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DIMENSIONS OF SPACES OF LEVEL ONE
AUTOMORPHIC FORMS FOR SPLIT CLASSICAL

GROUPS USING THE TRACE FORMULA

 O TAÏBI

A. – We derive explicit formulae for the number of level one, regular algebraic and essen-
tially self-dual automorphic cuspidal representations of general linear groups over Q, as a function of
the Hodge weights. As a consequence, we obtain formulae for dimensions of spaces of vector-valued
Siegel modular cusp forms.

R. – Nous démontrons des formules explicites pour le nombre de représentations auto-
morphes cuspidales algébriques régulières et essentiellement auto-duales pour les groupes linéaires
sur Q, comme fonction des poids de Hodge. Nous en déduisons des formules explicites pour les
dimensions des espaces de formes modulaires de Siegel cuspidales à valeurs vectorielles.

1. Introduction

Using Arthur’s trace formula in [5] and Arthur’s endoscopic classification of the discrete
spectrum for special orthogonal and symplectic groups in [8], we give an algorithm to derive
explicit formulae counting the number of level one, regular algebraic and essentially self-dual
automorphic cuspidal representations of general linear groups, as a function of the Hodge
weights. Before elaborating more on our method in this introduction, we state two problems
that motivate this work:

– giving explicit dimension formulae for vector-valued Siegel modular forms, a problem
which was open for genera greater than 2,

– classifying motives of conductor 1 (or good reduction) and given Hodge weights.

The major part of this work was done while the author was a doctoral student at École polytechnique, Palaiseau,
and employed by École Normale Supérieure, Paris. This work was completed while the author was a research
associate at Imperial College London, supported by ERC Starting Grant 306326.
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270 O. TAÏBI

1.1. Two problems

1.1.1. Dimensions of spaces of Siegel cusp forms. – The first problem is a classical one:
explicitly determining the dimensions of spaces of vector-valued Siegel modular forms in
genus n � 1 (often called “degree” in the literature). We will only consider this problem in
level one, i.e., for the full modular group�n D Sp2n.Z/. Given integers k1 � � � � � kn, let r be
the holomorphic (equivalently, algebraic) finite-dimensional representation of GLn.C/ with
highest weight k D .k1; : : : ; kn/ and let Sr .�n/ D Sk.�n/ D Sk1;:::;kn.�n/ denote the space
of Siegel cusp forms of genus n, level �n and weight r .

For n D 1, it is well-known that the gradedC-algebra of modular forms is freely generated
by the Eisenstein series E4 and E6. This implies that for k > 1,

dimS2k.�1/ D

(
bk=6c if k ¤ 1 mod 6

bk=6c � 1 if k D 1 mod 6

D
k

6
�
7

12
C
.�1/k

4
C trQ.j /=Q

 
.2C j /j k

9

!
where j 2 C j C 1 D 0. Together with the fact that S0.�1/ D S2.�1/ D 0, this is equivalent
to

(1.1.1)
X
k�0

tk dimSk.�1/ D
1

.1 � t4/.1 � t6/
�

1

1 � t2
C t2:

In genus 2, Igusa [49] determined the structure of the ring of scalar (i.e., k1 D k2) Siegel
modular forms and its ideal of cusp forms, which implies a dimension formula of a similar
kind, equivalent to:X

k�0

tk dimSk;k.�2/ D
1C t35

.1 � t4/.1 � t6/.1 � t10/.1 � t12/
�

1

.1 � t4/.1 � t6/
:

Tsushima [89, Theorem 4] later gave a formula for the dimension of Sk1;k2.�2/ for
k1 > k2 � 5 using the holomorphic Lefschetz formula of Atiyah-Singer and the Kawamata-
Viehweg vanishing theorem. Recently Petersen [76] has shown that Tsushima’s formula also
holds for k1 > k2 � 3, as conjectured by Tsushima (for k2 D 4) and Ibukiyama (for k2 D 3,
this is particular to the case of full level �2). The method used in the present paper also
implies this result. In genus 3 Tsuyumine [91, p. 831] determined the structure of the ring
of scalar Siegel modular forms and its ideal of cusp forms, and thus obtained an explicit
formula for

P
k�0 t

k dimSk;k;k.�3/. More recently Bergström, Faber and van der Geer
studied the cohomology of certain local systems on the moduli space A 3 of principally
polarized abelian threefolds, and conjectured a formula for the Euler-Poincaré characteristic
of its cohomology (as a motive) in terms of Siegel modular forms. They were able to derive
a conjectural formula for dimSk.�3/ for k3 � 4 and k ¤ .4; 4; 4/ ([10, Conjecture 7.3]).

One of the goals of this paper is to prove this conjecture and to generalize these explicit
formulae to higher genera; in particular we will prove the following

T A (Dimension formula for spaces of Siegel cusp forms)
Let n � 1. For m � 1 denote �m D exp.2i�=m/. There exists a finite family

.ma; Pa; ƒa/a2A, which we make explicit for all n � 7, where for any a 2 A
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DIMENSIONS OF SPACES OF LEVEL ONE AUTOMORPHIC FORMS 271

– ma � 1 is an integer,
– Pa 2 Q.�ma/ŒX1; : : : ; Xn�,
– ƒa W .Z=maZ/n ! Z=maZ is a surjective group morphism,

such that for any k1 � k2 � � � � � kn > nC 1, we have

(1.1.2) dimSk.�n/ D
X
a2A

trQ.�ma /=Q
�
Pa.k1; : : : ; kn/�

ƒa.k1;:::;kn/
ma

�
:

For n D 3, the first genus for which we obtain a new result, this explicit formula has
370 terms (i.e., jAj D 370), and thus it is too long to print.

We have expressed the formula in the most elementary manner, but in fact the family
.ma; Pa; ƒa/a2A is not exactly what we compute. More precisely, the right hand side of 1.1.2
is equal to a linear combination with rational coefficients of traces, in algebraic represen-
tations determined by k, of rational torsion elements of split classical groups of rank � n.
What we give is an algorithm to compute these rational coefficients, which certainly deserve
to be called “masses”. Formula 1.1.2 can then be derived using (an extension to singular
elements of) Weyl’s character formula. The algorithm works for any n, but our computer
was only able to calculate these masses for n � 7.

As we will recall in Section 5, the weights k1 � � � � � kn corresponding to holomorphic
discrete series for PGSp2n.R/ are those such that kn � nC 1. It is also possible to compute
dimSk.�n/ when kn D n C 1, but the resulting formula is not the specialization of the
right hand side of 1.1.2, as the case n D 1 (Formula 1.1.1) already shows. Our method
does not allow us to compute the dimensions for weights such that kn � n. The values
for dimSk.�n/ for n � 7 and 16 � k1 � � � � � kn � n C 1 are available at http:
//wwwf.imperial.ac.uk/~otaibi/dimtrace. See the table in Section 5.5 for values in the
scalar case k1 D � � � D kn.

Our endoscopic method is not as direct as Tsushima’s or as using the trace formula directly
with a pseudo-coefficient of holomorphic discrete series at the real place, but we will see that it
gives much more information than just the dimension. In particular, it distinguishes between
eigenforms which are endoscopic liftings from lower rank groups (e.g., Duke-Imamoğlu-
Ikeda liftings, see [50]) and “genuinely new” eigenforms. As a corollary of our exposition
and [18] or [29], we have that for k1 > � � � > kn > nC 1, all the eigenforms in Sk.�n/ satisfy
the Ramanujan conjecture.

We hope that these dimension formulae will be used to prove structure theorems for rings
of scalar modular forms, ideals of cusp forms and modules of vector-valued forms, and to
study the geometry of the moduli stack A g .

1.1.2. Motives over Q with good reduction. – The second problem that motivates this work
stems from Minkowski’s theorem stating that there is no non-trivial finite extension of Q
unramified at all primes. From the point of view of arithmetic geometry, a natural general-
ization would be to classify smooth proper schemes X over Z with certain properties. For
Example Minkowski’s theorem can be restated as follows: any proper smoothX ! Spec.Z/
of relative dimension 0 is a disjoint union of finitely many copies of Spec.Z/. A celebrated
result in this direction is the proof by Fontaine [36] and independently Abrashkin [1] of
Shavarevich’s conjecture that there are no non-trivial abelian varieties over Z. Even for a
fixed relative dimension, it is certainly too ambitious to ask for a classification of all proper
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272 O. TAÏBI

smooth X ! Spec.Z/. Well-known conjectures (see [88]) associate automorphic represen-
tations of level 1 to such X ! Spec.Z/. Fixing the Hodge diamond of XC, we are led to the
following

P (Automorphic cuspidal representations of GL=Q with conductor 1)
Given N integers w1 � � � � � wN , classify the automorphic cuspidal representations

� D ˝0v�v of GLN =Q such that for any prime p the representation �p is unramified, and
the infinitesimal character of �1 has eigenvalues w1; : : : ; wN (counted with multiplicities).

This set is finite according to a theorem of Harish-Chandra ([46, Theorem 1]). In this
paper we will give a partial answer to this classification problem for automorphic representa-
tions. Our method restricts us to representations � satisfying the following additional condi-
tions:

– There existsW 2 Z such that �_ ' �˝j det j�W (this condition imposes in particular
that wi C wNC1�i D W for all i , and W is even if N is odd),

– w1 > � � � > wb.NC1/=2c.

Up to twisting by an integral power of j det j, we can restrict to the case W 2 f0; 1g. Under
these restrictions, Chenevier and Renard [25] counted such automorphic representations
for N � 8 and N ¤ 7. The genuinely new cases, i.e., those not implied by dimension
formulae for elliptic modular forms and Siegel modular forms in genus 2, are for N D 6; 8.
Their method relies on the existence of reductive special orthogonal groups over Z whose
group of real points is compact in dimensions 7; 8; 9, and the explicit description of their finite
groups of integral points. In order to treat the case of general N , it is necessary to make use
of reductive groups over Q which are not compact at the real place, for example symplectic
groups. The following theorem is the main goal of our work.

T B. – Let N � 2 and W 2 f0; 1g, with w D 0 if N is odd. Denote n D bN=2c.
There exists a finite family .ma; Pa; ƒa/a2A as in Theorem A, which we make explicit for all
N � 13 and for N D 15, such that for all integers w1 � � � � � wN satisfying

(i) for all 1 � i � N , wi C wNC1�i D W and
(ii) for all 1 � i � n, wi � wiC1 C 2,

the number of automorphic cuspidal representations � D ˝0v�v of GLN =Q such that

– for any prime p the representation �p is unramified,
– the infinitesimal character of �1 has eigenvalues w1; : : : ; wN ,
– �_ ' � ˝ j det j�W

is equal to X
a2A

trQ.�ma /=Q
�
Pa.w1; : : : ; wn/�

ƒa.w1;:::;wn/
ma

�
:

We also give a formula for the number of such � ’s for weights w1 > � � � > wn that do not
satisfy ii, but additional error terms are needed. See Theorem 4.3.1 for a precise formulation.
As in Theorem A, in fact we provide an algorithm to determine .ma; Pa; ƒa/a2A for any N ,
but our computer was only able to compute these families for N � 13 and N D 15.

For a “generalization of Minkowski’s theorem,” special values in low “motivic weight,”
i.e., for w1 � wN small, are more important than general formulae. In their recent book,
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DIMENSIONS OF SPACES OF LEVEL ONE AUTOMORPHIC FORMS 273

Chenevier and Lannes improved on a method using Weil’s explicit formula developed by
Mestre [68], Fermigier [35] and Miller [71], to rule out the existence of certain cuspidal auto-
morphic representations. Combining this method with dimension formulae for modular
forms and Siegel modular forms in genus 2, they proved [24, théorème F] that any automor-
phic cuspidal representation � D ˝0v�v of GLN =Q for some N � 1 such that for any prime
p the representation �p is unramified and the eigenvalues of the infinitesimal character
of �1 are integral, say w1 � � � � � wN (counted with multiplicities) with w1 � wN � 22,
then up to twisting by an integral power of j det j, � is one of 11 explicitly given representa-
tions. For these 11 representations, N 2 f1; 2; 3; 4g, �_ ' � ˝ j det j�W for some integerW ,
and wi � wiC1 C 2 for all i . In particular these representations � can be obtained from
elliptic modular forms or Siegel modular forms in genus 2. Evaluating the formulae in
Theorem B, we find the same 11 representations � with motivic weight w1 � wN � 22. We
also find examples in motivic weight greater than 22, for example 23 for N D 6; 10 and 24
for N D 7; 8.

Beyond 23, it is not clear whether bounding w1 � wN (but not N ) imposes finiteness of
the set of such automorphic cuspidal representations.

1.2. Contents of the paper

Let G be a classical split reductive group over Z admitting discrete series at the real place,
i.e., one of SO2nC1, Sp2n or SO4n for n � 1. In the first part of this paper we give an
algorithm, which we have implemented, to compute the geometric side in Arthur’s “simple”
trace formula in [5] (see also [39]) for G and the trivial Hecke operator in level one at the
finite places, that is the characteristic function of G.bZ/. Arthur obtains this trace formula by
putting a stable cuspidal smooth compactly supported distribution f1;�.g1/dg1 on G.R/,
associated with an arbitrary highest weight � for G, in his general invariant trace formula.
There are essentially three steps to compute the geometric side of the trace formula:

1. For any prime p, compute the local orbital integrals of the characteristic function
of G.Zp/ at torsion elements 
p in G.Qp/ (with respect to a Haar measure on the
connected centralizer of 
p). In Sections 3.2.2 and 3.2.3 we reduce the computation
of these orbital integrals to

1. A counting problem involving quadratic and hermitian (resp. alternate and anti-
hermitian) lattices over cyclotomic extensions of Zp if G is orthogonal (resp.
symplectic). For practical purposes the fact that for any cyclotomic polyno-
mial P the ring ZpŒX�=.P / is a product of integrally closed domains is crucial,
because one can appeal to classification results for lattices over the ring of
integers of a p-adic field ([75], [51]). Moreover in the cyclotomic setting the
“ramification” of 
p (i.e., the defect of smoothness of its centralizer over Zp) is
rather mild: see Lemma 3.2.7.

2. Computing the volumes of the automorphism groups of such lattices. This is
achieved thanks to formulae for the more classical local densities of these lattices
given in [38], [26] and [27]. Proposition 3.2.9 compares the local density of a
lattice with the volume of its automorphism group with respect to the canonical
Haar measure defined by Gross in [40], by comparing the Smith-Minkowski-
Siegel mass formula of [38] with its analogue in [40].

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



274 O. TAÏBI

2. For any semisimple R-elliptic and torsion conjugacy class 
 2 G.Q/ with connected
centralizer I, use a mass formula (again, either [38, 10.20] for a classical formula-
tion, or [40, Theorem 9.9], which relies on [78, Theorem 1.6], for a more polished
formulation encompassing the case of non-classical groups) to compute the volume
of I.Q/nI.A/ using values of Dirichlet L-functions at nonnegative integers. Putting
together the previously computed local orbital integrals and global volumes and
grouping the conjugacy classes 
 which become conjugate over Q, we get rational
numbers .mc/c2C 0 , where C 0 is a finite set of torsion conjugacy classes G.Q/ defined
over Q, such that the elliptic part of Arthur’s trace formula isX

c2C 0

mc Tr.c jV�/:

Here V� denotes the irreducible algebraic representation of G with highest weight �.
3. Analyze the character of stable (averaged) discrete series on arbitrary maximal tori

of G.R/ to express the parabolic terms using elliptic terms for groups of lower
semisimple rank. We follow [39], and we only add that for the trivial Hecke oper-
ator the general formula for the archimedean factor of each parabolic term simplifies
significantly (Proposition 3.3.2) thanks to a simple formula for the alternate sum of
the coefficients occurring in Harish-Chandra’s formula for the character of stable
discrete series (Proposition 3.3.1). Long but straightforward calculations lead to
explicit formulae for the parabolic terms (see Section 3.3.4).

Thus for any irreducible algebraic representation V� of G characterized by its highest
weight �, we can compute the spectral side of the trace formula, which we now describe. Let
K1 be a maximal compact subgroup of G.R/ and let g D C˝R g0 where g0 D Lie.G.R//.
For an irreducible .g; K1/-module �1, consider the Euler-Poincaré characteristic

EP.�1 ˝ V �� / D
X
i

.�1/i dimH i
�
.g; K1/; �1 ˝ V

�
�

�
where V� is seen as a representation of G.R/. Let…disc.G/ be the set of isomorphism classes
of irreducible .g; K1/ � G.Af /-modules occurring in the discrete automorphic spectrum
of G. For � 2 …disc.G/ denote bym� 2 Z�1 the corresponding multiplicity. Let…unr

disc.G/ be
the set of � 2 …disc.G/ which are unramified at all the finite places of Q. For any dominant
weight � the set of � 2 …unr

disc.G/ such thatH �..g; K1/; �1˝V �� / ¤ 0 is finite. The spectral
side of Arthur’s trace formula in [5] for our choice of function at the finite places is

(1.2.1)
X

�2…unr
disc.G/

m�EP.�1 ˝ V �� /:

This integer is interesting but it is only an alternate sum. In order to obtain subtler informa-
tion, e.g., the sum of m� for �1 isomorphic to a given .g; K1/-module, in the second part
of this paper we use Arthur’s endoscopic classification of the discrete automorphic spectrum
for symplectic and special orthogonal groups [8]. Arthur’s work allows us to parametrize the
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DIMENSIONS OF SPACES OF LEVEL ONE AUTOMORPHIC FORMS 275

representations � contributing to the spectral side 1.2.1 using self-dual automorphic repre-
sentations for general linear groups. Denote by WR the Weil group of R and �C=R the char-
acter of WR having kernel WC ' C�. For w 2 1

2
Z define the bounded Langlands param-

eter Iw W WR ! GL2.C/ as
IndWR

WC

�
z 7! .z=jzj/2w

�
so that I0 ' 1˚ �C=R and I�w ' Iw . The three families that we are led to consider are the
following.

1. For n � 1 and w1; : : : ; wn 2 1
2
Z n Z such that w1 > � � � > wn > 0, define

S.w1; : : : ; wn/ as the set of self-dual automorphic cuspidal representations of GL2n=Q
which are unramified at all the finite places and with Langlands parameter at the real
place

Iw1 ˚ � � � ˚ Iwn :

Equivalently we could replace the last condition by “with infinitesimal character
having eigenvalues f˙w1; : : : ;˙wng”. Here S stands for “symplectic,” as the conjec-
tural Langlands parameter of such a representation should be symplectic.

2. For n � 1 and integersw1 > � � � > wn > 0 defineOo.w1; : : : ; wn/ as the set of self-dual
automorphic cuspidal representations of GL2nC1=Q which are everywhere unramified
and with Langlands parameter at the real place

Iw1 ˚ � � � ˚ Iwn ˚ �
n
C=R:

Equivalently we could replace the last condition by “with infinitesimal character
having eigenvalues f˙w1; : : : ;˙wn; 0g”. Here Oo stands for “odd orthogonal”.

3. For n � 1 and integersw1 > � � � > w2n�1 > w2n � 0 defineOe.w1; : : : ; w2n/ as the set
of self-dual automorphic cuspidal representations of GL4n=Q which are everywhere
unramified and with Langlands parameter at the real place

Iw1 ˚ � � � ˚ Iw2n :

In this case also we could replace the last condition by “with infinitesimal char-
acter having eigenvalues f˙w1; : : : ;˙w2ng,” even in the slightly singular case where
w2n D 0. Here Oe stands for “even orthogonal”.

These three families are exactly the automorphic representations occurring in Theorem B,
up to a twist by j det j1=2 in the symplectic case corresponding to W D 1, and replacing
condition ii in Theorem B by the weaker condition w1 > � � � > wbN=2c. Following Arthur
using these three families we can define, for any G and � as above, a set‰.G/unr;�

disc of “formal
Arthur-Langlands parameters” which parametrizes the representations � 2 …unr

disc.G/
contributing to 1.2.1. We stress that for a given G all three families take part in these formal
parameters. Among these formal parameters, one can distinguish a subset ‰.G/unr;�

sim of
“simple” parameters, that is the tempered and non-endoscopic ones. When G D SO2nC1

(resp. Sp2n, resp. SO4n), this set is exactly S.w1; : : : ; wn/ (resp. Oo.w1; : : : ; wn/, resp.
Oo.w1; : : : ; w2n/) where .wi /i is determined by �. The contribution of any element
of ‰.G/unr;�

sim to the spectral side 1.2.1 is a non-zero number depending only on G.R/.
Therefore it is natural to attempt to compute the cardinalities of the sets S.�/, Oo.�/ and
Oe.�/ inductively, the induction being on the dimension of G. More precisely we have
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276 O. TAÏBI

to compute the contribution of ‰.G/unr;�
disc n ‰.G/

unr;�
sim to 1.2.1 to deduce the cardinality

of ‰.G/unr;�
sim .

When the highest weight � is regular, any element of ‰.G/unr;�
disc is tempered and conse-

quently any � 2 …unr
disc.G/ contributing to the spectral side is such that �1 is a discrete series

representation having the same infinitesimal character as V�. Thanks to the work of Shelstad
on real endoscopy and using Arthur’s multiplicity formula we can make explicit the contri-
bution of ‰.G/unr;�

disc n ‰.G/
unr;�
sim to the Euler-Poincaré characteristic on the spectral side in

this case (see Section 4.2.1). The general case is more interesting because we have to consider
non-tempered representations �1. Arthur’s construction of non-tempered Arthur packets
at the real place in [8] is rather abstract and is proved using a global method. Recently Aran-
cibia, Moeglin and Renard [3] have proved the non-tempered Arthur packets at the real place
and for a cohomological Arthur-Langlands parameter coincide with those constructed long
ago by Adams and Johnson in [2] using cohomological induction. This allows us to compute
explicitly the non-tempered contributions to the Euler-Poincaré characteristic.

Thus we obtain an algorithm to compute the cardinalities of the sets S.w1; : : : ; wn/,
Oo.w1; : : : ; wn/ andOe.w1; : : : ; w2n/. For the computer the hard work consists in computing
local orbital integrals. Our current implementation, using Sage [87] and available at
http://wwwf.imperial.ac.uk/~otaibi/dimtrace/, is able to compute them at least
for rank.G/ � 7. See the tables at the Web page above for some values.

Once these cardinalities are known we can count the number of � 2 …unr
disc.G/ such that

�1 is isomorphic to a given .g; K1/-module having same infinitesimal character as V� for
some highest weight �. A classical application is to compute dimensions of spaces of (vector-
valued) Siegel cusp forms. By completing the dictionary between Siegel modular forms and
automorphic forms in [9], we will show that the dimension of the space Sk1;:::;kn.�n/ of level
one vector-valued cuspidal Siegel modular forms of weight .k1; : : : ; kn/ satisfying kn � nC1
can be computed using Arthur’s endoscopic classification of the discrete spectrum for Sp2n,
proving Theorem A.

Of course the present work is not the first one to attempt to use the trace formula to obtain
spectral information, and we have particularly benefited from the influence of [42] and [25].
In [42] Gross and Pollack use a simpler version of the trace formula, with hypotheses at a
finite set S of places of Q containing the real place and at least one finite place. This trace
formula has only elliptic terms. They use the Euler-Poincaré function defined by Kottwitz in
[60] at the finite places in S . These functions have the advantage that their orbital integrals
were computed conceptually by Kottwitz. At the other finite places, they compute the stable
orbital integrals indirectly, using computations of Lansky and Pollack [66] for inner forms
which are compact at the real place. They do so for the groups SL2, Sp4 and G2. Without
Arthur’s endoscopic classification it was not possible to deduce the number of automorphic
representations of a given type from the Euler-Poincaré characteristic on the spectral side,
even for a regular highest weight �. The condition card.S/ � 2 forbids the study of
level one automorphic representations. More recently, Chenevier and Renard [25] computed
dimensions of spaces of level one algebraic automorphic forms in the sense of [41], for the
inner forms of the groups SO7, SO8 and SO9 which are split at the finite places and compact
at the real place. They used Arthur’s classification to deduce the cardinalities of the sets
S.w1; w2; w3/, S.w1; w2; w3; w4/, Oe.w1; w2; w3; w4/ for w4 > 0, and using the conjectural
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dimension formula of [10], Oe.w1; w2; w3; 0/. Unfortunately the symplectic groups do not
have such inner forms, nor do the special orthogonal groups SOn when n mod 8 62 f�1; 0; 1g.

1.3. Conditionality of Arthur’s endoscopic classification

Since the endoscopic interpretation in Section 4 of Arthur’s trace formula in [5] rests upon
Arthur’s endoscopic classification in [8], it is conditional on results for which proofs were
announced but are not publicly available at the time of writing the present paper, namely:

– [8] uses the twisted trace formula, proved in [62], and its stabilization, achieved in the
series of papers [73] and [96]. This stabilization uses the weighted twisted fundamental
lemma, which in [21], [22] was proved in the split case and announced in the general
case.

– The references [A24], [A25], [A26] and [A27] in [8] have not been made public yet.

Therefore the main results of Sections 4 and 5, including Theorems A and B, are also
conditional on these results.
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2. Notations and definitions

Let us precise some notations. Let Af denote the finite adèles
Q0
p Qp and A D R � Af .

We will use boldface letters to denote linear algebraic groups, for example G. For schemes we
denote base change simply by using a subscript, for example GQp instead of G�Q Qp where
G is defined over Q. For a reductive group G we abusively call “Levi subgroup of G” any Levi
subgroup of a parabolic subgroup of G, i.e., the centralizer of a split torus. Rings are unital.
If R is a ring and ƒ a finite free R-module, rkR.ƒ/ denotes its rank. If G is a finite abelian
group G^ will denote its group of characters.

Let us define the reductive groups that we will use. For n � 1, let qn be the quadratic form
on Zn defined by

qn.x/ D

b.nC1/=2cX
iD1

xixnC1�i :

Let On be the algebraic group over Z representing the functor

Category of commutative rings! Category of groups

A 7! fg 2 GLn.A/ j qn ı g D qng :

For n odd define SOn as the kernel of det W On ! �2. For n even, det W On ! �2 factors
through the Dickson morphism Di W On ! Z=2Z (constant group scheme over Z) and the
morphism Z=2Z! �2 “mapping 1 2 Z=2Z to �1 2 �2”. In that case SOn is defined as the

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



278 O. TAÏBI

kernel of Di. For any n � 1, SOn ! Spec.Z/ is reductive in the sense of [32, exposé XIX,
définition 2.7]. It is semisimple if n � 3.

For n � 1 the subgroup Sp2n of GL2n=Z defined as the stabilizer of the alternate form

.x; y/ 7!

nX
iD1

xiy2nC1�i � x2nC1�iyi

is also semisimple over Z in the sense of [32, exposé XIX, définition 2.7].

If G is one of SO2nC1 (n � 1), Sp2n (n � 1) or SO2n (n � 2), the diagonal matrices
form a split maximal torus T, and the upper-triangular matrices form a Borel subgroup
B. We will simply denote by t D .t1; : : : ; tn/ the element of T.A/ (A a commutative ring)
whose first n diagonal entries are t1; : : : ; tn. For i 2 f1; : : : ; ng, let ei 2 X�.T/ be the char-
acter t 7! ti . The simple roots corresponding to B are8̂̂<̂

:̂
e1 � e2; : : : ; en�1 � en; en if G D SO2nC1;

e1 � e2; : : : ; en�1 � en; 2en if G D Sp2n;

e1 � e2; : : : ; en�1 � en; en�1 C en if G D SO2n:

In the first two cases (resp. third case), the dominant weights inX�.T/ are the k D
Pn
iD1 kiei

with k1 � � � � � kn � 0 (resp. k1 � � � � � kn�1 � jknj).

3. Computation of the geometric side of Arthur’s trace formula

Arthur’s invariant trace formula [4] for a reductive group G=Q simplifies and becomes
more explicit when G.R/ has discrete series and a “nice” smooth compactly supported
distribution f1.g1/dg1 is used at the real place, as shown in [5] (see also [39] for a topo-
logical proof). In Section 3.1 we recall the elliptic terms Tell

�
f1.g1/dg1

Q
p fp.gp/dgp

�
on the geometric side of this trace formula, where

Q
p fp.gp/dgp is a smooth compactly

supported distribution on G.Af /. Then (Section 3.2) we give an algorithm to compute these
elliptic terms when G is a split classical group and for any prime p, fp.gp/dgp is the trivial
element of the unramified Hecke algebra. Finally (Section 3.3) we give explicit formulae for
the parabolic terms using the elliptic terms for groups of lower semisimple rank.

3.1. Elliptic terms

3.1.1. Euler-Poincaré measures and functions. – Let G be a reductive group over R. Thanks
to [80], we have a canonical signed Haar measure on G.R/, called the Euler-Poincaré measure
and denoted by �EP;G.R/. It is non-zero if and only if G.R/ has discrete series, that is if and
only if G has a maximal torus defined over R which is anisotropic.

