vertices
in the height interval .tiC1; ti /. First, there is at most one vertex v0 in the spine at this height
fixed by the automorphism of orderm, andmmust divide the local symmetry kv0 . All other
vertices v of the spine have orbit of lengthm, and the order of local symmetry kv is constant
along an orbit. Choose a representative vertex Ov for each orbit. The number of conformal
classes in BiC1.D/ extending .f;Xti .f // are organized as follows. There are

N.m/ D
dv0

gcd.kv0 ; dv0/
�

Y
orbits of lengthm

d Ov

gcd.k Ov; d Ov/

conformal conjugacy classes of extensions with an automorphism of order m; indeed, a
choice of gluing at vertex Ov determines the choice (up to local symmetry) at each vertex in
its orbit. For each factor l jm, we can also compute the number of extensions of .f;Xti .f //
with automorphism of order l . A simple inclusion-exclusion argument shows that there are

N.l/ D
dv0

gcd.kv0 ; dv0/
�

Y
orbits of length l

d Ov

gcd.k Ov; d Ov/
�

X
fl 0 W ljl 0jm; l 0 6Dlg

N.l 0/
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conformal equivalence classes of extensions with an automorphism of order l , under
the extra restriction that we require the equivalence to act by the identity on the restric-
tion .f;Xti .f //. Consequently, there are

l

m
�N.l/

distinct conformal equivalence classes of extensions with automorphism of order l (without
the extra assumption): for each new basin in the initial count ofN.l/, there is an isomorphism
that acts as rotation by l=m near infinity, producing another gluing configuration in the
count of N.l/. We observe that the computation depends only on the data fdv; kvg at each
of the vertices in the spine.

Now we compute the lattice of twist periods TPtiC1
.f / for each class .f;XtiC1

.f // 2

BiC1.D/. Note that any element � 2 TPtiC1
.f / also induces a conformal equivalence of

the restricted basin .f;Xti .f // over .F ; X /, so TPtiC1
.f / forms a subgroup of TPti .f /. We

will examine linear combinations of basis elements of TPti .f / to determine which elements
lie in TPtiC1

.f /. We need to use the order of the automorphism group of the chosen
basin .f;XtiC1

/ and the order of the automorphism group of the restriction .f;Xti .f //.

First assume that both .f;XtiC1
.f // and the restriction .f;Xti .f // have trivial automor-

phism group. Fix any element � 2 TPti .f /, so that � � .f;Xti .f // is conformally equiva-
lent to .f;Xti .f // over .F ; X /. One can check algorithmically whether a multiple a� lies
in TPtiC1

.f /, for each a D 1; 2; 3; : : :, via the following steps:

1. Compute all relative moduli, down to the vertex v, for each v in the spine in the height
interval .tiC1; ti /: each edge e between v and v0 is mapped by a degree d.e/ > 1 to one
of the fundamental edges, and its relative modulus is 1=d.e/.

2. Compute the rotation induced by a� at each vertex v: if a� D .t1; : : : ; tN /, then v is
rotated by

Ra� .v/ D
X
e

tj.e/

d.e/
;

where the sum is over all edges e between v and v0, and j.e/ is the index of the unique
fundamental edge in the orbit of e.

3. If the rotation Ra� .v/ is an integer multiple of 1=kv at each vertex v, then a� 2TPtiC1
.f /.

Note that this process terminates at some finite value of a: by Lemma 12.4, we know that
TPtiC1

is a lattice of finite index within TPti . With trivial automorphism group, the compu-
tation of TPtiC1

.f / is independent of the choice of extension .f;XtiC1
.f //.

We remark that, even in the absence of global automorphisms, there can be local symme-
tries of .F ; X / that act nontrivially on the spine of the underlying tree. A given twist vector �
may induce one of these nontrivial automorphisms of the spine; so the computation of steps
(2) and (3) above requires that we compare the action on v to a symmetry at a different vertex,
say v0. In that case, the local symmetries kv and kv0 will coincide, so the computation is the
same.

Suppose now that our chosen .f;XtiC1
.f // has automorphism group of order

jAut.F ;X/.f;XtiC1
.f //j D l
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and the restriction .f;Xti .f // has

jAut.F ;X/.f;Xti .f //j D m � l:

Note that l j m. Fix any element � 2 TPti .f /. For l D m, we may proceed as above:
we check integer multiples of � and compute the rotation induced at each of the lowest
vertices v. For l < m, we have an additional possibility. It can happen that the twisted basin
a� � .f;XtiC1

/ is conformally equivalent to the basin .f;XtiC1
/ via an isomorphism that acts

as rotation by k=m near infinity, for some integer 1 � k < m=l . Thus our algorithmic
procedure involves an extra computation. The three steps above become:

1. Compute all relative moduli, down to the vertex v, for each v in the spine in the height
interval .tiC1; ti /, as before.