So assume that G.R/ has discrete series. LetK be a maximal compact subgroup of G.R/,
g0 D Lie.G.R// and g D C˝R g0. Let V� be an irreducible algebraic representation of GC,
parametrized by its highest weight �. We can see V� as an irreducible finite-dimensional
representation of G.R/, or as an irreducible .g; K/-module. If � is a .g; K/-module of finite
length, consider

EP.�; �/ WD
X
i

.�1/i dimH i
�
.g; K/; � ˝ V ��

�
:
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Clozel and Delorme [30, théorème 3] show that there is a smooth, compactly supported
distribution f�.g/dg on G.R/ such that for any � as above,

Tr .� .f�.g/dg// D EP.�; �/:

If � is irreducible and belongs to the L-packet …disc.�/ of discrete series having the same
infinitesimal character as V�, this number is equal to .�1/q.G.R// where 2q.G.R// D
dim G.R/ � dimK. If � is irreducible and tempered but does not belong to …disc.�/ it
is zero.

These nice spectral properties of f� allow Arthur to derive nice geometric properties,
similarly to the p-adic case in [60]. For 
 2 G.R/, the orbital integralO
 .f�.g/dg/ vanishes
unless 
 is elliptic semisimple, in which case, letting I denote the connected centralizer of 

in G:

O
 .f�.g/dg/ D Tr
�

 jV ��

�
�EP;I.R/:

In fact [5, Theorem 5.1] computes more generally the invariant distributions IM.
; f�/ occur-
ring in the trace formula (here M is a Levi subgroup of G), and the orbital integrals above
are just the special case M D G. These more general invariant distributions will be used in
the parabolic terms. Note that to obtain the above simple formula from [5, Theorem 5.1],
we have used Kottwitz’ comparison of Euler-Poincaré measures between inner forms [60,
Theorem 1].

3.1.2. Orbital integrals forp-adic groups. – We recall more precisely the definition of orbital
integrals for p-adic groups. Let p be a prime and G a reductive group over Qp. Let K be a
compact open subgroup of G.Qp/, 
 2 G.Qp/ a semisimple element, and I its connected
centralizer in G. Lemma 19 of [47] implies that for any double cosetKcK in G.Qp/, the setX
of Œg� 2 KnG.Qp/=I.Qp/ such that g
g�1 2 KcK is finite. Let� (resp. �) be a Haar measure
on G.Qp/ (resp. I.Qp/). Then the orbital integral at 
 of the characteristic function of KcK

O
 .1KcK ; �; �/ WD
Z

G.Qp/=I.Qp/
1KcK

�
g
g�1

� d�
d�
.g/

is equal to X
Œg�2X

�.K/

�
�
g�1Kg \ I.Qp/

� :
The Haar measure O
 .1KcK ; �; �/� is canonical, i.e., it does not depend on the choice
of �. Thus O
 , the orbital integral at 
 , canonically maps the space of smooth compactly
supported complex valued distributions on G.Qp/ (i.e., linear combinations of distribu-
tions of the form 1KcK.g/d�.g/) to the one-dimensional space of complex Haar measures
on I.Qp/. We will denote

O
 .f .g/d�.g// WD O
 .f; �/ WD O
 .f; �; �/�

for f a smooth and compactly supported function on G.Qp/.

R 3.1.1. – Note that any automorphism of the algebraic group I preserves �, and
thus if I and � are fixed, for any algebraic group I0 isomorphic to I, there is a well-defined
corresponding Haar measure on I0.
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3.1.3. Definition of the elliptic terms. – Let G be a reductive group overQ such that G.R/ has
discrete series. Let � be a highest weight for the group GC. Choose a Haar measure dg1
on G.R/, and let f1 be a smooth compactly supported function on G.R/ such that the
distribution f1;�.g1/dg1 computes the Euler-Poincaré characteristic with respect to V�
as in 3.1.1. Let

Q
p fp.gp/dgp be a smooth compactly supported distribution on G.Af /.

For almost all primes p, GQp is unramified, fp D 1Kp and
R
Kp
dgp D 1 where Kp is

a hyperspecial maximal compact subgroup in G.Qp/. Let C.G/ be the set of semisimple
conjugacy classes cl.
/ in G.Q/ such that 
 belongs to an anisotropic maximal torus
in G.R/. For cl.
/ 2 C.G/, denote by I the connected centralizer of 
 in G. Given such
a 
 , for almost all primes p, IQp is unramified and O
 .fp.gp/dgp/ is the Haar measure
giving measure one to a hyperspecial maximal compact subgroup of I.Qp/ (see [59, Corol-
lary 7.3]). Thus

Q
p O
 .fp.gp/dgp/ is a well-defined complex Haar measure on I.Af /.

Let f .g/dg D f1;�.g1/dg1
Q
p fp.gp/dgp. The elliptic part of the geometric side of

Arthur’s trace formula is

(3.1.1) Tell.f .g/dg/ D
X

cl.
/2C.G/

Vol.I.Q/nI.A//
card .Cent.
;G.Q//=I.Q//

Tr.
 jV �� /

where I.R/ is endowed with the Euler-Poincaré measure, I.Af / the complex Haar measureQ
p O
 .fp.gp/dgp/, I.A/ D I.R/ � I.Af / the product measure, and I.Q/ the counting

measure. The set of cl.
/ 2 C.G/ such that for any prime p, 
 is conjugate in G.Qp/ to
an element belonging to the support of fp is finite, so that the sum has only a finite number
of nonzero terms. This is a special case of the finiteness statement in [4, Theorem 3.3], but in
the cases that will be considered for computation in this paper, this finiteness property can
also be obtained as a corollary of the algorithm described in the next section.

3.2. Computation of the elliptic terms in the trace formula

Our first task is to explicitly compute Tell.f .g/dg/ when G is one of SO2nC1, Sp2n or
SO4n and moreover for any prime p, fp D 1G.Zp/ and

R
G.Zp/ dgp D 1. In this case any


 2 G.Q/ whose contribution to Tell.f .g/dg/ is nonzero is torsion (
 r D 1 for some integer
r > 0), since 
 is compact in G.Qv/ for any place v. Here “compact” means that the smallest
closed subgroup of G.Qv/ containing 
 is compact, and it is equivalent to the fact that the
eigenvalues of 
 in any faithful algebraic representation of GQv have norm one.

First we describe the semisimple conjugacy classes in G.Q/ and their centralizers, a neces-
sary first step to compute the set C and the groups I. Then we explain how to enumerate the
conjugacy classes of torsion elements in the group G.Zp/. To be precise we can compute a
collection of subsets .Ys/s of G.Zp/ such that

fg 2 G.Zp/ j 9r > 0; gr D 1g D
G
s

fxyx�1 jy 2 Ys; x 2 G.Zp/g:

Note that this leaves the possibility that for a fixed s, there exist distinct y; y0 2 Ys which are
conjugated under G.Zp/. Thus it seems that to compute local orbital integrals we should
check for such cases and throw away redundant elements in each Ys , and then compute
the measures of the centralizers of y in G.Zp/. This would be a computational nightmare.
Instead we will show in Section 3.2.3 that the fact that such orbital integrals are masses (as
in “mass formula”) implies that we only need to compute the cardinality of each Ys . Finally
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the Smith-Minkowski-Siegel mass formulae of [38] provide a means to compute the global
volumes.

3.2.1. Semisimple conjugacy classes in classical groups. – Let us describe the absolutely
semisimple conjugacy classes in classical groups over a field, along with their centralizers.
It is certainly well-known, but we could not find a reference. We explain in detail the case
of quadratic forms (orthogonal groups). The case of alternate forms (symplectic groups) is
similar but simpler since characteristic 2 is not “special” and symplectic automorphisms have
determinant 1. The case of (anti-)hermitian forms (unitary groups) is even simpler but it will
not be used hereafter.

Let V be a vector space of finite dimension over a (commutative) fieldK, equipped with a
regular (“ordinaire” in the sense of [31, exposé XII]) quadratic form q. Let 
 2 O.q/ be abso-
lutely semisimple, i.e., 
 2 EndK.V / preserves q and the finite commutativeK-algebraKŒ
�
is étale. Since 
 preserves q, theK-automorphism � ofKŒ
� sending 
 to 
�1 admits an alter-
nate definition: if dimK V is even or 2 ¤ 0 in K, � is the restriction to KŒ
� of the antiauto-
morphism of EndK.V /mapping an endomorphism to its adjoint with respect to the bilinear
form Bq corresponding to q, defined by the formula Bq.x; y/ WD q.x C y/ � q.x/ � q.y/.

In characteristic 2 and odd dimension, .V; q/ is the direct orthogonal sum of its 
 -stable
subspaces V 0 D ker.
 �1/ and V 00 D kerP.
/ where .X �1/P.X/ 2 KŒX�nf0g is separable
and annihilates 
 . If V 00 were odd-dimensional, the kernel of BqjV 00�V 00 would be a 
 -stable
line Kx with q.x/ ¤ 0, which imposes 
.x/ D x, in contradiction with P.1/ ¤ 0. Thus
if V 00 ¤ 0 we have that KŒ
� D K Œ
 jV 00 � � K and � D � 00 � � 0 where � 0 D IdK and � 00 is
described as in the previous case.

For a monic polynomial P.X/ D Xd C ad�1X
d�1 C � � � C a0 such that a0 ¤ 0,

let inv.P / D XdC a1
a0
Xd�1C� � �C ad�1

a0
XC 1

a0
, so that the roots of inv.P / are the inverses of

the roots of P , with the same multiplicities. Grouping the irreducible factors of the minimal
polynomial of 
 by inv-orbits, we obtain a natural decomposition as a finite product:

.KŒ
�; 
/ D
Y
i

.Ai ; 
i /

where for any i , Ai is a finite étale K-algebra generated by 
i such that 
i 7! 
�1i is a well-
definedK-involution �i ofAi and Fi D fx 2 Ai j �i .x/ D xg is a field. Moreover the minimal
polynomials Pi of 
i are pairwise coprime. For any i , either:

– 
2i D 1 and Ai D K, i.e., Pi .X/ 2 fX � 1;X C 1g,
– 
2i ¤ 1 and Ai is a separable quadratic extension of Fi , Gal.Ai=Fi / D f1; �ig;, i.e.,
Pi is irreducible over K and inv.Pi / D Pi but no root of Pi is its own inverse,

– 
2i ¤ 1, Ai ' Fi �Fi and �i swaps the two factors, i.e., Pi D Qi � inv.Qi / whereQi is
a monic irreducible polynomial such that inv.Qi / ¤ Qi .

Let Itriv, Ifield and Isplit be the corresponding sets of indices. There is a corresponding
orthogonal decomposition V D

L
i Vi where Vi WD kerPi .
/ is a projective Ai -module of

constant finite rank. We can see 
i as 
 jVi .

D 3.2.1. – Let F be a field, A an étale F -algebra such that dimF A � 2,
and W a finite projective A-module. Let ˛ be the unique F -automorphism of A such that
AutF .A/ D fIdA; ˛g. An ˛-hermitian form on W is a mapping h W W ! F such that
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1. The mapping W �W ! F; .x; y/ 7! h.x C y/ � h.x/ � h.y/ is bilinear over F ,
2. For any � 2 A and x 2 W , h.�x/ D �˛.�/ h.x/.

Note that whenA D F , this is just the definition of a quadratic form. We chose a common
definition to obtain uniform statements, for Example Lemma 3.2.3 below. The following
proposition shows that our definition is equivalent to the more usual one, using sesquilinear
forms.

P 3.2.2. – Assume that we are in the situation of Definition 3.2.1.

1. For any y 2 W , there is a unique A-linear mapping Bh.�; y/ W W ! A such that for
any x 2 W , h.x C y/ � h.x/ � h.y/ D TrA=F .Bh.x; y//.

2. For any x 2 W , the mapping Bh.x; �/ W W ! F is ˛-semilinear.
3. For any x; y 2 W , Bh.x; y/ D ˛.Bh.y; x//.
4. If dimF A D 2, then for any x 2 W , h.x/ D Bh.x; x/.

Proof. – 1. The first assertion follows from non-degeneracy of TrA=F and the fact that
HomA.W;A/ and HomF .W; F / have the same dimension over F .

2. The mapping Bh is obviously F -linear in the second variable. We can assume that
dimF A D 2. For � 2 A� and x; y 2 W , we have

NA=F .�/TrA=F .Bh.x; y// D h.�x C �y/ � h.�x/ � h.�y/ D TrA=F .�Bh.x; �y//

and since x 7! �Bh.x; �y/ � NA=F .�/Bh.x; y/ is A-linear we obtain Bh.x; �y/ D
˛.�/Bh.x; y/. If A D A�CF this is enough to conclude that Bh is ˛-semilinear. Note
that A� C F A if and only if A ' F � F and F has two elements.

Let us give a proof of the second assertion in the split case A ' F � F , so that all
cases will be covered. We can see W as W1 �W2, where each Wk is an F -vector space.
Since the two non-trivial idempotents .1; 0/ and .0; 1/ in A are killed by the norm, we
get that each hjWk vanishes identically. Thus W1 � W2 ! F; .x1; x2/ 7! h..x1; x2//

is bilinear over F , and Bh..x1; x2/; .y1; y2// D .h.x1; y2/; h.y1; x2//. The second
assertion can be checked directly on this formula.

3. The third assertion follows from the first two. Note that it implies that Bh.x; x/ 2 A˛ D F
for any x 2 W .

4. For any x 2 W and � 2 A, by letting y D �x in the definition of Bh we see that
TrA=F .�/h.x/ D TrA=F .Bh.x; �x// D TrA=F .�/Bh.x; x/. One can choose � such that
TrA=F .�/ D 1 to conclude.

L 3.2.3. – For any i , there is a unique �i -hermitian form hi W Vi ! Fi (see
Definition 3.2.1) such that for any v 2 Vi , q.v/ D TrFi=K .hi .v//.

Proof. – If i 2 Itriv this is obvious, so we can assume that dimFi Ai D 2. Let us show that
the K-linear map

T W f�i -hermitian forms on Vig �! fK-quadratic forms on Vi preserved by 
ig

hi 7!
�
v 7! TrFi=Khi .v/

�
is injective. For any v;w 2 Vi , BT.hi /.v; w/ D TrAi=K

�
Bhi .v; w/

�
. If hi 2 kerT , then

BT.hi / D 0 and by non-degeneracy of TrAi=K we have Bhi D 0 and thus hi D 0.
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To conclude we are left to show that the twoK-vector spaces above have the same dimen-
sion. Let d D dimK Fi and n D dimAi Vi , then dimKf�i -hermitian forms on Vig D dn2. To
compute the dimension of the vector space on the right hand side, we can tensor overK with
a finite separable extension K 0=K such that 
i is diagonalizable over K 0. Since 
2i ¤ 1 the
eigenvalues of 1˝ 
i onK 0˝K Vi are t1; t�11 ; : : : ; td ; t

�1
d

where the t˙1
k

are distinct and¤ 1.
Furthermore each eigenspace UC

k
WD ker.1˝ 
i � tk ˝ 1/; U�k WD ker.1˝ 
i � t�1k ˝ 1/ has

dimension n over K 0. If q0 is a K 0-quadratic form on K 0 ˝K Vi preserved by 1˝ 
i , then:

– for any k, q0j
U˙
k

D 0 since t2
k
¤ 1,

– for any k ¤ l , Bq0 jU˙
k
�U˙

l

D 0 since tk=tl ; tktl ¤ 1.

Hence q0 is determined by the restrictions of Bq0 to UC
k
� U�

k
, and conversely any family

of K 0-bilinear forms UC
k
� U�

k
! K 0 (k 2 f1; : : : ; dg) gives rise to a K 0-quadratic form

on K 0 ˝K Vi preserved by 1˝ 
i , and we conclude that the dimension is again dn2.

The regularity of q implies that of hi (when 
2i ¤ 1, regularity means non-degeneracy
of Bhi ). In the split case, Vi can be more concretely described as a pair .Wi ; W 0i / of vector
spaces over Fi having the same dimension, hi identifies W 0i with the dual W �i of Wi over Fi ,
and thus the hermitian space .Vi ; hi / is isomorphic to ..Wi ; W �i /; .w; f / 7! f .w//.

If instead of q we consider a non-degenerate alternate form h�; �i, we have the same kind of
decomposition for .KŒ
�; 
/. Moreover the above lemma still holds if instead of considering
hermitian forms hi we consider �i -sesquilinear forms Bi W Vi � Vi ! Ai such that for any
v 2 Vi , TrAi=Fi .Bi .v; v// D 0.

P 3.2.4. – Two absolutely semisimple elements 
; 
 0 of O.V; q/ are conjugate
if and only if there is a bijection � between their respective sets of indices I and I 0 and compatible
isomorphisms .Ai ; 
i / '

�
A0
�.i/

; 
 0
�.i/

�
and .Vi ; hi / '

�
V 0
�.i/

; h0
�.i/

�
. Moreover the algebraic

group Cent.
;O.V; q// is naturally isomorphic toY
i2Itriv

O.Vi ; hi / �
Y

i2Ifield

ResFi=KU.Vi ; hi / �
Y

i2Isplit

ResFi=KGL.Wi /:

If dimK V is odd O.V; q/ D SO.V; q/��2, so this proposition easily yields a description
of absolutely semisimple conjugacy classes in SO.V; q/ D SO.V; q/.K/ and their central-
izers. If dimK V is even the proposition still holds if we replace O.V; q/ by SO.V; q/ andQ
i2Itriv

O.Vi ; hi / by S
�Q

i2Itriv
O.Vi ; hi /

�
and add the assumption Itriv ¤ ;. If dimK V

is even and Itriv D ;, the datum .Ai ; 
i ; Vi ; hi /i2I determines two conjugacy classes
in SO.V; q/.

In the symplectic case there is a similar proposition, but now the indices i 2 Itriv yield
symplectic groups.

Note that ifK is a local or global field in which 2 ¤ 0, the simple and explicit invariants in
the local case and the theorem of Hasse-Minkowski (and its simpler analogue for hermitian
forms, see [52]) in the global case allow us to classify the semisimple conjugacy classes
explicitly. For example ifK D Q, givenM > 0 one can enumerate the semisimple conjugacy
classes in SO.V; q/ annihilated by a non-zero polynomial having integer coefficients bounded
by M .
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3.2.2. Semisimple conjugacy classes in hyperspecial maximal compact subgroups. – To
compute orbital integrals in the simplest case of the unit in the unramified Hecke algebra
of a split classical group over a p-adic field, it would be ideal to have a similar description
of conjugacy classes and centralizers valid over Zp. It is straightforward to adapt the above
description over any ring (or any base scheme). However, it is not very useful as the conju-
gacy classes for which we would like to compute orbital integrals are not all “semisimple
over Zp,” i.e., ZpŒ
� is not always an étale Zp-algebra. Note that the “semisimple over Zp”
case is covered by [59, Corollary 7.3] (with the natural choice of Haar measures, the orbital
integral is equal to 1). Nevertheless using the tools of the previous section, we give in this
section a method to exhaust the isomorphism classes of triples .ƒ; q; 
/ where ƒ is a finite
free Zp-module, q is a regular quadratic form on ƒ and 
 2 SO.ƒ; q/. The symplectic case
is similar. This means that we will be able to enumerate them, but a priori we will obtain
some isomorphism classes several times. In the next section we will nonetheless see that the
results of this section can be used to compute the orbital integrals, without checking for
isomorphisms.

Let ƒ be a free Zp-module of finite rank endowed with a regular quadratic form q,
and let 
 2 AutZp .ƒ/ preserving q and semisimple over Qp. We apply the notations and
considerations of Section 3.2.1 to the isometry 
 of Qp ˝Zp ƒ, to obtain quadratic or
hermitian spaces

�
Qp ˝Zp ƒ

�
i
. Consider the lattices

ƒi WD ƒ \
�
Qp ˝Zp ƒ

�
i
D ker .Pi .
/ j ƒ/ :

The family
�Q

j¤i Pj

�
i

generates the unit ideal in QpŒX�, thus there exists N � 0 be such

that pN belongs to the ideal of ZpŒX� generated by these polynomials. Then ƒ=
�L

i ƒi
�

is
annihilated by pN and it is a finite group.

L 3.2.5. – For any i and any v 2 ƒi n pƒi , we have

(3.2.1)

(
pN 2 Bq.v;ƒi / if p � 3 or rkZpƒi is even,

pN 2 Bq.v;ƒi / or q.v/ 2 Z�2 if p D 2 and rkZpƒi is odd.

Proof. – Since ƒi is saturated in ƒ, v 62 pƒ. If p is odd, Bq is non-degenerate over Zp
and so there exists w 2 ƒ such that Bq.v; w/ D 1. Then pNw 2

L
i ƒi , say pNw D

P
i wi

with wi 2 ƒi , and since this direct sum is orthogonal for q, we have Bq.v; wi / D pN .

If p D 2 then by regularity of q either vC2ƒ (inƒ=2ƒ) is not in the kernel of Bq mod 2,
and we can argue as in the previous case, or v C 2ƒ is the unique non-zero element
of ker.Bq mod 2/. We can assume that we are in the latter case, and by regularity of q we
have q.v/ 2 Z�2 . In particular 2 2 Bq.v;Z2v/, and if N > 0 this implies 2N 2 Bq.v;ƒi /.
Finally if N D 0 then ƒ is the orthogonal direct sum of the ƒi ’s, and v belongs to the
unique ƒi having odd rank over Z2.

TheZpŒ
i �-moduleƒi is endowed with a �i -hermitian (quadratic if 
2i D 1) form hi taking
values in Fi . The �i -sesquilinear formBi W ƒi �ƒi ! Ai associated with hi has the property
that for all v;w 2 ƒi ,

B.v;w/ D TrAi=Qp .Bi .v; w// :
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From now on we assume for simplicity that ZpŒ
i � is normal (i.e., either it is the integer
ring of an extension of Qp, or the product of two copies of such an integer ring), as it
will be the case in our global situation which imposes that the 
i ’s be roots of unity. The
structure of quadratic or hermitian modules over such rings is known: see [75] for the
quadratic case, [51] for the hermitian case. The “split” case amounts to the comparison of
two lattices in a common vector space (isomorphism classes of such pairs are parametrized
by “invariant factors”). Choose a uniformizer$i of ZpŒ
i � (by definition, in the split case$i

is a uniformizer of OFi ). In all cases, there is a (non-canonical) orthogonal decomposition
ƒi D

L
r2Zƒ

.r/
i such that $�ri Bi jƒ.r/

i
�ƒ

.r/

i

is integral and non-degenerate. If .$di
i / is

the different of ZpŒ
i �=Zp and .p/ D .$
ei
i /, condition 3.2.1 imposes (but in general stays

stronger than) the following:

(3.2.2)

(
ƒ
.r/
i D 0 unless � di � r � �di CNei if p � 3 or rkZpƒi is even,

ƒ
.r/
i D 0 unless 0 � r � max.1;N / if p D 2 and rkZpƒi is odd.

Note that in the second case 
2i D 1 and hi is a quadratic form over Z2. These conditions
provide an explicit version of the finiteness result in Section 3.1.2, since for any i and r there
is a finite number of possible isomorphism classes forƒ.r/i , and when theƒi ’s are fixed, there
is only a finite number of possible 
 -stable q-regular ƒ’s sinceM

i

ƒi � ƒ � p
�max.1;N/

M
i

ƒi :

For efficiency it is useful to sharpen these conditions. Denote by o an orbit of Z=2Z �
Gal

�
Fp=Fp

�
acting on Fp

�
, where the non-trivial element of Z=2Z acts by x 7! x�1.

Concretely, o is an orbit in the set of primitive m-th roots of unity (m coprime to p) under
the subgroup hp;�1i of .Z=mZ/�. Let Io be the set of indices i such that 
i modulo some
(at most two possibilities) maximal ideal of ZpŒ
i � belongs to o. Then for o ¤ o0,

Q
i2Io

Pi
and

Q
i2Io0

Pi generate the unit ideal in ZpŒX�, thus ƒ D
L
oƒIo where

ƒIo D Satƒ

0@M
i2Io

ƒi

1A D ker

0@Y
i2Io

Pi .
/ j ƒ

1A :
Here Satƒ.ƒ0/, the saturation of ƒ0 in ƒ, is defined as ƒ \

�
Qpƒ0

�
. Our task is now to

enumerate the 
 -stable q-regular lattices containing
L
i2Io

ƒi in which eachƒi is saturated.
Denote by ˆr the r-th cyclotomic polynomial. For i 2 Io, there is a canonical topological
Jordan decomposition 
i D ˛iˇi where ˆm.˛i / D 0 (m associated with o as above) and

ˇ
pn

i �����!
n!C1

1:

Note that ZpŒ
i � is a finite free Zp-module, in particular it is compact for the p-adic topology,
and so ˛i ; ˇi 2 ZpŒ
i �, and ZpŒ
i � D ZpŒ˛i �Œˇi �

L 3.2.6. – Recall that we work under the assumption that ZpŒ
i � is normal. Either

– ˇi 2 ZpŒ˛i �, or
– over each factor of QpŒ˛i �, QpŒ
i � is a non-trivial totally ramified field extension and
ˇi � 1 is a uniformizer.
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Proof. – Write ZpŒ˛i � D
Q
k2K Rk where K is finite and each Rk is a finite étale

Zp-algebra that is an integral domain, and denote by "k the idempotent of ZpŒ˛i � corre-
sponding to Rk . Thus ZpŒ
i � D

Q
k2K Rk Œ"kˇi �. Since we have assumed that ZpŒ
i � is

normal, for any k 2 K we have Rk Œ"kˇi � D
Q
l2Lk

R0
k;l

with Lk finite and where each R0
k;l

is a normal integral domain finite over Zp, with corresponding idempotents "0
k;l

. For any
k 2 K and l 2 Lk , "0

k;l
.ˇi � 1/ is topologically nilpotent in R0

k;l
, and so "0

k;l
.ˇi � 1/

belongs to the maximal ideal of R0
k;l

. This means that "k.ˇi � 1/ belongs to all maximal
ideals of Rk Œ"kˇi �. Note that there are card.Lk/ such ideals. Moreover p belongs to all
maximal ideals of Rk Œ"kˇi �, and Rk Œ"kˇi �=.p; "k.ˇi � 1// is a quotient of the finite
field Rk=.p/. Thus card.Lk/ D 1, .p; "k.ˇi � 1// is the maximal ideal of Rk Œ"kˇi � and
Rk Œ"kˇi �=.p; "k.ˇi�1// D Rk=.p/,Rk Œ"kˇi ; p�1� is a totally ramified extension ofRk Œp�1�,
and if this extension is non-trivial then "k.ˇi � 1/ is a uniformizer. If this extension is trivial,
then "k.ˇi � 1/ 2 Rk .

Finally, �i W 
i 7! 
�1i induces a transitive action of Z=2Z on K, a compatible action
on .Rk/k2K , etc. and so card.K/ 2 f1; 2g and if "k.ˇi � 1/ 2 Rk for some k 2 K, then the
same holds for all k 2 K and so ˇi � 1 2 ZpŒ˛i �.

Define h0i WD TrFi=Qp Œ˛iC˛�1i �.hi /, a quadratic or hermitian (with respect to �i W ˛i 7! ˛�1i )
form on the ZpŒ˛i �-module ƒi . On ƒIo , 
 D ˛IoˇIo as above, the restriction of ˛Io to ƒi
(i 2 Io) is ˛i , and the minimal polynomial of ˛i over Qp does not depend on i 2 Io.
Thus we can see the ƒi , i 2 Io as finite free quadratic or hermitian modules over the same
ring Zp Œ˛Io �, each of these modules being endowed with an automorphism ˇi satisfying
ˇ
pn

i ! 1. Moreover since Zp Œ˛Io � is an étale Zp-algebra, the regularity of q (restricted
to ƒIo ) is equivalent to the regularity of h0 D

L
i h
0
i on ƒIo . Knowing the ƒi ’s, finding

the possible ƒIo ’s amounts to finding the ˇ-stable h0-regular lattices containing
L
i2Io

ƒi
in which each ƒi is saturated, where ˇ D

L
i ˇi .

Let us now specialize to the case where each 
i is a root of unity, i.e., ˇp
n

i D 1 for some
n � 0.

L 3.2.7. – Let m � 1 be coprime to p. In ZpŒX�, for any k � 1, p belongs to the
ideal generated by p̂km.X/ and ˆm

�
Xp

k�1�
.

Proof. – For k D 1, since ˆm.Xp/ D p̂m.X/ˆm.X/, by derivating we obtain the
following equality in the finite étale Zp-algebra ZpŒX�=.ˆm.X//:

p̂m.X/ D pX
p�1ˆ0m.X

p/=ˆ0m.X/ D p � unit:

Hence there exists U; V 2 ZpŒX� such that p̂m.X/U.X/Cˆm.X/V.X/ D p. For any k � 1
we have p̂km.X/ D p̂m

�
Xp

k�1�
, and the general case follows.

Having chosen quadratic or hermitian lattices .ƒi /i2Io , there is a natural order in which
to proceed to enumerate the possible ƒIo . Let us focus on one orbit o. To lighten notation
name the indices Io D f1; : : : ; sg in such a way that for 1 � t � s, Pt jˆmpkt where
0 � k1 < � � � < ks . Having fixed o we also drop the indices Io from our notations. The
lemma tells us that for any 1 � t < s, p annihilates

Satƒ .ƒ1 ˚ � � � ˚ƒtC1/ = .Satƒ .ƒ1 ˚ � � � ˚ƒt /˚ƒtC1/
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and thus we also have that ps�t annihilates

ƒ= .Satƒ .ƒ1 ˚ � � � ˚ƒt /˚ƒtC1 ˚ � � � ˚ƒs/ :

This will provide a sharper version of condition 3.2.1. Let B 0 be the sesquilinear (bilinear
if ˛2 D 1) form on ƒ associated with h0. For any i 2 Io there is an orthogonal decom-
position with respect to B 0: ƒi D

L
r L

.r/
i where each L.r/i is pr -modular for B 0, i.e.,

p�rB 0j
L
.r/

i
�L

.r/

i

takes values in ZpŒ˛� and is non-degenerate. For 1 � t � s denote

Mt D Satƒ .ƒ1 ˚ � � � ˚ƒt /, which can similarly be decomposed orthogonally with respect
to B 0: Mt D

L
rM

.r/
t . Note that M1 D ƒ1. Analogously to condition 3.2.1, for 1 � t < s

we have

(3.2.3) L
.r/
tC1 DM

.r/
t D 0 unless 0 � r � s � t;

and if s D 1 we simply have that the hermitian (or quadratic) module .ƒ1; h0/ over ZpŒ˛� is
regular. We can deduce a sharper version of condition 3.2.2. If s > 1 then

ƒ
.r/
1 D 0 unless � d1 � r � �d1 C .s � 1/e1;(3.2.4)

for 1 < t � s; ƒ.r/t D 0 unless � dt � r � �dt C .s � t C 1/et ;(3.2.5)

while for s D 1:

(3.2.6)

(
ƒ
.r/
1 D 0 if r ¤ �d1 if p � 3 or m > 1,

ƒ1 is a regular quadratic Z2-module if p D 2 and m D 1.

Let us recapitulate the algorithm thus obtained to enumerate non-uniquely the isomor-
phism classes of triples .ƒ; q; 
/ such that .ƒ; q/ is regular and 
 is torsion. Begin with
a datum .Ai ; 
i /i2I , i.e., fix the characteristic polynomial of 
 . For any orbit o for which
s D card.Io/ > 1:

1. For any i 2 Io, enumerate the isomorphism classes of quadratic or hermitian
ZpŒ˛i �-modules ƒi subject to conditions 3.2.4 and 3.2.5, compute B 0 on ƒi � ƒi
and throw away those which do not satisfy condition 3.2.3.

2. For any such family .ƒi /i2Io , enumerate inductively the possible Satƒ .ƒ1 ˚ � � � ˚ƒt /.
At each step t D 1; : : : ; s, given a candidate Mt for Satƒ .ƒ1 ˚ � � � ˚ƒt /, we have
to enumerate the candidates MtC1 for Satƒ .ƒ1 ˚ � � � ˚ƒt /, i.e., the ˇ-stable lattices
containing Mt ˚ƒtC1 such that

1. h0 is integral on MtC1,
2. both Mt and ƒtC1 are saturated in MtC1,
3. if t < s � 1, MtC1 satisfies condition 3.2.3,
4. if t D s � 1, MtC1 (a candidate for ƒ) is regular for h0.

R 3.2.8. – The first step can be refined, since already over Qp there are obstruc-
tions to the existence of a regular lattice. These obstructions exist only when h0 D q is a
quadratic form, i.e., ˛2Io D 1, so let us make this assumption for a moment. Consider its
discriminant D D disc.q/ 2 Q�p =squares.Q�p /. If rkZpƒ D 2n is even, then QpŒX�=.X2 � .�1/nD/
is unramified over Qp. If rkZpƒ is odd, the valuation of disc.q/=2 is even. Moreover in any
case, once we fix the discriminant, the Hasse-Witt invariant of q is determined. We do not
go into more detail. A subtler obstruction is given by the spinor norm of 
 . Assume that
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N D rkZpƒ is at least 3, and for simplicity assume also that det.
/ D 1. The regular lattice
.ƒ; q/ defines a reductive group SO.q/ over Zp. The fppf exact sequence of groups over Zp

1! �2 ! Spin.q/! SO.q/! 1

yields for any Zp-algebra R the spinor norm SO.q/.R/! H 1
fppf.R;�2/ whose kernel is the

image of Spin.q/.R/. Moreover if Pic.R/ D 1 (which is the case if R D Qp or Zp) we have
H 1

fppf.R;�2/ D R�=squares.R�/. Thus another obstruction is that the spinor norm of 

must have even valuation. We can compute the spinor norm of each 
i easily. If 
i D �1 its
spinor norm is simply the discriminant of the quadratic form hi . If i 62 Itriv a straightforward
computation shows that the spinor norm of 
i is NAi=Qp .1 C 
i /

dimAi Vi . Note that it does
not depend on the isomorphism class of the hermitian form hi .

Let us elaborate on the second step of the algorithm. For an orbit o for which s D 1,
we simply have to enumerate the modules ƒ1 satisfying 3.2.6 and such that the resulting
quadratic form q (equivalently, h0) is regular.

We have not given an optimal method for the case s > 1. A very crude one consists in
enumerating all the free FpŒ˛�-submodules in p�1Zp=Zp˝Zp .Mt ˚ƒtC1/ and keeping only
the relevant ones. The following example illustrates that one can do much better in many
cases.

E 3.2.9. – Consider the “second simplest” case s D 2. Assume for simplicity
that p > 2 orm > 1. Then condition 3.2.3 shows that for any pair ..ƒ1; h1/; .ƒ2; h2// found
at the first step of the algorithm, we have

ƒ1 D L
.0/
1 ˚ L

.1/
1 and ƒ2 D L

.0/
2 ˚ L

.1/
2

where each L.r/i is pr -modular. Moreover for any i 2 f1; 2g the topologically unipotent
automorphism ˇi stabilizes

pL
.0/
i ˚ L

.1/
i D fv 2 ƒi j 8w 2 ƒi ; B

0
i .v; w/ 2 pZpŒ˛�g

and thus ˇi induces a unipotent automorphism ˇi of .Vi ; �i / where Vi D L
.1/
i =pL

.1/
i and �i

is a the non-degenerate quadratic or hermitian form p�1h0i mod p on Vi . It is easy to check
that any relevant ƒ � ƒ1 ˚ƒ2 is such that

pƒ=.pƒ1 ˚ pƒ2/ D fv1 ˚ f .v1/ j v1 2 V1g

for a unique isomorphism f W .V1; �1; ˇ1/! .V2;��2; ˇ2/. Conversely such an isomorphism
yields a relevant ƒ.

For p D 2 and m D 1 there is a similar but a bit more complicated description of the
relevant lattices ƒ � ƒ1 ˚ ƒ2. In that case each form �i is a “quadratic form modulo 4,”
i.e., x 7! hx; xi mod 4 where h�; �i is a symmetric bilinear form on a free Z2-moduleN . Note
that hx; xi mod 4 only depends on the class of x in F2 ˝ N . A further complication comes
into play when rkZ2.ƒ1/C rkZ2.ƒ2/ is odd, but we do not go into more detail.

In the case of an arbitrary s > 1, the observation made in Example 3.2.9 still applies at
the last step t D s � 1, replacing .ƒ1; ƒ2/ with .Ms�1; ƒs/. We do not go into the details
of our implementation of the previous steps (t < s � 1). We merely indicate that in general
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pMtC1=.Mt ˚ƒtC1/ is still described using an isomorphism f between a ˇ-stable subspace
of
L
r�1M

.r/
t mod p and a ˇ-stable subspace of

L
r�1L

.r/
t mod p.

R 3.2.10. – Regarding all the results of this section, the symplectic case is
similar, replacing “quadratic” by “symplectic” and “hermitian” by “antihermitian,” and
even simpler because the prime 2 is “less exceptional”. More precisely, the classification of
hermitian modules for e.g., the quadratic extension ZpŒ�pk �=ZpŒ�pk C ��1pk � is more involved
for p D 2 than for the other primes (see [51]), but once we have enumerated the possible
isomorphism classes of ƒi ’s, the enumeration of the relevant ƒ �

L
i ƒi can be done

uniformly in p.

3.2.3. Orbital integrals for the unit in the unramified Hecke algebra of a p-adic classical group.
– In this section we show that thanks to the fact that orbital integrals are formally sums of
masses (where “mass” takes the same meaning as in “mass formula,” or in overly fancy terms,
the “measure of a groupoid”), they can be computed by counting instead of enumerating and
checking isomorphisms. As before we focus on the case of special orthogonal groups, the case
of symplectic groups being easier.

Let ƒ0 be a free Zp-module of finite rank endowed with a regular quadratic form
q0 and consider the algebraic group G D SO.ƒ0; q0/ which is reductive over Zp. Let
f D 1G.Zp/ be the characteristic function of G.Zp/ and fix the Haar measure on G.Qp/
such that

R
G.Zp/ dg D 1. Let 
0 2 G.Qp/ be semisimple (for now we do not assume that it

is torsion), and let I0 be its connected centralizer in GQp . Fix a Haar measure � on I0.Qp/.
Consider the isomorphism classes of triples .ƒ; q; 
/ such that

– ƒ is a free Zp-module of finite rank endowed with a regular quadratic form q,
– 
 2 SO.ƒ; q/,
– there exists an isomorphism between .Qp ˝Zp ƒ; q; 
/ and .Qp ˝Zp ƒ0; q0; 
0/.

We apply the previous section’s notations and results to such .ƒ; q; 
/. Using Proposi-
tion 3.2.4, the last condition can be expressed explicitly as follows: there exists a bijec-
tion � between the set of indices I and I0 attached to 
 2 SO.Qp ˝Zp ƒ; q/ and

0 2 SO.Qp ˝Zp ƒ0; q0/, such that for any i 2 I ,

– the minimal polynomials of 
i and 
0;�.i/ are equal, i.e., there is an isomorphism �i
between the monogenic Qp-algebras .Ai D QpŒ
i �; 
i / and .A0;�.i/ D QpŒ
0;�.i/�; 
0;�.i//,

– rankAi .Qp ˝Zp ƒ/i D rankA0;�.i/.Qp ˝Zp ƒ0/�.i/,
– if i 2 Itriv, the discriminants (in Q�p =Q�2p ) and Hasse-Witt invariants of hi and h0;�.i/

are equal,
– if i 2 Ifield, that is if Ai is a field, the discriminants of hi (in Fi=NAi=Fi .Ai /) and h0;i

are equal (via �i ).

The condition .Qp˝Zpƒ; q; 
/ ' .Qp˝Zpƒ0; q0; 
0/ also implies that I0 and the connected
centralizer I of 
 in SO.Qp ˝Zp ƒ; q/ are isomorphic, and by Remark 3.1.1 we can see � as
a Haar measure on I.Qp/. Then

O
0.f .g/dg/ D

0@ X
.ƒ;q;
/

�
�
I.Qp/ \ SO.ƒ; q/

��11A �
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where the sum ranges over isomorphism classes as above. Note that I.Qp/ \ SO.ƒ; q/
stabilizes each ƒi , so that it is a subgroup of

Q
i �i � I.Qp/ where

�i D

(
SO.ƒi ; hi / if i 2 Itriv

U.ƒi ; hi / if i 2 Ifield [ Isplit:

In fact I.Qp/\SO.ƒ; q/ is the stabilizer ofƒ=
L
i ƒi for the action of

Q
i �i on .Qp=Zp/˝Zp�L

i ƒi
�
. Grouping the terms in the above sum according to the isomorphism classes of the

quadratic or hermitian modules ƒi , we obtain

(3.2.7) O
0.f .g/dg/ D

0@ X
.ƒi ;hi /i2I

ext ..ƒi ; hi /i /

�
�Q

i �i
� 1A �:

Now the sum ranges over the isomorphism classes of quadratic or hermitian lattices .ƒi ; hi /
over ZpŒ
i �, which become isomorphic to the corresponding datum for .Qp ˝Zp ƒ0; q0; 
0/

when p is inverted, and

ext ..ƒi ; hi /i / WD card

(
q-regular .

M
i


i /-stable ƒ �
M
i

ƒi j 8i; ƒi saturated in ƒ

)
:

We will study the volumes appearing at the denominator below, but for the moment we
consider these numerators. Motivated by the global case, assume from now on that 
0 is
torsion as in the end of the previous section. It is harmless to restrict our attention to a single
orbit o, and assume I D Io. For the computation of orbital integrals, the benefit resulting
from the transformation above is that instead of enumerating the possibleMtC1 knowingMt

at the last step t D s � 1, we only have to count them. Let us discuss the various cases that
can occur, beginning with the simplest ones.

The unramified case corresponds to s D 1 and A1 D QpŒ
1� D QpŒ˛�, and in that case
there is a unique relevant isomorphism class .ƒ1; h1/. It is easy to check that we recover
Kottwitz’s result [59, Corollary 7.3] that the orbital integral equals 1 for the natural choice
of Haar measures.

The case where s D 1 but QpŒ
1�=QpŒ˛� can be non-trivial (i.e., ramified) is not much
harder: the algorithm given in the previous section identifies the relevant isomorphism
classes .ƒ1; h1/ appearing below the sum, and ext.ƒ1; h1/ D 1. In this case we have reduced
the problem of computing the orbital integral by that of computing the volume of the
stabilizers of some lattices. When G D Sp2 D SL2 it is the worst that can happen.

The first interesting case is s D 2. Assume for simplicity that p > 2 or m > 1, and let
us look back at Example 3.2.9, using the same notations. Then ext..ƒ1; h1/; .ƒ2; h2// D 0

unless .V1; �1; ˇ1/ ' .V2;��2; ˇ2/, in which case ext..ƒi ; hi /i / D card .Aut.V1; �1; ˇ1//.
This group is the centralizer of a unipotent element in a classical group over a finite field.
Results of Wall [97] give the invariants of such conjugacy classes as well as formulae for
their centralizers. In many cases (e.g., if rkZp .ƒ/ < p2 � 1) the automorphism ˇ1 of V1 is
trivial, and thus we do not need the general results of Wall, but merely the simple cardinality
formulae of finite classical groups. For G D Sp4 or SO4 we have s � 2 and ˇ1jV1 D 1 at
worst.

When s > 2 the situation is of course more complicated, and it seems that we cannot avoid
the enumeration of successive lattices MtC1 � Mt ˚ ƒtC1 for t < s � 1, although the last
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step t D s � 1 is identical to the above case. Note however that these “very ramified” cases
are rare in low rank. More precisely rkZpƒ � p

s�1, e.g., in rank less than 25 it can happen
that s > 2 only for p D 2; 3. Thus the “worst cases” have p D 2. This is fortunate because
for fixed k and n the number of k-dimensional subspaces in an n-dimensional vector space
over a finite field with q elements increases dramatically with q.

R 3.2.11. – In the case where G is an even special orthogonal group, some of
the semisimple conjugacy classes in G.Qp/ were parametrized only up to outer conjugation.
Since G.Zp/ is invariant by an outer automorphism of G, for any 
0; 
 00 2 G.Qp/ which are
conjugate by an outer automorphism of GQp , the orbital integrals for f .gp/dgp at 
0 and 
 00
are equal. Of course the above formula for the orbital integral is valid for both.

3.2.4. Local densities and global volumes. – To complete the computation of adèlic orbital
integrals we still have to evaluate the denominators in Formula 3.2.7 and the global volumes.
Formulae for local densities and Smith-Minkowski-Siegel mass formulae are just what we
need. But we will use the point of view suggested by [40] and used in [42], i.e., fix canonical
Haar measures to see local orbital integrals as numbers. For this we need to work in a slightly
more general setting than cyclotomic fields.

If k is a number field or a p-adic field, denote by Ok its ring of integers. If k is a number
field Ak D k ˝Q A will denote the adèles of k.

Let k be a number field or a local field of characteristic zero, and let K be a finite
commutative étale k-algebra such that dimk K � 2, i.e., K D k or k � k or K is a quadratic
field extension of k. Let � be such that Autk.K/ D fIdK ; �g. This determines � . Let V be
a vector space over K of dimension r � 0. Let ˛ 2 f1;�1g, and assume that ˛ D 1 if
dimk K D 2. Assume that V is endowed with a non-degenerate � -sesquilinear form h�; �i
such that for any v1; v2 2 V we have hv2; v1i D ˛� .hv1; v2i/. Let G D Aut.V; h�; �i/0 be the
connected reductive group over k associated with this datum. Then G is a special orthogonal
(K D k and ˛ D 1), symplectic (K D k and ˛ D �1), unitary (K=k is a quadratic field
extension and ˛ D 1) or general linear (K D k � k and ˛ D 1) group.

If k is a number field, by Weil [100] the Tamagawa number �.G/ equals 2 (resp. 1) in the
orthogonal case if r � 2 and V is not a hyperbolic plane (resp. if r D 1 or V is a hyperbolic
plane), 1 in the symplectic case, 2 in the unitary case if r > 0 and 1 in the general linear case.

If k is a p-adic field, consider a lattice N in V , i.e., a finite free OK-module N � V such
that V D KN . Denote N_ D fv 2 V j 8w 2 N; hv;wi 2 OKg. If h�; �ijN�N takes values
in OK then N_ � N and we can consider ŒN_ W N�, i.e., the cardinality of the finite abelian
group N_=N . In general define ŒN_ W N� as ŒN_ W N_ \N�=ŒN W N_ \N�. Recall also [38,
Definition 3.5] the density ˇN associated with .N; h�; �i/.

In [40] Gross associates a motiveM of Artin-Tate type to any reductive group over a field.
For the groups G defined above, letting n be the rank of G, we have

M D

8̂̂<̂
:̂
Ln
xD1Q.1 � 2x/ orthogonal case with r odd and symplectic case,

�Q.1 � n/˚
Ln�1
xD1Q.1 � 2x/ orthogonal case with r > 0 even,Ln

xD1 �
xQ.1 � x/ unitary and general linear cases.

In the orthogonal case with r > 0 even let .�1/nD be the discriminant of .V; h�; �i/ (i.e., the
determinant of the Gram matrix), then � is defined as the character Gal.k.

p
D/=k/! f˙1g
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which is non-trivial ifD is not a square in k. In the general linear case � is trivial, and in the
unitary case � is the non-trivial character of Gal.K=k/. For L-functions and "-factors we
will use the same notations as [40].

If k is a number field Dk will denote the absolute value of its discriminant. For K D k

or K D k � k denote DK=k D 1, whereas for a quadratic field extension K of k we denote
DK=k D jNK=Q.DK=k/j where DK=k is the different ideal of K=k and the absolute value of
the ideal mZ of Z is m if m � 1. There are obvious analogues over any p-adic field, and Dk
(resp.DK=k) is the product ofDkv (resp.DKv=kv whereKv D kv˝kK) over the finite places
v of k.

For .k;K; ˛; V h�; �i/ (local or global) as above define as in [38]

n.V / D

(
r C ˛ if K D k;

r if dimk K D 2

and

� D

8̂̂<̂
:̂
2r in the orthogonal case with r even,

2.rC1/=2 in the orthogonal case with r odd,

1 in the symplectic, unitary and general linear cases.

Finally, consider the case where k D R and G.R/ has discrete series, i.e., the Euler-Poincaré
measure on G.R/ is non-zero, i.e., G has a maximal torus T which is anisotropic. Recall
Kottwitz’s sign e.G/ D .�1/q.G/ and the positive rational number c.G/ defined in [40, § 8].
Explicitly,

c.G/ D

8̂̂<̂
:̂
1 in the symplectic case,

2n=
�

n
ba=2c

�
in the orthogonal case with signature .a; b/; b even,

2n=
�
n
a

�
in the unitary case with signature .a; b/:

The following theorem is a reformulation of the mass formula [38, Theorem 10.20] in our
special cases.

T 3.2.12. – Let k be a totally real number field and letK, ˛, .V; h�; �i/ and G be as
above. Let M denote the Gross motive of G. Assume that for any real place v of k, G.kv/ has
discrete series. Define a signed Haar measure � D

Q
v �v on G.Ak/ as follows. For any real

place v of k, �v is the Euler-Poincaré measure on G.kv/. For any finite place v of k, �v is
the canonical measure Lv.M_.1//j!Gkv j on G.kv/ (see [40, § 4]). In particular, for any finite
place v such that Gkv is unramified, the measure of a hyperspecial compact subgroup of G.kv/
is one. Then for any OK-lattice N in V ,Z

G.k/nG.Ak/
� D �.G/ � L.M/ �

D
dim G=2
k

D
r.rC1/=4

K=k

".M/
�

Y
vj1

.�1/q.Gkv /

c.Gkv /

� �dimQ k
Y
v finite

ŒN_v W Nv�
n.V /=2 � �v .G.kv/ \GL.Nv//
Lv.M_.1// � ˇNv

:

Proof. – To get this formula from [38, Theorem 10.20], use the comparison of measure at
real places [40, Proposition 7.6], the fact that Lv.M_.1//ˇNv D 1 for almost all finite places
of k, and the functional equation ƒ.M/ D ".M/ƒ.M_.1// (see [40, 9.7]).
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Note that the choice of � at the finite places does not play any role. This choice was made
to compare with the very simple formula [40, Theorem 9.9]:

(3.2.8)
Z

G.k/nG.Ak/
� D �.G/ � L.M/ �

Y
vj1

.�1/q.Gkv /

c.Gkv /
:

We obtain that under the hypotheses of the theorem,

(3.2.9)
Y
v finite

�v .G.kv/ \GL.Nv// D
".M/��dimQ k

D
dim G=2
k

D
r.rC1/=4

K=k

Y
v finite

Lv.M
_.1//ˇNv

ŒN_v W Nv�
n.V /=2

:

We can compute explicitly

".M/

D
dim G=2
k

D
r.rC1/=4

K=k

D

8̂̂<̂
:̂
D
�n=2

K=k
in the unitary case if r D n is even,ˇ̌

Nk=Q.ı/
ˇ̌n�1=2

in the orthogonal case if r is even,

1 otherwise,

where in the second case .�1/nD is the discriminant of h�; �i and ı is the discriminant
of k.
p
D/=k. As the proof of the following proposition shows, the factor ��dimQ k , which is

nontrivial only in the orthogonal cases, is local at the dyadic places.

P 3.2.13. – Letp be a prime. Let k0 be ap-adic field and let .K0; ˛; V0; h�; �i0/
and G0 be as above. Let �0 be the canonical Haar measureL.M_.1//j!G0 j on G0.k0/. Ifp D 2,
K0 D k0 and ˛ D 1, let x0 D ��dimQ2 k0 , otherwise let x0 D 1. Then for any OK0 -lattice N0
in V0,

�0 .G0.k0/ \GL.N0// D L.M_.1// � x0 � ˇN0 � ŒN
_
0 W N0�

�n.V0/=2

�

8̂̂<̂
:̂
D
�n=2

K0=k0
in the unitary case if r D n is even,ˇ̌

Nk0=Qp .ı0/
ˇ̌n�1=2 in the orthogonal case if r is even,

1 otherwise,

where in the second case .�1/nD0 is the discriminant of h�; �i0 and ı0 is the discriminant
of k0.

p
D0/=k0.

Proof. – We apologize for giving a global proof of this local statement. We only give
details for the hardest case of orthogonal groups.

When p > 2 and the symmetric bilinear form h�; �i0jN0�N0 is integer-valued and non-
degenerate, G0 is the generic fiber of a reductive group over Ok0 and the equality is obvious.
Note that this does not apply for p D 2, even assuming further that the quadratic form
v 7! hv; vi0=2 is integer-valued on N0, because the local density ˇN0 is defined using the
bilinear form h�; �i0, not the quadratic form v 7! hv; vi0=2.

Next consider the case p D 2 and N0 arbitrary. By Krasner’s lemma there exists a totally
real number field k and a quadratic vector space .V; h�; �i/which is positive definite at the real
places of k and such that k has a unique dyadic place v0 and .k0; V0; h�; �i0/ ' .kv0 ; kv0 ˝k V; h�; �i/.
Let S be the finite set of finite places v ¤ v0 of k such that .kv ˝k V; h�; �i/ is ramified, i.e.,
does not admit an integer-valued non-degenerate Okv -lattice. For any v 2 S there is a
finite extension E.v/ of kv over which .kv ˝k V; h�; �i/ becomes unramified. By Krasner’s
lemma again there exists a finite extension k0 of k which is totally split over the real places
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of k and over v0 and such that for any v 2 S , the kv-algebra kv ˝k k0 is isomorphic to a
product of copies of E.v/. Let S0 be the set of dyadic places of k0, i.e., the set of places of k0

above v0. There exists a lattice N 0 in k0 ˝k V such that for any finite v 62 S0 the symmetric
bilinear form h�; �ijN 0v�N 0v is integer-valued and non-degenerate, and for any v 2 S0 we have
h�; �iN 0v�N 0v ' h�; �i0jN0�N0 . Applying Formula 3.2.9 we obtain the desired equality to the
power card.S0/, which is enough because all the terms are positive real numbers. Having
established the dyadic case, the general case can be established similarly.

The unitary case is similar but simpler, because the dyadic places are no longer exceptional
and it is sufficient to take a quadratic extension k0=k in the global argument. The symplectic
and general linear cases are even simpler.

R 3.2.14. – 1. In this formula, one can check case by case that the product
of ŒN_0 W N0�

�n.V0/=2 and the last term is always rational, as expected since all other
terms are rational by definition.

2. We did not consider the case where ˛ D �1 and K=k is a quadratic field extension,
i.e., the case of antihermitian forms, although this case is needed to compute orbital
integrals for symplectic groups. If y 2 K� is such that �.y/ D �y, multiplication
by y induces a bijection between hermitian and antihermitian forms, and of course the
automorphism groups are equal.

3. There are other types of classical groups considered in [38] and which we left aside.
For a central simple algebra K over k with dimk K D 4 (i.e., K D M2.k/ or
K is a quaternion algebra over k) they also consider hermitian (resp. antihermitian)
forms over a K-vector space. The resulting automorphism groups are inner forms of
symplectic (resp. even orthogonal) groups. Using the same method as in the proof
of the proposition leads to a formula relating the local density ˇN0 to the canonical
measure of Aut.N0/ in these cases as well.

We use the canonical measure defined by Gross (called �v above) when computing local
orbital integrals. In the previous section we explained how to compute the numerators
in Formula 3.2.7 for the local orbital integrals. Proposition 3.2.13 reduces the computa-
tion of the denominators to that of local densities. Using an elegant method of explicitly
constructing smooth models, Gan and Yu [38] give a formula for ˇN0 for p > 2 in general
and for p D 2 only in the case of symplectic and general linear groups and in the case of
unitary groups if K0=k0 is unramified. Using a similar method Cho [26] gives a formula
in the case of special orthogonal groups when p D 2 and k0=Q2 is unramified. This is
enough for our computations since we only need the case k0 D Q2. For m � 1 and � D �m
the quadratic extension Q.�/=Q.� C ��1/ is ramified over a dyadic place if and only if m
is a power of 2. In this case the different DQ2.�/=Q2.�C��1/ is generated by a uniformizer
of Q2.� C ��1/, which is the minimal ramification that one can expect from a ramified
quadratic extension in residual characteristic 2. Cho [27, Case 1] also proved an explicit
formula for the local density in this case. To be honest [27] only asserts it in the case where
k0 is unramified over Q2. Nevertheless the proof in “Case 1” does not use this assumption.
This completes the algorithm to compute the local orbital integrals in all cyclotomic cases
over Q. Note that the result is rational and the computations are exact (i.e., no floating point
numbers are used).
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Finally, the global volume is evaluated using Gross’ Formula 3.2.8. The value of L.M/

is known to be rational and computable by [85]. However, we only need the values of L.M/

forM which is a direct sum of Tate twists of cyclotomic Artin motives (concretely, represen-
tations of Gal.E=F / where E is contained in a cyclotomic extension of Q). Thus we only
need the values of Dirichlet L-functions at non-negative integers, i.e., the values of general-
ized Bernoulli numbers (see, e.g., [99]).

R 3.2.15. – Formally it is not necessary to use the results of [40] to compute the
factors Vol.I.Q/nI.A// in Formula 3.1.1, the mass formula in [38] along with the formulae
for the local densities ˇN0 would suffice. Apart from the fact that it is less confusing and more
elegant to clearly separate local and global measures, using Gross’ canonical measure, which
is compatible between inner forms by definition, allows us to compute �-orbital integrals
once we have computed orbital integrals. The fundamental lemma gives a meaningful way
to check the results of computations of orbital integrals. More precisely we need the formu-
lation of the fundamental lemma for semisimple singular elements [59, Conjecture 5.5] which
has been reduced to the semisimple regular case by [60, § 3] and [65, Lemma 2.4.A]. For an
unramified endoscopic group the fundamental lemma for the unit of the unramified Hecke
algebra at regular semisimple elements is a consequence of the work of Hales, Waldspurger
and Ngô. The case of a ramified endoscopic group is [59, Proposition 7.5]: the �-orbital inte-
grals simply vanish.