2. Compute the rotation induced by  k ı .a�/ at each vertex v, where  k acts as rotation
by k=m near infinity, for each k D 1; : : : ; m=l : it is given by the simple relation
R kı.a�/.v/ D Ra� .v/C .k=m/.

3. If for any k, the rotation R kı.a�/.v/ is an integer multiple of 1=kv at each vertex v,
then a� 2 TPtiC1

.f /.

We illustrate with one example in degree 5 the delicacy of computing twist periods in the
presence of automorphisms; see §12.8 and Figure 12.3.

To make the above algorithmic process implementable, it is useful to compute an
explicit basis for TPtiC1

.f /. For example, let �1; : : : ; �N be a set of basis vectors for the
lattice TPti .f /. We can apply the above steps to each basis vector. Let aj is the smallest
positive integer so that aj �j 2 TPtiC1

.f /. We next compute the rotation effect of each vector
of the form

n1�1 C � � � C nN �N

for all N -tuples of non-negative integers fnig with ni � ai . This is a finite process and will
produce a basis for TPtiC1

.f /.
Once we have computed the twist periods for each class .f;XtiC1

.f // 2 BiC1.D/, the
number Top.D; i C 1/ is computed by equation (12.3).

Finally, we need to compute Top.D/. Note that the number of conformal classes
extending a given .f;Xt0.f // is non-decreasing with i ; that is,

jBi .D/j � jBiC1.D/j:

We claim

1. Top.D/ D1 if and only if limi!1 jBi .D/j D 1; and
2. if limi!1 jBi .D/j D jBn.D/j for some n, then Top.D/ D Top.D; n/.

From Theorem 9.2, the number Top.D/ is bounded above by the number of points in
the fiber of the bundle of gluing configurations. By the construction of the bundle (from
the proof of Theorem 9.2) the number of points in a fiber is equal to an integer multiple
of limi!1 jBi .D/j. Therefore, if Top.D/ D1, then it must be that limi!1 jBi .D/j D 1.
On the other hand, when the fiber of the bundle of gluing configurations has infinite
cardinality, Lemma 9.5 states that the fibers are Cantor sets. In particular, the fibers are
uncountable. A topological conjugacy class within the fiber contains at most countably
many elements, as the image of a lattice in RN . Therefore, there are infinitely many topolog-
ical conjugacy classes. This proves statement (1). The second statement is immediate from
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the arguments and definitions above; once the number of classes jBi .D/j has stabilized,
the lattice of twist periods TPti .f / also stabilizes.

12.7. An example in degree 5 without symmetry

Following the steps in the proof of Theorem 12.1, we compute the number of topological
conjugacy classes associated to the degree-5 pictograph in Figure 12.2, with two fundamental
subannuli. Fix any restricted basin .f;Xt0.f // with the given pictograph. It is easy to see
from the diagram that the automorphism group is trivial, as are the local symmetries at the
two fundamental vertices. The lattice of twist periods TPt0 is generated by the standard basis
vectors,

TPt0 D he1; e2i � R2:

There are two vertices v1 and w1 in the height interval .t1; t0/, with local degrees dv1
D 2

and dw1
D 3. Each has trivial local symmetry, so we compute that

jB1.D/j D 2 � 3 D 6;

and each class has trivial automorphism group. A full twist in fundamental subannulus A1
leaves v1 and w1 invariant, but a full twist in subannulus A2 induces a 1=2 twist at v1 and a
1=3 twist atw1. It requires 6 twists inA2 to return to the given gluing configuration at level 1.
We compute,

TPt1 D he1; 6e2i:

The computation is independent of the conformal class in B1.D/. We find that

Top.D; 1/ D 6 �
1

6
D 1:

In the height interval .t2; t1/, there are again two vertices, say v2 below v1 and w2 below w1.
We have local degrees dv2

D 2, dw2
D 2 and local symmetries kv2

D 2, kw2
D 1. Therefore,

jB2.D/j D jB1.D/j � 1 � 2 D 12;

and each class has trivial automorphism group. A full twist in fundamental subannulus A1
induces a 1=2 twist at v2, and 1=2 is an integer multiple of 1=kv2