3.2.5. Short description of the global algorithm. – Let G be one of SO2nC1 or Sp2n or
SO4n over Z, let

Q
p fp be the characteristic function of G.bZ/ and

Q
p dgp the Haar

measure on G.Af / such that G.bZ/ has measure one. Let � be a dominant weight for GC
and let f1;�.g1/dg1 be the distribution on G.R/ defined in Section 3.1.1. Denote
f .g/dg D f1;�.g1/dg1

Q
p fp.gp/dgp. We give a short summary of the algorithm

computing Tell.f .g/dg/ for a family of dominant weights �, by outlining the main steps.
Realize G as SO.ƒ; q/ (resp. Sp.ƒ; a/) where ƒ is a finite free Z-module endowed with a
regular quadratic form q (resp. nondegenerate alternate form a). Denote N D rankZ.ƒ/.

1. Enumerate the possible characteristic polynomials (in the standard representation
of G) for the conjugacy classes cl.
/ in G.Q/ contributing to Tell, i.e., cl.
/ 2 C.G/
(defined in Section 3.1.3) such that for any prime p, cl.
/ meets G.Zp/. Concretely,
enumerate the polynomials P 2 QŒX� monic of degree N such that all the roots of P
are roots of unity, and the multiplicity of �1 as root of P is even.

2. For each such P , and for any prime number p, in QpŒX� write P D
Q
i Pi as in

Section 3.2.1. For any i , enumerate the finite set of isomorphism classes of quadratic
or hermitian (resp. alternate or antihermitian) lattices .ƒi ; hi / as in Section 3.2.2. For
almost all primes p, the minimal polynomial rad.P / D P=gcd.P; P 0/ is separable
modulo p, there is a unique isomorphism class .ƒi ; hi / to consider and hi is non-
degenerate. Thus we only need to consider a finite set of primes.

3. The combinations of these potential local data determine a finite subset of C.G/.
4. For any such conjugacy class over Q, compute the local orbital integrals using

Section 3.2.3 and Proposition 3.2.13. Compute the global volumes using Gross’
Formula 3.2.8.
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5. Let C 0.G/ be the quotient of C.G/ by conjugacy in G.Q/. For c 2 C 0.G/ define the
“mass” of c

mc D
X

cl.
/2c

Vol.I.Q/nI.A//
card.Cent.
;G.Q//=I.Q///

so that

(3.2.10) Tell.f .g/dg/ D
X

c2C 0.G/

mcTr.c jV �� /:

Using Weyl’s character formula, we can finally compute Tell.f .g/dg/ for the dominant
weights � we are interested in. Some conjugacy classes c 2 C 0.G/ are singular,
so that a refinement of Weyl’s formula is needed: see [23, Proposition 1.9] and [25,
Proposition 2.1].

We give tables of the masses mc in Section 7, for the groups of rank � 3. Our current
implementation allows us to compute these masses at least up to rank 6 (and also for Sp14).

R 3.2.16. – In the orthogonal case the group G is not simply connected and thus
in G.Q/ there is a distinction between stable conjugacy and conjugacy in G.Q/. However, if

; 
 0 2 C.G.Q// both contribute non-trivially to Tell.f .g/dg/ and are conjugated in G.Q/,
then they are stably conjugate. Indeed their spinor norms have even valuation at every
finite prime, and are trivial at the archimedean place since they each belong to a compact
connected torus, therefore their spinor norms are both trivial. This implies that they lift to
elements Q
; Q
 0 in the spin group Gsc.Q/, and moreover we can assume that Q
 and Q
 0 are
conjugated in Gsc.Q/, which means that they are stably conjugate.

This observation allows us to avoid unnecessary computations: if the spinor norm of 
 is
not equal to 1, the global orbital integral O
 .f .g/dg/ vanishes.

3.3. Computation of the parabolic terms using elliptic terms for groups of lower semisimple
rank

In the previous sections we gave an algorithm to compute the elliptic terms in Arthur’s
trace formula in [5]. After recalling the complete geometric side of the trace formula, i.e., the
parabolic terms, we explain how the archimedean contributions to these terms simplify in
our situation where the functions fp at the finite places have support contained in a compact
subgroup. The result is that we can express the parabolic terms very explicitly (perhaps too
explicitly) using elliptic terms for groups of lower semisimple rank in Section 3.3.4.

3.3.1. Parabolic terms. – Let us recall the geometric side of the trace formula given in
[5, § 6]. We will slightly change the formulation by using Euler-Poincaré measures on real
groups instead of transferring Haar measures to compact inner forms. The translation is
straightforward using [60, Theorem 1]. Let G be one of SO2nC1, Sp2n or SO4n. Of course
the following notions and Arthur’s trace formula apply to more general groups.

First we recall the definition of the constant term at the finite places. Let p be a finite
prime, and denoteK D G.Zp/. Let P DMN be a parabolic subgroup of G having unipotent
radical N admitting M as a Levi subgroup. Since K is a hyperspecial maximal compact
subgroup of G.Qp/ it is “good”: there is an Iwasawa decomposition G.Qp/ D KP.Qp/.
Whenp is not ambiguous write ıP.m/ D j det.m jLie.N//jp. In formulae we require the Haar
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measures on the unimodular groups G.Qp/, M.Qp/ and N.Qp/ to be compatible in the sense
that for any continuous h W G.Qp/! C having compact support,Z

G.Qp/
h.g/dg D

Z
K�N.Qp/�M.Qp/

h.knm/ dk dn dm D

Z
K�N.Qp/�M.Qp/

h.kmn/ıP.m/ dk dn dm:

If fp.g/dg is a smooth compactly supported distribution on G.Qp/, the formula

fp;M.m/ D ıP.m/
1=2

Z
K

Z
N.Qp/

fp.kmnk
�1/dndk

defines a smooth compactly supported distribution fp;M.m/dm on M.Qp/. Although it
seems to depend on the choice of N and the good compact subgroupK, the orbital integrals
of fp;M.m/dm at semisimple G-regular elements of M.Qp/ only depend on fp (see [33,
Lemma 9]). The case of arbitrary semisimple elements follows using [55, Theorem 0]. When
fp is the characteristic function 1G.Zp/ of G.Zp/ (and vol.G.Zp// D 1), the fact that T0 is
defined over Zp and the choice K D G.Zp/ imply that for any choice of N, fp;M D 1M.Zp/
(if vol.M.Zp// D 1, and our assumption above on the compatibility of Haar measures reads
vol.N.Zp// D 1).

We can now define the factors appearing on the geometric side of the trace formula.
As for elliptic terms, consider a smooth compactly supported distribution

Q
p fp.gp/dgp

on G.Af /. Fix a split maximal torus T0 of G (over Z). The geometric side is a sum over
Levi subgroups M containing T0, they are also defined over Z. For such M, denote by AM

the connected center of M and let C.M.Q// be the set of semisimple conjugacy classes of
elements 
 2M.Q/ which belong to a maximal torus of MR which is anisotropic modulo
.AM/R D AMR . If 
 is (a representative of) an element ofC.M.Q//, let I denote the connected
centralizer of 
 in M. Define �M.
/ D jCent.
;M.Q//=I.Q/j. For any finite prime p,
to fp.gp/dgp we associate the complex Haar measure O
 .fp;M/ on I.Qp/. For p outside
a finite set (containing the primes at which I is ramified), the measure of a hyperspecial
maximal compact subgroup of I.Qp/ is 1. Define a complex Haar measure on I.A/=AM.A/
as follows:

– give I.R/=AM.R/ its Euler-Poincaré measure. It is nonzero by our assumption on 
 ;
– give AM.Qp/ its Haar measure such that its maximal compact subgroup (in the case at

hand AM.Zp/) has measure 1, and endow I.Qp/=AM.Qp/ with the quotient measure.

Now fix a dominant weight � for G and denote � D � C � (where 2� is the sum of
the positive roots) the associated infinitesimal character. We denote by �_ the infinitesimal
character of V �

�
. For all the groups considered in this paper, V� ' V �

�
and thus �_ D � .

For f .g/dg D f1;�.g1/dg1
Q
p fp.gp/dgp, the last ingredient occurring in Tgeom.f .g/dg/

is the continuous function 
 7! ˆM.
; �
_/ defined for semisimple 
 2 M.R/ which belong

to a maximal torus of MR which is anisotropic modulo .AM/R. This function will be defined
in terms of characters of discrete series and studied at compact elements 
 in Section 3.3.3.
If 
 does not satisfy these properties define ˆM.
; �

_/ D 0.

The geometric side Tgeom.f .g/dg/ of the trace formula is

(3.3.1)
X

M�T0

�
�1

2

�dim AM jW.T0;M/j

jW.T0;G/j

X

2C.M.Q//

vol .I.Q/nI.A/=AM.A//
card .Cent.
;M.Q//=I.Q//

ˆM.
; �
_/:
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After the definition of the functionˆM it will be clear that the term corresponding to M D G
is Tell.f .g/dg/.

3.3.2. Sums of averaged discrete series constants. – Harish-Chandra gave a formula for the
character of discrete series representations of a real reductive group at regular elements of
any maximal torus. This formula is similar to Weyl’s character formula but it also includes
certain integers which can be computed inductively. In the case of averaged discrete series
this induction is particularly simple. We recall the characterization of these integers given in
[39, § 3] and compute their sum and alternate sum. When the support of

Q
p fp.gp/dgp is

contained in a compact subgroup of G.Af /, in the trace formula only these alternate sums
need to be computed, not the individual constants.

Let X be a real finite-dimensional vector space and R a reduced root system in X�.
Assume that �Id 2 W.R/, i.e., any irreducible component ofR is of type A1, Bn (n � 2), Cn
(n � 3), D2n (n � 2), E7, E8, F4 or G2. If R1 is a subsystem of R having the same property,
letting R2 be the subsystem of R consisting of roots orthogonal to all the roots in R1,
�IdRR2 2 W.R2/ by [14, ch. V, § 3, Proposition 2], and rank.R/ D rank.R1/C rank.R2/. In
particular for ˛ 2 R, R˛ WD fˇ 2 R j ˛.ˇ_/ D 0g is a root system in Y � where Y D ker˛.

Recall that Xreg WD fx 2 X j 8˛ 2 R; ˛.x/ ¤ 0g, and define X�reg similarly with respect
to R_. For x 2 Xreg we denote by �x the basis of simple roots of R associated with the
chamber containing x. There is a unique collection of functions NcR W Xreg � X

�
reg ! Z for

root systems R as above such that:

1. Nc;.0; 0/ D 1,
2. for all .x; �/ 2 Xreg �X

�
reg such that �.x/ > 0, NcR.x; �/ D 0,

3. for all .x; �/ 2 Xreg �X
�
reg and ˛ 2 �x , NcR.x; �/C NcR.s˛.x/; �/ D 2 NcR˛ .y; �jY / where

Y D ker˛ and y D .x C s˛.x//=2.

In the third property note that for any ˇ 2 R n f˙˛g such that ˇ.x/ > 0, ˇ.y/ > 0: writing
ˇ D

P

2�x

n

 with n
 � 0, we have

(3.3.2) ˇ.y/ D ˇ.x/ �
˛.x/ˇ.˛_/

2
D

X

2�xnf˛g

n


�

.x/ �


.˛_/˛.x/

2

�
> 0:

In the second property we could replace “�.x/ > 0” by the stronger condition that R ¤ ;
and x and � define the same order: f˛ 2 R j ˛.x/ > 0g D f˛ 2 R j �.˛_/ > 0g. By induction
NcR is locally constant, and W.R/-invariant for the diagonal action of W.R/ on Xreg �X

�
reg.

The existence of these functions follows from Harish-Chandra’s formulae and the exis-
tence of discrete series for the split semisimple groups over R having a root system as above.
However, [39] gives a direct construction.

Let x0 2 Xreg and �0 2 X�reg define the same order.

For w 2 W.R/ define d.w/ D NcR.x0; w.�0// D NcR.w�1.x0/; �0/.

P 3.3.1. – Let R be a root system as above, and denote by q.R/ the integer
.jRj=2C rank.R// =2. ThenX

w2W.R/

d.w/ D jW.R/j and
X

w2W.R/

".w/d.w/ D .�1/q.R/jW.R/j:
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Proof. – The two formulae are equivalent by [39, Theorem 3.2] so let us prove the first
one by induction on the rank of R. The case of R D ; is trivial. Assume that R is
not empty and that the formula holds in lower rank. Denote W D W.R/. For ˛ 2 R

let C˛ D fx 2 Wx0 j ˛ 2 �xg and D˛ the orthogonal projection of C˛ on Y D ker˛.
Geometrically, C˛ represents the chambers adjacent to the wall Y on the side determined
by ˛. For x 2 C˛, by a computation similar to 3.3.2, orthogonal projection on Y maps the
chamber containing x onto a connected component of Y n

S
ˇ2Rnf˙˛g kerˇ, i.e., a chamber

in Y relative to R. Thus the projection C˛ ! D˛ is bijective and in any R˛-chamber of Y
there is the same number jD˛j=jW.R˛/j of elements in D˛.

rank.R/
X
w2W

d.w/ D
X

x2Wx0

X
˛2�x

NcR.x; �0/

D
1

2

X
˛2R

X
x2 C˛

NcR.x; �0/C NcR.s˛.x/; �0/

D

X
˛2R

X
y2D˛

NcR˛ .y; �0jY /

D

X
˛2R

jD˛j D

X
x2Wx0

j�xj D rank.R/jW j:

At the second line we used the permutation ˛ 7! �˛ of R and the fact that x 2 C˛ ,

s˛.x/ 2 C�˛.

3.3.3. Character of averaged discrete series on non-compact tori. – In this section we consider
a reductive group G over R which has discrete series. To simplify notations we assume that
G is semisimple, as it is the case for the symplectic and special orthogonal groups. Fix a
dominant weight � for GC, and let � D � C � where 2� is the sum of the positive roots.
Let M be a Levi subgroup of G and denote by AM the biggest split central torus in M. If

 2M.R/ is semisimple, G-regular and belongs to a maximal torus anisotropic modulo AM,
define

ˆM.
; �/ WD .�1/
q.G.R// ˇ̌DG

M.
/
ˇ̌1=2 X

�12…disc.�/

‚�1.
/

where DG
M.
/ D det .Id �Ad.
/ j g=m/. Note that for 
 2 G.R/ semisimple elliptic regular,

ˆG.
; �/�EP;I.R/ D Tr
�

 jV �

�

�
�EP;I.R/ D O
 .f�.g/dg/ where f�.g/dg is the smooth

compactly supported distribution of Section 3.1.1.
When M �Q R admits a maximal torus T anisotropic modulo AM �Q R, Arthur shows

thatˆM.�; �/ extends continuously to T.R/ (beware that the statement [5, (4.7)] is erroneous:
in general ˆM.
; �/ is not identically zero outside the connected components that intersect
the center of G). Following [39, § 4], to which we refer for details, let us write the restriction
of ˆM.�; �/ to any connected component of T.R/G�reg as a linear combination of traces in
algebraic representations of M.

Let R be the set of roots of T on G (over C). Let RM be the set of roots of T on M. Let

 2 T.R/ be G-regular, and let � be the connected component of 
 in T.R/. Let R� be
the set of real roots ˛ 2 R such that ˛.
/ > 0. As the notation suggests, it only depends
on �. MoreoverR� andRM are orthogonal sub-root systems ofR: the coroots ofRM factor
through T\Mder which is anisotropic, while the roots in R� factor through the biggest split
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quotient of T. Finally ˆM.
; �/ D 0 unless 
 belongs to the image of Gsc.R/, and in that
case the Weyl group W.R�/ of R� contains �Id and rk.R�/ D dim AM. In the following we
assume that 
 2 Im.Gsc.R/! G.R//.

Since 
 is G-regular, it defines a set of positive roots RC
 D
˚
˛ 2 R
 j ˛.
/ > 1

	
in R� .

Choose a parabolic subgroup P D MN with unipotent radical N such that RC
 is included
in the set of roots of T on N. In general this choice is not unique. Choose any set of positive
roots RCM for RM. There is a unique Borel subgroup B � P of G containing T such that the
set of roots of T on B\M isRCM. LetRC be the set of positive roots inR corresponding to B.

There is a unique x
 2 .RR�/� D R˝ZX�.AM/ such that for any ˛ 2 R� , ˛.x
 / D ˛.
/.
Then x
 is R� -regular and the chamber in which x
 lies only depends on the connected
component of 
 in T.R/G�reg. Denote by pr the orthogonal projection R˝ZX

�.T/! RR� .
When we identify RR� with R ˝Z X

�.AM/, pr is simply “restriction to AM”. By [39, proof
of Lemma 4.1 and end of § 4] we have

ˆM.
; �/ D
ıP.
/

1=2Q
˛2R

C
M
.1 � ˛.
/�1/

X
w2W.R/

".w/ NcR� .x
 ; pr.w.�B/// Œw.�B/ � �B� .
/

where
ıP.
/ D jdet .
 jLie.N//j D

Y
˛2RC�R

C
M

j˛.
/j :

Since �B � �B\M is invariant under W.RM/, in the above sum we can combine terms in the
same orbit under W.RM/ to identify Weyl’s character formula for algebraic representations
of M. LetE D

˚
w 2 W.R/ j 8˛ 2 RC
 [R

C
M; w

�1.˛/ 2 RC
	
, a set of representatives for the

action ofW.R�/�W.RM/ on the left ofW.R/. Denoting VM;�0 the algebraic representation
of M with highest weight �0, we obtain

ˆM.
; �/ D ıP.
/
1=2

X
w02E

X
w12W .R� /

".w1w0/d.w1/Tr
�

 jVM;w1w0.�B/��B

�
Furthermore w1w0.�B/ � w0.�B/ 2 ZR� is invariant under W.RM/, hence in the above

sum
Tr
�

 jVM;w1w0.�B/��B

�
D Œw1w0.�B/ � w0.�B/� .
/ � Tr

�

 jVM;w0.�B/��B

�
and Œw1w0.�B/ � w0.�B/� .
/ is a positive real number, which does not really depend on 
 but
only on the coset .T \Mder/.R/
 (equivalently, on x
 ). Finally we obtain

ˆM.
; �/ D ıP.
/
1=2

X
w02E

".w0/

" X
w12W .R� /

".w1/d.w1/ Œw1w0.�B/ � w0.�B/� .
/

� Tr
�

 jVM;w0.�B/��B

�#
:

This formula is valid for 
 in the closure (in T.R/) of a connected component of T.R/G�reg.

P 3.3.2. – If 
 is compact, i.e., the smallest closed subgroup of G.R/
containing 
 is compact, then we have

ˆM.
; �/ D .�1/
q.R� /jW.R�/j

X
w02E

".w0/Tr
�

 jVM;w0.�B/��B

�
:
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Proof. – This formula follows from Œw1w0.�B/ � w0.�B/� .
/ D 1 and Proposition 3.3.1.

3.3.4. Explicit formulae for the parabolic terms. – Let G be one of SO2nC1 or Sp2n or
SO4n over Z, let

Q
p fp be the characteristic function of G.bZ/ and

Q
p dgp the Haar

measure on G.Af / such that G.bZ/ has measure one. Let � be a dominant weight for GC
and let f1;�.g1/dg1 be the distribution on G.R/ defined in Section 3.1.1. Denote
f .g/dg D f1;�.g1/dg1

Q
p fp.gp/dgp. Using Proposition 3.3.2 and tedious compu-

tations, we obtain explicit formulae for the geometric side Tgeom.f .g/dg/ of Arthur’s trace
formula defined in Section 3.3.1. For a dominant weight � D k1e1 C � � � C knen it will be
convenient to write Tgeom.G; k/ for Tgeom.f .g/dg/ to precise the group G, and similarly
for Tell. If G is trivial (SO0 or SO1 or Sp0) then Tell is of course simply equal to 1.

Any Levi subgroup M of G is isomorphic to
Q
i GLni � G0 where G0 is of the same type

as G. Note that M.R/ has essentially discrete series (i.e., ˆM.�; �/ is not identically zero) if
and only if for all i; ni � 2 and in case G is even orthogonal, G0 has even rank. Thus the Levi
subgroupsM whose contribution to Tgeom (that is Formula 3.3.1) is nonzero are isomorphic
to GLa1 �GLc2 �G0 for some integers a; c.

Since PGL2 ' SO3, for k 2 Z�0 we denote Tell.PGL2; k/ D Tell.SO3; k/. For non-
negative k 2 1=2Z n Z it is convenient to define Tell.PGL2; k/ D 0, so that for any k 2 Z�0
we have Tell.PGL2; k=2/ D Tell.Sp2; k/=2.

For a; c; d 2 Z�0, let „a;c;d be the set of � in the symmetric group SaC2cCd such that

– �.1/ < � � � < �.a/,
– �.aC 1/ < �.aC 3/ < � � � < �.aC 2c � 1/,
– for any 1 � i � c, �.aC 2i � 1/ < �.aC 2i/,
– �.aC 2c C 1/ < � � � < �.n/.

For a � 0 and x 2 f0; : : : ; ag, define

�.B/.a; x/ D
.�1/a.a�1/=2

2a

ba=2cX
bD0

.�1/b
2bX
rD0

 
x

r

! 
a � x

2b � r

!
.�1/r :

It is easy to check that

�.B/.a; x/ D
.�1/a.a�1/=2

2aC1
TrQ.

p
�1/=Q

�
.1C

p
�1/a�x.1 �

p
�1/x

�
2

1

2b.aC1/=2c
Z:

For n � a, � 2 Sn and k D .k1; : : : ; kn/ 2 Zn, let

�.B/.a; k; �/ D �.B/
�
a; cardfi 2 f1; : : : ; ag j k�.i/ C �.i/C i D 1 .mod 2/g

�
:

T 3.3.3 (Parabolic terms for G D SO2nC1). – Let a; c; d 2 Z�0 not all zero and
n D a C 2c C d . The sum of the contributions to Tgeom.SO2nC1; k/ in Formula 3.3.1 of the
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Levi subgroups M in the orbit of GLa1 �GLc2 � SO2dC1 under the Weyl group W.T0;G/ isX
�2„a;c;d

�.B/.a; k; �/".�/

�

cY
iD1

�
Tell

�
PGL2; .k�.aC2i�1/ � k�.aC2i/ C �.aC 2i/ � �.aC 2i � 1/ � 1/=2

�
� Tell.PGL2; .k�.aC2i�1/ C k�.aC2i/ � �.aC 2i/ � �.aC 2i � 1/C 2n/=2/

i
� Tell.SO2dC1; .k�.n�dC1/ C n � d C 1 � �.n � d C 1/; : : : ; k�.n/ C n � �.n///:

We have a similar formula for the symplectic group. For a � 0 and x 2 f0; : : : ; ag, define

�.C/.a; x/ D
.�1/a.a�1/=2

2a

aX
bD0

.�1/b.a�b/
bX
rD0

 
x

r

! 
a � x

b � r

!
.�1/r :

Then we have

�.C/.a; x/ D

8̂̂<̂
:̂
.�1/a=2 if a is even and x D a;

.�1/.a�1/=2 if a is odd and x D 0;

0 otherwise.

For n � a, � 2 Sn and k D .k1; : : : ; kn/ 2 Zn, let

�.C/.a; k; �/ D �.C/
�
a; cardfi 2 f1; : : : ; ag j k�.i/ C �.i/C i D 1 .mod 2/g

�
:

T 3.3.4 (Parabolic terms for G D Sp2n). – Let a; c; d 2 Z�0 not all zero and
n D a C 2c C d . The sum of the contributions to Tgeom.Sp2n; k/ in Formula 3.3.1 of the
Levi subgroups M in the orbit of GLa1 �GLc2 � Sp2d under the Weyl group W.T0;G/ isX
�2„a;c;d

�.C/.a; k; �/".�/

�

cY
iD1

�
Tell

�
PGL2; .k�.aC2i�1/ � k�.aC2i/ C �.aC 2i/ � �.aC 2i � 1/ � 1/=2

�
� Tell.PGL2; .k�.aC2i�1/ C k�.aC2i/ � �.aC 2i/ � �.aC 2i � 1/C 2nC 1/=2/

i
� Tell.Sp2d ; .k�.n�dC1/ C n � d C 1 � �.n � d C 1/; : : : ; k�.n/ C n � �.n///:

For a � 0 and x 2 f0; : : : ; 2ag, define

�.D/.a; x/ D
1

22a

aX
bD0

2bX
rD0

 
x

r

! 
2a � x

2b � r

!
.�1/r :

We have

�.D/.a; x/ D

8̂̂<̂
:̂
1 if a D 0;

1=2 if a > 0 and x.2a � x/ D 0;

0 otherwise.

For n � a, � 2 S2n and k D .k1; : : : ; k2n/ 2 Z2n, let

�.D/.a; k; �/ D �.D/
�
a; cardfi 2 f1; : : : ; 2ag j k�.i/ C �.i/C i D 1 .mod 2/g

�
:
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For the group SO4n, we need only consider dominant weights k with k2n � 0 (i.e., the
same inequalities as for the other two infinite families) since the end result is invariant
under the outer automorphism of SO4n, that is Tgeom.SO4n; .k1; : : : ; k2n�1;�k2n// D

Tgeom.SO4n; .k1; : : : ; k2n�1; k2n//.

T 3.3.5 (Parabolic terms for G D SO4n). – Let a; c; d 2 Z�0 not all zero and
n D a C c C d . The sum of the contributions to Tgeom.SO4n; k/ in Formula 3.3.1 of the Levi
subgroups M in the orbit of GL2a1 �GLc2 � SO4d under the Weyl group W.T0;G/ isX
�2„2a;c;2d

�.D/.a; k; �/".�/

�

cY
iD1

�
Tell

�
PGL2; .k�.2aC2i�1/ � k�.2aC2i/ C �.2aC 2i/ � �.2aC 2i � 1/ � 1/=2

�
C Tell.PGL2; .k�.2aC2i�1/ C k�.2aC2i/ � �.2aC 2i/ � �.2aC 2i � 1/C 4n � 1/=2/

i
� Tell.SO4d ; .k�.2n�2dC1/ C 2n � 2d C 1 � �.2n � 2d C 1/; : : : ; k�.2n/ C 2n � �.2n///:

4. Endoscopic decomposition of the spectral side

4.1. The spectral side of the trace formula

The previous sections give an algorithm to compute the geometric side of Arthur’s trace
formula in [5]. Let us recall the spectral side of this version of the trace formula. As before
G denotes one of the reductive groups SO2nC1, Sp2n or SO4n over Z. LetK1 be a maximal
compact subgroup of G.R/ and denote g D C ˝R Lie.G.R//. Let A disc.G.Q/nG.A// be
the space of K1 � G.bZ/-finite and Z.U.g//-finite functions in the discrete spectrum
L2disc.G.Q/nG.A//. It is also the space of automorphic forms in the sense of [12] which
are square-integrable. There is an orthogonal decomposition

A disc.G.Q/nG.A// D
M

�2…disc.G/

m��

where …disc.G/ is a countable set of distinct isomorphism classes of unitary
.g; K1/ �G.Af /-modules and m� 2 Z�1. Let …unr

disc.G/ � …disc.G/ denote the set of �

such that for any prime number p the representation �p is unramified, i.e., �G.Zp/
p ¤ 0.

Let � be a dominant weight for GC, and denote by V� the corresponding algebraic repre-
sentation of G.C/, which by restriction to G.R/we see as a .g; K1/-module. IfX is an admis-
sible .g; K1/-module, define its Euler-Poincaré characteristic with respect to V�

EP.X ˝ V �� / D
X
i�0

.�1/i dimH i ..g; K1/; X ˝ V
�
� /:

We refer to [13] for definitions and essential properties of .g; K1/-cohomology. By [13,
Chap. I, Cor. 4.2] for any irreducible .g; K1/-moduleX , we haveH �..g; K1/; X˝V �� / D 0
unless X has the same infinitesimal character as V�.
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For our particular choice of function on G.Af / the spectral side of Arthur’s trace formula
in [5] is

(4.1.1)
X

�2…unr
disc.G/

m�EP.�1 ˝ V �� /:

By [46, Theorem 1] there is only a finite number of nonzero terms. Vogan and Zuckerman
[93] (see also [13, Chapter VI, § 5]) have classified the irreducible unitary .g; K1/-modules
having cohomology with respect to V�, and computed this cohomology. However, the integer
4.1.1 alone is not enough to recover the number m.X/ of � 2 …unr

disc.G/ such that �1 is
isomorphic to a given irreducible unitary .g; K1/-module X having the same infinitesimal
character as V�.

Arthur’s endoscopic classification of the discrete automorphic spectrum of G [8] allows
us to expressm.X/ using numbers of certain self-dual cuspidal automorphic representations
of general linear groups. Conversely these numbers can be obtained from the Euler-Poincaré
characteristic 4.1.1 for various groups G and weights �. For explicit computations of Euler-
Poincaré characteristics at the real place we will use the recent result of Arancibia-Moeglin-
Renard [3] comparing the rather abstract Arthur packets at the real place with the ones
previously constructed by Adams and Johnson in [2].