. On the other hand, a
1=2 twist is also induced at w2 with kw2

D 1, so we find that e1 62 TPt2 but 2e2 2 TPt2 . For
the subannulusA2, the action of 6e2 induces full rotations of both v2 andw2, so 6e2 2 TPt2 .
We find that

TPt2 D h2e1; 6e2i

and

Top.D; 2/ D 12 �
1

12
D 1:

For all vertices in the spine below v2 and w2, the local symmetry at a vertex coincides with
the local degree. Therefore

jBi .D/j D jB2.D/j D 12

for all i � 2. As explained at the end of the proof of Theorem 12.1, the number of topological
conjugacy classes also stabilizes, so we may conclude that the pictograph determines

Top.D/ D Top.D; 2/ D 1
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F 12.2. A pictograph of degree 5 determining a unique topological conju-
gacy class; see §12.7.
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F 12.3. A degree 5 pictograph with symmetry. See §12.8.

topological conjugacy class of basins .f;X.f // 2 B5. In fact, because these polynomials
are in the shift locus, this pictograph determines a unique topological conjugacy class of
polynomials in M 5.

12.8. A degree 5 example with symmetry

Consider the pictograph of Figure 12.3. It has one fundamental edge. Fix the critical
escape rate M > 0 of the highest critical points c1 and c2, and choose heights

M > t0 > M=5 > t1 > M=25

as in the proof of Theorem 12.1.
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Any choice of restricted basin .f;Xt0.f // has Aut.F ;X/.f;Xt0.f // of order 2, inter-
changing the critical points labeled by 01 and 02. The extension to the full tree .F ; X / also
interchanges the critical points labeled by 03 and 04. We have

TPt0 D Z:

Fixing .f;Xt0.f //, there are three conformal equivalence classes of extensions over .F ; X /

to level t1. Two of these extensions, say .f1; Xt1/ and .f2; Xt1/, will have an automorphism of
order 2. The third .f3; Xt1/ has trivial automorphism group. The restricted basins .f1; Xt1/
and .f2; Xt1/ are in the same topological conjugacy class over .F ; X /, as one full twist in
the fundamental annulus interchanges them; we have

TPt1.f1/ D TPt1.f2/ D 2Z:

In the conformal class without automorphisms, one full twist arrives at a basin that is
conformally equivalent via an isomorphism that rotates the basin by 180 degrees, and

TPt1.f3/ D Z:

These restricted basins have unique conformal extensions to basins .fi ; X.fi //, i D 1; 2; 3.
This pictograph determines exactly two topological conjugacy classes of polynomials, one
with automorphisms and one without.

12.9. Multiple topological conjugacy classes in arbitrary degree > 2

Figure 12.4 shows a pictograph D in degree 4 that determines two topological conjugacy
classes. This example can easily be generalized to any degree d � 3 by replacing the critical
point at the highest branching vertex v0 with one of multiplicity d�2. It has one fundamental
subannulus.

Let v0; v�1; v�2; : : : denote the consecutive vertices in descending order. To compute the
number of topological conjugacy classes, we evaluate the twist periods at each level. First,
choose any restricted basin .f;Xt0.f //. The automorphism group Aut.F ;X/.f;Xt0.f // is
trivial. As with every pictograph, Top.D; 0/ D 1. Because of the local symmetry at v�1,
there is only one conformal equivalence class of extension to .f;Xt1.f //, so we also have
Top.D; 1/ D 1. At v�2, however, the symmetry is broken by the location of the second iterate
of the lower critical point, so the two gluing choices determine distinct conformal equivalence
classes. The sum of relative moduli at v�2 is 1=2C1=2 D 1, so a full twist in the fundamental
annulus induces a full twist at v�2. Consequently, the two conformal classes lie in two distinct
topological conjugacy classes and Top.D; 2/ D 2.

For each vertex below v�2, there is a local symmetry of order at least 2, so the two
gluing choices are conformally equivalent. We conclude that there are exactly two conformal
equivalence classes of basins extending the given .f;Xt0.f //, and these lie in exactly two
topological conjugacy classes. Because this is the pictograph for polynomials in the shift
locus, there are exactly two topological conjugacy classes of polynomials in M d with the
given pictograph.
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F 12.4. A degree 4 pictograph determining two topological conjugacy
classes; see §12.9. The labels without subscript mark the orbit of the lowest critical

point.
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