Note that it will not be necessary to use [93] since the Euler-Poincaré characteristic is a
much simpler invariant than the whole cohomology.

4.1.1. Arthur’s endoscopic classification. – Let us review how Arthur’s very general results
in [8] specialize in our particular situation: level one and regular infinitesimal character. We
are brief since this was done in [25, Chapter 3], though with a slightly different formulation.
We refer to [11] for the definition of L-groups. For G a reductive group over F we will denote
by bG the connected component of the neutral element in LG (which Borel denotes by LG0).

Let F be a local field of characteristic zero. The Weil-Deligne group of F is denoted
by W 0F : if F is archimedean W 0F D WF , whereas in the p-adic case W 0F D WF � SU.2/.
Consider a quasisplit special orthogonal or symplectic group G over F .

Let  W W 0F � SL2.C/! LG be a local Arthur parameter, i.e.,  is a continuous
semisimple morphism compatible with LG! WF via the projection W 0F � SL2.C/! WF ,
 .W 0F / is bounded, and  jSL2.C/ is algebraic. If  jSL2.C/ is trivial then  is a tempered
Langlands parameter. The general case is considered for global purposes, which we will
discuss later. Consider the group C D Cent. ;bG/ and the finite group

S D C =C
0
 Z.

bG/Gal.F =F /:

For the groups G considered here the group S is isomorphic to a product of copies
of f˙1g. Arthur [8, Theorem 1.5.1] associates with  a finite multiset … of irreducible
unitary representations of G.F /, along with a character h�; �i of S for any � 2 … . In
the even orthogonal case this is not exactly true: instead of actual representations, … is
comprised of orbits of the group Out.G/ ' Z=2Z of outer automorphisms of G on the set of
isomorphism classes of irreducible representations of G.F /. These orbits can be described
as modules over the Out.G/-invariants of the Hecke algebra H .G.F // of G.F /, which we
denote by H 0.G.F //. Here we have fixed a splitting Out.G/ ! Aut.G/ defined over F .
Note that if F is p-adic, G is unramified and K is a hyperspecial subgroup of G.F / we

4 e SÉRIE – TOME 50 – 2017 – No 2



DIMENSIONS OF SPACES OF LEVEL ONE AUTOMORPHIC FORMS 305

can choose a splitting Out.G/ ! Aut.G/ that preserves K. If F is archimedean and K is a
maximal compact subgroup of G.F /, we can also choose a splitting that preserves K, and
H 0.G.F // is the algebra of left and right K-finite Out.G/-invariant distributions on G.F /
with support in K. Note that the choice of splitting does not matter when one considers
invariant objects, such as orbital integrals or traces in representations.

Denote by Std W LG! GLN .C/ the standard representation, where

N D

8̂̂<̂
:̂
2n if G NF ' .SO2nC1/ NF , i.e., bG ' Sp2n.C/;
2nC 1 if G NF ' .Sp2n/ NF , i.e., bG ' SO2nC1.C/;
2n if G NF ' .SO2n/ NF , i.e., bG ' SO2n.C/:

In the first two cases det ı Std is trivial, whereas in the third case it takes values in f˙1g
and factors through a character Gal.F =F / ! f˙1g, which by local class field theory we
can also see as a character �G W F

� ! f˙1g. If bG D Sp2n.C/ (resp. bG D SO2nC1.C/),
the standard representation Std induces a bijection from the set of conjugacy classes
of Arthur parameters  W W 0F � SL2.C/! bG to the set of conjugacy classes of Arthur
parameters  0 W W 0F � SL2.C/! GLN .C/ such that det ı 0 is trivial and there exists a
non-degenerate alternate (resp. symmetric) bilinear form on CN preserved by Im. 0/.
The third case, where G is an even special orthogonal group, induces a small complica-
tion. Composing with Std still induces a surjective map from the set of conjugacy classes
of Arthur parameters  W W 0F � SL2.C/! LG to the set of conjugacy classes of Arthur
parameters  0 W W 0F � SL2.C/ ! GLN .C/ having determinant �G and such that there
exists a non-degenerate bilinear form on CN preserved by Im. 0/. However, the fibers of
this map can have cardinality one or two, the latter case occurring if and only if all the
self-dual irreducible constituents of  0 have even dimension. The Arthur packet … along
with the characters h�; �i of S are characterized [8, Theorem 2.2.1] using the representation
of GLN .F / associated with Stdı by the local Langlands correspondence, and twisted and
ordinary endoscopic character identities. The characters .h�; �i/�2… of S are well-defined
only once we have fixed an equivalence class of Whittaker datum for G, since this choice has
to be made to normalize the transfer factors involved in the ordinary endoscopic character
identities.

In the p-adic case, we will mainly be interested in unramified Arthur parameters  ,
i.e., such that  jW 0

F
is trivial on the inertia subgroup and on SU.2/. Of course these exist

only if G is unramified, so let us make this assumption. We refer to [20] for the definition
of unramified Whittaker data with respect to a choice of hyperspecial maximal compact
subgroup. Note that several conjugacy classes of Whittaker data can correspond to the same
conjugacy class of hyperspecial subgroups, and that Gad.F / acts transitively on both sets of
conjugacy classes.

The following lemma is implicit in [8]. Note that a weak version of it is needed to make
sense of the main global theorem [8, Theorem 1.5.2].

L 4.1.1. – Let  W W 0F � SL2.C/ ! LG be an Arthur parameter for the p-adic
field F . Then … contains a G.Zp/-spherical representation if and only if  is unramified. In
that case, … contains a unique G.Zp/-spherical representation � , which satisfies h�; �i D 1.
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Proof. – This is a consequence of the proof of [8, Lemma 7.3.4]. We borrow Arthur’s
notations for this (sketch of) proof. Let ef be the characteristic function of
GLN . OF /o � �gGLN .F /. Arthur shows that efN . / D 1 if  is unramified. If  is rami-
fied, the representation of GLN .F / associated with Std ı  is ramified, thus efN . / D 0.
The statement of the lemma follows easily from these two identities, the characterization
[8, Theorem 2.2.1] of the local Arthur packets by endoscopic character relations, and the
version of the twisted fundamental lemma proved in [8, Lemma 7.3.4] (which applies even
when the residual characteristic of F is small!).

To state Arthur’s global theorem we only consider the split groups SO2nC1, Sp2n
and SO2n over Q. From now on G denotes one of these groups. By [8, Theorem 1.4.1],
any self-dual cuspidal automorphic representation � of GLM over a number field has a
sign s.�/ 2 f˙1g, which intuitively is the type of the conjectural Langlands parameter of
� W s.�/ D 1 (resp. �1) if this parameter is orthogonal (resp. symplectic). Unsurprisingly
if M is odd then s.�/ D 1, and if M is even and s.�/ D �1 then the central character
�� of � is trivial. Moreover Arthur characterizes s.�/ using Sym2 and

V2 L-functions [8,
Theorem 1.5.3]. This partition of the set of self-dual cuspidal automorphic representations
of general linear groups allow Arthur to define substitutes for discrete Arthur-Langlands
parameters for the group G. Define s.G/ D �1 in the first case (bG D Sp2n.C/) and s.G/ D 1
in the last two cases (bG D SO2nC1.C/ or SO2n.C/). Define ‰.G/disc as the set of formal
sums  D �i2I�i Œdi � where

1. for all i 2 I , �i is a self-dual cuspidal automorphic representation of GLni =Q,
2. for all i 2 I , di 2 Z�1 is such that s.�i /.�1/di�1 D s.G/,
3. N D

P
i2I nidi ,

4. the pairs .�i ; di / are distinct,
5.
Q
i2I �

di
�i D 1, where ��i is the central character of �i .

The last condition is automatically satisfied if bG D Sp2n.C/. The notation �i Œdi � suggests
taking the tensor product of the putative Langlands parameter of �i with the di -dimensional
algebraic representation of SL2.C/. Each factor �i Œdi � corresponds to a discrete automor-
phic representation of GLnidi over Q by [72].

Let v denote a place of Q. Thanks to the local Langlands correspondence for general
linear groups applied to the .�i /v’s, for  2 ‰.G/disc,  specializes into a local Arthur
parameter  v W W 0Qv � SL2.C/ ! GLN .C/. By [8, Theorem 1.4.2] we can see  v as
a genuine local Arthur parameter W 0Qv � SL2.C/ ! LG, but in the even orthogonal
case  v is well-defined only up to outer automorphism. To be honest it is not known in
general that  v.W 0Qv / is bounded (this would be the Ramanujan-Petersson conjecture),
but we will not comment more on this technicality and refer to the discussion preceding
[8, Theorem 1.5.2] for details. Thus we have a finite multiset … v of irreducible unitary
representations of G.Qv/, each of these representations being well-defined only up to outer
conjugacy in the even orthogonal case.

As in the local case we want to define C D Cent. ;bG/ and

S D C =C
0
 Z.

bG/Gal.Q=Q/
D C =Z.bG/:
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Observe that this can be done formally for  D �i2I�i Œdi �. An element s of C is described
by J � I such that

P
i2J nidi is even, and s corresponds formally to �Id on the space

of �i2J�i Œdi � and Id on the space of �i2InJ�i Œdi �. Thus one can define a finite 2-group S 
along with a natural morphism S ! S v for any place v of Q. The last ingredient in
Arthur’s global theorem is the character " of S . It is defined in terms of the root numbers
".�i ��j ; 1=2/ just after [8, Theorem 1.5.2]. If all the di ’s are equal to 1, in which case we say
that  is formally tempered, then " D 1.

Fix a global Whittaker datum for G, inducing a family of Whittaker data for GQv where
v ranges over the places ofQ. Our reductive group is defined overZ, and the global Whittaker
datum can be chosen so that for any prime number p it induces an unramified Whittaker
datum on G.Qp/ with respect to the hyperspecial subgroup G.Zp/. Let K1 be a maximal
compact subgroup of G.R/, and denote g D C˝R Lie.G.R//. The following is a specializa-
tion of the general theorem [8, Theorem 1.5.2] to the “everywhere unramified” case, using
Lemma 4.1.1.

T 4.1.2. – Recall that A disc.G.Q/nG.A// is the space of K1 � G.bZ/-finite and
Z.U.g//-finite functions in the discrete spectrum L2disc.G.Q/nG.A//. Let ‰.G/unr

disc be the set
of  D �i�i Œdi � 2 ‰.G/disc such that for any i , �i is unramified at every prime. There is a
H 0.G.R//-equivariant isomorphism

A disc.G.Q/nG.A//G.
bZ/
'

M
 2‰.G/unr

disc

M
�12… 1
h�;�1iD" 

m �1

where m D 1 except if G is even orthogonal and for all i nidi is even, in which case m D 2.

For �1 2 … 1 the character h�; �1i of S 1 induces a character of S using the morphism
S ! S 1 , and the inner direct sum ranges over the �1’s such that this character of S is
equal to " .

In the even orthogonal case, �1 is only an Out.GR/-orbit of irreducible represen-
tations, and it does not seem possible to resolve this ambiguity at the moment. Never-
theless it disappears in the global setting. There is a splitting Out.G/ ! Aut.G/ such
that Out.G/ preserves G.bZ/, and thus if fX1; X2g is an Out.GR/-orbit of isomorphism
classes of irreducible unitary .g; K1/-modules, then X1 and X2 have the same multiplicity
in A disc.G.Q/nG.A//G.

bZ/.
4.1.2. The spectral side from an endoscopic perspective. – We keep the notations from the
previous section. Suppose now that G.R/ has discrete series, i.e., G is not SO2n with n odd.
Let � be a dominant weight for GC. Using Theorem 4.1.2 we can write the spectral side of
the trace Formula 4.1.1 as

(4.1.2)
X

 2‰.G/unr
disc

X
�12… 1
h�;�1iD" 

m EP.�1 ˝ V �� /:

We need to be cautious here since EP.�1 ˝ V �� / is not well-defined in the even orthogonal

case. If �1 is the restriction to H 0.G.R// of two non-isomorphic .g; K1/-modules �.1/1 and
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�
.2/
1 , we define

EP.�1 ˝ V �� / D
1

2
EP

�
.�.1/1 ˚ �

.2/
1 /˝ V ��

�
:

In 4.1.2 we can restrict the sum to �1’s whose infinitesimal character equals that of V� (up
to outer automorphism in the even orthogonal case), which is � C � via Harish-Chandra’s
isomorphism, where 2� is the sum of the positive roots. Thanks to the work of Mezo,
we can identify the infinitesimal character of the elements of … 1 . To lighten notation,
we drop the subscript 1 temporarily and consider an archimedean Arthur parameter
 W WR � SL2.C/! LG. Recall that WC D C�, WR D WC t jWC where j 2 D �1 2 WC
and for any z 2 WC, jzj�1 D Nz. Define a Langlands parameter ' by composing  with
WR ! WR � SL2.C/ mapping w 2 WR to 

w;

 
jjwjj1=2 0

0 jjwjj�1=2

!!
where jj � jj W WR ! R>0 is the unique morphism mapping z 2 WC to z Nz. Let T be
a maximal torus in bG. Conjugating by an element of bG if necessary, we can assume that
' .WC/ � T and write ' .z/ D �1.z/�2. Nz/ for z 2 WC, where �1; �2 2 C ˝Z X�.T /

are such that �1 � �2 2 X�.T /. The conjugacy class of .�1; �2/ under the Weyl group
W.T ;bG/ is well-defined. Note that for any maximal torus T of GC we can see �1; �2 as
elements of C˝Z X

�.T/, again canonically up to the action of the Weyl group.

L 4.1.3. – The Weyl group orbit of �1 is the infinitesimal character of any element
of … .

Proof. – Recall [8, Theorem 2.2.1] that the packet … is characterized by twisted and
standard endoscopic character identities involving the representation of GLN .R/ having
Langlands parameter Std ı ' . The lemma follows from [69, Lemma 24] (see also [95,
Corollaire 2.8]), which establishes the equivariance of twisted endoscopic transfer for the
actions of the centers of the enveloping algebras.

Attached to � is a unique (up to bG-conjugacy) discrete parameter '� W WR !
LG having

infinitesimal character � C �. We explicit the GLN .C/-conjugacy class of Std ı '� in each
case. For w 2 1

2
Z�0 it is convenient to denote the Langlands parameter WR ! GL2.C/

Iw D IndWR
WC

�
z 7! .z=jzj/2w

�
W z 2 WC 7!

 
.z=jzj/2w 0

0 .z=jzj/�2w

!
; j 7!

 
0 .�1/2w

1 0

!
:

Note that this was denoted by I2w in [25] to emphasize motivic weight in a global setting.
We choose to emphasize Hodge weights, i.e., eigenvalues of the infinitesimal character:
our Iw has Hodge weights w and �w. Let �C=R be the non-trivial continuous character
WR ! f˙1g, so that I0 D 1 ˚ �C=R. If G D SO2nC1, we can write � D k1e1 C � � � C knen
where k1 � � � � � kn � 0 are integers, and � D .n � 1

2
/e1 C .n �

3
2
/e2 C � � � C

1
2
en. In this

case Std ı '� is
nM
rD1

IkrCnC1=2�r :
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If G D Sp2n, we can write � D k1e1 C � � � C knen where k1 � � � � � kn � 0 are integers, and
� D ne1 C .n � 1/e2 C � � � C en. Then Std ı '� is

�nC=R ˚

nM
rD1

IkrCnC1�r :

Finally, if G D SO4n, we can write � D k1e1 C � � � C k2ne2n where k1 � � � � � k2n�1 � jk2nj
are integers, and � D .2n � 1/e1 C .2n � 2/e2 C � � � C e2n�1. Then Std ı '� is

2nM
rD1

IkrC2n�r :

Replacing .k1; : : : ; k2n�1; k2n/ with .k1; : : : ; k2n�1;�k2n/ yields the same conjugacy class
under GLN .C/.

From this explicit description one can deduce several restrictions on the global parameters
 2 ‰.G/unr

disc contributing non-trivially to the spectral side 4.1.2. These observations
were already made in [25], using a different formulation. We define ‰.G/�disc as the subset
of ‰.G/disc consisting of  such that the infinitesimal character of  1 is equal to � C �.
Define also ‰.G/unr;�

disc D ‰.G/
unr
disc \‰.G/

�
disc.

1. In the first two cases (G D SO2nC1 of Sp2n) the infinitesimal character of Std ı '� is
algebraic and regular in the sense of Clozel [28]. Clozel’s definition of “algebraic” is
“C-algebraic” in the sense of [17], and we will also use the term “C-algebraic” to avoid
confusion. In the third case (G D SO4n) we have that jj�jj1=2˝.Std ı '�/ is C-algebraic,
but not always regular. It is regular if and only if k2n ¤ 0. In all cases, Clozel’s purity
lemma [28, Lemme 4.9] implies that if  D �i�i Œdi � 2 ‰.G/�disc, then for all i the self-
dual cuspidal automorphic representation �i of GLni =Q is tempered at the real place.
Equivalently,  1.WR/ is bounded.

2. Let ‰.G/sim be the set of simple formal Arthur parameters in ‰.G/disc, i.e., those
 D �i2I�i Œdi � such that I D fi0g and di0 D 1. Denote ‰.G/�sim D ‰.G/sim \‰.G/�disc.
Then ‰.G/�sim is the set of self-dual cuspidal automorphic representations of GLN =Q
such that the central character of � is trivial and the local Langlands parameter
of �1 is Std ı '�. Indeed in all three cases Std ı '� is either orthogonal or symplectic,
and thus �1 determines s.�/.

3. Letm � 1 and consider a self-dual cuspidal automorphic representation � of GL2m=Q
such that j det j1=2 ˝ � is C-algebraic regular. Self-duality implies that the central
character �� of � is quadratic, i.e., �� W A�=Q� ! f˙1g. Since j det j1=2 ˝ � is
C-algebraic and regular, there are unique integers w1 > � � � > wm > 0 such that the
local Langlands parameter of �1 is

mM
rD1

Iwr ;

which implies that �� jR�.�1/ D .�1/m. If moreover we assume that � is everywhere
unramified, then �� is trivial on

Q
p Z�p . Since A� D Q�R>0

Q
p Z�p , this implies that

�� is trivial, and thus m must be even.
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4. The previous point has the following important consequence for our inductive compu-
tations. Let G be a split symplectic or special orthogonal group admitting discrete series
at the real place, and � a dominant weight for G. Let  D �i�i Œdi � 2 ‰.G/

unr;�
disc . Then

for any i , there is a split symplectic or special orthogonal group Gi admitting discrete
series at the real place and a dominant weight �i for Gi such that �i 2 ‰.Gi /

unr;�i
sim . We

emphasize that this holds even if we have G D SO4n and � D k1e1 C � � � C k2ne2n with
k2n D 0. To be precise, we have the following classification:

1. G D SO2nC1 and thus bG D Sp2n.C/. For a dominant weight � and
 D �i2I�i Œdi � 2 ‰.G/

unr;�
disc , there is a canonical decomposition I D I1tI2tI3

where
1. for all i 2 I1, di is odd, ni is even and �i 2 ‰.SOniC1/

unr;�i
sim ,

2. for all i 2 I2, di is even, ni is divisible by 4 and �i 2 ‰.SOni /
unr;�i
sim ,

3. card.I3/ 2 f0; 1g and if I3 D fig, di is even, ni is odd and �i 2 ‰.Spni�1/
unr;�i
sim .

2. G D Sp2n and thus bG D SO2nC1.C/. For a dominant weight � and
 D �i2I�i Œdi � 2 ‰.G/

unr;�
disc , there is a canonical decomposition I D I1tI2tI3

where
1. I1 D fj g, dj is odd, nj is odd and �j 2 ‰.Spnj�1/

unr;�j
sim ,

2. for all i 2 I2, di is odd, ni is divisible by 4 and �i 2 ‰.SOni /
unr;�i
sim ,

3. for all i 2 I3, di is even, ni is even and �i 2 ‰.SOniC1/
unr;�i
sim .

Note that njdj D 2nC 1 mod 4.
3. G D SO4n and thus bG D SO4n.C/. For a dominant weight � and
 D �i2I�i Œdi � 2 ‰.G/

unr;�
disc , there is a canonical decomposition I D I1tI2tI3

where
1. for all i 2 I1, di is odd, ni is divisible by 4 and �i 2 ‰.SOni /

unr;�i
sim ,

2. for all i 2 I2, di is even, ni is even and �i 2 ‰.SOniC1/
unr;�i
sim ,

3. card.I3/ 2 f0; 2g. If I3 D fi; j g and up to exchanging i and j , di D 1 and dj is

odd, ni and nj are odd, and �i 2 ‰.Spni�1/
unr;�i
sim and �j 2 ‰.Spnj�1/

unr;�j
sim .

Note that in all three cases, if � is regular then for any  D �i2I�i Œdi � 2 ‰.G/
unr;�
disc we

have that  1 D '� and thus all di ’s are equal to 1 (i.e.,  is formally tempered). In the
third case where G D SO4n, if � D k1e1 C � � � C k2ne2n with k2n > 0, then I3 D ;.

As in the introduction, it will be convenient to have a more concrete notation for the
sets ‰.G/unr;�

sim .

1. For n � 1, the dominant weights for G D SO2nC1 are the characters
� D k1e1 C � � � C knen such that k1 � � � � � kn � 0. Then �C � D w1e1 C � � � Cwnen
where wr D kr C n C

1
2
� r , so that w1 > � � � > wn > 0 belong to 1

2
Z n Z. Define

S.w1; : : : ; wn/ D ‰.SO2nC1/
unr;�
sim , that is the set of self-dual automorphic cuspidal

representations of GL2n=Q which are everywhere unramified and with Langlands
parameter at the real place

Iw1 ˚ � � � ˚ Iwn :

Equivalently we could replace the last condition by “with infinitesimal character
having eigenvalues f˙w1; : : : ;˙wng”. Here S stands for “symplectic,” asbG D Sp2n.C/.
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2. For n � 1, the dominant weights for G D Sp2n are the characters � D k1e1C� � �Cknen
such that k1 � � � � � kn � 0. Then �C� D w1e1C� � �Cwnen wherewr D krCnC1�r ,
so that w1 > � � � > wn > 0 are integers. Define Oo.w1; : : : ; wn/ D ‰.Sp2n/

unr;�
sim , that

is the set of self-dual automorphic cuspidal representations of GL2nC1=Q which are
everywhere unramified and with Langlands parameter at the real place

Iw1 ˚ � � � ˚ Iwn ˚ �
n
C=R:

Equivalently we could replace the last condition by “with infinitesimal character
having eigenvalues f˙w1; : : : ;˙wn; 0g”. Here Oo stands for “odd orthogonal,” asbG D SO2nC1.C/.

3. For n � 1, the dominant weights for G D SO4n are the characters � D k1e1 C � � � C

k2ne2n such that k1 � � � � � k2n�1 � jk2nj. Since we only consider quantities invariant
under outer conjugation we assume k2n � 0. Then � C � D w1e1 C � � � C w2ne2n
where wr D kr C n � r , so that w1 > � � � > w2n�1 > w2n � 0 are integers. Define
Oe.w1; : : : ; w2n/ D ‰.SO4n/

unr;�
sim , that is the set of self-dual automorphic cuspidal

representations of GL4n=Q which are everywhere unramified and with Langlands
parameter at the real place

Iw1 ˚ � � � ˚ Iw2n :

In this case also we could replace the last condition by “with infinitesimal character
having eigenvalues f˙w1; : : : ;˙w2ng,” even when k2n D 0. Here Oe stands for “even
orthogonal,” as bG D SO4n.C/.

It is now natural to try to compute the cardinality of ‰.G/unr;�
sim , inductively on the

dimension of G. Observe that for 2 ‰.G/sim, the group S is trivial. Thus the contribution
of any  2 ‰.G/unr;�

sim to the spectral side 4.1.2 is simplyX
�12… 1

EP
�
�1 ˝ V

�
�

�
:

Recall that for such a  , the local Arthur parameter  1 is '�. In that case Arthur
defines …'� as the L-packet that Langlands [63] associates with '�. In the next section
we will review these packets in more detail, in particular Shelstad’s definition of h�; �1i
for �1 2 …'� , but since S is trivial all that matters for now is that card.…'�/ is positive
(and easily computed) and that all the representations in …'� are discrete series. By [13, ch.
III, Thm. 5.1] for any �1 2 …'� ,

EP
�
�1 ˝ V

�
�

�
D .�1/q.G.R//

and thus to compute the cardinality of ‰.G/unr;�
sim we want to compute the contribution

of ‰.G/unr;�
disc n‰.G/

unr;�
sim to the spectral side 4.1.2.

This is easier if � is regular, since as we observed above in that case any  2 ‰.G/unr;�
disc is

“formally tempered” or “formally of Ramanujan type,” i.e., 1 D '�. Moreover " is trivial.
Shelstad’s results reviewed in the next section allow us to explicitly determine of the number
of �1 2 …'� such that h�; �1i is equal to a given character of S 1 .

The general case is more interesting. The determination of " in the “conductor one” case
was done in [25], and the result is simple since it only involves epsilon factors at the real place
of Q. In all three cases, for any  D �i2I�i Œdi � 2 ‰.G/unr;�

disc the abelian 2-group S is
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generated by .si /i2J where J D fi 2 I jnidi is eveng and si 2 C is formally �Id on the
space of �i Œdi � and Id on the space of �j Œdj � for j ¤ i . By [25, (3.10)]

" .si / D
Y

j2Infig

".�i � �j /
min.di ;dj /

and since �i and �j are everywhere unramified ".�i � �j / can be computed easily from the
tensor product of the local Langlands parameters of .�i /1 and .�j /1. For the non-trivial
additive character x 7! exp.2i�x/ of R and the usual Haar measure on R, we have that
for any w 2 1

2
Z�0, ".Iw/ D i1C2w . Note that by [8, Theorem 1.5.3] ".�i � �j / D 1 if

s.�i /s.�j / D 1. The explicit computation of … 1 , along with the map … 1 ! S^ 1 ,
does not follow directly from Arthur’s work, even in our special case where the infinitesimal
character of  1 is that of an algebraic representation V�. For this purpose we will use
Arancibia-Moeglin-Renard’s recent paper [3] relating Arthur’s packet … 1 to the packets
constructed by Adams and Johnson in [2]. The latter predate Arthur’s recent work, in fact [2]
has corroborated Arthur’s general conjectures: see [6, § 5]. We will also be able to compute
the Euler-Poincaré characteristic of any element of … 1 in Section 4.2.2.

R 4.1.4. – Our original goal was to compute, for a given group G=Q as above,
dominant weight � and simple .g; K1/-module X with infinitesimal character � C �,
the multiplicity of X in A disc.G.Q/nG.A//G.

bZ/. This is possible once the cardinalities
of ‰.G0/unr;�0

sim are computed. However, Arthur’s endoscopic classification shows that

computing card
�
‰.G0/unr;�0

sim

�
is a more interesting problem from an arithmetic perspective,

since conjecturally we are counting the number of motives over Q with conductor one, given
Hodge weights and self-dual of a given type (symplectic or orthogonal).

R 4.1.5. – Except in the even orthogonal case with � D k1e1C � � � C k2ne2n and
k2n D 0, it is known that any  2 ‰.G/unr;�

sim is also tempered at the finite places by [29].

R 4.1.6. – If G is symplectic or even orthogonal, it has non-trivial center Z
isomorphic to �2. Thus Z.R/ � Z.Q/Z.bZ/, and Z.R/ acts trivially on A disc.G.Q/nG.A//G.

bZ/.
This implies that‰.G/unr;�

sim is empty if�jZ.R/ is not trivial, since Z.R/ acts by� on any discrete
series representation with infinitesimal character �C�. Using the concrete description above,
it is elementary to deduce that in fact ‰.G/unr;�

disc is empty if �jZ.R/ is not trivial.

4.2. Euler-Poincaré characteristic of cohomological archimedean Arthur packets

4.2.1. Tempered case: Shelstad’s parametrization of L-packets. – For archimedean local
fields in the tempered case the A-packets … in [8] are not defined abstractly using the
global twisted trace formula. Rather, Arthur defines…'� as the L-packet that Langlands [63]
associates with '�, and the map…'� ! S^'� ; � 7! h�; �i is defined by Shelstad’s work, which
we review below. Mezo [70] has shown that these Langlands-Shelstad L-packets satisfy the
twisted endoscopic character relation [8, Theorem 2.2.1 (a)], and Shelstad’s work contains
the “standard” endoscopic character relations [8, Theorem 2.2.1 (b)].

In this section we will only be concerned with the local field R and thus we drop the
subscripts1, and we denote Gal.C=R/ D f1; �g. Let G be a reductive group over R, and
denote by AG the biggest split torus in the connected center ZG of G. Let us assume that
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G has a maximal torus (defined over R) which is anisotropic modulo AG, i.e., G.R/ has
essentially discrete series. Consider a dominant weight �0 for .Gder/C defining an algebraic
representation V�0 of Gder.C/ and a continuous character �0 W ZG.R/ ! C� such that �0
and �0 coincide on ZG.R/\Gder.C/. Let…disc.�0; �0/ be the finite set of essentially discrete
series representations � of G.R/ such that

– �jGder.R/ has the same infinitesimal character as V�0 jGder.R/,
– �jZG.R/ D �0.

Harish-Chandra has shown that inside this L-packet of essentially discrete series, the repre-
sentations are parameterized by the conjugacy classes (under G.R/) of pairs .B;T/where T is
a maximal torus of G anisotropic modulo AG and B is a Borel subgroup of GC containing TC.
For such a pair .B;T/, �0 and the character �0 of Tder.R/ which is dominant for B extend
uniquely to a character �B of T.R/. If we fix such a pair .B;T/, the pairs .B0;T/ which are
in the same conjugacy class form an orbit under the subgroup Wc WD W.G.R/;T.R// of
W WD W.G.C/;T.C//. Concretely, if � 2 …disc.�0; �0/ is the representation associated with
this conjugacy class, then for any 
 2 T.R/G�reg,

‚�.
/ D .�1/
q.G/

X
w2Wc

�wBw�1.
/

�wBw�1.
/

where‚� is Harish-Chandra’s character for � , and�B.
/ D
Q
˛2R.T;B/.1�˛.
/

�1/. There-
fore the choice of .B;T/ as a base point identifies the set of conjugacy classes with WcnW ,
by g 2 N.G.C/;T.C// 7! .gBg�1;T/.

Langlands [63] and Shelstad [82], [84], [83] gave another formulation for the parameteri-
zation inside an L-packet, more suitable for writing endoscopic character relations. By defi-
nition of the L-group we have a splitting .B; T ; .X˛/˛2�/ of bG which defines a section
of Aut.bG/ ! Out.bG/ and LG D bG o WR. Let .B;T/ be as above. Thanks to B we have
a canonical isomorphism bT ! T , which can be extended into an embedding of L-groups
� W LT! LG as follows. For z 2 WC, define �.z/ D

Q
˛2RB

˛_.z=jzj/oz whereRB is the set

of roots of T in B. Define �.j / D n0oj where n0 2 N.bG; T /\bGder represents the longest
element of the Weyl groupW.bG; T / for the order defined by B. Then � is well-defined thanks
to [63, Lemma 3.2]. Since conjugation by n0oj acts by t 7! t�1 on T \bGder, the conjugacy
class of � does not depend on the choice of n0. The character �B of T.R/ corresponds to a
Langlands parameter '�B W WR !

LT. If G is semisimple, �B is the restriction to T.R/ of
an element of X�.T/ D X�.T / and for any z 2 WC, '�B.z/ D �B.z= Nz/. Composing '�B

with � we get a Langlands parameter ' W WR !
LG, whose conjugacy class under bG does

not depend on the choice of .B;T/. Langlands has shown that the map .�0; �0/ 7! ' is a
bijection onto the set of conjugacy classes of discrete Langlands parameters, i.e., Langlands
parameters ' such that S' WD Cent.';bG/=Z.bG/Gal.C=R/ is finite.

Consider a discrete Langlands parameter ', and denote by …' D ….�0; �0/ the corre-
sponding L-packet. Assume that G is quasisplit and fix a Whittaker datum (see [54] for the
general case). Then Shelstad defines an injective map …' ! S^' , � 7! h�; �i. It has the
property that h�; �i is trivial if � is the unique generic (for the given Whittaker datum) repre-
sentation in the L-packet.
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Recall the relation between these two parametrizations of the discrete L-packets. Let
.B;T/ be as above, defining an embedding � W LT! LG and recall thatW andWc denote the
complex and real Weyl groups. Let C' D Cent.';bG/, so that S' D C'=Z.bG/Gal.C=R/. Using
� we have an isomorphism between H 1.R;T/ and �0.C'/^. We have a bijection

WcnW ! ker
�
H 1.R;T/! H 1.R;G/

�
mapping g 2 NG.C/.T.C// to .� 7! g�1�.g//. Kottwitz [59] has defined a natural

morphismH 1.R;G/! �0

�
Z.bG/Gal.C=R/

�^
and thus the above bijection yields an injection

� W WcnW ! S^' . If � 2 …' corresponds to (the conjugacy class of) .B;T/ and � 0 2 …'

corresponds to .gBg�1;T/, then for any s 2 S' ,

hs; �i

hs; � 0i
D �.g/.s/:

([84, § 10] contains the crucial definition, but see [54, § 5.6] for a formulation closer to the
above). Finally, the generic representation in …' corresponds to a pair .B;T/ as above such
that all the simple roots for B are noncompact. This is a consequence of [58, Theorem 3.9]
and [92, Theorem 6.2]. In particular there exists such a pair .B;T/. We will make use of the
converse in the non-tempered case.

L 4.2.1. – Let H be a reductive group over R. Assume that T is a maximal torus of H
which is anisotropic modulo AH, and assume that there exists a Borel subgroup B � TC of HC
such that all the simple roots of T in B are non-compact. Then H is quasisplit.

Proof. – We can assume that H is semisimple. We use the “R-opp splittings” of [83, § 12].
Let � be the set of simple roots of T in B. For any ˛ 2 � we can choose an sl2-triple
.H˛; X˛; Y˛/ in h D C˝R Lie.H.R//. The pair .X˛; Y˛/ is not unique: it could be replaced
by .xX˛; x�1Y˛/ for any x 2 C�. Since �.˛/ D �˛, �.X˛/ D yY˛ for some y 2 C�, and
y 2 R� because � is an involution. The sign of y does not depend on the choice of .X˛; Y˛/,
and making some other choice if necessary, we can assume that y D ˙1. It is easy to check
that ˛ is non-compact if and only if y > 0. Thus the hypotheses imply the existence of an
R-opp splitting, that is a splitting .X˛/˛2� such that �.X˛/ D Y˛ for any ˛. Note that this
splitting is unique up to the action of T.R/.

Let H0 be the quasisplit reductive group over R such that H0 admits an anisotropic
maximal torus and HC ' H0C. We know that H0 admits a pair .B0;T0/ where T0 is an
anisotropic maximal torus and all the simple roots of B0 are non-compact. Therefore there
exists an R-opp splitting .X 0˛/˛02�0 for .B0;T0/.

There is a unique isomorphism f W HC ! H0C identifying .B;TC; .X˛/˛2�/ with
.B0;T0C; .X

0
˛/˛2�0/ and to conclude we only have to show that it is defined over R, i.e., that it

is Galois-equivariant on C-points. It is obviously the case on T, since � acts by �1 on both
X�.T/ and X�.T0/. Moreover by construction f .�.X˛// D �.X 0

f .˛/
/ for any ˛ 2 �. Since

TC and the one-dimensional unipotent groups corresponding to˙˛ for ˛ 2 � generate HC,
f is � -equivariant.

There are as many conjugacy classes of such pairs .B;T/ such that all the simple roots
are non-compact as there are conjugacy classes of Whittaker datum. For the adjoint
group SO2nC1 there is a single conjugacy class, whereas for G D Sp2n or SO4n there are
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two. However, for our purposes it will fortunately not be necessary to precise which pair
.B;T/ corresponds to each conjugacy class of Whittaker datum.

For the quasi-split group G D SO.V; q/where dimV � 3 and disc.q/ > 0, T is the identity
component of the stabilizer of a direct orthogonal sum

P1 ˚ � � � ˚ Pn

where each Pi is a definite plane and n D bdimV=2c. Let IC (resp. I�) be the set of
i 2 f1; : : : ; ng such that Pi is positive (resp. negative), V� D

L
i2I�

Pi and VC D V ?� . The
group K of real points of

S .O.VC; q/ �O.V�; q//

is the maximal compact subgroup of G.R/ containing T.R/. For each i , choose an
isomorphism ei W SO.Pi ; q/C ! Gm arbitrarily. For dimV even, the roots e1 � e2; : : : ;
en�1 � en; en�1 C en are all noncompact if and only if

fIC; I�g D ff1; 3; 5; : : :g; f2; 4; : : :gg

and for dimV=2 even (resp. odd) modulo conjugation by Wc D N.K;T.R//=T.R/ there are
two (resp. one) Borel subgroups B � TC whose simple roots are all noncompact. For dimV

odd the roots e1 � e2; : : : ; en�1 � en; en are all noncompact if and only if

I� D fn; n � 2; n � 4; : : :g and IC D fn � 1; n � 3; : : :g

and there is just one conjugacy class of such Borel subgroups. In both cases

ker
�
H 1.R;T/! H 1.R;G/

�
is isomorphic to the set of ."i /1�i�n where "i 2 f˙1g and

cardfi 2 IC j "i D �1g D cardfi 2 I� j "i D �1g:

For the symplectic group G D Sp.V; a/ (where a is a non-degenerate alternate form)
H 1.R;G/ is trivial, so that the set of h�; �i (� 2 …') is simply the whole group S^' . However,
for the non-tempered case and for the application to Siegel modular forms it will be necessary
to have an explicit description of the pairs .B;T/ as for the special orthogonal groups. There
exists J 2 G.R/ such that J 2 D �Id and for any v 2 V n f0g, a.J v; v/ > 0. Then J is a
complex structure on V and

h.v1; v2/ WD a.J v1; v2/C ia.v1; v2/

defines a positive definite hermitian form h on V . Choose an orthogonal (for h) decompo-
sition V D

Ln
iD1 Pi where each Pi is a complex line, then we can define T as the stabi-

lizer of this decomposition. The maximal compact subgroup of G.R/ containing T.R/ is
K D U.V; h/.R/, andWc ' Sn. Thanks to the complex structure there are canonical isomor-
phisms ei W U.Pi ; h/ ! U1 (for i 2 f1; : : : ; ng). Modulo conjugation by Wc , the two Borel
subgroups containing TC and having non-compact simple roots correspond to the sets of
simple roots

fe1 C e2;�e2 � e3; : : : ; .�1/
n.en�1 C en/; .�1/

nC12eng;

f�e1 � e2; e2 C e3; : : : ; .�1/
n�1.en�1 C en/; .�1/

n2eng:
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4.2.2. Adams-Johnson packets and Euler-Poincaré characteristics. – Let us now consider the
general case, which as we observed above is necessary only when the dominant weight � is not
regular. For a quasisplit special orthogonal or symplectic group G and an Arthur parameter
 W WR � SL2.C/ ! LG having infinitesimal character � C �, we would like to describe
explicitly the multiset… along with the map… ! S^ . We would also like to compute the
Euler-Poincaré characteristic EP.� ˝ V �

�
/ for any � 2 … . Unfortunately it does not seem

possible to achieve these tasks directly from Arthur’s characterization [8, Theorem 2.2.1]. We
will review Adams and Johnson’s construction of packets …AJ

 using Arthur’s formulation,
and state the main result of [3] relating Arthur’s … with …AJ

 . This review was done in [6],
[61] and [25] but we need to recall Adams and Johnson’s results precisely in order to compute
Euler-Poincaré characteristics. Moreover we will uncover a minor problem in [6, § 5]. Finally,
[2] was written before Shahidi’s conjecture [81, Conjecture 9.4] was formulated, and thus we
need to adress the issue of normalization of transfer factors by Whittaker datum. This is
necessary to get a precise and explicit formulation of [2] in our setting, which is a prerequisite
for writing an algorithm.

As in the previous section G could be any reductive algebraic group over R such that
G.R/ has essentially discrete series. To simplify notations we assume that G is semisimple. To
begin with, we consider general Arthur parameters  W WR�SL2.C/! LG, i.e., continuous
morphisms such that

– composing with LG! WR, we get IdWR ,
–  jWC is semisimple and bounded,
–  jSL2.C/ is algebraic.

As before we fix a Gal.C=R/-invariant splitting .B; T ; .X˛/˛2�/ in bG. Assume that  is
pure, i.e., the restriction of toR>0 � WC is trivial. Otherwise would factor through a Levi
subgroup of LG. After conjugating by an element ofbG we have a B-dominant �0 2 1

2
X�.T /

such that for any z 2 WC,  .z/ D .2�0/.z=jzj/. The set of roots ˛ 2 R.T ;bG/ such that
h�0; ˛i � 0 defines a parabolic subgroup Q D L U of bG with Levi L D Cent. .WC/;bG/
and  .SL2.C// � L der. After conjugating we can assume that

z 2 C� 7!  

  
z 0

0 z�1

!
2 SL2.C/

!
takes values in T \ L der and is dominant with respect to B \ L der. Let us restrict our
attention to parameters  such that  jSL2.C/ W SL2.C/ ! L der is the principal morphism.
After conjugating we can assume that

d
�
 jSL2.C/

�   0 1
0 0

!
2 sl2

!
D

X
˛2� L

X˛:

We claim that  .j / 2 bG o fj g is now determined modulo left multiplication by Z. L /.
Let n W W.bG; T /oWR ! N.LG; T / D N.bG; T /oWR be the set-theoretic section defined
in [64, § 2.1]. Let w0 2 W.bG; T / be the longest element in the Weyl group (with respect
to B). Since G has an anisotropic maximal torus, conjugation by (any representative of)
w0 o j acts by t 7! t�1 on T . Let w1 be the longest element of the Weyl group W. L ; T /.
Then w1w0 o j preserves � L and acts by t 7! t�1 on Z. L /. By [86, Proposition 9.3.5]
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n.w1w0 o j / D n.w1w0/ o j preserves the splitting .X˛/˛2� L
, and thus commutes with

 .SL2.C//. The following lemma relates  .j / and n.w1w0 o j /.

L 4.2.2. – There is a unique element a 2 Z. L /n
�bG o fj g

�
commuting with

 .SL2.C// and such that for any z 2 WC, a .z/a�1 D  .z�1/.

Proof. – If a and b are two such elements, ab�1 2 bG commutes with  .WC/, thus
ab�1 2 L . Furthermore ab�1 commutes with  .SL2.C//, hence ab�1 2 Z. L /.

Since n.w1w0oj / and  .j / satisfy these two conditions, they coincide moduloZ. L /. In
particular conjugation by  .j / acts by t 7! t�1 on Z. L /, and thus the group

C WD Cent. ;bG/ D ft 2 Z. L / j t2 D 1g

is finite, and so is S WD C =Z.bG/Gal.C=R/. In addition, .2�0/.�1/ D  .j /2 D n.w1w0oj /2

only depends on L . By [64, Lemma 2.1.A], n.w1w0oj /2 D
Q
˛2RQ

˛_.�1/ whereRQ is the

set of roots of T occurring in the unipotent radical U of Q. Thus

�0 2 X�.Z. L /0/C
1

2

X
˛2RQ

˛_:

Conversely, using the element n.w1w0o j / we see that for any standard parabolic subgroup
Q D L U � B of bG and any strictly dominant (for RQ) �0 2 X�.Z. L /0/ C 1

2

P
˛2RQ

˛_,

there is at least one Arthur parameter mapping z 2 WC to .2�0/.z=jzj/ and
�
0 1
0 0

�
2 sl2

to
P
˛2� L

X˛. Finally, for any u 2 Z. L /, we can form another Arthur parameter  0 by
imposing  0jWC�SL2.C/ D  jWC�SL2.C/ and  0.j / D u .j /. It follows that the set of conju-
gacy classes of Arthur parameters  0 such that  0jWC�SL2.C/ is conjugated to  jWC�SL2.C/ is
a torsor under

Z. L /=ft2 j t 2 Z. L /g D H 1.Gal.C=R/; Z. L // where � acts by w1w0 o j on Z. L /:

Recall the norm jj � jj W WR ! R>0 which maps j to 1 and z 2 WC to z Nz, which is used to
define the morphism WR ! WR � SL2.C/ mapping w to 

w;

 
jjwjj1=2 0

0 jjwjj�1=2

!!
:

Composing  with this morphism we get a Langlands parameter ' W WR !
LG which is

not tempered in general. For z 2 WC, ' .z/ D .��� 0/.z=jzj/.�C� 0/.jzj/ (formally �.z/� 0. Nz/)
where

� D �0 C
1

2

X
˛2RB\ L

˛_ and � 0 D ��0 C
1

2

X
˛2RB\ L

˛_:

Then � 2 1
2

P
˛2RB

˛_ CX�.T / and the following are equivalent:

1. � is regular,
2. � � 1

2

P
˛2RB

˛_ is dominant with respect to RB,

3. �0 � 1
2

P
˛2RQ

˛_ is dominant with respect to RQ.
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In fact for any pure Arthur parameter  , without assuming a priori that  jSL2.C/ ! L is
principal, if the holomorphic part � of ' jWC is regular, then  jSL2.C/ ! L is principal. The
orbit of � under the Weyl group is the infinitesimal character associated with  , and we have
seen that it is the infinitesimal character of any representation in the packet … associated
with  (Lemma 4.1.3). For quasisplit special orthogonal or symplectic groups we checked
this (up to outer conjugacy in the even orthogonal case) in Lemma 4.1.3.

From now on we also assume that the infinitesimal character � of  is regular. Note that
� is then the infinitesimal character of the restriction to G.R/ of the irreducible algebraic
representation V� of GC, where � D � C �. Let us describe the set of representations …AJ

 

that Adams and Johnson associate with  as well as the pairing … ! S^ . To be honest
Adams and Johnson do not consider parameters  , they only work with representations,
but [6, § 5] interpreted their construction in terms of parameters. We will only add details
concerning Whittaker normalization. As in the tempered case we begin by considering pairs
.B;T/where T is an anisotropic maximal torus of G and B a Borel subgroup of GC containing
TC. We have a canonical isomorphism between the based root data

.X�.TC/;�B; X�.TC/;�
_
B / and .X�.T /;�_B; X

�.T /;�B/

and we can associate with .Q; L / a parabolic subgroup Q � B of GC and a Levi subgroup
LC � TC of GC. As the notation suggests LC is defined over R (for any root ˛ of TC
in GC, �.˛/ D �˛), and we denote this real subgroup of G by L. Consider the set †Q

of G.R/-conjugacy classes of pairs .Q;L/ (Q a parabolic subgroup of GC and L a real
subgroup of G such that LC is a Levi subgroup of Q) obtained this way. The finite set†B of
conjugacy classes of pairs .B;T/ surjects to †Q. If we fix a base point .B;T/, we have seen
that †B is identified with WcnW . This base point allows us to identify †Q with WcnW=WL

where WL D W.L.C/;T.C//, and

WcnW=WL ' ker
�
H 1.R;L/! H 1.R;G/

�
:

For any cl.Q;L/ 2 †Q there is a canonical isomorphism bL ' L identifying the splittings.
Given another cl.Q0;L0/ 2 †Q, there is a unique g 2 G.C/=L.C/ conjugating .Q;L/ into
.Q0;L0/, yielding a canonical isomorphism of L-groups LL ' LL0. As in the tempered case
we want to extend bL ' L into an embedding � W LL ! LG as follows. For z 2 WC,
define �.z/ D

Q
˛2RQ

˛_.z=jzj/ o z. Define �.j / D n.w1w0 o j /. We have computed

n.w1w0 o j /2 D
Q
˛2RQ

˛_.�1/ above and thus � is well-defined. Note that contrary to

the tempered case, there are other choices for �.j / even up to conjugation byZ. L /: we could
replace �.j / by u�.j / where u 2 Z. L /, and it can happen that u is not a square in Z. L /.
This issue seems to have been overlooked in [6, § 5]. We will not try to determine whether
n.w1w0 o j / is the correct choice here and we will consider this problem in a separate note,
since for our present purpose this choice does not matter.

For any class cl.Q;L/ 2 †Q there is a unique Arthur parameter

 Q;L W WR � SL2.C/! LL

such that up to conjugation by bG,  D � ı  Q;L. Now  Q;LjSL2.C/ W SL2.C/ ! bL is
the principal morphism. Thus  Q;LjWR takes values in Z.bL/ oWR, and the conjugacy class
of  Q;L is determined by the resulting element ofH 1.WR; Z.bL//, which has compact image.
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Recall that for any real reductive group H there is a natural morphism

�H W H
1.WR; Z.bH//! Homcont.H.R/;C�/

which is surjective and maps cocyles with compact image to unitary characters of H.R/. To
define this morphism we can use the same arguments as [59, § 1]. If H is simply connected,
thenbH is adjoint and H.R/ is connected. More generally, if Hder is simply connected then the
torus C D H=Hder is such that Z.bH/ D bC and

H.R/ab
D ker

�
C.R/! H 1.R;Hder/

�
:

Finally if H is arbitrary there exists a z-extension C ,! eH � H where C is an induced torus
and eHder is simply connected. Then H 1.Gal.C=R/;C.C// is trivial, thus eH.R/� H.R/ and

Homcont.H.R/;C�/ D ker
�
Homcont.eH.R/;C�/! Homcont.C.R/;C�/

�
:

Parallely, bCWR is connected so that bCWR ! H 1.WR; Z.bH// is trivial and thus

H 1.WR; Z.bH// D ker
�
H 1.WR; Z.

beH//! H 1.WR;bC/� :
As in [59, § 1] the morphism �H obtained this way does not depend on the choice of a
z-extension. Note that when H is quasi-split, �H is an isomorphism, by reduction to the case
where Hder is simply connected and using the fact that a maximally split maximal torus in
a simply connected quasi-split group is an induced torus. It is not injective in general, e.g.,
when H is the group of invertible quaternions.

Hence  Q;L defines a one-dimensional unitary representation �0 ;Q;L of L.R/, and
applying cohomological induction as defined by Zuckerman, Adams and Johnson define
the representation � ;Q;L D Riq.�

0
 ;Q;L/ of G.R/, where q D Lie.Q/ and i D dim U �

q.G/ C q.L/. Vogan has shown that this representation is unitary. They define the set …AJ
 

in bijection with †Q:
…AJ
 D

˚
� ;Q;L j cl.Q;L/ 2 †Q

	
:

The endoscopic character relations that they prove [2, Theorem 2.21] allow us to identify
the map … ! S^ , as Arthur did in [6, § 5]. Assume that G is quasisplit (this is probably
unnecessary as in the tempered case using the constructions of [54]), and fix a Whittaker
datum for G. Then any cl.B;T/ 2 †B determines an element of S^' (here ' could be any
discrete parameter, the group S' is described in terms of B; T independently). It is easy to
check that if .B;T/ and .B0;T0/ give rise to pairs .Q;L/ and .Q0;L0/ which are conjugated
under G.R/, then the restrictions to S of the characters of S' associated with .B;T/ and
.B0;T0/ coincide. We get a map …AJ

 ! S^ which is not injective in general.
Adams and Johnson ([2, Theorem 8.2], reformulating the main result of [53]) give a

resolution of � ;Q;L by direct sums of standard modules

(4.2.1) 0! � ;Q;L ! Xq.L/ ! � � � ! X0 ! 0:

Recall that a standard module is a parabolic induction of an essentially tempered represen-
tation of a Levi subgroup of G, with a certain positivity condition on its central character.
Johnson’s convention is opposite to that of Langlands, so that � ;Q;L embeds in a standard
module. Apart from its length, the only two properties of this resolution that we need are

1. X0 is the direct sum of the discrete series representations of G.R/ having infinitesimal
character � and corresponding to those cl.B;T/ 2 †B that map to cl.Q;L/ 2 †Q,
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2. for any i > 0, X i is a direct sum of standard modules induced from proper parabolic
subgroups of G, therefore EP.X i ˝ V �

�
/ D 0.

Thus we have the simple formula

EP.� ;Q;L ˝ V �� / D .�1/
q.G/�q.L/card

�
fiber of cl.Q;L/ under the map †B ! †Q

�
:

Note that � ;Q;L is a discrete series representation if and only if L is anisotropic.
Let us be more precise about the endoscopic character relations afforded by Adams-

Johnson representations, since Shahidi’s conjecture was only formulated after both [2] and
[6]. Let s be the image by  of �1 2 SL2.C/, which we will see as an element of S . Arthur
[6, Lemma 5.1] and Kottwitz [61, Lemma 9.1] have shown that for cl.Q;L/; cl.Q0;L0/ 2 †Q,
we have hs ; � ;Q;Li D .�1/q.L/�q.L

0/hs ; � ;Q0;L0i. Let .B0;T0/ be a pair in G corresponding
to the base point (i.e., the generic representation for our fixed Whittaker datum) for any
discrete L-packet. It determines a pair .Q0;L0/ such that cl.Q0;L0/ 2 †Q. The simple
roots of B0 are all non-compact and thus the same holds for the Borel subgroup B0 \ .L0/C
of .L0/C. By Lemma 4.2.1 the group L0 is quasisplit. Thus for any cl.Q;L/ 2 †Q we have
hs ; � ;Q;Li D .�1/q.L0/�q.L/. Note that if .B1;T1/ corresponds to the generic element in
tempered L-packets for another Whittaker datum, the pair .L1;Q1/ that it determines also
has the property that L1 is quasisplit. Since L0 and L1 are inner forms of each other, they are
isomorphic and q.L0/ D q.L1/. This shows that the map

f .g/dg 7!
X
�2…AJ

 

hs ; �iTr .�.f .g/dg// ;

defined on smooth compactly supported distributions on G.R/, is canonical: it does not
depend on the choice of a Whittaker datum for the quasisplit group G. By [2, Theorem 2.13]
it is stable, i.e., it vanishes if all the stable orbital integrals of f .g/dg vanish. Consider
an arbitrary element x 2 S . It determines an endoscopic group H of G and an Arthur
parameter  H W WR � SL2.C/ ! LH whose infinitesimal character is regular. Thanks to
the choice of a Whittaker datum we have a well-defined transfer map f .g/dg 7! f H.h/dh

from smooth compactly supported distributions on G.R/ to smooth compactly supported
distributions on H.R/. Adams and Johnson have proved [2, Theorem 2.21] that there is some
t 2 C� such that

(4.2.2)
X
�2…AJ

 

hs x; �iTr .�.f .g/dg// D t
X

�2…AJ
 H

hs ; �iTr
�
�.f H.h/dh/

�
for any smooth compactly supported distribution f .g/dg on G.R/. We check that t D 1.
Let ' W WR !

LG be the discrete Langlands parameter having infinitesimal character � .
Conjugating if necessary, we can assume that the holomorphic parts of 'jWC and ' jWC

are equal and not just conjugated. In this way we see S as a subgroup of S' . We restrict
to distributions f .g/dg whose support is contained in the set of semisimple regular elliptic
elements of G.R/. In that case by Johnson’s resolution 4.2.1X

�2…AJ
 

hs x; �iTr .�.f .g/dg// D .�1/q.L0/
X
�2…'

hx; �iTr .�.f .g/dg//

D .�1/q.L0/
X

�2…'H

Tr
�
�.f H.h/dh/

�
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where the second equality is the endoscopic character relation for .'; x/. Let .BH
0 ;T

H
0 / be a

pair for H such that the simple roots of BH
0 are all non-compact. Then the pair .QH

0 ;L
H
0 / that

it determines is such that LH
0 is quasisplit and has same Langlands dual group as L0, thus

LH
0 ' L0. In particular q.LH

0 / D q.L0/ and

.�1/q.L0/
X

�2…'H

Tr
�
�.f H.h/dh/

�
D

X
�2…AJ

 H

hs ; �iTr
�
�.f H.h/dh/

�
:

Therefore the endoscopic character relation 4.2.2 holds with t D 1 for such distribu-
tions f .g/dg. By choosing f .g/dg positive with small support around a well-chosen
semisimple regular elliptic element we can ensure that both sides do not vanish, so that t D 1.

This concludes the precise determination of the map � 7! h�; �i, normalized using Whit-
taker datum as in the tempered case. Note that this normalized version of [2, Theorem 2.21]
is completely analogous to [8, Theorem 2.2.1(b)]. We can now state the main result of [3].

T 4.2.3 (Arancibia-Moeglin-Renard). – Let G be a quasisplit special orthogonal
or symplectic group over R having discrete series. Fix a Whittaker datum for G. Let  be an
Arthur parameter for G with regular infinitesimal character � D �C �. Then for any � 2 S^ ,

(4.2.3)
M
�2…AJ

 

h�;�iD�

� '
M
�2… 
h�;�iD�

�:

Note that in the even orthogonal case, this is only an isomorphism of H 0.G.R//-modules.

To compute Euler-Poincaré characteristics we only need the character of the direct sum
appearing in Theorem 4.2.3 on an anisotropic maximal torus. This follows from the fact that
the standard modules form a basis of the Grothendieck group of finite length .g; K/-modules.
Using also the fact that Arthur and Adams-Johnson packets satisfy the same endoscopic
relations, we can formulate a weaker statement which is enough to compute the Euler-
Poincaré characteristic of the right hand side of 4.2.3 for any � 2 S^ .

C 4.2.4. – Let G be a quasisplit special orthogonal or symplectic group over R
having discrete series. Let  be an Arthur parameter for G with regular infinitesimal character
� D �C�, and let T be a maximal torus of G which is anisotropic. Let L0 denote the quasisplit
reductive group defined in the discussion above. If G is symplectic or odd orthogonal, then for
any 
 2 Treg.R/, X

�2… 

hs ; �i‚�.
/ D .�1/
q.G/�q.L0/Tr.
 jV�/:

In the even orthogonal case, this identity takes the following meaning. Let 
 2 Treg.R/ and
consider a 
 0 2 G.R/ outer conjugated to 
 . For � in … , which is only an Out.G/-orbit of
representations, we still denote by � any element of this orbit. Then we have thatX

�2… 

hs ; �i
�
‚�.
/C‚�.


0/
�
D .�1/q.G/�q.L0/

�
Tr.
 jV�/C Tr.
 0jV�/

�
:

Of course it does not depend on the choice made in each orbit.

Thus we have an algorithm to compute inductively the cardinality of each ‰.G/unr;�
sim .
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R 4.2.5. – For this algorithm it is not necessary to enumerate the sets

WcnW=WL ' ker
�
H 1.R;L/! H 1.R;G/

�
parametrizing the elements of each … . It is enough to compute, for each discrete series �
represented by a collection of signs as in the previous section, the restriction of h�; �i to S 
and the sign .�1/q.L/.

See the tables at http://wwwf.imperial.ac.uk/~otaibi/dimtrace for some values

for card
�
‰.G/unr;�

sim

�
in low weight � ordered lexicographically.

4.3. Proof of Theorem B

We can now prove Theorem B which gives formulae for the cardinalities of the sets
S.w1; : : : /, Oo.w1; : : : / and Oe.w1; : : : /. We now give a more precise statement. Let n � 1
and let G be either SO2nC1, Sp2n or SO2n, assuming that n is even in the last case. Let J be a
subset of f1; : : : ; ng. Denote byCJ the set of� D k1e1C� � �Cknen such that k1 � � � � � kn � 0
and

– for 1 � j � n � 1, kj > kjC1 if and only if j 2 J ,
– kn > 0 if and only if n 2 J .

The CJ ’s define a partition of the set of dominant weights for G, up to outer automorphism
in the even orthogonal case. If J D fj1; : : : ; jrgwith j1 < � � � < jr , then � 7! .kj1 ; : : : ; kjr / is
a bijection from CJ to fk0 2 Zr j k01 > � � � > k0r > 0g.

T 4.3.1. – For any J D fj1; : : : ; jrg � f1; : : : ; ng, there exists a finite family
.ma; Pa; ƒa/a2A, which we make explicit for all n � 6 and for G D Sp14, where for any a 2 A

� ma � 1 is an integer,
� Pa 2 Q.�ma/ŒX1; : : : ; Xr �,
� ƒa W .Z=maZ/r ! Z=maZ is a surjective group morphism,

such that for any � D k1e1 C � � � C knen 2 CJ , we have

(4.3.1) card
�
‰.G/unr;�

sim

�
D

X
a2A

trQ.�ma /=Q
�
Pa.kj1 ; : : : ; kjr /�

ƒa.kj1 ;:::;kjr /

ma

�
:

Proof. – We proceed by induction on the dimension N of the standard representation
of bG.

By Formula 3.2.10 for elliptic terms and formulae for parabolic terms given in 3.3.4, there
exists a family .ma; Pa; ƒa/a2A1 as above such that for any k1 � � � � � kn � 0,X

�2…unr
disc.G/

m�EP.�1 ˝ V �� / D
X
a2A1

trQ.�ma /=Q
�
Pa.k1; : : : ; kn/�

ƒa.k1;:::;kn/
ma

�
:

The cardinality of ‰.G/unr;�
sim is obtained by subtracting the contribution to the sum

on the left hand side of Arthur parameters in ‰.G/unr;�
disc n ‰.G/unr;�

sim , and dividing
by .�1/q.GR/card.….'�// (which does not depend on �).
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Recall that .w1; : : : ; wn/ 2
�
1
2
Z
�n

is associated to � by the formula w1e1 C � � � C wnen D
�C �, and that w1 > � � � > wn � 0. For simplicity let us assume for a moment that n 2 J if
G D SO2n, so that wn > 0 for any � 2 CJ . Define

xj D

8̂̂<̂
:̂
wnC1�j if 1 � j � n

0 if j D 0

�x�j D �wnC1Cj if 1 � �j � n;

so that j 7! xj is increasing, and

K D

(
f˙1; : : : ;˙ng if G D SO2nC1 or SO2n;

f˙1; : : : ;˙ng [ f0g if G D Sp2n:

Consider partitions K D
F
i Ki into non-empty symmetric subsets. For any such partition,

consider the elements

 D �i�i Œdi � 2 ‰.G/
unr;�
disc n‰.G/

unr;�
sim

where each �i 2 ‰.Gi /
unr;�i
sim is an automorphic cuspidal self-dual representation of GLNi

such the set of Hodge weights of �i Œdi � is fxj j j 2 Kig. There are obvious restrictions on di :

� di divides card.Ki / D Nidi , and Ni ¤ 2 mod 4 if s.�i / D 1,
� Ki is the disjoint union of Ni intervals of length di , say

Ki D fl1 C di � 1; : : : ; l1g t � � � t
˚
lNi C di � 1; : : : ; lNi

	
with l1 > � � � > lNi ,

There are additional restrictions imposed by the choice of set J : for di to be greater than 1,
the following conditions have to be satisfied if � 2 CJ :

– for any 1 � e � bNi=2c and 1 � f � di � 1, we have nC 1 � .le C f / 62 J ,
– if Ni is odd, for any 0 � e � bdi=2c � 1 we have n � e 62 J .

Given a family .Ki ; di / such that all these conditions are satisfied, it is easy to see that
each �i is an affine function of .kj /j2J , and there exists Ji � f1; : : : ; bNi=2cg such that
�i 2 CJi for any � 2 CJ . In fact Ji D f1; : : : ; bNi=2cg if di > 1. Moreover the group S 
does not depend on  or � 2 CJ but only on .Ki ; di /i , its character " only depends
on .kj mod 2/j2J , and thus using Corollary 4.2.4 we have thatX

�12…. 1/
h�;�ijS D" 

EP.�1 ˝ V �� /

only depends on .kj mod 2/j2J . In particular it can be written as a linear combination
with integer coefficients of products of terms of the form .1 ˙ .�1/kj /=2. Since by induc-

tion hypothesis card
�
‰.Gi /

unr;�i
sim

�
is given by a formula of the kind 4.3.1, we get that the

contribution of parameters corresponding to .Ki ; di /i to the Euler-Poincaré characteristic
is also given by such a formula.

If G D SO2n and n 62 I , we also have to consider Arthur-Langlands parameters such that
there are two indices i for which Gi is symplectic, and we leave the details to the meticulous
reader.
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R 4.3.2. – 1. For very dominant highest weights �, any  D �i�i Œdi � 2
‰.G/unr;�

disc n‰.G/
unr;�
sim is such that di D 1 for all i (see the discussion in Section 4.1.2).

Thus  1 is tempered and it is not necessary to use Corollary 4.2.4, that is [3]). In fact
in this case " does not even depend on .kj mod 2/j2J .

2. It is easy to show that the family .ma; Pa; ƒa/a2A is unique if one imposes the following
condition: for any distinct a; b 2 A, one has ma ¤ mb or for any s 2 .Z=maZ/�,
ƒb ¤ sƒa.

3. For the actual computation of card
�
‰.G/unr;�

sim

�
for particular dominant weights �,

computing .ma; Pa; ƒa/a2A explicitly and evaluating Formula 4.3.1 is not the most
efficient method. It is advantageous to first use Formula 3.2.10 to produce tables
for elliptic terms, using optimizations for the evaluation of Weyl’s character formula.
Moreover, Formula 3.2.10 for the elliptic terms is more compact and than the more
elementary Formula 4.3.1. For example, Formula 4.3.1 has 370 terms for G D Sp6 and
J D f1; 2; 3g (i.e., card.A/ D 370 with unicity as above), whereas the table for masses
for Sp6 given in Section 7 only contains 32 rational numbers (taking into account that
the action of the center of G leaves masses invariant). The masses for lower rank groups
are determined by those for SO3 and SO5, i.e., 15 rational numbers.

5. Application to vector-valued Siegel modular forms

Let us give a classical application of the previous results, to the computation of dimensions
of spaces Sr .�n/ of vector-valued Siegel cusp forms in genus n � 1, weight r and level one. It
is certainly well-known that, under a natural assumption on the weight r , this dimension is
equal to the multiplicity in L2disc.PGSp2n.Q/nPGSp2n.A/=PGSp2n.bZ// of the holomorphic
discrete series representation corresponding to r . Although [9] contains “half” of the argu-
ment, we could not find a complete reference for the full statement. To set our mind at rest
we give details for the other half. We begin with a review of holomorphic discrete series. We
do so even though it is redundant with [57] and [9], in order to give precise references, to set
up notation and to identify the holomorphic discrete series in Shelstad’s parametrization.

Note that it is rather artificial to restrict our attention to symplectic groups. For any n � 3
such that n ¤ 2 mod 4, the split group G D SOn has an inner form H which is split at all the
finite places of Q and such that

– if n D �1; 0; 1 mod 8, H.R/ is compact,
– if n D 3; 4; 5 mod 8, H.R/ ' SO.n � 2; 2/.

In the second case H.R/ has holomorphic discrete series which can be realized on a hermitian
symmetric space of complex dimension n � 2.

5.1. Bounded symmetric domains of symplectic type and holomorphic discrete series

Let us recall Harish-Chandra’s point of view on bounded symmetric domains and his
construction of holomorphic discrete series (see [15], [43], [44], [45]) in the case of symplectic
groups. Let n � 1 and G D Sp2n, over R in this section, and denoteG D G.R/, g0 D Lie.G/
and g D C ˝R g0. Then G is the stabilizer of a non-degenerate alternate form a on a
2n-dimensional real vector space V . As before choose J 2 G such that J 2 D �1 and for
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any v 2 V n f0g, a.J v; v/ > 0, which endows V with a complex structure and realizes a as
the imaginary part of the positive definite hermitian form h defined by

h.v1; v2/ D a.J v1; v2/C ia.v1; v2/:

Then K D U.V; h/ is a reductive subgroup of G, and K D K.R/ is a maximal compact
subgroup of G. Note that both G and K are connected. The center ZK of K is one-
dimensional and anisotropic, and the complex structure J yields a canonical isomor-
phism ZK ' U1. Let uC (resp. u�) be the subspace of g such that the adjoint action
of z 2 ZK.R/ on uC (resp. u�) is by multiplication by z2 (resp. z�2). Then g D uC ˚ k˚ u�
and ŒuC; uC� D Œu�; u�� D 0. Moreover uC ˚ u� D C ˝R p0 where p0 is the subspace
of g0 D Lie.G/ on which J acts by �1, i.e., g0 D p0 ˚ k0 is the Cartan decomposition
of g0 for the Cartan involution � D Ad.J /. There are unipotent abelian subgroups UC;U�
of GC associated with uC; u�, and the subgroups KCUC and KCU� are opposite parabolic
subgroups of GC with common Levi subgroup KC. It follows that the multiplication map
UC � KC � U� ! GC is an open immersion. Furthermore G � UC.C/K.C/U�.C/.
For g 2 G, we can thus write g D gCg0g� where .gC; g0; g�/ 2 UC.C/ � K.C/ � U�.C/,
and Harish-Chandra showed that g 7! log.gC/ identifies G=K with a bounded domain
D � uC. This endows G=K with a structure of complex manifold, and for any g 2 G, left
multiplication by g yields a holomorphic map G=K ! G=K.

R 5.1.1. – Let us compare this point of view with the classical one. Let V D R2n

and choose the alternate form a.�; �/ having matrixA D
�
0 1n
�1n 0

�
, that is a.v1; v2/ D tv1Av2.

The complex structure J whose matrix is also A satisfies the above conditions, and the
resulting maximal compact subgroupK is the stabilizer of i1n for the usual action ofG on the
Siegel upper half plane Hg D f� 2 Mn.C/ j t� D � and Im.�/ > 0g: for a; b; c; d 2 Mn.R/
such that g D

�
a b
c d

�
2 G and � 2 Hg , g.�/ D .a� C b/.c� C d/�1. We now have two

identifications of G=K with domains, D and Hn, and they differ by the Cayley transform
Hn ! D, � 7! .� � i1n/.� C i1n/

�1.

Observe that GK.C/U�.C/ D exp.D/K.C/U�.C/ is open in G.C/. Consider an irre-
ducible unitary representation r W K ! GL.W /, i.e., an irreducible algebraic representa-
tion of KC endowed with a K-invariant positive definite hermitian form. Harish-Chandra
considered the space of holomorphic functions f W GK.C/U�.C/! W such that

1. for any .s; k; n/ 2 GK.C/U�.C/ �K.C/ � U�.C/, f .skn/ D r.k/�1f .s/,
2.
R
G
jjf .g/jj2dg <1.

It has an action of G defined by .g � f /.s/ D f .g�1s/, and we get a unitary representation
of G on a Hilbert space Hr . Since G=K ' GK.C/U�.C/=K.C/U�.C/, Hr is isomorphic to
the space of f 2 L2.G;W / such that

1. for any .g; k/ 2 G �K, f .gk/ D r.k/�1f .g/,
2. the function G=K ! W; g 7! r.g0/f .g/ is holomorphic.

Harish-Chandra proved that Hr is zero or irreducible, by observing that in any closed
invariant subspace, there is an f such that G=K ! W; g 7! r.g0/f .g/ is constant and
nonzero. Actually this a special case of [44, Lemma 12, p. 20]). Hence when Hr ¤ 0, there is
aK-equivariant embedding � W W !Hr , and any vector in its image is uC-invariant. More
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generally, using the simple action of ZK.R/ on UC we see that when Hr ¤ 0 the K-finite
vectors of Hr are exactly the polynomial functions onD. Note that when Hr ¤ 0 it is square-
integrable by definition, i.e., it belongs to the discrete series of G.

Harish-Chandra determined necessary and sufficient conditions for Hr ¤ 0. Let T be a
maximal torus of K, and choose an order on the roots of T in K. This determines a unique
order on the roots of T in G such that the parabolic subgroup KCUC is standard, i.e., contains
the Borel subgroup B of GC such that the positive roots are the ones occurring in B. To be
explicit in the symplectic case, T is determined by a decomposition of V as an orthogonal
(for the hermitian form h) direct sum V D V1˚ � � � ˚ Vn where each Vk is a line over C. For
any k we have a canonical isomorphism ek W U.Vk ; h/ ' U1. We can choose the order on the
roots so that the simple roots are e1 � e2; : : : ; en�1 � en; 2en. Note that among these simple
roots, only 2en is noncompact. Let � D m1e1C� � �Cmnen be the highest weight of r , so that
m1 � � � � � mn. This means that up to multiplication by a scalar there is a unique highest
weight vector v 2 W n f0g, that is such that for any b 2 K.C/ \ B.C/, r.b/v D �.b/v. Let
� D ne1 C � � � C en be half the sum of the positive roots of T in G. Then Hr ¤ 0 if and only
if for any root ˛ of T in UC, h˛_; � C �i < 0 (see [45, Lemma 29, p. 608]). In our case this
condition is equivalent to m1 C n < 0.

Assume that Hr ¤ 0. Note that �.v/ is a highest weight in the g-module .Hr /K-fin, i.e., the
Lie algebra of the unipotent radical of B cancels �.v/. Since Hr is irreducible and unitary,
.Hr /K-fin is a simple g-module whose isomorphism class determines that of Hr (see [57,
Chapter VIII]), and thus it is the unique simple quotient of the Verma module defined by B
and �. In particular, �C � is a representative for the infinitesimal character of Hr . One can
show that .Hr /K-fin D U.g/ ˝U.k˚uC/ W , where W is seen as a k ˚ uC-module by letting
uC act trivially.

R 5.1.2. – Before Harish-Chandra realized these holomorphic discrete series
concretely, in [43] he considered the simple quotient of the Verma module defined by �
and B, for � an arbitrary dominant weight for KC\B. He determined a necessary condition
for this g-module to be unitarizable [43, Corollary 1 p.768]: for any root ˛ of T in UC,
h˛_; �i � 0 (in our case this is equivalent to m1 � 0). He also determined a sufficient
condition [43, Theorem 3 p.770]: for any root ˛ of T in UC, h˛_; � C �i � 0 (in our case
this is equivalent tom1C n � 0). For classical groups Enright and Parthasarathy [34] gave a
necessary and sufficient condition for unitarizability. In our symplectic case, this condition is

�m1 � min
1�i�n

0@n � i C X
2�j�i

m1 �mj

2

1A :
It would be interesting to determine whether all these unitary representations are globally
relevant, i.e., belong to some Arthur packet.

The character of Hr was computed explicitly in [79], [67] and [48]. There exists a unique
Borel subgroup B0 � TCU� of GC such that B0 \ KC D B \ KC. The order on the roots
defined by B0 is such that � C � is strictly dominant, i.e., for any root ˛ occurring in B0,
h˛_; � C �i > 0. Let Wc D W.T.R/; G/ D W.T.R/;K/. Then among the discrete series
of G with infinitesimal character � C �, Hr is determined by the G-conjugacy class of the
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pair .B0;T/ (see Section 4.2.1). In our case the simple roots for B0 are e1 � e2; : : : ; en�1 � en
and �2e1.

We have made an arbitrary choice between UC and U�. We could have also identifiedG=K
with a bounded domain D0 � u�:

G=K � U�.C/K.C/UC.C/=K.C/UC.C/ ' U�.C/:

The resulting isomorphism of manifoldsD ' D0 is antiholomorphic. Given an infinitesimal
character � which occurs in a finite-dimensional representation ofG, we have a discrete series
representations of G in the L-packet associated with � , �hol

�;C WD .Hr /K-fin (resp. �hol
�;�). It is

characterized among irreducible unitary representations having infinitesimal character � by
the fact that it has a nonzeroK-finite vector cancelled by uC (resp. u�). SinceK stabilizes uC
and u�, �hol

�;C 6' �
hol
�;�.

Let us now define holomorphic discrete series for the group G0 D PGSp.V; a/. Assume
that

Pn
kD1mk is even, i.e., the center of G acts trivially in �hol

�;C (and �hol
�;�). The image of G

inG0 has index two, and there is an element ofG0 normalizingK and exchanging UC and U�.
Thus if � is such that the kernel of �hol

�;˙ contains the center ofG, �hol
� WD IndG

0

G

�
�hol
�;C

�
is irre-

ducible and isomorphic to IndG
0

G

�
�hol
�;�

�
. Among irreducible unitary representations having

infinitesimal character � ,�hol
� is characterized by the fact that it has a nonzeroK-finite vector

cancelled by uC. Of course we could replace uC by u�.

5.2. Siegel modular forms and automorphic forms

Let us recall the link between Siegel modular forms and automorphic cuspidal representa-
tions for the group PGSp. Almost all that we will need is contained in [9], in which the authors
construct an isometric Hecke-equivariant map from the space of cuspidal Siegel modular
forms to a certain space of cuspidal automorphic forms. We will simply add a characteriza-
tion of the image of this map.

For the definitions and first properties of Siegel modular forms, see [16] or [37]. We will
use the classical conventions and consider the alternate form a on Z2n whose matrix is
A D

�
0 1n
�1n 0

�
2 M2n.Z/ for some integer n � 1. Let � W GSp.A/! GL1 be the multiplier,

defined by the relation a.g.v1/; g.v2// D �.g/a.v1; v2/. Let G D Sp.A/ D ker.�/ and
G0 D PGSp.A/ D Gad, both reductive over Z.

Recall the automorphy factor j.g; �/ D c� C d 2 GLn.C/ for g D
�
a b
c d

�
2 GSp.A;R/

and � 2 Hn. As in the previous section denote by K the stabilizer of i1n 2 Hn under the
action of G.R/. Let K 0 be the maximal compact subgroup of G0.R/ containing the image
of K by the natural morphism G.R/ ! G0.R/. Observe that the map k D

�
a b
�b a

�
2 K 7!

j.k; i1n/ D a�ib is an isomorphism betweenK and the unitary group U.1n/. In the previous
section, using the complex structure J whose matrix is equal to A, we have identifiedK with
the unitary group U.h/ for a positive definite hermitian form h on R2n with the complex
structure J . We emphasize that the resulting isomorphism U.1n/ ' U.h/ is not induced by
an isomorphism between the hermitian spaces: one has to compose with the outer automor-
phism x 7! tx�1 on one side.

Let .V; r/ be an algebraic representation of GLn. We can see the highest weight of r as
.m1; : : : ; mn/ wherem1 � � � � � mn are integers. The representation k 2 K 7! r.j.k; i1n// is
the restriction to K of an algebraic representation r 0 of KC. As in the previous section we
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choose a Borel pair .Bc ;T/ in K and denote by e1 � e2; : : : ; en�1 � en the corresponding
simple roots. Then the highest weight of r 0 is �mne1 � � � � �m1en.

Let �n D Sp.A;Z/, and denote by Sr .�n/ the space of vector-valued Siegel modular
forms of weight r . When m1 D � � � D mg , that is when r is one-dimensional, this is the
space of scalar Siegel modular forms of weight m1. Asgari and Schmidt associate with any
f 2 Sr .�n/ a function êf 2 L2.G0.Q/nG0.A/; V / such that

1. êf is right G0.bZ/-invariant,
2. for any g 2 G0.A/, the function G0.R/! W; h 7! ê

f .gh/ is smooth,
3. for any X 2 u� and any g 2 G0.A/, .X � êf /.g/ D 0,
4. for any g 2 G0.A/ and any k 2 K, êf .gk/ D r.j.k; i1n//êf .g/,
5. êf is cuspidal.

The third condition translates the Cauchy-Riemann equation for the holomorphy of f into
a condition on êf . If the measures are suitably normalized, f 7! ê

f is isometric for the
Petersson hermitian product on Sr .�n/. Finally, f 7! ê

f is equivariant for the action of the
unramified Hecke algebra at each finite place.

Let Nc be the unipotent radical of Bc , let nc be its Lie algebra and let h0 be the Lie
algebra of T. The representation r 0 allows us to see V as a simple k-module, and ncV has
codimension one in V . Let L be a linear form on V such that ker.L/ D ncV . We can
see X�.T/ as a lattice in HomR.h0; iR/ � h�. Let � D m1e1 C � � � C mnen which we
can see as an element of .h ˚ nc ˚ u�/� trivial on nc ˚ u�. For any v 2 V and any
X 2 h˚ nc ˚ u�, we have L.�r.X/v/ D �.X/. For g 2 G0.A/, define f̂ .g/ D L.êf .g//.
Then f̂ 2 L

2.G0.Q/nG0.A// satisfies the following properties

1. f̂ is right G0.bZ/-invariant and right K 0-finite,
2. for any g 2 G0.A/, the function G0.R/! W; h 7! f̂ .gh/ is smooth,
3. for any X 2 h˚ nc ˚ u� and any g 2 G0.A/, .X � f̂ /.g/ D �.X/ f̂ .g/,
4. f̂ is cuspidal.

Again f 7! f̂ is equivariant for the action of the unramified Hecke algebras at the finite
places, and is isometric (up to a scalar). The third condition implies that f̂ is an eigenvector
for Z.U.g// and the infinitesimal character �C �nc˚u� D .m1 � 1/e1 C � � � C .mn � n/en.
In particular f̂ is a cuspidal automorphic form in the sense of [12], which we denote by

f̂ 2 A cusp.G0.Q/nG0.A//.

L 5.2.1. – Any ˆ 2 A cusp.G0.Q/nG0.A// satisfying the four conditions above is
equal to f̂ for a unique f 2 Sr .�n/.

Proof. – Since ˆ is K 0-finite and transforms under h˚ nc according to �, ˆ D L.ê/ for
a unique function ê W G0.Q/nG0.A/! V such that for k 2 K, ê.gk/ D r.j.k; i1n//�1ê.g/.
It is completely formal to check that there is a unique f 2 Mr .�n/ such that ê D ê

f , and
thanks to the Koecher principle we only need to use thatˆ has moderate growth when n D 1.
We are left to show that f is cuspidal. Write f .�/ D

P
s2Symn

c.s/e2i�Tr.s�/ where cs 2 V
and the sum ranges over the set Symn of symmetric half-integral semi-positive definite n�n.
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We need to show that for any s0 2 Symn�1, c
��
0 0
0 s0

��
D 0: We use the cuspidality condition

on ˆ for the parabolic subgroup P of G defined over Z by

P D

8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

0BB@
1 n � 1 1 n � 1

1 � � � �

n � 1 0 � � �

1 0 0 � 0

n � 1 0 � � �

1CCA 2 G

9>>>>>>>=>>>>>>>;
:

Denote by N the unipotent radical of P, and observe that N D N0 o N1 where

N0 D

8̂̂̂̂
<̂
ˆ̂̂:
0BBBB@
1 0 t1 t2

0 1n�1
t t2 0

0 0 1 0

0 0 0 1n�1

1CCCCA
9>>>>=>>>>; and N1 D

8̂̂̂̂
<̂
ˆ̂̂:
0BBBB@
1 t3 0 0

0 1n�1 0 0

0 0 1 0

0 0 �t t3 1n�1

1CCCCA
9>>>>=>>>>;

are vector groups. Moreover N0.Q/nN0.A/ ' N0.Z/nN0.R/ and similarly for N1. Therefore
for any g 2 G.R/, Z

N1.Z/nN1.R/

Z
N0.Z/nN0.R/

ê.n0n1g/dn0dn1 D 0:
By definition of ê�, for some m 2 R depending only on r ,ê.n0n1g/ D �.g/mr.j.n0n1g; i1n//�1f .n0n1g.i1n//:
Fix � 2 Hn of the form

�
iT 0
0 � 0

�
where T 2 R>0 and � 0 2 Hn�1, and let g 2 G.R/ be

such that � D g.i1n/. We will evaluate the inner integral first. Fix n1 2 N1.R/ determined
by t3 2 Rn�1 as above. For any n0 2 N.R/ determined by .t1; t2/ 2 R � Rn�1 as above,
j.n0n1g; i1n/ D j.n1g; i1n/ and we have the Fourier expansion

ê.n0n1g/ D �.g/mr.j.n1g; i1n//�1 X
s12Z;s221=2Zn�1

0@ X
s02Symn�1

c

  
s1 s2
ts2 s

0

!!
e2i�Tr.s0� 0/

1A
� exp

�
2i�.s1.t3�

0t t3 C iT C t1/C 2s2.�
0t t3

t t2//
�

and thusZ
N0.Z/nN0.R/

ê.n0n1g/dn0 D �.g/mr.j.n1g; i1n//�1 X
s02Symn�1

c

  
0 0

0 s0

!!
e2i�Tr.s0� 0/

D �.g/mr.j.g; i1n//
�1

X
s02Symn�1

c

  
0 0

0 s0

!!
e2i�Tr.s0� 0/

does not depend on n1. Note that to get the last expression we used

r.j.n1; �//
�1c

  
0 0

0 s0

!!
D c

  
1 0

t t3 1

! 
0 0

0 s0

! 
1 t3

0 1

!!
D c

  
0 0

0 s0

!!
:

Hence we can conclude that for any s0 2 Symn�1, c
��
0 0
0 s0

��
D 0.
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Assume thatmn � nC1, i.e., that �C�nc˚u� is the infinitesimal character of an L-packet
of discrete series for G0.R/. Assume also that

Pn
kD1mk is even, since otherwise Sr .�n/ D 0.

By the theorem of Gelfand, Graev and Piatetski-Shapiro

A cusp.G
0.Q/nG0.A// '

M
�2…cusp.G0/

m��

where …cusp.G0/ is the set of isomorphism classes of irreducible admissible
.g; K 0/ � G0.Af /-modules occurring in A cusp.G0.Q/nG0.A// and m� 2 Z�1. Consider

a � 2 …cusp.G0/. For any prime p, �G0.Zp/
p ¤ 0 if and only if �p is unramified, and

in that case dimC �
G0.Zp/
p D 1. Since �1 is unitary, it has a highest weight vector for

.�; nc ˚ u�/ if and only if �1 is the holomorphic discrete series with infinitesimal character

.m1�1/e1C� � �C.mn�n/en, and in that case the space of highest weight vectors has dimen-
sion one. Thus dimSr .�n/ is equal the sum of the m� for � D ˝0v�v 2 …cusp.G0/ such that
�1 is a holomorphic discrete series with infinitesimal character .m1�1/e1C� � �C.mn�n/en
and for any prime number p, �p is unramified. By [98] any � 2 …disc.G0/n…cusp.G0/ is such
that �1 is not tempered. Therefore dimSr .�n/ is equal to the sum of the multiplicities m�
for � 2 …disc.G0/ such that

– for any prime number p, �p is unramified,
– �1 is the holomorphic discrete series representation �hol

� with infinitesimal character
� D .m1 � 1/e1 C � � � C .mn � n/en.

Recall that G D Sp2n. Thanks to [25, Proposition 4.4] we have that dimSr .�n/ is also equal
to the sum of the multiplicities m� for � 2 …disc.G/ such that � is unramified everywhere
and �1 ' �hol

�;C.

R 5.2.2. – For any central isogeny G! G0 between semisimple Chevalley groups
over Z, the integer denoted by Œ�1; � 01� in [25, Proposition 4.4] is always equal to 1.

More generally, for any morphism G ! G0 between real reductive groups such that the
induced morphism G ! G0ad is surjective, and for any L-packet of .g0; K 0/-modules …'0

(corresponding to a Langlands parameter '0 W WR !
LG0), the restriction of

L
r2…'0

r as
a .g; K/-module is a direct sum of distinct irreducible modules. This follows from Harish-
Chandra’s explicit description of discrete series, [56] and Langlands’ classification [63]. It
should certainly be possible to refine this statement, by describing the restriction of each
element of…'0 , using Kaletha’s formulation [54, § 5.6] of Shelstad’s internal parametrization
of L-packets.

Recall (see Section 4.2.2) that for any Adams-Johnson parameter  1 for Sp2n with
infinitesimal character � and any discrete series � having infinitesimal character � , � appears
in the Johnson resolution of exactly one element � 1;Q;L of the packet that Adams and
Johnson associate to 1. Furthermore,� 1;Q;L is a discrete series representation if and only
if this resolution is just an isomorphism, and this is equivalent to L being anisotropic. By [25,
Lemma 9.2], �hol

�;C belongs to the Adams-Johnson packet associated with  1 if and only if
the representation Std ı  1 does not contain any subrepresentation of the form 1Œ2d C 1�

or �C=RŒ2d C 1� with d > 0. Thus we have an algorithm to compute dimSr .�n/ from the
cardinalities of S.�/, Oo.�/ and Oe.�/.
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Note that since the Adams-Johnson packets …AJ
 have multiplicity one, the multiplicities

m� for � as above are all equal to 1, and thus Siegel eigenforms in level one and weight r
satisfyingmn � nC1 have multiplicity one: up to a scalar they are determined by their Hecke
eigenvalues at primes in a set of density one. This was already observed in [25, Corollary 4.7].

R 5.2.3. – Without assuming thatmn � nC1, the construction in [9] shows that
f 7! f̂ is an isometry from the space of square-integrable modular forms (for the Petersson
scalar product) to the space of square-integrable automorphic forms which are �-equivariant
under nc ˚ u� and G0.Z/-invariant.

In fact formn � nC 1 (evenmn � n) we could avoid using [98] and Lemma 5.2.1 and use
the fact [101, Satz 3] that formn � n square-integrable Siegel modular forms are cusp forms.

5.3. Example: genus 4

Let us give more details in case n D 4, which is interesting because there is an endoscopic
contribution from the group SO8 (the formal parameterOe.w1; w2; w3; w4/�1 below) which
cannot be explained using lower genus Siegel eigenforms. First we list the possible Arthur
parameters for the group Sp8 in terms of the sets S.w1; : : : /, Oo.w1; : : : / and Oe.w1; : : : /.
The non-tempered ones only occur when �0 D .m1 � n � 1/e1 C � � � C .mn � n � 1/en is
orthogonal to a non-empty subset of the simple coroots fe�1 � e

�
2 ; : : : ; e

�
n�1 � e

�
n ; e
�
ng. The

convention in the following table is that the weights wi 2 1
2
Z�0 are decreasing with i . For

example S.w3/Œ2��Oo.w1; w2/ occurs only if m3 D m4, and if this is the case then

.m1; m2; m3; m4/ D

�
w1 C 1;w2 C 2;w3 C

7

2
;w3 C

7

2

�
:

T 1. Unramified cohomological Arthur parameters for Sp8

Oo.w1; w2; w3; w4/ Oe.w1; w2; w3; w4/� 1 Oe.w1; w4/�Oe.w2; w3/� 1

Oe.w2; w3/�Oo.w1; w4/ Oe.w1; w4/�Oo.w2; w3/ Oe.w1; w3/�Oe.w2; w4/� 1

Oe.w2; w4/�Oo.w1; w3/ Oe.w1; w3/�Oo.w2; w4/ Oe.w1; w2/�Oe.w3; w4/� 1

Oe.w3; w4/�Oo.w1; w2/ Oe.w1; w2/�Oo.w3; w4/ Oe.w1; w2/� S.w3/Œ2�� 1

S.w3/Œ2��Oo.w1; w2/ Oe.w1; w4/� S.w2/Œ2�� 1 S.w2/Œ2��Oo.w1; w4/

Oe.w3; w4/� S.w1/Œ2�� 1 S.w1/Œ2��Oo.w3; w4/ S.w1; w3/Œ2�� 1

S.w1/Œ2�� S.w3/Œ2�� 1 S.w1/Œ4�� 1 S.w1/Œ2�� Œ5�

Oe.w1; w2/� Œ5� Oo.w1/Œ3� Œ9�

Among these 24 types for 2 ‰.Sp8/
unr;�0

disc , some never yield Siegel modular forms. In the
last four cases (S.w1/Œ2��Œ5�,Oe.w1; w2/�Œ5�,Oo.w1/Œ3� and Œ9�),… 1 does not contain the
holomorphic discrete series. In the other 20 cases, … 1 contains the holomorphic discrete
series representation �hol

�;C but it can happen that h�; �hol
�;CijS never equals " . For example

if  is tempered (the first 11 cases) " is always trivial, whereas h�; �hol
�;CijS is trivial if and

only if  does not contain Oe.w1; w2/ or Oe.w1; w4/ or Oe.w2; w3/ as a factor.
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In the following table we list the 11 types that yield Siegel modular forms for some
dominant weight �0 for Sp8. In the last column we give a necessary and sufficient condition
on the weights for having h�; �hol

�;CijS D " .

T 2. The 11 possible Arthur parameters of Siegel eigenforms for �4

Type .m1; m2; m3; m4/ Occurs iff

Oo.w1; w2; w3; w4/ .w1 C 1;w2 C 2;w3 C 3;w4 C 4/ always

Oe.w1; w2; w3; w4/� 1 .w1 C 1;w2 C 2;w3 C 3;w4 C 4/ always

Oe.w1; w3/�Oe.w2; w4/� 1 .w1 C 1;w2 C 2;w3 C 3;w4 C 4/ always

Oe.w2; w4/�Oo.w1; w3/ .w1 C 1;w2 C 2;w3 C 3;w4 C 4/ always

Oe.w1; w3/�Oo.w2; w4/ .w1 C 1;w2 C 2;w3 C 3;w4 C 4/ always

S.w3/Œ2��Oo.w1; w2/ .w1 C 1;w2 C 2;w3 C
7
2
; w3 C

7
2
/ w3 C

1
2

is odd

S.w2/Œ2��Oe.w1; w4/� 1 .w1 C 1;w2 C
5
2
; w2 C

5
2
; w4 C 4/ w2 C

1
2

is even

S.w2/Œ2��Oo.w1; w4/ .w1 C 1;w2 C
5
2
; w2 C

5
2
; w4 C 4/ w2 C

1
2

is even

S.w1/Œ2��Oo.w3; w4/ .w1 C
3
2
; w1 C

3
2
; w3 C 3;w4 C 4/ w1 C

1
2

is odd

S.w1; w3/Œ2�� 1 .w1 C
3
2
; w1 C

3
2
; w3 C

7
2
; w3 C

7
2
/ w1 C w3 is odd

S.w1/Œ4�� 1 .w1 C
3
2
; w1 C

3
2
; w1 C

3
2
; w1 C

3
2
/ w1 C

1
2

is even

5.4. Proof of Theorem A

We can now prove Theorem A of the introduction. Instead of .m1; : : : ; mn/we now denote
by k D .k1; : : : ; kn/ the weight for Siegel modular forms, as in the introduction. Recall that k
with k1 � � � � � kn � nC 1 corresponds to the dominant weight

� D .k1 � n � 1/e1 C � � � C .kn � n � 1/en

for G D Sp2n. Using the same arguments as in the proof of Theorem 4.3.1 and the charac-
terization of holomorphic discrete series inside Adams-Johnson packets mentioned above,
we get that for any J D fj1; : : : ; jrg � f1; : : : ; ng, there exists a family .ma; Pa; ƒa/a2A such
that for all k1 � � � � � kn � nC 1 satisfying

– for all 1 � j � n � 1, kj > kjC1 if and only if j 2 J ,
– kn > nC 1 if and only if n 2 J ,

we have

(5.4.1) dimSk.�n/ D
X
a2A

trQ.�ma /=Q
�
Pa.kj1 ; : : : ; kjr /�

ƒa.kj1 ;:::;kjr /

ma

�
:

The only new phenomenon is that the formula for weights k1 > � � � > kn > nC 1, that is
J D f1; : : : ; ng, is also valid for weights which merely satisfy k1 � � � � � kn > nC1. Note that
this was predicted by Tsushima [89, Remark 1] as a consequence of a sharp vanishing result,
which to our knowledge has not been proven yet. We give a proof using the trace formula.
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Since we are assuming kn > n C 1, any Adams-Johnson parameter  1 for Sp2n having
infinitesimal character � D .k1 � 1/e1 C � � � C .kn � n/en is such that Std ı  1 does not
contain 1Œ2d C 1� or �C=RŒ2d C 1� for d > 0, and thus the corresponding Adams-Johnson
packet contains �hol

�;C, and all other elements of this packet do not have �hol
�;C in their Johnson

resolution. Consequently,

(5.4.2) dimSk.�n/ D
X

�2…unr
disc.G/

m� tr.�1.f1;�;hol.g1/dg1//

where f1;�;hol.g1/dg1 is a pseudo-coefficient for the discrete series �hol
�;C with � D �C �.

We now have to show that the right hand side is given by a formula of the kind 5.4.1 as a
function of the dominant weight �. The arguments of [5, § 3], which use the cuspidality but
not the stability of the function at the real place, show that the right hand side of 5.4.2 is the
spectral side TG

spec.f .g/dg/ of the invariant trace formula of [4] for the smooth compactly
supported distribution

f .g/dg D f1;�;hol.g1/dg1 �
Y
p

fp.gp/dgp

where fp is the characteristic function of G.Zp/ and
R

G.Zp/ dgp D 1. Contrary to the stable
case, the geometric side of the trace formula now involves unipotent terms. In order to avoid
the analysis of such terms, we give an indirect argument using the stabilization of the trace
formula [7]:

(5.4.3) TG.f .g/dg/ D
X

H

�.G;H/STH.f H.h/dh/

where the sum is over elliptic endoscopic groups H for G, each �.G;H/ is an explicit rational
number, f H.h/dh is a transfer of f .g/dg, and STH is defined inductively by a similar
formula:

(5.4.4) STH.F.h/dh/ D TH.F.h/dh/ �
X

H0¤H

�.H;H0/STH0.F H0.h0/dh0/:

Fix a global Whittaker datum for G, which determines local geometric transfer factors. At
any finite place, the transfer f H

p .hp/dhp can be chosen to be zero if HQp is ramified, or the
unit of an unramified Hecke algebra if HQp is unramified, by the fundamental lemma. At the
real place it is well-known that a transfer f H

1;�;�
.h1/dh1 of a pseudo-coefficient of discrete

series f1;�;�.g1/dg1 for GR (e.g., � D hol) is given by a linear combination with integer
coefficients of pseudo-coefficient of discrete series for HR,

P
i cif1;�i ;�.h1/dh1, where

each�i is an affine function of�. Since only the stable orbital integrals of f H
1;�;�

.h1/dh1 are
determined, we can also choose f H

1;�;�
.h1/dh1 D

P
i c
0
if1;�i .h1/dh1 where c0i 2 Q and

f1;�i .h1/dh1 is an Euler-Poincaré function as in Section 3.1.1. By induction using 5.4.4,
we have that each STH.f1;�i .h1/dh1 �

Q
p f

H
p .hp/dhp/ can be written asX

a2Ai

trQ.�ma /=Q
�
Pa.k1; : : : ; kn/�

ƒa.k1;:::;kn/
ma

�
and so the left hand side of 5.4.3 is also given by such a formula.

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE



334 O. TAÏBI

5.5. Some dimensions in the scalar case

In genus n greater than 4 the enumeration of the possible Arthur parameters of Siegel
eigenforms is best left to a computer. Our implementation is currently able to compute
dimSr .�n/ for n � 7 and any algebraic representation r of GLn such that its highest weight
m1 � � � � � mn satisfies mn � nC 1.

Table 3 displays the dimensions of some spaces of scalar Siegel cusp forms. Note that
our method does not allow one to compute dimSk.�n/ when k � n (question marks in
the bottom left corner). We do not include the values dimSk.�n/ when n C 1 � k � 7

because they all vanish. The question marks on the right side could be obtained simply
by computing more traces in algebraic representations (Tr.
 jV�/ in the geometric side of
the trace formula). For more data see http://wwwf.imperial.ac.uk/~otaibi/dimtrace.
For n � 8 we have not (yet) managed to compute the masses for Sp2n. Nevertheless we can
enumerate some endoscopic parameters, and thus give lower bounds for dimSk.�n/: these
are the starred numbers.

T 3. Dimensions of spaces of scalar Siegel cusp forms

k 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

dimSk.�1/ 0 0 0 0 1 0 0 0 1 0 1 0 1 0 1

dimSk.�2/ 0 0 1 0 1 0 1 0 2 0 2 0 3 0 4

dimSk.�3/ 0 0 0 0 1 0 1 0 3 0 4 0 6 0 9

dimSk.�4/ 1 0 1 0 2 0 3 0 7 0 12 1 22 1 38

dimSk.�5/ 0 0 0 0 2 0 3 0 13 0 28 0 76 0 186

dimSk.�6/ 0 0 1 0 3 0 9 0 33 0 117 1 486 ? ?

dimSk.�7/ 0 0 0 0 3 0 9 0 83 0 ? 0 ? 0 ?

dimSk.�8/ ? 0� 1� 0� 4� 1� 23� 2� 234�

dimSk.�9/ ? ? 0� 0� 2� 0� 25� 0� 843�

dimSk.�10/ ? ? ? 0� 2� 0� 43� 1� 1591�

dimSk.�11/ ? ? ? ? 1� 0� 32� 0� 6478�

In principle for n � 7 one can compute the generating series
P
k�nC1 .dimSk.�n// T

k .
We have not attempted to do so for n � 4.

6. Reliability

The complete algorithm computing the three families of numbers

– card .S.w1; : : : ; wn// for n � 1, wi 2 1
2
Z n Z and w1 > � � � > wn > 0,

– card .Oo.w1; : : : ; wn// for n � 1, wi 2 Z and w1 > � � � > wn > 0,
– card .Oe.w1; : : : ; w2n// for n � 1, wi 2 Z and w1 > � � � > w2n � 0,
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is long and complicated. Our implementation consists of more than 5000 lines of source code
(mainly in Python, using Sage [87]), therefore it certainly contains errors. There are several
mathematically meaningful checks suggesting that the tables produced by our program are
valid:

1. When computing the geometric side of the trace formula we obviously always find a
rational number. The trace formula asserts that it is equal to the spectral side, which is
an integer, being an Euler-Poincaré characteristic. The first check that our tables pass
is thus that the geometric sides are indeed integral.

2. With a one-line modification, our algorithm can be used to compute global orbital
integrals for special orthogonal groups G=Q which are split at every finite place and
such that G.R/ is compact. On a space of dimension d such a group exists if and only
d D �1; 0; 1 mod 8. Recall that for d 2 f7; 8; 9g, up to isomorphism there is a
unique regular and definite positive quadratic form q W Zd ! Z. These are the lattices
E7, E8 and E8 ˚ A1. Each one of these three lattices defines a reductive group G
over Z such that GQ is as above, and their uniqueness is equivalent to the fact that the
arithmetic genus G.Af /=G.bZ/ has one element. Chenevier and Renard [25] computed
the geometric side of the trace formula, which is elementary and does not depend on
Arthur’s work in the anisotropic case, to count level one automorphic representations
for these groups. This is possible because G.Z/ is closely related to the Weyl groups of
the root systems E7 and E8, for which Carter [19] described the conjugacy classes and
their orders. We checked that we obtain the same “masses” (see Section 3.2.5).

3. The numbers card .S.w1; : : : ; wn//, card .Oo.w1; : : : ; wn// and card .Oe.w1; : : : ; w2n//
belong to Z�0. Our tables pass this check.

4. We checked that all the orbital integrals that we computed satisfy the fundamental
lemma (see Remark 3.2.15), using the formulae given by Waldspurger [94] for the
transfer factors, passing to the limit in the singular cases.

5. In low rank there are exceptional isogenies between the groups that we consider:
PGSp2 ' SO3, PGSp4 ' SO5, .SO4/sc ' SL2 � SL2, which by [25, Proposition 4.4]
imply:

1. For any odd w1 2 Z>0, card .S.w1=2// D card .Oo.w1//.
Note that card .Oo.w1// D 0 if w1 is even.

2. For any integers w1 > w2 > 0 such that w1 C w2 is odd,

card
�
S

�
w1 C w2

2
;
w1 � w2

2

��
D card .Oo.w1; w2// :

Note that card .Oo.w1; w2// D 0 if w1 C w2 is even.
3. For any integers w1 > w2 > 0 such that w1 C w2 is odd,

card
�
S

�
w1 C w2

2

��
� card

�
S
�w1 � w2

2

��
D card .Oe.w1; w2// ;

and for any odd integer w > 0, 
card

�
S.w

2
/
�

2

!
D Oe.w; 0/:

Note that card .Oe.w1; w2// D 0 if w1 C w2 is even.
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6. By results of Mestre [68], Fermigier [35] and Miller [71], in low motivic weight (that
is 2w1) some of the cardinalities of S.w1; : : : /, Oo.w1; : : : / and Oe.w1; : : : / are
known to vanish. In recent work, Chenevier and Lannes [24, théorème F] improve
their method to show that if n � 1 and � is a cuspidal automorphic representation
of GLn=Q such that

– for any prime number p, �p is unramified,
– the local Langlands parameter ' of �1 is either

� a direct sum of copies of 1, �C=R and Ir for integers 1 � r � 11, or
� a direct sum of copies of Ir for r 2 1

2
Z n Z and 1

2
� r � 21

2
.

then � is self-dual and ' belongs to the following list of 11 parameters:
� 1,
� I11=2; I15=2; I17=2; I19=2; I21=2,
� �C=R ˚ I11,
� I7=2 ˚ I19=2; I5=2 ˚ I21=2; I9=2 ˚ I21=2; I13=2 ˚ I21=2.

Moreover there exists a unique such � for each ' in this list. The relevant 4785 values
in our tables for groups G of rank � 6 and for G D Sp14 agree with this result.

7. Finally, we can compare the values that we obtain for the dimensions of spaces of
Siegel modular forms with known ones. Our formulae coincide with those given in [49]
(genus two, scalar) and [89] and [90] (genus two, vector-valued). Tsuyumine [91] gave
a dimension formula in the scalar case in genus 3. There seems to be a typographical
error in the formula on page 832 of [91], the denominator should be

.1 � T 4/.1 � T 12/2.1 � T 14/.1 � T 18/.1 � T 20/.1 � T 30/

instead of

.1 � T 4/.1 � T 12/3.1 � T 14/.1 � T 18/.1 � T 20/.1 � T 30/:

With this correction we find the same formula as Tsuyumine. In [10] Bergström, Faber
and van der Geer conjecture a formula for the cohomology of local systems on the
moduli space A 3 in terms of motives conjecturally associated with Siegel cusp forms.
As a corollary they obtain a conjectural formula for dimSr .�3/where r is an algebraic
representation of GL3 of highest weight m1 � m2 � m3 � 4. For m1 � 24

(1771 values) we have checked that our values coincide. We have also checked that our
tables agree with Nebe and Venkov’s theorem and conjecture in weight 12 [74] and Poor
and Yuen’s results in low weight [77].

7. Tables of masses

See 3.2.5 for the meaning of these tables.

T 4. Masses for the group SO3

Char. pol. mass Char. pol. mass Char. pol. mass

ˆ31 �1=12 ˆ1ˆ
2
2 1=4 ˆ1ˆ3 1=3
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T 5. Masses for the group SO5

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass

ˆ51 �1=1440 ˆ31ˆ
2
2 �1=48 ˆ1ˆ

4
2 7=288 ˆ1ˆ

2
2ˆ4 1=4

ˆ1ˆ
2
4 �1=24 ˆ31ˆ3 �1=36 ˆ1ˆ

2
2ˆ3 1=12 ˆ1ˆ

2
3 �1=36

ˆ1ˆ
2
2ˆ6 2=9 ˆ1ˆ

2
6 �1=36 ˆ1ˆ12 1=6 ˆ1ˆ5 2=5

T 6. Masses for the group SO7

Char. pol. mass Char. pol. mass Char. pol. mass

ˆ71 1=483840 ˆ51ˆ
2
2 �19=23040 ˆ31ˆ

4
2 �331=13824

ˆ1ˆ
6
2 1=7680 ˆ31ˆ

2
2ˆ4 �11=192 ˆ1ˆ

4
2ˆ4 1=64

ˆ31ˆ
2
4 25=1152 ˆ1ˆ

2
2ˆ

2
4 �7=384 ˆ1ˆ

2
2ˆ8 3=16

ˆ1ˆ4ˆ8 3=16 ˆ51ˆ3 �1=1440 ˆ31ˆ
2
2ˆ3 �1=36

ˆ1ˆ
4
2ˆ3 7=864 ˆ1ˆ

2
2ˆ3ˆ4 1=24 ˆ1ˆ3ˆ

2
4 �1=72

ˆ31ˆ
2
3 7=144 ˆ1ˆ

2
2ˆ

2
3 �1=144 ˆ1ˆ

3
3 1=216

ˆ31ˆ
2
2ˆ6 �23=432 ˆ1ˆ

4
2ˆ6 1=48 ˆ1ˆ

2
2ˆ4ˆ6 1=8

ˆ1ˆ
2
2ˆ3ˆ6 5=27 ˆ31ˆ

2
6 1=432 ˆ1ˆ

2
2ˆ

2
6 1=48

ˆ1ˆ3ˆ
2
6 1=216 ˆ31ˆ12 �1=72 ˆ1ˆ

2
2ˆ12 1=24

ˆ1ˆ3ˆ12 5=36 ˆ1ˆ9 1=3 ˆ31ˆ5 �1=15

ˆ1ˆ
2
2ˆ5 1=10 ˆ1ˆ3ˆ5 1=15 ˆ1ˆ

2
2ˆ10 3=10

ˆ1ˆ7 3=7

T 7. Masses for the group Sp2

Char. pol. mass Char. pol. mass Char. pol. mass

ˆ21 �1=12 ˆ22 �1=12 ˆ4 1=2

ˆ3 1=3 ˆ6 1=3

T 8. Masses for the group Sp4

Char. pol. mass Char. pol. mass Char. pol. mass Char. pol. mass

ˆ41 �1=1440 ˆ21ˆ
2
2 7=144 ˆ42 �1=1440 ˆ21ˆ4 �1=24

ˆ22ˆ4 �1=24 ˆ24 �1=24 ˆ8 1=2 ˆ21ˆ3 �1=36

ˆ22ˆ3 �1=36 ˆ3ˆ4 1=6 ˆ23 �1=36 ˆ21ˆ6 �1=36

ˆ22ˆ6 �1=36 ˆ4ˆ6 1=6 ˆ3ˆ6 4=9 ˆ26 �1=36

ˆ12 1=6 ˆ5 2=5 ˆ10 2=5
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T 9. Masses for the group Sp6

Char. pol. mass Char. pol. mass Char. pol. mass

ˆ61 1=362880 ˆ41ˆ
2
2 31=17280 ˆ21ˆ

4
2 31=17280

ˆ62 1=362880 ˆ41ˆ4 �1=2880 ˆ21ˆ
2
2ˆ4 7=288

ˆ42ˆ4 �1=2880 ˆ21ˆ
2
4 7=288 ˆ22ˆ

2
4 7=288

ˆ34 1=48 ˆ21ˆ8 �1=24 ˆ22ˆ8 �1=24

ˆ4ˆ8 3=4 ˆ41ˆ3 �1=4320 ˆ21ˆ
2
2ˆ3 7=432

ˆ42ˆ3 �1=4320 ˆ21ˆ3ˆ4 �1=72 ˆ22ˆ3ˆ4 �1=72

ˆ3ˆ
2
4 �1=72 ˆ3ˆ8 1=6 ˆ21ˆ

2
3 25=432

ˆ22ˆ
2
3 1=432 ˆ23ˆ4 �1=72 ˆ33 1=162

ˆ41ˆ6 �1=4320 ˆ21ˆ
2
2ˆ6 7=432 ˆ42ˆ6 �1=4320

ˆ21ˆ4ˆ6 �1=72 ˆ22ˆ4ˆ6 �1=72 ˆ24ˆ6 �1=72

ˆ6ˆ8 1=6 ˆ21ˆ3ˆ6 �1=27 ˆ22ˆ3ˆ6 �1=27

ˆ3ˆ4ˆ6 2=9 ˆ23ˆ6 1=54 ˆ21ˆ
2
6 1=432

ˆ22ˆ
2
6 25=432 ˆ4ˆ

2
6 �1=72 ˆ3ˆ

2
6 1=54

ˆ36 1=162 ˆ21ˆ12 �1=72 ˆ22ˆ12 �1=72

ˆ4ˆ12 5=12 ˆ3ˆ12 2=9 ˆ6ˆ12 2=9

ˆ9 4=9 ˆ18 4=9 ˆ21ˆ5 �1=30

ˆ22ˆ5 �1=30 ˆ4ˆ5 1=5 ˆ3ˆ5 2=15

ˆ5ˆ6 2=15 ˆ21ˆ10 �1=30 ˆ22ˆ10 �1=30

ˆ4ˆ10 1=5 ˆ3ˆ10 2=15 ˆ6ˆ10 2=15

ˆ7 4=7 ˆ14 4=7

For even orthogonal groups and when the characteristic polynomial is coprime toˆ1ˆ2,
the characteristic polynomial defines two conjugacy classes overQ. They have the same mass.

T 10. Masses for the group SO4

Char. pol. mass Char. pol. mass Char. pol. mass

ˆ41 1=144 ˆ21ˆ
2
2 1=8 ˆ42 1=144

ˆ24 �1=24 ˆ21ˆ3 1=9 ˆ23 �1=36

ˆ22ˆ6 1=9 ˆ26 �1=36 ˆ12 1=6
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T 11. Masses for the group SO8

Char. pol. mass Char. pol. mass Char. pol. mass

ˆ81 1=58060800 ˆ61ˆ
2
2 1=15360 ˆ41ˆ

4
2 1357=165888

ˆ21ˆ
6
2 1=15360 ˆ82 1=58060800 ˆ41ˆ

2
2ˆ4 1=64

ˆ21ˆ
4
2ˆ4 1=64 ˆ41ˆ

2
4 �55=13824 ˆ21ˆ

2
2ˆ

2
4 17=768

ˆ42ˆ
2
4 �55=13824 ˆ44 1=7680 ˆ21ˆ

2
2ˆ8 3=16

ˆ21ˆ4ˆ8 3=32 ˆ22ˆ4ˆ8 3=32 ˆ28 1=32

ˆ61ˆ3 1=25920 ˆ41ˆ
2
2ˆ3 1=96 ˆ21ˆ

4
2ˆ3 41=5184

ˆ21ˆ
2
2ˆ3ˆ4 1=8 ˆ21ˆ3ˆ

2
4 1=432 ˆ41ˆ

2
3 �19=1728

ˆ21ˆ
2
2ˆ

2
3 1=96 ˆ42ˆ

2
3 �1=5184 ˆ23ˆ

2
4 1=864

ˆ21ˆ
3
3 1=648 ˆ43 1=25920 ˆ41ˆ

2
2ˆ6 41=5184

ˆ21ˆ
4
2ˆ6 1=96 ˆ62ˆ6 1=25920 ˆ21ˆ

2
2ˆ4ˆ6 1=8

ˆ22ˆ
2
4ˆ6 1=432 ˆ21ˆ

2
2ˆ3ˆ6 23=81 ˆ22ˆ

2
3ˆ6 1=648

ˆ41ˆ
2
6 �1=5184 ˆ21ˆ

2
2ˆ

2
6 1=96 ˆ42ˆ

2
6 �19=1728

ˆ24ˆ
2
6 1=864 ˆ21ˆ3ˆ

2
6 1=648 ˆ23ˆ

2
6 41=2592

ˆ22ˆ
3
6 1=648 ˆ46 1=25920 ˆ41ˆ12 1=864

ˆ21ˆ
2
2ˆ12 1=48 ˆ42ˆ12 1=864 ˆ24ˆ12 1=48

ˆ21ˆ3ˆ12 5=108 ˆ23ˆ12 1=432 ˆ22ˆ6ˆ12 5=108

ˆ26ˆ12 1=432 ˆ212 1=48 ˆ24 1=4

ˆ21ˆ9 1=9 ˆ3ˆ9 1=9 ˆ22ˆ18 1=9

ˆ6ˆ18 1=9 ˆ41ˆ5 1=100 ˆ21ˆ
2
2ˆ5 3=20

ˆ21ˆ3ˆ5 1=5 ˆ25 1=100 ˆ21ˆ
2
2ˆ10 3=20

ˆ42ˆ10 1=100 ˆ22ˆ6ˆ10 1=5 ˆ210 1=100

ˆ20 3=10 ˆ15 1=5 ˆ30 1=5

ˆ21ˆ7 3=7 ˆ22ˆ14 3=7
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